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1.0 INTRODUCTION 

This report presents the results of a study of coding systems 

for high data rate links. The emphasis throughout is on convolu­

tional codes. This is because high performance decoders exist 

for this class of codp.s, Hhich are practical to implement at multi­

megabit data rates. 

The bit error rate, in the 10- 3 to 10- 8 range; vS.Eb/No 

performance of many coding system configurations has been studied, 

through simulation and analytical techniques. Special attention 

has been naid to the sensitivity of performance to decoder para­

meters '"hich affected complexity and cost significantly. These 

dp.coder parameters include 

a) Code constraint length 

b) Code ratc! (bandHidth expansion) 

c) Data rate 

d) Speed factor and buffer size (sequential decoding) 

e) Path memory length, metric representation, and decision 

output selection (Viterbi decoding) 

f) Receiver quantization. 

A technique for obtaining and maintaining node synchr6nization 

and resolving phase ambiguities has been devised and analyzed. 

This technique is quite simple to implement. Simulation indicates 

that performance is more than adequate for the systems under con­

sideration. 
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The report is divided into four major sections, plus the 

introduction. Each section deals with a distinct type of decoder 

or combination of decoders. Section 2 is concerned with viterbi 

decoders. The important tradeoffs between performance and com­

plexity are discussed here. The section concludes with a dis­

cussion of several methods of implementing Viterbi decoders at 

vaLious data rates, and their relative complexity and cost. 

Section 3 treats sequential decoding. Several techniques 

which either simplify or improve the performance of the Fano 

algorithm are discussed and evaluated. The implementation sub­

section emphasizes high speed rate 1/2, hard decision sequential 

decoding. 

Section 4 evaluates a simple scheme for providing different 

levels of coding for data with different error rate requirements. 

Finally, an interesting method of predecoding high rate 

received data using a Viterbi decoder, and shunting occasional 

difficult data to a sequential decoder, is discussed in Section 

5. This technique holds out the possibility of efficiently de­

coding very high rate data using a relatively slow sequential 

decoder. 
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2.0 VITERBI DECODER STUDY 

2.1 Introduction and Fundamentals 

2.1.1 Code Representation. A convolutional encoder is a 

linear finite-state machine consisting of a K-stage shift regis-

ter and n linear algebraic function generators. The input data, 

which is usually though not necessarily binary, is shifted along 

the register b bits at a time. An example with K=3, n=2, b=l 

is shown in Fig. 2.1. 

010001 ••• 

001101010010 ••• ~( __ ~t __ __ 
code sequence ~ 

011100 ••• 

011010 ••• 
~---data sequence 

Fig. 2.1 Convolutional Coder for K=3, n=2, b=l 

The binary input data and output code sequences are indicated on 

the diagram. The first three input bits, 0, 1, and 1, generate 

the code outputs 00, 11, and 01 respectively. We shall pursue 

this example to develop various representations of convolutional 

codes and their properties. The techniques thus developed will 

then be shown to generalize directly to any convolutional code. 
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It is traditional and instructive to exhibit a convolutional 

code by means of a tree diagram as shown in Figure 2.'2. 

00 a 00 
11 

00 a 10 
11 b 01 

00 11 
10 c 

00 11 b 

a ::: [00 I 

b ::: 
1 01 1 

c ::: ern 
01 d 01 

I~ 00 00 

d ::: 1111 

11 a 11 
10 c 10 

00 b 01 11 
11 01 c 
00 01 d 

10 d 
01 
10 
00 00 a 
I~ 11 a 

11 b 10 
01 

10 
11 

, 0 ~ 00 
00 b 

01 d 01 
10 

11 00 11 a 11 
01 c 

10 00 b 
01 01 

01 c 
11 
00 

10 d 01 10 d 1 10 

Figure 2.2. Tree Code Representation for Coder 
of Figure 2.1. 
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If the first input bit is a zero the code symbols are those 

shown on the first upper branch, while if it is a one the output 

code symbols are those shown on the first lower branch. Similarly, 

if the second input bit is a zero we trace the tree diagram to the 

next upper branch, while if it is a one we trace the diagram down­

ward. In this manner all thirty-two possible outputs for the 

first five inputs may be traced. 

From the diagram it also becomes clear that after the first 

three branches the structure becomes repetitive. In fact, we 

readily recognize that beyond the third branch the code symbols 

on branches emanating from the two nodes labelled "a n are iden­

tical, and similarly for all correspondingly labelled pairs of 

nodes. The reason for this is obvious from examination of the 

encoder. As the fourth input bit enters the coder at the right, 

the first data bit falls off on the left end and no longer influ­

ences the output code symbols. Consequently, the data sequences 

lOOxy ••• and OOOxy ••• generate the same code symbols after the 

third branch and, as is shown in the tree diagram, both nodes 

labelled "a" can be joined together. 

This leads to redrawing the tree diagram as shown in Figure 

2.3. This has been called a trellis diagram since a trellis is a 

tree-like structure with remerging branches. We adopt the 

convention here that code branches produced by a "zero" input 

bit are shown as solid lines and code branches produced by a 

"one" input bit are shown dashed. 
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00 

" , 
" 11 

"-

" 
a - [@J 

b sa 1011 

c • 1101 

d - 1111 

00 

" "- ,11' 

"-

Figure 2.3 

00 a 00 a 00 

Trellis Code Representation for 
Coder of Figure 2.1. 

The completely repetitive structure of the trellis diagram 

suggests a further reduction in the representation of the" code 

to the state-diagram of Figure 2.4. The ·states· of the state-

diagram are labelled according to the nodes of the trellis 

diagram. However, since the states correspond merely to the last 

two inpu~ bits to the coder we may use these bits to denote the 

nodes or states of this diagram. 
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Fiqure 2.4. State-Diaqram Representation for 
Coder of Fiqure 2.1. 

We observe finally that the state-diagram can be drawn 

directly by observinq the finite-state machine properties of the 

encoder and particularly the fact that a four-state directed 

qraph can be used to represent uniquely the input-output relation 

of the eiqht-state machine. For the nodes represent the previous 

two bits while the present bit is indicated by the transition 

branch, for example, if the encoder (machine) contains 011, 
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this is represented in the diagram by the transition from state 

b = 01 to state d = 11 and the corresponding branch indicates the 

code symbol outputs 01. 

2.1.2 The Viterbi Decoding Algorithm for the Binary Sym­

metric Channel (Hard Decision Outputs of a Gaussian Channel). On 

a binary symmetric channel, errors which transform a channel code 

symbol 0 to 1 or 1 to 0 are assumed to occur independently from 

symbol to symbol with probability p. If all input (message) 

sequences are equally likely, the decoder which minimizes the 

overall error probability for any code, block or convolutional, 

is one which examines the error-corrupted received sequence 

y y ••• y .••• and chooses the data sequence corresponding to the 
1 2 J 

transmitted code sequence X
1

X
2 
••• X j ••• which is closest to the 

received sequence in the sense of Hamming distance: that is the 

transmitted sequence which differs from the received sequence in 

the minimum number of symbols. 

Referring first to the tree diagram, this implies that we 

should choose that path in the tree whose code sequence differs 

in the minimum number of symbols from the received sequence. 

However, recognizing that the transmitted code branches remerge 

continually, we may equally limit our choice to the possible paths 

in the trellis diagram of Figure 2.3. Examination of this dia­

gram indicates that it is unnecessary to consider the entire 

received sequence (which conceivably could be thousands or 

millions of symbols in length) at one time in deciding upon the 
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most likely (minimum distance) transmitted sequence. In parti­

cular, immediately after the third branch we may determine which 

of the t,.,o paths leading to node or state "a" is more likely to 

have been sent. For example, if 010001 is received, it is clear 

that this is at distance 2 from 000000 while it is at distance 

3 from 111011 and consequently we may exclude the lower path into 

node "a". For, no matter what the subsequent received symbols 

will be, they will effect the distances only over subsequent 

branches after these two paths have remerged and consequently in 

exactly the same way. The same can be said for pairs of paths 

merging at the other three nodes after the third branch. We 

shall refer to the minimum distance path of the two paths merging 

at a given node as the "survivor". Thus it is necessary only to 

remember which was the minimum distance path from the received 

sequence (or survivor) at each node, as well as the value of that 

minimum distance. This is necessary because at the next node 

level we must compare the two branches merging at each node level, 

which were survivors at the previous level for different nodes1 

e.g., the comparison at node "an after the fourth branch is 

among the survivors of comparison at nodes "a" and "c n after 

the third branch. For example, if the received sequence over 

the first four branches is 01000111, the survivor at the third 

node level for node "a" is 000000 with distance 2 and at node 

"c" it is 110101, also with distance 2. In going from the third 

node level to the fourth the received sequence agrees precisely 

with the survivor from "c" but has distance 2 from the survivor 

-9-



from "a". Hence the survivor at node "a" of the fourth level is 

the data sequence 1100 which produced the code sequence 11010111 

which is at (minimum) distance 2 from the received sequence. 

In this way, we may proceed through the received sequence 

and at each step preserve one surviving path and its distance 

from the received sequence, which is more generally called metric. 

The only difficulty which may arise is the possibility that in a 

given comparison between merging paths, the distances or metrics 

are identical. Then we may simply flip a coin as is done for 

block code words at equal distances from the received sequence. 

For even if we preserved both of the equally valid contenders, 

further received symbols would affect both metrics in exactly the 

same way and thus not further influence our choice. 

This decoding algorithm was first proposed by Viterbi (Ref. 8) 

in the more general context of arbitrary memoryless channels. 

Another description of the algorithm can be obtained from the 

state-diagram representation of Figure 2.4. Suppose we sought 

that path around the directed state-diagram, arriving at node 

"a" after the kth transition, whose code symbols are at a minimum 

distance from the received sequence. But clearly this minimum 

distance path to node "a" at time k can be only one of two can­

didates: the minimum distance path to node "a" at time k-l and 

the minimum distance path to node "c" at time k-l. The compari­

son is performed by adding the new distance accumulated in the kth 

transition by each of these paths to their minimum distances 

(metrics) at time k-l. 
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It appears thus that the state-diagram also represents a 

system diagram for this decoder. With each node or state, ,~e 

associate a storage register which remembers the minimum distance 

path into the state after each transition as well as a metric 

register which remembers its (minimum) distance from the received 

sequence. Furthermore, comparjsons are made at each step be­

tween the two paths which lead into each node. Thus four com­

parators must also be provided. 

We defer the question of truncating the trellis and thereby 

making a final decision on all bits beyond L branches prior to 

the given branch until we have some additional properties of con­

volutional codes. 

2.1.3 Distance Properties of Convolutional Codes. We con­

tinue to pursue the example of Figure 2.1 for the sake of clarity; 

in the next section, we shall easily generalize results. It is 

well known that convolutional codes are group codes. Thus there 

is no loss in generality in computing the distance from the all 

zeros code word to all the other code words, for this set of dis­

tances is the same as the set of distances from any specific code­

word to all the others. 

For this purpose, we may again use either the trellis diagram 

or the state-diagram. We first of all redraw the trellis diagram 

in Figure 2.5 labelling the branches according to their distances 

from the all zeros path. Now consider all the paths that merge 

with the all zeros for the first time at some arbitrary node "j". 

-11-



o o 

\ 
\ 

\ 

\ 
\ 

o o 

Figure 2.5 Trellis Diagram Labelled with 
Distances from all Zeros Path 

o 

\ 
\ 

-~ 

It is seen from the diagram that of these paths, there will be 

just one path at distance 5 from the all zeros path and this 

diverged from it three branches back. Similarly there are two 

at distance 6 from it; one which diverged 4 branches back and the 

other which diverged 5 branches back, and so forth. We note also 

that the input bits for distance 5 path are 00 •• 0100 and- thus 

differ in only one input bit from the all zeros, while the 

distance 6 paths are 00 •• 01100 and 00 •• 010100 and thus differs 

in 2 input bits from the all zeros path. The minimum distance, 

sometimes called the minimum "free" distance, among all paths 

is thus seen to be 5. This implies that any pair of channel 

errors can be corrected, for two errors will cause the received 
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sequence to be at distance 2 from the transmitted (correct) 

sequence but it will be at least at distance 3 from any other 

possible code sequence. It appears thus that the distance of 

all paths from the all zeros (or any arbitrary) path can be 

so determined from the trellis diagram. 

2.1.4 Generalization to Arbitrary Convolutional Codes. The 

generalization of these techniques to arbitrary binary-tree (b=l) 

convolutional codes is immediate. That is, a coder with a K 

stage shift register and n modulo-two adders will produce a trel­

lis or state-diagram with 2K- l nodes or states and each branch 

will contain "n" code symbols. 

1 
R = -n 

The rate of this code is then 

bits 
code symbol 

The example pursued in the previous sections had rate R=1/2. The 

primary characteristic of the binary-tree codes is that only two 

branches exit from and enter each node. 

If rates other than lin are desired, we must make b>l, where 

b is the number of bits shifted into the register at one time. An 

example for K=2, b=2, n=3 and consequently rate R=2/3 is shown 

in Figure 2.6 and its state-diagram is shown in Figure 2.7. 

It differs from the binary-tree codes only in that each node 

is connected to four other nodes, and for general "b" , it will 

b be connected to 2 nodes. Still all the preceding techniques 

including the trellis and state-diagram analysis are still 

applicable. It must be noted, however, that the minimum distance 
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Fig. 2.7 State-Diagram for Code of Fig. 2.6. 
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decoder must make comparisons among all the paths entering 

each node at each level of the trellis and select one survivor 

out of four (or out of 2b in general). 

2.1.5 Systematic, Nonsystematic, and Catastrophic Convolu­

tional Codes. The term 'syst'ernat'ic convolutional code refers 

to a code on each of whose branches one of the code symbols is 

just the data bit generating that branch. Thus a systematic 

coder will have its stages connected to only n-l adders, the nth 

being replaced by a direct line from the first stage to the com­

mutator. Figure 2.8 shows an R.l/2 systematic coder for K-3. 

COd .. :-4( __ _ data 

---.., 11 

a b 

Figure 2.8 Systematic Convolutional Coder 
for KaJ, R-l/2 

01 

c 
10 

It is well known that for group block codes, any nonsys­

tematic code can be transformed into a systematic code which 

performs exactly as well. This is not the case for convolutional 

codes. The reason for this is that the performance of a code 
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on any channel depends largely upon the relative distance between 

codewords and particularly on the minimum free distaace d, which 

is the minimum number of ones of any closed path through node 

"a". Eliminating one of the adders results in a reduction of "d". 

For example, the maximum minimum free distance systematic code 

for K=3 is that of Figure 2.8 and this has d=4, while the nonsys-

tematic K=3 code of Figure 1.1 has minimum free distance d=S. 

Table 2.1 shows the maximum minimum free distance for systematic 

and nonsystematic codes for K=2 through S. 

Maximum tHnimum Free Distance 

--
K Systematic Nonsystematic 

2 3 3 

3 4 5 

4 4 6 
._-_ ... 

5 I 5 7 
- ------------ - -.---

Table 2.1 Comparison of Systematic and 
Nonsystematic R=1/2 Codes 

For large constraint lengths the results are even more widely 

separated. 

A catastrophic error is defined as the event that a finite 

number of channel symbol errors causes an infinite number of data 

bit errors to be decoded. Massey and Sain (Ref. 9) have shown 

that a necessary and sufficient condition for a convolutional 
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code to produce eatastrophic errors is that all of the adders 

have tap sequences, represented as polynomials, with a cornmon 

factor. 

In terms of the state-diagram it is easily seen that catas-

trophic errors can occur if, and only if, any closed loop path 

in the diagram has a zero weight (i.e., the exponent of D for 

the loop path is zero). To illustrate this, we consider the 

example of Figure 2.9. 

, ! 
11 

a b 

Figure 2.9 Coder Displaying Catastrophic 
Error Propagation 

a 

Assuming that the all zeros is the correct path, the incorrect 

path a b d d d c a has exactly 6 ones, no matter how many 

01 

a 

tiMes we go around the self loop a. Thus, for a BSC, for example, 

four channel errors may cause us to choose this incorrect path 

or consequently make an arbitrarily large number of bit errors 

(equal to two plus the number of times the self loop is traversed) . 
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We observe also that for binary-tree (R=l/n) codes, if each 

adder of the coder has an even number of connections, then the 

self loop corresponding to the all ones (data) state will have 

zero weight and consequently the code will be catastrophic. 

The only advanfage of a systematic code is th~t it can never 

be catastrophic, since each closed loop must contain at least 

one branch generated by a nonzero data bit and thus having a 

nonzero code symbol. Still, it can be shown that only a small 

n 
fraction of nonsystematic codes is catastrophic (in fact, 1/(2 -1) 

for binary-tree R=l/n codes). We note further that if catastrophic 

errors are ignored, nonsystematic codes with even smaller free 

distance than those of Table 2.1 exist. 

2.1.6 Generalization of Viterbi Decoder to the Additive 

White Gaussian Noise Channel. Figure 2.10 exhibits a communica-

tion system employing a convolutional code. The convolutional 

encoder is precisely the device studied in the preceding sections. 

Dat~ 
Sequence 

------>- Convolutional 
Encoder 

_____ Code 
Sequence 

X2 ••• x .... 
- - J 

----------------------------------
, ,·----ri 

l ___ ~II r·lemoryless r Received - ~ ------=-----------~~ Decoder Channel Sequence ~ ______ __ 
(InclUding! 

I Hodem) 
y 1 ' ~J' 2 ••• y .••• 
- - -J 

Fig. 2.10 Communi_cati0n System Employing 
Convolutional Codes 
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The data sequence is generally binary (a.=O or 1) and the code 
) 

sequence is divided into subsequences where x. represents the n 
... ) 

code symbols generated just after the input bit a. enters the 
) 

coder, that is, the symbols of the jth branch. In terms of the 

example of Fig. 1.1, a3=1 and x3=Ol. The channel output or re-... 
ceived sequence is similarly denoted. y. represents the n symbols 

... ) 

received when the n code symbols of x. were transmitted. This ... ) 
model includes tIle BSC .. Therein the ~j are binary n-vectors 

each of whose symbols differs from the corresponding symbol of 

x. with probability p and is identical to it with probability 
-J 
I-p. 

For completely general channels it is well known that if all 

input data sequences are equally likely, the decoder which mini-

mizes the error probability is one which compares the conditional 

probabilities, also called likelihood functions, p(ll~m), where l 

is the overall received sequence and ~m is one of the possible 

transmitted sequences, and decides in favor of the maximum. This 

is called a maximum likelihood decoder. The likelihood functions 

are given or computed from the specifications of the channel. 

Generally it is more convenient to compare the quantities 

Inp(ll~m ), called the log-likelihood functions, and the result 

is unaltered since the logarithm is a monotonic function of its 

(always positive) argument. It is easily shown that for the Bse 

maximizing the log-likelihood function is equivalent to mini-

mizing the Hamming distance, as we have done in previous sections. 

We now consider the practical channel of primary interest: 

-19-



namely, the additive white Gaussian noise (AWGN) channel with 

biphase PSK modulation. The modulator and optimum demodulator 

(corre1ator or integrate-and dump filter) for this channel are 

shown in Fig. 2.11. 

PSK 
Modulator 

n(t) white Gaussian noise 

Fig. 2.11 

Corre1ator 
Demodulator Y11Y12 ••• YlnY21 ••• Y2n ••• 

Modem for Additive White Gaussian 
Noise PSK Modulated Memory1ess Channel 

We use the notation that xjk is the kth code symbol for the jth 

branch. Each binary symbol (which we take here for convenience 

to be ±1) modulates the carrier by ± IT/2 radians for T seconds. 

The transmission rate is, therefore, l/T symbols/second or b/nT= 

R/T bits/second. €s is the energy transmitted for each symbol. 

The energy per bit is, therefore, Eb = ES/R. The white Gaussian 

noise is a zero mean random process of one-sided spectral density 

No watts/Hz, which affects each symbol independently. It is 
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readily shown that the channel output symbol Y
jk 

is a Gaussian 
• 

random variable whose mean is ~ x'k s ) (i.e., + I£; 'if x jk ="H 

and -~ if x'k =-1) and whose variance is No/2. s ) Thus the condi-

tional probability density (or likelihood) function of Yjk given 

xjk is 

p(Yjklxjk ) = exp [-(Yjk - ~ Xjk )2/No ] 

Iii'N; 

The likelihood function for the jth branch of a particular code 

path is x. (m) 
. OW] 

( 
(m» n ( (m» 

p y,lx, = n p Y'klx'k 
-) OW) k=l J ) 

since each symbol is affected independently by the white Gaussian 

noise and thus the log-likelihood function for the jth branch is 
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n 

Inp (YoIX o (m») = L Inp ( Y ok I x ok (m») .. J .. J J ) 
k=l 

n 

= -1 L YOk-~xok 
(m) 2 - ~£'n][/No 

No 
) s) 

k=l 

n n 

= 2~ L (m) L (m) 2 s YjkX jk - £ xO k 
No k=l s ) ~ 

No k=l 

n 2 1 -1 L Yjk 2" £'nIl/N o 
N 

0 k=l 

n 

= C L YOkxok 
(m) 

D 
) )' 

k=l 

where C and D arc independent of m, where we have used the fact 

that (m) 2 1. x jk = Similarly, the log-likelihood function 

for any path is the sum of the log-likelihood functions for each 

of its branches. 

t#' have thu::; ShO\A1O that the maximum likelihood decoder for 

the memoryless AWGN biphase modulated channel is one which forms 

the inner product between the received (real number) sequence 

and the code sequence (consisting of ± l's) and chooses the path 

corresponding to the greatest~ 

-22-



Thus the metric for this channel is the inner product as contrast-

ed with the distance* metric used for the BSC. 

For convolutional codes the structure of the code paths was 

described in sections 2.1.1 - 2.14. In Section 2.1.2 the optimum 

decoder was derived for the BSC. It now becomes clear that if we 

substitute the inner product metriC~jkxjk (m) for the distance 

metric ~jk (m), used for the BSC, all the arguments used in 

Section 2.1.2 for the latter apply equally to this Gaussian Channel. 

In particular, the Viterbi decoder has a block diagram represented 

by the code state-diagram. At step j the stored metric for each 

state (which is the maximum of the metrics of all the paths lead-

ing to this state at this time) are augmented by the branch metrics 

for branches emanating from this state. The comparisons are per­

formed among all pairs of (or in general sets of 2b ) branches 

entering each state and the maxima are selected as the new most 

likely paths. The history (input data) of each new survivor must 

again be stored and the decoder is now ready for step j+l. 

2.1.7 Metric Quantization, Path Memory Truncation, and Other 

System Considerations. As we have just shown, the optimum metric 

for the biphase modulated AWGN channel is the inner product (or 

correlation) metric. However, since the y .. are real numbers, a 
~J 

practical digital implementation requires quantization prior to 

* Actually it is easily shown that maximizing an inner product is 
equivalent to minimizing the Euclidean distance between the cor­
responding vectors. 

-23-



forming the metric. 

In particular, if we quantize the y .. to Q levels symmetric 
~J 

about zero, then the biphase AWGN channel is converted to a binary-

input Q-output symmetric channel. Generally we choose Q=2q so 

that each received symbol can be represented by a "q" bit word. 

The optimum metric in this case is the log-likelihood function of 

this new binary-input Q-output channel. However, it has been 

found by simulation that nearly equivalent performance is obtained 

if the inner-product metric is used ,·lith Yij replaced by Q(Yij ), 

where Q(Yij ) is an integer between 0 and Q-l corresponding to the 

quantizer output level for an input Yij. In fact, extensive 

simulation has shown that using this metric with 8-level quanti-

zation causes a performance degradation which is equivalent to a 

reduction of Eb/No by less than 1/4 db for any given error 

probability level. On the other hand, quantization to 2 levels 

(which amounts to reducing the AWGN to a BSC) causes an effect-

ive reduction of Eb/No by approximately 2 db. 

Another major problem \"hich arises in the implementation of 

a Viterbi decoder is the length of the path history which must 

be stored. In our previolls discussion ,,,e ignored this important 

point and therefore implicitly assumed that all past data would 

be stored. ~ final decision can be made by forcing the coder 

into a kno\'J'n (all zeros) state, but this is totally impractical 

for long data sequences, for it requires storage of the entire 

~::cellis memory for ea.ch state. Suppose '."e truncate the pat.h 

memories after L bits (branches) h.ave been accumulated, by 



comparing all 2K metrics for a maximum and deciding on the bit 

corresponding to that path (out of 2K) with the highest metric 

1. branches forward. If L is several times as large as K, the 

additional bit errors introduced in this way are very few. It 

can be shmvn that the additional error probability due to path 

truncation, based on the largest path metric L branches beyond 

where the decision is to be made, is of the order of a block 

coding error for a code of block length L bits. Both theory and 

simulation then indicate that by making L four to five times as 

large as the code constraint length K, we can ensure that such 

additional errors have only a slight effect on the overall bit 

error probahility. 

Of course, basing the decision upon the maximum metric L 

branches forward may require a costly implementation to compare 

all 2K state metrics. Other decision techniques, based on ma­

jority polling and metric overflow monitoring, are much less 

costly and appear to yield the same or better performance when 

L is increased slightly. 

Cost and complexity of implementation of a Viterbi decoder 

depends strongly on constraint length, K, quantization, and 

speed. It depends much less strongly on path memory size, L, 

and the path truncation decision technique. In particular, the 

cost rises exponentially with K, but of course, the performance 

also improves with increasing K. Typically for a rate 1/2 code 

on an 8-level quantized AWGN, the required Eb/N
o 

for PB = 10- 5 

is reduced by about 0.4 db per unit increase of K in the range 
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between 3 and 8. The cost of increasing L is only linear, but it 

is not justified on the basis of performance beyond L = 5K. The 

cost of finer quantization depends strongly on the data speed 

requirements. The performance improvement from 2 level to 8 level 

quantization is nearly 2 db in Eb/No but there is less than 0.25 

db to be gained by using more than 8 levels. 

For sufficiently low data speeds, all of the metric calcula­

tions and comparisons can be done serially, thus significantly 

reducing cost and complexity. At very high speeds, where digital 

gate speeds are only a few times faster than the received symbol 

rates, all metric computations and comparisons must be made in 

parallel. In intermediate speed regions, serial-parallel combina­

tions may be possible. 

Detailed consideration of Viterbi decoder implementation and 

system designs will be treated in Section 2.4. 

2.2 Rate 1/2 Convolutional Codes and Viterbi Decoders. In 

this section, the performance of rate 1/2 Viterbi decoders is 

examined in detail. Bit error rate vs. Eb/No obtained both by 

simulations and analysis are presented for optimum codes of con­

straint lengths 3 through 8. Particular attention is paid to the 

sensitivity of performance to the decoder parameters which in­

fluence complexity and cost. Also of interest is the ability of 

a Viterbi decoder to withstand demodulator imperfections, and its 

usefulness in communicating system quality information. 

Computer simulation of Viterbi decoders is a useful technique 

for evaluating performance down to a bit error rate of about lO-~ 
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to 10- 5
, depending on code constraint length .. Simulations at 

lower error rates require' prohibitively long computer rW1S to 

obtain meaningful data. Fortunately, an upper bound on both 

event and bit error rates has been derived wnich is very tight 
, , 

for error rates of about 10- 5 and lower. A combination of the 

simulations and the numerically evaluated upper bound presented 

here provides a complete picture of Viterbi decoder performance 

over a wide range of error ratas. 

,." /2.2.1 GOod'Convolutional Codes. One obvious criterion for 

selecting codes is bit error probability. Unfortunately, obtain-" 

ing bit error probability through simulation is too time consuming 

to be used as a method of sifting through a large number of con-

volutional codes. lI. much more useful measure of a code is its 

minim~~ free distance. As defined previously, the free distance 

between two code wordg is the Hamming distance between them from 

the state in the trellis at which they diverge (the point at 

which the information bits begin to differ), to the state where 

they remerge (after K-l identical information bits). A set of 

large free distances between the correct code path and the 

competing incorrect ?aths is desirable with Viterbi decoding. 

This is because the greater the free distance, the more channel 

errors must occur in order for an incorrect path to look more 

likely than the correct path. 

The minimum free distan~e, d f , is the smallest value of 

free distance between the correct path and any other path. Since 
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thc'codesunder consideration are linea~ cod~;', the setoE 

distances from any codeword to all other codewords is the same 

as the set of distances from the all zeros codeword to all other 

code~ords.,;Thus, d
f 

is the min~mumof the w~ightof al~ code':" 

words from the point at whic~ they diverge from;un~il the "point: 

at\~hich they remerge t~ .. the all zeros path ., 

always, the minimum weight path corresponds to an information 

sequence with a single 1 in it. The .codeword associated with 

this'sequence diverges from the all zeros· path where the infor-

mation 1 occurs '. and remerges K-l branches later. This,. of 

course, is the shortest length over which two distinct paths can 

be dive rqed. 

Using the algebraic prop'!rties of linear group. codes r an 

upper bound on the minimum free distance of a convolutional code, 

as a function of constraint length, has been found 

For rate lin nonsystematic codes, the bound is 

d", < min 
.L h 

h-l 2 
2h_l 

[ (K+h-l)n ] 

{Ref. 1, 2f. 

'l'his hound provides a target value of d
f 

which can be used when 

searching for good codes. If a code is found with a d
f 

which 

satisfies the bound with equality, it is immediately known that no 

code exists with a larger minimum distance. Of course, maximiz-

ing minimum fre~ distance does not necessarily minimize decoder 

error probability. The number of codey1ords having the minimum 

distanco, as well as the di~tribution of codewordsat distances 
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somewhat greater than d f , are also important. After preselecting 

codes based on minimum free distance, these other factors are 

useful in final code selection. Simulations and numerical code 

evaluation indicates that choosing codes with maximum minimum 

free distance, taking into account the number of paths at this 

distance, and if necessary, slightly larger distances yields 

codes with minimum error probabilities with Viterbi decoding. 

The optimum rate 1/2 codes for K=3 through 8 were found by 

Odenwalder (Ref. 3). They are tabulated in Table 2.2.1. For 

each constraint length the table shows the optimum code gener­

ators, the actual d f for the code, the number of errors ne in 

all of the codewords at the minimum distance, and the upper bound 

value on minimum free distance d f *. 

2.2.2 Numerical Code Performance Bound. One of the two 

principal tools used in evaluating the performance of convolu­

tional codes in this study has been an upper bound on error 

probability related to the convolutional code transfer function. 

The bound is extremely tight for high Eb/No (low decoder error 

rates) where computer simulation is impractical, due to the 

prohibitively long times required to collect significant data. 

It has been shown (Refs 5,6) that a union bound on the per­

formance of a convolutional code on memoryless channels can be 

obtained from the directed-graph state diagram of the coder. 

For example, the optimum constraint length K=3, rate 1/2 coder 

is shown in Figure 2.2.1. The states correspond to the con-
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, 

K 
Code d

f Generators ne d * f 

3 111 5 1 5 101 

4 1111 6 2 6 1101 

- _.-. --

5 11101 
7 4 8 10011 

---

6 111011 
8 6 9 110001 

- -

7 
1111001 10 36 10 1011011 

.".---. 

8 11111001 10 2 10 10100111 
.. 

Table 2.2.1 Optimum Rate 1/2 Codes. d f is 
the code minimum free distance, n Is the 
number of bit errors in paths at aistance 
d f , d f * is the upper bound on minimum free 
dIstance. 
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Fig. 2.2.1 Code and State Diagrams for K-3 Code 
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tents of all but the first stage of the coder register, when a 

new information bit has just entered the first stage. The 

exponent of 0(0, 1, or 2) is the weight of the (two symbol) 

vector output at this time, and the exponent of N(O or 1) indi-

cates whether a 0 or 1 information bit has just entered the coder. 

Regarding the all zeros node as both the input and output of 

the graph, the transfer function of any path through the tree is 

defined as the product of the branch transfer functions along 

that path. For example, the transfer function of the path 

corresponding to the information sequence 10100 is 

= (2.2.1) 

The transfer function of the graph is the sum of the transfer 

function of all paths starting and ending in the all zeros state. 

The general form of this transfer function is 

T (N, D) 
d 

= D ff 
1 

+ ••• + 

-t-- ( 2 • 2 • 2 ) 

Here d
f 

is the minimum free distance of the code. Notice that 

the exponent in the path transfer function (Eq. 2.2.1) is the 

weight of the code symbols on the particular path through the 

graph of Fig. 2.2.1. Therefore, with N=l, the terms in the 

transfer function T(l,D) are of the form 
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where fi+l(l) is just the number of paths at distance df+i. 

For the unquantized, additive white Gaussian noise channel 

with PSK modulation, the error probability betwe~n the all zeros 

(correct) path, and another path which diverges from and returns 

to the all zeros path, is bounded by (Ref. 4) 

where d is the weight of the competing path. Es is the code 

symbol energy and No is the noise spectral density. For example, 

if the competing path corresponded to the information sequence 

10100, the bound is obtained from Eq. (2.2.1) 

P < TIOIOO 
2 N=l, D=exp(-E IN ) s 0 

Likewise, a union bound on first event error probability due to 

all paths competing with the all zeros path (all paths through 

the graph in Fig. 2.2.1) is 

PE < T(N,D) 
(2.2.3) 

In order to get a bound on bit error probability, we note 

that the exponent of N in a path transfer function is the number 
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of information lis (errors) on that path. A union bound on bit 

error probability would be obtained if the path transfer function 

were weighted by the number of bit errors on the path. One 

simple way of doing this is to take the derivative of T(N,D) with 

respect to N. This brings down the exponents of N the number 

of bit errors on a path -- into the coefficients. The bound on 

bit error probability is therefore 

P
B 

< dT(N,D) 
dN 

(2.2.4) 

For the Gaussian channel these bounds can be tightened some-

what (Ref. 5): 

N=l (2.2.5) 

D-df dT(N,D) 
dN N=l (2.2.6) 

with D = eXP(-Es/N
o

) in both cases. 

The difficulty of this approach is that the number of states 

grows exponentially with K and consequently the tedium involved 

in direct computation is effectively insurmountable for K>4. 

On the other hand, the calculation of the transfer function 

is equivalent to a matrix inversion. Taking into account the 
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particular properties of a convolutional code transfer matrix, 

the transfer function can be evaluated numerically using an 

iterative technique. This technique is explained in detail in 

Appendix A. A computer program has been written to evaluate the 

transfer function bound as a function of K, code rate, and Eb/No' 

For rate 1/2 codes the performance bounds are presented in 

Section 2.2.4, for other rates, they are contained in Section 2.3. 

Decoder performance predicted by the bounds at around 10- 5 

bit error rate is quite close to simulation results, allowing for 

finite receiver quantization in the simulations. 

2.2.3 Viterbi Decoder Simulation Program. A program has 

been written to simulate the operation of a Viterbi decoder on a 

quantized Gaussian channel. The program is quite flexible, in 

that all of the parameters of interest in Viterbi decoding can be 

varied by changing program inputs. For rate 1/2 codes, the con­

straint length can be varied from 3 to 9. Simulated received 

data for PSK modulation on an additive white Gaussian noise 

channel can be generated for any value of Eb/No with output 

quantization of 2, 4 and 8 levels. For each run the program 

provides: 

a) Bit error rate for a variety of decoder path lengths, 

with output selection based on the.most likely state. 

b) Event error rate. 

c) Average length in bits of an error event, from the 

first bit error to the last comprising the event. 

In addition to the statistics in a), b) and e), which are 
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based on maximum likelihood state output selection, the follow­

ing measured error rates are provided: 

d) Bit error rate with majority output selection. Here 

the output on a majority of the decoder paths is 

chosen as the decoder output. 

e) Bit error rate resulting from selecting an output from 

some state path whose metric value is better than some 

threshold value. 

All of the gathered statistics except those in a) are for 

length 32 decoder state paths. The output decision technique 

simulated in d) and especiallY e), although they are slightly 

sub-optimal, are much simpler to implement in parallel process­

ing viterbi decoders than maximum likelihood selection. 

Lastly, with an eye toward the 180 0 phase ambiguity problem 

with PSK modulation, the simulation program measures 

f) Bit error rate when differential data encoding-decoding 

is used with codes transparent to 180 0 phase flips. This 

technique, along with the simulation results, is treated 

in Section 2.2.5. 

2.2.4 Simulation and Numerical Performance Data 

2.2.4.1 General Performance Results. The principal results 

of the simulations and code transfer function bounds are shown in 

Figs. 2.2.4.1, 2.2.4.2, and 2.2.4.3. All of these figures show 

bit error rate vs. Eb/No for Viterbi decoders using the optimum 
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rate 1/2 convolutional codes of Table 2.2.1. In all cases, the 

decoder state path length was 32 bits. In all simulation runs, 

at least 25 error events contributed to the compiled statistics. 

The simulation results in Figs. 2.2.4.1 and 2.2.4.2 are for 

soft (8-level) receiver quantization. Equally spaced demodula­

tion thresholds are ysed at ±1.Sa, fa, ±O.S , and 0 where a 2=N0/2 

is the noise variance. This choice of 8-level quantizer thres­

holds is within a broad range of near optimum values, as will be 

shown presently. The transfer function bound is for infinitely 

finely quantized received data. Allowing for the 0.20 to 0.25 

db loss usually associated with 8-level receiver quantization 

compared with infinite quantization, the transfer function bound 

curves are in excellent agreement with simulation results in 

the 10- 4 to 10- 5 bit error rate range. 

Since the accuracy of the transfer function bound increases 

with Eb/NO' decoder performance can be ascertained accurately in 

the 10- 5 to 10- 8 region even in the absence of simulations. 

Ideally, the symbol metrics associated with each of the 8 

quantization levels would be proportional to the log-likelihood 

of receiving the given level, given the hypothesis of a "0" or 

a "1" transmitted. In the interest of keeping the number of 

bits required to represent metrics to a minimum, it was shown 

(Ref. 2) that equally spaced symbol metrics, for instance, the 

numbers 0-7, could be used with negligible performance degrada­

tion. We have taken the compression of metric representation one 
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step further. As is shown in section 2.4, an aqQitiopal bit 

in the state metric can be saved if levels syrnrnetrical~y located 

about the zero threshold have symbol metrics which are the nega­

tives of one another. Thus, for the simulations presented in 

Figs. 2.2.4.1 and 2.2.4.2, the eight symbol metrics upcd wore 

4, 3, 2, 1, -1, -2, -3, -4. These symbol metrics clearly do not 

change in equal increments; however, simulations have shmm that 

system performance does not suffer significantly. 

Fig. 2.2.4.3 gives the simulation results for Viterbi decoding 

with hard receiver quantization. The same optimum rate 1/2, 

K=3 through 8 codes were used here as in the a-level quantized 

simulations. 

Several points are obvious from the performance curves 

a) 2-level quantization is everywhere close to 2 db 

inferior to a-level quantization. This seems to rein­

force the folk theorem that hard quantization always 

leads to a 2 db loss in system efficiency. 

b) Each increment in K provides an improvement in efficiency 

of something less than .5 db at a bit error rate of 10- 5 • 

c) Performance improvement vs. K increases with decreasing 

bit error rate. 

2.2.4.2 Receiver Quantization. In order to observe the 

effects of varying receiver quantization more closely, simulation 
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performance data is presented in Fig. 2.2.4.4 for the K=5, rate 

1/2 code, with 2, 4, and 8-1eve1 receiver quantization. The 

a-level thresholds and metrics are identical to those of Fig. 

2.2.4.1. In fact, the 2 and 8 quantization level curves are 

taken from Figs. 2.2.4.3 and 2.2.4.1 respectively. The 4-level 

thresholds were set at 0 and ± a. The metrics were chosen to be 

2, 1, -1, -2, for the same reasons which suggested the 8-level 

metrics. 

2.2.4.3 Path Memory. The Viterbi decoder is a maximum 

likelihood decoder only when its decision path memories are 

infinitely long. That is, decoding delay is in~inite. For 

practical purposes, it is desirable to use path memories as short 

as possible. There is a path memory for each state in a Viterbi 

decoder. Providing storage and managing decis~on paths is a 

significant part of any Viterbi decoder. It is therefore worth­

while to study the performance degradation vs. path length for 

Viterbi decoding. 

Fig. 2.2.4.5 shows bit error rate performance vs. Eb/No for 

three path lengths (8, 16 and 32) using the rate 1/2, K=5 code, 

for both 2 and a-level received data quantization. The length 

32 path curve is identical to the K=5 curve in Fig. 2.2.4.1. 

Performance with length 32 paths is essentially identical to that 

of an infinite path decoder. Even for a path length of only 16, 

there is only a small degradation in performance. Other simula­

tions have shown that a path length of 4 to 5 constraint lengths 
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is sufficient for other constraint lengths as well. 

2.2.4.4 Decoder Output Selection. In a Viterbi decoder with 

finite path memories, it is possible that not all state paths are 

merged at the point at which a decoded bit must be output. Phy­

sically this means that the oldest bits in each of the state path 

memories may not always agree. The decoder must output a bit 

however and there must be a means for selecting wQ.ich of the 21<-1 

oldest path bits to output. 

The optimum method for selecting output bits is to choose the 

bi t corresponding to the path \',i th the best metr:i.c. This selection 

rule is very complex to mechanize in a high speed decoder, where 

the pairwise state comparisons are done in parallel. This fact 

has lead to a study of simpler output selection schemes, the 

aim being to find one which does not degrade performance appre-

ciably. One very simple scheme is to choose a path at random from 

which to output decoded bits {or always output bits from the same 

path}. This scheme,however, has been found to significantly de­

grade performance. In fact, if a path memory of n bits is required 

for a given performance goal with maximum likelihood output selec­

tion, then simulation has shown that a memory of up to 2n bits is 

required for the s.ame performance with arbitrary output selection. 

Another method is to output a "0" if a majority of the 2K- l 

paths have a "0" as their oldest bit: otherwise, output a "1". 

This scheme is somewhat simpler to implement ~han maximum likeli­

hood selection. 
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An efficient yet simple to implement scheme, which we have 

devised, is to select the output from some state path whose met-

tic is better than a certain threshold. This scheme is described 

in Section 2.4. It is called "less than four" selection. Pig. 

2.2.4.6 compares t~e performance of a) maximum likelihood se1ec-

tion, b) majority selection, and c) "less than four" selection. 

The comparison is made for a K=7, rate 1/2 code w~tn a-level 

quantization, and path lenqth 32. It is interesting to note that 

the performance of the K=5 decoder was the same for al~ three out-

put selection schemes, tVith a 32 bit path memory, As the path 

memory gets long relative to K, there is a larger probability that 

all state paths Hill be merged by the time a bit must be output. 

Thus the output selection mechanism has lens of an effqct on 

performance. 

2.2.5 Code Synchronization and Channel Reliability. 

2.2.5.1 Node Synchronization and Phase l\mbiguity Resolution. 
i 

Because of the inherent continuity involved in convolutional cod-

ing, code synchronization at the receiver is usually much simpler 

than in the case of block codes. For convolutional decoding 

techniques involving a fixed number of computations per bit de-

coded, such as Viterbi decoding, the decoder initially makes an 

arbitrary guess of the encoder state to start decoding. If the 

quess is incorrect, the decoder will output sever~l bits Qr, at 

most, tens of bits of unreliable data before assuming steady 

state reliable operation. Thus, the block synchronization pro-

blem does not really exist. There remains the problem of node 
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synchronization and, depending upon the modulation-demodu­

lation technique used, the problem of 2 or 4 ph~se ambiguity 

resolution. For a rate lin code, there are n CQ~e symbols on 

each branch in the code tree. Node synchronization is obtained 

when the decoder has knowledge of which sets of n symbols in 

the received symbol.stream belong to the same branch. In a 

purely serial received stream, this is a 1 in n ambiguity. 

In addition, modems using biphase or quadriphase PSK with 

suppressed carriers derive a phase reference for coherent de­

modulation from a squaring or fourth power phase lock loop or 

its equivalent. This introduces ambiguities in that the squarinq 

loop is stable in the in-phase and 180 0 out of pha~e positions, 

and the 4th power loop is, in addition, stable at ±90 0 from the 

in-phase position. 

We have directed our efforts toward using the error detec­

tion capability of convolutional decoders, o~ the ability of the 

decoder to detect unsatisfactory system of operation, to detect 

and correct for incorrect node synchronization and the occasional 

phase flips in the phase tracking loop. It is now apparent that 

simple and effective techniques for maintaining node and phase 

synchronization completely within the decoder itself are feasible. 

For the purpose of ease of illustration, the rate 1/2, hard­

quantized receiver output case will be considered here. Techniques 

generalize easily to soft quantization and with somewhat more 

complexity to other rates. A Viterbi decoder operating on hard 

quantized received data will use Hamming distance for state metrics. 
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Relatively large metric values indicate a poorer match to received 

data than lower metric values. The smallest state metric at any 

time corresponds to the path with the best match to received data, 

and the metric itself is equal to the number of discrepencies be­

tween the received data and that path. Clearly, when the decoder 

is in correct node synchronization and the demodulator loop is 

locked properly, the path with the smallest Hamming distance will 

usually corre900nd to the correct path. The rate of increase of 

this path metric will depend on the channel error rate. For in­

stance, if the crossover probability is p=.02 then, on the average, 

there will be an increase of 1 in the correct path metric for 

every 50 channel symbols. On the other hand, we intuitively ex­

pect that if node synchronization is lost, or if the phase lock 

loop locks onto an incorrect phase position,the match between the 

received data at the nearest codeword should be much poorer than 

1 mismatch in 50 symbols. If, in fact, the best path metric in­

creases more rapidly when off node or phase synchronization, this 

can be used to detect these maladies. 

One simple technique would use an up-down counter to detect 

unreliable system operation. The counter counts up by k units 

(k>l) each time the best path metric increases by 1, while it 

counts down by 1 for each bit time. The parameter k is chosen 

so that the average dri ft of the counter is dowmvard \>lhen in 

proper node and phase synchronization and upward when out of 

either phase or node synchronization or both. The first condi­

tion requires that kp<l where p is the channel crossover 
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probability: while, the second condition requires kp'>l where 

p' is the as yet undetermined rate of increase of the best path 

metric with improper node or phase synchronization. The count 

would not be allowed to fall below zero. When the count exceeds 

a threshold value N, the assumed node synchronization or phase 

synchronization position is changed in the decoder according 

to a preset strategy. 

Potentially effective methods of changing phase and node 

synchronization depend upon whether the system uses BPSK or QPSK. 

For BPSK, both the problem of node synchronization and 180 0 

phase ambiguity exist. The 180 0 phase ambiguity can be cir-

cumvented by using differential encoding of the information prior 

to convolutional encoding and differential decoding after the 

channel decoder. A transparent convolutional code is required, 

i.e., the all lis data sequence maps into the all lis code 

sequence. This technique is discussed in section 2.2.5.2. 

Another method of homing in on both node and phase 

synchronization is shown in Fig. 2.2.5.1. 

change phase 
sync 180 0 

c~'" change 
/ 1 .l---

node sync 

change 
~---------------4 

node sync 

change phase 
sync 180 0 

Figure 2.2.5.1 Biphase node-phase synchronization 
strategy. 
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State 1 represents an arbitnary initial position for phase 

and node synchronization. If the system reliability counter 

counts past N, a node synchronization change is attempted, 

bringing the system to state 2. If the count again passes the 

threshold, received symbols are complemented prior to decoding 

(equivalent to a 180 0 phase shift) bringing the system to state 3. 

Subsequent counter overflows cause the system to go to state 4 

and then back to 1. There are only 4 possible states because 

there are 2 stable phase positions and, for rate 1/2, 2 node 

synchronization positions. 

For a quadriphase modern and rate 1/2, there is no node 

synchronization problem since both parity bits on a branch are 

transmitted on one baud. However, now there are 4 stable phase 

positions; thus, there are 4 stable system states to contend 

with just as in the biphase case. These states, as well as the 

phase synchronization strategy are shown in Figure 2.2.5.2. 

90° phase change 
1 r-------------------~ 2 

90° phase change 90° phase change 

4 3 
90° phase change 

Figure 2.2.5.2 Quadriphase phase synchronization 
strategy. 
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The problem still remains as to whether the best path metric 

will increase rapidly enough, when phase or node synchronization 

is incorrect, to reliably detect these events while keeping the 

false alarm rate sufficiently low. Understanding of the operation 

of the decoder when synchronization is lost is aided by observing 

the effect of synchronization loss on a hypothetical code 

syndrome calculated at the receiver. 

These effects can best be seen by working with the poly-

nomial representations of the information, parity, and code 

generator sequences. The polynomial coefficients are the terms 

in the sequence of interest. For instance, the information 

sequence 101101 ••• is represented by the polynomial 

i(D) = 1+ D2+ D3+ DS+ ••• 

The parity stream generated by passing i(D) through a convolutional 

encoder with generator g(D) is simply 

p(D) = i(D)g(D) 

A rate 1/2 code has two generators g (D) and g (D) which generate 
. 1 2 

two streams p (D) and p (D). A representation of the encoder, 
1 2 

channel and syndrome calculator is shown in Figure 2.2.5.3. The 

n.(D) are channel noise polynomials, a coefficient of 1 represents 
~ 

a channel error. All additions are mod-2. 

Notice that in the absence of noise, i.e., n (D) = n (D) = 0, 
1 2 

S(D) = i(D)g (D)g (D) + i(D)g (D)g (D) 
1 2 2 1 

= 0 

independent of i(D): thus, the syndrome s(D) depends only upon the 

noise polynomials and hence is in fact a true code syndrome. 
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n 1 (D) 

+ 
r 1 (D) i (D) 

'y r2 (D) 

n2 (D) 

encoder channel syndrome 
calculator 

Figure 2.2.5.3 Representation of encoder, channel and 
syndrome calculator. 

A hypothetical decoder operating on a segment of the syn-

drome polynomial should attempt to find the minimum weight 

s (D) 

channel error polynomials which could have caused the particular 

syndrome pattern. Decoding would then reduce to changing those 

bits corresponding to ones in the minimum \'leight error pattern. 

We shall now look at the functional form of the syndrome in the 

presence of various combinations of improper phase and node 

synchronization. 

Considering the biphase modulation case first, suppose 

phase synchronization is correct and node synchronization is off. 

This is equivalent to the received lines being crossed in Fig. 

2.2.5.3. Thus: 

r 1 (D) = i (D)g2 (D) 
r 2 (D) = i (D)gl (D) 

s (D) = i (D) &~ (D) + g~ (D) J ' 
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in the absence of noise. Unlike the in-synchronization case, 

the syndrome now depends on the information sequence. In fact, 

the syndrome is the information sequence convolved with a new 

generator g~(D) + g~(D). If the coefficients of i(D) are EL 

(that is independent and equally likely to be 0 or 1) then the 

coefficients of S(D) also have this property (Ref. 4). 

Now suppose node synchronization is correct and the phase 

flipped 180°. Here 

r 1 (D) = i (D)gl (0) 
r 2 (D) = i(D)g2(D) 

s (D) = i (D)ql (D)g2 (D) + i (D)g2 (D)gl (D) 

in the absence of noise. If the code were transparent to 180° 

phase flips, both gl (D) and q2(D) would have to be odd, that is, 

have an odd number of non-zero terms (coder taps). Since we do 

not want the transparent feature in this analysis, we will 

assume gl (D) is odd and g2(D) is even (if they were both even the 

code would be catastrophic). Now a sequence convolved with an 

even generator is the same as the result of convolving the 

sequence with the same generator1 whereas, a sequence convolved 

with an odd generator is the complement of the result of convolv­

ing the complemented sequence with that generator. Thus, 

s(D) = i(D)gl (D)g2(D) + i(D)g2(D)gl (D) 

= 1 + D + D2 + D3 + ••• 

Hence without noise, a 180 0 phase flip causes an all lis syndrome. 

When both improper node and phase synchronization occur, it 

is easily shown that without noise 

seD) = i(D) [g~(D) + g~(D)J 
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Again this syndrome is EL if i(D) is EL. 

In uhe quadriphase situation, the tracking loop can be ±90 0 

or 180 0 out of proper phase alignment. When a 90 0 shift occurs, 

the in-phase and quadrature channel outputs are switched with one 

becoming complemented. For instance with a 90 0 shift, 

r 1 (D) = i (D)g (D) 
2 

r 2 (D) = i (D) g 1 (D) 

Again assuming g~(D) is odd and g~(D) is even 

s (D) = i (D) [g~ (D) + g~ (D) ] 

This is the same syndrome as obtained with improper node 

synchronization. A -90 0 phase shift yields the syndrome 

seD) = i(D) [g2(D) + g2(D)] 
1 2 

This is the same syndrome as that derived for the biphase 

improper node synchronization, and 180 0 phase shift case. 

Finally the 180 0 phase shift case is identical to that for the 

corresponding biphase situation. 

Evidently, the quadriphase and biphase situations are quite 

similar. Quadrinhaae modulation entails no more ambiguities than 

bi~hase because the former provides node synchronization for free. 

Both techniques yield an all l's no noise syndrome when locked 

180 0 out of phase. Quadriphase modulation yields an EL syndrome 

when ±90 o out of phase, \<1hi1e biphase does the same when out of 

node synchronization for both stable phase situations. The fact 

that the syndrome is EL depends, of course, on i(D) being EL. It 

can be readily seen from the off synchronization syndrome equa-

tions that certain information sequences will yield an all zero's 
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syndrome even when node or phase synchronization is incorrect. 

The all zeros and all ones information sequences are particularly 

oothersome in this regard. 

An EL syndrome will be obtained if node synchronization is 

out or the phase has flipped by ±90o~ in addition, the syndrome 

will be EL if one or both of the n. (D)'s is EL. Thus an EL 
~ 

received stream will cause an EL syndrome. Bounds on the 

minimum distance of codeHords (Ref.' 7) shm1S that for the best 

rate 1/2 code, asymptotically the minimum distance increases as 

.lln where n is the code lenth in symbols. Thus the nearest 

codeword to an EL received sequence will tend to differ in about 

1 symbol in every 9. This means when the decoder is out of node 

or phase synchronization, the best metric \1ill on the average 

increase by 1 for each 9 received symbols. Actually, the real 

rate of increase may be somewhat greater than this because the 

Viterbi decoder will use a short constraint length code. The 

.lln asymptotic figure is approached in the limit of longer codes. 

The closest codeword to a random sequence will tend to be further 

a\Olay vlhen the constraint length is short. 

As mentioned previously, the factor k and the threshold N 

must be chosen such that the counter used to indicate data quality 

drifts upward \.,hen synchronization is incorrect and drifts down-

ward when synchronization is correct. The actual values chosen 

for these parameters will determine: 

(a) the expected time to first passage over the threshold, 

and hence change of system state, ~"hen node or phase 
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synchronization is incorrect. We will call the ex-

pected time to re-synchronization, Ers • 

(b) the expected first passage time when node and phase 

synchronization is correct. This is the expected time 

to false alarm, Efa • 

Obviously we warit to make E as short as possible and Ef rs a 
as large as possible. Analytical techniques have been success-

fully used to approximate Ers and Efa as a function of k, T and p. 

The analysis is based upon recognizing that the input to the 

up-down counter is a random walk with a reflecting boundary at 

zero and an absorbing boundary at N. First passage times are 

computed by solving the appropriate Fokker-Planck equation. This 

work is reported in detail in Appendix B. 

In addition to the approximate analysis, simulations have 

been performed to tie down Ers and Efa more precisely. The 

count-up rate, k, was chosen to be 8 because that value is nearly 

optimum, and it is a power of 2 and, therefore, easy to implement. 

The rate 1/2, K=S code was used with hard receiver quantization. 

Fig. 2.2.5.4 shows Efa vs. the threshold T. This limited data 

supports the analytical results which state that Efa rises 

exponentially with T. Naturally, for a given T, Efa is larger 

for smaller channel crossover probabilities p. 

Fig. 2.2.5.5 shows the other parameter Ers as a function of 

T. Ers also rises with T, but more slowly. In fact it is nearly 

linear with T, as predicted by theory (Appendix B). Ers is not a 

function of p because it is the expected time to re-sync when the 
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Fig. 2.2.5.4 Average number of bits decoded be­
tween false loss of sync events vs. sync counter 
threshold -- p is the channel crossover prob­
ability. 
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Sync Threshold 

Fig. 2.2.5.5 Average number of bits to recover 
after loss of node synchronization vs. sync­
counter threshold (hard decision decoder). 
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decoder is out of sync. When out of sync, the received data has 

the same random statistics regardless of the noise. 

These results show that a value of T can be selected to make 

Efa truely negligible, while maintaining Ers ' the resync time, as 

low as several hundred to a thousand bits. The increase in 

system bit error rate due to false loss of sync is 

2Ers/Efa 

This is because, on the average, for Efa bits decoded sync is 

lost once. It takes, on the average, 2Ers to return to the proper 

sync state. 

2.2.5.2 Transparent Codes. As mentioned in the previous 

section, another way to resolve 180 0 phase ambiguities is to use 

a code which is transparent to 180 0 phase flips, precode the data 

differentially and use differential decoding. A transparent aode 

has the property that the bit-by-bit complement of a codeword is 

also a codeword. Such a code must have an odd number of taps on 

each of its encoder mod-2 adders. This insures that if a given 

data sequence generates a certain codeword, its complement will 

generate the complementary code word. 

If the received data is complemented due to a 180 0 phase 

reversal, it will still look like a codeword to the decoder, and 

will likely be decoded into the complement of the correct data 

sequence. Now decoding to the complement of the sequence input 

to the encoder is no problem if the data was precoded differential­

ly. This means that information is contained in the occurrence or 

non-occurrence of transitions in the encoded output sequence rather 
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than the absolute sequence itself. These transitions occur in 

the same places even if the decoded sequence is complemented. 

The major fault with this scheme is that when an isolated 

bit error occurs in the decoder output, it causes. two differen­

tially decoded errors, since two transitions are changed. At 

first glance, this would seem to indicate a doubling of the 

output bit error rate. In fact, this doubling does not occur 

because errors typically occur in short bursts. Two adjacent bit 

errors, for instance, cause only two differentially decoded bit 

errors. This indicates the possibility of only a small increase 

in bit error rate with differential encoding-decoding. 

Fig. 2.2.5.6 shows bit error rate performance curves for the 

K=7, rate 1/2 code with and without differential encloding­

decoding. The degradation is error probability is least at low 

Eb/NO. Here decoder error bursts are relatively long (on the 

average one to two constraint lengths), so differential encoding­

decoding loses very little. At higher Eb/NO' bit error rate 

degradation is slightly larger--but nowhere near a factor of two. 

The worst bit error rate degradation factor is about 1.2 over 

the range shown. using differential encoding-decoding, the Eb/NO 

required increases by less than 0.1 db. K=7 was selected for 

this example because the optimum code for this constraint length 

is transparent (see Table 2.2.1). 

The use of differential encoding-decoding reduces the 

synchronization problem to 2-state node synchronization with BPSK, 

and 2-state 90 0 phase ambiguity resolution with QPSK. 
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2.2.5.3 Channel Reliability Information. The up-down 

counter used for node and/or phase synchronization also provides 

a means for very sensitive measurement of channel performance. In 

the absence of decoder errors, the counter counts up whenever a 

received symbol with a channel error is processed. Thus, the 

number of times the counter counts up per unit time is directly 

proportional to the channel error rate p. This will be true as 

long as the decoder output error rate is low, which corresponds 

to good system performance. If p becomes large due to a system 

failure or loss of code sync, the count will tend to remain above 

zero. 

One method of monitoring system realiability is to sum the 

count over a number of bits which is large compared with lip, 

where p is the lowest channel error rate to be monitored. The 

integrator output will be stable and proportional to p when p is 

in the range corresponding to decoder error rates lower than 

-2 
about 10 • As p rises beyond this point, the integrator output 

will rise monotonically, but not proportionally. When p becomes 

greater than about.ll, the integrator output will saturate. This 

is because the number of decoder corrections (metric increases) 

for a rate 1/2 code never exceeds .11 on the average as was dis-

cussed in the previous section. 

Integration of the sync counter value over a fixed time 

"rindow therefore provides a sensitive measure of p when the decoder 

is putting out useful data. It also is a good indicator of system 

failure. 
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2.2.6 Sensitivity to AGC Inaccuracy. Coded systems which 

make use of receiver outputs quantized to more than two levels 

require an analog-to-digital converter at the modem matched filter 

output, with thresholds that depend on the noise variance. For 

instance, all of the 8-level quantized viterbi decoder simulations 

reported on thus far have used level thresholds at 0, ±O.So, ±o, 

and ±l.So. 

Since the level settings are effectively controlled by the 

automatic gain control (AGC) circuitry in the modem, it is of 

interest to investigate the sensitivity of decoder performance to 

an inaccurate or drifting AGe signal. Fig. 2.2.6 shows the decoder 

performance variation as a function of A-D converter level thres­

hold spacing (in all cases the thresholds are uniformly spaced). 

These simulations used the K=5 rate 1/2 code, with Eb/NO = 3.5 db. 

It is evident that Viterbi decoding performqnce is quite insensi­

tive to wide variations in AGC gain. In fact, performance is 

essentially constant over a range of spacings from 0.50 to 0.70. 

This allows for a variation in AGC gain of better than 20% with no 

significant performance degradation. 

2.3 Other Code Rates. 

The preceding sections have concentrated on Viterbi decoding 

of rate 1/2 convolutional codes. Most of the results on perform­

ance fluctuation due to decoder ?arameter variation carryover 

qualitatively, if not quantatively, to other code rates. 

Code rates less than 1/2 will buy improved performance at 

the expense of increased bandwidth expansion and more difficult 
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symbol tracking due to decreased symbol energy to noise ratios. 

Rates above 1/2 conserve bandwidth but are less efficient in 

energy. 

2.3.1 Description of Code Search Program. Optimum short 

constraint length, rate 1/3 codes have been found previously 

(Ref. 2,3). Our efforts in searching for good codes were confined 

to rate 2/3, K-6 and 8, and rate 3/4, K=6 codes. Since the 

number of possible codes is quite large (there are 22~ rate 2/3, 

K-8, and rate 3/4, K=6 codes), a fast method was needed to 

evaluate and select, or reject codes. The method chosen uses 

the convolutional code transfer function described in section 

2.2.2 and Appendix A. Before going into the technique in detail, 

it will be instructive to discuss a result which limits the 

number of codes which must be considered. 

The optimum rate 3/4, K=6 encoder is shown in Fig. 2.3.1.1. 

The encoder consists of a K stage shift register, as in the rate 

1/2 case. For a general rate kIn code, however, k binary digits 

are shifted into the coder simultaneously. The coder stages are 

connected to n mod-2 adders. Note that the trellis formed by 

a rate kIn code has 2(K-k) states with 2k branches leaving and 

entering each node. This is because anyone of 2k groups of k 

binary digits can enter the coder at once. Decoding involves 

making a 2k-wise decision for each of 2K- k states per k bits 

decoded. 

It can be shown that no generality is lost if the codes are 

restricted in the following way. Suppose we label the mod-2 adders 
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from 1 through k, and concern ourselves with connections to the 

first k encoder stages. Connect adder 1 to stage 1, adder 2 to 

stage 2, ••• , and adder k to stage k. Make no other connections 

between the first k stages and the first k adders. This reduces 

k 2 
the number of codes to be searched by a factor of 2 • The 

encoder in Fig. 2.3.1.1 is of the type described. 

Recall that the code transfer function (for N=l) is of the 

form 

T( } = df Ddf + 1 df + i (2 3 l) D a 1 D + a 2 + ••• + a i +l D + ••• •• 

where d f is the code minimum free distance~ -6 If \,7e set 0=10 , 

and if the rate of growth of the a. satisfi~s certain conditions 
~ 

-6 -6df (see Appendix A), then T(lO ) will be very close to a l 10 • 

The code search program has as an input a target value of d f • It 

evaluates the first fe .... 7 terms of the transfer function, with 

D=10-6, for each code, and tests to see if their sum exceeds 

-6(df- l ) 10 • If it does, this means that the code must have a 

minimum free distance smaller than d f (or a
1 

> 10 6 which is 

impossibly large). Thus, the code is rejected. On the other 

hand, if the iteratively evaluated transfer function remains below 

10-6 (df- l ) taken to a sufficiently large number of terms, the 

code's free distance is at least d f , and the code is printed out. 

This technique often results in the generation of many 

candidate codes (or none of the target d f is too large). The 

codes are then tested using the numerical transfer function union 

bound program to approximate the bit error rate performance. 

Final code selections are made on this basis. 
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2.3.2 Good Rate 1/3,· 2/3, and 3/4 Codes. Optimum rate 1/3, 

K=3 through 8, rate 2/3, K=6 and 8, and rate 3/4, K=6 codes are 

tabulated in Tables 2.3.2.1, 2.3.2.2, and 2.3.2.3 respectively. 

Included also is the free distance of each code df , the number of 

bit errors in paths at the minimum distance ne , and the value of 

* an upper bound on minimum free distance df , analogous to that 

obtained for rate 1/2 codes. 

The· rate 1/3 codes were reported previously (Ref. 3) and 

are simply repeated here. The rate 2/3 and 3/4 codes are the 

result of the code search program. 

2.3.3 Simulation and Numerical Performance Data. Figure 

2.3.3.1 shows bit error rate vs. Eb/NO performance obtained from 

simulations of Viterbi decoding with optimum rate 1/3, K=4,6, and 

8 codes, and 2 and 8 level quantization •. The K=4 and 6 results 

were reported elsewhere (Ref. 2) previously. The K=8 code used 

in Ref. 2 was suboptimal 1 thus, the curve shown here for the 

optimum code is somewhat better than the previously reported 

result. 

Figures 2.3.3.2, 2.3.3.3, and 2.3.3.4 show numerical bound 

and simulation performance results for the rate 2/3 K=6, K-8 and 

rate 3/4 K=6 codes respectively. Simulation curves are for 2 

and 8 level quantization, while the numerical bound curves are, 

as usual, for infinitely fine receiver quantization. 
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Code * K Generators d f ne d f 

111 
3 111 8 3 8 

101 

1111 
4 1101 10 6 10 

1011 

11111 
5 11011 12 12 12 

10101 

111101 
6 101011 13 1 13 

100111 

7 
1111001 
1100101 14 1 15 
1011011 . 

8 
11110111 .. 
11011001 16 1 17 
10010101 

Table 2.3.2.1 Optimum Rate 1/3 Codes 
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Code * K d f n d f Generators e 

101111 
6 011001 5 5 6 

110010 

10110110 

8 01111001 7 86 8 
11110111 

Table 2.3.2.2 Optimum Rate 2/3 Codes. 

Code * K d f n d f Generators e 

100001 

6 010011 4 . 40 4 001110 
111101 

.. 

Table 2.3.2.3 Optimum Rate 3/4 Code. 
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2.3.4 Comparison with Rate 1/2 Code. Comparing the per-

formance data obtained through simulations of Viterbi decoders 

with rate 1/2 (Figs. 2.2.4.1, 2.2.4.2, and 2.2.4.3), and rate 

1/3 codes, it is apparent that the latter offers a 0.3 to 0.5 

db improvement over the former for fixed K, in the range reported. 

This is close to the improvement in efficiency of a channel with 

capacity 1/3 compared with one of capacity 1/2, and is therefore 

expected. 

Performance efficiency of the higher rate codes also is 

predictable when compared with the rate 1/2 codes over the range 

with the simulation data spans. The fairest comparisons are 

probably those between decoders with like number of states. 

Thus, the K=6 rate 2/3 data should be compared with the K=5, 

rate 1/2 data. 

Figure 2.3.4 shows the union bounds on performances for the 

rate 2/3, K=6, and rate 1/2, K=5 codes. Both encoders have 16 

states. d = 7 for the rate 1/2 code and 5 for the rate 2/3 
f 

codes. At very high Eb/No, ~he rate 1/2 must be superior. This 

is because asymptotically, at high Eb/No, the error probability 

goes as 

This gives the rate 1/2 code an advantage of about 0.2 db in the 

limit. 

In Fig. 2.3.4, the difference between the two curves is about 

0.1 db in the error probability range of 10- 6 to 10- 9 • This small 
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difference is due to the fact that the rate 2/3 code used is a 

particularly good code (it has a minimum distance coefficient of 

only 5 in the union bound for bit error probability). Some 

additional discussion on decoder complexity vs. rate is contained 

in section 2.4. 
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2.4 Viterbi Decoder Implementation* 

2.4.1 Review of Decoder Algorithm. The present discussion 

is specialized to a decoder for a constraint length K=4 code. 

The design principles are the same for other values of K. six 

features will be discussed in the followinq sections relating to: 

1) the assignment of metric to the received data (metric 

compression) 

2) the efficient storage of state metrics (overflow-protection) 

3) the design of the decision-memory and the selection of the 

output bit (maximum likelihood selection) 

4) the time sharinq of state metric calculation 

5) choice of logic family (TTL or MECL) 

6) relation of cost to constraint length, code rate, speed, etc. 

To set the stage for this discussion, we first review the 

fundamental operations of the Viterbi decoder. The code under 

discussion is that given by the K=4 convolutional encoder of 

Fig. 2.4.1.1. The states of the code at any time correspond 

to the contents of the first K-l=3 stages of the shift register. 

The coder is shown in state all. It previously was in state 110: 

an input a caused a coder transition to state 011 and a coder 

output of the 2 check digits C 1 C 2 = 01. 

*Many of the ideas in this section concerning metric compression, 
overflow protection and output selection were first formulated 
in Ref. 10, and are the subject of patent applications either in 
preparation or pending. 
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A 4 state transition diagram for states 110, 111, all, and 

111 is given in Fig. 2.4.1.2. For any value of K, sets of 4 

states group together with xQ and xl on the left and Ox and lx 

on the right, ,.,here x is any k-2 bit sequence. For good codes, 

both the first and last encoder shift register stages are con-

nected to all the mod-2 adders. For these codes, the check 

digits C I C 2 for the group of 4 are always complementary as 

depicted in Fig. 2.4.1.3. 

A block diagram of a Viterbi decoder is shown in Fig. 2.4.1.4. 

The channel and modem cause the conversion of the transmitted 

From r r 4 "metrics" 
I 2' 

are calculated by the input section, Roo' ROI ' RIO' RII , cor­

responding to the 4 possible values of c
1
c

2
• On the basis of 

these, the decoder must decide, for all values of x, whether 

state Ox was entered from state xO or state xl and similarly 

whether state lx was entered from state xO or state xl. These 

decisions are made by the ACS (add-compare-select) circuits. 

These binary decisions are denoted by the variables D. • For i=O 
~x 

or 1, D. = 0 indicates a decision in favor of· the transition 
~x 

from state xO to state ix, whereas D. = 1 indicates a decision 
~x 

in favor of the transition xl to ix. 

The decisions are made on the basis of metrics associated 

with each state. 

state xj, j=O, 1. 

Figure 2.4.1. 3 

Let 1'1 . denote the metric associated with 
X] 

Then the decoder makes decisions -- see 

as follows (the convention that small metrics 

are "good" is used): 
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MXO + R < Mxl + R- - DOX = 0 
ClcZ cICZ 

MXO + R > M + R- - D = 1 
clcZ xl clcZ Ox 

(2.4.1) 
M + R- - M + R Dlx = 0 

xO ClcZ < xl clcZ 

M + R- - > Mxl + R Dlx = 1 xO clcZ clcZ 

Following the decisions, the set of D's (for K=4, Dooo, 

decision-memory section and are used to set the new values of 

the state metrics (exclusive of overflow-protection: see Section 

2.4.3). For example, if DOx = 1, the new value of the state 

metric MOx is M + R- - • xl clcZ 

For K=4, x takes on the values 00, 01, 10, and 11. Thus, 

4 sets of decisions corresponding to (2.4.1.2) must be performed 

by the decoder. To implement the add and compare operations 

at high speed and reasonable cost, it is essential to minimize 

the number of bits used to represent the M's and R's. We dis-

cuss the minimization of the R representation, or metric compree-

sion, in Section 2.4.2 and the minimization of the M representation, 

overflow-protection, in Section 2.4.3. The method of overflow-

protection has two dividends: it permits an inexpensive imple-

mentation of the maximum-likelihood output selection as discussed 

in Section 2.4.6 and of the code synchronization as discussed in 

section 2.4.7. Tradeoffs in speed, complexity, logic family, 

constraint length, etc, are discussed in Section 2.4.8. 

-83-



2.4.2 Metric Compression. The smallest achievable error 

probability would result if the received symbols, r 1 and r 2 , 

were equal to the unquantized (or infinitely finely quantized) 

outputs of the appropriate matched filters, say u 1 and u 2 • To 

permit digital implementation of the adder function, however, 

u 1 and u
2 

are quantized to Q levels (For example, Q=2 denotes 

hard decisions where only the sign of the u1's is kept). The 

loss in performance incurred by using Q=8 rather than Q=oo is 

less than 0.2 db for a reasonable choice of quantizer thres-

holds. 

For the decoder to he maximum likelihood, the branch metric, 

R .. , should equal the log likelihood of the digits r 1 and r 
~J 2 

received for that branch given that i and j are transmitted: 

Rij = log Perl I i trans) + log P(r
2 

I j transmitted) 

For a digital implementation, however, it is also necessary to 

quantize the {Rij } to a small number of levels. This quanti­

zation causes an additional performance loss. 

We are interested in representing the branch metrics Roo' 

ROI ' RIo' and Ril in a minimum number of bits. As noted earlier, 

the use of the quantized numbers r 1 and r
2 

themselves to form the 

metrics provides system performance within 0.25 db (with Q=8) of 

the value achieved with Q=oo. Of course, as Q~oo, use of r 1 and 

r
2 

becomes identical to use of u l and u
2 

and hence is maximum 
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likelihood, while for Q=2, use of binary-valued rl and r2 is the 

same as the use of Hamming distance and again is maximum likeli-

hood. 

Consider a Q level quantizer with the Q quantizer levels 

labelled by the integers 0, 1, 2, ... , Q-l from most negative 

to most positive. (Any other labelling scheme can easily be 

mapped into this labelling scheme.) 

If rl and r2 denote the received symbols and take on the 

above values, then a choice of branch metrics shown to be accep-

table by computer simulation is: 

RO 0 = rl + r2 

ROI = rl + (Q-l-r2 ) 

Ri 0 = (Q-l-rl) + r2 

Ril = (Q-l-r I) + (Q-l-r2 ) 

The LINKABIT technique of metric compression permits a reduction 

by 1 bit in the number of bits required to represent these numbers 

without degrading performance. Subtracting the same constant 

from each of the R .. does not affect decoder decisions (see Eq. 
1.) 

2.4.1). We choose to subtract the smallest of the R .. from each of 
1.) 

the Rij , thus yielding (at least) one value equal to zero and all 

the others non-negative. If ROI is smallest, for example, then 
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ROO = ROO - ROI = 2r2 - Q+l 

Roi = ROI - ROI = 0 

Rio = Rio - ROI = 2r2 - 2rl 

Rii = Ril - ROI = - 2r l + Q-l 

Observe in Eqs. 2.4.2 that if Q is odd then each of the R .. 
1) 

is even and the least significant bit may be discarded. This is 

true in general and is the basis for the LINKABIT metric com-

pression technique. If Q is even, however, this compression is 

not possible. Compression has a great impact on the amount of 

hardware required since, without compression, an extra bit is 

required throughout the arithmetic section and metric storage. 

This produces the peculiar result that 20% more hardware is 

required to implement Q=8 than 0=9. Fortunately, there is a 

simple solution to the problem of providing compression with an 

even value of Q, namely, to regard Q=8 as though it were Q=7 

by mapping the two central zones of Q=8 into one zone. Although 

this results in slightly nonoptimurn metrics, the degradation is 

quite small, especially at low error rates. 

The above metric compression scheme is most easily implemented 

by using a read-only memory if the decoder is for data rates less 

than 10 Mbps. For rate 1/2, there are two received symbols, 

each quantized to three bits if Q=8 for a total of six bits. 

The ROM look up table must therefore have 64 entries. Since four 

branch metrics must be computed, each being a three bit number, 
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each word of the look up table must contain twelve bits. The 

table can be implemented by using two 512 bit ROM's. 

A logic diagram of a TTL input section using ROM's is shown 

in Fig. 2.4.2.1. The circuit accepts either serial BPSK with the 

received digits, r l and r 2, interleaved or QPSK with digits r 1 and 

r 2 in parallel. The circuit then provides node sync by the 

selective insertion of a one symbol time delay in BPSK or by the 

selective interchange of the symbols in QPSK. If an interchange 

occurs, then rl is complemented. The sync circuit (explained in 

section 2.4.7), controls the bit insertion or interchange opera-

tions. 

The symbols then address the 1024 bit ROM. The ROM is 

organized into 64 words of 12 bits each. The ROM outputs are the 

four branch metrics. The remaining circuitry subtracts four from 

the branch metrics when normalization (explained in section 2.4.3) 

is required. 

At data rates higher than 10Mbps a different approach is 

used. The quantizer levels are labeled from -3 to +3 instead of 

from 0 to 6 as in the previous case. We then consider the symbols 

as sign-magnitude numbers, i.e., r l = SI t l , where SI is the sign 

and tl is the magnitude. The compressed metrics are then given by 

the following table: 
--_._. --

SI S2 Roo Ro 1 RIO Rll 
•... - - -- -

0 0 0 t2 tl t l +t 2 

0 1 t2 0 t l +t 2 tl 

1 0 tl t 1 +t 2 0 t2 

1 1 t 1 +t 2 tl t2 0 
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The assignments of this table are easily implemented as shown 

in Fig. 2.4.2.2. This circuit is preceded by node sync circuitry 

as in the previous example. The magnitudes are added and the 

branch metrics are obtained by using a multiplexer that is con­

trolled by S1 and S2 to route 0, t l , t2 and tl + t2 to the appro­

priate branch metrics.· Normalization can be obtained by sub­

tracting four as shown in the diagram. 

2.4.3 Overflow Protection. In Section 2.4.2, we demon-

strate how to compress the metrics to permit Roo' ROl ' R1o ' and 

R11 to be represented in the minimum number of bits. We now 

concentrate on mimimizing the maximum size of the 2K- l state 

metrics, Mo' Ml , ••• , M2K-l. The technique is applicable to all 

K although the example is for K=4. 

Consider the coder state diagram given in Fig. 2.4.3.1. It 

is possible to calculate the minimum Hamming distance in going 

from the OOO-state to each of the other states. These numbers 

are shown in the square boxes adjacent to each state. Note that 

the maximum Hamming distance is 4. Because of the group property 

of the code, this means that any state is at most Hamming distance 

4 from any other state. 

This observation is critical to minimizing the number of bits 

required to represent the M's. For Q=8, Hamming distance 1 can 

imply an actual metric difference no greater than 3. Thus, it is 

possible for one state, say the 000 state, to have state metric 

Mooo=O while another state, for example the state 001, has state 

metric Moo1 =12. It is not possible for any state metric to be 
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larger than 12 when Mooo=O (or any other M=O), since the state in 

.ue8tion can be reached from state 000 with at most Hamming 

distance 4 and hence compressed metric = 12. 

We conclude that the difference between the smallest and 

largest state metrics never exceeds 12. It is therefore possible 

to represent the state metrics with 4 bits if a means of prevent­

ing overflows is also provided. To do so, we first observe that 

in a single transition, the smaller state metric in a pair of 

metrics can increase by at most 3. Furthermore, if the spread is 

equal to 12, the largest metric cannot increase at all. These 

claims are verified by examining the state-pair metric transition 

diagram in Fig. 2.4.3.2a and the possible sets of compressed 

metrics in Fig. 2.4.3.2b. The state-metrics are shown on the left 

in Fig. 2.4.3.2a for a case in which the spread between smallest 

and largest metric is the maximum value, 12. The range of the 

state metrics at the outputs are shown on the right (recall that 

the smaller (better) metric of the 2 metrics accessible to a 

state is chosen as the new state metric1 see Equation 2.4.1. 

We conclude that if the smallest state metric is in the range 

o to 4, the largest metric is less than or equal to 15 and hence 

does not overflow a 4 bit register. Furthermore, since the maxi­

mum increase in the smallest metric is 3, subtracting 4 from all 

state metrics whenever all of them exceed 3 prevents the set of 

state metrics from moving out of the range 0-15. This is the 

overflow-protection strategy that we have adopted. Note that we 

could equally well subtract 3 whenever the metrics are all greater 
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than or equal to 3 but the test for Mij greater or equal to 4 and 

the subtraction of 4 is more easily accomplished in hardware than 

similar operations using 3. 

With the combination of metric compression and overflow 

protection, the additions Mx + Rij involve the addition of a 4 

bit and a 3 bit number. 

2.4.4 Storage of State Metrics. As explained in previous 

. K-l 
sect~ons, 2 state metric values must be stored for each of 

the possible encoder states. At each bit time, 2K additions must 

be performed followed by 2K- l comparisons and select operations. 

If the decoder is operating at a relatively high bit rate, then 

all of the operations must be performed in parallel; however, if 

the data rate is low to moderate, then the arithmetic operations 

may be performed partly or co~pletely in serial. If the operations 

must be performed completely in parallel, there is no organization 

problem in the storage of state metrics since they must all be 

simultaneously accessible. If, however, the operations may be 

performed partly or completely in serial, then more efficient 

organization of the state metric storage becomes a possibility. 

As explained in previous sections, each arithmetic operation 

consists of the addition of the branch metrics R.. and RTT to the 
~J ~J 

state metrics MOx and Mlx resulting in metrics MxO and Mxl • 

Suppose, for example, that completely serial operation is possible. 

The state metrics can be stored in a random-access memory such 

that state metric MOx is stored in location Ox. The problem with 

this organization is that the result of the computation produces 
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state metric Mxl • Now state metric Mxl may not yet have been 

accessed in the present cycle of computations, so the result of 

the present computation may not yet be stored in this location. 

Therefore, state metric storage must be duplicated to temporarily 

store the results of the compu~ations. 

A more efficient technique makes use of the following 

property: if the parity of state Ox is even, then the parity of 

lx is odd and vice versa. The state metrics may be stored in two 

sets of random-access memories, one of which contains the metrics 

of all states having even parity and the other containing metrics 

of all states having odd parity. For example, if x has even 

parity, then Ox has even parity and lx has odd parity. In per­

forming a computation, the metrics of states Ox and lx are read 

out of the memories, the computation is performed and the result­

ing metrics xO and xl are written into the memories in the 

locations from which the original metrics were taken. Obviously, 

the metric of state Ox will be found in a different location in 

the memory at each computation. However, the progression of 

locations through which the metric Ox passes can be very simply 

computed. 

The preceding example of metric storage using random­

access memories is useful for up to two computations performed in 

parallel. If, however, more computations must be performed in 

parallel, random-access memories may no longer be used since the 

organization of such a random~access memory would become unduly 

complicated. 
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If more than two computations mu~t: be performed in parallel, 

then all state metrics must be simultaneously accessible and the 

arithmetic sections are switched between state metrics by the use 

of multiplexers e A,lso, the storage must be duplicated to tempor-

arily store the results of the computa'tions. The requirement for 

multiplexers and duplicated storage tends to offset the savings 

achieved by sharing a small number of arithmetic units. 

2.4.5 Arithmetic Loqical Section. The principle functions 

of the arithmetic-logical section are: 

1. to implement the decision logic of equations (2.4.l), 

generating a set of decisions Dj , 

2. to generate updated state metrics and to transfer the 

new metrics into the state metric registers following a 

clock, 

3. to detect an increase in the minimum state metric above 

the value 3 and to subtract 4 from all state metrics 

following such a detection in accordance with the over-

flow management strategy, 

4. to set the values of the output decision gating variable 

x .• 
J 

An x. is set equal to one only if its corresponding state metric 
J 

is less than or equal to 3 0 (This function will be explained in 

the next section.) 

These functions are implemented in the ACS (a,dd-compare-

select) functional block depicted .in Fig ~ 2.4,,5. Two ACS' s are 

required for each pair of states if all computations are to be 
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carried out in parallel. Since the ACS block is the critical 

block both in terms of number of components and maximum speed 

capability, complete designs for this block have been worked out 

in both ECL logic and TTL logic using MSI. The ECL design can be 

constructed in three different versions. One version, using 

MECL III throughout, will obtain the maximum possible speed. The 

other two designs use MECL II~ and MEeL II for lower speed and 

greater economy. Several different TTL designs were worked out 

but the one presented here was the best; both in terms of number 

of parts, cost, and speed so this will be the only one presented. 

Both designs are specialized to K=4 in that a 4 bit state metric 

and 3 bit branch metric are assumed. 

Normalization can be obtained in two ways: I} by determin­

ing that all state metrics exceed 4 and subtracting 4 from all of 

them during the same computation, or 2} determining that all 

state metrics exceed 4 and subtracting 4 from the branch metrics 

for the next computation. The first approach is suitable for 

small constraint lengths at high speeds where all arithmetic 

operations are performed in parallel. The second technique must 

be used at lower speeds and higher constraint lengths where partly 

or completely serial arithmetic operations are performed. It is 

clear that the first technique cannot be used in this case since 

most of the state metrics are computed and restored before it is 

known whether or not a subtraction of 4 is necessary. At high 

speeds where fully parallel operation is used and at lower 

constraint lengths, there is no particular advantage of one 

-98-



technique over the other except that the first technique will be 

easier to understand and debug. 

2.4.581 ECL Arithmetic-Logic Unit. A block diagram of the 

ECL-ACS unit is shown in Fig. 2.4.5.1, a, b, and c. Sheets a and 

b show the adders that add the state metrics to the branch metrics. 

Sheet c shows the comparator and selector. The adder used in this 

ACS unit is a form of adder known as the carry-save adder in which 

ripple carries are used between the stages. The designs of the 

carry circuits are such that there is only one logic delay per 

carry. Since only three carries must be generated, the total 

carry propagation delay is then only three logic delays. For an 

adder this size, there will be no speed advantage to using 100k­

ahead-carryover this ripple carry technique, and furthermore, 

the ripple carry technique results in a more economical design. 

The comparator is implemented by subtracting the two sums 

from each other. In this application, we are not interested in 

the actual difference but only in the carry out of the most 

significant stage of the subtractor. Hence, we need only imple­

ment the carry portion of the subtractor. Another interesting 

feature of this design is that the carries will be rippling 

through the adders simultaneously with the carries rippling 

through the comparator, so that the total add and subtract time 

is not equal to the sum of the add plus the subtract time but 

rather one logic delay more than the add time. 

Another function that must be performed is determining 

whether the result is less than 4. If none of the results of the 
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computations of the ACS unit produces a result less than 4, then 

4 must be subtracted from all of the results in order to obtain 

the required normalization. The result will be less than 4 if 

either of the two sums is less than 4 since the smaller will be 

selected. Each of the sums will be less than 4 if the carry out 

of the second stage, the third and fourth bits of the state 

metric, and the third bit of the branch metric are all zero. Thus, 

the less than 4 signal may be obtained in only three logic delays. 

The less than 4 signals from all of the ACS units are then ORed 

together. If the result of the ORing operation is zero, then all 

resulting state metrics will be greater than 4. While this is 

taking place, 4 is subtracted from each of the sums. The output 

selector will then select first the smaller of two resulting sums 

and then select either the smaller or the smaller minus four, 

depending upon whether normalization is required. The results are 

then stored in the state metric storage flip flops, thus com­

pleting the computation. 

Chip counts and typical computation rates have been obtained 

for this design implemented with three different versions of ECL 

logic, HECL III, HECL 11;2, and MECl. II. The !'-mCL III design will 

require 25 chips per ACS including the state metric storage. The 

typical maximum computation rate is 90 iI1Hz. The HECL II~ design 

requires 35 chips and will operate at 40 r.mz. The HECL II design 

requires 25 chips and will operate at 25 MHz. The r-mCL III version 

will be considerably more expensive than either of the HECL II 

versions since much more sophisticated techniques are required to 
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package the MECL III devices. These advanced techniques include 

the use of strip transmission lines, multilayer circuit boards, 

and complicated cooling because of the high power dissipation of 

the MECL III devices. The MECL II and MECL II~ designs may be 

packaged using approximately the same techniques as required for 

TTL. The MECL II devices are, however, slightly more expensive 

on a per chip basis and the level of integration available is 

somewhat less than that available with TTL, as will be seen in 

the following example of a TTL design. 

2.4.5.2 TTL ACS Unit. A logic diagram of the TTL arithmetic 

section is shown in Fig. 2.4.5.2. The inputs to the arithmetic 

section are two state metrics and two branch metrics. The state 

Metrics are each represented as 4 bit binary numbers, the branch 

Metrics are represented as 3 bit binary number plus a sign bit. 

(Subtracting four from the branch Metrics for normalization can 

result in negative values.) Both the branch Metrics and the state 

Metrics are represented in complemented form. The two additions 

are performed by two SN74l8l 4-bit arithmetic units operating in 

the add mode. The SN74181 is a 4-bit full adder with full carry 

look ahead. The sum is produced, typically, in 24 nanoseconds. 

If the sum is larger than 15 a carry-out of the 4th stage of addi­

tion is produced. A carry-out of the 4th position is also pro­

duced when the branch metric is negative. Therefore the 5th bit 

of the sum is generated by NANDing the carry-out with the sign of 

the branch metric. 
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The .maller of the two _esulting sums is determined by sub­

tracting one from the other using an SN74181 in the subtract mode. 

A carry-out of the subtract will result if sum B is larger than 

sum A. Note that we must compare two 5 bit numbers and the 

SN741Bl is only a 4 bit subtaactor. The 5 bit comparison is per­

formed very simply by aubtracting the 4 ~ significant bits of 

the two sums in the SN741Bl. Since we are intere.ted only in "the 

carri.s in the subtraction process, we need only provide the 

carry-out of the subtraction of tne two least significant bits as 

input to the carry-in of the 4 bit subtractor. Thus a 5 bit 

comparison can be accomplished with a single adder chip plus a 

single two input NAND gate. The resulting decision is stored in 

the decision memory section. 

The smaller of the two sums is selected by the four and/or/ 

invert gates provided by the two SN74HSl chips. The an/or/invert 

gates are connected as single pole-double throw switches. The 

result is .tored in the state metoric register. 

It is also necessary to determine whether-the output is 

greater than or equal to 4, or greater than or equal to 8. The 

greater than or equal to 4 signal is used to control normalization 

and to determine the decoder output bit. The greater than or 

equal to" B signal is used for the later purpose when all metrics 

are greater than or equal to 4. Greater than or equal to 4 

is determined by examining the three most significant bits of the 

two sums. If the 3 most significant bits are all equal to 1, then 

the number is less than 4 (remember that the BumS are expressed in 
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complemented form). Greater than or equal to 8 is determined by 

examining the two ~ost significant bits. If both are equal to 1, 

then the result is less than 8. The~e functions are performed by 

NAND gates which invert the results, converting less than 4, for 

example, into greater than or equal to 4. If this logic were 

performed on the metric output, the time required would be added 

to the total ACS time. Instead, the greater than 4 and greater 

than 8 detection is performed on the two sums prior to comparison 

and selection. The desired result is obtained since, if the 

smaller of the two sums is less than 4, then at least one of the 

greater than or equal to 4 outputs is O. 

Each arithmetic (ACS) unit can be implemented with 10 inte­

grated circuits including the metric storage. It should be noted 

that 3 of these IC's are large (24 pin) and relatively expensive 

compared to the other IC's. Including the propagation delay of 

the metric storage units, an arithmetic operation can be per­

formed in under 100 nanoseconds. 

2.4.6 Decision Memory and Output Selection. As each check 

digit pair is input to the decoder, decisions Dix are made by the 

arithmetic section as explained in previous sections and trans­

mitted to the memory-output section. For each state, 16 bits are 

stored as shown in Fig. 2.4.6. The first bit stored for state ix 

is the most recent decision Dix. The remaining bits reflect the 

results of earlier decisions. 

Consider decision Dox. If DOx = 0, the decoder has decided 

that for the most recently received check digits, state xO is more 
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likely than state xl to have been the predecessor of state Ox. 

Conversely, if DOx = 1, state xl is a more likely predecessor to 

Ox than is xO. Mlen Dox = i, the 16 bits associated with state 

xi are shifted right 1 stage and transferred into the stages 

associated with state Ox. The first stage for state Ox is set 

equal to i, as shown in the figure. Note that the boxes denoted by 

L are flip-flops which each store one bit while the boxes labeled 

t1 are switches which transfer one of the two inputs to the output 

depending on the value of the appropriate D. 

The bit shifted out of the 16th stage of the memory for 

each state is either discarded or, for one state, selected as the 

output from the decoder. The optimum decoder would select as 

output the bit from the state with the smallest value of M. 

Simulation results have shown that a memory of 12 bits per state 

would suffice if the smallest value of M were used. Such a 

selection is difficult to implement in hardware, since an examin­

ation of all eight state metric values is necessary in order to 

select the smallest. 

An alternate approach is to always select the output from, 

say, the 000 state. This approach, ignoring the state metrics 

entirely, requires a memory of 24 bits per state to keep the 

degradation small. 

The approach adopted by Linkabit is based on the overflow­

management strategy and is almost optimum. The Linkabit decoder 

memory is conservatively extended to 16 bits to account for the 

slight nonoptimality. Recall that the overflow-management 
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strategy forces the smallest state metric to have a value between 

o and 3. Because nearest states have a Hamming distance of 2, the 

compressed metric separation generally exceeds 4, and in general 

only 1 state has a metric between 0 and 3. Moreover, if 2 (or 

more) states had metrics less than or equal to 3, they would 

tend to have similar past histories and hence the same 16th bit 

in memory. 

The selection mechanism is based on examining each state 

metric and setting the variables x
J
' = 0 if M. > 4 and equal to 1 

J -

otherwise, j = 000, 001, ••• , 111. As shown in Fig. 2.4.6, the 

variable Xj is used to gate the output from the 16th stage of 

memory for state j via an OR gate to the decoder output. If 

more than one Xj is non-zero, the corresponding bits are ORed 

together to form the decoder output. This method is nearly 

optimum and very inexpensive to implement. The slight non-

optimality is more than offset by the extension of the decision 

memories to 16 rather than 12 bits. Examples of the design of 

the memory output section are given below for both TTL and ECL 

logic families. 

2.4.6.1 ECL Memory Output Section. The following design is 

based upon the use of the MECL II MC1040 Quad Latch. This circuit 

contains 4 latches with individual output gates. The circuit can 

be used to provide both the storage and the switching capability 

required for the decision memory. One and one third stages of 

storage per chip are obtainable using this integrated circuit. 

Each stage is stored in three latches and three different chips 
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as shown in Figure 2.4.6.1. The three latches are arranged as 

one master and two slave flip-flops. The output gating on the 

slave flip-flops is used to perform the svritching operations. 

The total number of bits stored for K=4 is 8 x 16 = 128. At 

4/3 bits per chip, this re~uires 96 chips. The output gating 

requires an additional three chips for a total of 99. This 

HECL II quad latch circuit can be used at speeds up to 40 HHz. 

For higher speeds, MECL III must be used. Hotorola is 

planning the introduction in the near future of a MECL III cir­

cuit equivalent to the MECL II MC1040. When this circuit is 

available, the memory output section for speeds up to 90 !1egabits 

can be implemented in the same way as in the MECL II case. Until 

this chip becomes available, the decision memory can be con­

structed using one !-1C1670 flip-flop preceded by two 2-input NOR 

gates to accomplish the switching for each stage. One and one 

half chips are required oer stage of storage. For K=4, this 

requires 192 chips. 

2.4.6.2 TTL Memory Output Section. There is only one TTL 

MSI circuit that can be easily used to form the memory output 

section, the SN74L98, which consists of four storage registers, 

each of \V'hich is preceded by a two way switch. Using this cir­

cuit, 1/4 IC would be required per stage of storage. In the case 

of K=4, this would require 32 IC's. This is a low power, low 

speed IC vlith a maximum clock rate of only 3MHz. For higher 

speeds, a more brute force approach is necessary. For speeds up 

to 10 P~gabits, the storage register can be obtained by using the 
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SN7495 which contains 4 storage registers, together with a quad 

2-input multiplexer chip. Thus, 1/2 Ie would be required per bit 

of storage for a total of 64 chips in the case of K=4. 

At lower data rates, it is possible to make use of a rela­

tive speed factor to decrease the number of components required in 

the decision memory. For example, at data rates below 500 Kilobits, 

the memory could be constructed using 16 SN7491 devices which are 

8 bit shift registers. They would be connected as 8 16 bit shift 

registers. Since a relative speed factor is available, the 

register transfers can be accomplished by serially shifting the 

contents of the 8 registers through 8 2-input multiplexers. 

Thus, the memory could be implemented using only 18 Ie's. At 

lower data rates, two quad 16 bit MOS static shift registers 

could be used to form the memory together with 2 chips for the 

switching, yielding a total of only 4 Ie's for the whole memory 

section. 

2.4.7 Synchronization Section. The purpose of the sync 

section is to obtain node synchronization. This is the only 

synchronization required by a transparent code Viterbi decoder. 

If the code used were nontransparent, then the sync section could 

also resolve the 180 0 phase ambiguity of the PSK of QPSK demode 

The sync circuit operates by comparing the rate of increase 

of the best state metric with its expected value. If the rate is 

too high then it is assumed that a bad node sync state exists 

and the node sync state is changed. This is accomplished, in the 

case of PSK, by either inserting or deleting a one symbol time 

-113-



delay in the input section. If the input is from a QPSK modem 

then the sync state is changed by interchanging the received 

symbols r
i 

and r
2 

and inverting r
i

• 

A logic diagram of the sync circuit is shown in Fig. 2.4.7. 

As can be seen from the diagram, the LINRABIT synchronization 

technique is extremely simple. This, of course, demonstrates 

one of the inherent advantages of convolutional codes over block 

codes. The circuit operates as follows: Every time a metric 

normalization occurs, an up/down counter is counted down by one 

count. The rate at which this occurs is proportional to the rate 

of increase of the best state metric since normalization does not 

occur unless the metric value of all states exceeds 3. The actual 

rate is slightly greater than the hard decision error rate 

divided by four when the node sync state is correct. When the 

node sync state is incorrect, the normalization rate is much 

higher, approximately the bit rate divided by eight. 

The up/down counter is counted up at the bit rate divided 

by a constant. The optimum choice for this constant is approxi­

mately 16. The up/down counter is not permitted to overflow, i.e., 

when the counter reaches all ones, the up count input is gated 

off. If the counter underflows, then the node sync state is 

changed. When the node sync state is correct, the average drift 

of the counter will be up and the counter will spend most of its 

time in the all ones state with occasional short downward ex­

cursions. When the node sync state is incorrect, the average drift 

of the counter is down and the counter will soon underflow, thus 

changing the node sync state. Obviously, there is a tradeoff 
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involved in the size of t~e up/down counter. The larger the 

counter, the longer is the time required for synchronization, 

whereas, the shorter the counter, the larger the probability of 

false loss of node sync. The optimum size of the counter has not 

been determined exactly but is known to be between four and six 

stages. 

The node sync state is actually changed by allowing the 

borrow-out of the most significant counter stage to toggle a 

flip-flop. The state of the flip-flop is the node sync state. 

Thus, when the borrow-out of the up/down counter occurs on counter 

underflow, the node sync state is changed. The node sync state 

is sent to the input section where it controls the addition or 

deletion of the one symbol time delay in PSK. In QPSK, the node 

sync state controls the interchanging of received symbols rl and 

The up/down counter is implemented in TTL by using two 

SN74l9l four stage up/down counter chips. If the counter is to 

be 6 stages long, then the first six stages of the two cascaded 

dividers form the required counter. The seventh stage becomes 

the node sync state flip-flop. Overflo~l is inhibited by ANDing 

together the first six stages of the counter. When the first 

six stages of the counter are all ones, further up counts are 

inhibited. A MECL circuit can be implemented in a similar 

manner. 

-116-



2.4.8 Trade-Off Section. 

2.4.8.1 Cost-Complexity Trade-Offs~ This section presents 

the results of the cost-complexity tradeoff study for the Viterbi 

decoder, based on the K=4, rate 1/2, Q=7 designs presented in 

previous sections. Parts counts have been tabulated for four 

different designs: a 10 megabit TTL decoder, a 25 megabit !~CL 

II decoder, a 40 megabit }mCL II~, and a 90 megabit MECL III 

decoder. ~qeighting factors have been assigned to the different 

logic families to re~lect differences in parts cost, design cost, 

and packaging cost. The results are presented in the table below •. 

The weighting factors used were: 1 for TTL, 1.5 for MECL II, 2.5 

for MECL II~, and 7 for MECL III. It should be pointed out that 

these weighting factors are based on a number of subjective 

judgements on the part of the author, and should not be considered 

to be exact or invariant. Any number of things could cause these 

relationships to change in time, for example, a continuation of 

the present TTL price war, new MSI circuit announcements, etc. 

Max No. . 
Logic Data of Relative 
Family Rate IC's Cost 

(Mbps) 

TTL 10 185 1 HSI 

MECL II 25 365 3 

HECL II~ 40 450 6 

MECL III 90 470 18 

-117-



The best way to build a 40 megabit Viterbi decoder will now 

be considered. With the designs that have been worked out in the 

previous sections there are four possibilities. The decoder 

could be built by using MECL III logic, or by using HECL II~ 

logic, or by building two 25 megabit MECL II decoders operating 

in parallel, or by building four 10 megabit TTL decoders operat­

ing in parallel. 

The last two examples require that an overhead factor of 

approximately 10% be used to account for the cost of the extra 

encoders and the cost of tying the decoders together. The MECL III 

decoder would have a relative cost of 18, the MECL II~ a relative 

cost of 6, the HECL II decoder a relative cost of 6.6, and the 

TTL decoder a relative cost of 4.4. Thus, it appears that the TTL 

design would be the most inexpensive way to obtain a 40 megabit 

Viterbi decoder. Clearly, the MECL III design is not desirable 

from a cost standpoint. The TTL design appears to be superior 

over the whole range from 10 to 100 Megabits, however, a change 

in the weighting factors used could alter this conclusion. An 

additional advantage to the paralleling approach to obtain high 

speeds is that it is very easy to include provisions for fault 

isolation and maintenance. For example, suppose that a 40 mega­

bit decoder were desired. This could be provided by building 

four TTL 10 megabit decoders. If a fifth decoder were provided, 

then fault isolation could be obtained by switching the spare 

decoder in parallel with each of the other decoders, and comparing 

the output. When a discrepancy is found, the fault isolation 
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circuitry would then automatically determine which of the five 

decoders is defective and automatically switch the spare decoder 

into its place. The maintenance of the faulty decoder would then 

take place while the remaining four decoders continue to operate 

on line. 

In this section we have determined the relationship between 

data rate and cost. In the following sections we will determine 

the relationship between cost and other decoding parameters such 

as code rate, constraint length, and quantization level. 

2.4.8.2 Cost Vs. Constraint Length. In the previous sec­

tion we have shown that the relationship between cost and data 

rate is approximately linear. The relationship between cost and 

constraint length is, however, exponential. As the constraint 

length increases by one, the number of states required doubles. 

This will require doubling the total number of arithmetic units 

and more than doubling the decision memory. The decision memory 

will double in one dimension and increase linearly in the other 

dimension. Also the number of bits required to represent the 

state metrics will increase as the constraint length increases, 

since the distance of the code increases, thereby increasing the 

spread between the best and worst state metrics. Overall the 

decoder complexity relative to the K=4 design goes approximately 

as 
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The cost relative to the K=4 decoder design will be then K • 2K- 6 • 

For example, a K=6 decoder will be approximately 6 times as 

complex and therefore 6 times as expensive as a K=4 decoder. 

2.4.8.3 Cost vs. Code Rate. Changing the denominator of the 

code rate has its primary effect on the input section of a Viterbi 

decoder. In general there are 2d branch metrics to be computed 

where d is the denominator of the rate. Thus the input section 

grows exponentially with the denominator of the rate. The size 

of the largest branch metric grows linearly with d. This causes 

an additional increase in complexity as a function of ln
2
d. This 

occurs both in the input section and the arithmetic section since 

larger branch metrics require larger state metrics. The com­

plexity multiplying factor relative to rate 1/2 is approximately 

46 + 2d ln2~ 

50 

The numerator of the rate affects decoder complexity in a 

rather complicated way. The number of states is an exponentially 

decreasing function of the numerator of the rate, thus decreasing 

the state metric storage requirement. However, the complexity of 

the arithmetic operations increases exponentially with the 

numerator of the rate. Thus, for rate 2/4, we do twice as com­

plex an arithmetic operation on half as many quantities as we do 

for rate 1/2. The net result is no change in arithmetic hardware 

for a fully parallel decoder. The decision memory decreases 

exponentially with increasing numerator. The overall relative 
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complexity multiplying factor is approximately .6 + .8 x 2-n 

where n is the numerator of the rate. This factor is relative to 

the rate 1/2, Q=8, K=4, TTL decoder. 

2.4.8.4 Cost vs. Quantization. The number of quantizer 

levels is linearly related to the size of the branch and state 

metrics. Thus, the complexity is a function of ln2Q. The com­

plexity relative to the Q=8 design is given by 

3 + ln
2

Q 

6 
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3.0 SEQUENTIAL DECODING 

3.1 Background. Sequential decoding is a procedure for 

systematically searching through a code tree, using received 

information as a guide, with the objective of eventually tracing 

out the path representing the actually transmitted information 

sequence. 

Most sequential decoder implementations to data have used 

some modification of the Fano algorithm. Briefly, the operation 

of the Fano algorithm is as follows. Starting at the first node 

in the code tree, a path is traced through the tree by moving 

ahead one node at a time. At each node encountered, the decoder 

evaluates a branch metric for each branch stemming from that node. 

The branch metric is a function of the transition probabilities 

between the received symbols and the transmitted symbols along 

the hypothesized branch. 

The decoder will initially choose the branch with the largest 

metric value (corresponding to the closest fit to the received 

symbols). The metric is then added to a path metric, which is 

the running sum of branch metrics along the path presently being 

followed. Along with the path metric, the decoder keeps track of 

the running threshold T. As long as the path metric keeps increas­

ing, the decoder assumes it is on the right track and keeps moving 

forward, raising T to lie within a fixed constant, ~, below the 

path metric. If, on the other hand, the path metric decreases at 

a particular node, such that it becomes less than T, the decoder 
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assumes it may have made a mistake and backs up. It will then 

systematically search nodes at which the path metric is greater 

than T until it finds a path that starts increasing again, or 

until it exhausts all nodes lying above T. At this point it is 

forced to lower T, and search again. Eventually it will find a 

path that appears to have an increasing path metric. 

Eventually, the decoder will penetrate sufficiently deep 

into the tree, that with high probability the first few branches 

followed are correct, and will not be returned to by the decoder 

in a backward search. At this point, the information bits corre­

sponding to these branches can be considered decoded and the de­

coder may erase received data pertaining to these branches. 

A major problem with sequential decoding is the variability 

in the number of computations required per information digit de­

coded. The number of computations is a measure of the time re­

quired to decode, for a fixed decoding speed in computations per 

second. A computation is defined, for the time beingf-as either 

looking forward or backward one branch and evaluating and testing 

the metric involved. The cumulative distribution of computations 

performed per digit decoded, c, has been upper and lower bounded 

for the discrete memory less channel by a Pareto distribution 

(Ref. 1, 2), that is 

Pr[c>L] r-J k L-a , L»l, (3.1.1) 
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where k is a constant and a is determined by the relationship 

E (a) 
R = ~._o __ __ 

a (3.l.2) 

where R is the code rate. 

Here E (a) is a convex function of a which is determined by the o 

channel transition probabilities, which are in turn a function of 

Eb/NO. This function has the properties that Eo(O} = 0, and 

Eo(l) = Rcomp. Therefore, we can see from Eq. (3.1.2) that if 

R=Rcomp ' a=l. Rcomp is the so called computational cutoff rate 

of sequential decoding. 

Because a>l for R<R , the average number of computations comp 

per node decoded is finite, but for rates greater than Ro' this 

average is unbounded. Actually, for finite constraint lengths, 

the computation distribution drops off faster than Pareto for 

very large L. Thus, the average computation remains finite but 

large for R>Ro • 

Because of the variability of the amount of computation 

required, there is a non-zero probability that incoming received 

data will fill up the decoder memory faster than old outgoing 

data can be processed. If the decoder tries to search a node 

for which received data has passed out of buffer memory, an oVer-

flow is said to occur. When an overflow occurs, the decoder must 

have some mechanism for moving forward to new data, reacquiring 

code synchronization and starting to decode again. There are 

presently two techniques for doing this. One involves segmenting 
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the data into blocks. After each block, a fixed constraint 

length long sequence is inserted. Should the decoder buffer over­

flow while decoding a given block, it can simply give up decoding 

that block and jump to the beginning of the next block to resume 

decoding. Code sync is immediately attained through knowledge of 

the fixed data sequence preceeding a block. This technique has 

the disadvantage that it requires an initial search to acquire 

block sync, and there is a loss in efficiency due to the insertion 

of known sync bits into the data stream. 

Another overflow recovery technique does away with data block­

ing (Ref. 3). When an overflow occurs, the decoder jumps ahead to 

new data, and guesses the coder state at that point based upon 

received data. This technique is described in detail ina subse-

quent section. 

The probability of overflow for sequential decoding can be 

related to the distribution of computations per bit only in an 

approximate manner. Suppose the decoder has a speed factor of ~, 

that is, it is able to perform ~ computations per branch worth of 

data received. Suppose also, a decoder buffer capable of storing 

B branches worth of received data is used. with an initially empty 

buffer, the decoder may perform ~B computations in progressing 

one bit deeper before an overflow occurs. Thus, from Eq. (3.1.1), 

the initial overflow probability is 

= (3.1.3) 
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Since overflows can occur through the concatenation of several 

shorter searches, one intuitively expects that the actual overflow 

probability would be larger than (3.1.3). However, as long as ~ 

is somewhat larger than the average number of computations per 

bit, simulations have shown (3.1.3) to be remarkably accurate. 

Of course, when an overflow does occur, many bits will be lost, 

whatever the restarting method. Thus, the rate of bits lost due 

to overflow will be 

= LP 
o 

(3.1.4) 

When ~ is close to the average computations per bit, as is 

the case in a high data rate sequential decoder, simulation is the 

only reliable means of determining overflow frequency. 

The error probability with sequential decoding can be made 

as small as desired by increasing code constraint length. Long 

constraint lengths are practical for sequential decoding because 

decoder complexity is only a weak function of code length, unlike 

Viterbi decoding. 

It has been shown (Ref. 4) that for systematic codes, the 

undetectable error probability can be upper bounded by 

Pee) < k~ 2-K(1-R)Rcomp/R (3.1.5) 

for R<R , where K is the code constraint lenqth. The actual comp . 

achievement of this rate of decrease in Pee) with K is dependent 

on the choice of branch metrics for the decoder. This will be 
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discussed in section 3.2. 

3.2 Hard Decision Decoder. This section will deal in part 

with the interesting Fano algorithm modifications that offer po­

tential advantages for a high speed hard decision sequential de­

coder. Simulations will be reported for decoders using these 

modifications. Non-real time simulations have provided information 

on distributions of computations and undetected error rate. Real 

time simulations, using simulated decoder speed factors and buffer 

sizes, determine the overflow behavior of the decoder. 

Also considered are code synchronization, code selection, 

and data quality information. 

3.2.1 Syndrome Sequential Decoder. We will restrict our 

attention to systematic rate 1/2 convolutional codes with hard 

receiver quantization, for the sake of example. The technique 

generalizes easily to non-systematic codes, other rates, and even 

soft decisions. 

For a rate 1/2 systematic code, a received information bit 

and a received parity bit are input to the decoder at each bit 

time. To form the code syndrome, the received information bits 

are passed through a replica of the encoder and the generated 

parity bits are exc1usive-ORed with the received parity bits. 

Fig. 3.2.1 shows a representation of the encoder, channel, and 

syndrome calculator for a K=3 code. The noisy channel is mod­

elled by the mod-2 addition of occasional errors (ones) to the 

encoded information and parity streams. 
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Clearly, in the absence of noise, the syndrome bits input to 

the decoder are all zero regardless of the information sequence. 

This is because the parity bits generated in the syndrome calcu­

lator, e~~, and the received parity bits, e~, are both equal to 

the actual parity bits, e. Thus, since the code and the channel 

action are linear, the syndrome is a function only of the noise 

sequences. We can assume, therefore, without loss of generality, 

that the all zeros code sequence is transmitted. 

This being the case, note that a single error in the informa­

tion stream manifests itself in Fig. 3.2.1 as three consecutive 

lis in the syndrome. In general, an information error causes the 

code generator to be exclusive-ORed into the syndrome. Each pari­

ty error, on the other hand, causes a single 1 to be exclusive­

ORed into the syndrome. 

It can be shown that putting the received data into the form 

of a syndrome is information lossless. A decoder operating on s 

can perform as well as one operating on i~ and e;. The function 

of a decoder operating on a syndrome sequence is to determine the 

most likely information and parity error sequences that could have 

resulted in that particular syndrome sequence. For a binary sym­

metric channel, this corresponds to determining the minimum weight 

error sequence consistent with the syndrome. The decoder forces 

the syndrome sequence to zero, by exclusive-ORing a "1" where it 

believes a parity error occurred, and the code generator where it 

believes an information error occurred. 
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A syndrome sequential decoder keeps track of a metric as it 

"zeros" the syndrome. Each time it hypothesizes the occurrence 

of an error, the metric decreases. When it hypothesizes no error, 

the metric increases. If the decoder finds it has to correct too 

many errors in forcing the syndrome to zero, it will back up and 

change hypothesized information error decisions. Note that each 

information error decision affects the syndrome over a full con­

straint length. 

Functionally, the syndrome decoder can be viewed as a box 

whose input is a syndrome sequence, and whose eventual output is 

an information error location sequence. This sequence is then 

used to correct errors in the received information sequence to 

form the decoder output. 

3.2.2 Algorithm Modifications 

3.2.2.1 Guess and Restart Overflow Strategy. The guess and 

restart technique was developed and successfully implemented in a 

sequential decoder previously (Ref. 3). When a buffer overflow 

occurs in a sequential decoder due to a long search, the decoder 

must jump forward in the syndrome stream and resume decoding. If 

the data is not blocked, the decoder does not have definite know­

ledge of the coder state when it starts decoding again. What is 

required is knowledge of one constraint length of information bits 

at the point decoding is resumed. 

The best "guess" that can be made is that no information errors 

have occurred in the vicinity of the restart point. This "guess" 
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can be implemented by assuming a zero syndrome when restarting. If 

information errors actually occurred, the decoder will likely over-

flow again, requiring another restart. If the guess was correct-­

an if the succeeding data is not too noisy--the decoder will work 

its way through the buffer and resume normal operation. 

The decoder skips over a segment of the syndrome in restarting 

after an overflow. The information error decisions are set equal 

to zero over this segment. Thus when an overflow occurs, the de­

coder output corresponding to the unprocessed data will be the 

raw, uncorrected received information bits. These bits have 

errors occurring at the channel error rate. 

Simulations using guess and restart are presented in section 

3.2.4. 

3.2.2.2 Quick Threshold Loosening. A sequential decoder op-

erating below R (Eb/NO greater than 4.6 db in the case of a comp 

rate 1/2 code with hard quantization) spends much of its time 

plowing forward on the correct path, or in short searches, correct­

ing single or double errors. Long searches contribute less and 

less to the average computation per bit as Eb/NO goes up. Reduc­

tion of the time consumed just "plowing forward" or "keeping up 

with the data" is treated in section 5.0 of this report. Here 

we are concerned with reducing the number of short searches re-, 

quired. The technique of quick threshold loosening achieves this 

end for a hard quantized, rate 1/2 decoder. 

A single error in the received data stream is usually suffi-

cient to cause the path metric to fall below threshold and initiate 

a backwards search. In general, the decoder must search backward 
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at this point, rather than lowering the threshold and resuming 

the forward search. This is because, in backing up, the decoder 

may find another path that it can follow without lowering the 

threshold. Had the decoder lowered the threshold when the metric 

first violated it, the possibility exists of getting on a path for 

which the algorithm will not allow further threshold tightening. 

Thus, the threshold cannot be lowered unless all accessable paths 

above the threshold eventually lead below it. 

For a rate 1/2 hard quantized decoder there are three pos­

sible branch Metrics. The first corresponds to two matches between 

branch code symbols and received data. The second is for one 

match and one mismatch, and the third for two mismatches. Fur-

thermore, good codes always have the property that branches stem-

ming from the same node have complementary code symbols on them. 

Suppose the symbol match metric is equal to 1, and the mismatch 

metric is -a (the optimum range for a is from about 9 to 11). 

This means that either one branch leaving a node has metric +2 

and the other -2a, or they both have metric l-a. Fig. 3.2.2.1 

shows the way in which a typical short search is initiated due to 

a single error. 

When node A is reached for the first time, the threshold is 

tightened to the value T. The decoder then proceeds on to node 
1 

B, C and D. Looking forward from 0 the decoder sees a tie vote 

(branch metrics of l-a on both branches). Both path metrics at 

nodes F and E are below T. This would normally initiate a back-
1 

search thru nodes C, B and A, requiring tests-of metrics at nodes 
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G, H and I. Then at node A the threshold would be lowered to T l -6 

and the decoder would step forward again thru B, C, D and then E or 

Fo In this situation the decoder could have avoided the back search 

by lowering the threshold to T l -6 when threshold Tl was first vio­

lated in looking forward from node D. This can be done because 

there is no other path remaining above Tl which can be followed. 

This "instant" threshold lowering can be done if 6 ~ a-I. This 

restriction insures that a threshold violation on the path being 

followed determines that no other path remains above threshold. 

Quick threshold loosening is allowed only when the threshold has 

been previously tightened to its present value (it is tightened 

to Tl at node A in Fig. 3.2.2.l). If the threshold has been 

previously loosened all bets are off, since now a backsearch after 

threshold violation is necessary to insure non-existence of another 

path that remains above the present threshold. 

The quick threshold lowering scheme is easy to hardware imple-

ment.* It only requires a one bit flag indicating whether or not 

the threshold had been previously tightened, and logic to prevent 

entering backsearch mode when a "quick threshold loosening" is 

possible. 

A simple modification of the "quick threshold loosening" 

scheme allows decoding past isolated pairs of error without initia-

ting a backsearch to lower the threshold. 

Fig. 3.2.2.2 shm-ls a section of the code metric tree near a 

pair of symbol errors. The correct path segment consists of 

* G.D. Forney informed us this form of threshold loosening was 
implemented in Codex's 5 Mbps sequential decoder (Ref. 3). 
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branches from nodes 0 to B. Symbol errors have occurred at branch 

levels F and H. If the initial two bits of the code generator are 

11, then not only do 2 branches stemming from a common node have 

complementary symbols, but the four branches stemming from these 

nodes must contain all four combinations of the two code symbols. 

This insures that a tie vote at a node (such as node 1 in Fig. 

3.2.2.2) must be followed by another tie vote at one node (node 2), 

and by a complete match and a complete mismatch stemming from the 

other node (node 3). Therefore, when an error occurs, the metrics 

on all paths except one, must fall through at least two threshold 

levels. 

Suppose that the threshold has been tightened twice in a row, 

as is the case in going from node 0 to node 1. The decoder may 

go to node 3 and lower the threshold to T -~, since there are 
1 

no other unsearched paths in the T to T +~ interval. At node 4 
1 1 

the decoder faces another tie vote that takes the metric below 

the present threshold, T -~. Now because of the properties of 
I 

codes with generators beginning with 11, there cannot be any 

unsearched path segments in the range T -~ to T. Thus the 
1 1 

threshold may be lowered again, and the decoder may continue on 

to nodes 7 and B. 

This modification of "quick threshold loosening" is also 

simple to implement. An up-down counter which counts from 0 to 

2 is needed. Starting at "0", each time the threshold is tight-

ened the count is incremented by 1, saturating at 2. When the 

threshold is violated in looking forward, it may be immediately 
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loosened if the count is positive. If so, the count is decrement 

by 1. When the count is zero, a back search must be initiated. As 

in ordinary "quick threshold loosening", we must have 6 = a-l. 

When stepping forward to a node in the case of a tie vote, care 

must be taken to not step first to the node having another tie 

vote following it (node 2 in Fig. 3.2.2.2). This requires the 

ability to look at one syndrome bit into the future. 

These "quick threshold loosening" schemes have been simulated 

to determine their effectiveness in reducing the number of short 

searches. Fortunately the value 6 = a-l is the near optimum 

choice of threshold spacing. These simulations, along with almost 

all of those reported here, use code reported in Ref. 3. Factors 

influencing the choice of code are discussed in section 3.2.3. 

Fig. 3.2.2.3 shows the distribution of computations per bit de­

coder with 

1) The unmodified Fano algorithm 

2) "Quick threshold loosening" 

3) Modified "quick threshold loosening". 

These simulations were performed with p = .02. Included in the 

figure is the average number of computations per bit, 0, for each 

run. Both quick threshold loosening schemes clearly eliminate 

searches with computations below about 20 to 40. 

The modified "quick threshold loosening" is somewhat more 

effective than the loosening scheme described first. This is be­

cause it is capable of eliminating searches due to more error 

patterns. Fig. 3.2.2.4 shows a comparison of the computation 
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distributions for the standard Fano algorithm and modified quick 

threshold loosening decoders for p = .035. 

Neither scheme substantially affects the tails of the compu­

tation distribution. This is because the long searches typically 

involve lowering the threshold by more than one or two levels, at 

which point in the search quick threshold loosening is disabled. 

Because of the simplicity and effectiveness of the scheme, 

quick threshold loosening was used in many of the simulations, 

including all of the real time simulations that will be described. 

3.2.2.3 Look Ahead Sequential Decoding. Look Ahead Sequen­

tial Decoding is another technique which attempts to improve the 

distribution of decoding computations. The standard Fano syndrome 

sequential decoder examines and acts upon the syndrome one bit at 

a time. If a path being followed is destined to fall below the 

current threshold, the decoder must follow the path until it actu­

ally does fall below the threshold before backing up and changing 

direction. 

With look ahead decoding, the decoder examines N syndrome 

bits at a time. This is equivalent to looking forward N branches 

into the tree from the present branch. Using a table look-up 

procedure, the decoder determines if there is any path N branches 

ahead that satisfies the current threshold. If such a path exists, 

the decoder is allm'led to step forward on a next branch if that 

can be done without violating the threshold. If no path exists N 

branches ahead that satisfies the threshold, then it is useless 

to allow the decoder to proceed forward. In that case, the look 
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ahead decoder initiates a backsearch, regardless of whether or 

not the next branch path metric satisfies T. 

This scheme clearly does not do anything the standard Fano 

algorithm does not eventually do; however, it has the potential 

for doing considerable less. It reduces the depth to which a 

path must be searched before it is rejected. 

Fig. 3.2.2.5 compares the distribution of computations for 

sequential decoding with and without look ahead, with a look a­

head parameter of N = 6 branches. Use of the look ahead decoder 

with N = 6 results in an improvement in the computational dis­

tribution of about a factor of two. 

From this figure, it is apparent that while the distribution 

is lower, the Pareto exponent, or the slope of the curves, is the 

same. It can be shown analytically that no sequential decoding 

algorithm which "looks ahead" a finite number of branches can 

change the asymptotic slope of the computation distribution curve. 

The most that can be hoped for is a lowering of the constant in 

front of the distribution (k in Eq. 3.1.1). 

It is interesting to note that the effect of a scheme like 

looking ahead, which reduces the frequency of long searches, will 

be to reduce initial buffer overflow probability; while a scheme 

like "quick threshold loosening" will allow a full buffer to 

empty more quickly - allowing for a smaller decoder speed factor. 

Practically speaking, the look-ahead mechanism is not as 

simple to implement as "quick threshold loosening", especially in 

very high speed decoders. The syndrome table look-up is a complex 
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logical function which grows more complex exponentially with N. 

For N larger than about 6 it would have to be implemented using a 

read-only memory. Implementation would tend to slow down the 

decoder computation rate, which partially counteracts the improved 

computation distribution. Also, although the improvement in the 

distribution looks substantial, it only represents an improvement 

of about 0.1 db over the standard algorithm at points in the dis­

tribution which affect overflow probability with the real-time 

decoder parameters that were studied. For these reasons, look­

ahead decoding was not used in the real-time decoder simulation 

reported in section 3.2.4. 

3.2.2.4 Sequential Decoding with Sideways Looks. When a 

sequential decoder is stepping back to a node in the code tree, 

and the branch it is stepping through is a "best branch", its 

next step will be to look forward along the next best branch. In 

practice looking at the next best branch can be accomplished very 

conveniently before stepping back. If this node satisfies the 

threshold, and if the previous node also does, then a "step side­

ways· can be made directly to the next best node. Thus, what was 

two computations becomes one computation. Sideways looks will be 

counted as one rather than two computations in the simulation which 

follows. 

3.2.3 Decoder Undetected Error and Computational Performance. 

The sequential decoder simulations described thus far, and the ones 

presented in this section are for decoders operating in a non-real 
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time mode. That is, received data is generated as the decoder 

needs it. The performance data gathered is, therefore, that for 

a decoder in which buffer overflows do not occur. Real time de­

coder behavior, with a simulated buffer, is reported in the next 

section. 

3.2.3.1 Code Selection. Choosing codes is not as critical 

for sequential as it is for Viterbi decoding. Decoder complexity 

is not a strong function of code constraint length: so, the unde­

tected error performance of a code can be improved by increasing 

K rather than trying to optimize a code for a given value of K. 

Still there are several reasons for having as good a code as 

possible. 

1) The guess and restart overflow technique performance 

degrades with increasing constraint length. This is 

because a constraint length worth of data must be 

correctly "guessed" to restart decoding. 

2) The constant, k, in the computational distribution 

is somewhat sensitive to the code. Good code distance 

properties will result in value of k=l or less. 

3) The encoder replicas in the decoder do grow linearly 

with K, resulting in some additional cost and complexity. 

It has been found through simulation that of the known codes, 

the various truncations of the rate 1/2 systematic codes due to 

Lin and Lyne (Ref. 7), and Bussgang and Forney (Ref. 3,5) proved 

best in undetected error rate, and distribution of computations. 
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Forney's extensions of Bussgang's code seem to have the 

slight advantage. Since this code has already been used in two 

high speed sequential decoder implementations we have concentrated 

our efforts on it. A search for more optimal codes is probably 

not worthwi1e because 

1) The number of codes of constraint length 40 or thereabout 

is huge. 

2) The truncations of Forney's code have minimum free dis­

tances close to the upper bound on d
f

• 

Forney's code, to constraint length 45 has the generator 

715473701317465 in octal digits. The first two binary digits in 

the generator are 11, satisfying the requirement of the modified 

"quick threshold loosening" scheme. All 'simulations in this 

report use this code generator or its shorter constraint length 

truncations. 

3.2.3.2 Decoder Parameters. Two decoder parameters which 

must be selected are the threshold spacing ~, and the symbol mis-

match metric, -a. 

Simulations have shown (Ref. 3) that decoder computational 

performance is not extremely sensitive to~. A broad minimum in 

c, the per bit average computation, exists centered about ~ = 10. 

This value of ~ is convenient, as it turns out, in that it meets 

the requirements of the "quick threshold loosening" scheme. 

Whereas computational performance is not strongly affected by 

~, it is very sensitive to the symbol metric ratio l/-a. Here 1 
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is the metric assigned to a match in code and received symbols, 

and -a is the metric assigned to a mismatch. When operating at 

R=Rcomp (corresponding to p = .0447 for rate 1/2), the value of a 

that maximizes the computational distribution Pareto exponent is 

a = 9.1. Any different value of a will decrease the Pareto expo-

nent. However, as p decreases, R increases, and the optimal 
comp 

value of a increases. At p = .035, the best choice for a is near 

10. From an implementational point of view, by far the simplest 

values of a to use are odd integers. Therefore, the choice seems 

to be between 9 and 11. 

It has been shown (Ref. 4) that for a systematic code, when 

a is chosen to optimize the distribution of computation, the error 

probability does not go down as rapidly with K as shown in the 

bound in Eq. 3.1.5. This means that significantly larger values 

of K are needed than would be necessary for a larger a. Our sim-

ulations, which are in substantial agreement with those in Ref. 3, 

indicate, for instance, that for p = .0447 (R comp = 1/2), about 

the same bit error rate is attained with K = 45 and a = 9 as with 

K = 37 and a = 11. That error rate was just above 10- 5
• Other 

simulations indicate that the behavior of the error rate with K 

is consistant with the bound of Eq. 3.1.5 when a = 11. Also, 

since the optimum a is closer to 11 than 9 when p is greater than 

.035 (,,,,hich is really the range of interest for high data rate, 

low error rate operation), we have elected to concentrate on simu-

lation with a metric ratio of 1/-11. 
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3.2.3.3 The Distribution of Decoding Computations. Before 

proceeding to present the computational statistics gathered through 

simulation, we redefine a computation to be consistant with what 

happens in a hardware computational cycle. For this purpose it is 

more accurate to define a computation as having occurred when the 

decoder steps rather than looks forwards, backward or sideways. 

This eliminates counting as a computation: for instance, a look for-

ward by the decoder that does not result in a step forward. 

Using this new definitation Fig. 3.2.3.1 present the distri­

bution of computations per bit decoded for a range of channel 

error rates, p. For each value of p, 8 x 10 6 bits were decoded. 

The straight lines are best fits to a section of the tail of the 

distributions where significant data exists. The negative of the 

slopes of these lines are the measured exponents of the assumed 

Pareto distribution. As expected, the fit to the Pareto distri-

bution is excellent. Table 3.2.3.1 shows the measured Pareto 

exponent am vs. p. Also included is the theoretical Pareto expo­

nent, aT' which assumes the use of the optimum metric ratio, 1/-a. 

Clearly, there is some degradation in the exponent for the higher 

values of p. (corresponding to operation near Rcomp); however, 

for p ~ .035, the measured and theoretical values are close. This 

indicates that the optimum range for a is broad when p is low. 

3.2.3.4 Measured Undetected Error Rates. Table 3.2.3.2 

shows the measured number of bit errors vs. p for the constraint 

length K = 33, 37, and 41 codes. In each case 8 x 10 6 bits were 
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Eb/No -p aT a c m 

4.7 db .043 1.05 0.97 7.08 

4.9 db .039 1.16 1.12 3.09 

5.1 db .035 1.28 1.29 2.03 

5.4 db .030 1.46 1.44 1.50 

5.8 db .025 1.67 1.66 1.25 

Table 3.2.3.1 Measured and Theore­
tical Computational Distribution 
Paramet~rs. K=37, ~=10, Metric 
Ratio is 1/-11. 

-150-



P K 

33 37 41 

.043 390 205 79 

.039 128 120 0 

.035 37 0 0 

.030 25 0 0 

.025 0 0 0 

~ab1e 3.2.3.2 Undetected Bit Errors 
vs. p and K, For Decoder Runs 
of 8x10' Bits Each. 
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decoded. Only a small number of error events, if any, have 

occurred at the smaller values of p, making this data rather insig­

nificant. At p = .043, however, the error probability is 

fairly close to 2-K/2, as the upper bound predicts. 

3.2.4 Real Time Sequential Decoder Simulation. In the real 

time sequential decoder simulation program, the decoder buffer 

waiting line is simulated by a counter. The counter is incre-

mented every ~ decoder computations to simulate the periodic 

arrival of received data. The counter is decremented when a new 

node level is reached by the decoder. Thus, the count represents 

the number of branches of received data in the buffer waiting to 

be decoded. When the count reaches a number equal to the simulated 

buffer size, an overflow is declared. At this time the guess and 

restart routine attempts to jump forward about one constraint 

length, and resume decoding. 

In a high data rate decoder, where the speed factor ~ is 

only slightly larger than c (the average number of computations 

per bit), the overflow probability will not obey the heuris­

tically derived formula of Eq. 3.1.3. Also, when an overflow 

does occur, it will take many resync trials to successfully start 

decoding again. This is true because even when the correct 

syndrome guess is made, the decoder speed advantage is so slight 

and the buffer is so full, that the decoder will often overflow 

again. 

Fig. 3.2.4.1 shows measured decoder composite output error 

probability vs. constraint length for a decoder with a buffer size 
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of 64 x 10 3 bits, a speed factor, ~, of 2.5 and a channel error 

rate p = .035. Here composite output error rate refers to errors 

due to overflows, as well as undetected errors. In all cases the 

average number computations per bit was about 2.1. This figure 

is somewhat surprising in that error rate goes up with constraint 

length. This peculiar behavior can be explained as follows. With 

the longer constraint lengths, errors due to overflows completely 

dominate the composite error rate. At a constraint length of 45, 

the average number of related overflow events following an initial 

overflow is about 16. Each overflow causes about 300 raw undecoded 

information bits to be output by the decoder. Since the error rate 

on these undecoded bits is p = .035, each overflow results in about 

10 output errors. Since overflows occur in bursts of an average 

of 17 apiece, an overflow burst typically results in 170 output 

errors. 

Shortening the constraint length will cause undetected errors 

to take the place of some of the overflows. The average number of 

bit errors in an undetected error event is far less than 170. 

Thus, decreasing the constraint length has the net effect of 

improving the composite error rate. Of course, after a point 

undetected errors will dominate, and decreasing K further will 

increase the error rate. This point, however, has not been 

reached in going down to constraint length 30, as shown in the 

figure. 

The reason that about 300 bits are output in uncorrected 

form in a overflow, is as follows. When an overflow occurs, 
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error position decisions up to 256 branches back from the point 

of deepest decoder penetration are considered unreliable, and are 

erased. The decoder then jumps over about a constraint length 

worth of untouched data, for a net of about 300 bits. The reason 

that 256 decisions are erased is that, in a long search, the de-

coder may back up and change decisions as many as 200 nodes back 

or more. The most recent nodes must therefore not be considered 

finally decoded until the decoder has progressed at least 200 

nodes deeper into the tree. 

Fig. 3~2.4.2 shows composite bit error rate, in the neighbor­

hood of 10- 5
, vs. p for two decoder speed factors, ~ = 2.5 and 

~ = 1.5. Clearly the curves are extremely steep. Operation at a 

speed factor of 1.5 with a bit error rate of 10- 5 requires a de-

crease in p of only about .006 compared with operating at the same 

bit error rate with a speed factor of 2.5. 

'I'his comparison can be made even more dramatic if it is put 

in terms of data rate and Eb/No. Suppose we have a sequential 

decoder which is capable of 100 mega-computations per second. At 

a data rate of 40 Mbps, the speed factor is 2.5. A composite bit 

error rate of 10- 5 is achievable with a p of about .033 or an 

Eb IN 0 = 5 e 2 db e 

Likewise the decoder can operate at a data rate of 66 Mbps 

with a p of about .027, or Eb/NO = 5.7 db. The decoder data rate 

can be increased by over 50%, with the same output error rate, at 

the expense of only about 0.5 db! 
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Clearly there is a continuity of data rates and Eb/No that 

correspond to a composite bit error rate of 10- 5 • Fig. 3.2.4.3 

shows a curve of such data rates vs. gb/No. The curve is an 

interpolation and extrapolation of the two points obtained 

from Fig. 3.2.4.2. 

3.2.5 Erasures vs. Undetected Errors. In some applications 

erasures are not nearly as bad as undetected errors. If this is 

the case, output error can easily be decreased by orders of 

magnitUde by 

1) Increasing K until overflow errors dominate 

2) When an overflow occurs declare the 300 or so bits 

affected by the overflow as erased. 

This results in a bit erasure rate of about IIp times the 

original composite error rate. However, undetected error rate 

can be as small as desired, depending on K. 

3.2.6 Systematic vs. Nonsystematic Codes. All of the 

simulations reported were run using systematic codes. Systematic 

codes have the advantage over nonsystematic codes that in the 

event of decoder failure, the raw information bits are available 

directly as back-up. This advantage has been obviated, to a 

degree, by the invention of the "quick-look" nonsystematic codes 

(Ref. 6). Use of these codes allows for simple information bit 

generation without a decoder. The resulting information stream 

does have an error rate of about 2p, however. There are two main 

advantages in using nonsystematic codes 
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1) A constraint length of only about half the systematic 

code constraint length is required for the same detec­

ted error rate performance, and 

2) The optimum metric ratio, on the basis of the distribu­

tion of computations, also results in the achievement 

of the optimum undetected error probability exponent. 

This is unlike the case for systematic codes, ,·,here a 

larger value of "a" is required for optimal error 

performance. 

The metric ratio advantage in 2) is completely lost at 

p > .035. In this most interesting range, for high speed decoders, 

the optimum metric ratio range is broad enough to allow joint 

optimization of the computation distribution and error exponent 

with systematic codes. 

with the guess and restart overflow strategy, some form of 

"guess" of undecoded information bits must be output ''lhen the 

decoder overflows. Using a non-systematic code, these "guesses" 

will be less reliable than with a systematic code. 

For these reasons we have elected to concentrate on system­

atic codes. 
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3.2.7 Code Synchronization and Channel Reliability 

Prediction. Code synchronization and channel reliability can be 

handled in much the same manner as discussed in conjunction with 

Viterbi decoding. Recall in that case that an up-down counter 

was used, which counted up k on the occurrence of an error and 

down by 1 at each bit time, never going below zero. Code sync 

state is changed when the count exceeds a value T. In the 

sequential decoder it is even simpler. The counter now counts 

up by one when a threshold is loosened, and down by one when a 

threshold is tightened. The skewing of the count is done auto­

matically by the skewed metric ratio. False alarm, and resync 

rates are directly obtainable from the Efa and Ers curves in 

Figs. 2.2.5.4 and 2.2.5.5. 

3.3 Soft Decision Sequential Decoding 

3.3.1 Syndrome Decoder. A syndrome sequential decoder can 

be used to advantage with a soft decision decoder as well as a 

hard decision decoder. The syndrome is formed us~ng only the hard 

quantized information in the received data. Passed on to the 

decoder, along with the syndrome bits, is 2 data quality bit per 

branch for 4 level quantization, or 4 quality bits per branch for 

8-level quantization. 

The decoder uses the 3 or 5 bit per branch information to 

generate information error decisions just as in the hard decision 

case. Now, however, efficiency is improved by the availability 
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of the quality data. The error decisions are used to correct 

the stored, raw, hard quantized received information bits. 

3.3.2 Fano Algorithm Modifications. The guess and restart 

overflow strategy is applicable to a soft decision decoder. Here 

the "guesses" will be less frequently correct, because of the 

lower required Eb/NO with a soft decision decoder. 

Quick threshold loosening does not carryover to soft deci­

sions. The wider range of branch metrics makes it hard, if not 

impossible, to take advantage of code and metric structure to 

allow quick threshold loosening. 

3.3.3 Sensitivity to Incorrect AGC. Unlike Viterbi decoding, 

soft decision sequential decoding is extremely sensitive to im­

proper threshold level setting, due to inaccurate or drifting 

AGC. This is illustrated in Fig. 3.3.1. In this figure, the 

effect on the Pareto exponent of variations in the decoder metric 

bias as a percentage of the maximum branch metric are shown. 

Clearly, even these small changes in metric bias result in large 

changes in computation distribution. 
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3.3.4 COmparisons of Soft and Hard Decision Sequential 

Decoders. An a-level quantized sequential decoder, with the same 

size received data buffer as a hard decision decoder, can buffer 

only 1/5 as many received branches. Also, the increased com­

plexity of the decoder logic will mean a computation speed reduc­

tion of about a factor of 2 under that of a hard decision decoder 

(see section 3.4). 

This along with the AGe problem, and the nonexistence of a 

-quick threshold loosening- scheme will reduce the 2 db perform­

ance advantage, inherent in fine receiver quantization, over hard 

decisions. In fact at very high speeds, where speed factors are 

low, there may be no performance advantage to a soft decision 

decoder. For these reasons - especially the AGe sensitivity, we 

cannot recommend soft decision sequential decoding for very high 

speed communication. 

A technique is described in section 5.0, however, which 

uses a Viterbi predecoder before data enters a soft decision 

sequential decoder. This technique effectively improves the 

sequential decoder speed factor, and lowers the amount of memory 

required, and may provide a means of attaining the efficiency of 

a soft decision sequential decoder at high speeds. 

3.4 Sequential Decoder Implementation. This section consid­

ers implementation techniques for syndrome sequential decoders 

operating at data rates from 1 to 40 Mbps. Trade-offs consid-
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ered are choice of logic family and hard vs. soft decisions. 

A block diagram of a syndrome sequential decoder is shown in 

Fig. 3.4. The input from the channel is separated into two bit 

streams, one containing received information bits and the other 

containing the received check bits. The received information 

bits are passed through an encoder which is identical to the one 

used at the transmitter, and are exclusive-ORed with the received 

check bits, thus generating the syndrome. The syndrome is then 

stored in a random-access memory. In the case of soft decisions, 

the quality bits are stored in the memory with the syndrome. 

Meanwhile, the information bits are stored in a delay line which 

is equal in length to the total delay through the random-access 

memory and cpu. The processer reads the syndrome bits (and quality 

bits, if any) from the random-access memory and, using a modifica­

tion of the Fano algorithm, determines a likely information error 

sequence. The decoded information error sequence is then read 

back into the random-access memory. The information error se­

quence remains in the random-access memory until the correspond­

ing received information bits are shifted out of the delay line. 

The information bit sequence and the information error sequence 

are then exclusive-ORed, correcting any errors present in the 

received information sequence. The resulting corrected data is 

the decoder output. 

All implementations considered would use semiconductor 

memory devices to form the main memory, TTL logic circuits for 

memory buffer, control, and syndrome generation and either TTL 
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or MECL for input and output interface circuits as required by 

the data rate. The choice of logic family for the CPU section 

is more critically dependent on the maximum data rate desired. 

The implementation study has found that the maximum compu­

tation rates for MECL III, MECL II, and TTL are, respectively, 

100, 25, and 13 megacomputations per second. The corresponding 

data rates for speed factor 2.5 are, respectively, 40, 10, and 

5 Mbps. The relative cost factors are the same as for the 

Viterbi decoder, i.e., 18, 3, 1 for MECL III, MECL II and TTL, 

respectively. 

The trade off study for Viterbi decoding showed that.the 

most cost effective way to obtain 40 Mbps decoding was to par­

allel four 10 Mbps TTL decoders. Such is not the case for 

sequential decoding. 

A 40 Megabit sequential decoder could be obtained by build­

ing one decoder with a MECL III CPU, or four decoders in parallel 

with MECL II CPU's or eight decoders in parallel with TTL CPU's. 

In the case of the MECL III decoder, CPU accounts for approxi­

mately 60% of the total cost and the memory and I/O circuitry 

account for 40%. The memory and I/O circuitry for a MECL II 

CPU decoder would run about 85% of the cost for the MECL III de­

coder. The memory and I/O for a TTL CPU decoder will cost about 

75% of that required for the MECL III decoder. The results for 

40 Mbps are shown in the following table: 
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CPU COST OF COST OF RELATIVE COST NUMBER OF RELATIVE 
TYPE MEMORY CPU OF 1 DECODER DECODERS TOTAL COST 

MECL 
III .4 .6 1.0 1 1.0 

MECL 
II .35 .1 0.45 4 1.B 

TTL .3 .03 0.33 B 2.64 
--

Thus, the MECL III design turns out to be the most inexpensive for 

this data rate. The MECL III decoder for hard decisions is pre-

sented in detail in the following section. 

3.4.1 40 Mbps Sequential Decoder. A detailed block diagram 

of the 40 Mbps sequentai1 decoder is shown in Fig. 3.4.1. The 

input from the channel is accepted in either of two forms~ as in 

serial bit stream at a maximum rate of BO Megasymbols per second, 

or as two parallel lines at a maximum rate of 40 Megasymbols/ 

second each, corresponding to a maximum data rate of 40 Megabits 

per second. 

The parallel inputs are provided for decoding QPSK modulated 

data. Received information and parity bits are routed separately 

from the modem to the decoder. 90° demodulator phase ambiguities 

are resolved by the code synchronization circuitry. 

The BO Mbps serial input is for use with BPSK modems. In 
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this case, the interleaved received information and parity bits 

are decommutated in the decoder. Node synchronization is pro­

vided again by the code sync circuitry. For both BPSK and QPSK, 

180 0 phase ambiguities will be handled by using codes trans­

parent to 180 0 phase flips and differentially encoding and de­

coding the data. 

The input circuits exclusive of the serial input decom­

mutation are implemented using MECL II logic. The input lines 

are then buffered down to eight parallel lines operating at a 

maximum rate of 10 Megabits per second per line. The eight result­

ing lines are then converted to TTL logic levels and delivered to 

the encoder replica and buffer. 

The syndrome is then formed from the received information 

and parity bits. The syndrome is collected into 72 bit words 

and delivered to the random-access memory. The random-access 

memory is a semiconductor memory consisting of 1,024 words of 72 

bits each. The memory has a read/write cycle time of 400 nano­

seconds. The syndrome words are written into sequential locations 

in the random-access memory. Prior to writing the syndrome word, 

the present contents of the addressed word are read out of the 

memory. This word contains the decoded information error 

sequence. The word is sent on to the output buffer where it is 

exc1usive-ORed with the delayed information bit sequence. 

The random-access memory has two ports. The input-output 

section is connected to the first port and has priority. The CPU 

buffer is connected to the second port. The CPU buffer reads a 
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72 bit word out of the random-access memory and delivers it to 

the CPU four bits at a time whenever the CPU requests new data. 

After reading out the new syndrome word, a new information error 

word is written into the memory at the same address. When the CPU 

buffer memory address catches up to the input-output address, the 

CPU buffer must wait until a new word is written into the random­

access memory from the input-output section. When the CPU buffer 

falls so far behind the input-output section that the input-out­

put section attempts to write over an undecoded word, a buffer 

overflow is declared. Whenever an overflow occurs, a signal is 

sent to the external equipment indicating the next word of data 

is likely to contain errors. The overflow signal is also sent to 

the Fano algorithm logic so that it may restart at a point further 

ahead in the memory. 

When the CPU section reaches the front of the back-up buffer, 

a new four bit syndrome word is requested from the memory section 

via the CPU buffer. This four bit word is exclusive-ORed into 

the encoder. The encoder is capable of shifting in either direc­

tion. If the algorithm logic determines that the present node 

contains an information bit error, then the code impulse function 

is exclusive-ORed into the encoder. Likewise, when the decoder 

is backing up, the impulse functions that were exclusive-ORed 

into the encoder while proceeding forward must be removed. The 

bits shifted out of the right hand side of the encoder while 

moving forward correspond to the check bit error sequence. These 

bits are shifted into the back-up buffer along with the informa-
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tion error sequence. When the decoder is backing up p the 

original syndrome is reconstituted by shifting the check error 

sequence back into the right hand side of the encoder, and by 

exclusive-ORing in the code impulse function wherever an infor-

mation error previously was hypothe~ized. The syndrome bits are 

shifted out of the left hand side of the encoder when backing up 

and are shifted into the back-up buffer. 

Functionally, the back-up buffer is a right-left shift 

register that is two bits wide and 256 bits long. The back-up 

buffer is actually implemented by using a very fact ECL random-

access memory that is addressed by up-down counter, thus giving 

the effect of a right-left shift register. The function of the 

algorithm logic is to direct the progress of the CPU through the 

decoding tree. The algorithm logic determines whether the decoder 

may proceed forward or backward and determines the changes in the 

decoder metric. 

3.4.2 Code Synchronization. The function of the synchroni-
• 

zation circuit is to obtain correct code sync. This is accompli-

shed by comparing the rate of metric threshold loosenings with 

the rate of metric threshold tightenings. If the code sync state 

is correct, then the rate of metric tightenings will exceed that 

of metric loosenings. However, if the code sync state is incorrect, 

then metric loosenings will exceed the rate of metric tightenings. 

The sync circuit contains a counter which is counted up every 

time a metric threshold loosening occurs and is counted down 
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every time a metric threshold tightening occurs. The counter has 

a reflecting boundary at zero. If the counter overflows while 

counting up, a bad sync state is declared and the code sync state 

is changed. Code sync resolves the 90° phase ambiguity in the 

QPSK input case and accomplished node sync in the BPSK case. The 

counter is large enough that the probability of falsely declaring 

a bad sync state is negligible compared with decoder error rate. 

The code sync state is changed if the input is from a PSK modem 

by inserting or deleting a one symbol time delay. If the input is 

from a QPSK modem the sync state is changed by interchanging the 

two symbols and inverting one of them. Also, when the sync state 

is changed the CPU buffer address is set equal to the input-output 

address and the CPU is restarted at that point. 

3.4.3 Input Buffer. A detailed logic diagram of the input 

buffer is shown in Fig. 3.4.3. The inputs from the channel are 

each received on twisted pairs which are terminated in the charac­

teristic impedance of the line, and then fed to a set of line 

receivers. The output of the clock line receiver is then fed to 

the clock conditioning circuit which provides all of the necessary 

clocks to the decoder. The data inputs are then fed to three 

flip-flops which format the various inputs into two parallel 

lines, one line containing the information bit stream and the 

other line containing the check bit stream. 

If the serial PSK input is used, the three flip-flops are 

connected as a three bit shift register. The information bit 

-172-



~
 

~
 

S
E

R
IA

L
 

I:
JP

U
T

 

SE
R

IA
L

/P
A

 

r i 
• 

I 
P

'\R
A

L
L

E
L

 
:;

 
IN

P
U

T
 

("
oJ

 

I 

P
S

K
/Q

P
S

K
 

r' 
.. , 

PR
O

l-1
 

SY
H

C
 

C
I"

'1
.C

U
I'l

' 

S
E

()
U

E
N

T
IA

L
 

D
E

C
O

D
E

R
 

II
JP

U
T

 
B

U
F

F
E

R
 

C
LO

C
K

 
/
'
 

,I
C

O
!J

D
IT

IO
N

Il
W

 
C
L
(
)
C
I
~
S
 

F
ic

;u
re

 
3

.4
.3

 

4
B

IT
 

IN
F

O
R

M
A

T
IO

N
 

B
IT

S
 

C
H

E
C

K
 

B
IT

S
 



output is taken from the first register and the check bit is 

taken from the second register in one sync state. In the other 

sync state, the information bit is taken in the second flip­

flop and the check bit is taken from the third flip-flop, thus 

resulting in a selective insertion of a one symbol time delay as 

required to obtain node sync. 

If the input is on two parallel lines from a BPSK modem, 

the first bit is shifted into the first flip-flop and the second 

bit is shifted into the second flip-flop at each bit time. Also, 

the output of the first flip-flop is shifted into the third flip­

flop. The information bit and check bit may now be taken from 

the three bit register as in the previous case thereby obtaining 

node sync. 

If the input is from a QPSK modem, then the first line is 

shifted into the first flip-flop. The complement of the first 

line is shifted into the third flip-flop. The second input line 

is shifted into the second flip-flop. Code sync is then obtained 

by using the same set of switches as in the previous case. 

The information and check bits are each shifted into a four 

bit shift register. Every four bit times, the contents of the 

two shift registers are loaded into two four bit latches. The 

two four bit latches each drive a quad MECL II to TTL converter. 

The resulting TTL signals are then delivered to the rest of the 

decoder. 

3.4.4 Received Information Bit Storage. Received Information 

Bits must be stored in a 72,000 bit long delay line while the 
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decoding is taking place. A block diagram of the information bit 

storage is shown in Fig. 3.4.4. This storage is accomplished by 

using dynamic MOS shift registers, since this form of storage is 

presently the most inexpensive available. Since the MOS shift 

registers used are not capable of operating at 40 Megabits, a 

number of registers must be operated in parallel to obtain this 

effective speed. 

The information bits from the input buffer are collected 

into 36 bit words, using a serial to parallel converter followed 

by a 36 bit latch. The output of the 36 bit latch drives 36 

2,048 bit long shift registers. The output of the shift registers 

are clocked into a 36 bit latch. The latch drives a parallel to 

serial converter which converts the information bits back to four 

parallel lines. Since the MOS registers are dynamic shift regis­

ters, there is a minimum clock rate of 10 KHZ which corresponds 

to a data rate of 300 kilobits. If it is desired to provide for 

operation of data rates lower than 300 kilobits, the following 

technique could be used: Below 300 Kbps, the dynamic shift reg­

isters are replaced by static registers of reduced length. The 

total storage is reduced by a factor of 128. The speed factor -

buffer size product remains higher at 300 Kbps than at 40 Mbps. 

3.4.5 Syndrome Generator. A logic block diagram of the 

syndrome generator is shown in Fig. 3.4.5. The syndrome generator 

receives the information bits and check bits from the input sec­

tion in two words of four bits each. The syndrome generator 
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computes the syndrome, four bits at a time, thereby permitting it 

to operate at the data rate divided by four. The syndrome 

generator is implemented using SN7495 shift registers and SN7486 

quad modulo two adders. Since this logic is fast enough to permit 

only one level of mod two addition between the flip-flops, all 16 

possible mod two combinations of the four parallel information 

bits must be computed. This is accomplished in two levels of 

flip-flops. In the first level, information bits one and two 

and information bits three and four are each modulo two added and 

stored in two flip-flops. In the next level, the nine remaining 

combinations are computed, thus resulting in the signals I-I thru 

I-IS. The check bit word is delayed three clock times, so that it 

appears at the appropriate time in respect to the information 

bits. The remainder of the syndrome generator consists of four, 

12 bit long shift registers with a modulo two adder between each 

stage. One input to each mod two adder comes from the previous 

stage in the register. The other input comes from one of the I-I 

thru 1-15 signals. The output of the next to the last stage of 

the syndrome generator is a set of computed check bits. The 

syndrome is formed in the last stage of the syndrome generator 

by exclusive-ORing the four received check bits with the four 

generated check bits. The resulting syndrome is delivered to the 

memory. 

3.4.6 Decoder Memory. The function of the decoder memory is 

to store the syndrome while it is awaiting processing by the CPU 
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section of the decoder. A block diagram of the memory is shown in 

Fig. 3.4.6. Since the number of computations required to decode 

one bit is a random variable, and the rate of computations is 

fixed, a large amount of storage is required in order to make 

the probability of buffer overflow sufficiently small. Simula­

tions have shown that a memory size of 72,000 bits will provide 

the required performance with 40 Megabit data and a computation 

rate of about 10 8 Fano algorithm computations/second. The 

previous two quantities also set the throughput rate of the mem­

ory, since the CPU must be able to access about 10 8 bits per 

second in order to achieve its maximum computation rate. An 

additional 40 Megabits per second must be accessed in order to 

store and retrieve the syndrome input and the information error 

sequence outputJ thus, the total throughput requirement of the 

memory is about 140 Megabits per second. 

At the present time, economical semiconductor random-access 

memories are available with read/write cycle times in the neigh­

borhood of 300 to 400 nanoseconds. If a 400 nanosecond memory 

is used, then a very wide word is necessary in order to obtain 

the required throughput rate. Random-access memory cards are 

presently available from several manufacturers containing 1,024 

words of 18 bits each in the required speed range. Combining 

three of these cards to form a 54 bit word does not quite meet 

the required throughput rate, consequently four cards will be 

used, resulting in a 72 bit wide word, in order to achieve the 

desired througnput rate. 
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The memory must have two ports; one port to serve the input­

output and the other port to serve the CPU. The input-output 

port must have priority so that data will not be lost. 

The syndrome is collected into 72 bit words for access into 

the memory. When 72 bits have been collected, the memory timing 

and control circuit is signalled and the next available cycle is 

given to the input-output. A 72 bit two input multiplexer selects 

the syndrome word for data input into the random-access memory. 

During the cycle, the word stored in the present input-output 

address is read out and loaded into a 72 bit latch. After the 

read operation, the 72 bit syndrome word is written into this 

address and the cycle is completed. The word read into the 72 

bit latch is then converted into a four bit parallel line and is 

sent to the output circuit. When the CPU requires a memory access, 

the 72 two input multiplexers and the 10 two bit address multi­

plexers connect the CPU address counter and the CPU data lines 

to the memory and the cycle is initiated. The memory addresses 

are stored in two 10 bit counters, one for the input-output and 

one for the CPU. The memory timing and control circuit controls 

the read/write process. This circuit also generates a signal 

whenever a buffer overflow occurs. 

3.4.7 CPU Buffer. A block diagram of the CPU buffer is shown 

in Fig. 3.4.7. The function of the CPU buffer is as follows: 

When a 72 bit syndrome word is read from the memory, it is stored 

in the 72 bit latch. When the four 18 bit shift registers are 
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empty, the contents of the 72 bit latch are loaded in parallel 

into the four 18 bit shift registers. The contents of these 

registers are then shifted out to the CPU four bits at a time. 

with each shift, a four bit word is shifted into the four 18 bit 

shift registers from the CPU. Thus,after 18 shifts, the old 

word will have been shifted into the CPU and a new 18 bit word 

will have been shifted back into the shift register. At this 

time, the present contents of the four 18 bit shift registers 

are loaded in parallel into the second 72 bit latch and the con­

tents of the first 72 bit latch, which now contains a new word, 

is then loaded into the four 18 bit registers and the process 

continues. If a new 72 bit word is not yet ready, then the CPU 

waits until a memory access can be obtained. The latches and the 

shift registers are implemented using SN7495 devices. 

3.4.8 CPU. A block diagram of the CPU is shown in Fig. 

3.4.8.1. The four bit words from the CPU buffer are translated 

from TTL logic levels to MECL logic levels and stored in a four 

bit latch. The contents of the four bit latch are loaded in 

parallel into the encoder every four computations when the decoder 

is proceeding forward to new nodes. A logic diagram of three 

stages of the encoder is shown in Fig. 3.4.8.2. The encoder is 

capable of shifting in either direction. The code impulse 

function can be exc1usive-ORed with the present contents of the 

encoder on a shift in either direction. The encoder may also be 

synchronously reset. Each stage of the encoder consists of one 
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flip-flop and one quad two input NOR gate. The output of the 

right hand side of the encoder is the hypothesized check error 

sequence. This sequence is stored in the back-up buffer. When 

the decoder is backing up, the bits that are shifted out of the 

left hand side of the encoder are stored in the back-up buffer. 

If an information bit error is hypothesized at a node, then the 

code impulse function is exclusive-ORed into the encoder, and a 

one is shifted into the four bit information error register. 

The information error sequence is also shifted into the back-up 

buffer when proceeding forward. When backing up, the information 

error sequence is returned to the four bit register and the ori­

ginal syndrome is reconstituted in the encoder by shifting in the 

check error sequence and by exclusive-ORing the contents of the 

encoder with the code impulse function at every node at which an 

information error was hypothesized. The information error 

sequence that is shifted out of the back-up buffer when proceeding 

forward is shifted into a four bit right/left shift register. 

Every four shifts forward to new nodes, the contents of this 

register are loaded into the four bit latch. T~e contents of the 

latch are then translated from MECL logic levels to TTL logic 

levels, and returned to the CPU buffer. The function of the 

back-up buffer is that of a 256 bit long, two bit wide, right/ 

left shift register. since this size register would be prohib­

itively expensive if implemented using MECL III logic, the 

function is actually implemented by the use of a very fast ECL 

random-access memory. A random-access memory can be made to look 
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like a right/left shift register if the random-access memory is 

addressed by an up-down counter, which counts up when a right 

shift is desired and counts down when a left shift is desired. 

The RAM is a 64 word, eight bits per word, ten nanosecond access 

time memory that is manufactured by Advanced Memory Systems. The 

RAM is interfaced to the CPU through the two, four bit, right/ 

left, parallel load registers and the two, four bit, buffer 

registers. A six bit up-down counter provides the address. 

The algorithm logic controls the progress of the decoder 

through the decoding tree. Each computation the algorithm logic 

decides, 1) whether to move forward, backward, or sideways, 2) 

whether the node being computed has an information bit error, 

3) whether to raise or lower the threshold, and 4) the amount by 

which the decoding metric should change. Two infrequently used 

functions are: 

1) back-up buffer overflow, and 

2) main buffer overflow 

When back-up overflow occurs, the decoder has come to the end 

of the back-up buffer and can go no further in a back search. In 

this situation, the algorithm logic lowers the threshold and goes 

back to forward searching. In the case of a main buffer overflow, 

the decoder must attempt to restart at some point ahead of its 

present location. The decoder jumps to the front of the back-up 

buffer, requests a new word from the main buffer, resets the en­

coder, resets the metric register, and attempts to begin decoding 

in the forward direction. If the decoder is unable to restart, 
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the main buffer will soon overflow again and another restart 

attempt will be made. 

3.4.9 Physical Description. The CPU is implemented using 

MECL III logic. Approximately 250 MECL III IC's are required. 

The CPU can be packaged on one or two multilayer circuit boards. 

Five or six layers will be required. Two layers are reserved for 

ground and power planes. The remaining layers are required to 

provide the necessary interconnections. All circuit board runs 

longer than 2 inches are terminated strip transmission lines of 

50 ohm impedance. 

The MECL III stud mounted flat package is used. The packages 

are mounted with the stud passing through the circuit board. 

Cooling can be provided by soldering a U shaped fin to the stud 

on the side of the board opposite the component. Cooling air 

will then be blown across the fins. Using this technique, the 

temperature rise in the equipment will be less than 20 degrees. 

With 50°C ambient temperature, the maximum component temperature 

will then be 70°C. 

The remainder of the decoder is implemented using MECL II, 

TTL and MOS logic devices. Approximately 325 of these devices 

are required. They can be mounted on five or six circuit boards, 

using the welded stitch wire technique. The main buffer can be 

packaged on four additional circuit boards, and the back-up 

buffer can be packaged on one circuit board. 

The complete decoder, together with power supplies, can be 
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packaged in a standard lo~n high rack mountable chassis. All 

data input and output connectors can be mounted on the front panel 

together with all necessary controls. 

3.4.10 Modifications Required by Soft Decisions. As 

explained in previous sections, an improvement in Eb/NO of 1.5 db 

is available by increasing Q from 2 to 4. But the cost is a sub­

stantial increase in the hardware requirement. 

A soft decision syndrome sequential decoder would form the 

syndrome as in the hard decision case by regarding the most 

significant bit of each symbol as a hard decision. This is most 

easily done if the quantizer levels are labelled by a sign­

magnitude representation. The sign bit then corresponds to a 

hard decision. 

The syndrome is stored in the main memory along with the 

magnitude (or quality) bits for each symbol. This requirement 

triples the size of the main memory for Q = 4 since a syndrome bit, 

and one quality bit for each symbol must be stored for each node. 

The hard decision bit for the information bits is stored in a 

'delay line as in the case of the hard decision case. This re­

quirement causes the hardware in the memory and I/O section of 

the decoder to increase by a factor of 2.5. 

The CPU uses the syndrome and quality bits to determine a 

likely information error sequence. This sequence is then stored 

in the main memory for later use in correcting the delayed infor­

mation bit stream. All bit paths in the CPU must now be three 
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times wider than for a hard decision decoder, thus, tripling this 

portion of the CPU hardware. The algorithm logic becomes consid­

erably more complicated since the metrics must be quantized to a 

much finer level than in the hard d~cision decoder. This results 

not only in an increased number of gates, but in an increased 

number of logic levels, thus slowing down the computation rate. 

The computation rate will be reduced from about 100 Megacompu-

tat ions per second in the hard decision case to about 70 Mega­

computations for Q = 4. The CPU hardware will increase by a 

factor of three. Thus the overall increase in hardware (and in 

cost) will be a factor of 2.8 relative to a hard decision decoder. 
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4.0 CODING FOR DATA OF VARYING SPEED AND ERROR RATE REQUIREMENTS 

Consideration has been given to the problem of transmitting 

a data stream on which, by time-division multiplexing, data from 

sources with different data rates and error requirements have been 

combined. Three approaches have been considered and analytical 

results obtained for each. These are designed to protect the 

high-reliability low-rate data by one of the following methods: 

a) concatenated coding (originally outlined in section 4 

of the proposal for this contract.) 

b) lengthened symbol times for the low-rate data 

c) use of lower rate codes for the low-rate data 

To obtain specific results, it was assumed that the ratio of 

high-rate to low-rate is no greater than 10 and that the required 

high-rate bit error probability is 10- 3 , which probably represents 

a worst case. 

Also, the basic code for the high-rate data was taken to be 

the best rate 1/2 constraint length 4 convolutional code. While 

this is used primarily because it has been thoroughly analyzed 

and simulated, it is also a reasonable candidate for data rates 

above 10 Mbps with Viterbi decoding. 

4.1 Concatenated Coding. The goal is to find a very simple 

outer code to be used on the low data-rate source only, which will 

decrease the error probability to the desired level. The overall 

coding system is shown in Fig. 4.1. If the outer code has rate 

1/2, the overall Eb/No is increased only by 0.4 db. 
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In order to render the inner code errors nearly independent, 

interleaving must be introduced. Five constraint lengths of 

interleaving seem more than sufficient. Thus, an interleaving 

memory of 20 bits is all that is required for constraint length 4. 

The outer code then operates essentially on a binary-symmet­

ric channel with crossover probability p=lO-3. A two-error 

correcting BCH code is unsatisfactory because it requires R=7/l5 

and only achieves 

... ... 7 
IS ~ ;5) 

A more satisfactory block code, the Golay (24, 12) three-error 

correcting code has R=1/2 and 

... ... 1 
2' 

However, this requires a moderately complex decoder when operating 

at high data rates. Block code synchronization may add to the 

complexity if not already provided by a separate framing reference. 

A more suitable approach is to use a convolutional outer code. 

The two-error correcting, rate 1/2 code (Fig. 4.2a) yields for the 

BSC 

while the best three-error-correcting rate 1/2 code yields (Fig. 

4.2b) 
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In each case, the results are better than the corresponding block 

codes, the decoder is simpler, and code synchronization is not 

required for the convolutional code. Node synchronization, which 

is required, can be obtained using the methods outlined in 

section 2.2.5. 

While Viterbi decoding is required to obtain the above 

results, a feedback decoder, the L-IOll presently marketed by 

LINKABIT Corporation, obtains nearly equivalent results for the 

BSC, and affords a much simpler mechanization for both the two-

and three-error correcting decoders. 

4.2 Lengthened Symbol Times for Low-Rate Data. This is 

undoubtedly the simplest approach. If a rate 1/2 outer code were 

used for the low-rate data, its effective Eb/No would be increased 

by 3 db (resulting in an overall increase of 0.4 db). Rather 

than using a code, the low rate symbols might simply be repeated 

or lengthened. To achieve PB=lO-s with a K=4 code for the high­

rate data, the required Eb/No = 3.75 db as established by analysis 

and simulation. Thus, using this approach for the low-rate 

data, we would have Eb/No = 6.75 db. For high Eb/No, the bit 

error probability (without quantization) for this code is asymp-

totically 

This figure may be slightly optimistic if 8-level quantization is 
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used. 

4.3 Lower Rate Codes. Instead of doubling the symbol length, 

we may keep this fixed but double the number of symbols, thus 

changing from an R=1/2 code for the high-rate data to an R=1/4 

code for the low-rate data. Preliminary analysis indicates that 

the rate 1/4 constraint length 4 code with minimum bit error 

probability at high Eb/No has the generator matrix 

G 
[

1111] = 1011 
1101 
1101 

and that for this code at Eb/No = 6.75 db 

If such a lower-rate code is used for the low-rate data, 

separate decoders must be used for the high-and low-rate data. 

The two decoders may time-share some subsystems, such as the 

arithmetic unit, but in some respects, they must be distinct. 

In view of the very modest improvement, it is questionable wheth-

er the complexity is warranted relative to the approach of 

doubling the symbol time, which requires virtually no additional 

decoding complexity. 

On the other hand, it also appears that concatenation with 

a simple convolutional outer code gains about two orders of 

magnitude in performance over the other two approaches. 
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Multi-
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Type I data 

L.j Demodulator~ Inner ~ De- -- De- H~uter 
Decoder Multi- Inter- Decoder 

plexer leaver 

Figure 4.1. Coding for data of varying error-rate 
requirements. 

(a) two-error correcting 

(b) three-error correcting 

Figure 4.2. Outer Convolutional Code 
-196-

Type II data 



REFERENCES 

SECTION 4 

1. A. J. Viterbi, "Convolutional Codes and Their Performance 
in Communication Systems," LINKABIT Corporation Semi­
nar on Convolutional Codes, January 26, 1970. 

-197-



5.0 PREDECODING FOR A SEQUENTIAL DECODER: * 
A HYBRID IMPLEMENTATION FOR VERY LOW ERROR PROBABILITY. 

5.1 Int~oduction. To achieve very low error rates with a 

sequential decoder at very high data speeds, it is necessary to 

operate well below Rcomp. For at high speeds, even a speed fac­

tor of 2.5 may be prohibitively expensive, especially in a soft 

quantized sequential decoder. Furthermore, for very low wequen-

tia1 overflow probability, large quantities of storage are required, 

particularly with 8-1eve1 quantization which requires six bits 

of storage per branch. 

On the other hand, if we operate well below R , most of comp 

the data can be correctly decoded by a short constraint length 

Viterbi decoder. As was pointed out in the original description 

of the algorithm (Ref. 1), a Viterbi decoder can decode a long 

constraint length (K) convolutional code treating it as if the 

constraint length were much shorter (k«K), by operating only on 

the first k symbols of the convolutional code generators. Of course, 

when an error occurs, remerging to the correct path is extremely 

unlikely and generally all subsequent bits will be decoded incor-

rect1y. The point is, however, that most of the data can be 

correctly decoded in this way and only the more difficult (noisy) 

segments of data are incorrectly decoded, and if errors can be 

detected, then segments can be passed on to a more powerful sequen-

tia1 decoder. 

*This technique was proposed by G. D. Forney, Jr., who was a 
consultant on this study. 
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The approach that is therefore suggested is to use a short 

constraint length Viterbi decoder (k~S) to "predecode" a long 

constraint length convolutional code, detecting the incorrectly 

decoded segments, and passing these on to a sequential decoder, 

which is more powerful since it utilizes the full oonstraint 

length (K>30) of the code. The mechanization block diagram is 

shown in Figure 5.1. 

We assume that data is encoded, in frames of 1000 bits, 

into a constraint length K=40, rate 1/2 nonsystematic convolu-

tional code, each frame being followed by a tail of 39 known 

branches, to be used for resynchronization. The received demod-

ulated data (soft or hard quantized) is passed first to a Viterbi 

predecoder operating as a decoder for a k=S code corresponding 

bo the first 5 symbols of the generator sequences. All decoded 

data is passed to a long digital delay line capable 6£ storing 

0=256 decoded frames (256 K bits). 

All undecoded received data from a given frame is also passed 

*. 
to a one-frame buffer (6000 bits for 8-level soft quantized data ' 

1000 syndrome hits for hard quantized data). The Viterbi decoder 

output is also monitored in an effort to detect all frames in 

which an error occurred. This can be performed in a number of ways. 

The probability that an incorrect paah remerges with the correct 

-K path at any given node is of the order of 2 • Hence, with K=40, 

*This can be reduced to 5000 bits if we use a soft decision syn­
drome decoder, as discussed in Section 3.3. 
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it will remerge at anyone of 10 3 nodes with probability on the 

order of 10- 9 • BY merely observing K-k-l=34, decoded tail branches 

and comparing them with their known values, the probability that 

an error will not be detected is much less than 10-B. 

When an erroneous frame is detected, it is tagged for future 

reference and gated to a large B frame buffer to await processing 

by the sequential decoder. This buffer is divided into two segments. 

In the front portion is stored data from frames awaiting sequential 

decoding. In the rear p~rtion are the already sequentially decoded 

frames awaiting insertion into the decoded data stream as it exits 

from the delay line. In all, there is storage available for B 

undecoded and B decoded frames. 

There remain the problems of determining a) the percentage 

of deletions, which establishes the sequential decoder load and 

buffer size requirements, b) the computational complexity of 

sequential decoding of the erroneously predecoded frames, and 

c) the overflow probabilities due to finite delay D and finite 

buffer size B. 

We shall consider these three problems in the state order. 

5.2 Deletion Probabilities of Predecoder. Deletions corres­

pond to first event errors in a short constraint length convolu­

tional code decoded by a Viterbi decoder. With soft quantization 

(Q=8), a rate 1/2 k=5 code was simulated at an Eb/N O=4.5 db. Out 

of 1500 frames of 852 bits each, 32 were erased resulting in an 

estimated erasure probability p~=.02. Extrapolating to 1000 bit 
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frames, we estimate conservatively a deletion probability no 

greater than p~=.025. On the other hand, with Eb/No=4 db, 

the deletion probability exceeds 8 percent. 

With hard quantization, simulations were run at a crossover 

probability p-.025 which corresponds to Eb/No=5.7 db. The result 

of decoding approximately 5000 frames of 500 bits each was a 

deletion probability p~ = .10. A particularly short trellis 

memory (7 branches) was employed in order to make a resulting 

implementation particularly simple and inexpensive. In the 

following examples, we shall consider operating a hard quantized 

system at Eb/NO = 6.2 where p=.02 and the Pareto exponent is 

2.0. However, since we use longer frames (1000 bits), we shall 

use an estimated deletion rate p~ : .10 even at this higher 

Eb/NO value. 

5.3 Computational Complexity of sequential Decoding for 

Erroneously Predecoded Deleted Frames. Extensive simulations 

were performed on hard quantized data only. First 14,000 

frames with crossover probability p=.025 were sequentially 

decoded using the Fano algorithm with quick threShold loosening. 

The resulting distribution of computations was very closely 

approximated by the Pareto distribution with exponent p=1.67, 

which follows precisely from the theoretical result 

E (p) 
o 

R 
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since R=1/2 and E (1.67) o =0.83 
p=.025 

Then with p.025, the 466 erroneously predecoded frames 

(approximate~y 10% of the total--see previous section), were 

sequentially decoded. The distribution of computations was 

in all cases above the previous one, and at the high end it 

approached between 8 and 10 times the ordinary distribution. 

In retrospect, this is exactly as expected. Predecoding will 

correctly decode all the easier cases but generally fail on 

most frames which require longer computation searches in 

sequential decoding. Now suppose that it fails on all the long 

computation searches (say, above 1000 computations/bit) and suc-

ceeds whenever such long searches are not present in a frame. 

Then the incorrectly decoded frames will contain all of these 

long searches, and since sample size is reduced by a factor of 

10, the probability distribution of long computations is raised 

by a factor of 10. 

In any case, we shall be upper bounding the decoding com-

plexity for the incorrectly decoded frames if we use the ordinary 

Pareto distribution divided by p~, the frame deletion (or incor­

rect predecoding) probability. 

Also of importance is the fact that for ordinary sequential 

decoding, the average number of computations per bit was 1.245, while 

for the 10% of the frames which were incorrectly predecoded, this 

rose to only 1.89 computation per bit. Thus, even though the 

tail of the distribution rose by a factor of 10, the average 
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computation effort rose by only a factor of 1.5. 

5.4 Overflow Probability of Hybrid Implementation. Over­

flow with resulting deletion or errors can occur in either of 

two ways: 

a) A search is so long that an incorrectly predecoded 

(deleted) frame reaches the end of delay line D prior 

to the completion of its processing by the sequential 

decoder, 

b) While a long search is proceeding on a given frame, 

the sequential decoder buffer fills up with B frames 

awaiting processing and cannot accept any new deleted 

frames. 

We assume that normally the buffer is neat~y empty so that 

successive overflows are essentially independent. This is justi-

fied for sufficiently large Pareto exponents (p~2), which we 

shall insure. Then for an initially empty buffer, the probability 

of overflow for any given frame is Po = p~[pr (overflow on a 

deleted frame)] 

Po = p ~ 
~~ Pr deleted frames 

(

more than B sequential deCOding) 
lasts K frame times 

• 

+ 

out of K frames 

(
sequential decodinq of ) 

Pr frame lasts K frame times 

p p (seqUential decoding of giVen) 
~.r frame lasts D frame times . 
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where p~ is the probability of deleting (incorrectly predecoding) 

* a frame. It is shown in Appendix C that 

Po 

103(1-p) 

(~B/p~)P 

provided p~ < B/2D. 

where = deletion probability 

B - buffer size in frames 

D = delay line size in frames 

10 3 = frame length in bits 

p = Pareto exponent 

~ = speed factor 

+ (5.1) 

Thus, it appears that the buffer size is effectively increased 

by a factor of l/p~. 

5.5 System Analysis of Possible Hybrid Implementation. We 

now analyze both soft quantized and hard quantized hybrid systems, 

and compare each with ordinary sequential decoders. Ou~ goal 

will be to ach~eve an error probability on the order of 10- 8 • In 

order to establish"a basis for comparison, we assume that in each 

case we have available a digital delay line of length 256 K bits 

and a sequential decoder buffer capable of storing 64 K bits. 

Also we assume that the data speed is so high that ~=2.5 computa-

*Note, a correctly predecoded frame naturally cannot overflow 
since it is not processed by the sequential decoder. hence, the 
overall overflow probability is Pm times the overflow probability 
for deleted frames. In particular, if we require PO:lO-8 with 
a Pm:O.l, the overflow probability for deleted frames must only 
be fto greater than 10-7. 
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tions per bit is the highest speed factor feasible. 

Thus in each case 0=256. For a soft quantized (Q=8) system 

B=64/6 = 10.7 (since each branch requires 6 bits of storage), 

while for a hard quantized (Q=2) system, B=64 (since only one 

syndrome bit needs to be stored per branch, and either parity 

bit is inserted in the delay line for the deleted frames). 

We consider first the requirements of ordinary (non-hybrid) 

sequential decoding. For soft quantization, we assume a K=25 

rate 1/2 nonsystematic code blocked in 1000 bit frames separated by 

24 branch blocks of know'n symbols. Then the overflow probability 

(error probability if deletions are treated as errors) is 

with B=10.7 and ~=2.5, it is clear that we must have p=2.5 

for Po ~ 10-8 • This corresponds to Eb/NO : 4.7 db. An addi­

tional 0.1 db loss results from the resynchronizing sequence 

of 24 bits for every 1000 data bits. The undetected error 
-kR /R 

probability is approximately PE < 10 3 2 comp Since R .. comp 

corresponds to Eb/NO : 2.6 db and K=25, we find PE < 10-9 • 

Thus, the error rate due to both deletions and undetected errors 

is less than 10-8 • 

For the hard quantized ordinary sequential decoder, we take 

the automatic resynchronization implementation described in 

Section 3.2.2.1 which does not require framing. We take either 

a K=25 nonsystematic code or a K=45 systematic code. Here B=64 
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since we store only the syndrome, using the delay line with 0=64 

to store the information bit (for a systematic code) or a parity 

bit (for a nonsystematic code). Then as is shown in Section 3.2, 

the bit error probability due to overflows is roughly 

If ~=2.5 and B.64, it is clear that with p=2, we have PB ~ 8xlO- 9 • 

This corresponds to Eb/NO = 6.2 db. The undetected error prob­

ability is of the same order of magnitude. 

We now turn to hybrid implementations, beginning with soft 

quantization. Having fixed the buffer and delay line sizes, the 

only parameters to be varied are speed factor ~ and Eb/NO' which 

establishes the Pareto exponent, p. Clearly to minimize cost 

of implementation, we should try to minimize~. On the basis 

of average number of computations, it would appear that ~ could 

be reduced almost in proportion to p~, the deletion rate, since 

only a fraction p~ of the frames must be processed by the se­

quential decoder and the average number of computations only 

rises slightly for these frames. 

However, it appears from (5.1) that the minimum value of ~ 

is limited by the magnitude of p~, B, o. We indicated in Section 

5.2 that with Q=8 and Eb/NO = 4.5 db, the deletion rate p~=.025 

and that lower Eb/No results in greatly increased deletion rates. 

Also sequential decoding with Q=8 and Eb/No=4.5 db results in a 

Pareto exponent p=2.2 (Ref. 2). Then with 0=256, B=lO.7, p=2.2, 
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it is possible to make ~=0.4 and achieve Po : 10- 8 • With K=40, 

the undetected error probability is well below this. Thus, we 

have reduced the speed factor by 6. If we made Eb/NO= 4.7 db 

with a~corresponding p=2.5 (as for the ordinary sequential decoder 

above, we could make ~=O.l with a corresponding saving of a fac-

tor of 24 in speed). 

For hard quantized hybrid decoding, we have D=256, B=64. 

If we take p=2 corresponding to crossover p=.02 and Eb/No=6.2 db, 

we have estimated in Section 5.2 that p~ : .10. Then it appears 

from equation (5.1) that we can make ~ no less than 1.25 with a 

resulting Po : 10- 8 • In every case, K=40 requires an additional 

0.2 db for resynchronization. These results are summarized in 

Table 5.1. 

5.6 Conclusions. with soft quantization (Q=8), we have 

found that the principal advantage of hybrid decoding is the 

saving of a factor of 6 in speed factor and 0.2 db in Eb/NO or 

a factor of 24 in speed with no gain in Eb/No. This is due 

primarily to the fact that for undeleted frames only 1 bit/branch 

storage is required rather than 6 bits/branch. For a soft 

quantized sequential decoder operating on data transmitted at 

speeds of 20 Mbps, such a saving is crucial for feasibility and 

cost, since soft quantized metric computations need be made only 

at 8 MHz (for ~=.4) or 2 MHz (for ~=.l) speeds rather than 50 

MHz (for ~=2.5), as would be required with ordinary sequential 

decoding. 

-208-



I N
 o \D
 

I 

T
A

B
L

E
 

5
.1

 

SU
M

M
A

R
Y

 
O

F 
H

Y
B

R
ID

 
A

N
D

 
S

E
Q

U
E

N
T

IA
L

 
D

EC
O

D
ER

 
IM

PL
E~

ff
iN

TA
TI

ON
 

FO
R

 
P

E
=

lO
-e

 

D
 =

 
2

5
6

 
K

 b
it

 
d

e
la

y
, 

B
 =

 6
4 

K
 b

it
 
b

u
ff

e
r 

S
o

ft
 Q

u
a
n

ti
z
a
ti

o
n

, 
Q

=8
 

H
ar

d
 

Q
u

a
n

ti
z
a
ti

o
n

 
I I 

S
p

e
e
d

 
P

a
re

to
 

S
p

e
e
d

 
P

a
re

to
 

i 

F
a
c
to

r 
E

x
p

o
n

e
n

t 
E

b
/N

o
 (

d
b

) 
F

a
c
to

r 
E

x
p

o
n

e
n

t 
p 

E
h

/N
o

 (
d

b
) 

11
 

p 
11

 
P 

S
e
q

u
e
n

ti
a
l 

D
e
c
o

d
e
r 

* 
K

=
25

 
2

.5
 

2
.5

 
4

.7
 

of:
 

0
.1

 
2

.5
 

2 
.. 0

2
 

6
.2

 
(N

o
n

sy
s-

te
m

a
ti

c
) 

-,
 

H
y

b
ri

d
 

e
it

h
e
r 

(V
it

e
rb

i 
0

.4
 

.2
.2

 
4

.5
 
+

 
0

.2
 

I 
1

.2
5

 
2 

.0
2

 
6

.2
 
+

 
0

.2
 

P
re

d
e
c
o

d
e
r 

k
=

5
) 

I 
K

=
4

0
(N

o
n

-
0

.1
 

2
.5

 
4

.7
 

+
 
0

.2
 

s
y

s
te

m
a
ti

c
) 

I I I 

~
~
 

*N
o 

fr
a
m

in
g

 
re

q
u

ir
e
d

 



On the other hand, with hard quantization (Q=2), only 

the moderate saving of a factor of 2 in computation speed is 

achieved, primarily because the storage, saving is not nearly 

as great. The only advantage is that afforded by quadrupling 

delay line size. Further increase of D will improve matters, 

of course. For example, we might increase D to 512 frames 

(512 K bits) and thereby achieve a reduction of speed factor 

to p-0.6 (an overall reduction 6f a factor of 4 in speed). 

Further significant reduction of p for hard quantized data 

is not feasible, since the deletion rate is P, - 0.1 but the 

average computation rate for sequential decoding of deleted 

frames is 1.5 times the average for all frames: thus, the speed 

can certainly not be reduced by more than a factor of 6 with­

out degrading performance. (For soft quantization, the much 

lower deletion rate p~ = 0.025 made a much greater speed reduc­

tion possible.) 

Hybrid decoding increases complexity in three ways. It 

requires: 

a) A predecoder operating at the data speed, and frame 

error detection equipment. 

b) A long delay line is required (the cost of such serial 

storage represents a small increment). 

c) Blocking of data and reinsertion synchronization. 

For a soft quantized sequential decoder, blocking of data 

is probably required in any case, and the price of (a) and (b) 

above is small indeed for a speed factor reduction of an order 
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of magnitude which it gains. In fact, at data speeds above 

20 Mbps, this may be the only way to achieve 10- 8 error rates 

with the Eb/No advantage of soft quantized data. 

On the other hand, with a hard quantized sequential decoder 

blocking of data is not required. The moderate speed factor 

advantage may not be sufficient to justify the costs of the 

hybrid system. 
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APPENDIX A 

Computational Technique for Evaluation of 

Convolutional Code Performance 

The calculation of a convolutional code transfer function 

essentially involves the inversion of the code transfer matrix. 

For the K=3, rate 1/2 code shot-In in Fig. 2.2.1 we have the fo11ow-

ing linear relations among nodes, or states of the diagram: 

o o N ND2 

Xl 1 = ND ND o + o 

Xo 1 D D o Xo 1 o 

and T(N,D} = D2 XOl (N,D) (A.1 ) 

Thus denoting the state column vector, x, the transfer matrix A, 
. ~ 

and the column vector (1,00 ••• O) = !, ,,19 find that in general * \-1e 

must solve 

0. 
o - A] x = ND 1(1} 

*In this case 0i=2: in general the best binary code for any K and 
R will have all l's in the first branch, corresponding to 0i=l/R. 
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where o. is the weight of the initial branch. The magnitude 
1. 

of the eigenvalues of the matrix A are all less than unity, 

for otherwise the code can be shown to be catastrophic. Con-

sequently, the inverse of I-A exists and 

6. 
x = NO 1. [I_A]-l 1 

6 . 
= NO 1. [I+A + A + A2 + n ••• +A + ••• ]1 (A. 2) 

Finally it follows from eq. A.3 that the transfer function 

is the scalar bilinear form 

(6.+6
f

) 
T(N,O) = NO 1. I' [I+A + A2 + ••• +. An + ••• ] 1 (A. 3) 

where I' = (0,0, ••• 1) is a row vector and 6f is the weight of the 

final branch. 

In generul, the normalized truncation error is bounded by 

< 

The norm of a matrix is just the magnitude of its largest eigen-

value, which must be less than unity as noted above. Obviously, 

for a given n this is a decreasing function of o. 

The first-event error probability of eq. 2.2.5 is obtained 

directly from A.3 by setting N=l and 0 at the channel parameter 

values desired. The bit error probability of eq. 2.2.6 is 

obtained by numerically differentiating eq. A.3 at N=l; that 

is, by approximating the derivative by 
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dT{N,O) 
dn N=l 

T{l+£,O) - T{l,O) 
£ 

(A. 4) 

Since T{N,O) is a polynomial in N with positive coefficients, 

the second derivative is always positive. Consequently, taking 

£>0, yields an upper bound on the derivative while £<0 yields 

a lower bound. 

In general, multiplying matrices of dimension 2K is a 

very lengthy numerical procedure. But here we note that actually 

all that is required is successive multiplication of matrices 

by a vector, since the nth (vector) term of eq. A.2 is obtained 

from the (n-l)st by 

= 

Also, the matrix A has at most, 2 nonzero entries per rowan in 

all 2K_3 entries. Thus the total number of multiplications re-

quired in computing the first n terms of eq. A.2 and A.3 is less 

K than n2. Thus even a K=lO code at high channel noise level, 

which may require n=lOO for accuracy, can be evaluated in seconds. 

We note finally that the distance properti~s of a given code 

can be evaluated using eq. A.3 independent of the channel charac­

teristics. For, setting N=l and O=lO-d in eq. A.3, where d is 

an integer, we obtain 

T(O) 
-de d -2d 

= 10 ~ (k~ + k~+l 10- + k~+2 10 + ••• ) (A. 5) 

where k~ is the number of paths of minimum weight e~, k~+l is 
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the number of paths of weight 6~+1' etc. Thus provided k +y<lOd 
~ 

for y - 1, 2, ••• , the first few nonzero digits will determine 

the integer k~+l' etc. The number Of terms which can be correctly 

determined in this way depends on the word size of the computer. 

It may also be possible to determine higher order terms by sub­

tracting the effect of already determined lower order terms and 

renormalizing. 

The toual number of bits in error in the union of all erro-

neous paths at a given distance from the correct path can similarly 

be obtained by first differentiating as in eq. A.4 and then 

applying the procedure of eq. A.5. The coefficient with subscript 

~+y now denotes the total number of bit errors in all paths at 

distance 6 +y from the correct path. 
~ 
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Effect of Memory Truncation 

This technique can be extended to determine the effect of 

memory truncation on the first-event error probability. Suppose 

path memory is truncated n branches prior to the last received 

branch and that a maximum likelihood decision is made to determine 

the output bit at that point. In this case, an error occurs 

whenever the likelihood function of any state (or node in the 

state diagram) exceeds that of the all zeros state, assuming 

this was the correct path. The probability of this event is 

union bounded by 

1 

where u = 1111 ••• 1 (row vector) .. 
and 1 = 100 ••• 0 (column vector) 

and A is a function of D only. 
6. 

Note that the first branch is accounted for by D 1. We note 

that truncation eliminates the ordinary errors due to remerging 

paths beyond the nth. Thus a union bound on the overall first-

event error probability is 

For the Gaussian 

expression by 

channel, this may be 
-6 

erfc(/, RE /No)D P 
P b 
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APPENDIX B 

A variety of communication systems can· be·mechanized to 

include an output variable which is bimodal, with a large mean 

when system operation is unreliable and a small mean when it 

is reliable. An important source of possible unreliability is 

in the system synchronization. The required variable to deter-

mine unsynchronized operation is the estimate of the number of 

errors made, which in a coded system may he the modulo-2 sum 

of the received sequence and the nearest possible codeword. 

For synchronized operation, the expected relative frequency of 

a one, Ps' is just the channel probability of error, while for 

unsynchronized operation, it will be considerably higher, 

p »p. We shall assume that successive symbols of this observed u s 
* sequence are independent. 

Detection of unreliable operation then proceeds as follows. 

After each bit (event) time, a one is subtracted from a counter 

if the bit was zero. If the bit was a one, an integer k-l(k>l) 

is added to the counter. Only non-negative summands are stored: 

if the total sum ever becomes negative, it is reset to zero. 

Thus, we have a reflecting boundary at the origin. Whenever the 

count reaches a threshold N, we detect unreliable operation. ThUS 

there is an absorbing boundary at N. By making kp <1 and kp >1, s u 

it follows that the expected drift is kp -1 > 0 (to the right) 
u 

*This is clearly true for synchronized operation if channel errors 
are independent: for unsynchronized operation, dependencies will 
actually improve operation. 
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when the system is unreliable (unsynchronized), while it is 

kp -1 < 0 when it is reliable (synchronized). s 

As is standard, we define a false -alarm as the event that 

reliable operation causes a threshold crossing, and detection 

as the event that unreliable operation causes a threshold 

crossing. Of interest are the first passage time statistics 

in both cases, and in particular, the first and second moments1 

i.e., mean time to false alarm and detection and the corres-

ponding variances. 
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Exact Analysis 

For independent events, the Markov. sequence random walk is 

completely characterized statistically by the transition matrix, 

where p equals Ps or Pu corresponding to either system mode 

(Ref. 1). 

p = 

k 

If\ 

i 
i 

I v 

N+1 

We number the rows and columns from 0 to N, corresponding to 

the states (contents) of the counter. The P .. term indicates 
~J 

the probability of a transition from state i to state j. We 

* assume as a worst case that the counter always. starts in state o. 

*This will be the case in the synchronized mode if we take our 
time origin as the instant of initial synchronization. For the 
unsynchronized mode, the initial state will be the state of the 
counter when synchronization is lost, but the first passage 
time to detection will then be upper bounded by taking this to 
be O. 
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Then the probability distribution of state occupancy 

!~ = (wW' w~ ••• wW) after one transition (bit time) is 

!!(i) = ( 1, 0, 0,... 0 ) p 

and after n transitions it is 

wen) = w(n-l)p = (1, 0, 0 ••• 0) pn 

Now we are interested in the distribution of time to first 

arrival at state N. Clearly, the Nth component of w 
(n) 

(B.l) 

(B. 2) 

(B. 3) 

where vN is the time of first arrival (passage) at the threshold 

N. Thus equations B.l and B.2 yield the desired distribution. 

From this, we can obtain the mean and variance of first passage 

time by 
00 

~ (n) (n-l)] ~ [l-w~n)] E(vN) = ~ n = wN - wN 
(B. 4) 

00 

n2 [w~n) _ (n-l)] var(vN) = ~ - E2(v ) 1TN N 

00 

n [l_1T~n)] _I~ [l_.~n~} 2 = 2 L: 
n=O 

(B. 5) 

The numerical algorithm which generates (3) simply post-multiplies 

(1, 0 ••• 0) by P n times successively. Each time it selects the 

last term of the resulting vector, which is the distribution 

1T~n) Also, it augments an accumulator to form the mean of 

equation B.4 and also forms the weighted function of equation 
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B.5 to obtain the variance. 

While equations B.3, B.4, and B.5 yield all the results 

desired, the mean time and hence the mode of the distribution 

will tend to be very large for the false alarm and hence the 

total number of iterations required for a'meaningful result 

may be several million, thus rendering th~s direct approach 

impractical. 
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Asymptotic Analysis 

When the ratio of the threshold N to the maximum step size 

k-l is very large, we may model this process as a continuous ran-

dom walk. For this purpose, let us consider spatial parameters 

and continuous time, each step taking 6t seconds and being either 

-6x or +(k-l)6x. Thus, the threshold becomes 

a ~ N6x (B. 6) 

the mean drift per unit time 

m ~ (kp-l) (Ax/6t) (B.7) 

and the drift variance per unit time 

(B. 8) 

The moment-generating function for the first passage time 

of this continuous random walk satisfies ·the equation (Ref. 2) 

... 

+ mdf(x,A) = A f (x, A) (B. 9) 
2 dx 

where f (x , A) = E [e - A f (x, t )] = fooo -At e f(x,t)dt 

and f(x,t) = d/dt[pr(vt<t I starting at X)] 
From this, we can also obtain equations for the mean first passage 

time E(v t I starting at x) = -af~~'A) I 
A=O 

+ 
2 
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and more generally for the jth moment t. (x) = E(v
j 

J t 
starting at x) 

+ m dt. (x) = -jt. lex) 
) )-

(B.II) 

j = 2, 3, •••••• 

Thus each moment can be obtained by iterating on the solution for 

the next lower equation. Of course, ,~e could also obtain the 

negative jth moment by differentiating the moment generating func-

tion f(x,A) and setting A=O. 

The boundary conditions associated with equations B.lO and 

B.ll are obtained as follows. Since the threshold (absorbing 

boundary) is at x=a, and since the dependent variable x indicates 

the starting point, 

t.(a) = 0 
J 

j = 1, 2, ••••• (B.12a) 

Also, whenever x becomes negative, it is automatically returned 

to zero, giving rise to the boundary condition, 

dt. (x) 

ax x=a = 0 j = 1, 2, •••• 

For the moment.generating function 

since t. (0) 
J 

.. ~ t.(x) 
f(x,A) = /...J.. J, 

J=O J 

= 1, we obtain the boundary conditions 
.. 
f(a,A) = 1 

df (x, A) I = 0 
dx x=a 
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The solution of B.lO for the mean first passage time with 

the boundary conditions (B.12a, b) is 

+ 
a-x 

m 

Insertion of this solution into B.ll for j=2, yields the second 

moment t2(X). Of interest are, 

and 

1 [e-2m a/a
2 

-1] E(Vt I starting at 0) = tl(O) = m 
2m/a 2 

var(v t I starting at 0) • t2(0) - tf(O) 

(B.lS) 

= ~ [~(1+2e-2am/a2) + (e_2am/a2 -1) (e_2am/a2 +5) a 2/4m] 

(B.16) 

It is also possible to solve for the entire moment-generating 

function by solving equation (9) with the boundary conditions 

(B.13a, b). The result evaluated at x=o is 

f(O,A) = E[e- AV I starting at ~ 

= 

tl (0) and t 2 (0) of equations B.lS and B.16 could ~lso be obtained 

as the negatives of the first and second derivatives of B.17 

at A=O. The inversion of equation B.17 to obtain the density 
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* function is not a simple procedure and could be of questionable 

value. 

*A Chernoff bound on the distribution is easily obtained and is 
of some value in the unsynchronized detection case. 
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Interpretation of Asymptotic Results 

In order to properly interpret the asymptotic results of 

equations B.1S and B.16, we must note that the continuous approxi-

mation assumes that step sizes are much less than the threshold 

sizer that is k/N«l. Also for the unsynchronized case 

kp - 1 > 0 
u 

while for the synchronized case 

kp - 1 < 0 s 

Referring to the definitions B.6, B.7, and B.8, and letting 

v = v t 6t, we have in the unsynchronized case 

E[VU I starting at 0] = .... k-P.;.;.~--.... l I N + 2(kp -1)/k2p (l-p ) u u u 

::: N 
kp -1 

u 

which is essentially linear in N, the threshold value, and 

(B.18) 

k
2

0 (l-p ) Nfl 
Var [vu I starting at oJ= ~~Pu-1~3 tl+2exP[-2N(kPu-1)/k2Pu(1-Pu)] 

::: 
Nk 2 p (l-p ) 

u u 
. (kp -1) 3 

u 

and the normalized variance 

::: 
N(kp -1) 

u 

-227-

= 
k(l-p ) 

u 

(B.19) 

(B.20) 



In the synchronized case, on the other hand, 

= 1 fexP[2N(l-kPs)/k2Ps(1-Ps)] - 1 

l-ko 2(l-kp )/k 2p (l-p ) s s s s 

(B.2l) 

N, while which grows nearly exponentially with 

[ k 2 P s (l-p s ) 1 2 
var[vslstarting at 0] = - -

4 (l-kp.) If s 
eXp~N{I-kPS)/k2pS(l-PS~ 

(B.22) 

so that 

s 
Var{v ) = I 

E2(v ) 
S 

(B. 23) 

From B.20, we see that for detection of unsynchronized operation, 

the normalized variance is very small for kiN, so that the mode 

is quite peaked. On the other hand, from (B.23), it follows, that 

for a false alarm when the system is synchronized, the mode is 

quite broad, reminiscent of either a Poisson or a Rayleign dis-

tribution. 

The basic assumption which justifies the continuous model is 

that k/N«l. If this is not the case, the asymptotic formulas 

lose their validity and the numerical exact solution is required. 
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Application to Loss-of-Phase-Lock Indicators 

As an application of the above techniques to other than 

decoder synchronization, consider an unmodulated carrier or 

subcarrier tracking loop. A convenient measure of loop per-

formance is the sign of cos ~(t) where ~(t) is the instantaneous 

phase error, and cos ¢(t) can be generated by multiplying the 

received signal by the quadrature vco output and low pass fil­

tering. Thus cos ~(t»O implies I~(t) I < n/2, while cos ~(t)<O 

implies n/2 < I ~ (t) I < n. 

Now suppose we sample this signal periodically, but with a 

sufficiently long period that successive samples are nearly in-

dependent. The counter contents are incremented by k-l when-

ever the sample is negative and reduced by 1 whenever the sample 

is positive. When the phase-locked loop is properly tracking, 

the phase error probability density function (Ref. 3) is given 

exactly for a first-order loop, and approximately for higher 

order loops, by the expression 

where a = 5/NOBL 

acos~ e 
2nI (a) o 

, -n < ~ < n 

When the loop is out of lock, on the other hand 

1 p (~) = 
u 

, -n < n 
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Thus, clearly, using the notation of the previous sections, 

P = 2£ 
u Tr/2 

while 

p (~) d~ s 

and is given for various values of a in Table 1, which is extracte 

from Figure 4.7 of Reference 3. Thus even at 0 db, Pu > 2ps so 

that the approach seems practically feasible. 

a Ps 

6 db <.001 
3 db .09 
2 db .13 

.\ 
1 db .18 
o db .22 

Table B.l Ps as a function of signal-to-noise ratio 
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APPENDIX C 

OVerflow Probability in a Hybrid System 

The overall overflow probability of the system for an 

lnltlallyeapty buffer is 

Po • p. • Pr(overflow in a deleted frame) 

I ~ (more than B 
• p. ~ prdeleted frames 

sequential deCOding) P (K) 
lasts K frame times s 

in Ie trial. 

+ Pr (Ie>D)} (C.l) 

where P (!C).pr(sequential decoding of deleted frame) 
s lasts exactly K frame times 

We have established in Section 5.3 that the computational 

distribution for deleted frames is upper bounded by the Pareto 

distribution divided by the deletion rate p$. 

Thus for 1000 bit frame, we shall use 

pr{K~J) < 10 3 

- p (l03JlJ)P 
$ 

and consequently* 

Ps{K) < 
10 3 (l-p) 

(C.2) - p lJPKP 
$ 

Since frames are deleted independently for a memory less channel 

*This is the only strictly valid bound which we can obtain from a 
bound on the cumulative distribution. Also this is the only upper 
bound which we shall use whose tightness is questionable. All 
further bounds are very tight, and all approximations can be changed 
into tight upper bounds by including appropriate additional terms 
which approach zero for very large buffer sizes. 
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= 

p (more than.B I sequential deCOding) 
r deleted frames lasts K frame times 

< ... 
KH(B/K) B(l )K-B 

e p~ -p~ (C. 3) 

The inequality is a Chernoff bound for the binomial distribution 

provided B/K > 2p~ and 

H(Y) = -ytnY-(l-Y) tn(l-Y) 

Thus inserting C.2 and C.3 in Col, we obtain for the overall 

overflow (error) probability 

~. t feKH(B/K) 

K;:sB+ It {2 'I1'B 

.. 

pp B 103(1-P) }+. 10 3 (1-p) 

exp BrXH(1/x)+(X-1)tn(l-p~tl 

(C 0 4) 

where x = K/B and BID » 2P~ 

Since K ranges over the integers and B>10, x increases in increments 

of I/B<Ool. Thus, we may accurately approximate the sum by an 

integral and obtain 

< 
10 3 (1-p) 

lJP 

B ID/B ] p~ _1 B- ( 1)-(X-1)B -y(x-1) 
~ (2'11') ~ x P 1-- e dx 
BP+~ I x 

(Co 5) 

where y = -Btn(l-p~) > 0 (C. 6) 
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Using the tight inequality, 

we obtain, 

( 
l)- (x-l) 1--x ~ e 

Po -yx ] e dx 

The integral is just the incomplete gamma function which is 

closely bounded by taking the complete integral 

Po < 

Now substituting ~.~ for y and noting that 

BB-p+l 

we obtain 

Po 
l03(l-P) [1 

--ll-P-- DP 

Finally using St.i.rling's formula 
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B-p '-p we obtain, using (l-p/B) . ,-e since B»p, 

or since 
BP4»/2 

e 

+ (e BPcp/2 ~ 
Bp cp J 

provided B/D > 2p cp ' the first term being due to delay line over­

flows and the second to buffer overflows_ Thus the buffer size is 

effectively increased by the factor l/pcp_ 
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