
NASA CR tl 1 4 2 7 8

CODING SYSTEMS STUDY FOR
HIGH DATA RATE TELEMETRY LINKS

By: K.S. Gilhousen
J.A. Heller
LB. Jacobs
A.J. Viterbi

January 1971

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS2-6024 by
LINKABIT CORPOP~TION
San Diego, California

for

AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TABLE OF CONTENTS

SEc'rION TITLE Pl\GE

1.0 INTRODUCTION. • 1

2.0 VITERBI DECODER STUDy................................. 3

2.1

2.2

2.3

Introduction and Fundamentals •••••••••••••••••••• 3

3 2.1.1
2.1.2

2.1. 3

2.1. 4

Code Representation •••••••••••••••••••••••
The Viterbi Decoding Algorithm for
the Binary Symmetric Channel (Hard
Decision Outputs of a Gaussian
Channel).................................. 8
Distance Properties of Convolutional
Codes. • • • . • • • • . • • . . • • . • • • • • • • • • . . . • . • 11
Generalization to Arbitrary Convolu-
tional Codes •••••••••••••••••••••••••••••• 13

2.1.5 Systematic, Nonsystematic, and Cat-
astrophic Codes ••••••••••••••••••••••••••• 15

2.1.6 Generalization of Viterbi Decoder to
the Additive White Gaussian Noise
Channe 1 • 18

2.1.7 Hetric Quantization, Path Memory
Truncation, and Other System Con-
siderations ••••••••••••••••••••••••••••••• 23

Rate 1/2 Convolutional Codes and Viterbi Decoders 26

2.2.1 Good Convolutional Codes.................. 27
2.2.2 Numerical Code Performance Bound.......... 29
2.2.3 Viterbi Decoder Simulation Program........ 35
2.2.4 Simulation and Numerical Performance

Da ta ••••••••••••••••••••••••• ~ • • • • • • • • • • • • 36
2.2.4.1 General Performance Results •••••• 36
2.2.4.2 Receiver Quantization............ 41
2.2.4.3 Path Hemory •••••••••••••••••••••• 42
2.2.4.4 Decoder Output Selection......... 45

2.2.5 Code Synchronization and Channel
Reliabi1i ty • 46
2.2.5.1 Node Synchronization and

Phase Ambiguity Resolution....... 46
2.2.5.2 Transparent Codes •••••••••••••••• 60
2.2.5.3 Channel Reliability Information.. 63

2.2.6 Sensitivity to AGC Inaccuracy............. 64

Other

2.3.1
2.3.2
2.3.3

Code Rates •••••••••••••••••••••••••••••••••

Description of Code Search Program ••••••••
Good Rate 1/3, 2/3, and 3/4 Codes •••••••••
Simulation and Numerical Performance

64

66
69

Data. • . • • • • • • • • • . • . • • • 69

1/

TABLE OF CONTENTS (Continued)

SECTION TITLE PAGE

2.3.4 Comparison \'Jith Rate 1/2 Code •••••••..•••• 76

2.4 Viterbi Decoder Implementation ••••••••••••••••••• 79

2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2.4.6

2.4.7
2.4.8

Review of Decoder Algorithm ••••••••••••••• 70
Metric Compression........................ 84
Overflow Protection .•••••••••••••••••••••• 8J
Storage of State l~trics •••••••••••••••••• q4
Arithmetic Logical Section •••••••••••••••• ~6
2.4.5.1 ECL Arithmetic-Loqical Unit •••••• 99
2.4.5.2 TTL ACS Unit ••••••••••••••••••••• 101
Decision Hemory and Outout Selection ..•••. 107
2.4.6.1 ECL Hemory Output Section •••••.•. IHl
2.4.6.2 TTL Memory Output Section •••••••• III
Synchronization Section •••.••••••••••••••• 113
Trade-Off Section •.•••.••••••••••••••••••• 117
2.4.8.1 Cost-Complexity Trade-Offs •.•••.• 117
2.4.8.2 Cost vs. Constraint Length ••••••• 119
2.4.8.3 Cost vs. Code Rate ••••••••••••••• 120
2.4.8.4 Cost vs. Quantization •••••••••••• 121

3.0 SEQUENT IAL DECODING •••••••••••••••••••••••••••••••••• 123

3. 1 Background. •• 123
3.2 Hard Decision Decoder .••••••••••••••••••••••••••• 129

3.2.1
3.2.2

Syndrome Sequential Decoder ••••••••••••••• 129
Algorithm Modifications ••••••••••••••••••• 131
3.2.2.1 Guess and Restart Overflow

3.2.2.2
3.2.2.3
3.2.2.4

Strateqy 131
Quick Threshold Loosening ••••••• 132
Look Ahead Sequential Decoding ..• 141
Sequential Decoding with Side-
ways Looks ••••••••••••••••••••••• 144

3.2.3 Decoder Undetected Error and Computational

3.2.4
3.2.5
3.2.6
3.2.7

Performance •••••••••••••••••••••••••••••• 144
3.2.3.1 Code Selection •••••••••••••••••• 145
3.2.3.2 Decoder Parameters •••••••••••••• 146
3.2.3.3 The Distribution of Decoding

Computations. • • • • • • • • • • • • • • • • • • •• 148
3.2.3.4 Measured Undetected Error Rates.. 148
Real Time Sequential Decoder Simulation •• 152
Erasures vs. Undetected Errors ••••••••••• 157
Systematic vs. Nonsystematic Code~ ••••••• 157
Code Synchronization and Channel Reli­
ability Prediction ••••••••••••••••••.•••• 160

SECTION

3.3

3.4

TABLE OF CONTENTS (Continued)

TITLE PAGE

Soft Decision Sequential Decoding •••••••••••••••• 160

3.3.1
3.3.2
3.3.3
3.3.4

Syndrome Decoder •••••••••••••••••••••••••• 160
Fano Algorithm Modifications •••••••••••••• 162
Sensitivity to Incorrect AGC •••••••••••••• 162
Comparisons of Soft and Hard Decision
Sequential Decoders •••••••••••••••••••••••

Sequential Decoder Implementation ••••••••••••••••

163

163

167
171
172
174
176
178
181
183
188
189

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4.8

40 Mbps Sequential Decoder ••••••••••••••••
Code Synchronization ••••••••••••••••••••••
Input Buffer
Received Information Bit Storage ••••••••••
Syndrome Generator ••••••••••••••••••••••••
Decoder ~1emory
CPU Buffer ••••••••••••••••••••••••••••••••
CPU

3.4.9 Physical Description ••••••••••••••••••••••
3.4.10 Hodifications Required by Soft Decisions ••

4.0 CODING FOR DATA OF VARYING SPEED AND ERROR RATE
REQU I RE1'1Er-~T S.. • 192

4.1 Concatenated Coding •••••••••••••••••••••••••••••• 192
4.2 Lengthened Symbol Times for Low-Rate Data •••••••• 194
4.3 Lo~~er Rate Codes ••.•.•..••.••...••••••••••••••... 195

5.0 PREDECODING FOR A SEQUENTIAL DECODER: A HYBRID IHPLE­
MENTATION FOR VERY Lmv ERROR PROBABILITy.............. 198

5.1 Introduction ••••••••••••••••••••••••••••••••••••• 198
5.2 Deletion Probabilities of Predecoder ••••••••••••• 201
5.3 Computational Complexity of Sequential Decoding

for Erroneously Predecoded Deleted Frames •••••••• 202
5.4 Overflow Probability of Hybrid Implementation ••••• 204
5.5 System Analysis of Possible Hybrid Implementation 205
5.6 Conclusions •••••••••••••••••••••••••••••••••••••• 208

APPENDIX A .. 213

APPENDIX B ... 218

APPENDIX C .. 232

jll

1.0 INTRODUCTION

This report presents the results of a study of coding systems

for high data rate links. The emphasis throughout is on convolu­

tional codes. This is because high performance decoders exist

for this class of codp.s, Hhich are practical to implement at multi­

megabit data rates.

The bit error rate, in the 10- 3 to 10- 8 range; vS.Eb/No

performance of many coding system configurations has been studied,

through simulation and analytical techniques. Special attention

has been naid to the sensitivity of performance to decoder para­

meters '"hich affected complexity and cost significantly. These

dp.coder parameters include

a) Code constraint length

b) Code ratc! (bandHidth expansion)

c) Data rate

d) Speed factor and buffer size (sequential decoding)

e) Path memory length, metric representation, and decision

output selection (Viterbi decoding)

f) Receiver quantization.

A technique for obtaining and maintaining node synchr6nization

and resolving phase ambiguities has been devised and analyzed.

This technique is quite simple to implement. Simulation indicates

that performance is more than adequate for the systems under con­

sideration.

-1-

The report is divided into four major sections, plus the

introduction. Each section deals with a distinct type of decoder

or combination of decoders. Section 2 is concerned with viterbi

decoders. The important tradeoffs between performance and com­

plexity are discussed here. The section concludes with a dis­

cussion of several methods of implementing Viterbi decoders at

vaLious data rates, and their relative complexity and cost.

Section 3 treats sequential decoding. Several techniques

which either simplify or improve the performance of the Fano

algorithm are discussed and evaluated. The implementation sub­

section emphasizes high speed rate 1/2, hard decision sequential

decoding.

Section 4 evaluates a simple scheme for providing different

levels of coding for data with different error rate requirements.

Finally, an interesting method of predecoding high rate

received data using a Viterbi decoder, and shunting occasional

difficult data to a sequential decoder, is discussed in Section

5. This technique holds out the possibility of efficiently de­

coding very high rate data using a relatively slow sequential

decoder.

-2-

2.0 VITERBI DECODER STUDY

2.1 Introduction and Fundamentals

2.1.1 Code Representation. A convolutional encoder is a

linear finite-state machine consisting of a K-stage shift regis-

ter and n linear algebraic function generators. The input data,

which is usually though not necessarily binary, is shifted along

the register b bits at a time. An example with K=3, n=2, b=l

is shown in Fig. 2.1.

010001 •••

001101010010 ••• ~(__ ~t __ __
code sequence ~

011100 •••

011010 •••
~---data sequence

Fig. 2.1 Convolutional Coder for K=3, n=2, b=l

The binary input data and output code sequences are indicated on

the diagram. The first three input bits, 0, 1, and 1, generate

the code outputs 00, 11, and 01 respectively. We shall pursue

this example to develop various representations of convolutional

codes and their properties. The techniques thus developed will

then be shown to generalize directly to any convolutional code.

-3-

It is traditional and instructive to exhibit a convolutional

code by means of a tree diagram as shown in Figure 2.'2.

00 a 00
11

00 a 10
11 b 01

00 11
10 c

00 11 b

a ::: [00 I

b :::
1 01 1

c ::: ern
01 d 01

I~ 00 00

d ::: 1111

11 a 11
10 c 10

00 b 01 11
11 01 c
00 01 d

10 d
01
10
00 00 a
I~ 11 a

11 b 10
01

10
11

, 0 ~ 00
00 b

01 d 01
10

11 00 11 a 11
01 c

10 00 b
01 01

01 c
11
00

10 d 01 10 d 1 10

Figure 2.2. Tree Code Representation for Coder
of Figure 2.1.

-4-

If the first input bit is a zero the code symbols are those

shown on the first upper branch, while if it is a one the output

code symbols are those shown on the first lower branch. Similarly,

if the second input bit is a zero we trace the tree diagram to the

next upper branch, while if it is a one we trace the diagram down­

ward. In this manner all thirty-two possible outputs for the

first five inputs may be traced.

From the diagram it also becomes clear that after the first

three branches the structure becomes repetitive. In fact, we

readily recognize that beyond the third branch the code symbols

on branches emanating from the two nodes labelled "a n are iden­

tical, and similarly for all correspondingly labelled pairs of

nodes. The reason for this is obvious from examination of the

encoder. As the fourth input bit enters the coder at the right,

the first data bit falls off on the left end and no longer influ­

ences the output code symbols. Consequently, the data sequences

lOOxy ••• and OOOxy ••• generate the same code symbols after the

third branch and, as is shown in the tree diagram, both nodes

labelled "a" can be joined together.

This leads to redrawing the tree diagram as shown in Figure

2.3. This has been called a trellis diagram since a trellis is a

tree-like structure with remerging branches. We adopt the

convention here that code branches produced by a "zero" input

bit are shown as solid lines and code branches produced by a

"one" input bit are shown dashed.

-5-

00

" ,
" 11

"-

"
a - [@J

b sa 1011

c • 1101

d - 1111

00

" "- ,11'

"-

Figure 2.3

00 a 00 a 00

Trellis Code Representation for
Coder of Figure 2.1.

The completely repetitive structure of the trellis diagram

suggests a further reduction in the representation of the" code

to the state-diagram of Figure 2.4. The ·states· of the state-

diagram are labelled according to the nodes of the trellis

diagram. However, since the states correspond merely to the last

two inpu~ bits to the coder we may use these bits to denote the

nodes or states of this diagram.

-6-

Fiqure 2.4. State-Diaqram Representation for
Coder of Fiqure 2.1.

We observe finally that the state-diagram can be drawn

directly by observinq the finite-state machine properties of the

encoder and particularly the fact that a four-state directed

qraph can be used to represent uniquely the input-output relation

of the eiqht-state machine. For the nodes represent the previous

two bits while the present bit is indicated by the transition

branch, for example, if the encoder (machine) contains 011,

-7-

this is represented in the diagram by the transition from state

b = 01 to state d = 11 and the corresponding branch indicates the

code symbol outputs 01.

2.1.2 The Viterbi Decoding Algorithm for the Binary Sym­

metric Channel (Hard Decision Outputs of a Gaussian Channel). On

a binary symmetric channel, errors which transform a channel code

symbol 0 to 1 or 1 to 0 are assumed to occur independently from

symbol to symbol with probability p. If all input (message)

sequences are equally likely, the decoder which minimizes the

overall error probability for any code, block or convolutional,

is one which examines the error-corrupted received sequence

y y ••• y .••• and chooses the data sequence corresponding to the
1 2 J

transmitted code sequence X
1

X
2
••• X j ••• which is closest to the

received sequence in the sense of Hamming distance: that is the

transmitted sequence which differs from the received sequence in

the minimum number of symbols.

Referring first to the tree diagram, this implies that we

should choose that path in the tree whose code sequence differs

in the minimum number of symbols from the received sequence.

However, recognizing that the transmitted code branches remerge

continually, we may equally limit our choice to the possible paths

in the trellis diagram of Figure 2.3. Examination of this dia­

gram indicates that it is unnecessary to consider the entire

received sequence (which conceivably could be thousands or

millions of symbols in length) at one time in deciding upon the

-8-

most likely (minimum distance) transmitted sequence. In parti­

cular, immediately after the third branch we may determine which

of the t,.,o paths leading to node or state "a" is more likely to

have been sent. For example, if 010001 is received, it is clear

that this is at distance 2 from 000000 while it is at distance

3 from 111011 and consequently we may exclude the lower path into

node "a". For, no matter what the subsequent received symbols

will be, they will effect the distances only over subsequent

branches after these two paths have remerged and consequently in

exactly the same way. The same can be said for pairs of paths

merging at the other three nodes after the third branch. We

shall refer to the minimum distance path of the two paths merging

at a given node as the "survivor". Thus it is necessary only to

remember which was the minimum distance path from the received

sequence (or survivor) at each node, as well as the value of that

minimum distance. This is necessary because at the next node

level we must compare the two branches merging at each node level,

which were survivors at the previous level for different nodes1

e.g., the comparison at node "an after the fourth branch is

among the survivors of comparison at nodes "a" and "c n after

the third branch. For example, if the received sequence over

the first four branches is 01000111, the survivor at the third

node level for node "a" is 000000 with distance 2 and at node

"c" it is 110101, also with distance 2. In going from the third

node level to the fourth the received sequence agrees precisely

with the survivor from "c" but has distance 2 from the survivor

-9-

from "a". Hence the survivor at node "a" of the fourth level is

the data sequence 1100 which produced the code sequence 11010111

which is at (minimum) distance 2 from the received sequence.

In this way, we may proceed through the received sequence

and at each step preserve one surviving path and its distance

from the received sequence, which is more generally called metric.

The only difficulty which may arise is the possibility that in a

given comparison between merging paths, the distances or metrics

are identical. Then we may simply flip a coin as is done for

block code words at equal distances from the received sequence.

For even if we preserved both of the equally valid contenders,

further received symbols would affect both metrics in exactly the

same way and thus not further influence our choice.

This decoding algorithm was first proposed by Viterbi (Ref. 8)

in the more general context of arbitrary memoryless channels.

Another description of the algorithm can be obtained from the

state-diagram representation of Figure 2.4. Suppose we sought

that path around the directed state-diagram, arriving at node

"a" after the kth transition, whose code symbols are at a minimum

distance from the received sequence. But clearly this minimum

distance path to node "a" at time k can be only one of two can­

didates: the minimum distance path to node "a" at time k-l and

the minimum distance path to node "c" at time k-l. The compari­

son is performed by adding the new distance accumulated in the kth

transition by each of these paths to their minimum distances

(metrics) at time k-l.

-10-

It appears thus that the state-diagram also represents a

system diagram for this decoder. With each node or state, ,~e

associate a storage register which remembers the minimum distance

path into the state after each transition as well as a metric

register which remembers its (minimum) distance from the received

sequence. Furthermore, comparjsons are made at each step be­

tween the two paths which lead into each node. Thus four com­

parators must also be provided.

We defer the question of truncating the trellis and thereby

making a final decision on all bits beyond L branches prior to

the given branch until we have some additional properties of con­

volutional codes.

2.1.3 Distance Properties of Convolutional Codes. We con­

tinue to pursue the example of Figure 2.1 for the sake of clarity;

in the next section, we shall easily generalize results. It is

well known that convolutional codes are group codes. Thus there

is no loss in generality in computing the distance from the all

zeros code word to all the other code words, for this set of dis­

tances is the same as the set of distances from any specific code­

word to all the others.

For this purpose, we may again use either the trellis diagram

or the state-diagram. We first of all redraw the trellis diagram

in Figure 2.5 labelling the branches according to their distances

from the all zeros path. Now consider all the paths that merge

with the all zeros for the first time at some arbitrary node "j".

-11-

o o

\
\

\

\
\

o o

Figure 2.5 Trellis Diagram Labelled with
Distances from all Zeros Path

o

\
\

-~

It is seen from the diagram that of these paths, there will be

just one path at distance 5 from the all zeros path and this

diverged from it three branches back. Similarly there are two

at distance 6 from it; one which diverged 4 branches back and the

other which diverged 5 branches back, and so forth. We note also

that the input bits for distance 5 path are 00 •• 0100 and- thus

differ in only one input bit from the all zeros, while the

distance 6 paths are 00 •• 01100 and 00 •• 010100 and thus differs

in 2 input bits from the all zeros path. The minimum distance,

sometimes called the minimum "free" distance, among all paths

is thus seen to be 5. This implies that any pair of channel

errors can be corrected, for two errors will cause the received

-12-

sequence to be at distance 2 from the transmitted (correct)

sequence but it will be at least at distance 3 from any other

possible code sequence. It appears thus that the distance of

all paths from the all zeros (or any arbitrary) path can be

so determined from the trellis diagram.

2.1.4 Generalization to Arbitrary Convolutional Codes. The

generalization of these techniques to arbitrary binary-tree (b=l)

convolutional codes is immediate. That is, a coder with a K

stage shift register and n modulo-two adders will produce a trel­

lis or state-diagram with 2K- l nodes or states and each branch

will contain "n" code symbols.

1
R = -n

The rate of this code is then

bits
code symbol

The example pursued in the previous sections had rate R=1/2. The

primary characteristic of the binary-tree codes is that only two

branches exit from and enter each node.

If rates other than lin are desired, we must make b>l, where

b is the number of bits shifted into the register at one time. An

example for K=2, b=2, n=3 and consequently rate R=2/3 is shown

in Figure 2.6 and its state-diagram is shown in Figure 2.7.

It differs from the binary-tree codes only in that each node

is connected to four other nodes, and for general "b" , it will

b be connected to 2 nodes. Still all the preceding techniques

including the trellis and state-diagram analysis are still

applicable. It must be noted, however, that the minimum distance

-13-

Fig. 2.7 State-Diagram for Code of Fig. 2.6.

-14-

decoder must make comparisons among all the paths entering

each node at each level of the trellis and select one survivor

out of four (or out of 2b in general).

2.1.5 Systematic, Nonsystematic, and Catastrophic Convolu­

tional Codes. The term 'syst'ernat'ic convolutional code refers

to a code on each of whose branches one of the code symbols is

just the data bit generating that branch. Thus a systematic

coder will have its stages connected to only n-l adders, the nth

being replaced by a direct line from the first stage to the com­

mutator. Figure 2.8 shows an R.l/2 systematic coder for K-3.

COd .. :-4(__ _ data

---.., 11

a b

Figure 2.8 Systematic Convolutional Coder
for KaJ, R-l/2

01

c
10

It is well known that for group block codes, any nonsys­

tematic code can be transformed into a systematic code which

performs exactly as well. This is not the case for convolutional

codes. The reason for this is that the performance of a code

-15-

a

on any channel depends largely upon the relative distance between

codewords and particularly on the minimum free distaace d, which

is the minimum number of ones of any closed path through node

"a". Eliminating one of the adders results in a reduction of "d".

For example, the maximum minimum free distance systematic code

for K=3 is that of Figure 2.8 and this has d=4, while the nonsys-

tematic K=3 code of Figure 1.1 has minimum free distance d=S.

Table 2.1 shows the maximum minimum free distance for systematic

and nonsystematic codes for K=2 through S.

Maximum tHnimum Free Distance

--
K Systematic Nonsystematic

2 3 3

3 4 5

4 4 6
._-_ ...

5 I 5 7
- ------------ - -.---

Table 2.1 Comparison of Systematic and
Nonsystematic R=1/2 Codes

For large constraint lengths the results are even more widely

separated.

A catastrophic error is defined as the event that a finite

number of channel symbol errors causes an infinite number of data

bit errors to be decoded. Massey and Sain (Ref. 9) have shown

that a necessary and sufficient condition for a convolutional

-16-

code to produce eatastrophic errors is that all of the adders

have tap sequences, represented as polynomials, with a cornmon

factor.

In terms of the state-diagram it is easily seen that catas-

trophic errors can occur if, and only if, any closed loop path

in the diagram has a zero weight (i.e., the exponent of D for

the loop path is zero). To illustrate this, we consider the

example of Figure 2.9.

, !
11

a b

Figure 2.9 Coder Displaying Catastrophic
Error Propagation

a

Assuming that the all zeros is the correct path, the incorrect

path a b d d d c a has exactly 6 ones, no matter how many

01

a

tiMes we go around the self loop a. Thus, for a BSC, for example,

four channel errors may cause us to choose this incorrect path

or consequently make an arbitrarily large number of bit errors

(equal to two plus the number of times the self loop is traversed) .

-17-

We observe also that for binary-tree (R=l/n) codes, if each

adder of the coder has an even number of connections, then the

self loop corresponding to the all ones (data) state will have

zero weight and consequently the code will be catastrophic.

The only advanfage of a systematic code is th~t it can never

be catastrophic, since each closed loop must contain at least

one branch generated by a nonzero data bit and thus having a

nonzero code symbol. Still, it can be shown that only a small

n
fraction of nonsystematic codes is catastrophic (in fact, 1/(2 -1)

for binary-tree R=l/n codes). We note further that if catastrophic

errors are ignored, nonsystematic codes with even smaller free

distance than those of Table 2.1 exist.

2.1.6 Generalization of Viterbi Decoder to the Additive

White Gaussian Noise Channel. Figure 2.10 exhibits a communica-

tion system employing a convolutional code. The convolutional

encoder is precisely the device studied in the preceding sections.

Dat~
Sequence

------>- Convolutional
Encoder

_____ Code
Sequence

X2 ••• x
- - J

, ,·----ri

l ___ ~II r·lemoryless r Received - ~ ------=-----------~~ Decoder Channel Sequence ~ ______ __
(InclUding!

I Hodem)
y 1 ' ~J' 2 ••• y .•••
- - -J

Fig. 2.10 Communi_cati0n System Employing
Convolutional Codes

-18-

The data sequence is generally binary (a.=O or 1) and the code
)

sequence is divided into subsequences where x. represents the n
...)

code symbols generated just after the input bit a. enters the
)

coder, that is, the symbols of the jth branch. In terms of the

example of Fig. 1.1, a3=1 and x3=Ol. The channel output or re-...
ceived sequence is similarly denoted. y. represents the n symbols

...)

received when the n code symbols of x. were transmitted. This ...)
model includes tIle BSC .. Therein the ~j are binary n-vectors

each of whose symbols differs from the corresponding symbol of

x. with probability p and is identical to it with probability
-J
I-p.

For completely general channels it is well known that if all

input data sequences are equally likely, the decoder which mini-

mizes the error probability is one which compares the conditional

probabilities, also called likelihood functions, p(ll~m), where l

is the overall received sequence and ~m is one of the possible

transmitted sequences, and decides in favor of the maximum. This

is called a maximum likelihood decoder. The likelihood functions

are given or computed from the specifications of the channel.

Generally it is more convenient to compare the quantities

Inp(ll~m), called the log-likelihood functions, and the result

is unaltered since the logarithm is a monotonic function of its

(always positive) argument. It is easily shown that for the Bse

maximizing the log-likelihood function is equivalent to mini-

mizing the Hamming distance, as we have done in previous sections.

We now consider the practical channel of primary interest:

-19-

namely, the additive white Gaussian noise (AWGN) channel with

biphase PSK modulation. The modulator and optimum demodulator

(corre1ator or integrate-and dump filter) for this channel are

shown in Fig. 2.11.

PSK
Modulator

n(t) white Gaussian noise

Fig. 2.11

Corre1ator
Demodulator Y11Y12 ••• YlnY21 ••• Y2n •••

Modem for Additive White Gaussian
Noise PSK Modulated Memory1ess Channel

We use the notation that xjk is the kth code symbol for the jth

branch. Each binary symbol (which we take here for convenience

to be ±1) modulates the carrier by ± IT/2 radians for T seconds.

The transmission rate is, therefore, l/T symbols/second or b/nT=

R/T bits/second. €s is the energy transmitted for each symbol.

The energy per bit is, therefore, Eb = ES/R. The white Gaussian

noise is a zero mean random process of one-sided spectral density

No watts/Hz, which affects each symbol independently. It is

-20-

readily shown that the channel output symbol Y
jk

is a Gaussian
•

random variable whose mean is ~ x'k s) (i.e., + I£; 'if x jk ="H

and -~ if x'k =-1) and whose variance is No/2. s) Thus the condi-

tional probability density (or likelihood) function of Yjk given

xjk is

p(Yjklxjk) = exp [-(Yjk - ~ Xjk)2/No]

Iii'N;

The likelihood function for the jth branch of a particular code

path is x. (m)
. OW]

(
(m» n ((m»

p y,lx, = n p Y'klx'k
-) OW) k=l J)

since each symbol is affected independently by the white Gaussian

noise and thus the log-likelihood function for the jth branch is

-21-

n

Inp (YoIX o (m») = L Inp (Y ok I x ok (m») .. J .. J J)
k=l

n

= -1 L YOk-~xok
(m) 2 - ~£'n][/No

No
) s)

k=l

n n

= 2~ L (m) L (m) 2 s YjkX jk - £ xO k
No k=l s) ~

No k=l

n 2 1 -1 L Yjk 2" £'nIl/N o
N

0 k=l

n

= C L YOkxok
(m)

D
))'

k=l

where C and D arc independent of m, where we have used the fact

that (m) 2 1. x jk = Similarly, the log-likelihood function

for any path is the sum of the log-likelihood functions for each

of its branches.

t#' have thu::; ShO\A1O that the maximum likelihood decoder for

the memoryless AWGN biphase modulated channel is one which forms

the inner product between the received (real number) sequence

and the code sequence (consisting of ± l's) and chooses the path

corresponding to the greatest~

-22-

Thus the metric for this channel is the inner product as contrast-

ed with the distance* metric used for the BSC.

For convolutional codes the structure of the code paths was

described in sections 2.1.1 - 2.14. In Section 2.1.2 the optimum

decoder was derived for the BSC. It now becomes clear that if we

substitute the inner product metriC~jkxjk (m) for the distance

metric ~jk (m), used for the BSC, all the arguments used in

Section 2.1.2 for the latter apply equally to this Gaussian Channel.

In particular, the Viterbi decoder has a block diagram represented

by the code state-diagram. At step j the stored metric for each

state (which is the maximum of the metrics of all the paths lead-

ing to this state at this time) are augmented by the branch metrics

for branches emanating from this state. The comparisons are per­

formed among all pairs of (or in general sets of 2b) branches

entering each state and the maxima are selected as the new most

likely paths. The history (input data) of each new survivor must

again be stored and the decoder is now ready for step j+l.

2.1.7 Metric Quantization, Path Memory Truncation, and Other

System Considerations. As we have just shown, the optimum metric

for the biphase modulated AWGN channel is the inner product (or

correlation) metric. However, since the y .. are real numbers, a
~J

practical digital implementation requires quantization prior to

* Actually it is easily shown that maximizing an inner product is
equivalent to minimizing the Euclidean distance between the cor­
responding vectors.

-23-

forming the metric.

In particular, if we quantize the y .. to Q levels symmetric
~J

about zero, then the biphase AWGN channel is converted to a binary-

input Q-output symmetric channel. Generally we choose Q=2q so

that each received symbol can be represented by a "q" bit word.

The optimum metric in this case is the log-likelihood function of

this new binary-input Q-output channel. However, it has been

found by simulation that nearly equivalent performance is obtained

if the inner-product metric is used ,·lith Yij replaced by Q(Yij),

where Q(Yij) is an integer between 0 and Q-l corresponding to the

quantizer output level for an input Yij. In fact, extensive

simulation has shown that using this metric with 8-level quanti-

zation causes a performance degradation which is equivalent to a

reduction of Eb/No by less than 1/4 db for any given error

probability level. On the other hand, quantization to 2 levels

(which amounts to reducing the AWGN to a BSC) causes an effect-

ive reduction of Eb/No by approximately 2 db.

Another major problem \"hich arises in the implementation of

a Viterbi decoder is the length of the path history which must

be stored. In our previolls discussion ,,,e ignored this important

point and therefore implicitly assumed that all past data would

be stored. ~ final decision can be made by forcing the coder

into a kno\'J'n (all zeros) state, but this is totally impractical

for long data sequences, for it requires storage of the entire

~::cellis memory for ea.ch state. Suppose '."e truncate the pat.h

memories after L bits (branches) h.ave been accumulated, by

comparing all 2K metrics for a maximum and deciding on the bit

corresponding to that path (out of 2K) with the highest metric

1. branches forward. If L is several times as large as K, the

additional bit errors introduced in this way are very few. It

can be shmvn that the additional error probability due to path

truncation, based on the largest path metric L branches beyond

where the decision is to be made, is of the order of a block

coding error for a code of block length L bits. Both theory and

simulation then indicate that by making L four to five times as

large as the code constraint length K, we can ensure that such

additional errors have only a slight effect on the overall bit

error probahility.

Of course, basing the decision upon the maximum metric L

branches forward may require a costly implementation to compare

all 2K state metrics. Other decision techniques, based on ma­

jority polling and metric overflow monitoring, are much less

costly and appear to yield the same or better performance when

L is increased slightly.

Cost and complexity of implementation of a Viterbi decoder

depends strongly on constraint length, K, quantization, and

speed. It depends much less strongly on path memory size, L,

and the path truncation decision technique. In particular, the

cost rises exponentially with K, but of course, the performance

also improves with increasing K. Typically for a rate 1/2 code

on an 8-level quantized AWGN, the required Eb/N
o

for PB = 10- 5

is reduced by about 0.4 db per unit increase of K in the range

-25-

between 3 and 8. The cost of increasing L is only linear, but it

is not justified on the basis of performance beyond L = 5K. The

cost of finer quantization depends strongly on the data speed

requirements. The performance improvement from 2 level to 8 level

quantization is nearly 2 db in Eb/No but there is less than 0.25

db to be gained by using more than 8 levels.

For sufficiently low data speeds, all of the metric calcula­

tions and comparisons can be done serially, thus significantly

reducing cost and complexity. At very high speeds, where digital

gate speeds are only a few times faster than the received symbol

rates, all metric computations and comparisons must be made in

parallel. In intermediate speed regions, serial-parallel combina­

tions may be possible.

Detailed consideration of Viterbi decoder implementation and

system designs will be treated in Section 2.4.

2.2 Rate 1/2 Convolutional Codes and Viterbi Decoders. In

this section, the performance of rate 1/2 Viterbi decoders is

examined in detail. Bit error rate vs. Eb/No obtained both by

simulations and analysis are presented for optimum codes of con­

straint lengths 3 through 8. Particular attention is paid to the

sensitivity of performance to the decoder parameters which in­

fluence complexity and cost. Also of interest is the ability of

a Viterbi decoder to withstand demodulator imperfections, and its

usefulness in communicating system quality information.

Computer simulation of Viterbi decoders is a useful technique

for evaluating performance down to a bit error rate of about lO-~

-26-

to 10- 5
, depending on code constraint length .. Simulations at

lower error rates require' prohibitively long computer rW1S to

obtain meaningful data. Fortunately, an upper bound on both

event and bit error rates has been derived wnich is very tight
, ,

for error rates of about 10- 5 and lower. A combination of the

simulations and the numerically evaluated upper bound presented

here provides a complete picture of Viterbi decoder performance

over a wide range of error ratas.

,." /2.2.1 GOod'Convolutional Codes. One obvious criterion for

selecting codes is bit error probability. Unfortunately, obtain-"

ing bit error probability through simulation is too time consuming

to be used as a method of sifting through a large number of con-

volutional codes. lI. much more useful measure of a code is its

minim~~ free distance. As defined previously, the free distance

between two code wordg is the Hamming distance between them from

the state in the trellis at which they diverge (the point at

which the information bits begin to differ), to the state where

they remerge (after K-l identical information bits). A set of

large free distances between the correct code path and the

competing incorrect ?aths is desirable with Viterbi decoding.

This is because the greater the free distance, the more channel

errors must occur in order for an incorrect path to look more

likely than the correct path.

The minimum free distan~e, d f , is the smallest value of

free distance between the correct path and any other path. Since

-27-

thc'codesunder consideration are linea~ cod~;', the setoE

distances from any codeword to all other codewords is the same

as the set of distances from the all zeros codeword to all other

code~ords.,;Thus, d
f

is the min~mumof the w~ightof al~ code':"

words from the point at whic~ they diverge from;un~il the "point:

at\~hich they remerge t~ .. the all zeros path .,

always, the minimum weight path corresponds to an information

sequence with a single 1 in it. The .codeword associated with

this'sequence diverges from the all zeros· path where the infor-

mation 1 occurs '. and remerges K-l branches later. This,. of

course, is the shortest length over which two distinct paths can

be dive rqed.

Using the algebraic prop'!rties of linear group. codes r an

upper bound on the minimum free distance of a convolutional code,

as a function of constraint length, has been found

For rate lin nonsystematic codes, the bound is

d", < min
.L h

h-l 2
2h_l

[(K+h-l)n]

{Ref. 1, 2f.

'l'his hound provides a target value of d
f

which can be used when

searching for good codes. If a code is found with a d
f

which

satisfies the bound with equality, it is immediately known that no

code exists with a larger minimum distance. Of course, maximiz-

ing minimum fre~ distance does not necessarily minimize decoder

error probability. The number of codey1ords having the minimum

distanco, as well as the di~tribution of codewordsat distances

-2·8-

somewhat greater than d f , are also important. After preselecting

codes based on minimum free distance, these other factors are

useful in final code selection. Simulations and numerical code

evaluation indicates that choosing codes with maximum minimum

free distance, taking into account the number of paths at this

distance, and if necessary, slightly larger distances yields

codes with minimum error probabilities with Viterbi decoding.

The optimum rate 1/2 codes for K=3 through 8 were found by

Odenwalder (Ref. 3). They are tabulated in Table 2.2.1. For

each constraint length the table shows the optimum code gener­

ators, the actual d f for the code, the number of errors ne in

all of the codewords at the minimum distance, and the upper bound

value on minimum free distance d f *.

2.2.2 Numerical Code Performance Bound. One of the two

principal tools used in evaluating the performance of convolu­

tional codes in this study has been an upper bound on error

probability related to the convolutional code transfer function.

The bound is extremely tight for high Eb/No (low decoder error

rates) where computer simulation is impractical, due to the

prohibitively long times required to collect significant data.

It has been shown (Refs 5,6) that a union bound on the per­

formance of a convolutional code on memoryless channels can be

obtained from the directed-graph state diagram of the coder.

For example, the optimum constraint length K=3, rate 1/2 coder

is shown in Figure 2.2.1. The states correspond to the con-

-29-

,

K
Code d

f Generators ne d * f

3 111 5 1 5 101

4 1111 6 2 6 1101

- _.-. --

5 11101
7 4 8 10011

6 111011
8 6 9 110001

- -

7
1111001 10 36 10 1011011

.".---.

8 11111001 10 2 10 10100111
..

Table 2.2.1 Optimum Rate 1/2 Codes. d f is
the code minimum free distance, n Is the
number of bit errors in paths at aistance
d f , d f * is the upper bound on minimum free
dIstance.

-30-

j
I

) .

00 00

N

Fig. 2.2.1 Code and State Diagrams for K-3 Code

-31-

tents of all but the first stage of the coder register, when a

new information bit has just entered the first stage. The

exponent of 0(0, 1, or 2) is the weight of the (two symbol)

vector output at this time, and the exponent of N(O or 1) indi-

cates whether a 0 or 1 information bit has just entered the coder.

Regarding the all zeros node as both the input and output of

the graph, the transfer function of any path through the tree is

defined as the product of the branch transfer functions along

that path. For example, the transfer function of the path

corresponding to the information sequence 10100 is

= (2.2.1)

The transfer function of the graph is the sum of the transfer

function of all paths starting and ending in the all zeros state.

The general form of this transfer function is

T (N, D)
d

= D ff
1

+ ••• +

-t-- (2 • 2 • 2)

Here d
f

is the minimum free distance of the code. Notice that

the exponent in the path transfer function (Eq. 2.2.1) is the

weight of the code symbols on the particular path through the

graph of Fig. 2.2.1. Therefore, with N=l, the terms in the

transfer function T(l,D) are of the form

-32-

where fi+l(l) is just the number of paths at distance df+i.

For the unquantized, additive white Gaussian noise channel

with PSK modulation, the error probability betwe~n the all zeros

(correct) path, and another path which diverges from and returns

to the all zeros path, is bounded by (Ref. 4)

where d is the weight of the competing path. Es is the code

symbol energy and No is the noise spectral density. For example,

if the competing path corresponded to the information sequence

10100, the bound is obtained from Eq. (2.2.1)

P < TIOIOO
2 N=l, D=exp(-E IN) s 0

Likewise, a union bound on first event error probability due to

all paths competing with the all zeros path (all paths through

the graph in Fig. 2.2.1) is

PE < T(N,D)
(2.2.3)

In order to get a bound on bit error probability, we note

that the exponent of N in a path transfer function is the number

-33-

of information lis (errors) on that path. A union bound on bit

error probability would be obtained if the path transfer function

were weighted by the number of bit errors on the path. One

simple way of doing this is to take the derivative of T(N,D) with

respect to N. This brings down the exponents of N the number

of bit errors on a path -- into the coefficients. The bound on

bit error probability is therefore

P
B

< dT(N,D)
dN

(2.2.4)

For the Gaussian channel these bounds can be tightened some-

what (Ref. 5):

N=l (2.2.5)

D-df dT(N,D)
dN N=l (2.2.6)

with D = eXP(-Es/N
o

) in both cases.

The difficulty of this approach is that the number of states

grows exponentially with K and consequently the tedium involved

in direct computation is effectively insurmountable for K>4.

On the other hand, the calculation of the transfer function

is equivalent to a matrix inversion. Taking into account the

-34-

particular properties of a convolutional code transfer matrix,

the transfer function can be evaluated numerically using an

iterative technique. This technique is explained in detail in

Appendix A. A computer program has been written to evaluate the

transfer function bound as a function of K, code rate, and Eb/No'

For rate 1/2 codes the performance bounds are presented in

Section 2.2.4, for other rates, they are contained in Section 2.3.

Decoder performance predicted by the bounds at around 10- 5

bit error rate is quite close to simulation results, allowing for

finite receiver quantization in the simulations.

2.2.3 Viterbi Decoder Simulation Program. A program has

been written to simulate the operation of a Viterbi decoder on a

quantized Gaussian channel. The program is quite flexible, in

that all of the parameters of interest in Viterbi decoding can be

varied by changing program inputs. For rate 1/2 codes, the con­

straint length can be varied from 3 to 9. Simulated received

data for PSK modulation on an additive white Gaussian noise

channel can be generated for any value of Eb/No with output

quantization of 2, 4 and 8 levels. For each run the program

provides:

a) Bit error rate for a variety of decoder path lengths,

with output selection based on the.most likely state.

b) Event error rate.

c) Average length in bits of an error event, from the

first bit error to the last comprising the event.

In addition to the statistics in a), b) and e), which are

-35-

based on maximum likelihood state output selection, the follow­

ing measured error rates are provided:

d) Bit error rate with majority output selection. Here

the output on a majority of the decoder paths is

chosen as the decoder output.

e) Bit error rate resulting from selecting an output from

some state path whose metric value is better than some

threshold value.

All of the gathered statistics except those in a) are for

length 32 decoder state paths. The output decision technique

simulated in d) and especiallY e), although they are slightly

sub-optimal, are much simpler to implement in parallel process­

ing viterbi decoders than maximum likelihood selection.

Lastly, with an eye toward the 180 0 phase ambiguity problem

with PSK modulation, the simulation program measures

f) Bit error rate when differential data encoding-decoding

is used with codes transparent to 180 0 phase flips. This

technique, along with the simulation results, is treated

in Section 2.2.5.

2.2.4 Simulation and Numerical Performance Data

2.2.4.1 General Performance Results. The principal results

of the simulations and code transfer function bounds are shown in

Figs. 2.2.4.1, 2.2.4.2, and 2.2.4.3. All of these figures show

bit error rate vs. Eb/No for Viterbi decoders using the optimum

-36-

<lJ
+l
I'll

p:;

I-l
o
I-l
I-l
~

+l
• .-1
&x:I

10- 6

j
I
~

10- 7 i

1<=7

1<=3./

Upper Bound

~-- Simulation

Fig. 2.2.4.1 Bit Error Rate vs.
Eb/NO for Rate 1/2 Viterbi
decoding. Eight level Quan­
tized Simulations with 32 Bit
Paths, and the Infinitely
Finely Quantized Transfer
Function Bound, K=3,5,7.

10-__ 8~ __ -L __ ~ ____ L-__ -L __ ~ ____ ~ __ -L __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ __ ~

4 8

-37-

Q)
.j.J
III
c::
~
o
~
~

"" .j.J

."
~

1 -5

10- 6

:10- 8

K=6 --

1<=4

Upper Bound

-0---0- Simulation

3 4

Fig. 2.2.4.2 Bit Error Rate vs.
E INa for Rate 1/2 Viterbi
D8coding. a-Level Quantized
Simulations with 32 Bit
Paths, and the Infinitely
Finely Quantized Transfer
Function Bound, K=4,6,8.

5 6
Eb/NO in db

7 8

-38-

10-

(1)
+J
Itt
p:::

~
0
~
~
rx:I

+J
-rot
~

10-4

4 5 6 7

Fig. 2.2.4.3 Bit Error Rate'vs. EblNo for
Rate 1/2 Viterbi Decoding. Hard Quan­
tized Received Data with 32-Bit Paths
K=3 through 8.

-39-

rate 1/2 convolutional codes of Table 2.2.1. In all cases, the

decoder state path length was 32 bits. In all simulation runs,

at least 25 error events contributed to the compiled statistics.

The simulation results in Figs. 2.2.4.1 and 2.2.4.2 are for

soft (8-level) receiver quantization. Equally spaced demodula­

tion thresholds are ysed at ±1.Sa, fa, ±O.S , and 0 where a 2=N0/2

is the noise variance. This choice of 8-level quantizer thres­

holds is within a broad range of near optimum values, as will be

shown presently. The transfer function bound is for infinitely

finely quantized received data. Allowing for the 0.20 to 0.25

db loss usually associated with 8-level receiver quantization

compared with infinite quantization, the transfer function bound

curves are in excellent agreement with simulation results in

the 10- 4 to 10- 5 bit error rate range.

Since the accuracy of the transfer function bound increases

with Eb/NO' decoder performance can be ascertained accurately in

the 10- 5 to 10- 8 region even in the absence of simulations.

Ideally, the symbol metrics associated with each of the 8

quantization levels would be proportional to the log-likelihood

of receiving the given level, given the hypothesis of a "0" or

a "1" transmitted. In the interest of keeping the number of

bits required to represent metrics to a minimum, it was shown

(Ref. 2) that equally spaced symbol metrics, for instance, the

numbers 0-7, could be used with negligible performance degrada­

tion. We have taken the compression of metric representation one

-40-

step further. As is shown in section 2.4, an aqQitiopal bit

in the state metric can be saved if levels syrnrnetrical~y located

about the zero threshold have symbol metrics which are the nega­

tives of one another. Thus, for the simulations presented in

Figs. 2.2.4.1 and 2.2.4.2, the eight symbol metrics upcd wore

4, 3, 2, 1, -1, -2, -3, -4. These symbol metrics clearly do not

change in equal increments; however, simulations have shmm that

system performance does not suffer significantly.

Fig. 2.2.4.3 gives the simulation results for Viterbi decoding

with hard receiver quantization. The same optimum rate 1/2,

K=3 through 8 codes were used here as in the a-level quantized

simulations.

Several points are obvious from the performance curves

a) 2-level quantization is everywhere close to 2 db

inferior to a-level quantization. This seems to rein­

force the folk theorem that hard quantization always

leads to a 2 db loss in system efficiency.

b) Each increment in K provides an improvement in efficiency

of something less than .5 db at a bit error rate of 10- 5 •

c) Performance improvement vs. K increases with decreasing

bit error rate.

2.2.4.2 Receiver Quantization. In order to observe the

effects of varying receiver quantization more closely, simulation

-41-

performance data is presented in Fig. 2.2.4.4 for the K=5, rate

1/2 code, with 2, 4, and 8-1eve1 receiver quantization. The

a-level thresholds and metrics are identical to those of Fig.

2.2.4.1. In fact, the 2 and 8 quantization level curves are

taken from Figs. 2.2.4.3 and 2.2.4.1 respectively. The 4-level

thresholds were set at 0 and ± a. The metrics were chosen to be

2, 1, -1, -2, for the same reasons which suggested the 8-level

metrics.

2.2.4.3 Path Memory. The Viterbi decoder is a maximum

likelihood decoder only when its decision path memories are

infinitely long. That is, decoding delay is in~inite. For

practical purposes, it is desirable to use path memories as short

as possible. There is a path memory for each state in a Viterbi

decoder. Providing storage and managing decis~on paths is a

significant part of any Viterbi decoder. It is therefore worth­

while to study the performance degradation vs. path length for

Viterbi decoding.

Fig. 2.2.4.5 shows bit error rate performance vs. Eb/No for

three path lengths (8, 16 and 32) using the rate 1/2, K=5 code,

for both 2 and a-level received data quantization. The length

32 path curve is identical to the K=5 curve in Fig. 2.2.4.1.

Performance with length 32 paths is essentially identical to that

of an infinite path decoder. Even for a path length of only 16,

there is only a small degradation in performance. Other simula­

tions have shown that a path length of 4 to 5 constraint lengths

-42-

><
+J
.,-i

r-1
.,-i

..c
I1l

..c
o
1-1
Po.

1-1
o
1-1
1-1
"-l

.:: lO~4
~

j

Q=8

Fig. 2.2.4.4 Performance comparison
of Viterbi Decoding Using a Rate
1/2, K=5 Code with 2, 4, and 8
Level Quantization. Path Length=
32 Bits.

10- 3

:>,
~
'M
...;
'M
.0
III
.c
o
14
p..

14
o
14
14
tIl

j

F' 19. 2.2 4 5 •• P of Viterb' erformance 1/2, K=5 1 Decoding us~omparison
Bit Path Code \Y'ith 8 ~ng a Rate
Level Qu Le~gths and'2 6, and 32

attt1zatio and 8 n.

~
.8-lev 1 e quantizat' 10n

~..J

2-level quantizat' 10n

Eb/
N
~ i~n~:---!---L_.J __ .J...-

-44- 7 8--1....--

is sufficient for other constraint lengths as well.

2.2.4.4 Decoder Output Selection. In a Viterbi decoder with

finite path memories, it is possible that not all state paths are

merged at the point at which a decoded bit must be output. Phy­

sically this means that the oldest bits in each of the state path

memories may not always agree. The decoder must output a bit

however and there must be a means for selecting wQ.ich of the 21<-1

oldest path bits to output.

The optimum method for selecting output bits is to choose the

bi t corresponding to the path \',i th the best metr:i.c. This selection

rule is very complex to mechanize in a high speed decoder, where

the pairwise state comparisons are done in parallel. This fact

has lead to a study of simpler output selection schemes, the

aim being to find one which does not degrade performance appre-

ciably. One very simple scheme is to choose a path at random from

which to output decoded bits {or always output bits from the same

path}. This scheme,however, has been found to significantly de­

grade performance. In fact, if a path memory of n bits is required

for a given performance goal with maximum likelihood output selec­

tion, then simulation has shown that a memory of up to 2n bits is

required for the s.ame performance with arbitrary output selection.

Another method is to output a "0" if a majority of the 2K- l

paths have a "0" as their oldest bit: otherwise, output a "1".

This scheme is somewhat simpler to implement ~han maximum likeli­

hood selection.

-45-

An efficient yet simple to implement scheme, which we have

devised, is to select the output from some state path whose met-

tic is better than a certain threshold. This scheme is described

in Section 2.4. It is called "less than four" selection. Pig.

2.2.4.6 compares t~e performance of a) maximum likelihood se1ec-

tion, b) majority selection, and c) "less than four" selection.

The comparison is made for a K=7, rate 1/2 code w~tn a-level

quantization, and path lenqth 32. It is interesting to note that

the performance of the K=5 decoder was the same for al~ three out-

put selection schemes, tVith a 32 bit path memory, As the path

memory gets long relative to K, there is a larger probability that

all state paths Hill be merged by the time a bit must be output.

Thus the output selection mechanism has lens of an effqct on

performance.

2.2.5 Code Synchronization and Channel Reliability.

2.2.5.1 Node Synchronization and Phase l\mbiguity Resolution.
i

Because of the inherent continuity involved in convolutional cod-

ing, code synchronization at the receiver is usually much simpler

than in the case of block codes. For convolutional decoding

techniques involving a fixed number of computations per bit de-

coded, such as Viterbi decoding, the decoder initially makes an

arbitrary guess of the encoder state to start decoding. If the

quess is incorrect, the decoder will output sever~l bits Qr, at

most, tens of bits of unreliable data before assuming steady

state reliable operation. Thus, the block synchronization pro-

blem does not really exist. There remains the problem of node

-46-

>, 10- 3
.jJ
• .-l
.-i
• .-l
.a
to
.a
o
~
p..

~
o
~
~
~

.jJ
• .-l
p:) 10- 4

2

Fig. 2.2.4.6 Bit Error Rate vs. Eb/NO
for Viterbi Decoding of the K=7,
Rate 1/2 Code, Using the Following
Output Selection Mechanisms:
1) Maximum Likelihood, 2) Majority,
and 3) "Less than Four-. Q=8 levels,
path length = 32.

~----2

3
Eb/NO in db

4

-47-

5

synchronization and, depending upon the modulation-demodu­

lation technique used, the problem of 2 or 4 ph~se ambiguity

resolution. For a rate lin code, there are n CQ~e symbols on

each branch in the code tree. Node synchronization is obtained

when the decoder has knowledge of which sets of n symbols in

the received symbol.stream belong to the same branch. In a

purely serial received stream, this is a 1 in n ambiguity.

In addition, modems using biphase or quadriphase PSK with

suppressed carriers derive a phase reference for coherent de­

modulation from a squaring or fourth power phase lock loop or

its equivalent. This introduces ambiguities in that the squarinq

loop is stable in the in-phase and 180 0 out of pha~e positions,

and the 4th power loop is, in addition, stable at ±90 0 from the

in-phase position.

We have directed our efforts toward using the error detec­

tion capability of convolutional decoders, o~ the ability of the

decoder to detect unsatisfactory system of operation, to detect

and correct for incorrect node synchronization and the occasional

phase flips in the phase tracking loop. It is now apparent that

simple and effective techniques for maintaining node and phase

synchronization completely within the decoder itself are feasible.

For the purpose of ease of illustration, the rate 1/2, hard­

quantized receiver output case will be considered here. Techniques

generalize easily to soft quantization and with somewhat more

complexity to other rates. A Viterbi decoder operating on hard

quantized received data will use Hamming distance for state metrics.

-48-

Relatively large metric values indicate a poorer match to received

data than lower metric values. The smallest state metric at any

time corresponds to the path with the best match to received data,

and the metric itself is equal to the number of discrepencies be­

tween the received data and that path. Clearly, when the decoder

is in correct node synchronization and the demodulator loop is

locked properly, the path with the smallest Hamming distance will

usually corre900nd to the correct path. The rate of increase of

this path metric will depend on the channel error rate. For in­

stance, if the crossover probability is p=.02 then, on the average,

there will be an increase of 1 in the correct path metric for

every 50 channel symbols. On the other hand, we intuitively ex­

pect that if node synchronization is lost, or if the phase lock

loop locks onto an incorrect phase position,the match between the

received data at the nearest codeword should be much poorer than

1 mismatch in 50 symbols. If, in fact, the best path metric in­

creases more rapidly when off node or phase synchronization, this

can be used to detect these maladies.

One simple technique would use an up-down counter to detect

unreliable system operation. The counter counts up by k units

(k>l) each time the best path metric increases by 1, while it

counts down by 1 for each bit time. The parameter k is chosen

so that the average dri ft of the counter is dowmvard \>lhen in

proper node and phase synchronization and upward when out of

either phase or node synchronization or both. The first condi­

tion requires that kp<l where p is the channel crossover

-49-

probability: while, the second condition requires kp'>l where

p' is the as yet undetermined rate of increase of the best path

metric with improper node or phase synchronization. The count

would not be allowed to fall below zero. When the count exceeds

a threshold value N, the assumed node synchronization or phase

synchronization position is changed in the decoder according

to a preset strategy.

Potentially effective methods of changing phase and node

synchronization depend upon whether the system uses BPSK or QPSK.

For BPSK, both the problem of node synchronization and 180 0

phase ambiguity exist. The 180 0 phase ambiguity can be cir-

cumvented by using differential encoding of the information prior

to convolutional encoding and differential decoding after the

channel decoder. A transparent convolutional code is required,

i.e., the all lis data sequence maps into the all lis code

sequence. This technique is discussed in section 2.2.5.2.

Another method of homing in on both node and phase

synchronization is shown in Fig. 2.2.5.1.

change phase
sync 180 0

c~'" change
/ 1 .l---

node sync

change
~---------------4

node sync

change phase
sync 180 0

Figure 2.2.5.1 Biphase node-phase synchronization
strategy.

-50-

State 1 represents an arbitnary initial position for phase

and node synchronization. If the system reliability counter

counts past N, a node synchronization change is attempted,

bringing the system to state 2. If the count again passes the

threshold, received symbols are complemented prior to decoding

(equivalent to a 180 0 phase shift) bringing the system to state 3.

Subsequent counter overflows cause the system to go to state 4

and then back to 1. There are only 4 possible states because

there are 2 stable phase positions and, for rate 1/2, 2 node

synchronization positions.

For a quadriphase modern and rate 1/2, there is no node

synchronization problem since both parity bits on a branch are

transmitted on one baud. However, now there are 4 stable phase

positions; thus, there are 4 stable system states to contend

with just as in the biphase case. These states, as well as the

phase synchronization strategy are shown in Figure 2.2.5.2.

90° phase change
1 r-------------------~ 2

90° phase change 90° phase change

4 3
90° phase change

Figure 2.2.5.2 Quadriphase phase synchronization
strategy.

-51-

The problem still remains as to whether the best path metric

will increase rapidly enough, when phase or node synchronization

is incorrect, to reliably detect these events while keeping the

false alarm rate sufficiently low. Understanding of the operation

of the decoder when synchronization is lost is aided by observing

the effect of synchronization loss on a hypothetical code

syndrome calculated at the receiver.

These effects can best be seen by working with the poly-

nomial representations of the information, parity, and code

generator sequences. The polynomial coefficients are the terms

in the sequence of interest. For instance, the information

sequence 101101 ••• is represented by the polynomial

i(D) = 1+ D2+ D3+ DS+ •••

The parity stream generated by passing i(D) through a convolutional

encoder with generator g(D) is simply

p(D) = i(D)g(D)

A rate 1/2 code has two generators g (D) and g (D) which generate
. 1 2

two streams p (D) and p (D). A representation of the encoder,
1 2

channel and syndrome calculator is shown in Figure 2.2.5.3. The

n.(D) are channel noise polynomials, a coefficient of 1 represents
~

a channel error. All additions are mod-2.

Notice that in the absence of noise, i.e., n (D) = n (D) = 0,
1 2

S(D) = i(D)g (D)g (D) + i(D)g (D)g (D)
1 2 2 1

= 0

independent of i(D): thus, the syndrome s(D) depends only upon the

noise polynomials and hence is in fact a true code syndrome.

-52-

n 1 (D)

+
r 1 (D) i (D)

'y r2 (D)

n2 (D)

encoder channel syndrome
calculator

Figure 2.2.5.3 Representation of encoder, channel and
syndrome calculator.

A hypothetical decoder operating on a segment of the syn-

drome polynomial should attempt to find the minimum weight

s (D)

channel error polynomials which could have caused the particular

syndrome pattern. Decoding would then reduce to changing those

bits corresponding to ones in the minimum \'leight error pattern.

We shall now look at the functional form of the syndrome in the

presence of various combinations of improper phase and node

synchronization.

Considering the biphase modulation case first, suppose

phase synchronization is correct and node synchronization is off.

This is equivalent to the received lines being crossed in Fig.

2.2.5.3. Thus:

r 1 (D) = i (D)g2 (D)
r 2 (D) = i (D)gl (D)

s (D) = i (D) &~ (D) + g~ (D) J '
-53-

in the absence of noise. Unlike the in-synchronization case,

the syndrome now depends on the information sequence. In fact,

the syndrome is the information sequence convolved with a new

generator g~(D) + g~(D). If the coefficients of i(D) are EL

(that is independent and equally likely to be 0 or 1) then the

coefficients of S(D) also have this property (Ref. 4).

Now suppose node synchronization is correct and the phase

flipped 180°. Here

r 1 (D) = i (D)gl (0)
r 2 (D) = i(D)g2(D)

s (D) = i (D)ql (D)g2 (D) + i (D)g2 (D)gl (D)

in the absence of noise. If the code were transparent to 180°

phase flips, both gl (D) and q2(D) would have to be odd, that is,

have an odd number of non-zero terms (coder taps). Since we do

not want the transparent feature in this analysis, we will

assume gl (D) is odd and g2(D) is even (if they were both even the

code would be catastrophic). Now a sequence convolved with an

even generator is the same as the result of convolving the

sequence with the same generator1 whereas, a sequence convolved

with an odd generator is the complement of the result of convolv­

ing the complemented sequence with that generator. Thus,

s(D) = i(D)gl (D)g2(D) + i(D)g2(D)gl (D)

= 1 + D + D2 + D3 + •••

Hence without noise, a 180 0 phase flip causes an all lis syndrome.

When both improper node and phase synchronization occur, it

is easily shown that without noise

seD) = i(D) [g~(D) + g~(D)J

-54-

Again this syndrome is EL if i(D) is EL.

In uhe quadriphase situation, the tracking loop can be ±90 0

or 180 0 out of proper phase alignment. When a 90 0 shift occurs,

the in-phase and quadrature channel outputs are switched with one

becoming complemented. For instance with a 90 0 shift,

r 1 (D) = i (D)g (D)
2

r 2 (D) = i (D) g 1 (D)

Again assuming g~(D) is odd and g~(D) is even

s (D) = i (D) [g~ (D) + g~ (D)]

This is the same syndrome as obtained with improper node

synchronization. A -90 0 phase shift yields the syndrome

seD) = i(D) [g2(D) + g2(D)]
1 2

This is the same syndrome as that derived for the biphase

improper node synchronization, and 180 0 phase shift case.

Finally the 180 0 phase shift case is identical to that for the

corresponding biphase situation.

Evidently, the quadriphase and biphase situations are quite

similar. Quadrinhaae modulation entails no more ambiguities than

bi~hase because the former provides node synchronization for free.

Both techniques yield an all l's no noise syndrome when locked

180 0 out of phase. Quadriphase modulation yields an EL syndrome

when ±90 o out of phase, \<1hi1e biphase does the same when out of

node synchronization for both stable phase situations. The fact

that the syndrome is EL depends, of course, on i(D) being EL. It

can be readily seen from the off synchronization syndrome equa-

tions that certain information sequences will yield an all zero's

-55-

syndrome even when node or phase synchronization is incorrect.

The all zeros and all ones information sequences are particularly

oothersome in this regard.

An EL syndrome will be obtained if node synchronization is

out or the phase has flipped by ±90o~ in addition, the syndrome

will be EL if one or both of the n. (D)'s is EL. Thus an EL
~

received stream will cause an EL syndrome. Bounds on the

minimum distance of codeHords (Ref.' 7) shm1S that for the best

rate 1/2 code, asymptotically the minimum distance increases as

.lln where n is the code lenth in symbols. Thus the nearest

codeword to an EL received sequence will tend to differ in about

1 symbol in every 9. This means when the decoder is out of node

or phase synchronization, the best metric \1ill on the average

increase by 1 for each 9 received symbols. Actually, the real

rate of increase may be somewhat greater than this because the

Viterbi decoder will use a short constraint length code. The

.lln asymptotic figure is approached in the limit of longer codes.

The closest codeword to a random sequence will tend to be further

a\Olay vlhen the constraint length is short.

As mentioned previously, the factor k and the threshold N

must be chosen such that the counter used to indicate data quality

drifts upward \.,hen synchronization is incorrect and drifts down-

ward when synchronization is correct. The actual values chosen

for these parameters will determine:

(a) the expected time to first passage over the threshold,

and hence change of system state, ~"hen node or phase

-56-

synchronization is incorrect. We will call the ex-

pected time to re-synchronization, Ers •

(b) the expected first passage time when node and phase

synchronization is correct. This is the expected time

to false alarm, Efa •

Obviously we warit to make E as short as possible and Ef rs a
as large as possible. Analytical techniques have been success-

fully used to approximate Ers and Efa as a function of k, T and p.

The analysis is based upon recognizing that the input to the

up-down counter is a random walk with a reflecting boundary at

zero and an absorbing boundary at N. First passage times are

computed by solving the appropriate Fokker-Planck equation. This

work is reported in detail in Appendix B.

In addition to the approximate analysis, simulations have

been performed to tie down Ers and Efa more precisely. The

count-up rate, k, was chosen to be 8 because that value is nearly

optimum, and it is a power of 2 and, therefore, easy to implement.

The rate 1/2, K=S code was used with hard receiver quantization.

Fig. 2.2.5.4 shows Efa vs. the threshold T. This limited data

supports the analytical results which state that Efa rises

exponentially with T. Naturally, for a given T, Efa is larger

for smaller channel crossover probabilities p.

Fig. 2.2.5.5 shows the other parameter Ers as a function of

T. Ers also rises with T, but more slowly. In fact it is nearly

linear with T, as predicted by theory (Appendix B). Ers is not a

function of p because it is the expected time to re-sync when the

-57-

10 7

32 64 128

Sync Threshold T

Fig. 2.2.5.4 Average number of bits decoded be­
tween false loss of sync events vs. sync counter
threshold -- p is the channel crossover prob­
ability.

-58-

10'+

Sync Threshold

Fig. 2.2.5.5 Average number of bits to recover
after loss of node synchronization vs. sync­
counter threshold (hard decision decoder).

-59-

decoder is out of sync. When out of sync, the received data has

the same random statistics regardless of the noise.

These results show that a value of T can be selected to make

Efa truely negligible, while maintaining Ers ' the resync time, as

low as several hundred to a thousand bits. The increase in

system bit error rate due to false loss of sync is

2Ers/Efa

This is because, on the average, for Efa bits decoded sync is

lost once. It takes, on the average, 2Ers to return to the proper

sync state.

2.2.5.2 Transparent Codes. As mentioned in the previous

section, another way to resolve 180 0 phase ambiguities is to use

a code which is transparent to 180 0 phase flips, precode the data

differentially and use differential decoding. A transparent aode

has the property that the bit-by-bit complement of a codeword is

also a codeword. Such a code must have an odd number of taps on

each of its encoder mod-2 adders. This insures that if a given

data sequence generates a certain codeword, its complement will

generate the complementary code word.

If the received data is complemented due to a 180 0 phase

reversal, it will still look like a codeword to the decoder, and

will likely be decoded into the complement of the correct data

sequence. Now decoding to the complement of the sequence input

to the encoder is no problem if the data was precoded differential­

ly. This means that information is contained in the occurrence or

non-occurrence of transitions in the encoded output sequence rather
-60-

than the absolute sequence itself. These transitions occur in

the same places even if the decoded sequence is complemented.

The major fault with this scheme is that when an isolated

bit error occurs in the decoder output, it causes. two differen­

tially decoded errors, since two transitions are changed. At

first glance, this would seem to indicate a doubling of the

output bit error rate. In fact, this doubling does not occur

because errors typically occur in short bursts. Two adjacent bit

errors, for instance, cause only two differentially decoded bit

errors. This indicates the possibility of only a small increase

in bit error rate with differential encoding-decoding.

Fig. 2.2.5.6 shows bit error rate performance curves for the

K=7, rate 1/2 code with and without differential encloding­

decoding. The degradation is error probability is least at low

Eb/NO. Here decoder error bursts are relatively long (on the

average one to two constraint lengths), so differential encoding­

decoding loses very little. At higher Eb/NO' bit error rate

degradation is slightly larger--but nowhere near a factor of two.

The worst bit error rate degradation factor is about 1.2 over

the range shown. using differential encoding-decoding, the Eb/NO

required increases by less than 0.1 db. K=7 was selected for

this example because the optimum code for this constraint length

is transparent (see Table 2.2.1).

The use of differential encoding-decoding reduces the

synchronization problem to 2-state node synchronization with BPSK,

and 2-state 90 0 phase ambiguity resolution with QPSK.

-61-

>.
+l
• .-4
~
• .-4
.0
It!
.0
o
~
~

~
o
~
~
~

+l 10- ~
• .-4
CII

Fig. 2.2.5.6 Performance Comparison of
Viterbi Decoding With and Without
Differential Encoding-Decoding. K=7,
Rate 1/2 Transparent Cod~ Used. Q=8
Levels

no differential
encoding

-62-

differential
encoding

5

2.2.5.3 Channel Reliability Information. The up-down

counter used for node and/or phase synchronization also provides

a means for very sensitive measurement of channel performance. In

the absence of decoder errors, the counter counts up whenever a

received symbol with a channel error is processed. Thus, the

number of times the counter counts up per unit time is directly

proportional to the channel error rate p. This will be true as

long as the decoder output error rate is low, which corresponds

to good system performance. If p becomes large due to a system

failure or loss of code sync, the count will tend to remain above

zero.

One method of monitoring system realiability is to sum the

count over a number of bits which is large compared with lip,

where p is the lowest channel error rate to be monitored. The

integrator output will be stable and proportional to p when p is

in the range corresponding to decoder error rates lower than

-2
about 10 • As p rises beyond this point, the integrator output

will rise monotonically, but not proportionally. When p becomes

greater than about.ll, the integrator output will saturate. This

is because the number of decoder corrections (metric increases)

for a rate 1/2 code never exceeds .11 on the average as was dis-

cussed in the previous section.

Integration of the sync counter value over a fixed time

"rindow therefore provides a sensitive measure of p when the decoder

is putting out useful data. It also is a good indicator of system

failure.

-63-

2.2.6 Sensitivity to AGC Inaccuracy. Coded systems which

make use of receiver outputs quantized to more than two levels

require an analog-to-digital converter at the modem matched filter

output, with thresholds that depend on the noise variance. For

instance, all of the 8-level quantized viterbi decoder simulations

reported on thus far have used level thresholds at 0, ±O.So, ±o,

and ±l.So.

Since the level settings are effectively controlled by the

automatic gain control (AGC) circuitry in the modem, it is of

interest to investigate the sensitivity of decoder performance to

an inaccurate or drifting AGe signal. Fig. 2.2.6 shows the decoder

performance variation as a function of A-D converter level thres­

hold spacing (in all cases the thresholds are uniformly spaced).

These simulations used the K=5 rate 1/2 code, with Eb/NO = 3.5 db.

It is evident that Viterbi decoding performqnce is quite insensi­

tive to wide variations in AGC gain. In fact, performance is

essentially constant over a range of spacings from 0.50 to 0.70.

This allows for a variation in AGC gain of better than 20% with no

significant performance degradation.

2.3 Other Code Rates.

The preceding sections have concentrated on Viterbi decoding

of rate 1/2 convolutional codes. Most of the results on perform­

ance fluctuation due to decoder ?arameter variation carryover

qualitatively, if not quantatively, to other code rates.

Code rates less than 1/2 will buy improved performance at

the expense of increased bandwidth expansion and more difficult

-64-

Q)
.j.J
tT1
~

I-l
0
I-l
I-l ...

.j.J
0"';

m

l.8xlO- 3

1.6xlO- 3

1.4xlO- 3

l.2xlO- 3

1. OxlO- 3

Fig. 2.2.6 Viterbi decoder Bit Error Rate Perfor-
. mance as a Func.tion of Quantizer Threshold

Level Spacing -- K=5, Rate 1/2, EblNo=3.5 db,
a-level Quantization with Equally Spaced
Thresholds.

-65-

symbol tracking due to decreased symbol energy to noise ratios.

Rates above 1/2 conserve bandwidth but are less efficient in

energy.

2.3.1 Description of Code Search Program. Optimum short

constraint length, rate 1/3 codes have been found previously

(Ref. 2,3). Our efforts in searching for good codes were confined

to rate 2/3, K-6 and 8, and rate 3/4, K=6 codes. Since the

number of possible codes is quite large (there are 22~ rate 2/3,

K-8, and rate 3/4, K=6 codes), a fast method was needed to

evaluate and select, or reject codes. The method chosen uses

the convolutional code transfer function described in section

2.2.2 and Appendix A. Before going into the technique in detail,

it will be instructive to discuss a result which limits the

number of codes which must be considered.

The optimum rate 3/4, K=6 encoder is shown in Fig. 2.3.1.1.

The encoder consists of a K stage shift register, as in the rate

1/2 case. For a general rate kIn code, however, k binary digits

are shifted into the coder simultaneously. The coder stages are

connected to n mod-2 adders. Note that the trellis formed by

a rate kIn code has 2(K-k) states with 2k branches leaving and

entering each node. This is because anyone of 2k groups of k

binary digits can enter the coder at once. Decoding involves

making a 2k-wise decision for each of 2K- k states per k bits

decoded.

It can be shown that no generality is lost if the codes are

restricted in the following way. Suppose we label the mod-2 adders

-66-

information
bits

(3 at rl time)

2
nd

mod-2

st
1 mod-2 adder

Fig. 2.3.1.1 Optimum Rate 3/4,
K=6 Code Encoder

-67-

,.

from 1 through k, and concern ourselves with connections to the

first k encoder stages. Connect adder 1 to stage 1, adder 2 to

stage 2, ••• , and adder k to stage k. Make no other connections

between the first k stages and the first k adders. This reduces

k 2
the number of codes to be searched by a factor of 2 • The

encoder in Fig. 2.3.1.1 is of the type described.

Recall that the code transfer function (for N=l) is of the

form

T(} = df Ddf + 1 df + i (2 3 l) D a 1 D + a 2 + ••• + a i +l D + ••• ••

where d f is the code minimum free distance~ -6 If \,7e set 0=10 ,

and if the rate of growth of the a. satisfi~s certain conditions
~

-6 -6df (see Appendix A), then T(lO) will be very close to a l 10 •

The code search program has as an input a target value of d f • It

evaluates the first fe 7 terms of the transfer function, with

D=10-6, for each code, and tests to see if their sum exceeds

-6(df- l) 10 • If it does, this means that the code must have a

minimum free distance smaller than d f (or a
1

> 10 6 which is

impossibly large). Thus, the code is rejected. On the other

hand, if the iteratively evaluated transfer function remains below

10-6 (df- l) taken to a sufficiently large number of terms, the

code's free distance is at least d f , and the code is printed out.

This technique often results in the generation of many

candidate codes (or none of the target d f is too large). The

codes are then tested using the numerical transfer function union

bound program to approximate the bit error rate performance.

Final code selections are made on this basis.

-68-

2.3.2 Good Rate 1/3,· 2/3, and 3/4 Codes. Optimum rate 1/3,

K=3 through 8, rate 2/3, K=6 and 8, and rate 3/4, K=6 codes are

tabulated in Tables 2.3.2.1, 2.3.2.2, and 2.3.2.3 respectively.

Included also is the free distance of each code df , the number of

bit errors in paths at the minimum distance ne , and the value of

* an upper bound on minimum free distance df , analogous to that

obtained for rate 1/2 codes.

The· rate 1/3 codes were reported previously (Ref. 3) and

are simply repeated here. The rate 2/3 and 3/4 codes are the

result of the code search program.

2.3.3 Simulation and Numerical Performance Data. Figure

2.3.3.1 shows bit error rate vs. Eb/NO performance obtained from

simulations of Viterbi decoding with optimum rate 1/3, K=4,6, and

8 codes, and 2 and 8 level quantization •. The K=4 and 6 results

were reported elsewhere (Ref. 2) previously. The K=8 code used

in Ref. 2 was suboptimal 1 thus, the curve shown here for the

optimum code is somewhat better than the previously reported

result.

Figures 2.3.3.2, 2.3.3.3, and 2.3.3.4 show numerical bound

and simulation performance results for the rate 2/3 K=6, K-8 and

rate 3/4 K=6 codes respectively. Simulation curves are for 2

and 8 level quantization, while the numerical bound curves are,

as usual, for infinitely fine receiver quantization.

-69-

Code * K Generators d f ne d f

111
3 111 8 3 8

101

1111
4 1101 10 6 10

1011

11111
5 11011 12 12 12

10101

111101
6 101011 13 1 13

100111

7
1111001
1100101 14 1 15
1011011 .

8
11110111 ..
11011001 16 1 17
10010101

Table 2.3.2.1 Optimum Rate 1/3 Codes

-70-

Code * K d f n d f Generators e

101111
6 011001 5 5 6

110010

10110110

8 01111001 7 86 8
11110111

Table 2.3.2.2 Optimum Rate 2/3 Codes.

Code * K d f n d f Generators e

100001

6 010011 4 . 40 4 001110
111101

..

Table 2.3.2.3 Optimum Rate 3/4 Code.

-71-

10- 5

(l)
+l
III
~

~
0
~
~
~

+l
• .-f
ill

1 -6

K=B

-0 0-- Simulation

4

Fig. 2.3.3.1 Performance of Rate 1/3,
K=4, 6 and 8 Codes with Viterbi
Decoding.

\

\

5
EI/N, in db

6 7 8
(signal energy to noise ratio}

-72-

><
+J
'M
.-i
'M
.0
I1l
.0 o

1-1
A.

1-1
o
1-1
1-1
f.Ll

+J

·til 10-

10- 7

.Fig.2.3.3.2
K~6 Code with Viterbi Decoding,
Numerical Bound and Simulation
Results.

Q=2..

Q=8

Upper Bound

5 6
Eb/No in db

7 8

-73-

>.
~
"M
.-!
"M
.0
ttl

.0
o
~
p..

~
o
~
~
W

"~ 10- 5

c:l

3 4

\
Fig. 2.3.3.3 Performance of Rate

2/3 K=8 Code With Viterbi
Decoding - Numerical Bound
and Simulation Results.

Upper Bound

5 6 7 8
Eb/NO j,.n db

-74-

1 -3

Q=8-

>.
.~ 1
.-I . ..,
.0
III
.0
0
~

Co.

~
0
~
~
~

10- 7

Fig. 2.3.3.4 Performance of a Rate
3/4, K=6 Code with Viterbi De­
coding - Numerical Bound and

\~ Simulation Results.

\ \. Upper Bound

\
\

\
\
\

\

\

\
\

\

\
5 7 8
~/No in

-75-

2.3.4 Comparison with Rate 1/2 Code. Comparing the per-

formance data obtained through simulations of Viterbi decoders

with rate 1/2 (Figs. 2.2.4.1, 2.2.4.2, and 2.2.4.3), and rate

1/3 codes, it is apparent that the latter offers a 0.3 to 0.5

db improvement over the former for fixed K, in the range reported.

This is close to the improvement in efficiency of a channel with

capacity 1/3 compared with one of capacity 1/2, and is therefore

expected.

Performance efficiency of the higher rate codes also is

predictable when compared with the rate 1/2 codes over the range

with the simulation data spans. The fairest comparisons are

probably those between decoders with like number of states.

Thus, the K=6 rate 2/3 data should be compared with the K=5,

rate 1/2 data.

Figure 2.3.4 shows the union bounds on performances for the

rate 2/3, K=6, and rate 1/2, K=5 codes. Both encoders have 16

states. d = 7 for the rate 1/2 code and 5 for the rate 2/3
f

codes. At very high Eb/No, ~he rate 1/2 must be superior. This

is because asymptotically, at high Eb/No, the error probability

goes as

This gives the rate 1/2 code an advantage of about 0.2 db in the

limit.

In Fig. 2.3.4, the difference between the two curves is about

0.1 db in the error probability range of 10- 6 to 10- 9 • This small

-76-

1 -6

>.
+l
0.-1
M
0.-1
.Q
III

.Q
0
I-<
p..

I-<
0
I-<
I-<
r.:l

+l 10- 7
OM
III

3 4

Fig. 2.3.4 Bit error probability bound
for the rate 1/2, K=5, and the rate
2/3, K=6 bit code.

5
Et/N 0 in db

-77-

6

- R =- ~/3
K=G

7

difference is due to the fact that the rate 2/3 code used is a

particularly good code (it has a minimum distance coefficient of

only 5 in the union bound for bit error probability). Some

additional discussion on decoder complexity vs. rate is contained

in section 2.4.

-78-

2.4 Viterbi Decoder Implementation*

2.4.1 Review of Decoder Algorithm. The present discussion

is specialized to a decoder for a constraint length K=4 code.

The design principles are the same for other values of K. six

features will be discussed in the followinq sections relating to:

1) the assignment of metric to the received data (metric

compression)

2) the efficient storage of state metrics (overflow-protection)

3) the design of the decision-memory and the selection of the

output bit (maximum likelihood selection)

4) the time sharinq of state metric calculation

5) choice of logic family (TTL or MECL)

6) relation of cost to constraint length, code rate, speed, etc.

To set the stage for this discussion, we first review the

fundamental operations of the Viterbi decoder. The code under

discussion is that given by the K=4 convolutional encoder of

Fig. 2.4.1.1. The states of the code at any time correspond

to the contents of the first K-l=3 stages of the shift register.

The coder is shown in state all. It previously was in state 110:

an input a caused a coder transition to state 011 and a coder

output of the 2 check digits C 1 C 2 = 01.

*Many of the ideas in this section concerning metric compression,
overflow protection and output selection were first formulated
in Ref. 10, and are the subject of patent applications either in
preparation or pending.

-79-

A 4 state transition diagram for states 110, 111, all, and

111 is given in Fig. 2.4.1.2. For any value of K, sets of 4

states group together with xQ and xl on the left and Ox and lx

on the right, ,.,here x is any k-2 bit sequence. For good codes,

both the first and last encoder shift register stages are con-

nected to all the mod-2 adders. For these codes, the check

digits C I C 2 for the group of 4 are always complementary as

depicted in Fig. 2.4.1.3.

A block diagram of a Viterbi decoder is shown in Fig. 2.4.1.4.

The channel and modem cause the conversion of the transmitted

From r r 4 "metrics"
I 2'

are calculated by the input section, Roo' ROI ' RIO' RII , cor­

responding to the 4 possible values of c
1
c

2
• On the basis of

these, the decoder must decide, for all values of x, whether

state Ox was entered from state xO or state xl and similarly

whether state lx was entered from state xO or state xl. These

decisions are made by the ACS (add-compare-select) circuits.

These binary decisions are denoted by the variables D. • For i=O
~x

or 1, D. = 0 indicates a decision in favor of· the transition
~x

from state xO to state ix, whereas D. = 1 indicates a decision
~x

in favor of the transition xl to ix.

The decisions are made on the basis of metrics associated

with each state.

state xj, j=O, 1.

Figure 2.4.1. 3

Let 1'1 . denote the metric associated with
X]

Then the decoder makes decisions -- see

as follows (the convention that small metrics

are "good" is used):

-80-

____________ -.. C2 = 1

Input Bit ------11-

c = 0
--------------~. 1

~

Note: (~) denotes modulo-2 addition

Fig. 2.4.1.1 K=4 Convolutional Encoder, Rate = ~

110 01
~-------..-----:? 011

o

10
01 III ""-------~~.111

Initial Check Final
State Digits State

Fiq. 2.4.1. 2 4-State Transition Diagram for a One
Input Step for Coder of Fig. 2.4.1

(0 input causes transition to upper state;
1 input causes transition to lower state)

xO

xl

Fig. 2. 4.1. 3

" o " o

General 4-State 1 Step Transition Diagram

«(;i = 1 - c i)

-81-

BRANC H
~mTRI CS

DATA
OUT

t
OUTPUT

SECTION

I ,

DECISION
MEMORY

2X- 1 X 4K

BITS

i ~ K-l
2
DECISIONS

2 K-l

ACS CIRCUITS

+
STATE METRIC

STORAGE

"

INPUT
SECTION

I ,.

NOR-
MALIZE

CHANlit.L INPUT

BEST
STATE

SYNC

CIRCUIT

~1

Fig. 2.4.1. 4 VITERBI DECODER
BLOCK DIAGRAM

-82-

MXO + R < Mxl + R- - DOX = 0
ClcZ cICZ

MXO + R > M + R- - D = 1
clcZ xl clcZ Ox

(2.4.1)
M + R- - M + R Dlx = 0

xO ClcZ < xl clcZ

M + R- - > Mxl + R Dlx = 1 xO clcZ clcZ

Following the decisions, the set of D's (for K=4, Dooo,

decision-memory section and are used to set the new values of

the state metrics (exclusive of overflow-protection: see Section

2.4.3). For example, if DOx = 1, the new value of the state

metric MOx is M + R- - • xl clcZ

For K=4, x takes on the values 00, 01, 10, and 11. Thus,

4 sets of decisions corresponding to (2.4.1.2) must be performed

by the decoder. To implement the add and compare operations

at high speed and reasonable cost, it is essential to minimize

the number of bits used to represent the M's and R's. We dis-

cuss the minimization of the R representation, or metric compree-

sion, in Section 2.4.2 and the minimization of the M representation,

overflow-protection, in Section 2.4.3. The method of overflow-

protection has two dividends: it permits an inexpensive imple-

mentation of the maximum-likelihood output selection as discussed

in Section 2.4.6 and of the code synchronization as discussed in

section 2.4.7. Tradeoffs in speed, complexity, logic family,

constraint length, etc, are discussed in Section 2.4.8.

-83-

2.4.2 Metric Compression. The smallest achievable error

probability would result if the received symbols, r 1 and r 2 ,

were equal to the unquantized (or infinitely finely quantized)

outputs of the appropriate matched filters, say u 1 and u 2 • To

permit digital implementation of the adder function, however,

u 1 and u
2

are quantized to Q levels (For example, Q=2 denotes

hard decisions where only the sign of the u1's is kept). The

loss in performance incurred by using Q=8 rather than Q=oo is

less than 0.2 db for a reasonable choice of quantizer thres-

holds.

For the decoder to he maximum likelihood, the branch metric,

R .. , should equal the log likelihood of the digits r 1 and r
~J 2

received for that branch given that i and j are transmitted:

Rij = log Perl I i trans) + log P(r
2

I j transmitted)

For a digital implementation, however, it is also necessary to

quantize the {Rij } to a small number of levels. This quanti­

zation causes an additional performance loss.

We are interested in representing the branch metrics Roo'

ROI ' RIo' and Ril in a minimum number of bits. As noted earlier,

the use of the quantized numbers r 1 and r
2

themselves to form the

metrics provides system performance within 0.25 db (with Q=8) of

the value achieved with Q=oo. Of course, as Q~oo, use of r 1 and

r
2

becomes identical to use of u l and u
2

and hence is maximum

-84-

likelihood, while for Q=2, use of binary-valued rl and r2 is the

same as the use of Hamming distance and again is maximum likeli-

hood.

Consider a Q level quantizer with the Q quantizer levels

labelled by the integers 0, 1, 2, ... , Q-l from most negative

to most positive. (Any other labelling scheme can easily be

mapped into this labelling scheme.)

If rl and r2 denote the received symbols and take on the

above values, then a choice of branch metrics shown to be accep-

table by computer simulation is:

RO 0 = rl + r2

ROI = rl + (Q-l-r2)

Ri 0 = (Q-l-rl) + r2

Ril = (Q-l-r I) + (Q-l-r2)

The LINKABIT technique of metric compression permits a reduction

by 1 bit in the number of bits required to represent these numbers

without degrading performance. Subtracting the same constant

from each of the R .. does not affect decoder decisions (see Eq.
1.)

2.4.1). We choose to subtract the smallest of the R .. from each of
1.)

the Rij , thus yielding (at least) one value equal to zero and all

the others non-negative. If ROI is smallest, for example, then

-85-

ROO = ROO - ROI = 2r2 - Q+l

Roi = ROI - ROI = 0

Rio = Rio - ROI = 2r2 - 2rl

Rii = Ril - ROI = - 2r l + Q-l

Observe in Eqs. 2.4.2 that if Q is odd then each of the R ..
1)

is even and the least significant bit may be discarded. This is

true in general and is the basis for the LINKABIT metric com-

pression technique. If Q is even, however, this compression is

not possible. Compression has a great impact on the amount of

hardware required since, without compression, an extra bit is

required throughout the arithmetic section and metric storage.

This produces the peculiar result that 20% more hardware is

required to implement Q=8 than 0=9. Fortunately, there is a

simple solution to the problem of providing compression with an

even value of Q, namely, to regard Q=8 as though it were Q=7

by mapping the two central zones of Q=8 into one zone. Although

this results in slightly nonoptimurn metrics, the degradation is

quite small, especially at low error rates.

The above metric compression scheme is most easily implemented

by using a read-only memory if the decoder is for data rates less

than 10 Mbps. For rate 1/2, there are two received symbols,

each quantized to three bits if Q=8 for a total of six bits.

The ROM look up table must therefore have 64 entries. Since four

branch metrics must be computed, each being a three bit number,

-86-

each word of the look up table must contain twelve bits. The

table can be implemented by using two 512 bit ROM's.

A logic diagram of a TTL input section using ROM's is shown

in Fig. 2.4.2.1. The circuit accepts either serial BPSK with the

received digits, r l and r 2, interleaved or QPSK with digits r 1 and

r 2 in parallel. The circuit then provides node sync by the

selective insertion of a one symbol time delay in BPSK or by the

selective interchange of the symbols in QPSK. If an interchange

occurs, then rl is complemented. The sync circuit (explained in

section 2.4.7), controls the bit insertion or interchange opera-

tions.

The symbols then address the 1024 bit ROM. The ROM is

organized into 64 words of 12 bits each. The ROM outputs are the

four branch metrics. The remaining circuitry subtracts four from

the branch metrics when normalization (explained in section 2.4.3)

is required.

At data rates higher than 10Mbps a different approach is

used. The quantizer levels are labeled from -3 to +3 instead of

from 0 to 6 as in the previous case. We then consider the symbols

as sign-magnitude numbers, i.e., r l = SI t l , where SI is the sign

and tl is the magnitude. The compressed metrics are then given by

the following table:
--_._. --

SI S2 Roo Ro 1 RIO Rll
•... - - -- -

0 0 0 t2 tl t l +t 2

0 1 t2 0 t l +t 2 tl

1 0 tl t 1 +t 2 0 t2

1 1 t 1 +t 2 tl t2 0

-87-

N
O
R
M
~
l
\
2
~
>
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
1

P
S

K

B

ll
l>

-

QPS
~ B

'''
'i1

~~.

~ I

II
 I

I
~
~

R
o

o

D

""
1

1
1

-

}
R

e,

1
0

2
4

P

S
K

 B
\\

 2

I
B

IT

t>
LB

 Q

5
R

A
.t-

.I
C

H

co

Q
P

5K
.

B
IT

 z
f

co

R
O

M

M
E

..
T

R
\C

.S

I
l)C

X
Q

D
~

~
D
u
J

}
R

,e

""
\.9

1

I1
1

1
1

tT
1

\-.

.
.I

D~
Q

P
S

I'
.

B
IT

 3
~

0

Q
P

5
K

 6
\T
3{
~~
~~
~J
=~
 II

 t I
 tt

==

n
~
!
n
Q

~

D
 ~

~I:
:J

.
J
~

_I
 R

I
I

tc
=

:
I

P
5

K
/Q

P
!)

1
(

11
0

N
O

t)E
.

5Y
N

C

S
t:

.L
E

C
T

F
ig

u
re

2

.4
.2

.1

L
o

g
ic

D

ia
g

ra
m

,
T

T
L

In

p
u

t
S

e
c
ti

o
n

The assignments of this table are easily implemented as shown

in Fig. 2.4.2.2. This circuit is preceded by node sync circuitry

as in the previous example. The magnitudes are added and the

branch metrics are obtained by using a multiplexer that is con­

trolled by S1 and S2 to route 0, t l , t2 and tl + t2 to the appro­

priate branch metrics.· Normalization can be obtained by sub­

tracting four as shown in the diagram.

2.4.3 Overflow Protection. In Section 2.4.2, we demon-

strate how to compress the metrics to permit Roo' ROl ' R1o ' and

R11 to be represented in the minimum number of bits. We now

concentrate on mimimizing the maximum size of the 2K- l state

metrics, Mo' Ml , ••• , M2K-l. The technique is applicable to all

K although the example is for K=4.

Consider the coder state diagram given in Fig. 2.4.3.1. It

is possible to calculate the minimum Hamming distance in going

from the OOO-state to each of the other states. These numbers

are shown in the square boxes adjacent to each state. Note that

the maximum Hamming distance is 4. Because of the group property

of the code, this means that any state is at most Hamming distance

4 from any other state.

This observation is critical to minimizing the number of bits

required to represent the M's. For Q=8, Hamming distance 1 can

imply an actual metric difference no greater than 3. Thus, it is

possible for one state, say the 000 state, to have state metric

Mooo=O while another state, for example the state 001, has state

metric Moo1 =12. It is not possible for any state metric to be

-89-

I 1.
0 o I

S
IG

N

SY
M

1

M
A

G

SY
M

1

S
IG

N

SY
M

2

M
A

G

SY
M

2

~

>I
 S

U
B

4

F
ig

.
2

.4
.2

.2

A
D

D
ER

V
IT

E
R

B
I

D
EC

O
D

ER
 r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
.
I
S
E
L
E
C
T
O

S
U

B

4

E
C

L

IN
P

U
T

S

E
C

T
IO

N

R
oo

N
O

R
M

A
L

IZ
E

00

rig. 2.4.3.1 - State Diagram with C1C2 Labelling Branches

'-1inimum Hamming Distance of Each State from the
000 State is Shmm in Square Box Adjacent to State

-91-

larger than 12 when Mooo=O (or any other M=O), since the state in

.ue8tion can be reached from state 000 with at most Hamming

distance 4 and hence compressed metric = 12.

We conclude that the difference between the smallest and

largest state metrics never exceeds 12. It is therefore possible

to represent the state metrics with 4 bits if a means of prevent­

ing overflows is also provided. To do so, we first observe that

in a single transition, the smaller state metric in a pair of

metrics can increase by at most 3. Furthermore, if the spread is

equal to 12, the largest metric cannot increase at all. These

claims are verified by examining the state-pair metric transition

diagram in Fig. 2.4.3.2a and the possible sets of compressed

metrics in Fig. 2.4.3.2b. The state-metrics are shown on the left

in Fig. 2.4.3.2a for a case in which the spread between smallest

and largest metric is the maximum value, 12. The range of the

state metrics at the outputs are shown on the right (recall that

the smaller (better) metric of the 2 metrics accessible to a

state is chosen as the new state metric1 see Equation 2.4.1.

We conclude that if the smallest state metric is in the range

o to 4, the largest metric is less than or equal to 15 and hence

does not overflow a 4 bit register. Furthermore, since the maxi­

mum increase in the smallest metric is 3, subtracting 4 from all

state metrics whenever all of them exceed 3 prevents the set of

state metrics from moving out of the range 0-15. This is the

overflow-protection strategy that we have adopted. Note that we

could equally well subtract 3 whenever the metrics are all greater

-92-

o ~--------------~0-6

12 "'-______:::...6-0

6><6-12

12 ---------------12-6

9 ...:----------------:;1"9-12

12 --------------~~12-9

(a) State Metrics at Extreme Spread

R •.
l.

o
o
o
o
o
o
o
o
o

3

2

1
2

1

1

o
o
o

3

3

3

2

2

1

2

1

o

R~-:­
l.J

6

5

4

4

3

2

2

1

o

(b) Possible Compressed
Metric Sets

Fig. 2.4.3.2 State Metric Transition Ranges

-93-

than or equal to 3 but the test for Mij greater or equal to 4 and

the subtraction of 4 is more easily accomplished in hardware than

similar operations using 3.

With the combination of metric compression and overflow

protection, the additions Mx + Rij involve the addition of a 4

bit and a 3 bit number.

2.4.4 Storage of State Metrics. As explained in previous

. K-l
sect~ons, 2 state metric values must be stored for each of

the possible encoder states. At each bit time, 2K additions must

be performed followed by 2K- l comparisons and select operations.

If the decoder is operating at a relatively high bit rate, then

all of the operations must be performed in parallel; however, if

the data rate is low to moderate, then the arithmetic operations

may be performed partly or co~pletely in serial. If the operations

must be performed completely in parallel, there is no organization

problem in the storage of state metrics since they must all be

simultaneously accessible. If, however, the operations may be

performed partly or completely in serial, then more efficient

organization of the state metric storage becomes a possibility.

As explained in previous sections, each arithmetic operation

consists of the addition of the branch metrics R.. and RTT to the
~J ~J

state metrics MOx and Mlx resulting in metrics MxO and Mxl •

Suppose, for example, that completely serial operation is possible.

The state metrics can be stored in a random-access memory such

that state metric MOx is stored in location Ox. The problem with

this organization is that the result of the computation produces

-94-

state metric Mxl • Now state metric Mxl may not yet have been

accessed in the present cycle of computations, so the result of

the present computation may not yet be stored in this location.

Therefore, state metric storage must be duplicated to temporarily

store the results of the compu~ations.

A more efficient technique makes use of the following

property: if the parity of state Ox is even, then the parity of

lx is odd and vice versa. The state metrics may be stored in two

sets of random-access memories, one of which contains the metrics

of all states having even parity and the other containing metrics

of all states having odd parity. For example, if x has even

parity, then Ox has even parity and lx has odd parity. In per­

forming a computation, the metrics of states Ox and lx are read

out of the memories, the computation is performed and the result­

ing metrics xO and xl are written into the memories in the

locations from which the original metrics were taken. Obviously,

the metric of state Ox will be found in a different location in

the memory at each computation. However, the progression of

locations through which the metric Ox passes can be very simply

computed.

The preceding example of metric storage using random­

access memories is useful for up to two computations performed in

parallel. If, however, more computations must be performed in

parallel, random-access memories may no longer be used since the

organization of such a random~access memory would become unduly

complicated.

-95-

If more than two computations mu~t: be performed in parallel,

then all state metrics must be simultaneously accessible and the

arithmetic sections are switched between state metrics by the use

of multiplexers e A,lso, the storage must be duplicated to tempor-

arily store the results of the computa'tions. The requirement for

multiplexers and duplicated storage tends to offset the savings

achieved by sharing a small number of arithmetic units.

2.4.5 Arithmetic Loqical Section. The principle functions

of the arithmetic-logical section are:

1. to implement the decision logic of equations (2.4.l),

generating a set of decisions Dj ,

2. to generate updated state metrics and to transfer the

new metrics into the state metric registers following a

clock,

3. to detect an increase in the minimum state metric above

the value 3 and to subtract 4 from all state metrics

following such a detection in accordance with the over-

flow management strategy,

4. to set the values of the output decision gating variable

x .•
J

An x. is set equal to one only if its corresponding state metric
J

is less than or equal to 3 0 (This function will be explained in

the next section.)

These functions are implemented in the ACS (a,dd-compare-

select) functional block depicted .in Fig ~ 2.4,,5. Two ACS' s are

required for each pair of states if all computations are to be

-96-

I \0

--
J

M
l

R
l

I
M

2

R
2

lA
D

D
ER

A
D
D
E
~

F
ig

.
2

.4
.5

tt:

S
IG

N

,
0

II
I

E-
I

::>

~

B
IT

tI

)

E-
I

r·t

<

4
a

<

4

V
IT

E
R

B
I

D
E

C
O

D
E

R

A
C

S
&

 H
E

T
R

IC

R
E

G
IS

T
E

R

tt:

tt:

0
~

E-
I

-
E-

I
M

3
u

tI
)

~

H

H

0
~

~
tI

)

T
o

N

o
rm

a
li

z
e

&
 B

e s
t

S
ta

te

J

carried out in parallel. Since the ACS block is the critical

block both in terms of number of components and maximum speed

capability, complete designs for this block have been worked out

in both ECL logic and TTL logic using MSI. The ECL design can be

constructed in three different versions. One version, using

MECL III throughout, will obtain the maximum possible speed. The

other two designs use MECL II~ and MEeL II for lower speed and

greater economy. Several different TTL designs were worked out

but the one presented here was the best; both in terms of number

of parts, cost, and speed so this will be the only one presented.

Both designs are specialized to K=4 in that a 4 bit state metric

and 3 bit branch metric are assumed.

Normalization can be obtained in two ways: I} by determin­

ing that all state metrics exceed 4 and subtracting 4 from all of

them during the same computation, or 2} determining that all

state metrics exceed 4 and subtracting 4 from the branch metrics

for the next computation. The first approach is suitable for

small constraint lengths at high speeds where all arithmetic

operations are performed in parallel. The second technique must

be used at lower speeds and higher constraint lengths where partly

or completely serial arithmetic operations are performed. It is

clear that the first technique cannot be used in this case since

most of the state metrics are computed and restored before it is

known whether or not a subtraction of 4 is necessary. At high

speeds where fully parallel operation is used and at lower

constraint lengths, there is no particular advantage of one

-98-

technique over the other except that the first technique will be

easier to understand and debug.

2.4.581 ECL Arithmetic-Logic Unit. A block diagram of the

ECL-ACS unit is shown in Fig. 2.4.5.1, a, b, and c. Sheets a and

b show the adders that add the state metrics to the branch metrics.

Sheet c shows the comparator and selector. The adder used in this

ACS unit is a form of adder known as the carry-save adder in which

ripple carries are used between the stages. The designs of the

carry circuits are such that there is only one logic delay per

carry. Since only three carries must be generated, the total

carry propagation delay is then only three logic delays. For an

adder this size, there will be no speed advantage to using 100k­

ahead-carryover this ripple carry technique, and furthermore,

the ripple carry technique results in a more economical design.

The comparator is implemented by subtracting the two sums

from each other. In this application, we are not interested in

the actual difference but only in the carry out of the most

significant stage of the subtractor. Hence, we need only imple­

ment the carry portion of the subtractor. Another interesting

feature of this design is that the carries will be rippling

through the adders simultaneously with the carries rippling

through the comparator, so that the total add and subtract time

is not equal to the sum of the add plus the subtract time but

rather one logic delay more than the add time.

Another function that must be performed is determining

whether the result is less than 4. If none of the results of the

-99-

~ __________________________ -1~ ______ ~~Tl

M12 ~---------r~-------------------+--~~~
R12 ~--------~-------------------.-+~

-Mll ~------~

RlI >-----+---4

Mll
R1S ~--------~----------~-+-----1r+~

Ml~ ~----------------~--~-+------------~-----+~~ T~

Fig. 2.4.5.1 a VITERBI DECODER

ECL ACS SECTION

-100-

Ts

L.T.4

R21 ~ __________________________________ ~~ ______ ~~

M21 ~§1
R21 ~ ____ --__ --------------__ --------~

Ru ~--------+---{'"-"""
~---.---------+------------,

Mu
RU ,....-------4

~--~------~----~--_r~~s.
M2S

R23 ~----------_4--------~_r----__ _+_,

____________________ ~~------~~~~--~--~~S~

Fig. 2.4.5.1 b

-101-

~----+_----------~C2

----------~-----------+M2~

VITERBI DECODER

ECL ACS SECTION

L.T.4

L.T.4
FROM

ALL ADDERS

Tl
~-------------------1~----~

S 4-__________________ ~----------------~~~

Fig. 2.4.S.1c VITERBI DECODER

ECL ACS SECTION
-102-

computations of the ACS unit produces a result less than 4, then

4 must be subtracted from all of the results in order to obtain

the required normalization. The result will be less than 4 if

either of the two sums is less than 4 since the smaller will be

selected. Each of the sums will be less than 4 if the carry out

of the second stage, the third and fourth bits of the state

metric, and the third bit of the branch metric are all zero. Thus,

the less than 4 signal may be obtained in only three logic delays.

The less than 4 signals from all of the ACS units are then ORed

together. If the result of the ORing operation is zero, then all

resulting state metrics will be greater than 4. While this is

taking place, 4 is subtracted from each of the sums. The output

selector will then select first the smaller of two resulting sums

and then select either the smaller or the smaller minus four,

depending upon whether normalization is required. The results are

then stored in the state metric storage flip flops, thus com­

pleting the computation.

Chip counts and typical computation rates have been obtained

for this design implemented with three different versions of ECL

logic, HECL III, HECL 11;2, and MECl. II. The !'-mCL III design will

require 25 chips per ACS including the state metric storage. The

typical maximum computation rate is 90 iI1Hz. The HECL II~ design

requires 35 chips and will operate at 40 r.mz. The HECL II design

requires 25 chips and will operate at 25 MHz. The r-mCL III version

will be considerably more expensive than either of the HECL II

versions since much more sophisticated techniques are required to

-103-

package the MECL III devices. These advanced techniques include

the use of strip transmission lines, multilayer circuit boards,

and complicated cooling because of the high power dissipation of

the MECL III devices. The MECL II and MECL II~ designs may be

packaged using approximately the same techniques as required for

TTL. The MECL II devices are, however, slightly more expensive

on a per chip basis and the level of integration available is

somewhat less than that available with TTL, as will be seen in

the following example of a TTL design.

2.4.5.2 TTL ACS Unit. A logic diagram of the TTL arithmetic

section is shown in Fig. 2.4.5.2. The inputs to the arithmetic

section are two state metrics and two branch metrics. The state

Metrics are each represented as 4 bit binary numbers, the branch

Metrics are represented as 3 bit binary number plus a sign bit.

(Subtracting four from the branch Metrics for normalization can

result in negative values.) Both the branch Metrics and the state

Metrics are represented in complemented form. The two additions

are performed by two SN74l8l 4-bit arithmetic units operating in

the add mode. The SN74181 is a 4-bit full adder with full carry

look ahead. The sum is produced, typically, in 24 nanoseconds.

If the sum is larger than 15 a carry-out of the 4th stage of addi­

tion is produced. A carry-out of the 4th position is also pro­

duced when the branch metric is negative. Therefore the 5th bit

of the sum is generated by NANDing the carry-out with the sign of

the branch metric.

-104-

f.JD
 J

 &
3f?

l
· DECISI

O
N

r=D
 I

(B
0

I
SU

B
.

..

~
1
0
D
E

{~

.G
E

.S

B
R

A
N

C
H

M
E

iR
IC

C

o

.G
E

.4

S
T

A
T

E

{
A

D
D

S
.G

E
.S

I

M
E

T
R

IC

M
O

D
E

6
1

.G
E

 •
•

U
1 I

B
R

A
N

C
H

M

E
T

R
IC

2

S
T

A
T

E

M
E

T
R

IC

2

t {.

....
ill

'11
11

~
 ~~

p:

C

~
r

o
~

A
D

D
S

g
,"

-M
B

7R
IC

M

O
D

E
~

r
O

U
T

E-

t

F
ig

u
re

2

.4
.5

.2

V
IT

E
R

B
I

D
E

C
O

D
E

R

T
T

L

A
C

S

~
~

...

~
~

L
..

..
.-

J

..
)

The .maller of the two _esulting sums is determined by sub­

tracting one from the other using an SN74181 in the subtract mode.

A carry-out of the subtract will result if sum B is larger than

sum A. Note that we must compare two 5 bit numbers and the

SN741Bl is only a 4 bit subtaactor. The 5 bit comparison is per­

formed very simply by aubtracting the 4 ~ significant bits of

the two sums in the SN741Bl. Since we are intere.ted only in "the

carri.s in the subtraction process, we need only provide the

carry-out of the subtraction of tne two least significant bits as

input to the carry-in of the 4 bit subtractor. Thus a 5 bit

comparison can be accomplished with a single adder chip plus a

single two input NAND gate. The resulting decision is stored in

the decision memory section.

The smaller of the two sums is selected by the four and/or/

invert gates provided by the two SN74HSl chips. The an/or/invert

gates are connected as single pole-double throw switches. The

result is .tored in the state metoric register.

It is also necessary to determine whether-the output is

greater than or equal to 4, or greater than or equal to 8. The

greater than or equal to 4 signal is used to control normalization

and to determine the decoder output bit. The greater than or

equal to" B signal is used for the later purpose when all metrics

are greater than or equal to 4. Greater than or equal to 4

is determined by examining the three most significant bits of the

two sums. If the 3 most significant bits are all equal to 1, then

the number is less than 4 (remember that the BumS are expressed in

-106-

complemented form). Greater than or equal to 8 is determined by

examining the two ~ost significant bits. If both are equal to 1,

then the result is less than 8. The~e functions are performed by

NAND gates which invert the results, converting less than 4, for

example, into greater than or equal to 4. If this logic were

performed on the metric output, the time required would be added

to the total ACS time. Instead, the greater than 4 and greater

than 8 detection is performed on the two sums prior to comparison

and selection. The desired result is obtained since, if the

smaller of the two sums is less than 4, then at least one of the

greater than or equal to 4 outputs is O.

Each arithmetic (ACS) unit can be implemented with 10 inte­

grated circuits including the metric storage. It should be noted

that 3 of these IC's are large (24 pin) and relatively expensive

compared to the other IC's. Including the propagation delay of

the metric storage units, an arithmetic operation can be per­

formed in under 100 nanoseconds.

2.4.6 Decision Memory and Output Selection. As each check

digit pair is input to the decoder, decisions Dix are made by the

arithmetic section as explained in previous sections and trans­

mitted to the memory-output section. For each state, 16 bits are

stored as shown in Fig. 2.4.6. The first bit stored for state ix

is the most recent decision Dix. The remaining bits reflect the

results of earlier decisions.

Consider decision Dox. If DOx = 0, the decoder has decided

that for the most recently received check digits, state xO is more

-107-

NOTE a OUTPUT
L denotes a 1 bit register

M denotes a single pole,
double throw awi tch '

000 00 1 100

Do 0 0 100

Fig. 2.4.6

101 010

1 1 0

DECISION MEMORY
AND OUTPUT SECTION

-108-

o 1 1 1 1 0

011 110

1 0 1 1 1 1

likely than state xl to have been the predecessor of state Ox.

Conversely, if DOx = 1, state xl is a more likely predecessor to

Ox than is xO. Mlen Dox = i, the 16 bits associated with state

xi are shifted right 1 stage and transferred into the stages

associated with state Ox. The first stage for state Ox is set

equal to i, as shown in the figure. Note that the boxes denoted by

L are flip-flops which each store one bit while the boxes labeled

t1 are switches which transfer one of the two inputs to the output

depending on the value of the appropriate D.

The bit shifted out of the 16th stage of the memory for

each state is either discarded or, for one state, selected as the

output from the decoder. The optimum decoder would select as

output the bit from the state with the smallest value of M.

Simulation results have shown that a memory of 12 bits per state

would suffice if the smallest value of M were used. Such a

selection is difficult to implement in hardware, since an examin­

ation of all eight state metric values is necessary in order to

select the smallest.

An alternate approach is to always select the output from,

say, the 000 state. This approach, ignoring the state metrics

entirely, requires a memory of 24 bits per state to keep the

degradation small.

The approach adopted by Linkabit is based on the overflow­

management strategy and is almost optimum. The Linkabit decoder

memory is conservatively extended to 16 bits to account for the

slight nonoptimality. Recall that the overflow-management

-109-

strategy forces the smallest state metric to have a value between

o and 3. Because nearest states have a Hamming distance of 2, the

compressed metric separation generally exceeds 4, and in general

only 1 state has a metric between 0 and 3. Moreover, if 2 (or

more) states had metrics less than or equal to 3, they would

tend to have similar past histories and hence the same 16th bit

in memory.

The selection mechanism is based on examining each state

metric and setting the variables x
J
' = 0 if M. > 4 and equal to 1

J -

otherwise, j = 000, 001, ••• , 111. As shown in Fig. 2.4.6, the

variable Xj is used to gate the output from the 16th stage of

memory for state j via an OR gate to the decoder output. If

more than one Xj is non-zero, the corresponding bits are ORed

together to form the decoder output. This method is nearly

optimum and very inexpensive to implement. The slight non-

optimality is more than offset by the extension of the decision

memories to 16 rather than 12 bits. Examples of the design of

the memory output section are given below for both TTL and ECL

logic families.

2.4.6.1 ECL Memory Output Section. The following design is

based upon the use of the MECL II MC1040 Quad Latch. This circuit

contains 4 latches with individual output gates. The circuit can

be used to provide both the storage and the switching capability

required for the decision memory. One and one third stages of

storage per chip are obtainable using this integrated circuit.

Each stage is stored in three latches and three different chips

-110-

as shown in Figure 2.4.6.1. The three latches are arranged as

one master and two slave flip-flops. The output gating on the

slave flip-flops is used to perform the svritching operations.

The total number of bits stored for K=4 is 8 x 16 = 128. At

4/3 bits per chip, this re~uires 96 chips. The output gating

requires an additional three chips for a total of 99. This

HECL II quad latch circuit can be used at speeds up to 40 HHz.

For higher speeds, MECL III must be used. Hotorola is

planning the introduction in the near future of a MECL III cir­

cuit equivalent to the MECL II MC1040. When this circuit is

available, the memory output section for speeds up to 90 !1egabits

can be implemented in the same way as in the MECL II case. Until

this chip becomes available, the decision memory can be con­

structed using one !-1C1670 flip-flop preceded by two 2-input NOR

gates to accomplish the switching for each stage. One and one

half chips are required oer stage of storage. For K=4, this

requires 192 chips.

2.4.6.2 TTL Memory Output Section. There is only one TTL

MSI circuit that can be easily used to form the memory output

section, the SN74L98, which consists of four storage registers,

each of \V'hich is preceded by a two way switch. Using this cir­

cuit, 1/4 IC would be required per stage of storage. In the case

of K=4, this would require 32 IC's. This is a low power, low

speed IC vlith a maximum clock rate of only 3MHz. For higher

speeds, a more brute force approach is necessary. For speeds up

to 10 P~gabits, the storage register can be obtained by using the

-111-

000
>-- STATE - MASTER - LATCH - BITS

~ to ;+3

J io

001 - STATE
>-- tlASTER -- LATCH -- BITS

D to j+3

c
1 fa

C IS CL OCK INPUT

r-
-.;...1 --I D

I , C

I

-.:...' -+--f n

Qt-

--- -l

cL>t-
I

000
STATE
SLAVE
LATCH

_T i
C Dooo

001
STATE

SLAVE
LATCH

cf _ T
Dooo

0'10
STATE

SLAVE
LATCH

To 000 state
Master Lat ch
(bits j+l

-
,...--

To 000 stat
Master Latc
(bits j+l t

to j+4)

e
h
o j+4)

I C Q t-
I ~

_i J C
D 1 0 0

I

~
001

s'rATE I--

I----
SLAVE

f)

Q
C

~
'--

LATCH
........,.

___ J -i i

f)

C
Q ,

L -
C

D 100

~mCL HC1040 QUAD LATCH

Fig. 2.4.6.1 - Four stages of 000 and 001 ~tate mcmorie~
u~ing quad latches. Output gating on
1atche~ providc~ mechanism for selective
memory transfer and shift.

-112-

SN7495 which contains 4 storage registers, together with a quad

2-input multiplexer chip. Thus, 1/2 Ie would be required per bit

of storage for a total of 64 chips in the case of K=4.

At lower data rates, it is possible to make use of a rela­

tive speed factor to decrease the number of components required in

the decision memory. For example, at data rates below 500 Kilobits,

the memory could be constructed using 16 SN7491 devices which are

8 bit shift registers. They would be connected as 8 16 bit shift

registers. Since a relative speed factor is available, the

register transfers can be accomplished by serially shifting the

contents of the 8 registers through 8 2-input multiplexers.

Thus, the memory could be implemented using only 18 Ie's. At

lower data rates, two quad 16 bit MOS static shift registers

could be used to form the memory together with 2 chips for the

switching, yielding a total of only 4 Ie's for the whole memory

section.

2.4.7 Synchronization Section. The purpose of the sync

section is to obtain node synchronization. This is the only

synchronization required by a transparent code Viterbi decoder.

If the code used were nontransparent, then the sync section could

also resolve the 180 0 phase ambiguity of the PSK of QPSK demode

The sync circuit operates by comparing the rate of increase

of the best state metric with its expected value. If the rate is

too high then it is assumed that a bad node sync state exists

and the node sync state is changed. This is accomplished, in the

case of PSK, by either inserting or deleting a one symbol time

-113-

delay in the input section. If the input is from a QPSK modem

then the sync state is changed by interchanging the received

symbols r
i

and r
2

and inverting r
i

•

A logic diagram of the sync circuit is shown in Fig. 2.4.7.

As can be seen from the diagram, the LINRABIT synchronization

technique is extremely simple. This, of course, demonstrates

one of the inherent advantages of convolutional codes over block

codes. The circuit operates as follows: Every time a metric

normalization occurs, an up/down counter is counted down by one

count. The rate at which this occurs is proportional to the rate

of increase of the best state metric since normalization does not

occur unless the metric value of all states exceeds 3. The actual

rate is slightly greater than the hard decision error rate

divided by four when the node sync state is correct. When the

node sync state is incorrect, the normalization rate is much

higher, approximately the bit rate divided by eight.

The up/down counter is counted up at the bit rate divided

by a constant. The optimum choice for this constant is approxi­

mately 16. The up/down counter is not permitted to overflow, i.e.,

when the counter reaches all ones, the up count input is gated

off. If the counter underflows, then the node sync state is

changed. When the node sync state is correct, the average drift

of the counter will be up and the counter will spend most of its

time in the all ones state with occasional short downward ex­

cursions. When the node sync state is incorrect, the average drift

of the counter is down and the counter will soon underflow, thus

changing the node sync state. Obviously, there is a tradeoff

-114-

I I-
' c:

B
it

I

C
lo

ck

+
 N

..

..
-r

 r
-

N
o

rm
a

li
ze

N
od

e
S

yn
c

S
e
le

c
t

l
Q

l
Q

2

(h
Q

 ..
b

1
Q

2

Q
3

D

n
~
n

tJ
p

Jp

F
ig

u
re

2

.4
.7

L
O

G
IC

D

IA
G

H
A

H
-S

Y
N

C

C
IR

C
U

IT

involved in the size of t~e up/down counter. The larger the

counter, the longer is the time required for synchronization,

whereas, the shorter the counter, the larger the probability of

false loss of node sync. The optimum size of the counter has not

been determined exactly but is known to be between four and six

stages.

The node sync state is actually changed by allowing the

borrow-out of the most significant counter stage to toggle a

flip-flop. The state of the flip-flop is the node sync state.

Thus, when the borrow-out of the up/down counter occurs on counter

underflow, the node sync state is changed. The node sync state

is sent to the input section where it controls the addition or

deletion of the one symbol time delay in PSK. In QPSK, the node

sync state controls the interchanging of received symbols rl and

The up/down counter is implemented in TTL by using two

SN74l9l four stage up/down counter chips. If the counter is to

be 6 stages long, then the first six stages of the two cascaded

dividers form the required counter. The seventh stage becomes

the node sync state flip-flop. Overflo~l is inhibited by ANDing

together the first six stages of the counter. When the first

six stages of the counter are all ones, further up counts are

inhibited. A MECL circuit can be implemented in a similar

manner.

-116-

2.4.8 Trade-Off Section.

2.4.8.1 Cost-Complexity Trade-Offs~ This section presents

the results of the cost-complexity tradeoff study for the Viterbi

decoder, based on the K=4, rate 1/2, Q=7 designs presented in

previous sections. Parts counts have been tabulated for four

different designs: a 10 megabit TTL decoder, a 25 megabit !~CL

II decoder, a 40 megabit }mCL II~, and a 90 megabit MECL III

decoder. ~qeighting factors have been assigned to the different

logic families to re~lect differences in parts cost, design cost,

and packaging cost. The results are presented in the table below •.

The weighting factors used were: 1 for TTL, 1.5 for MECL II, 2.5

for MECL II~, and 7 for MECL III. It should be pointed out that

these weighting factors are based on a number of subjective

judgements on the part of the author, and should not be considered

to be exact or invariant. Any number of things could cause these

relationships to change in time, for example, a continuation of

the present TTL price war, new MSI circuit announcements, etc.

Max No. .
Logic Data of Relative
Family Rate IC's Cost

(Mbps)

TTL 10 185 1 HSI

MECL II 25 365 3

HECL II~ 40 450 6

MECL III 90 470 18

-117-

The best way to build a 40 megabit Viterbi decoder will now

be considered. With the designs that have been worked out in the

previous sections there are four possibilities. The decoder

could be built by using MECL III logic, or by using HECL II~

logic, or by building two 25 megabit MECL II decoders operating

in parallel, or by building four 10 megabit TTL decoders operat­

ing in parallel.

The last two examples require that an overhead factor of

approximately 10% be used to account for the cost of the extra

encoders and the cost of tying the decoders together. The MECL III

decoder would have a relative cost of 18, the MECL II~ a relative

cost of 6, the HECL II decoder a relative cost of 6.6, and the

TTL decoder a relative cost of 4.4. Thus, it appears that the TTL

design would be the most inexpensive way to obtain a 40 megabit

Viterbi decoder. Clearly, the MECL III design is not desirable

from a cost standpoint. The TTL design appears to be superior

over the whole range from 10 to 100 Megabits, however, a change

in the weighting factors used could alter this conclusion. An

additional advantage to the paralleling approach to obtain high

speeds is that it is very easy to include provisions for fault

isolation and maintenance. For example, suppose that a 40 mega­

bit decoder were desired. This could be provided by building

four TTL 10 megabit decoders. If a fifth decoder were provided,

then fault isolation could be obtained by switching the spare

decoder in parallel with each of the other decoders, and comparing

the output. When a discrepancy is found, the fault isolation

-118-

circuitry would then automatically determine which of the five

decoders is defective and automatically switch the spare decoder

into its place. The maintenance of the faulty decoder would then

take place while the remaining four decoders continue to operate

on line.

In this section we have determined the relationship between

data rate and cost. In the following sections we will determine

the relationship between cost and other decoding parameters such

as code rate, constraint length, and quantization level.

2.4.8.2 Cost Vs. Constraint Length. In the previous sec­

tion we have shown that the relationship between cost and data

rate is approximately linear. The relationship between cost and

constraint length is, however, exponential. As the constraint

length increases by one, the number of states required doubles.

This will require doubling the total number of arithmetic units

and more than doubling the decision memory. The decision memory

will double in one dimension and increase linearly in the other

dimension. Also the number of bits required to represent the

state metrics will increase as the constraint length increases,

since the distance of the code increases, thereby increasing the

spread between the best and worst state metrics. Overall the

decoder complexity relative to the K=4 design goes approximately

as

-119-

The cost relative to the K=4 decoder design will be then K • 2K- 6 •

For example, a K=6 decoder will be approximately 6 times as

complex and therefore 6 times as expensive as a K=4 decoder.

2.4.8.3 Cost vs. Code Rate. Changing the denominator of the

code rate has its primary effect on the input section of a Viterbi

decoder. In general there are 2d branch metrics to be computed

where d is the denominator of the rate. Thus the input section

grows exponentially with the denominator of the rate. The size

of the largest branch metric grows linearly with d. This causes

an additional increase in complexity as a function of ln
2
d. This

occurs both in the input section and the arithmetic section since

larger branch metrics require larger state metrics. The com­

plexity multiplying factor relative to rate 1/2 is approximately

46 + 2d ln2~

50

The numerator of the rate affects decoder complexity in a

rather complicated way. The number of states is an exponentially

decreasing function of the numerator of the rate, thus decreasing

the state metric storage requirement. However, the complexity of

the arithmetic operations increases exponentially with the

numerator of the rate. Thus, for rate 2/4, we do twice as com­

plex an arithmetic operation on half as many quantities as we do

for rate 1/2. The net result is no change in arithmetic hardware

for a fully parallel decoder. The decision memory decreases

exponentially with increasing numerator. The overall relative

-120-

complexity multiplying factor is approximately .6 + .8 x 2-n

where n is the numerator of the rate. This factor is relative to

the rate 1/2, Q=8, K=4, TTL decoder.

2.4.8.4 Cost vs. Quantization. The number of quantizer

levels is linearly related to the size of the branch and state

metrics. Thus, the complexity is a function of ln2Q. The com­

plexity relative to the Q=8 design is given by

3 + ln
2

Q

6

-121-

REFERENCES

SECTION 2

1. R. McEliece,and H. C. Rumsey, "Capabilities of Convolu­
tional Codes," Jet Propulsion Laboratory, SPS 37-50,
Vol. III, 1968.

2. J. A. Heller, "Short Constraint Length Convolutional Codes,"
Jet Propulsion Laboratory, SPS 37-54, Vol. "III, 1968.

3. J. P. Odenwalder, Optimal Decoding of Convolutional Codes,
Ph.D. Thesis, System Science Department, UCLA, Los
Angeles, 1970.

4. J. M. Wozencraft and I. M. Jacobs, Principles of Communication
Engineering, Wiley, New York, 1965.

5. A. J. Viterbi, "The State-Diagram Approach to Optimal Decoding
and Performance Analysis for Memoryless Channels,"
Jet Propulsion Laboratory SPS 37-58, Vol. III, 1969.

6. A. J. Viterbi, "Convolutional Codes and Their Performance
in Communication Systems," LINKABIT CORPORATION,
January 1970.

7. W. W. Petersion, Error Correcting Codes, M.I.T. Press,
Massachusetts - Wiley, New York, 1961.

8. A. J. Viterbi, "Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm," IEEE
Transactions on Information Theory, Vol. IT-13, Number
2, April 1967.

9. J. L. Massey and M. K. Sain, "Inverse. of Linear Sequential
Circuits," IEEE Transactions on Computers, Vol. C-17,
April 1968.

10. LINKABIT Corporation, "Unsolicited Proposal - A Very High
Speed Viterbi Decoder for Convolutional Codes "

b
. ,

Su m~tted to the U.S. Army Satellite Communications
Agency, Fort Monmouth, N.J., September 1969.

-122-

3.0 SEQUENTIAL DECODING

3.1 Background. Sequential decoding is a procedure for

systematically searching through a code tree, using received

information as a guide, with the objective of eventually tracing

out the path representing the actually transmitted information

sequence.

Most sequential decoder implementations to data have used

some modification of the Fano algorithm. Briefly, the operation

of the Fano algorithm is as follows. Starting at the first node

in the code tree, a path is traced through the tree by moving

ahead one node at a time. At each node encountered, the decoder

evaluates a branch metric for each branch stemming from that node.

The branch metric is a function of the transition probabilities

between the received symbols and the transmitted symbols along

the hypothesized branch.

The decoder will initially choose the branch with the largest

metric value (corresponding to the closest fit to the received

symbols). The metric is then added to a path metric, which is

the running sum of branch metrics along the path presently being

followed. Along with the path metric, the decoder keeps track of

the running threshold T. As long as the path metric keeps increas­

ing, the decoder assumes it is on the right track and keeps moving

forward, raising T to lie within a fixed constant, ~, below the

path metric. If, on the other hand, the path metric decreases at

a particular node, such that it becomes less than T, the decoder

-123-

assumes it may have made a mistake and backs up. It will then

systematically search nodes at which the path metric is greater

than T until it finds a path that starts increasing again, or

until it exhausts all nodes lying above T. At this point it is

forced to lower T, and search again. Eventually it will find a

path that appears to have an increasing path metric.

Eventually, the decoder will penetrate sufficiently deep

into the tree, that with high probability the first few branches

followed are correct, and will not be returned to by the decoder

in a backward search. At this point, the information bits corre­

sponding to these branches can be considered decoded and the de­

coder may erase received data pertaining to these branches.

A major problem with sequential decoding is the variability

in the number of computations required per information digit de­

coded. The number of computations is a measure of the time re­

quired to decode, for a fixed decoding speed in computations per

second. A computation is defined, for the time beingf-as either

looking forward or backward one branch and evaluating and testing

the metric involved. The cumulative distribution of computations

performed per digit decoded, c, has been upper and lower bounded

for the discrete memory less channel by a Pareto distribution

(Ref. 1, 2), that is

Pr[c>L] r-J k L-a , L»l, (3.1.1)

-124-

where k is a constant and a is determined by the relationship

E (a)
R = ~._o __ __

a (3.l.2)

where R is the code rate.

Here E (a) is a convex function of a which is determined by the o

channel transition probabilities, which are in turn a function of

Eb/NO. This function has the properties that Eo(O} = 0, and

Eo(l) = Rcomp. Therefore, we can see from Eq. (3.1.2) that if

R=Rcomp ' a=l. Rcomp is the so called computational cutoff rate

of sequential decoding.

Because a>l for R<R , the average number of computations comp

per node decoded is finite, but for rates greater than Ro' this

average is unbounded. Actually, for finite constraint lengths,

the computation distribution drops off faster than Pareto for

very large L. Thus, the average computation remains finite but

large for R>Ro •

Because of the variability of the amount of computation

required, there is a non-zero probability that incoming received

data will fill up the decoder memory faster than old outgoing

data can be processed. If the decoder tries to search a node

for which received data has passed out of buffer memory, an oVer-

flow is said to occur. When an overflow occurs, the decoder must

have some mechanism for moving forward to new data, reacquiring

code synchronization and starting to decode again. There are

presently two techniques for doing this. One involves segmenting

-125-

the data into blocks. After each block, a fixed constraint

length long sequence is inserted. Should the decoder buffer over­

flow while decoding a given block, it can simply give up decoding

that block and jump to the beginning of the next block to resume

decoding. Code sync is immediately attained through knowledge of

the fixed data sequence preceeding a block. This technique has

the disadvantage that it requires an initial search to acquire

block sync, and there is a loss in efficiency due to the insertion

of known sync bits into the data stream.

Another overflow recovery technique does away with data block­

ing (Ref. 3). When an overflow occurs, the decoder jumps ahead to

new data, and guesses the coder state at that point based upon

received data. This technique is described in detail ina subse-

quent section.

The probability of overflow for sequential decoding can be

related to the distribution of computations per bit only in an

approximate manner. Suppose the decoder has a speed factor of ~,

that is, it is able to perform ~ computations per branch worth of

data received. Suppose also, a decoder buffer capable of storing

B branches worth of received data is used. with an initially empty

buffer, the decoder may perform ~B computations in progressing

one bit deeper before an overflow occurs. Thus, from Eq. (3.1.1),

the initial overflow probability is

= (3.1.3)

-126-

Since overflows can occur through the concatenation of several

shorter searches, one intuitively expects that the actual overflow

probability would be larger than (3.1.3). However, as long as ~

is somewhat larger than the average number of computations per

bit, simulations have shown (3.1.3) to be remarkably accurate.

Of course, when an overflow does occur, many bits will be lost,

whatever the restarting method. Thus, the rate of bits lost due

to overflow will be

= LP
o

(3.1.4)

When ~ is close to the average computations per bit, as is

the case in a high data rate sequential decoder, simulation is the

only reliable means of determining overflow frequency.

The error probability with sequential decoding can be made

as small as desired by increasing code constraint length. Long

constraint lengths are practical for sequential decoding because

decoder complexity is only a weak function of code length, unlike

Viterbi decoding.

It has been shown (Ref. 4) that for systematic codes, the

undetectable error probability can be upper bounded by

Pee) < k~ 2-K(1-R)Rcomp/R (3.1.5)

for R<R , where K is the code constraint lenqth. The actual comp .

achievement of this rate of decrease in Pee) with K is dependent

on the choice of branch metrics for the decoder. This will be

-127-

in
fo

rm
a
ti

o
n

b

i
t
s
-

I f-
'

N

0
0

I

e
n

c
o

d
e
r

i E

e
i

I I I I I
e

P
I I 12

'

c
h

a
n

n
e
l

d
e
c
o

d
e
r

F
ig

.
3

.2
.1

C

o
m

m
u

n
ic

at
io

n

S
y

st
e
m

W

it
h

S

y
n

d
ro

m
e

D
e
c
o

d
e
r

d
e
c
o

d
e
r

discussed in section 3.2.

3.2 Hard Decision Decoder. This section will deal in part

with the interesting Fano algorithm modifications that offer po­

tential advantages for a high speed hard decision sequential de­

coder. Simulations will be reported for decoders using these

modifications. Non-real time simulations have provided information

on distributions of computations and undetected error rate. Real

time simulations, using simulated decoder speed factors and buffer

sizes, determine the overflow behavior of the decoder.

Also considered are code synchronization, code selection,

and data quality information.

3.2.1 Syndrome Sequential Decoder. We will restrict our

attention to systematic rate 1/2 convolutional codes with hard

receiver quantization, for the sake of example. The technique

generalizes easily to non-systematic codes, other rates, and even

soft decisions.

For a rate 1/2 systematic code, a received information bit

and a received parity bit are input to the decoder at each bit

time. To form the code syndrome, the received information bits

are passed through a replica of the encoder and the generated

parity bits are exc1usive-ORed with the received parity bits.

Fig. 3.2.1 shows a representation of the encoder, channel, and

syndrome calculator for a K=3 code. The noisy channel is mod­

elled by the mod-2 addition of occasional errors (ones) to the

encoded information and parity streams.

-129-

Clearly, in the absence of noise, the syndrome bits input to

the decoder are all zero regardless of the information sequence.

This is because the parity bits generated in the syndrome calcu­

lator, e~~, and the received parity bits, e~, are both equal to

the actual parity bits, e. Thus, since the code and the channel

action are linear, the syndrome is a function only of the noise

sequences. We can assume, therefore, without loss of generality,

that the all zeros code sequence is transmitted.

This being the case, note that a single error in the informa­

tion stream manifests itself in Fig. 3.2.1 as three consecutive

lis in the syndrome. In general, an information error causes the

code generator to be exclusive-ORed into the syndrome. Each pari­

ty error, on the other hand, causes a single 1 to be exclusive­

ORed into the syndrome.

It can be shown that putting the received data into the form

of a syndrome is information lossless. A decoder operating on s

can perform as well as one operating on i~ and e;. The function

of a decoder operating on a syndrome sequence is to determine the

most likely information and parity error sequences that could have

resulted in that particular syndrome sequence. For a binary sym­

metric channel, this corresponds to determining the minimum weight

error sequence consistent with the syndrome. The decoder forces

the syndrome sequence to zero, by exclusive-ORing a "1" where it

believes a parity error occurred, and the code generator where it

believes an information error occurred.

-130-

A syndrome sequential decoder keeps track of a metric as it

"zeros" the syndrome. Each time it hypothesizes the occurrence

of an error, the metric decreases. When it hypothesizes no error,

the metric increases. If the decoder finds it has to correct too

many errors in forcing the syndrome to zero, it will back up and

change hypothesized information error decisions. Note that each

information error decision affects the syndrome over a full con­

straint length.

Functionally, the syndrome decoder can be viewed as a box

whose input is a syndrome sequence, and whose eventual output is

an information error location sequence. This sequence is then

used to correct errors in the received information sequence to

form the decoder output.

3.2.2 Algorithm Modifications

3.2.2.1 Guess and Restart Overflow Strategy. The guess and

restart technique was developed and successfully implemented in a

sequential decoder previously (Ref. 3). When a buffer overflow

occurs in a sequential decoder due to a long search, the decoder

must jump forward in the syndrome stream and resume decoding. If

the data is not blocked, the decoder does not have definite know­

ledge of the coder state when it starts decoding again. What is

required is knowledge of one constraint length of information bits

at the point decoding is resumed.

The best "guess" that can be made is that no information errors

have occurred in the vicinity of the restart point. This "guess"

-131-

can be implemented by assuming a zero syndrome when restarting. If

information errors actually occurred, the decoder will likely over-

flow again, requiring another restart. If the guess was correct-­

an if the succeeding data is not too noisy--the decoder will work

its way through the buffer and resume normal operation.

The decoder skips over a segment of the syndrome in restarting

after an overflow. The information error decisions are set equal

to zero over this segment. Thus when an overflow occurs, the de­

coder output corresponding to the unprocessed data will be the

raw, uncorrected received information bits. These bits have

errors occurring at the channel error rate.

Simulations using guess and restart are presented in section

3.2.4.

3.2.2.2 Quick Threshold Loosening. A sequential decoder op-

erating below R (Eb/NO greater than 4.6 db in the case of a comp

rate 1/2 code with hard quantization) spends much of its time

plowing forward on the correct path, or in short searches, correct­

ing single or double errors. Long searches contribute less and

less to the average computation per bit as Eb/NO goes up. Reduc­

tion of the time consumed just "plowing forward" or "keeping up

with the data" is treated in section 5.0 of this report. Here

we are concerned with reducing the number of short searches re-,

quired. The technique of quick threshold loosening achieves this

end for a hard quantized, rate 1/2 decoder.

A single error in the received data stream is usually suffi-

cient to cause the path metric to fall below threshold and initiate

a backwards search. In general, the decoder must search backward

-132-

at this point, rather than lowering the threshold and resuming

the forward search. This is because, in backing up, the decoder

may find another path that it can follow without lowering the

threshold. Had the decoder lowered the threshold when the metric

first violated it, the possibility exists of getting on a path for

which the algorithm will not allow further threshold tightening.

Thus, the threshold cannot be lowered unless all accessable paths

above the threshold eventually lead below it.

For a rate 1/2 hard quantized decoder there are three pos­

sible branch Metrics. The first corresponds to two matches between

branch code symbols and received data. The second is for one

match and one mismatch, and the third for two mismatches. Fur-

thermore, good codes always have the property that branches stem-

ming from the same node have complementary code symbols on them.

Suppose the symbol match metric is equal to 1, and the mismatch

metric is -a (the optimum range for a is from about 9 to 11).

This means that either one branch leaving a node has metric +2

and the other -2a, or they both have metric l-a. Fig. 3.2.2.1

shows the way in which a typical short search is initiated due to

a single error.

When node A is reached for the first time, the threshold is

tightened to the value T. The decoder then proceeds on to node
1

B, C and D. Looking forward from 0 the decoder sees a tie vote

(branch metrics of l-a on both branches). Both path metrics at

nodes F and E are below T. This would normally initiate a back-
1

search thru nodes C, B and A, requiring tests-of metrics at nodes

-133-

't~jl

ttl

'ti-t. 4' ,

•
•
•

•

•
,

,

•
,

Piq. 3.2.2.1 Typical Sequential Decoder
Search Due\to a Sinqle Error. .

-134-

G, H and I. Then at node A the threshold would be lowered to T l -6

and the decoder would step forward again thru B, C, D and then E or

Fo In this situation the decoder could have avoided the back search

by lowering the threshold to T l -6 when threshold Tl was first vio­

lated in looking forward from node D. This can be done because

there is no other path remaining above Tl which can be followed.

This "instant" threshold lowering can be done if 6 ~ a-I. This

restriction insures that a threshold violation on the path being

followed determines that no other path remains above threshold.

Quick threshold loosening is allowed only when the threshold has

been previously tightened to its present value (it is tightened

to Tl at node A in Fig. 3.2.2.l). If the threshold has been

previously loosened all bets are off, since now a backsearch after

threshold violation is necessary to insure non-existence of another

path that remains above the present threshold.

The quick threshold lowering scheme is easy to hardware imple-

ment.* It only requires a one bit flag indicating whether or not

the threshold had been previously tightened, and logic to prevent

entering backsearch mode when a "quick threshold loosening" is

possible.

A simple modification of the "quick threshold loosening"

scheme allows decoding past isolated pairs of error without initia-

ting a backsearch to lower the threshold.

Fig. 3.2.2.2 shm-ls a section of the code metric tree near a

pair of symbol errors. The correct path segment consists of

* G.D. Forney informed us this form of threshold loosening was
implemented in Codex's 5 Mbps sequential decoder (Ref. 3).

-135-

o·

c

. /~1.

.-v~ -~-- -- -

/
+

~./
2~ :3 Y V V / v 1--t--

~~. ? ~

-r
I

A I B C 0 E F G 11 I
i ..

Piq. 3.2.2.2 Tree Section in the Vicinity
of a Pair of Channel Errors.

-136-

..

\.-~

8

branches from nodes 0 to B. Symbol errors have occurred at branch

levels F and H. If the initial two bits of the code generator are

11, then not only do 2 branches stemming from a common node have

complementary symbols, but the four branches stemming from these

nodes must contain all four combinations of the two code symbols.

This insures that a tie vote at a node (such as node 1 in Fig.

3.2.2.2) must be followed by another tie vote at one node (node 2),

and by a complete match and a complete mismatch stemming from the

other node (node 3). Therefore, when an error occurs, the metrics

on all paths except one, must fall through at least two threshold

levels.

Suppose that the threshold has been tightened twice in a row,

as is the case in going from node 0 to node 1. The decoder may

go to node 3 and lower the threshold to T -~, since there are
1

no other unsearched paths in the T to T +~ interval. At node 4
1 1

the decoder faces another tie vote that takes the metric below

the present threshold, T -~. Now because of the properties of
I

codes with generators beginning with 11, there cannot be any

unsearched path segments in the range T -~ to T. Thus the
1 1

threshold may be lowered again, and the decoder may continue on

to nodes 7 and B.

This modification of "quick threshold loosening" is also

simple to implement. An up-down counter which counts from 0 to

2 is needed. Starting at "0", each time the threshold is tight-

ened the count is incremented by 1, saturating at 2. When the

threshold is violated in looking forward, it may be immediately

-137-

loosened if the count is positive. If so, the count is decrement

by 1. When the count is zero, a back search must be initiated. As

in ordinary "quick threshold loosening", we must have 6 = a-l.

When stepping forward to a node in the case of a tie vote, care

must be taken to not step first to the node having another tie

vote following it (node 2 in Fig. 3.2.2.2). This requires the

ability to look at one syndrome bit into the future.

These "quick threshold loosening" schemes have been simulated

to determine their effectiveness in reducing the number of short

searches. Fortunately the value 6 = a-l is the near optimum

choice of threshold spacing. These simulations, along with almost

all of those reported here, use code reported in Ref. 3. Factors

influencing the choice of code are discussed in section 3.2.3.

Fig. 3.2.2.3 shows the distribution of computations per bit de­

coder with

1) The unmodified Fano algorithm

2) "Quick threshold loosening"

3) Modified "quick threshold loosening".

These simulations were performed with p = .02. Included in the

figure is the average number of computations per bit, 0, for each

run. Both quick threshold loosening schemes clearly eliminate

searches with computations below about 20 to 40.

The modified "quick threshold loosening" is somewhat more

effective than the loosening scheme described first. This is be­

cause it is capable of eliminating searches due to more error

patterns. Fig. 3.2.2.4 shows a comparison of the computation

-138-

10-1r---------------------~---------------------r--------------------~

10-1t

Quick
Threshold
Loosening

~=1.35

-------Ol------~~ __

modified
quick threshold

ioosening
c'"'1.17

Fano Algorithm
c-l.60

~ ________________ ~ __________________ L_ __ _4~----------~

1 10 L

Fig. 3.2.2.3 Distribution of Computations per Bit Decoded
for Standard Fano Algorithm and "Quick Threshold Loos~
ening" Sequential Decoders. Threshold Spacing - 8, a=9,
Channel Error Rate - .02.

-139-

1000

1

p-.035

Fan~ Algorithm

- 3.38

Modified
"Ouick Threshold

Loosening"

C - 2.44

• Fig. 3.2.2.4 Distribution of Computation
Comparison for the Standard Fano Algorithm
and the Modified "Ouick Threshold Loosening"
Sequential Decoders. 6-8, a-9, -and p-.035.

distributions for the standard Fano algorithm and modified quick

threshold loosening decoders for p = .035.

Neither scheme substantially affects the tails of the compu­

tation distribution. This is because the long searches typically

involve lowering the threshold by more than one or two levels, at

which point in the search quick threshold loosening is disabled.

Because of the simplicity and effectiveness of the scheme,

quick threshold loosening was used in many of the simulations,

including all of the real time simulations that will be described.

3.2.2.3 Look Ahead Sequential Decoding. Look Ahead Sequen­

tial Decoding is another technique which attempts to improve the

distribution of decoding computations. The standard Fano syndrome

sequential decoder examines and acts upon the syndrome one bit at

a time. If a path being followed is destined to fall below the

current threshold, the decoder must follow the path until it actu­

ally does fall below the threshold before backing up and changing

direction.

With look ahead decoding, the decoder examines N syndrome

bits at a time. This is equivalent to looking forward N branches

into the tree from the present branch. Using a table look-up

procedure, the decoder determines if there is any path N branches

ahead that satisfies the current threshold. If such a path exists,

the decoder is allm'led to step forward on a next branch if that

can be done without violating the threshold. If no path exists N

branches ahead that satisfies the threshold, then it is useless

to allow the decoder to proceed forward. In that case, the look

-141-

ahead decoder initiates a backsearch, regardless of whether or

not the next branch path metric satisfies T.

This scheme clearly does not do anything the standard Fano

algorithm does not eventually do; however, it has the potential

for doing considerable less. It reduces the depth to which a

path must be searched before it is rejected.

Fig. 3.2.2.5 compares the distribution of computations for

sequential decoding with and without look ahead, with a look a­

head parameter of N = 6 branches. Use of the look ahead decoder

with N = 6 results in an improvement in the computational dis­

tribution of about a factor of two.

From this figure, it is apparent that while the distribution

is lower, the Pareto exponent, or the slope of the curves, is the

same. It can be shown analytically that no sequential decoding

algorithm which "looks ahead" a finite number of branches can

change the asymptotic slope of the computation distribution curve.

The most that can be hoped for is a lowering of the constant in

front of the distribution (k in Eq. 3.1.1).

It is interesting to note that the effect of a scheme like

looking ahead, which reduces the frequency of long searches, will

be to reduce initial buffer overflow probability; while a scheme

like "quick threshold loosening" will allow a full buffer to

empty more quickly - allowing for a smaller decoder speed factor.

Practically speaking, the look-ahead mechanism is not as

simple to implement as "quick threshold loosening", especially in

very high speed decoders. The syndrome table look-up is a complex

-142-

_"l.-
/0 ~--__ r-----~-----'----------~------~----------------~

. -)
/0

10'

"LoOK IHIE. A7> 't

/o~~----------------~----------------~----------------~
/0 /07.. /0'3

Fig. 3.2.2.5

L

Distribution of Computations per Bit Decoded
For Standard and "Look-Ahead" Fano Algorithm
Sequential Decoders. Threshold Spacing • 10,
a • 9, Channel Error Rate • .039.

-143-

logical function which grows more complex exponentially with N.

For N larger than about 6 it would have to be implemented using a

read-only memory. Implementation would tend to slow down the

decoder computation rate, which partially counteracts the improved

computation distribution. Also, although the improvement in the

distribution looks substantial, it only represents an improvement

of about 0.1 db over the standard algorithm at points in the dis­

tribution which affect overflow probability with the real-time

decoder parameters that were studied. For these reasons, look­

ahead decoding was not used in the real-time decoder simulation

reported in section 3.2.4.

3.2.2.4 Sequential Decoding with Sideways Looks. When a

sequential decoder is stepping back to a node in the code tree,

and the branch it is stepping through is a "best branch", its

next step will be to look forward along the next best branch. In

practice looking at the next best branch can be accomplished very

conveniently before stepping back. If this node satisfies the

threshold, and if the previous node also does, then a "step side­

ways· can be made directly to the next best node. Thus, what was

two computations becomes one computation. Sideways looks will be

counted as one rather than two computations in the simulation which

follows.

3.2.3 Decoder Undetected Error and Computational Performance.

The sequential decoder simulations described thus far, and the ones

presented in this section are for decoders operating in a non-real

-144-

time mode. That is, received data is generated as the decoder

needs it. The performance data gathered is, therefore, that for

a decoder in which buffer overflows do not occur. Real time de­

coder behavior, with a simulated buffer, is reported in the next

section.

3.2.3.1 Code Selection. Choosing codes is not as critical

for sequential as it is for Viterbi decoding. Decoder complexity

is not a strong function of code constraint length: so, the unde­

tected error performance of a code can be improved by increasing

K rather than trying to optimize a code for a given value of K.

Still there are several reasons for having as good a code as

possible.

1) The guess and restart overflow technique performance

degrades with increasing constraint length. This is

because a constraint length worth of data must be

correctly "guessed" to restart decoding.

2) The constant, k, in the computational distribution

is somewhat sensitive to the code. Good code distance

properties will result in value of k=l or less.

3) The encoder replicas in the decoder do grow linearly

with K, resulting in some additional cost and complexity.

It has been found through simulation that of the known codes,

the various truncations of the rate 1/2 systematic codes due to

Lin and Lyne (Ref. 7), and Bussgang and Forney (Ref. 3,5) proved

best in undetected error rate, and distribution of computations.

-145-

Forney's extensions of Bussgang's code seem to have the

slight advantage. Since this code has already been used in two

high speed sequential decoder implementations we have concentrated

our efforts on it. A search for more optimal codes is probably

not worthwi1e because

1) The number of codes of constraint length 40 or thereabout

is huge.

2) The truncations of Forney's code have minimum free dis­

tances close to the upper bound on d
f

•

Forney's code, to constraint length 45 has the generator

715473701317465 in octal digits. The first two binary digits in

the generator are 11, satisfying the requirement of the modified

"quick threshold loosening" scheme. All 'simulations in this

report use this code generator or its shorter constraint length

truncations.

3.2.3.2 Decoder Parameters. Two decoder parameters which

must be selected are the threshold spacing ~, and the symbol mis-

match metric, -a.

Simulations have shown (Ref. 3) that decoder computational

performance is not extremely sensitive to~. A broad minimum in

c, the per bit average computation, exists centered about ~ = 10.

This value of ~ is convenient, as it turns out, in that it meets

the requirements of the "quick threshold loosening" scheme.

Whereas computational performance is not strongly affected by

~, it is very sensitive to the symbol metric ratio l/-a. Here 1

-146-

is the metric assigned to a match in code and received symbols,

and -a is the metric assigned to a mismatch. When operating at

R=Rcomp (corresponding to p = .0447 for rate 1/2), the value of a

that maximizes the computational distribution Pareto exponent is

a = 9.1. Any different value of a will decrease the Pareto expo-

nent. However, as p decreases, R increases, and the optimal
comp

value of a increases. At p = .035, the best choice for a is near

10. From an implementational point of view, by far the simplest

values of a to use are odd integers. Therefore, the choice seems

to be between 9 and 11.

It has been shown (Ref. 4) that for a systematic code, when

a is chosen to optimize the distribution of computation, the error

probability does not go down as rapidly with K as shown in the

bound in Eq. 3.1.5. This means that significantly larger values

of K are needed than would be necessary for a larger a. Our sim-

ulations, which are in substantial agreement with those in Ref. 3,

indicate, for instance, that for p = .0447 (R comp = 1/2), about

the same bit error rate is attained with K = 45 and a = 9 as with

K = 37 and a = 11. That error rate was just above 10- 5
• Other

simulations indicate that the behavior of the error rate with K

is consistant with the bound of Eq. 3.1.5 when a = 11. Also,

since the optimum a is closer to 11 than 9 when p is greater than

.035 (,,,,hich is really the range of interest for high data rate,

low error rate operation), we have elected to concentrate on simu-

lation with a metric ratio of 1/-11.

-147-

3.2.3.3 The Distribution of Decoding Computations. Before

proceeding to present the computational statistics gathered through

simulation, we redefine a computation to be consistant with what

happens in a hardware computational cycle. For this purpose it is

more accurate to define a computation as having occurred when the

decoder steps rather than looks forwards, backward or sideways.

This eliminates counting as a computation: for instance, a look for-

ward by the decoder that does not result in a step forward.

Using this new definitation Fig. 3.2.3.1 present the distri­

bution of computations per bit decoded for a range of channel

error rates, p. For each value of p, 8 x 10 6 bits were decoded.

The straight lines are best fits to a section of the tail of the

distributions where significant data exists. The negative of the

slopes of these lines are the measured exponents of the assumed

Pareto distribution. As expected, the fit to the Pareto distri-

bution is excellent. Table 3.2.3.1 shows the measured Pareto

exponent am vs. p. Also included is the theoretical Pareto expo­

nent, aT' which assumes the use of the optimum metric ratio, 1/-a.

Clearly, there is some degradation in the exponent for the higher

values of p. (corresponding to operation near Rcomp); however,

for p ~ .035, the measured and theoretical values are close. This

indicates that the optimum range for a is broad when p is low.

3.2.3.4 Measured Undetected Error Rates. Table 3.2.3.2

shows the measured number of bit errors vs. p for the constraint

length K = 33, 37, and 41 codes. In each case 8 x 10 6 bits were

-148-

o

c

o

10

p-.035 "

p-.030

L

Fig. 3.2.3.1 Sequential Decoding .Distribution
of Computations for Several Channel Error
Rates, p. Runs are all of 8x10' Bits. K-41,
~-10, Metric Ratio is 1/-11.. .

-149-'

"10"

Eb/No -p aT a c m

4.7 db .043 1.05 0.97 7.08

4.9 db .039 1.16 1.12 3.09

5.1 db .035 1.28 1.29 2.03

5.4 db .030 1.46 1.44 1.50

5.8 db .025 1.67 1.66 1.25

Table 3.2.3.1 Measured and Theore­
tical Computational Distribution
Paramet~rs. K=37, ~=10, Metric
Ratio is 1/-11.

-150-

P K

33 37 41

.043 390 205 79

.039 128 120 0

.035 37 0 0

.030 25 0 0

.025 0 0 0

~ab1e 3.2.3.2 Undetected Bit Errors
vs. p and K, For Decoder Runs
of 8x10' Bits Each.

-151-

decoded. Only a small number of error events, if any, have

occurred at the smaller values of p, making this data rather insig­

nificant. At p = .043, however, the error probability is

fairly close to 2-K/2, as the upper bound predicts.

3.2.4 Real Time Sequential Decoder Simulation. In the real

time sequential decoder simulation program, the decoder buffer

waiting line is simulated by a counter. The counter is incre-

mented every ~ decoder computations to simulate the periodic

arrival of received data. The counter is decremented when a new

node level is reached by the decoder. Thus, the count represents

the number of branches of received data in the buffer waiting to

be decoded. When the count reaches a number equal to the simulated

buffer size, an overflow is declared. At this time the guess and

restart routine attempts to jump forward about one constraint

length, and resume decoding.

In a high data rate decoder, where the speed factor ~ is

only slightly larger than c (the average number of computations

per bit), the overflow probability will not obey the heuris­

tically derived formula of Eq. 3.1.3. Also, when an overflow

does occur, it will take many resync trials to successfully start

decoding again. This is true because even when the correct

syndrome guess is made, the decoder speed advantage is so slight

and the buffer is so full, that the decoder will often overflow

again.

Fig. 3.2.4.1 shows measured decoder composite output error

probability vs. constraint length for a decoder with a buffer size

-152-

CJ
.j..l

/J.
1-1 5xlO- 5

o
1-1
1-1
~

.j..l . .-(
a:l

4xlO- S

2xtO- 5

3 35

Fig. 3.2.4.1 Decoder Composite Output
Error Rate vs. K. p=.035: u=2.5
Buffer Size, B=64xl0 3 • Each Point
Represents 75xl0 6 Bits Decoded.
Measured c = 2.l.in All Cases.

4 K 4 5

-153-

of 64 x 10 3 bits, a speed factor, ~, of 2.5 and a channel error

rate p = .035. Here composite output error rate refers to errors

due to overflows, as well as undetected errors. In all cases the

average number computations per bit was about 2.1. This figure

is somewhat surprising in that error rate goes up with constraint

length. This peculiar behavior can be explained as follows. With

the longer constraint lengths, errors due to overflows completely

dominate the composite error rate. At a constraint length of 45,

the average number of related overflow events following an initial

overflow is about 16. Each overflow causes about 300 raw undecoded

information bits to be output by the decoder. Since the error rate

on these undecoded bits is p = .035, each overflow results in about

10 output errors. Since overflows occur in bursts of an average

of 17 apiece, an overflow burst typically results in 170 output

errors.

Shortening the constraint length will cause undetected errors

to take the place of some of the overflows. The average number of

bit errors in an undetected error event is far less than 170.

Thus, decreasing the constraint length has the net effect of

improving the composite error rate. Of course, after a point

undetected errors will dominate, and decreasing K further will

increase the error rate. This point, however, has not been

reached in going down to constraint length 30, as shown in the

figure.

The reason that about 300 bits are output in uncorrected

form in a overflow, is as follows. When an overflow occurs,

-154-

error position decisions up to 256 branches back from the point

of deepest decoder penetration are considered unreliable, and are

erased. The decoder then jumps over about a constraint length

worth of untouched data, for a net of about 300 bits. The reason

that 256 decisions are erased is that, in a long search, the de-

coder may back up and change decisions as many as 200 nodes back

or more. The most recent nodes must therefore not be considered

finally decoded until the decoder has progressed at least 200

nodes deeper into the tree.

Fig. 3~2.4.2 shows composite bit error rate, in the neighbor­

hood of 10- 5
, vs. p for two decoder speed factors, ~ = 2.5 and

~ = 1.5. Clearly the curves are extremely steep. Operation at a

speed factor of 1.5 with a bit error rate of 10- 5 requires a de-

crease in p of only about .006 compared with operating at the same

bit error rate with a speed factor of 2.5.

'I'his comparison can be made even more dramatic if it is put

in terms of data rate and Eb/No. Suppose we have a sequential

decoder which is capable of 100 mega-computations per second. At

a data rate of 40 Mbps, the speed factor is 2.5. A composite bit

error rate of 10- 5 is achievable with a p of about .033 or an

Eb IN 0 = 5 e 2 db e

Likewise the decoder can operate at a data rate of 66 Mbps

with a p of about .027, or Eb/NO = 5.7 db. The decoder data rate

can be increased by over 50%, with the same output error rate, at

the expense of only about 0.5 db!

-155-

(!J
~

f;l
1-1
o
1-1
1-1

"" ~
• .-1

4x10- S

2x10- S

al
9x10- 6

fL=2.S-

Fig. 3.2.4.2 Composite Bit Error nate vs.
p for Speed Factors, U=2.5, and·u=l.S.
K=41 Code, Syndrome Buffer Size -
64x10 3 bits •

.35 • 33 .31 .29
p

-156-

.27 • 5

Clearly there is a continuity of data rates and Eb/No that

correspond to a composite bit error rate of 10- 5 • Fig. 3.2.4.3

shows a curve of such data rates vs. gb/No. The curve is an

interpolation and extrapolation of the two points obtained

from Fig. 3.2.4.2.

3.2.5 Erasures vs. Undetected Errors. In some applications

erasures are not nearly as bad as undetected errors. If this is

the case, output error can easily be decreased by orders of

magnitUde by

1) Increasing K until overflow errors dominate

2) When an overflow occurs declare the 300 or so bits

affected by the overflow as erased.

This results in a bit erasure rate of about IIp times the

original composite error rate. However, undetected error rate

can be as small as desired, depending on K.

3.2.6 Systematic vs. Nonsystematic Codes. All of the

simulations reported were run using systematic codes. Systematic

codes have the advantage over nonsystematic codes that in the

event of decoder failure, the raw information bits are available

directly as back-up. This advantage has been obviated, to a

degree, by the invention of the "quick-look" nonsystematic codes

(Ref. 6). Use of these codes allows for simple information bit

generation without a decoder. The resulting information stream

does have an error rate of about 2p, however. There are two main

advantages in using nonsystematic codes

-157-

5.7

5.6

5.5

.0
'0

c: 5.4
.~

<>

z
"-.a
til

5.3

5.2

30 40

I

Fig. 3.2.4.3 Eb/No Required For 10- 5

Composite Bit Error Rate as a
Function of Data Rate. Decoder
Speed is 100 megacomputations/
sec; K=41; 64x103 Bit Syndrome
Buffer.

50 60 70
Data Rate (Mbps)

-158-

1) A constraint length of only about half the systematic

code constraint length is required for the same detec­

ted error rate performance, and

2) The optimum metric ratio, on the basis of the distribu­

tion of computations, also results in the achievement

of the optimum undetected error probability exponent.

This is unlike the case for systematic codes, ,·,here a

larger value of "a" is required for optimal error

performance.

The metric ratio advantage in 2) is completely lost at

p > .035. In this most interesting range, for high speed decoders,

the optimum metric ratio range is broad enough to allow joint

optimization of the computation distribution and error exponent

with systematic codes.

with the guess and restart overflow strategy, some form of

"guess" of undecoded information bits must be output ''lhen the

decoder overflows. Using a non-systematic code, these "guesses"

will be less reliable than with a systematic code.

For these reasons we have elected to concentrate on system­

atic codes.

-159-

3.2.7 Code Synchronization and Channel Reliability

Prediction. Code synchronization and channel reliability can be

handled in much the same manner as discussed in conjunction with

Viterbi decoding. Recall in that case that an up-down counter

was used, which counted up k on the occurrence of an error and

down by 1 at each bit time, never going below zero. Code sync

state is changed when the count exceeds a value T. In the

sequential decoder it is even simpler. The counter now counts

up by one when a threshold is loosened, and down by one when a

threshold is tightened. The skewing of the count is done auto­

matically by the skewed metric ratio. False alarm, and resync

rates are directly obtainable from the Efa and Ers curves in

Figs. 2.2.5.4 and 2.2.5.5.

3.3 Soft Decision Sequential Decoding

3.3.1 Syndrome Decoder. A syndrome sequential decoder can

be used to advantage with a soft decision decoder as well as a

hard decision decoder. The syndrome is formed us~ng only the hard

quantized information in the received data. Passed on to the

decoder, along with the syndrome bits, is 2 data quality bit per

branch for 4 level quantization, or 4 quality bits per branch for

8-level quantization.

The decoder uses the 3 or 5 bit per branch information to

generate information error decisions just as in the hard decision

case. Now, however, efficiency is improved by the availability

-160-

1.0

e .9
C5

• a

.7

.6

10%

F~q. 3.3.1 Sensitivity of Measured
Pareto Exponent to Deviations
From the Proper Metric Bias.
Eb/No=2. 0 db~ Rate 113. Code;
a-Level Quantization.

5% 0%·· -5%
% Chanqe in Hetric Bias

-10%

-161-

of the quality data. The error decisions are used to correct

the stored, raw, hard quantized received information bits.

3.3.2 Fano Algorithm Modifications. The guess and restart

overflow strategy is applicable to a soft decision decoder. Here

the "guesses" will be less frequently correct, because of the

lower required Eb/NO with a soft decision decoder.

Quick threshold loosening does not carryover to soft deci­

sions. The wider range of branch metrics makes it hard, if not

impossible, to take advantage of code and metric structure to

allow quick threshold loosening.

3.3.3 Sensitivity to Incorrect AGC. Unlike Viterbi decoding,

soft decision sequential decoding is extremely sensitive to im­

proper threshold level setting, due to inaccurate or drifting

AGC. This is illustrated in Fig. 3.3.1. In this figure, the

effect on the Pareto exponent of variations in the decoder metric

bias as a percentage of the maximum branch metric are shown.

Clearly, even these small changes in metric bias result in large

changes in computation distribution.

-162-

3.3.4 COmparisons of Soft and Hard Decision Sequential

Decoders. An a-level quantized sequential decoder, with the same

size received data buffer as a hard decision decoder, can buffer

only 1/5 as many received branches. Also, the increased com­

plexity of the decoder logic will mean a computation speed reduc­

tion of about a factor of 2 under that of a hard decision decoder

(see section 3.4).

This along with the AGe problem, and the nonexistence of a

-quick threshold loosening- scheme will reduce the 2 db perform­

ance advantage, inherent in fine receiver quantization, over hard

decisions. In fact at very high speeds, where speed factors are

low, there may be no performance advantage to a soft decision

decoder. For these reasons - especially the AGe sensitivity, we

cannot recommend soft decision sequential decoding for very high

speed communication.

A technique is described in section 5.0, however, which

uses a Viterbi predecoder before data enters a soft decision

sequential decoder. This technique effectively improves the

sequential decoder speed factor, and lowers the amount of memory

required, and may provide a means of attaining the efficiency of

a soft decision sequential decoder at high speeds.

3.4 Sequential Decoder Implementation. This section consid­

ers implementation techniques for syndrome sequential decoders

operating at data rates from 1 to 40 Mbps. Trade-offs consid-

-163-

BL
O

CK

D
IA

G
RA

M

SY
N

D
RO

M
E

SE
Q

U
EN

TI
A

L
D

EC
O

D
ER

FO
R

RA
TE

~
,

SY
ST

E
M

A
T

IC

CO
D

E

C
h

an
n

el

In
p

u
t

~

In
fo

rm
a
ti

o
n

B

it
s

-
>

-
-
-
-
0

-
-

I I-
' ~
 C

h
ec

k

B
it

s
I

~

t

E
n

co
d

er

S
yn

dr
or

.1

,
-

D
el

ay

R
an

do
m

A

cc
es

s
r,1

em
or

y

1
1

CP
U

::<
'to

-;u
r"

,
3

.4

\ I I
"
"
·
·

-
C

o
rr

e
c
te

d

~
 I

n
fo

rm
a
ti

o
n

m
at

io
n

E

rr
o

rs

ered are choice of logic family and hard vs. soft decisions.

A block diagram of a syndrome sequential decoder is shown in

Fig. 3.4. The input from the channel is separated into two bit

streams, one containing received information bits and the other

containing the received check bits. The received information

bits are passed through an encoder which is identical to the one

used at the transmitter, and are exclusive-ORed with the received

check bits, thus generating the syndrome. The syndrome is then

stored in a random-access memory. In the case of soft decisions,

the quality bits are stored in the memory with the syndrome.

Meanwhile, the information bits are stored in a delay line which

is equal in length to the total delay through the random-access

memory and cpu. The processer reads the syndrome bits (and quality

bits, if any) from the random-access memory and, using a modifica­

tion of the Fano algorithm, determines a likely information error

sequence. The decoded information error sequence is then read

back into the random-access memory. The information error se­

quence remains in the random-access memory until the correspond­

ing received information bits are shifted out of the delay line.

The information bit sequence and the information error sequence

are then exclusive-ORed, correcting any errors present in the

received information sequence. The resulting corrected data is

the decoder output.

All implementations considered would use semiconductor

memory devices to form the main memory, TTL logic circuits for

memory buffer, control, and syndrome generation and either TTL

-165-

or MECL for input and output interface circuits as required by

the data rate. The choice of logic family for the CPU section

is more critically dependent on the maximum data rate desired.

The implementation study has found that the maximum compu­

tation rates for MECL III, MECL II, and TTL are, respectively,

100, 25, and 13 megacomputations per second. The corresponding

data rates for speed factor 2.5 are, respectively, 40, 10, and

5 Mbps. The relative cost factors are the same as for the

Viterbi decoder, i.e., 18, 3, 1 for MECL III, MECL II and TTL,

respectively.

The trade off study for Viterbi decoding showed that.the

most cost effective way to obtain 40 Mbps decoding was to par­

allel four 10 Mbps TTL decoders. Such is not the case for

sequential decoding.

A 40 Megabit sequential decoder could be obtained by build­

ing one decoder with a MECL III CPU, or four decoders in parallel

with MECL II CPU's or eight decoders in parallel with TTL CPU's.

In the case of the MECL III decoder, CPU accounts for approxi­

mately 60% of the total cost and the memory and I/O circuitry

account for 40%. The memory and I/O circuitry for a MECL II

CPU decoder would run about 85% of the cost for the MECL III de­

coder. The memory and I/O for a TTL CPU decoder will cost about

75% of that required for the MECL III decoder. The results for

40 Mbps are shown in the following table:

-166-

CPU COST OF COST OF RELATIVE COST NUMBER OF RELATIVE
TYPE MEMORY CPU OF 1 DECODER DECODERS TOTAL COST

MECL
III .4 .6 1.0 1 1.0

MECL
II .35 .1 0.45 4 1.B

TTL .3 .03 0.33 B 2.64
--

Thus, the MECL III design turns out to be the most inexpensive for

this data rate. The MECL III decoder for hard decisions is pre-

sented in detail in the following section.

3.4.1 40 Mbps Sequential Decoder. A detailed block diagram

of the 40 Mbps sequentai1 decoder is shown in Fig. 3.4.1. The

input from the channel is accepted in either of two forms~ as in

serial bit stream at a maximum rate of BO Megasymbols per second,

or as two parallel lines at a maximum rate of 40 Megasymbols/

second each, corresponding to a maximum data rate of 40 Megabits

per second.

The parallel inputs are provided for decoding QPSK modulated

data. Received information and parity bits are routed separately

from the modem to the decoder. 90° demodulator phase ambiguities

are resolved by the code synchronization circuitry.

The BO Mbps serial input is for use with BPSK modems. In

-167-

this case, the interleaved received information and parity bits

are decommutated in the decoder. Node synchronization is pro­

vided again by the code sync circuitry. For both BPSK and QPSK,

180 0 phase ambiguities will be handled by using codes trans­

parent to 180 0 phase flips and differentially encoding and de­

coding the data.

The input circuits exclusive of the serial input decom­

mutation are implemented using MECL II logic. The input lines

are then buffered down to eight parallel lines operating at a

maximum rate of 10 Megabits per second per line. The eight result­

ing lines are then converted to TTL logic levels and delivered to

the encoder replica and buffer.

The syndrome is then formed from the received information

and parity bits. The syndrome is collected into 72 bit words

and delivered to the random-access memory. The random-access

memory is a semiconductor memory consisting of 1,024 words of 72

bits each. The memory has a read/write cycle time of 400 nano­

seconds. The syndrome words are written into sequential locations

in the random-access memory. Prior to writing the syndrome word,

the present contents of the addressed word are read out of the

memory. This word contains the decoded information error

sequence. The word is sent on to the output buffer where it is

exc1usive-ORed with the delayed information bit sequence.

The random-access memory has two ports. The input-output

section is connected to the first port and has priority. The CPU

buffer is connected to the second port. The CPU buffer reads a

-168-

72 bit word out of the random-access memory and delivers it to

the CPU four bits at a time whenever the CPU requests new data.

After reading out the new syndrome word, a new information error

word is written into the memory at the same address. When the CPU

buffer memory address catches up to the input-output address, the

CPU buffer must wait until a new word is written into the random­

access memory from the input-output section. When the CPU buffer

falls so far behind the input-output section that the input-out­

put section attempts to write over an undecoded word, a buffer

overflow is declared. Whenever an overflow occurs, a signal is

sent to the external equipment indicating the next word of data

is likely to contain errors. The overflow signal is also sent to

the Fano algorithm logic so that it may restart at a point further

ahead in the memory.

When the CPU section reaches the front of the back-up buffer,

a new four bit syndrome word is requested from the memory section

via the CPU buffer. This four bit word is exclusive-ORed into

the encoder. The encoder is capable of shifting in either direc­

tion. If the algorithm logic determines that the present node

contains an information bit error, then the code impulse function

is exclusive-ORed into the encoder. Likewise, when the decoder

is backing up, the impulse functions that were exclusive-ORed

into the encoder while proceeding forward must be removed. The

bits shifted out of the right hand side of the encoder while

moving forward correspond to the check bit error sequence. These

bits are shifted into the back-up buffer along with the informa-

-169-

H
IG

H

SP
EE

D

SE
Q

U
EN

TI
A

L
D

EC
O

D
ER

BL

O
CK

D

IA
G

RA
M

SE
R

IA
L

IN

PU
T

-
B

U
FF

ER

1-
"

,-
-:

:-
-"

"
-+

1,
 IE

ll C
OD

E
R

IU

P
U

T
ll

n
fo

rm
a­

B
U

FF
ER

ti

o
n

 B
it

s

I -.
.I o I

C
he

ck

B
it

s SY
N

C
,..

..-
_

_
_

_
 -lI

C
IR

C
U

IT

A
LG

O
RI

Tl
IT

·1
LO

G
IC

2
0

4
8

x

36

S
o

R
o

B

U
FF

ER

D
 OU

TP
U

T
DA

TA

l
B

U
FF

ER

•
O

U
TP

U
T

,.
.-

--
--

>
>

11
 H

Er
,lO

RY

1
0

2
4

x

CH
EC

K

ER
RO

RS

B
it

s

l·tE
I·t

OR
Y

BU
FF

ER

I
N
F
O
R
H
A
T
I
O
I
~
t
-
1
 _

_
 _

ER
RO

RS

O
V

ER
FL

O
H

SY
N

C
ST

A
TE

F
ir

;u
re

3

04
01

tion error sequence. When the decoder is backing up p the

original syndrome is reconstituted by shifting the check error

sequence back into the right hand side of the encoder, and by

exclusive-ORing in the code impulse function wherever an infor-

mation error previously was hypothe~ized. The syndrome bits are

shifted out of the left hand side of the encoder when backing up

and are shifted into the back-up buffer.

Functionally, the back-up buffer is a right-left shift

register that is two bits wide and 256 bits long. The back-up

buffer is actually implemented by using a very fact ECL random-

access memory that is addressed by up-down counter, thus giving

the effect of a right-left shift register. The function of the

algorithm logic is to direct the progress of the CPU through the

decoding tree. The algorithm logic determines whether the decoder

may proceed forward or backward and determines the changes in the

decoder metric.

3.4.2 Code Synchronization. The function of the synchroni-
•

zation circuit is to obtain correct code sync. This is accompli-

shed by comparing the rate of metric threshold loosenings with

the rate of metric threshold tightenings. If the code sync state

is correct, then the rate of metric tightenings will exceed that

of metric loosenings. However, if the code sync state is incorrect,

then metric loosenings will exceed the rate of metric tightenings.

The sync circuit contains a counter which is counted up every

time a metric threshold loosening occurs and is counted down

-171-

every time a metric threshold tightening occurs. The counter has

a reflecting boundary at zero. If the counter overflows while

counting up, a bad sync state is declared and the code sync state

is changed. Code sync resolves the 90° phase ambiguity in the

QPSK input case and accomplished node sync in the BPSK case. The

counter is large enough that the probability of falsely declaring

a bad sync state is negligible compared with decoder error rate.

The code sync state is changed if the input is from a PSK modem

by inserting or deleting a one symbol time delay. If the input is

from a QPSK modem the sync state is changed by interchanging the

two symbols and inverting one of them. Also, when the sync state

is changed the CPU buffer address is set equal to the input-output

address and the CPU is restarted at that point.

3.4.3 Input Buffer. A detailed logic diagram of the input

buffer is shown in Fig. 3.4.3. The inputs from the channel are

each received on twisted pairs which are terminated in the charac­

teristic impedance of the line, and then fed to a set of line

receivers. The output of the clock line receiver is then fed to

the clock conditioning circuit which provides all of the necessary

clocks to the decoder. The data inputs are then fed to three

flip-flops which format the various inputs into two parallel

lines, one line containing the information bit stream and the

other line containing the check bit stream.

If the serial PSK input is used, the three flip-flops are

connected as a three bit shift register. The information bit

-172-

~

~

S
E

R
IA

L

I:
JP

U
T

SE
R

IA
L

/P
A

r i
•

I
P

'\R
A

L
L

E
L

:;

IN

P
U

T

("
oJ

I

P
S

K
/Q

P
S

K

r'
.. ,

PR
O

l-1

SY
H

C

C
I"

'1
.C

U
I'l

'

S
E

()
U

E
N

T
IA

L

D
E

C
O

D
E

R

II
JP

U
T

B

U
F

F
E

R

C
LO

C
K

/
'

,I
C

O
!J

D
IT

IO
N

Il
W

C
L
(
)
C
I
~
S

F
ic

;u
re

3

.4
.3

4
B

IT

IN
F

O
R

M
A

T
IO

N

B
IT

S

C
H

E
C

K

B
IT

S

output is taken from the first register and the check bit is

taken from the second register in one sync state. In the other

sync state, the information bit is taken in the second flip­

flop and the check bit is taken from the third flip-flop, thus

resulting in a selective insertion of a one symbol time delay as

required to obtain node sync.

If the input is on two parallel lines from a BPSK modem,

the first bit is shifted into the first flip-flop and the second

bit is shifted into the second flip-flop at each bit time. Also,

the output of the first flip-flop is shifted into the third flip­

flop. The information bit and check bit may now be taken from

the three bit register as in the previous case thereby obtaining

node sync.

If the input is from a QPSK modem, then the first line is

shifted into the first flip-flop. The complement of the first

line is shifted into the third flip-flop. The second input line

is shifted into the second flip-flop. Code sync is then obtained

by using the same set of switches as in the previous case.

The information and check bits are each shifted into a four

bit shift register. Every four bit times, the contents of the

two shift registers are loaded into two four bit latches. The

two four bit latches each drive a quad MECL II to TTL converter.

The resulting TTL signals are then delivered to the rest of the

decoder.

3.4.4 Received Information Bit Storage. Received Information

Bits must be stored in a 72,000 bit long delay line while the

-174-

li
t

I
j

,~

I I-
'

-.
.J

I

V
I

2
I

I
I

-..

~
b
i
t

se
r.

.:

ia
l

to

p
a
r-

la
ll

e
l

,
co

n

~
1
:
;
e
r

--r

--,
.

• • •

36

B
it

L

at
ch

• • •
,

• • • .- " •

2
0

4
8

b

it

s
h

if
t

re
p;

1

1
0

'+

..
•

•
•

•
• ·

36

B
It

•

i..
Ja

tc

1
1

0
 3

•
"

-
"

•
•

• • • •
1

1
0

2

,
,

,
"

,
.-

• • • •
9

b
it

I
I
 0

 1

•
p

a
r-

•
ll

e
l

•
to

•

•
s
e
r-

2
0

1 1
8

b
i
t

ia
l

<
'

R
 •

.) .

-- t

'
P
i
~
u
r
e

3 .
• 4

.4

decoding is taking place. A block diagram of the information bit

storage is shown in Fig. 3.4.4. This storage is accomplished by

using dynamic MOS shift registers, since this form of storage is

presently the most inexpensive available. Since the MOS shift

registers used are not capable of operating at 40 Megabits, a

number of registers must be operated in parallel to obtain this

effective speed.

The information bits from the input buffer are collected

into 36 bit words, using a serial to parallel converter followed

by a 36 bit latch. The output of the 36 bit latch drives 36

2,048 bit long shift registers. The output of the shift registers

are clocked into a 36 bit latch. The latch drives a parallel to

serial converter which converts the information bits back to four

parallel lines. Since the MOS registers are dynamic shift regis­

ters, there is a minimum clock rate of 10 KHZ which corresponds

to a data rate of 300 kilobits. If it is desired to provide for

operation of data rates lower than 300 kilobits, the following

technique could be used: Below 300 Kbps, the dynamic shift reg­

isters are replaced by static registers of reduced length. The

total storage is reduced by a factor of 128. The speed factor -

buffer size product remains higher at 300 Kbps than at 40 Mbps.

3.4.5 Syndrome Generator. A logic block diagram of the

syndrome generator is shown in Fig. 3.4.5. The syndrome generator

receives the information bits and check bits from the input sec­

tion in two words of four bits each. The syndrome generator

-176-

I
~
F
O
R
M
l
\
n
O
N

B
IT

.S

F
F

S

V
N

D
R

O
M

E

G
E

N
E

R
A

T
O

R

+
 I

I
:h

 IIt
ffC

J=
LJ

= I

,
1

,-
1

'5

f-
'

II
II

 ttr
:l=

r1
:1

B

F

I:

: :
 : :

 : I
 F ~
 +

8
F

fm

 +
8

F

t:~~

..., ..., ,

S
I

IS

+

I,
!;

C4

-
II

+

r l
l

I C3
r"

I
~

tCl
ci

r,

I
t

C
H

EC
K

 B
IT

S F

F
F

F

F
 -

Q
U

A
 D

 "D
o

F
L

IP
 F

L
O

P

+
 -

Q
U

A
D

M

O
D

2

A
D

D
E

R

F
IG

U
R

E

3
.4

.5

computes the syndrome, four bits at a time, thereby permitting it

to operate at the data rate divided by four. The syndrome

generator is implemented using SN7495 shift registers and SN7486

quad modulo two adders. Since this logic is fast enough to permit

only one level of mod two addition between the flip-flops, all 16

possible mod two combinations of the four parallel information

bits must be computed. This is accomplished in two levels of

flip-flops. In the first level, information bits one and two

and information bits three and four are each modulo two added and

stored in two flip-flops. In the next level, the nine remaining

combinations are computed, thus resulting in the signals I-I thru

I-IS. The check bit word is delayed three clock times, so that it

appears at the appropriate time in respect to the information

bits. The remainder of the syndrome generator consists of four,

12 bit long shift registers with a modulo two adder between each

stage. One input to each mod two adder comes from the previous

stage in the register. The other input comes from one of the I-I

thru 1-15 signals. The output of the next to the last stage of

the syndrome generator is a set of computed check bits. The

syndrome is formed in the last stage of the syndrome generator

by exclusive-ORing the four received check bits with the four

generated check bits. The resulting syndrome is delivered to the

memory.

3.4.6 Decoder Memory. The function of the decoder memory is

to store the syndrome while it is awaiting processing by the CPU

-178-

section of the decoder. A block diagram of the memory is shown in

Fig. 3.4.6. Since the number of computations required to decode

one bit is a random variable, and the rate of computations is

fixed, a large amount of storage is required in order to make

the probability of buffer overflow sufficiently small. Simula­

tions have shown that a memory size of 72,000 bits will provide

the required performance with 40 Megabit data and a computation

rate of about 10 8 Fano algorithm computations/second. The

previous two quantities also set the throughput rate of the mem­

ory, since the CPU must be able to access about 10 8 bits per

second in order to achieve its maximum computation rate. An

additional 40 Megabits per second must be accessed in order to

store and retrieve the syndrome input and the information error

sequence outputJ thus, the total throughput requirement of the

memory is about 140 Megabits per second.

At the present time, economical semiconductor random-access

memories are available with read/write cycle times in the neigh­

borhood of 300 to 400 nanoseconds. If a 400 nanosecond memory

is used, then a very wide word is necessary in order to obtain

the required throughput rate. Random-access memory cards are

presently available from several manufacturers containing 1,024

words of 18 bits each in the required speed range. Combining

three of these cards to form a 54 bit word does not quite meet

the required throughput rate, consequently four cards will be

used, resulting in a 72 bit wide word, in order to achieve the

desired througnput rate.

-179-

I C
D

o I

S4

S
3

S
2

S
l

• " • .,

4
B

IT

PA
R

A
LL

EL

TO

72

B
I'l

PA

R
A

LL
EL

CO

N
V

ER
TE

F

· • • • , · • , • · · .. ·
r-

--
"'

SE
Q

U
EN

TI
A

L
D

EC
O

D
ER

M

EM
OR

Y

M
EM

OR
Y

TI
M

IN
G

AN

D
CO

N
TR

O
L

1
1

2
IN

PU
'I

10
24

M

U
L

T
I-

x
PL

EX
ER

72

72

b

i
RA

M

·
p

a
r-

•
a1

1
e1

,

to

4
•

D
A

TA

DA
TA

E
_

E
,

•
IN

OU

T
·

b
it

E

2

•
·

p
a
r-

a1
1

e1

·
co

n
-

·
El

.-

v
e
rt

e

. ..

A
D

D
RE

SS

f
T

flO

2

in
p

u
t

m
ux

 J
~

f
-.1

r

i
to

B
it

I/

O
lO

B

it

CP
U

J
C

o
u

n
te

r
C

o
u

n
te

r.

F
ig

u
re

 3
.4

.6

The memory must have two ports; one port to serve the input­

output and the other port to serve the CPU. The input-output

port must have priority so that data will not be lost.

The syndrome is collected into 72 bit words for access into

the memory. When 72 bits have been collected, the memory timing

and control circuit is signalled and the next available cycle is

given to the input-output. A 72 bit two input multiplexer selects

the syndrome word for data input into the random-access memory.

During the cycle, the word stored in the present input-output

address is read out and loaded into a 72 bit latch. After the

read operation, the 72 bit syndrome word is written into this

address and the cycle is completed. The word read into the 72

bit latch is then converted into a four bit parallel line and is

sent to the output circuit. When the CPU requires a memory access,

the 72 two input multiplexers and the 10 two bit address multi­

plexers connect the CPU address counter and the CPU data lines

to the memory and the cycle is initiated. The memory addresses

are stored in two 10 bit counters, one for the input-output and

one for the CPU. The memory timing and control circuit controls

the read/write process. This circuit also generates a signal

whenever a buffer overflow occurs.

3.4.7 CPU Buffer. A block diagram of the CPU buffer is shown

in Fig. 3.4.7. The function of the CPU buffer is as follows:

When a 72 bit syndrome word is read from the memory, it is stored

in the 72 bit latch. When the four 18 bit shift registers are

-181-

F
ro

m

C
P

U

. 1
11

8
I

I
I

<

.. • • • •
F

ro
m

~

•
17

2
..

'1
e

m
o

ry

•
B

it

•
L

a
tc

h
l

• ..
/

I 18

•
/

I
B

it

•
I

IS
R

'-

)

I I-
'

O
J

N
 I

.,
-

:\

..
,
m

•

B
it

•

S
R

• •

•

72

•
T

o

~
..

B
it

..

'
~
e
m
o
r
y

• •
L

a
tc

h

•
I

..
•

.. • •
•

• •
•

T
o

C

P
U

C
P

U

B
U

F
F

E
R

T
o

'i:
:u

re
 3

.4
.7

empty, the contents of the 72 bit latch are loaded in parallel

into the four 18 bit shift registers. The contents of these

registers are then shifted out to the CPU four bits at a time.

with each shift, a four bit word is shifted into the four 18 bit

shift registers from the CPU. Thus,after 18 shifts, the old

word will have been shifted into the CPU and a new 18 bit word

will have been shifted back into the shift register. At this

time, the present contents of the four 18 bit shift registers

are loaded in parallel into the second 72 bit latch and the con­

tents of the first 72 bit latch, which now contains a new word,

is then loaded into the four 18 bit registers and the process

continues. If a new 72 bit word is not yet ready, then the CPU

waits until a memory access can be obtained. The latches and the

shift registers are implemented using SN7495 devices.

3.4.8 CPU. A block diagram of the CPU is shown in Fig.

3.4.8.1. The four bit words from the CPU buffer are translated

from TTL logic levels to MECL logic levels and stored in a four

bit latch. The contents of the four bit latch are loaded in

parallel into the encoder every four computations when the decoder

is proceeding forward to new nodes. A logic diagram of three

stages of the encoder is shown in Fig. 3.4.8.2. The encoder is

capable of shifting in either direction. The code impulse

function can be exc1usive-ORed with the present contents of the

encoder on a shift in either direction. The encoder may also be

synchronously reset. Each stage of the encoder consists of one

-183-

flip-flop and one quad two input NOR gate. The output of the

right hand side of the encoder is the hypothesized check error

sequence. This sequence is stored in the back-up buffer. When

the decoder is backing up, the bits that are shifted out of the

left hand side of the encoder are stored in the back-up buffer.

If an information bit error is hypothesized at a node, then the

code impulse function is exclusive-ORed into the encoder, and a

one is shifted into the four bit information error register.

The information error sequence is also shifted into the back-up

buffer when proceeding forward. When backing up, the information

error sequence is returned to the four bit register and the ori­

ginal syndrome is reconstituted in the encoder by shifting in the

check error sequence and by exclusive-ORing the contents of the

encoder with the code impulse function at every node at which an

information error was hypothesized. The information error

sequence that is shifted out of the back-up buffer when proceeding

forward is shifted into a four bit right/left shift register.

Every four shifts forward to new nodes, the contents of this

register are loaded into the four bit latch. T~e contents of the

latch are then translated from MECL logic levels to TTL logic

levels, and returned to the CPU buffer. The function of the

back-up buffer is that of a 256 bit long, two bit wide, right/

left shift register. since this size register would be prohib­

itively expensive if implemented using MECL III logic, the

function is actually implemented by the use of a very fast ECL

random-access memory. A random-access memory can be made to look

-184-

I t->

(X
)

U
'I I

M
ET

R
IC

R

EG
IS

TE
R

T
o

H

Er
-!

F
ro

m

I·I
EN

f.1
EC

L
TO

TT

L
TO

TT

L
r.m

CL

t
t

t
f

~
~

~
~

4
B

IT

11
B

IT

I
LA

TC
H

LA

TC
H

li
t t

~

-
4

B
IT

.-
-

R
IG

H
T/

LE
F'

T
/

SH
IF

T

R
EG

.

.

EN
CO

D
ER

R

IG
H

T
/L

E
FT

/L
O

A
D

1
I

~
 f.

--
A

LG
O

R
IT

Jn
.l

I
11

B
IT

LO

G
IC

R

EG
.

~

~

SE
Q

U
EN

TI
A

L
D

EC
O

D
ER

,
RA

TE

~
,
Q

2

f
T
n
n
N
G
~

&
 C

O
N

TR

/
I
1

4
B

IT

4

iR
T/

LF
T

B
IT

u

f-
LO

AD

f
e
r

R
EG

.
'
-
-
-

1
AM

S

,7

64

x
8

~

RA
M

4

B
IT

4

T
/L

FT
 ~

B
IT

LO

AD

f-
--

--
~
U
F
-

R
E

G
IS

-f
--

FE
R

PF

.
~

1
1

A
D

D
RE

SS

CO
U

N
TE

R

F
lr

;u
re

3

.4
.8

.1

TO

CP
U

R

IG
H

T
/L

E
FT

EN

CO
D

ER

FR
OM

r
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
N
E
X
T

PR
EV

IO
U~

II

ST
A

G
E

.
I
I I

I

II
II

I
I

ST
A

G
E

Q
I

U

I
I
"

..
TO

N

EX
T

~

FR
Qr

.1
ST

A
G

E

C
D

P

R
E

V
IO

U
S

cr

ST
A

G
E

•
11

11

'1
1

1
1

~

11
11

"
.
 C!

r.O
CK

TR
U

TH

TA
BL

E
FO

R
l"

Uj
~.

j';

U
H

BA
CK

B

A
C

K
.·

EO
R

R
ES

E'
r

X
l

X
2

X

3
1

I
1

1
1

0
1

0
1

()

1
1

1
1

1

F
l
~
u
r
e

3.
.4

 .•
8

.2
 X

II 0 1 1 1 1

X
l

X
2 X
3 X4

like a right/left shift register if the random-access memory is

addressed by an up-down counter, which counts up when a right

shift is desired and counts down when a left shift is desired.

The RAM is a 64 word, eight bits per word, ten nanosecond access

time memory that is manufactured by Advanced Memory Systems. The

RAM is interfaced to the CPU through the two, four bit, right/

left, parallel load registers and the two, four bit, buffer

registers. A six bit up-down counter provides the address.

The algorithm logic controls the progress of the decoder

through the decoding tree. Each computation the algorithm logic

decides, 1) whether to move forward, backward, or sideways, 2)

whether the node being computed has an information bit error,

3) whether to raise or lower the threshold, and 4) the amount by

which the decoding metric should change. Two infrequently used

functions are:

1) back-up buffer overflow, and

2) main buffer overflow

When back-up overflow occurs, the decoder has come to the end

of the back-up buffer and can go no further in a back search. In

this situation, the algorithm logic lowers the threshold and goes

back to forward searching. In the case of a main buffer overflow,

the decoder must attempt to restart at some point ahead of its

present location. The decoder jumps to the front of the back-up

buffer, requests a new word from the main buffer, resets the en­

coder, resets the metric register, and attempts to begin decoding

in the forward direction. If the decoder is unable to restart,

-187-

the main buffer will soon overflow again and another restart

attempt will be made.

3.4.9 Physical Description. The CPU is implemented using

MECL III logic. Approximately 250 MECL III IC's are required.

The CPU can be packaged on one or two multilayer circuit boards.

Five or six layers will be required. Two layers are reserved for

ground and power planes. The remaining layers are required to

provide the necessary interconnections. All circuit board runs

longer than 2 inches are terminated strip transmission lines of

50 ohm impedance.

The MECL III stud mounted flat package is used. The packages

are mounted with the stud passing through the circuit board.

Cooling can be provided by soldering a U shaped fin to the stud

on the side of the board opposite the component. Cooling air

will then be blown across the fins. Using this technique, the

temperature rise in the equipment will be less than 20 degrees.

With 50°C ambient temperature, the maximum component temperature

will then be 70°C.

The remainder of the decoder is implemented using MECL II,

TTL and MOS logic devices. Approximately 325 of these devices

are required. They can be mounted on five or six circuit boards,

using the welded stitch wire technique. The main buffer can be

packaged on four additional circuit boards, and the back-up

buffer can be packaged on one circuit board.

The complete decoder, together with power supplies, can be

-188-

packaged in a standard lo~n high rack mountable chassis. All

data input and output connectors can be mounted on the front panel

together with all necessary controls.

3.4.10 Modifications Required by Soft Decisions. As

explained in previous sections, an improvement in Eb/NO of 1.5 db

is available by increasing Q from 2 to 4. But the cost is a sub­

stantial increase in the hardware requirement.

A soft decision syndrome sequential decoder would form the

syndrome as in the hard decision case by regarding the most

significant bit of each symbol as a hard decision. This is most

easily done if the quantizer levels are labelled by a sign­

magnitude representation. The sign bit then corresponds to a

hard decision.

The syndrome is stored in the main memory along with the

magnitude (or quality) bits for each symbol. This requirement

triples the size of the main memory for Q = 4 since a syndrome bit,

and one quality bit for each symbol must be stored for each node.

The hard decision bit for the information bits is stored in a

'delay line as in the case of the hard decision case. This re­

quirement causes the hardware in the memory and I/O section of

the decoder to increase by a factor of 2.5.

The CPU uses the syndrome and quality bits to determine a

likely information error sequence. This sequence is then stored

in the main memory for later use in correcting the delayed infor­

mation bit stream. All bit paths in the CPU must now be three

-189-

times wider than for a hard decision decoder, thus, tripling this

portion of the CPU hardware. The algorithm logic becomes consid­

erably more complicated since the metrics must be quantized to a

much finer level than in the hard d~cision decoder. This results

not only in an increased number of gates, but in an increased

number of logic levels, thus slowing down the computation rate.

The computation rate will be reduced from about 100 Megacompu-

tat ions per second in the hard decision case to about 70 Mega­

computations for Q = 4. The CPU hardware will increase by a

factor of three. Thus the overall increase in hardware (and in

cost) will be a factor of 2.8 relative to a hard decision decoder.

-190-

REFERENCES

SECTION 3

1. Savage, J. E., "The Computation Problem with 5equential
Decoding," Ph.D. Thesis, Department of Electrical
Engineering, MIT, February 1965.

2. Jacobs, I.M., and E. R. Berlekarnp, "A Lower Bound to the
Distribution of Computations for Seguential Decoding,"
IEEE Transactions on Information Theory, Vol. IT-13,
April 1967.

3. Codex Corporation, Final Report on High-Speed Sequential
Decoder Study, Contract DAAB07-68-C-0093, U.S. Army
Satellite Communication Agency, Fort Monmouth, New
Jersey, 1968.

4. Bucher, E. A., and J. A. Heller, "Error Probability Bounds
for Systematic Convolutional Codes," IEEE Transactions
on Information Theory, IT-16, Number 2, March 1970.

5. Bussgang, J. J., "Some Properties of Binary Convolutional
Code Generators," IEEE Transactions on Information
Theory IT-ll, 1965.

6. Massey, J. L., "Quick-Look Convolutional Codes," National
Aeronautics and Space Administration Coding Conference,
Jet Propulsion Laboratory, Pasadena, 1970.

7. Lin, S., and H. Lyne, "Some Results on Binary Convolutional
Code Generators," IEEE Transactions on Information
Theory, IT-13, pp. 134-139, 1967.

-191-

4.0 CODING FOR DATA OF VARYING SPEED AND ERROR RATE REQUIREMENTS

Consideration has been given to the problem of transmitting

a data stream on which, by time-division multiplexing, data from

sources with different data rates and error requirements have been

combined. Three approaches have been considered and analytical

results obtained for each. These are designed to protect the

high-reliability low-rate data by one of the following methods:

a) concatenated coding (originally outlined in section 4

of the proposal for this contract.)

b) lengthened symbol times for the low-rate data

c) use of lower rate codes for the low-rate data

To obtain specific results, it was assumed that the ratio of

high-rate to low-rate is no greater than 10 and that the required

high-rate bit error probability is 10- 3 , which probably represents

a worst case.

Also, the basic code for the high-rate data was taken to be

the best rate 1/2 constraint length 4 convolutional code. While

this is used primarily because it has been thoroughly analyzed

and simulated, it is also a reasonable candidate for data rates

above 10 Mbps with Viterbi decoding.

4.1 Concatenated Coding. The goal is to find a very simple

outer code to be used on the low data-rate source only, which will

decrease the error probability to the desired level. The overall

coding system is shown in Fig. 4.1. If the outer code has rate

1/2, the overall Eb/No is increased only by 0.4 db.

-192-

In order to render the inner code errors nearly independent,

interleaving must be introduced. Five constraint lengths of

interleaving seem more than sufficient. Thus, an interleaving

memory of 20 bits is all that is required for constraint length 4.

The outer code then operates essentially on a binary-symmet­

ric channel with crossover probability p=lO-3. A two-error

correcting BCH code is unsatisfactory because it requires R=7/l5

and only achieves

... ... 7
IS ~ ;5)

A more satisfactory block code, the Golay (24, 12) three-error

correcting code has R=1/2 and

... ... 1
2'

However, this requires a moderately complex decoder when operating

at high data rates. Block code synchronization may add to the

complexity if not already provided by a separate framing reference.

A more suitable approach is to use a convolutional outer code.

The two-error correcting, rate 1/2 code (Fig. 4.2a) yields for the

BSC

while the best three-error-correcting rate 1/2 code yields (Fig.

4.2b)

-193-

In each case, the results are better than the corresponding block

codes, the decoder is simpler, and code synchronization is not

required for the convolutional code. Node synchronization, which

is required, can be obtained using the methods outlined in

section 2.2.5.

While Viterbi decoding is required to obtain the above

results, a feedback decoder, the L-IOll presently marketed by

LINKABIT Corporation, obtains nearly equivalent results for the

BSC, and affords a much simpler mechanization for both the two-

and three-error correcting decoders.

4.2 Lengthened Symbol Times for Low-Rate Data. This is

undoubtedly the simplest approach. If a rate 1/2 outer code were

used for the low-rate data, its effective Eb/No would be increased

by 3 db (resulting in an overall increase of 0.4 db). Rather

than using a code, the low rate symbols might simply be repeated

or lengthened. To achieve PB=lO-s with a K=4 code for the high­

rate data, the required Eb/No = 3.75 db as established by analysis

and simulation. Thus, using this approach for the low-rate

data, we would have Eb/No = 6.75 db. For high Eb/No, the bit

error probability (without quantization) for this code is asymp-

totically

This figure may be slightly optimistic if 8-level quantization is

-194-

used.

4.3 Lower Rate Codes. Instead of doubling the symbol length,

we may keep this fixed but double the number of symbols, thus

changing from an R=1/2 code for the high-rate data to an R=1/4

code for the low-rate data. Preliminary analysis indicates that

the rate 1/4 constraint length 4 code with minimum bit error

probability at high Eb/No has the generator matrix

G
[

1111] = 1011
1101
1101

and that for this code at Eb/No = 6.75 db

If such a lower-rate code is used for the low-rate data,

separate decoders must be used for the high-and low-rate data.

The two decoders may time-share some subsystems, such as the

arithmetic unit, but in some respects, they must be distinct.

In view of the very modest improvement, it is questionable wheth-

er the complexity is warranted relative to the approach of

doubling the symbol time, which requires virtually no additional

decoding complexity.

On the other hand, it also appears that concatenation with

a simple convolutional outer code gains about two orders of

magnitude in performance over the other two approaches.

-195-

Type I data .ource(s~

Type II data source(s)~

4 Outer Inter- Time Inner HModulator Channelr
Coder r- leaver r-. Division r-- Coder

Multi-
plexer

Type I data

L.j Demodulator~ Inner ~ De- -- De- H~uter
Decoder Multi- Inter- Decoder

plexer leaver

Figure 4.1. Coding for data of varying error-rate
requirements.

(a) two-error correcting

(b) three-error correcting

Figure 4.2. Outer Convolutional Code
-196-

Type II data

REFERENCES

SECTION 4

1. A. J. Viterbi, "Convolutional Codes and Their Performance
in Communication Systems," LINKABIT Corporation Semi­
nar on Convolutional Codes, January 26, 1970.

-197-

5.0 PREDECODING FOR A SEQUENTIAL DECODER: *
A HYBRID IMPLEMENTATION FOR VERY LOW ERROR PROBABILITY.

5.1 Int~oduction. To achieve very low error rates with a

sequential decoder at very high data speeds, it is necessary to

operate well below Rcomp. For at high speeds, even a speed fac­

tor of 2.5 may be prohibitively expensive, especially in a soft

quantized sequential decoder. Furthermore, for very low wequen-

tia1 overflow probability, large quantities of storage are required,

particularly with 8-1eve1 quantization which requires six bits

of storage per branch.

On the other hand, if we operate well below R , most of comp

the data can be correctly decoded by a short constraint length

Viterbi decoder. As was pointed out in the original description

of the algorithm (Ref. 1), a Viterbi decoder can decode a long

constraint length (K) convolutional code treating it as if the

constraint length were much shorter (k«K), by operating only on

the first k symbols of the convolutional code generators. Of course,

when an error occurs, remerging to the correct path is extremely

unlikely and generally all subsequent bits will be decoded incor-

rect1y. The point is, however, that most of the data can be

correctly decoded in this way and only the more difficult (noisy)

segments of data are incorrectly decoded, and if errors can be

detected, then segments can be passed on to a more powerful sequen-

tia1 decoder.

*This technique was proposed by G. D. Forney, Jr., who was a
consultant on this study.

-198-

The approach that is therefore suggested is to use a short

constraint length Viterbi decoder (k~S) to "predecode" a long

constraint length convolutional code, detecting the incorrectly

decoded segments, and passing these on to a sequential decoder,

which is more powerful since it utilizes the full oonstraint

length (K>30) of the code. The mechanization block diagram is

shown in Figure 5.1.

We assume that data is encoded, in frames of 1000 bits,

into a constraint length K=40, rate 1/2 nonsystematic convolu-

tional code, each frame being followed by a tail of 39 known

branches, to be used for resynchronization. The received demod-

ulated data (soft or hard quantized) is passed first to a Viterbi

predecoder operating as a decoder for a k=S code corresponding

bo the first 5 symbols of the generator sequences. All decoded

data is passed to a long digital delay line capable 6£ storing

0=256 decoded frames (256 K bits).

All undecoded received data from a given frame is also passed

*.
to a one-frame buffer (6000 bits for 8-level soft quantized data '

1000 syndrome hits for hard quantized data). The Viterbi decoder

output is also monitored in an effort to detect all frames in

which an error occurred. This can be performed in a number of ways.

The probability that an incorrect paah remerges with the correct

-K path at any given node is of the order of 2 • Hence, with K=40,

*This can be reduced to 5000 bits if we use a soft decision syn­
drome decoder, as discussed in Section 3.3.

-199-

R
e
c
e
iv

e
d

d

a
ta

fr

o
m

q

u
a
n

ti
z
e
d

d
e
m

o
d

u
la

to
r

J
V

it
e
rb

i
o

u
tp

u
t

P
re

d
e
c
o

d
e
r

)
i

k=
5

I N
 o o I

r
-
-

-
-
-
-
,

I
S

y
n

d
ro

m
e

I
I

a
n

d

Q

u
a
li

 ty

~

G
e
n

e
ra

to
r

I
I ,

L
-

-
-

-
-
-
'

B
u

ff
e
r

1
F

ra
m

e

E
rr

o
n

e
o

u
s

F
ra

m
e

D
e
te

c
to

r

~
G
a
t
e

"
7

'

D
ig

it
a
l

D
e
la

y

L

in
e

•
D

 F
ra

m
es

•

E
rr

o
n

e
o

u
s

F
ra

m
es

~

~
~

~
E

rr
o

n
e
o

u
s

F
ra

m
e

T
im

es

~

~
l
~
1
-
-

.... ~

F
ra

m
es

A

w
a
it

in
g

P

ro
c
e
s
s
in

g

1
D

ec
o

d
ed

F

ra
m

es

S
e
q

u
e
n

ti
a
l

D
e
c
o

d
e
r

~
-
.
~
I

G

a
te

 ~

F
ig

.
5

.1

H
y

b
ri

d

Im
p

le
m

e
n

ta
ti

o
n

o

f
S

e
q

u
e
n

ti
a
l

D
e
c
o

d
e
r

a
n

d

V

it
e
rb

i
P

re
d

e
c
o

d
e
r.

it will remerge at anyone of 10 3 nodes with probability on the

order of 10- 9 • BY merely observing K-k-l=34, decoded tail branches

and comparing them with their known values, the probability that

an error will not be detected is much less than 10-B.

When an erroneous frame is detected, it is tagged for future

reference and gated to a large B frame buffer to await processing

by the sequential decoder. This buffer is divided into two segments.

In the front portion is stored data from frames awaiting sequential

decoding. In the rear p~rtion are the already sequentially decoded

frames awaiting insertion into the decoded data stream as it exits

from the delay line. In all, there is storage available for B

undecoded and B decoded frames.

There remain the problems of determining a) the percentage

of deletions, which establishes the sequential decoder load and

buffer size requirements, b) the computational complexity of

sequential decoding of the erroneously predecoded frames, and

c) the overflow probabilities due to finite delay D and finite

buffer size B.

We shall consider these three problems in the state order.

5.2 Deletion Probabilities of Predecoder. Deletions corres­

pond to first event errors in a short constraint length convolu­

tional code decoded by a Viterbi decoder. With soft quantization

(Q=8), a rate 1/2 k=5 code was simulated at an Eb/N O=4.5 db. Out

of 1500 frames of 852 bits each, 32 were erased resulting in an

estimated erasure probability p~=.02. Extrapolating to 1000 bit

-201-

frames, we estimate conservatively a deletion probability no

greater than p~=.025. On the other hand, with Eb/No=4 db,

the deletion probability exceeds 8 percent.

With hard quantization, simulations were run at a crossover

probability p-.025 which corresponds to Eb/No=5.7 db. The result

of decoding approximately 5000 frames of 500 bits each was a

deletion probability p~ = .10. A particularly short trellis

memory (7 branches) was employed in order to make a resulting

implementation particularly simple and inexpensive. In the

following examples, we shall consider operating a hard quantized

system at Eb/NO = 6.2 where p=.02 and the Pareto exponent is

2.0. However, since we use longer frames (1000 bits), we shall

use an estimated deletion rate p~ : .10 even at this higher

Eb/NO value.

5.3 Computational Complexity of sequential Decoding for

Erroneously Predecoded Deleted Frames. Extensive simulations

were performed on hard quantized data only. First 14,000

frames with crossover probability p=.025 were sequentially

decoded using the Fano algorithm with quick threShold loosening.

The resulting distribution of computations was very closely

approximated by the Pareto distribution with exponent p=1.67,

which follows precisely from the theoretical result

E (p)
o

R

-202-

= p

since R=1/2 and E (1.67) o =0.83
p=.025

Then with p.025, the 466 erroneously predecoded frames

(approximate~y 10% of the total--see previous section), were

sequentially decoded. The distribution of computations was

in all cases above the previous one, and at the high end it

approached between 8 and 10 times the ordinary distribution.

In retrospect, this is exactly as expected. Predecoding will

correctly decode all the easier cases but generally fail on

most frames which require longer computation searches in

sequential decoding. Now suppose that it fails on all the long

computation searches (say, above 1000 computations/bit) and suc-

ceeds whenever such long searches are not present in a frame.

Then the incorrectly decoded frames will contain all of these

long searches, and since sample size is reduced by a factor of

10, the probability distribution of long computations is raised

by a factor of 10.

In any case, we shall be upper bounding the decoding com-

plexity for the incorrectly decoded frames if we use the ordinary

Pareto distribution divided by p~, the frame deletion (or incor­

rect predecoding) probability.

Also of importance is the fact that for ordinary sequential

decoding, the average number of computations per bit was 1.245, while

for the 10% of the frames which were incorrectly predecoded, this

rose to only 1.89 computation per bit. Thus, even though the

tail of the distribution rose by a factor of 10, the average

-203-

computation effort rose by only a factor of 1.5.

5.4 Overflow Probability of Hybrid Implementation. Over­

flow with resulting deletion or errors can occur in either of

two ways:

a) A search is so long that an incorrectly predecoded

(deleted) frame reaches the end of delay line D prior

to the completion of its processing by the sequential

decoder,

b) While a long search is proceeding on a given frame,

the sequential decoder buffer fills up with B frames

awaiting processing and cannot accept any new deleted

frames.

We assume that normally the buffer is neat~y empty so that

successive overflows are essentially independent. This is justi-

fied for sufficiently large Pareto exponents (p~2), which we

shall insure. Then for an initially empty buffer, the probability

of overflow for any given frame is Po = p~[pr (overflow on a

deleted frame)]

Po = p ~
~~ Pr deleted frames

(

more than B sequential deCOding)
lasts K frame times

•

+

out of K frames

(
sequential decodinq of)

Pr frame lasts K frame times

p p (seqUential decoding of giVen)
~.r frame lasts D frame times .

-204-

where p~ is the probability of deleting (incorrectly predecoding)

* a frame. It is shown in Appendix C that

Po

103(1-p)

(~B/p~)P

provided p~ < B/2D.

where = deletion probability

B - buffer size in frames

D = delay line size in frames

10 3 = frame length in bits

p = Pareto exponent

~ = speed factor

+ (5.1)

Thus, it appears that the buffer size is effectively increased

by a factor of l/p~.

5.5 System Analysis of Possible Hybrid Implementation. We

now analyze both soft quantized and hard quantized hybrid systems,

and compare each with ordinary sequential decoders. Ou~ goal

will be to ach~eve an error probability on the order of 10- 8 • In

order to establish"a basis for comparison, we assume that in each

case we have available a digital delay line of length 256 K bits

and a sequential decoder buffer capable of storing 64 K bits.

Also we assume that the data speed is so high that ~=2.5 computa-

*Note, a correctly predecoded frame naturally cannot overflow
since it is not processed by the sequential decoder. hence, the
overall overflow probability is Pm times the overflow probability
for deleted frames. In particular, if we require PO:lO-8 with
a Pm:O.l, the overflow probability for deleted frames must only
be fto greater than 10-7.

-205-

tions per bit is the highest speed factor feasible.

Thus in each case 0=256. For a soft quantized (Q=8) system

B=64/6 = 10.7 (since each branch requires 6 bits of storage),

while for a hard quantized (Q=2) system, B=64 (since only one

syndrome bit needs to be stored per branch, and either parity

bit is inserted in the delay line for the deleted frames).

We consider first the requirements of ordinary (non-hybrid)

sequential decoding. For soft quantization, we assume a K=25

rate 1/2 nonsystematic code blocked in 1000 bit frames separated by

24 branch blocks of know'n symbols. Then the overflow probability

(error probability if deletions are treated as errors) is

with B=10.7 and ~=2.5, it is clear that we must have p=2.5

for Po ~ 10-8 • This corresponds to Eb/NO : 4.7 db. An addi­

tional 0.1 db loss results from the resynchronizing sequence

of 24 bits for every 1000 data bits. The undetected error
-kR /R

probability is approximately PE < 10 3 2 comp Since R .. comp

corresponds to Eb/NO : 2.6 db and K=25, we find PE < 10-9 •

Thus, the error rate due to both deletions and undetected errors

is less than 10-8 •

For the hard quantized ordinary sequential decoder, we take

the automatic resynchronization implementation described in

Section 3.2.2.1 which does not require framing. We take either

a K=25 nonsystematic code or a K=45 systematic code. Here B=64

-206-

since we store only the syndrome, using the delay line with 0=64

to store the information bit (for a systematic code) or a parity

bit (for a nonsystematic code). Then as is shown in Section 3.2,

the bit error probability due to overflows is roughly

If ~=2.5 and B.64, it is clear that with p=2, we have PB ~ 8xlO- 9 •

This corresponds to Eb/NO = 6.2 db. The undetected error prob­

ability is of the same order of magnitude.

We now turn to hybrid implementations, beginning with soft

quantization. Having fixed the buffer and delay line sizes, the

only parameters to be varied are speed factor ~ and Eb/NO' which

establishes the Pareto exponent, p. Clearly to minimize cost

of implementation, we should try to minimize~. On the basis

of average number of computations, it would appear that ~ could

be reduced almost in proportion to p~, the deletion rate, since

only a fraction p~ of the frames must be processed by the se­

quential decoder and the average number of computations only

rises slightly for these frames.

However, it appears from (5.1) that the minimum value of ~

is limited by the magnitude of p~, B, o. We indicated in Section

5.2 that with Q=8 and Eb/NO = 4.5 db, the deletion rate p~=.025

and that lower Eb/No results in greatly increased deletion rates.

Also sequential decoding with Q=8 and Eb/No=4.5 db results in a

Pareto exponent p=2.2 (Ref. 2). Then with 0=256, B=lO.7, p=2.2,

-207-

it is possible to make ~=0.4 and achieve Po : 10- 8 • With K=40,

the undetected error probability is well below this. Thus, we

have reduced the speed factor by 6. If we made Eb/NO= 4.7 db

with a~corresponding p=2.5 (as for the ordinary sequential decoder

above, we could make ~=O.l with a corresponding saving of a fac-

tor of 24 in speed).

For hard quantized hybrid decoding, we have D=256, B=64.

If we take p=2 corresponding to crossover p=.02 and Eb/No=6.2 db,

we have estimated in Section 5.2 that p~ : .10. Then it appears

from equation (5.1) that we can make ~ no less than 1.25 with a

resulting Po : 10- 8 • In every case, K=40 requires an additional

0.2 db for resynchronization. These results are summarized in

Table 5.1.

5.6 Conclusions. with soft quantization (Q=8), we have

found that the principal advantage of hybrid decoding is the

saving of a factor of 6 in speed factor and 0.2 db in Eb/NO or

a factor of 24 in speed with no gain in Eb/No. This is due

primarily to the fact that for undeleted frames only 1 bit/branch

storage is required rather than 6 bits/branch. For a soft

quantized sequential decoder operating on data transmitted at

speeds of 20 Mbps, such a saving is crucial for feasibility and

cost, since soft quantized metric computations need be made only

at 8 MHz (for ~=.4) or 2 MHz (for ~=.l) speeds rather than 50

MHz (for ~=2.5), as would be required with ordinary sequential

decoding.

-208-

I N
 o \D

I

T
A

B
L

E

5
.1

SU
M

M
A

R
Y

O

F
H

Y
B

R
ID

A

N
D

S

E
Q

U
E

N
T

IA
L

D

EC
O

D
ER

IM

PL
E~

ff
iN

TA
TI

ON

FO
R

P

E
=

lO
-e

D
 =

2

5
6

K

 b
it

d

e
la

y
,

B
 =

 6
4

K
 b

it

b

u
ff

e
r

S
o

ft
 Q

u
a
n

ti
z
a
ti

o
n

,
Q

=8

H
ar

d

Q
u

a
n

ti
z
a
ti

o
n

I I

S
p

e
e
d

P

a
re

to

S
p

e
e
d

P

a
re

to

i

F
a
c
to

r
E

x
p

o
n

e
n

t
E

b
/N

o
 (

d
b

)
F

a
c
to

r
E

x
p

o
n

e
n

t
p

E
h

/N
o

 (
d

b
)

11

p
11

P

S
e
q

u
e
n

ti
a
l

D
e
c
o

d
e
r

*
K

=
25

2

.5

2
.5

4

.7

of:

0
.1

2

.5

2
.. 0

2

6
.2

(N

o
n

sy
s-

te
m

a
ti

c
)

-,

H
y

b
ri

d

e
it

h
e
r

(V
it

e
rb

i
0

.4

.2
.2

4

.5

+

0

.2

I
1

.2
5

2

.0
2

6

.2

+

0

.2

P
re

d
e
c
o

d
e
r

k
=

5
)

I
K

=
4

0
(N

o
n

-
0

.1

2
.5

4

.7

+

0

.2

s
y

s
te

m
a
ti

c
)

I I I

~
~

*N
o

fr
a
m

in
g

re

q
u

ir
e
d

On the other hand, with hard quantization (Q=2), only

the moderate saving of a factor of 2 in computation speed is

achieved, primarily because the storage, saving is not nearly

as great. The only advantage is that afforded by quadrupling

delay line size. Further increase of D will improve matters,

of course. For example, we might increase D to 512 frames

(512 K bits) and thereby achieve a reduction of speed factor

to p-0.6 (an overall reduction 6f a factor of 4 in speed).

Further significant reduction of p for hard quantized data

is not feasible, since the deletion rate is P, - 0.1 but the

average computation rate for sequential decoding of deleted

frames is 1.5 times the average for all frames: thus, the speed

can certainly not be reduced by more than a factor of 6 with­

out degrading performance. (For soft quantization, the much

lower deletion rate p~ = 0.025 made a much greater speed reduc­

tion possible.)

Hybrid decoding increases complexity in three ways. It

requires:

a) A predecoder operating at the data speed, and frame

error detection equipment.

b) A long delay line is required (the cost of such serial

storage represents a small increment).

c) Blocking of data and reinsertion synchronization.

For a soft quantized sequential decoder, blocking of data

is probably required in any case, and the price of (a) and (b)

above is small indeed for a speed factor reduction of an order

-210-

of magnitude which it gains. In fact, at data speeds above

20 Mbps, this may be the only way to achieve 10- 8 error rates

with the Eb/No advantage of soft quantized data.

On the other hand, with a hard quantized sequential decoder

blocking of data is not required. The moderate speed factor

advantage may not be sufficient to justify the costs of the

hybrid system.

-211-

REFERENCES

SECTION S

1. A. J. Viterbi, "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm," IEEE Trans­
actions on Information Theory, Vol. IT-ll, Number 2,
April, 1967.

2. I. M. Jacobs, "Sequential Decoding for Efficient Communica­
tion from Deep Space," IEEE Transactions on Communica­
tion Technology, COM-1S, No.4, August, 1967.

-212-

APPENDIX A

Computational Technique for Evaluation of

Convolutional Code Performance

The calculation of a convolutional code transfer function

essentially involves the inversion of the code transfer matrix.

For the K=3, rate 1/2 code shot-In in Fig. 2.2.1 we have the fo11ow-

ing linear relations among nodes, or states of the diagram:

o o N ND2

Xl 1 = ND ND o + o

Xo 1 D D o Xo 1 o

and T(N,D} = D2 XOl (N,D) (A.1)

Thus denoting the state column vector, x, the transfer matrix A,
. ~

and the column vector (1,00 ••• O) = !, ,,19 find that in general * \-1e

must solve

0.
o - A] x = ND 1(1}

*In this case 0i=2: in general the best binary code for any K and
R will have all l's in the first branch, corresponding to 0i=l/R.

-213-

where o. is the weight of the initial branch. The magnitude
1.

of the eigenvalues of the matrix A are all less than unity,

for otherwise the code can be shown to be catastrophic. Con-

sequently, the inverse of I-A exists and

6.
x = NO 1. [I_A]-l 1

6 .
= NO 1. [I+A + A + A2 + n ••• +A + •••]1 (A. 2)

Finally it follows from eq. A.3 that the transfer function

is the scalar bilinear form

(6.+6
f

)
T(N,O) = NO 1. I' [I+A + A2 + ••• +. An + •••] 1 (A. 3)

where I' = (0,0, ••• 1) is a row vector and 6f is the weight of the

final branch.

In generul, the normalized truncation error is bounded by

<

The norm of a matrix is just the magnitude of its largest eigen-

value, which must be less than unity as noted above. Obviously,

for a given n this is a decreasing function of o.

The first-event error probability of eq. 2.2.5 is obtained

directly from A.3 by setting N=l and 0 at the channel parameter

values desired. The bit error probability of eq. 2.2.6 is

obtained by numerically differentiating eq. A.3 at N=l; that

is, by approximating the derivative by

-214-

dT{N,O)
dn N=l

T{l+£,O) - T{l,O)
£

(A. 4)

Since T{N,O) is a polynomial in N with positive coefficients,

the second derivative is always positive. Consequently, taking

£>0, yields an upper bound on the derivative while £<0 yields

a lower bound.

In general, multiplying matrices of dimension 2K is a

very lengthy numerical procedure. But here we note that actually

all that is required is successive multiplication of matrices

by a vector, since the nth (vector) term of eq. A.2 is obtained

from the (n-l)st by

=

Also, the matrix A has at most, 2 nonzero entries per rowan in

all 2K_3 entries. Thus the total number of multiplications re-

quired in computing the first n terms of eq. A.2 and A.3 is less

K than n2. Thus even a K=lO code at high channel noise level,

which may require n=lOO for accuracy, can be evaluated in seconds.

We note finally that the distance properti~s of a given code

can be evaluated using eq. A.3 independent of the channel charac­

teristics. For, setting N=l and O=lO-d in eq. A.3, where d is

an integer, we obtain

T(O)
-de d -2d

= 10 ~ (k~ + k~+l 10- + k~+2 10 + •••) (A. 5)

where k~ is the number of paths of minimum weight e~, k~+l is

-215-

the number of paths of weight 6~+1' etc. Thus provided k +y<lOd
~

for y - 1, 2, ••• , the first few nonzero digits will determine

the integer k~+l' etc. The number Of terms which can be correctly

determined in this way depends on the word size of the computer.

It may also be possible to determine higher order terms by sub­

tracting the effect of already determined lower order terms and

renormalizing.

The toual number of bits in error in the union of all erro-

neous paths at a given distance from the correct path can similarly

be obtained by first differentiating as in eq. A.4 and then

applying the procedure of eq. A.5. The coefficient with subscript

~+y now denotes the total number of bit errors in all paths at

distance 6 +y from the correct path.
~

-216-

Effect of Memory Truncation

This technique can be extended to determine the effect of

memory truncation on the first-event error probability. Suppose

path memory is truncated n branches prior to the last received

branch and that a maximum likelihood decision is made to determine

the output bit at that point. In this case, an error occurs

whenever the likelihood function of any state (or node in the

state diagram) exceeds that of the all zeros state, assuming

this was the correct path. The probability of this event is

union bounded by

1

where u = 1111 ••• 1 (row vector) ..
and 1 = 100 ••• 0 (column vector)

and A is a function of D only.
6.

Note that the first branch is accounted for by D 1. We note

that truncation eliminates the ordinary errors due to remerging

paths beyond the nth. Thus a union bound on the overall first-

event error probability is

For the Gaussian

expression by

channel, this may be
-6

erfc(/, RE /No)D P
P b

-217-

refined by multiplying this

as in eq. 2.2.5.

APPENDIX B

A variety of communication systems can· be·mechanized to

include an output variable which is bimodal, with a large mean

when system operation is unreliable and a small mean when it

is reliable. An important source of possible unreliability is

in the system synchronization. The required variable to deter-

mine unsynchronized operation is the estimate of the number of

errors made, which in a coded system may he the modulo-2 sum

of the received sequence and the nearest possible codeword.

For synchronized operation, the expected relative frequency of

a one, Ps' is just the channel probability of error, while for

unsynchronized operation, it will be considerably higher,

p »p. We shall assume that successive symbols of this observed u s
* sequence are independent.

Detection of unreliable operation then proceeds as follows.

After each bit (event) time, a one is subtracted from a counter

if the bit was zero. If the bit was a one, an integer k-l(k>l)

is added to the counter. Only non-negative summands are stored:

if the total sum ever becomes negative, it is reset to zero.

Thus, we have a reflecting boundary at the origin. Whenever the

count reaches a threshold N, we detect unreliable operation. ThUS

there is an absorbing boundary at N. By making kp <1 and kp >1, s u

it follows that the expected drift is kp -1 > 0 (to the right)
u

*This is clearly true for synchronized operation if channel errors
are independent: for unsynchronized operation, dependencies will
actually improve operation.

-218-

when the system is unreliable (unsynchronized), while it is

kp -1 < 0 when it is reliable (synchronized). s

As is standard, we define a false -alarm as the event that

reliable operation causes a threshold crossing, and detection

as the event that unreliable operation causes a threshold

crossing. Of interest are the first passage time statistics

in both cases, and in particular, the first and second moments1

i.e., mean time to false alarm and detection and the corres-

ponding variances.

-219-

Exact Analysis

For independent events, the Markov. sequence random walk is

completely characterized statistically by the transition matrix,

where p equals Ps or Pu corresponding to either system mode

(Ref. 1).

p =

k

If\

i
i

I v

N+1

We number the rows and columns from 0 to N, corresponding to

the states (contents) of the counter. The P .. term indicates
~J

the probability of a transition from state i to state j. We

* assume as a worst case that the counter always. starts in state o.

*This will be the case in the synchronized mode if we take our
time origin as the instant of initial synchronization. For the
unsynchronized mode, the initial state will be the state of the
counter when synchronization is lost, but the first passage
time to detection will then be upper bounded by taking this to
be O.

-220-

Then the probability distribution of state occupancy

!~ = (wW' w~ ••• wW) after one transition (bit time) is

!!(i) = (1, 0, 0,... 0) p

and after n transitions it is

wen) = w(n-l)p = (1, 0, 0 ••• 0) pn

Now we are interested in the distribution of time to first

arrival at state N. Clearly, the Nth component of w
(n)

(B.l)

(B. 2)

(B. 3)

where vN is the time of first arrival (passage) at the threshold

N. Thus equations B.l and B.2 yield the desired distribution.

From this, we can obtain the mean and variance of first passage

time by
00

~ (n) (n-l)] ~ [l-w~n)] E(vN) = ~ n = wN - wN
(B. 4)

00

n2 [w~n) _ (n-l)] var(vN) = ~ - E2(v) 1TN N

00

n [l_1T~n)] _I~ [l_.~n~} 2 = 2 L:
n=O

(B. 5)

The numerical algorithm which generates (3) simply post-multiplies

(1, 0 ••• 0) by P n times successively. Each time it selects the

last term of the resulting vector, which is the distribution

1T~n) Also, it augments an accumulator to form the mean of

equation B.4 and also forms the weighted function of equation

-221-

B.5 to obtain the variance.

While equations B.3, B.4, and B.5 yield all the results

desired, the mean time and hence the mode of the distribution

will tend to be very large for the false alarm and hence the

total number of iterations required for a'meaningful result

may be several million, thus rendering th~s direct approach

impractical.

-222-

Asymptotic Analysis

When the ratio of the threshold N to the maximum step size

k-l is very large, we may model this process as a continuous ran-

dom walk. For this purpose, let us consider spatial parameters

and continuous time, each step taking 6t seconds and being either

-6x or +(k-l)6x. Thus, the threshold becomes

a ~ N6x (B. 6)

the mean drift per unit time

m ~ (kp-l) (Ax/6t) (B.7)

and the drift variance per unit time

(B. 8)

The moment-generating function for the first passage time

of this continuous random walk satisfies ·the equation (Ref. 2)

...

+ mdf(x,A) = A f (x, A) (B. 9)
2 dx

where f (x , A) = E [e - A f (x, t)] = fooo -At e f(x,t)dt

and f(x,t) = d/dt[pr(vt<t I starting at X)]
From this, we can also obtain equations for the mean first passage

time E(v t I starting at x) = -af~~'A) I
A=O

+
2

-223-

m dtl

dx
= -1 (B.lO)

and more generally for the jth moment t. (x) = E(v
j

J t
starting at x)

+ m dt. (x) = -jt. lex)
))-

(B.II)

j = 2, 3, ••••••

Thus each moment can be obtained by iterating on the solution for

the next lower equation. Of course, ,~e could also obtain the

negative jth moment by differentiating the moment generating func-

tion f(x,A) and setting A=O.

The boundary conditions associated with equations B.lO and

B.ll are obtained as follows. Since the threshold (absorbing

boundary) is at x=a, and since the dependent variable x indicates

the starting point,

t.(a) = 0
J

j = 1, 2, ••••• (B.12a)

Also, whenever x becomes negative, it is automatically returned

to zero, giving rise to the boundary condition,

dt. (x)

ax x=a = 0 j = 1, 2, ••••

For the moment.generating function

since t. (0)
J

.. ~ t.(x)
f(x,A) = /...J.. J,

J=O J

= 1, we obtain the boundary conditions
..
f(a,A) = 1

df (x, A) I = 0
dx x=a

-224-

(B.12b)

The solution of B.lO for the mean first passage time with

the boundary conditions (B.12a, b) is

+
a-x

m

Insertion of this solution into B.ll for j=2, yields the second

moment t2(X). Of interest are,

and

1 [e-2m a/a
2

-1] E(Vt I starting at 0) = tl(O) = m
2m/a 2

var(v t I starting at 0) • t2(0) - tf(O)

(B.lS)

= ~ [~(1+2e-2am/a2) + (e_2am/a2 -1) (e_2am/a2 +5) a 2/4m]

(B.16)

It is also possible to solve for the entire moment-generating

function by solving equation (9) with the boundary conditions

(B.13a, b). The result evaluated at x=o is

f(O,A) = E[e- AV I starting at ~

=

tl (0) and t 2 (0) of equations B.lS and B.16 could ~lso be obtained

as the negatives of the first and second derivatives of B.17

at A=O. The inversion of equation B.17 to obtain the density

-225-

* function is not a simple procedure and could be of questionable

value.

*A Chernoff bound on the distribution is easily obtained and is
of some value in the unsynchronized detection case.

-226-

Interpretation of Asymptotic Results

In order to properly interpret the asymptotic results of

equations B.1S and B.16, we must note that the continuous approxi-

mation assumes that step sizes are much less than the threshold

sizer that is k/N«l. Also for the unsynchronized case

kp - 1 > 0
u

while for the synchronized case

kp - 1 < 0 s

Referring to the definitions B.6, B.7, and B.8, and letting

v = v t 6t, we have in the unsynchronized case

E[VU I starting at 0] = k-P.;.;.~--.... l I N + 2(kp -1)/k2p (l-p) u u u

::: N
kp -1

u

which is essentially linear in N, the threshold value, and

(B.18)

k
2

0 (l-p) Nfl
Var [vu I starting at oJ= ~~Pu-1~3 tl+2exP[-2N(kPu-1)/k2Pu(1-Pu)]

:::
Nk 2 p (l-p)

u u
. (kp -1) 3

u

and the normalized variance

:::
N(kp -1)

u

-227-

=
k(l-p)

u

(B.19)

(B.20)

In the synchronized case, on the other hand,

= 1 fexP[2N(l-kPs)/k2Ps(1-Ps)] - 1

l-ko 2(l-kp)/k 2p (l-p) s s s s

(B.2l)

N, while which grows nearly exponentially with

[k 2 P s (l-p s) 1 2
var[vslstarting at 0] = - -

4 (l-kp.) If s
eXp~N{I-kPS)/k2pS(l-PS~

(B.22)

so that

s
Var{v) = I

E2(v)
S

(B. 23)

From B.20, we see that for detection of unsynchronized operation,

the normalized variance is very small for kiN, so that the mode

is quite peaked. On the other hand, from (B.23), it follows, that

for a false alarm when the system is synchronized, the mode is

quite broad, reminiscent of either a Poisson or a Rayleign dis-

tribution.

The basic assumption which justifies the continuous model is

that k/N«l. If this is not the case, the asymptotic formulas

lose their validity and the numerical exact solution is required.

-228-

Application to Loss-of-Phase-Lock Indicators

As an application of the above techniques to other than

decoder synchronization, consider an unmodulated carrier or

subcarrier tracking loop. A convenient measure of loop per-

formance is the sign of cos ~(t) where ~(t) is the instantaneous

phase error, and cos ¢(t) can be generated by multiplying the

received signal by the quadrature vco output and low pass fil­

tering. Thus cos ~(t»O implies I~(t) I < n/2, while cos ~(t)<O

implies n/2 < I ~ (t) I < n.

Now suppose we sample this signal periodically, but with a

sufficiently long period that successive samples are nearly in-

dependent. The counter contents are incremented by k-l when-

ever the sample is negative and reduced by 1 whenever the sample

is positive. When the phase-locked loop is properly tracking,

the phase error probability density function (Ref. 3) is given

exactly for a first-order loop, and approximately for higher

order loops, by the expression

where a = 5/NOBL

acos~ e
2nI (a) o

, -n < ~ < n

When the loop is out of lock, on the other hand

1 p (~) =
u

, -n < n

-229-

Thus, clearly, using the notation of the previous sections,

P = 2£
u Tr/2

while

p (~) d~ s

and is given for various values of a in Table 1, which is extracte

from Figure 4.7 of Reference 3. Thus even at 0 db, Pu > 2ps so

that the approach seems practically feasible.

a Ps

6 db <.001
3 db .09
2 db .13

.\
1 db .18
o db .22

Table B.l Ps as a function of signal-to-noise ratio

-230-

REFERENCES

1. W. Feller, "An Introduction to Probability Theory and Its
Application," Wiley, 1950.

2. D. A. Darling and A. J. F. Siegert, "The First Passage Pro­
blem and a Continuous Markov Process," Annals of
Mathematical Statistics, Vol. 24, pp. 624-639, 1953.

3. A. J. Viterbi, "Principles of Coherent Communication",
McGraw-Hill, 1966.

-231-

APPENDIX C

OVerflow Probability in a Hybrid System

The overall overflow probability of the system for an

lnltlallyeapty buffer is

Po • p. • Pr(overflow in a deleted frame)

I ~ (more than B
• p. ~ prdeleted frames

sequential deCOding) P (K)
lasts K frame times s

in Ie trial.

+ Pr (Ie>D)} (C.l)

where P (!C).pr(sequential decoding of deleted frame)
s lasts exactly K frame times

We have established in Section 5.3 that the computational

distribution for deleted frames is upper bounded by the Pareto

distribution divided by the deletion rate p$.

Thus for 1000 bit frame, we shall use

pr{K~J) < 10 3

- p (l03JlJ)P
$

and consequently*

Ps{K) <
10 3 (l-p)

(C.2) - p lJPKP
$

Since frames are deleted independently for a memory less channel

*This is the only strictly valid bound which we can obtain from a
bound on the cumulative distribution. Also this is the only upper
bound which we shall use whose tightness is questionable. All
further bounds are very tight, and all approximations can be changed
into tight upper bounds by including appropriate additional terms
which approach zero for very large buffer sizes.

-232-

=

p (more than.B I sequential deCOding)
r deleted frames lasts K frame times

< ...
KH(B/K) B(l)K-B

e p~ -p~ (C. 3)

The inequality is a Chernoff bound for the binomial distribution

provided B/K > 2p~ and

H(Y) = -ytnY-(l-Y) tn(l-Y)

Thus inserting C.2 and C.3 in Col, we obtain for the overall

overflow (error) probability

~. t feKH(B/K)

K;:sB+ It {2 'I1'B

..

pp B 103(1-P) }+. 10 3 (1-p)

exp BrXH(1/x)+(X-1)tn(l-p~tl

(C 0 4)

where x = K/B and BID » 2P~

Since K ranges over the integers and B>10, x increases in increments

of I/B<Ool. Thus, we may accurately approximate the sum by an

integral and obtain

<
10 3 (1-p)

lJP

B ID/B] p~ _1 B- (1)-(X-1)B -y(x-1)
~ (2'11') ~ x P 1-- e dx
BP+~ I x

(Co 5)

where y = -Btn(l-p~) > 0 (C. 6)

';'233-

Using the tight inequality,

we obtain,

(
l)- (x-l) 1--x ~ e

Po -yx] e dx

The integral is just the incomplete gamma function which is

closely bounded by taking the complete integral

Po <

Now substituting ~.~ for y and noting that

BB-p+l

we obtain

Po
l03(l-P) [1

--ll-P-- DP

Finally using St.i.rling's formula

-234-

(c. 7)

(C. 8)

B-p '-p we obtain, using (l-p/B) . ,-e since B»p,

or since
BP4»/2

e

+ (e BPcp/2 ~
Bp cp J

provided B/D > 2p cp ' the first term being due to delay line over­

flows and the second to buffer overflows_ Thus the buffer size is

effectively increased by the factor l/pcp_

-235-

