NAasA CR 1 14278

CODING SYSTEMS STUDY FOR
HIGH DATA RATE TELEMETRY LINKS

By: K.S. Gilhousen
J.A., Heller

I.M, Jacobs
A.J. Viterbi

January 1971

Distribution of this report is provided in the interest of
information exchange. Responsibility for the contents
resides in the author or organization that prepared it.

Prepared under Contract No. NAS2-6024 by
LINKABIT CORPORATION
San Diego, California

for
AMES RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

SECTION

TABLE OF CONTENTS

TITLE

100 INTRODUCTIO}]..C‘Q.0.OOQQQQQO'QOOOOOQOOOOJQI.00.0'0...0

2‘O VITERBI DECODER STUDYC.....l.......0...'.0....-.......

2.1

Introduction and FundamentalsS ,..ccecececccccocssss

2.1.1
2.1.2

COde Representation..'Q.......'.......l..-
The Viterbi Decoding Algorithm for

the Binary Symmetric Channel (Hard
Decision Outputs of a Gaussian
Channel)Q...I....'l‘.‘..'......'..........
Distance Properties of Convolutional
Codes....'..'....l'.......0"'............
Generalization to Arbitrary Convolu-
tional Codes.....O.........'..‘...........
Systematic, Nonsvstematic, and Cat-
astronhic Codes'..l.....l‘.l...'l.‘..0'..0
Generalization of Viterbi Decoder to

the Additive White Gaussian Noise
Channel‘00....Q.Q......ll......'........‘l
Metric Quantization, Path Memory
Truncation, and Other System Con~
Siderations.ooo-..-0-.-...oo.ouo-ooa‘ooooo

Rate 1/2 Convolutional Codes and Viterbi Decoders

NN
« o s »
W N

[T IR 0 I o8]
s o o o

2.2.6

Good Convolutional CoOAeS.ceceecccccossosses
Numerical Code Performance Bound,....ceee.
Viterbi Decoder Simulation Program,,.,....
Simulation and Numerical Performance
Data‘l.......O.O.‘........................
2.2.4.1 General Performance Results,,....
4.2 Receiver Quantization,...ceeceeoes
04.3 Path blemorYO.....l..".......l.'.
.4.4 Decoder Output Selection,....cee.
Code Svnchronization and Channel
Re iabllltYC.‘................‘...I‘......
2.2.5.,1 Node Synchronization and

Phase Ambiguity Resolution,,.....
2.2.5.2 Transparent CodeS.,..ccecececessess
2.2.5.3 Channel Reliability Information,,
Sensitivity to AGC INACCUYaACY ¢veeocecessos

2.2
2,2
2.2
d
1

Other COde Rates........................‘....'...

Description of Code Search Program,.,......
Good Rate 1/3, 2/3, and 3/4 CodeS.,.eeesces
Simulation and Numerical Performance

Data...l...“..0'.‘...O'..'.l.'...l..'....

PAGE

w W w -

11

13
15

18

23
26

27
29
35

36
36
41

45
46

46
60
63
64

64
66
69

69

TABLE OF CONTENTS (Continued)

SECTION TITLE PAGE

2.3.4 Comparison With Rate 1/2 Code,,,.......... 76

2.4 Viterbi Decoder ImplementationN...eeeecececcecessen. 790

2.4.1 Review of Decoder Algorithm......ccoceeee. 70
2.4.2 Metric COMPYCSSiONisieicecencoconosossssenss 04
2.4.3 Overflow Protection....ecesecsoccesssssses 893
2.4.,4 Storage of State MetricCS..eeevesvecaceeses 04
2.4.5 Arithmetic Logical Section....eeeeeceessses 96

2.4.5.1 ECL Arithmetic=-Logical Unit,..... 99
2.4.5.2 TTL ACS Unit.veececeesenessasssesa 104

2.4.6 Decision Memory and Output Selection,..... 197
2.4,6.1 ECL Memory Output Section........ 110
2.4,6.2 TTL Memory Output Section,....... 111

7 Synchronization ScCtiON.ee.iceeeceossscnsee 113
8 Trade-Off Section--....--................. 117
2,4,8.1 Cost-Complexity Trade-Offs,,..... 117

2.4.8.2 Cost vs. Constraint Length,...... 119
2.4.8,3 Cost vs, Code RatC.ccoecesscescas 120
2.4.8.4 Cost vs, QuantizationN...eesecesees 121

3’0 SEQUENTIAL DECODING.I..'.........'...'.....'.....O... 123

3.1 Backgroundl..'..C......‘.....I'............l...l 123
3.2 Ilard Decision Decoder.‘.‘."..........‘.....-...' 129

3.2.1 Syndrome Sequential Decoder,.....ceeovee... 1290
3.2,2 Algorithm Modifications,...eeeeeeoeeseass. 131
3.2,2.1 Guess and Restart Overflow
Strategy..e.cecreesesnceceseansans 131
Quick Threshold Loosening ,,,..... 132
Look Ahead Sequential Decoding,,, 141
Sequential Decoding with Side-
Ways LOoOKS...iiveiieetieeneconanse 144
3.2.3 Decoder Undetected Error and Computational
PerfOrMANCE vvuenvieeesvencecosnassosccnaes 144
3.2.3.1 Code Selectioncveeeeeeocceces. 145
3.2.3.2 Decoder Parameters ,,.....ccese... 146
3.2.3.3 The Distribution of Decoding
ComputationS.ieceeeceeosceesssaas 148
3.2.3.4 Measured Undetected Error Rates,, 1494
3.2.4 Real Time Sequential Decoder Simulation ,, 152
3.2.5 Erasures vs. Undetected Errors ,.....eoc.. 157
3.2.6
3.2.7

W ww
W N

2.2,
«2.2,
2.2

Systematic vs. Nonsystematic Codes,,...... 157
Code Synchronization and Channel Reli-~
ability Prediction ..‘.Q.C......l....ll‘.l 160

SECTION

TABLE OF CONTENTS (Continued)

TITLE PAGE

3.3 Soft Decision Sequential Decoding,....cceeeceeeees 160

3.3.1 Syndrome Decoder.....cecaeessscscsccasssss 160
3.3.2 Fano Algorithm Modifications,..ec.eeeseeeee 162
3.3.3 Sensitivity to Incorrect AGC,...cceeneeeee 162
3.3.4 Comparisons of Soft and Hard Decision

Sequential DecodersS.....eeeecccecesaasssses 163

3.4 Sequential Decoder Implementation,.,....eseeeeeses 163

3.4.1 40 Mbps Sequential Decoder.,.....ceoceeceeeee 167
3.4.2 Code Synchronization,....eeeeeesesessseses 171
3.4.3 Input Buffer.....iceeveeeeececoccscnsasnss 172
3.4.4 Received Information Bit Storage.,......... 174
3.4.5 Syndrome Generator......seseeecesceccsccssss 176
3‘4.6 DeCOder Memoryo..-.-..-.-.-...........-... 178
3.4‘7 CPU Buffer....IIOIOOCIC......‘....Q...‘... 181
3.4.8 CPU......'l..‘..'.."'."....l‘.......O.O. 183
3.4.9 Physical DescriptioN..eeeceecsecacscesseses 188
3.4.10 Modifications Required by Soft Decisions.,., 189

CODING FOR DATA OF VARYING SPEED AND ERROR: RATE
I{EQUIREblEr]TSC...........'....-.l...'.'.........'...... 192

4,1 Concatenated CodinNg.cesceeecccecsscosososossessess 192
4,2 Lengthened Symbol Times for Low-Rate Data,.,...... 194
4.3 Lo“]er Rate COdest.l.......l.‘..‘0......0.00’..... 195

PREDECODING FOR A SEQUENTIAL DECODER: A HYBRID IMPLE-
MENTATION FOR VERY LOW ERROR PROBABILITY,..e0essesceee 198

5.1 IntroductioN...ceiceecescesescasccocccsssesasensess 198
5.2 Deletion Probabilities of Predecoder,.,....eceee.. 201
5.3 Computational Complexity of Sequential Decoding

for Erroneously Predecoded Deleted Frames,....... 202
5.4 Overflow Probability of Hybrid Implementation,....204
5.5 System Analysis of Possible Hybrid Implementation 205
5.6 CONClUSIiONS,,iesussvecscsscsocnscsascososnsccscsace 208

APPENDIX A @ ® 6 8 0 6 05 % 0 S 0650 SO L 0 N0 GGG ST OL LN L et QsSSP ENPETS 213

APPENDIX B 4 6 ¢ 680 0 8 5 4 BT 0 PSS ES LT SO S0 E DG S 00O 0 S Ls s EENs e 218

APPENDIX c LECEC A B B BRI B A B A B R Y B AN SR B BE AR S N B S AN 2 N B R I S B N R S A B BCIE AR R A 232

1.0 INTRODUCTION

This report presents the results of a study of coding systems
for high data rate links., The emphasis throughout is on convolu-
tional codes. This is because high performance decoders exist
for this class of codes, which are practical to implement at multi-
megabit data rates.

The bit error rate, in the 107° to 107° range, vs. Ep/Ny
performance of many coding system configurations has been studied,
through simulation and analytical techniques. Special attention
has been naid to the sensitivity of performance to decoder para-
meters which affected complexity and cost siqnificantly; These
decoder parameters include

a) Code constraint length

1) Code rate (bandwidth expansion)

c) Data rate

d) Speed factor and buffer size (sequential decoding)

e) Path memory length, metric representation, and decision

output selection (Viterbi decoding)

f) Receiver quantization.

A technique for obtaining and maintaining node synchronization
and resolving phase ambiguities has been devised and analyzed.
This technique is quite simple to implement. Simulation indicates
that performance is more than adequate for the systems under con-

sideration,)

The report is divided into four major sections, plus the
introduction. Each section deals with a distinct type of decoder
or combination of decoders. Section 2 is concerned with Viterbi
dacoders. The important tradeoffs between performance and com-
plexity are discussed here. The section concludes with a dis-
cussion of several methods of implementing Viterbi decoders at
various data rates, and their relative complexity and cost.

Section 3 treats sequential decoding. Several techniques
yhich either simplify or improve the performance of the Fano
algorithm are discussed and evaluated. The implementation sub-
section emphasizes high speed rate 1/2, hard decision sequential
decoding.

Section 4 evaluates a simple scheme for providing different
levels of coding for data with different error rate requirements,

Finally, an interesting method of predecoding high rate

difficult data to a sequential decoder, is discussed in Section
5. This technique holds out the possibility of efficiently de-
coding very high rate data using a relatively slow sequential

decoder.

2.0 VITERBI DECODER STUDY

2.1 Introduction and Fundamentals

2,1.1 Code Representation, A convolutional encoder is a

linear finite~state machine consisting of a K-stage shift regis-
ter and n linear algebraic function generators. The input data,
which is usually though not necessarily binary, is shifted along
the register b bits at a time. An example with K=3, n=2, b=1

is shown in Fig. 2.1.

010001...

011010...
< data sequence

001101010010... [
code sequence [

A

011100.,..

Fig. 2.1 Convolutional Coder for K=3, n=2, b=l

The binary input data and output code sequences are indicated on
the diagram. The first three input bits, 0, 1, and 1, generate
the code outputs 00, 11, and 01 respectively. We shall pursue

this example to develop various representations of convolutional
codes and their properties. The techniques thus developed will

then be shown to generalize directly to any convolutional code.

-3

It is traditional and instructive to exhibit a convolutional

code by means of a tree diagram as shown in Figure 2.2.

00 a 00
0o a [L a= [0og]
11 b 10
. LB o b= [0
11
10 ¢ 0 c = ll'
11 b 9
01 d d = [11]
00 ’ 10
11 00
e o
10 ¢ 11
00 b 10
1 =2 o1
DNy
01 4
0l
0 ‘ALQ_Q_4::£§:
E— 00
1 00 a 11
1ll a 0
11 b 01
10
11
00 b J‘Q_c‘“m
01
d 10
11
o 11 a 11
c
00 b 10
01 "—_'—{:Ei:
11
OLs og
10 4
10 d 10

Figure 2,2, Tree Code Representation for Coder
of Figure 2.1.

If the first input bit is a zero the code symbols are those

shown on the first upper branch, while if it is a one the output
code symbols are those shown on the first lower branch. Similarly,
if the second input bit is a zero we trace the tree diagram to the
next upper branch, while if it is a one we trace.the diagram down-
ward. In this manner all thirty-two possible outputs for the
first five inputs may be traced.

From the diagram it also becomes clear that after the first
three branches the structure becomes repetitive. In fact, we
readily recognize that beyond the third branch the code symbols
on branches emanating from the two nodes labelled "a" are iden-
tical, and similarly for all correspondingly labelled pairs of
nodes, The reason for this is obvious from examination of the
encoder. As the fourth input bit enters the coder at the right,
the first data bit falls off on the leftvend and no longer influ-
ences the output code symbols. Consequently, the data sequences
100xy... and 000xy... generate the same code symbols after the
third branch and, as is shown in the tree diagram, both nodes
labelled "a" can be joined together.

This leads to redrawing the tree diagram as shown in Figure
2.3. This has been called a trellis diagram since a trellis is a
tree-like structure with remerging branches. We adopt the
convention here that code branches produced by a "zero" input
bit are shown as solid lines and code branches produced by a

"one" input bit are shown dashed.

Figure 2.3 Trellis Code Representation for
Coder of Figqure 2.1.

The completely repetitive structur? of the trellis diagram
suggests a further reduction in the representation of the- code
to the state-diagram of Figure 2.4. The "states" of the state-
diagram are labelled according to the nodes of the trellis
diagram. However, since the states correspond merely to the last
two input bits to the coder we may use these bits to denote the

nodes or states of this diagram.

Figure 2.4. State-Diagram Representation for
Coder of Figure 2.1.

We observe finally thaﬁ the state-aiagram can be drawn
directly by observing the finite-state machine properties of the
encoder and particularly the fact that a four-state directed
graph can be used to represent uniquely the input-output relation
of the eight~state machine. For the nodes represent the previous
two bits while the Present bit is indicated by the transition

branch; for example, if the encoder (machine) contains 011,

-7-

this is represented in the diagram by the transition from state
b = 01 to state 4 = 11 and the corresponding branch indicates the

code symbol outputs 01,

2,1.2 The Viterbi Decoding Algorithm for the Binary Sym-

metric Channel {(Hard Decision Outputs of a Gaussian Channel). On

a binary symmetric channel, errors which transform a channel code
symbol 0 to 1 or 1 to 0 are assumed to occur independently from
symbol to symbol with probability p. If all input (message)
sequences are equally likely, the decoder which minimizes the
overall error probability for any code, block or convolutional,
is one which examines the error-corrupted received sequence
ylyz...yj... and chooses the data sequence corresponding to the
transmitted code sequence xlxz...xj... which is closest to the
received sequence in the sense of Hamming distance; that is the
transmitted sequence which differ§ from the received sequence in
the minimum number of symbols.

Referring first to the tree diagram, this implies that we
should choose that path in the tree whose code sequence differs
in the minimum number of symbols from the received sequence,
However, recognizing that the transmitted code branches remerge
continually, we may equally limit our choice to the possible paths
in the trellis diagram of Figure 2.3. Examination of this dia-
gram indicates that it is unnecessary to consider the entire

received sequence (which conceivably could be thousands or

millions of symbols in length) at one time in deciding upon the

-8-

most likely (minimum distance) transmitted sequence. In parti-
cular, immediately after the third branch we may determine which
of the two paths leading to node or state "a" is more likely to
have been sent. For example, if 010001 is received, it is clear
that this is at distance 2 from 000000 while it is at distance

3 from 111011 and consequently we may exclude the lower path into
node "a". For, no matter what the subsequent received symbols
will be, they will effect the distances only over subsequent
branches after these two paths have remerged and consequently in
exactly the same way. The same can be said for pairs of paths
merging at the other three nodes after the third branch, We
shall refer to the minimum distance path of the two paths merging
at a given node as the "survivor". Thus it is necessary only to
remember which was the minimum distance path from the received
sequence (or survivor) at each node, as well as the value of that
minimum distance. This is necessary because at the next node
level we must compare the two branches merging at each node level,
which were survivors at the previous level for different nodes;
e.g., the comparison at node "a" after the fourth branch is

among the survivors of comparison at nodes "a" and "c" after

the third branch. For example, if the received sequence over

the first four branches is 01000111, the survivor at the third
node level for node "a" is 000000 with distance 2 and at node

"e" it is 110101, also with distance 2. In going from the third
node level to the fourth the received sequence agrees precisely

with the survivor from "c¢" but has distance 2 from the survivor

-0

from "a". Hence the survivor at node "a" of the fourth level is
the data sequence 1100 which produced the code sequence 11010111
which is at (minimum) distance 2 from the received sequence.

In this way, we may proceed through the received sequence
and at each step preserve one surviving path and its distance
from the received sequence, which is more generally called metric.
The only difficulty which may arise is the possibility that in a
given comparison between merging paths, the distances or metrics
are identical. Then we may simply flip a coin as is done for
block code words at equal distances from the received sequence.
For even if we preserved both of the equally valid contenders,
further received symbols would affect both metrics in exactly the
same way and thus not further influence our choice.

This decoding algorithm was first proposed by Viterbi (Ref. 8)
in the more general context of arbitrary memoryless channels.
Another description of the algorithm can be obtained from the
state-diagram representation of Figure 2.4, Suppose we sought
that path around the directed state-diagram, arriving at node
"a" after the kth transition, whose code symbols are at a minimum
distance from the received sequence. But clearly this minimum
distance path to node "a" at time k can be only one of two can-
didates: the minimum distance path to node "a" at time k-1 and
the minimum distance path to node "c" at time k-1. The compari-
son is performed by adding the new distance accumulated in the kth
transition by each of these paths to their minimum distances

(metrics) at time k-1.

=10~

It appears thus that the state-diagram also represents a
system diagram for this decoder. With each node or state, we
associate a storage register which remembers the minimum distance
path into the state after each transition as well as a metric
register which remembers its (minimum) distance from the received
sequence. Furthermore, comparisons are made at each step be-
tween the two paths which lead into each node., Thus four com-
parators must also be provided.

We defer the question of truncating the trellis and thereby
making a final decision on all bits beyond L branches prior to
the given branch until we have some additional properties of con-

volutional codes.,

2.1.3 Distance Properties of Convolutional Codes, We con-

tinue to pursue the example of Figure 2.1 for the sake of clarity;
in the next section, we shall easily generalize results. It is
well known that convolutional codes are group codes. Thus there
is no loss in generality in computing the distance from the all
zeros code word to all the other code words, for this set of dis-
tances is the same as the set of distances from any specific code-
word to all the others.,

For this purpose, we may again use either the trellis diagram
or the state-diagram. We first of all redraw the trellis diagram
in Figure 2.5 labelling the branches according to their distances
from the all zeros path. Now consider all the paths that merge

with the all zeros for the first time at some arbitrary node "j"

-11~

< < < N <
N AN N N
N
N2 N2 N2 \2 N2
S N N N
N AN
\ 2 2 >
7 7 rd
1 \ \
l\ A 0 D 0 1\ //6
\ N,)/ \//
\ \ \ \
\ \ \
\
\
\
\\ \ \ \
1 \ 1 1 1 \
- — — F . I ~

Figure 2.5 Trellis Diagram Labelled with
Distances from all Zeros Path

It is seen from the diagram that of these paths, there will be
just one path at distance 5 from the all zeros path and this
diverged from it three branches back, Similarly there are two

at distance 6 from it; one which diverged 4 branches back and the
other which diverged 5 branches back, and so forth. We note also
that the input bits for distance 5 path are 00..0100 and- thus
differ in only one input bit from the all zeros, while the
distance 6 paths are 00..01100 and 00..010100 and thus differs

in 2 input bits from the all zeros path. The minimum distance,

sometimes called the minimum "free" distance, among all paths

is thus seen to be 5. This implies that any pair of channel
errors can be corrected, for two errors will cause the received

-12-

sequence to be at distance 2 from the transmitted (correct)
sequence but it will be at least at distance 3 from any other
possible code sequence., It appears thus that the distance of
all paths from the all zeros (or any arbitrary) path can be

so determined from the trellis diagram.

2.1.4 Generalization to Arbitrary Convolutional Codes. The

generalization of these techniques to arbitrary binary-tree (b=1)
convolutional codes is immediate. That is, a coder with a K

stage shift register and n modulo-two adders will produce a trel=-

K=~1

lis or state-diagram with 2 nodes or states and each branch

will contain "n" code symbols. The rate of this code is then

R = 1 bits
n code symbol

The example pursued in the previous sectioﬁs had rate R=1/2, The
primary characteristic of the binary-tree codes is that only two
branches exit from and enter each node.

If rates other than 1/n are desired, we must make b>1, where
b is the number of bits shifted into the register at one time. 2An
example for K=2, b=2, n=3 and consequently rate R=2/3 is shown
in Figure 2.6 and its state-diagram is shown in Figure 2.7.

It differs from the bhinary-tree codes only in that each node
is connected to four other nodes, and for general "b" , it will
be connected to 2b nodes. Still all the preceding techniques
including the trellis and state-diagram analysis are still

applicable. It must be noted, however, that the minimum distance

-13-

Fig. 2.7 State=Diagram for Code of Fig. 2.6.

decoder must make comparisons among all the paths entering
each node at each level of the trellis and select one survivor

out of four (or out of 2b in general).

2,1.5 Systematic, Nonsystematic, and Catastrophic Convolu-

tional Codes. The term szstematic convolutional code refers

to a code on each of whose branches one of the code symbols is
just the data bit generating that branch. Thus a systematic
coder will have its stages connected to only n-1 adders, the nth
being replaced by a direct line from the first stage to the com-

mutator. Figure 2.8 shows an R#l/2 systematic coder for K=3,

11
codey *«— data' d
~— — 10 00
] \’_. 1 ol 01
+ . a] b \\j&r//c j

Figure 2.8 Systematic Convolutional Coder
for K=3, R=l1/2

It is well known that for group block codes, any nonsys-
tematic code can be transformed into a systematic code which
performs exactly as well, This is not the case for convolutional

codes., The reason for this is that the performance of a code

-l5=

on any channel depends largely upon the relative distance between
codewords and particularly on the minimum free distaace d, which
is the minimum number of ones of any closed path through node

"a". Eliminating one of the adders results in a reduction of "d".
For erample, the maximum minimum free distance systematic code
for K=3 is that of Figure 2.8 and this has d=4, while the nonsys-
tematic K=3 code of Fiqgure 1.1 has minimum free distance d4d=5.
Table 2.1 shows the maximum minimum free distance for systematic

and nonsystematic codes for K=2 through 5.

Maximum Minimum Free Distance

K Systematic Nonsystematic
2 3 3
3 4 5
4 4 6
5 5 7

Table 2.1 Comparison of Systematic and
Nonsystematic R=1/2 Codes

For large constraint lengths the results are even more widely
separated.

A catastrophic error is defined as the event that a finite
number of channel symbol errors causes an infinite number of data
bit errors to be decoded. Massey and Sain (Ref. 9) have shown

that a necessary and sufficient condition for a convolutional

-16~-

code to produce eatastrophic errors is that all of the adders
have tap sequences, represented as polynomials, with a common
factor.

In terms of the state~diagram it is easily seen that catas-
trophic errors can occur if, and only if, any closed loop path
in the diagram has a zero weight (i.e., the exponent of D for
the loop path is zero). To illustrate this, we consider the

example of Figure 2.9.

~ | 11

01

Figure 2.9 Coder Displaying Catastrophic
Error Propagation

Assuming that the all zeros is the correct path, the incorrect
path abdd ... d c a has exactly 6 ones, no matter how many
times we go around the self loop a. Thus, for a BSC, for example,
four channel errors may cause us to choose this incorrect path

or consequently make an arbitrarily large number of bit errors

(equal to two plus the number of times the self loop is traversed).

-17=-

We observe also that for binary-tree (R=l/n) codes, if each
adder of the coder has an even number of connections, then the
self loop corresponding to the all ones (data) state will have
zero weight and consequently the code will be catastrophic.

The only advantage of a systematic code is that it can never
be catastrophic, since each closed loop must contain at least
one branch generated by a nonzero data bit and thus having a
nonzero code symbol., §till, it can be shown that only a small
fraction of nonsystematic codes is catastrophic (in fact, l/(2n—l)
for binary-tree R=1/n codes). We note further that if catastrophic
errors are ignored, nonsystematic codes with even smaller free

distance than those of Table 2.1 exist.

2.1.6 Generalization of Viterbi Decoder to the Additive

White Gaussian Noise Channel. Figure 2.10 exhibits a communica-~-

tion system employing a convolutional code. The convolutional

encoder is precisely the device studied in the preceding sections.

_..bata . Convolutional Code
Sequence Encoder Sequence]
al,az...aj.-. >f1' ?-(2.’.2-{j...
L | Memoryless Received |
? Channel Sequence becoder
{Including
Modem)

¥1,‘:’200-_‘;}jooo

Fig. 2.10 Communication System Employing
Convolutional Codes

~]18a

The data sequence is generally binary (aj=0 or 1) and the code
sequence is divided into subsequences where fj represents the n
code symbols generated just after the input bit aj enters the
coder, that is, the symbols of the jth branch. In terms of the
example of Fig. 1.1, as=1 and §3=01. The channel output or re-
ceived sequence is similarly denoted. Xj represents the n symbols

received when the n code symbols of fj were transmitted. This
model includes the BSC wherein the gj are binary n-vectors
each of whose symbols differs from the corresponding symbol of
fj with probability p and is identical to it with probability
1~-p.

For completely general channels it is well known that if all
input data sequences are equally likely, the decoder which mini-
mizes the error probability is one which compares the conditional
probabilities, also called likelihood functions, P(¥|§m), where Y
is the overall received sequence and §m is one of the possible

transmitted sequences, and decides in favor of the maximum. This

is called a maximum likelihood decoder. The likelihood functions

are given or computed from the specifications of the channel.
Generally it is more convenient to compare the quantities

lnP(ylxm), called the log-likelihood functions, and the result

is unaltered since the logarithm is a monotonic function of its
(always positive) argument. It is easily shown that for the BSC
maximizing the log-likelihood function is equivalent to mini=-
mizing the Hamming distance, as we have done in previous sections.

We now consider the practical channel of primary interest:

-19-

namely, the additive white Gaussian noise (AWGN) channel with
biphase PSK modulation. The modulator and optimum demodulator
(correlator or integrate-and dump filter) for this channel are

shown in Fig, 2.1l1.

xl1x12. L] .x1nlex22. L] .xzn. LN]

PSK oooS(t)=V 253;! Sin(mt H:%k)o.o
Do Modulator .
N Correlator
'L?J Demodulatorf’yllylz...ylnyzl...y2n...

n(t) white Gaussian noise

Fig. 2.11 Modem for Additive White Gaussian
Noise PSK Modulated Memoryless Channel

We use the notation that xjk is the kth code symbol for the jth
branch. Each binary symbol (which we take here for convenience
to be t1) modulates the carrier by * /2 radians for T seconds.
The transmission rate is, therefore, 1/T symbols/second or b/nT=
R/T bits/second. €g is thé energy transmitted for each symbol.
The energy per bit is, therefore, €, = es/R. The white Gaussian
noise is a zero mean random process of one-sided spectral density

N, watts/Hz, which affects each symbol independently. It is

-20=~

readily shown that the channel output symbol yjk is a Gaussian
[}
random variable whose mean is /e X3k (i.e., + Ve if X3k =+1

and -/es if xjk =-1) and whose variance is N,/2. Thus the condi-

tional probability density (or likelihood) function of yjk given

xjk 1ls

p(yjklxjk) = exp [~(vy - ey Xjk)z/No]
VTN,

The likelihood function for the jth branch of a particular code

path isvgj(m)

(m) o ((m))
P(}_’]lfj) —kzlp ijlxjk

since each symbol is affected independently by the white Gaussian

noise and thus the log-likelihood function for the jth branch is

-21~-

(m)y
tnp (y50x ™)

n

Z lnp(yjklxjk(m))

k=1

n

— (m)
Z Y5k7 s *5x
k=1

2 - X4nli/N,

e Z ijfm) 2

where C and D are independent of m, where we have used the fact

x(m) 2

that 3k = 1.

Similarly, the log-likelihood function

for any path is the sum of the log-likelihood functions for each

of its branches,

We have thus shown that the maximum likelihood decoder for

the memoryless AWGN biphase modulated channel is one which forms

the inner product between the received (real number) sequence

and the code sequence (consisting of * 1's) and chooses the path

corresponding to the greatest.

-22_

Thus the metric for this channel is the inner product as contrast-
ed with the distance* metric used for the BSC.

For convolutional codes the structure of the code paths was
described in Sections 2.l1.1 - 2.14, 1In Section 2.l1.2 the optimum
decoder was derived for the BSC., It now becomes clear that if we

(m) for the distance

substitute the inner product metricjzgjkxjk
metric :EEjk(m)' used for the BSC, all the arguments used in
Section 2.1.2 for the latter apply equally to this Gaussian Channel.
In particular, the Viterbi decoder has a block diagram represented
bv the code state-diagram. At step j the stored metric for each
state (which is the maximum of the metrics of all the paths lead-
ing to this state at this time) are augmented by the branch metrics
for branches emanating from this state. The comparisons are per-
formed among all pairs of (or in general sets of 2b) branches
entering each state and the maxima are selected as the new most

likely paths. The historv (input data) of each new survivor must

again be stored and the decoder is now ready for step j+l.

2,1.7 Metric Quantization, Path Memory Truncation, and Other '

System Considerations. As we have just shown, the optimum metric

for the binrhase modulated AWGN channel is the inner product (or
correlation) metric. However, since the Yij are real numbers, a

practical digital implementation requires quantization prior to

* Actually it is easily shown that maximizing an inner product is
equivalent to minimizing the Euclidean distance between the cor-
responding vectors.

forming the metric.

In particular, if we quantize the yij to Q levels symmetric
about zero, then the biphase AWGN channel is converted to a binary-
input Q-output symmetric channel. Generally we choose Q=2q so
that each received symbol can be represented by a "q" bit word.
The optimum metric in this case is the log~likelihood function of
this new binary=-input Q-output channel. However, it has been
found by simulation that nearly equivalent performance is obtained
if the inner-product metric i& used with yij replaced by Q(yij)'
where Q(Yij) is an integer between 0 and Q-1 corresponding to the
quantizer butput level for an input Yij' In fact, extensive
simulation has shown that using this metric with 8-level quanti-
zation causes a performance degradation which is equivalent to a
reduction of Eb/No by less than 1/4 db for any given error
probability level. On the other hand, gquantization to 2 levels
(which amounts to reducing the AWGN to a BSC) causes an effect-
ive reduction of Eb/N0 by approximately 2 db.

Another major problem which arises in the implementation of
a Viterbi decoder is the length of the path history which must
be stored. In our previous discussion we ignored this important
point and therefore implicitly assumed that all past data would
be stored. A final decision can be made by forcing the coder
inte a known (all zeros) state, but this is totally impractical
for long data sequences, for it requires storage of the entire
trellis memory for each state. Suppose we truncate the path

memories after L bits (branches) have been accumulated, by

DA -

comparing all 2K metrics for a maximum and deciding on the bit
corresponding to that path (out of 2K) with the highest metric
I, branches forward. If L is several times as large as K, the
additional bit errors introduced in this way are very few. It
can be shown that the additional error probability due to path
truncation, based on the largest path metric L branches beyond
where the decision is to be made, is of the order of a blockf
coding error for a code of block length L bits, Both theory and
simulation then indicate that by making L four to five times as
large as the code constraint length K, we can ensure that such
additional errors have only a slight effect on the overall bit
crror probahility.

Of course, basing the decision upon the maximum metric L
branches forward may require a costly implementation to compare
all 2K state metrics. Other decision techniques, based on ma-
jority polling and metric overflow monitoring, are much less
costly and appear to yield the same or better performance when
L is increased slightly.

Cost and complexity of implementation of a Viterbi decoder
depends strongly on constraint length, K, quantization, and
speed. It depends much less strongly on path memory size, L,
and the path truncation decision technique. In particular, the
cost rises exponentially with K, but of course, the performance
also improves with increasing K. Typically for a rate 1/2 code
on an 8=-level quantized AWGN, the required Eb/No‘for P_. x~ 10~°

B

is reduced by about 0.4 db per unit increase of K in the range

-25

between 3 and 8. The cost of increasing L is only linear, but it
is not justified on the basis of performance beyond L = 5K, The
cost of finer quantization depends strongly on the data speed
reguirements. The performance improvement from 2 level to 8 level
quantization is nearly 2 db in Eb/N0 but there is less than 0.25
db to be gained by using more than 8 levels.

For sufficiently low data speeds, all of the metric calcula-
tions and comparisons can be done serially, thus significantly
reducing cost and complexity. At very high speeds, where digital
gate speeds are only a few times faster than the received symbol
rates, all metric computations and comparisons must be made in
pafallel. In intermediate speed regions, serial-parallel combina-
tions may be possible,

Detailed consideration of Viterbi decoder implementation and

system designs will be treated in Section 2.4.

2.2 Rate 1/2 Convolutional Codes and Viterbi Decoders, In

this section, the performance of rate 1/2 Viterbi decoders is
examined in detail. Bit error rate vs. Eb/N° obtained both by
simulations and analysis are presented for optimum codes of con-
straint lengths 3 through 8. Particular attention is paid to the
sensitivity of performance to the decoder parameters which in-
fluence complexity and cost. Also of interest is the ability of
a Viterbi decoder to withstand demodulator imperfections, and its
usefulness in communicating system quality information,

Computer simulation of Viterbi decoders is a useful technique

for evaluating performance down to a bit error rate of about 107"

-26-

‘k to lo‘f,‘dependxng on code constraznt length.v'sieeiatidee atﬁdt"j”
‘lower error rates requ1re prohlbltlvely long computer runs to
obtain”meaningful data; 'Fortunately, an upper bound on both

 event and bxt exror rates has been derxved whxch is very tight'f”;“

-fﬁifor error rates of about 10 =S and lower.‘ A comblnatlen of the .

i simulations and the numerlcally evaluated upper bound presentedf

- here nrovxdes a complete plcture of V1terb1 decoder nerformance,ﬁ_f?=

over a wlde ranqe of error rates.‘

ii} ,2 2.1 Good’ Convolutlonal Codes. One‘obvious crxtetlon for
mj:eelectlnq codes is bit error probablllty._ Unfortunately,'obta1n—i7:
1ng bit errcr probablllty through sxmulatlon 1s too tlme consumlng
to be used as a method of sifting throuqh a larqe number of con—,
it volut1onal codes. A much more useful measure of a code ls ltsv
minimum free distance.‘ As defined prev1ouslv, the free distance
:‘betdeen two code wordq is the Hanmlng dlstance between them from:
'the state in the trellls ‘at which they diverge (the poxnt at

whlch the Lnformatlon bxts beqln to dxffer), to the state where

:»fthey remerge (after K-l ldentlcal lnforwatlon blts). A set of

larqe free dlstances between the correct code path and the

competing incorrect oaths is desirable with Viterbi decoding.

This is because the greater the free distance, the more channel
—-errors must occur in order fot an lncorrect path to look more
v-llkely than the correct path. 4

The mxn;mum free distance, df, is the smallest value of

free distance between the correct path and any other path. ’Since

-27-

'{:the codes under conSLderatlon are llnear codes, the set of
dxqtances from any codewcrd to all other codewords is the sameff""z1

: as the set of dxstances from the all zeros codeword to all other T

Thus,idf 1s the mxnlmum of the wexoht of all code—

’words from the poznt at whlch they dlverqe from, untll thempoxnt

’at whlch they remerqe to, the a11 zeros nath’ 0ften, but not

‘j:always, the mlnlmum we1ght path corresoondq to an xnformatlonk
'5sequence wlth a 31ngle 1 Ln lt The codeword assoc1ated w1th v;}f

ffthls sequence dlverges from the all zeros Dath where the 1nfor—fkﬂ

ﬂ:?matlon 1 occurs,'and 'emerges K—l branches later.o ThlS, of :
 course, is the shortest length over whlch two dlstlnct paths can P

;ﬁlbe dlve’roed ' |

| 'stng the alqebralc progﬂrtles of llnear qroup codeq, an

f_upber bound on. the n1n1mum free dlqtance of a convolu 1onal code,

ffas a functlon of constralnt lendth has been fcund ',(Ref. 1,2).

‘VFor rate 1/n nonsystematlo‘codes, the bound is -

2h—l

g8 min 0 (K+h=1)n]

This hound proQides a tarqet’value of df which can be used when
‘-searchlnq for qood codes. If a code iq found with'a df which
j sat1sf1eq the bound w1th equallty, lt is lmmedlately known thac no
' code ex13ts‘w1th a largervmlnlmum distance. Of course, max1mxz~,
ing ﬁinihum free oistance does not necesSarily minimize decoder
,berror;probability. ‘The number of cooewords having the ﬁinimum

- distance, as well as the distribution of codewords at distances

-0 .
Ry

somewhat greater than df, are also important. After preselecting
codes based on minimum free distance, these other factors are
useful in final code selection., Simulations and numerical code
evaluation indicates that choosing codes with maximum minimum
free distance, taking into account the number of paths at this
distance, and if necessary, slightly larger distances yields
codes with minimum error probabilities with Viterbi decoding,

The optimum rate 1/2 codes for K=3 through 8 were found by
Odenwalder (Ref. 3). They are tabulated in Table 2.2.1l. For
each constraint length the table shows the optimum code gener-
ators, the actual df for the code, the number of errors ng in
all of the codewords at the minimum distance, and the upper bound

value on minimum free distance df*.

2.2.2 Numerical Code Performance Bound., One of the two

principal tools used in evaluating the performance of convolu-~
tional codes in this study has been an upper bound on error
probability related to the convolutional code transfer function.
The bound is extremely tight for high Eb/N0 (low decoder error
rates) where computer simulation is impractical, due to the
prohibitively long times required to collect significant data.
It has been shown (Refs 5,6) that a union bound on the per-
formance of a convolutional code on memoryless channels can be
obtained from the directed~-graph state diagram of the coder.
For example, the optimum constraint length K=3, rate 1/2 coder

is shown in Figure 2,2.,1. The states correspond to the con-

=20

K Genggg:ors df Na dft
3 o 5 1 5
1101 6 2 6
O N R
mer e e |
1011011 0 | 3 10
e w2 |

Table 2.2.1 Optimum Rate 1/2 Codes. d, is
the code minimum free distance, n fs the
number of bit errors in paths at distance
d., d.* is the upper bound on minimum free
dfsta ce,

Fig. 2.2.1 Code and State Diagrams for K=3 Code

-3l

tents of all but the first stage of the coder register, when a
new information bit has just entered the first stage. The
exponent of D(0, 1, or 2) is the weight of the (two symbol)
vector output at this time, and the exponent of N(0 or 1) indi-
cates whether a 0 or 1 information bit has just entered the coder.
Regarding the all zeros node as both the input and output of
the graph, the transfer function of any path through the tree is
defined as the product of the branch transfer functions along
that path. For example, the transfer function of the path

corresponding to the information sequence 10100 is

Tio10s = (ND?)(D)(N) (D) (D?) = N2D® (2.2.1)
The transfer function of the graph is the sum of the transfer
function of all paths starting and ending in the all zeros state.

The general form of this transfer function is

d d_+1 df+1

T(N,D) =D TE (M) +DT £,) + ... 4D (N)

2 £i41

Ao (2.2.2)

Here df is the minimum free distance of the code. Notice that
the exponent in the path transfer function (Eq. 2.2.1) is the
weight of the code symbols on the particular path through the
graph of Fig. 2.2.1. Therefore, with N=1, the terms in the

transfer function T(1,D) are of the form

-3 -

df+1

D £ (1)

i+l
where fi+1(1) is just the number of paths at distance df+i.

For the unquantized, additive white Gaussian noise channel
with PSK modulation, the error probability betweeﬁ the all zeros
(correct) path, and another path which diverges from and returns
to the all zeros path, is bounded by (Ref, 4)

P, < o~dEg/N,

where d is the weight of the competing path. ES is the code

symbol enerqgy and N, is the noise spectral density. For example,
if the competing path corresvonded to the information sequence
10100, the bound is obtained from Eq. (2.2.1)

P <7

= «~6E /N
10100 0
2 N=1, D=exp(-ES/No) © S

Likewise, a union bound on first event error probability due to

all paths competing with the all zeros path (all paths through
the graph in Fig. 2.2.1) is

PE < T(N,D)

N-1, D=exp(-Es/N°) (2.2.3)

In order to get a bound on bit error probability, we note

that the exponent of N in a path transfer function is the number

-33=

of information 1's (errors) on that path. A union bound on bit
error probability would be obtained if the path transfer function
were weighted by the number of bit errors on the path. One
simple way of doing this is to take the derivative of T(N,D) with
respect to N. This brings down the exponents of N =- the number
of bit errors on a path -~ into the coefficients. The bound on

bit error probability is therefore

PB < dT(N,D)
dN
N=1, D=exp(-ES/No) (2.2.4)

For the Gaussian channel these bounds can be tightened some-

what (Ref, 5):

-d
P, < erfc (Vdes7No) b fT(N,D)

N=1 (2.2.5)
p =d¢ a7 (n,D)
B < erfc (/afEs7N°) D —_—r
dn N=1 (2.2.6)

with D = exp(-Es/No) in both cases,

The difficulty of this approach is that the number of states
grows exponentially with K and consequently the tedium involved
in direct computation is effectively insurmountable for K>4,

On the other hand, the calculation of the transfer function

is equivalent to a matrix inversion. Taking into account the

-34-

particular properties of a convolutional code transfer matrix,
the transfer function can be evaluated numerically using an
iterative technique. This technique is explained in detail in
Appendix A., A computer program has been written to evaluate the
transfer function bound as a function of K, code rate, and Eb/No'
For rate 1/2 codes the performance bounds are presented in
Section 2.2.4, for other rates, they are contained in Section 2.3.
Decoder performance predicted by the bounds at around 107 °
bit error rate is quite close to simulation results, allowing for

finite receiver quantization in the simulations.

2,2,3 Viterbi Decoder Simulation Program. A program has

been written to simulate the operation of a Viterbi decoder on a
quantized Gaussian channel. The program is quite flexible, in
that all of the parameters of interest in Viterbi decoding can be
varied by changing program inputs. For rate 1/2 codes, the con-
straint length can be varied from 3 to 9. Simulated received
data for PSK modulation on an additive white Gaussian noise
channel can be generated for any value of Eb/N0 with output
guantization of 2, 4 and 8 levels, For each run the program
provides:
a) Bit error rate for a variety of decoder path lengths,
with output selection based on the most likely state.
b) Event error rate,
¢) Average length in bits of an error event, from the
first bit error to the last comprising the event.

In addition to the statistics in a), b) and c¢), which are

_35-

based on maximum likelihood state output selection, the follow-
ing measured error rates are provided:

d) Bit error rate with majority output selection. Here
the output on a majority of the decoder paths is
chosen as the decoder output,

e) Bit error rate resulting from selecting an output from
some state path whose metric value is better than some
threshold value.

All of the gathered statistics except those in a) are for
length 32 decoder state paths. The output decision technique
simulated in d) and especially e), although they are slightly
sub=-optimal, are much simpler to implement in parallel process-
ing Viterbi decoders than maximum likelihood selection.

Lastly, with an eye toward the 180° phase ambiguity problem
with PSK modulation, the simulation program measures

f) Bit error rate when differential data encoding-~decoding
is used with codes transparent to 180° phase flips. This
technique, along with the simulation reéults, is treated

in Section 2.2.5.

2.2.4 Simulation and Numerical Performance Data

2.2.4.1 General Performance Results. The principal results

of the simulations and code transfer function bounds are shown in
Figs. 2.2.4.1, 2.,2,4.2, and 2.2.4.3. All of these figures show

bit error rate vs. Eb/N for Viterbi decoders using the optimum
0

-36-

Bit Error Rate

1073

= 7 — T T 1 T T 3
- Fig, 2.2.4.,1 Bit Error Rate vs. -~
o Ep/Ng for Rate 1/2 Viterbi ~
decoding., Eight level Quan- :
- tized Simulations with 32 Bit]
Paths, and the Infinitely
- Finely Quantized Transfer 1
Function Bound, K=3,5,7.
1074]
.]
10=5] —
= =
- -
-~ —
—~ -
10-6]
- 3
. -
— -
_ -
10-7 —
—_— -
= Upper Bound 7]
| —O—0— simulation .
1078 1 | | | i i 1 | 1 | 1 |
3 4 5 Ex/My 6 indb 7 8

=37~

Bit Error Rate

10-3

—] 1 I I l i ! I | I I I i —
] Fig. 2,2.4.2 Bit Error Rate vs. |
, /Ng for Rate 1/2 Viterbi
] Dgcodlng. 8-Level Quantized]
— Simulations with 32 Bit .
Paths, and the Infinitely
] Finely Quantized Transfer _
Function Bound, K=4,6,8.
1074]
— —
1Q=3) —]
10°9 —]
——d e
10=7 .
— Upper Bound _
: —O——0— Simulation :
10- 1 |] | 1 } I]]

R
Eb/ND in db
-38=

Bit Error Rate

1072

- | -
- —
- -
- —
- -
10=3— —
= =
10-4_] —
7 -
- . -
10™5 I B 1 | 1 | L] L
4 6 7

Fig. 2.2.4.3 Bit Error Rate vs. Ep/N, for
Rate 1/2 Viterbi Decoding. Hard Quan-
tized Received Data with 32-Bit Paths
K=3 through 8.

-3Q-

rate 1/2 convolutional codes of Table 2.2.1. In all cases, the
decoder state path length was 32 bits., In all simulation runs,
at least 25 error events contributed to the compiled statistics.,

The simulation results in Figs. 2.2.4.1.and 2.2.4.2 arec for
soft (8-level) receiver quantization. Equally spaced demodula-
tion thresholds are used at *1.50, *0, *0.5 , and 0 where 02=N0/2
is the noise variance. This choice of 8~level guantizer thres-
holds 1is within a broad range of near optimum values, as will be
shown presently. The transfer function bound is for infinitely
finely guantized received data. Allowing for the 0.20 to 0.25
db loss usually associated with 8-level receiver quantization
compared with infinite quantization, the transfer function bound
curves are in excellent agreement with simulation results in
the 10~% to 10~° bit error rate range.

Since the accuracy of the transfer function bound increases
with Eb/NO' decoder performance can be ascertained accurately in
the 10-% to 10-% region even in the absence of simulations.

Ideally, the symbol metrics associated with each of the 8
gquantization levels would be proportional to the log-likelihood
of receiving the given level, given the hypothesis of a "0" or
a "1" transmitted. In the interest of kceping the number of
bits required to represent metrics to a minimum, it was shown
(Ref. 2) that equally spaced symbol metrics, for instance, the
numbers 0-7, could be used with neqligible performance degrada-

tion. We have taken the compression of metric representation one

=4 0=

step further, As is shown in section 2.4, an additional bit
in the state metric can be saved if levels symmetrically located
about the zero threshold have symbol metrics which are the nega-
tives of one another. Thus, for the simulations presented in
Figs., 2.2.4.1 and 2.2.4.2, the eight symbol metrics used were
4, 3, 2, 1, -1, -2, =3, =4, These symbol metrics clearly do not
change in equal increments; however, simulations have shown that
system performance does not suffer significantly.
Fig. 2.2.4.3 gives the simulation results for Viterbi decoding
with hard receiver quantization. The same optimym rate 1/2,
K=3 through 8 codes.were used here as in the 8-level quantized
simulations.
Several points are obvious from the performance curves
a) 2=level quantization is everywhere close to 2 db
inferior to 8-level quantization. This seems to rein-
force the folk theorem that hard quantization always
leads to a 2 db loss in system efficiency.
b) Each increment in K provides an improvement in efficiency
of something less than .5 db at a bit error rate of 10~°.
c) Performance improvement vs. K increases with decreasing

bit error rate.

2.2.4.,2 Receiver Quantization. In order to observe the

effects of varying receiver quantization more closely, simulation

-41~

performance data is presented in Fig. 2.2.4.4 for the K=5, rate
1/2 code, with 2, 4, and 8-level receiver quantization. The
8=level thresholds and metrics are identical to thase of Fig.
2.2.4.1. In fact, the 2 and 8 quantization level curves are
taken from Figs, 2.2.4.3 and 2,2.4.1 respectively. The 4-=level
thresholds were set at 0 and * o, The metrics were chosen to be
2, 1, -1, -2, for the same reasons which suggested the 8-level

metrics.

2.2.4.3 Path Memory. The Viterbi decoder is a maximum

likelihood decoder only when its decision path memories are
infinitely long. That is, decoding delay is infinite. Fof
practical purposes, it is desirable to use path memories as short
as possible, There is a path memory for each state in a Viterbi
decoder. Providing storage and managing decision paths is a
significant part of any Viterbi decoder. It is therefore worth-
while to study the performance degradation vs,., path length for
Viterhi decoding.

Fig. 2.2.4.,5 shows bit error rate performance vs. Eb/No for
three path lengths (8, 16 and 32) using the rate 1/2, K=5 code,
for both 2 and 8=-level received data quantization. The length
32 path curve is identical to the K=5 curve in Fig. 2.2.4.1.
Performance with length 32 paths is essentially identical to that
of an infinite path decoder. Even for a path length of only 16,
there is only a small degradation in performance. Other simula-

tions have shown that a path length of 4 to 5 constraint lengths

-2~

.Bit Error Probability

L1iill

]

(-

o
t
N

RERin

-
S
| lllllllw I

|

1
L) lillll:

1

-
o
]

wn

| IIlllJl

|

Fig, 2.2.4.4 Performance comparison
of Viterbi Decoding Using a Rate
1/2, K=5 Code with 2, 4, and 8
Level Quantization. Path Length=
32 Bits,

=2

| 1 |1 | I |

Pl

1

1

! | IILJ !

i

nllllll 1

1

Lt III, 1

Eb/go in db

Bit Error Probhability

L Lifig

|

]] |

|

9
[=-]
|

[4)

1 llllll[

{

8-

Fig. 2.2.4.5 Performance comparison
of Viterbi Decoding Using a Rate
1/2, K=5 Code with 8, 16, and 32
Bit Path Lengths and 2 and 8
Level Quamntization.

;

e L«r—-/‘

level quantization 2-level quantization

| 1 |) | | 1 |)

L1l

ILIIIII]

1] LJ!Illl

ol

J|l|||!

5
-44-

is sufficient for other constraint lengths as well,

2.2.4.4 Decoder Output Selection. In a Viterbi decoder with

finite path memories, it is possible that not all state paths are
merged at the point at which a decoded bit must be output. Phy-
sically this means that the oldest bits in each of the state path
memories may not always agree. The decoder must output a bit
however and there must be a means for selecting which of the ZK-l
oldest path bits to output.

The optimum method for selecting output bits is to choose the
bit corresponding to the path with the best metric. This selection
rule is very complex to mechanize in a high speed decoder, where
the pairwise state comparisons are done in parallel. This fact
has lead to a study of simpler output selection schemes, the
aim being to find one which does not degrade performance appre-
éiably. One very simple scheme is to choose a path at random from
which to output decoded bits (or always output bits from the same
path). This scheme,however, has been found to significantly de-
grade performance. In fact, if a path memory of n bits is required
for a given performance goal with maximum likelihood output selec-
tion, then simulation has shown that a memory of up to 2n bits is
required for the same performance with arbitrary output selection.
Another method is to output a "0" if a majority of the ZK-l
paths have a "0" as their oldest bit; otherwise, output a "1",
This scheme is somewhat simpler to implement than maximum likeli-

hood selection.

-4 5

An efficient yet simple to implement scheme, which we have
devised, is to select the output from some state path whose met-
tic is better than a certain threshold. This scheme is described
in Section 2.4, It is called "less than four" selection. TFigqg.
2.2.4.6 compares the performance of a) maximum likelihood selec-
tion, b) majority selection, and c) "less than four" selection.
The comparison is made for a K=7, rate 1/2 code with 8~level
quantization, and path length 32. It is interesting to note that
the performance of the K=5 decoder was the same for all three out-
put selection schemes, with a 32 bit path memory. As the path
memory gets long relative to K, there is a larger probability that
all state paths will be merged by the time a bit mdst be output.
Thus the output sclection mechanism has less of an effect on

performance.

2.2.5 Code Synchronization and Channel Reliability.

2.2.5.1 ©Node Synchronization and Phase Ambiguity Resolution.

Because of the inherent continuity involved in convolutional cod-
ing, code synchronization at the receiver is usually much simpler
than in the case of block codes. For convolutional decoding
techniques involving a fixed number of computations per bit de-
coded, such as Viterbi decoding, the decoder initially makes an
arbitrary quess of the encoder state to start decoding. If the
guess is incorrecﬁ, the decoder will output several bits or, at
most, tens of bits of unreliable data before assuming steady
state reliable operation. Thus, the block synchronization pro-
blem does not really exist. There remains the problem of node

-46=

[N

I lILlllri

w

=
o

RE

F

Bit Error Probability

=
=]

| LJIIHI

|

(@]
w

! lIllLlJ

_1

o

Fig. 2.2.4.6 Bit Error Rate vs. Ep/Ng
for Viterbi Decoding of the K=7,
Rate 1/2 Code, Using the Following
Output Selection Mechanisms:
1) Maximum Likelihood, 2) Majority,
and 3) "Less than Four'. Q=8 levels,
path length = 32,

3

i | ! |) B L |

3
Ep/No in db
-47_

Lot Lottt

| L.lul]

Lot |

1

Lol

L

synchronization and, depending upon the modulation—demodu—‘
lation technique used, the problem of 2 or 4 phase ambiguity
resolution., For a rate 1/n code, there are n code symbols on
each branch in the code tree. Node synchronization is obtainéd
when the decoder has knowledge of which sets of n symbols in
the received symbol .stream belong to the same branch. In a
purely serial received stream, this is a 1 in n ambiguity.

In addition, modems using biphase or quadriphaée PSK with
suppressed carriers derive a phase reference for goherent de-
modulation from a squaring or fourth power phase lock loop or
its equivalent. This introduces ambigquities in that the squaring
loop is stable in the in-phase and 180° out of phase positions,
and the 4th power loop is, in addition, stable at %90° from the
in-phase position.

We have directed our efforts toward using the error detec-
tion capability of convolutional decoders, or the ability of the
decoder to detect unsatisfactory system of operation, té detect
and correct for incorrect node synchronization aﬁd the occasional
phase flips in the phase tracking loop. It is now apparent that
simple and effective techniques for maintaining node and phase

synchronization completely within the decoder itself are feasible.

For the purpose of ease of illustration, the rate 1/2, hard-
quantized receiver output case will be considered here. Techniques
generalize easily to soft quantization and with scmewhat more
complexity to other rates. A Viterbi decoder opetatingvon hard
quantized received data will use Hamming distancé for state metrics.

-48-

Relatively large metric values indicate a poorer match to received
data than lower metric values. The smallest state metric at any
time corresponds to the path with the best match to received data,
and the metric itself is equal to the number of discrepencies be-~
tween the received data and that path. Clearly, when the decoder
is in correct node synchronization and the demodulator loop is
locked properly, the path with the smallest Hamming distance will
usually corresvnond to the correct path. The rate of increase of
this path metric will depend on the channel error rate. For in-
stance, if the crossover probability is p=.02 then, on the average,
there will be an increase of 1 in the correct path metric for
every 50 channel symbols. On the other hand, we intuitively ex-
pect that if node synchronization is lost, or if the phase lock
loop locks onto an incorrect phase position,the match between the
received data at the nearest codeword should be much poorer than

1 mismatch in 50 symbols. If, in fact, the best path metric in-
creases more rapidly when off node or phase synthonization, this
can be used to detect these maladies.

One simple technique would use an up-down counter to detect
unreliable system operation. The counter counts up by k units
(k>1) each time the best path metric increases by 1, while it
counts down by 1 for each bit time. The parameter k is chosen
so that the average drift of the counter is downward when in
proper node and phase synchronization and upward when out of
either phase or node synchronization or both., The first condi-

tion requires that kp<l where p is the channel crossover

-40-

probability; while, the second condition requirés kp“>1 where

p” is the as yet undetermined rate of increase of the best path
metric with improper node or phase synchronization. The count
would not be allowed to fall below zero. When the count exceeds
a threshold value N, the assumed node synchronization or phase
synchronization position is changed in the decoder according

to a preset strategqgy. -

Potentially effective methods of changing phase and node
synchronization depend upon whether the system uses BPSK or QPSK.
For BPSK, both the problem of node synchronization and 180°
phase ambiguity exist. The 180° phase ambiguity can be cir-
cumvented by using differential encoding of the information prior
to convolutional encoding and differential decoding after the
channel decoder. A transparent convolutional code is required,
i.e., the all 1's data sequence maps into the all 1's code
sequence. This technique is discussed in section 2.2.5.2.

Another method of homing in on both node and phase

synchronization is shown in Fig. 2.,2.5.1.

SN change R
\:%/ node sync ~0t7<25>

change phase change phase
sync 180° sync 180°

change /%§\

\ »
node sync M

\/
(=

Figure 2.,2.5.1 Biphase node-phase synchronization
strateqgy.

-50-

State 1 represents an arbitrary initial position for phase
and node synchronization. If the system reliability counter
counts past N, a node synchronization change is attempted,
bringing the system to state 2. If the count again passes the
threshold, received symbols are complemented priof to decoding
(equivalent to a l80°‘phase shift) bringing the system to state 3.
Subsequent counter overflows cause the system to go to state 4
and then back to l. There are only 4 possible states because
there are 2 stable phase positions and, for rate 1/2, 2 node
synchronization positions.

For a quadriphase modem and rate 1/2, there is no node
synchronization problem since both parity bits on a branch are
transmitted on one baud. However, now there are 4 stable phase
positions; thus, there are 4 stable system states to contend
with just as in the biphase case. These states, as well as the

phase synchronization strategy are shown in Figure 2.2.5.2.

90° phase change
© O,
) <

90° phase change _ 90° phase change

® 20
90° phase change

Figure 2.2.5.2 Quadriphase phase synchronization
strategy.

-5]=

The problem still remains as to whether the best path metric
will increase rapidly enough, when phase or node synchronization
is incorrect, to reliably detect these events while keeping the
false alarm rate sufficiently low. Understanding of the operation
of the decoder when synchronization is lost is aided by observing
the effect of synchrdnization loss on a hypothetical code
syndrome calculated at the receiver.

These effects can best be seen by working with the poly-
nomial representations of the information, parity, and code
generator sequences. The polynomial coefficients are the terms
in the sequence of interest. For instance, the information
sequence 10110l1l... is represented by the polynomial

i(D) = 1+ D%+ D%+ D3+..,
The parity stream generated by passing i (D) through a convolutional
encoder with generator g(bD) is simply

p(D) = 1i(D)g(D)

A rate 1/2 code has two generators gl(D) and gZ(D) which generéte
two streams pl(D) and pz(D). A representation of the encoder,
channel and syndrome calculator is shown in Figqure 2,2,5.3. The
ni(D) are channel noise polynomials, a coefficient of 1 represents
a channel error. All additions are mod-2.

Notice that in the absence of noise, i.e., nl(D) = n2 (D) =0,

s(D) = i(D)g (D)g (D) + i(D)g (D)g (D)

=0
independent of i(D); thus, the syndrome s (D) depends only upon the
noise polynomials and hence is in fact a true code syndrome.

-3

52~

(D —- > |
i (D) 9: (D) r, (D) 9. (D)
g2 (D) | A+ £z (D) T s (D)

syndrome

encoder
l calculator

Figure 2.2.5.3 Representation of encoder, channel and
syndrome calculator.

A hypothetical decoder operating on a segment of the syn-
drome polynomial should attempt to find the minimum weight
channel error polynomials which could have caused the particular
syndrome pattern. Decoding would then reduce to changing those
bits corresponding to ones in the minimum weight error pattern.
We shall now look at the functional form of the syndrome in the
presence of various combinations of improper phase and node
synchronization,

Considering the biphase modulation case first, suppose
phase synchronization is correct and node synchronization is off,
This is equivalent to the received lines being croésed in Fig.
2.2.,5.3, Thus:

r, (D) = i(D)g, (D)
r, (D) = i(D)g, (D)

s(D) = i(D) [g%(n) + g%(n)].

3~

(®]

in the absence of noise., Unlike the in-synchronization case,
the syndrome now depends on the information sequence. In fact,
the syndrome is the information sequence convolved with a new
generator gf(D) + gz(D). If the coefficients of i(D) are EL
(that is independant and equally likely to be 0 or 1) then the
coefficients of s (D) also have this property (Ref. 4).

Now suppose node synchronization is correct and the phase
flipped 180°. Here

r, (D) =
r,(D) = 1(D)g, (D

s(D) = i(D)g, (D)g, (D) + i(D)g,(D)g, (D)
in the absence of noise. If the code were transparent to 180°
phase flips, both g, (D) and g, (D) would have to be odd, that is,
have an odd number of non-zero terms (coder taps). Since we do
not want the transparent feature in this analysis, we will
assume gl(D) is odd and gz(D) is even (if they were both even the
code would be catastrophic). Now a sequence convolved with an
even generator is the same as the result of convolving the
sequence with the same generator; whereas, a seqﬁence convolved
with an odd generator is the complement of the result of convolv-

ing the complemented sequence with that generator. Thus,

s (D)

i(p)g, (D)g, (D) + i(D)g,(D)g, (D)
=1+ D+ D% + D% +,,,
Hence without noise, a 180° phase flip causes an all l's‘syndrome.
When both improper node and phase synchronization occur, it
is easilvy shown that without noise .
s = IO [a2) + g3 (D)]

-54=

Again this syndrome is EL if i (D) is EL.

In the quadriphase situation, the tracking loop can be $90°
or 180° out of proper phase alignment. When a 90° shift occurs,
the in~phase and quadrature channel outputs are switched with one

becoming complemented., For instance with a 90° shift,

rl(D) = i(D)gz(D)
r, (D) = i(D)g, (D)

Again assuming g, (D) is odd and g, (D) is even

s(D) = i(D) [g}(D) + g2 (D)]
This is the same syndrome as obtained with improper node
synchronization. A =90° phase shift yields the syndrome

s(D) = 1(D) [g%(D) + g2(D)]
This is the same syndrome as that derived for the biphase
improper node synchronization, and 180° phase shift case.
Finally the 180° phase shift case is identical to that for the
corresponding biphase situation.

Evidently, the quadriphase and biphase situations are quite
similar. OQuadrinhase modulation entails no more ambiguities than
binhase because the former provides node synchronization for free.
Both techniques yield an all 1l's no noise syndrome when locked
180° out of phase. Quadriphase modulation yields an EL syndrome
when +£90° out of phase, while biphase does the same when out of
node synchronizzation for both stable phase situations. . The fact
that the syndrome is EL depends, of course, on i(D) being EL. It
can be readily seen from the off synchronization syndrome equa-

tions that certain information sequences will yield an all zero's

.-55...

@ =2

syndrome even when node or phase synchronization is incorrect.,
The all zeros and all ones information sequences are particularly
bYothersome in this regard.

An EL syndrome will be obtained if node synchronization is
out or the phase has flipped by $90°; in addition, the syndrome
will be EL if one or both of the ni(D)'s is EL., Thus an EL
received stream will cause an EL syndrome., Bounds on the
minimum distance.of codevords (Ref. 7) shows that for the best
rate 1/2 code, asymptotically the minimum distance increases as
.1lln where n is the code lenth in symbols. Thus the nearest
codeword to an EL received sequence will tend to differ in about
1 symbol in every 9. This means when the decoder is out of node
or phase synchronization, the best metric will on the average
increase by 1 for each 9 received symbols. Actually, the real
rate of increase may be somewhat greater than this because the
Viterbi decodef will use a short constraint length code. The
.1ln asymptotic figure is approached in the limit of longer codes.
The closest codeword to a random sermquence will tend to be further
away when the constraint length is short.

As mentioned previously, the factor k and the threshold N
must be chosen such that the counter used to indicate data quality
drifts upward when synchronization is incorrect and drifts down=
ward when synchronization is correct. The actual values chosen
for these parameters will determine:

(a) the expected time to first passage over the threshold,

and hence change of system state, when node or phase

_56-

synchronization is incorrect. We will call the ex-
pected time to re-synchronization, Ers‘

(b) the expecfed first passage time when node and phase

synchronization is correct. This £s the expected time
to false alarm, Efa'

Obviously we want to make Ers as short as possible and Efa
as large as possible. BAnalytical techniques have been success-
fully used to approximate Ers and Efa as a function of k, T and p.
The analysis is based upon recognizing that the input to the
up~-down counter is a random walk with a reflecting boundary at
zero and an absorbing boundary at N, First passage times are
computed by solving the appropriate Fokker~Planck equation. This
work is reported in detail in Appendix B.

In addition to the approximate ana}ysis, simulations have
been performed to tie down Ers ana Efa more precisely. The
count-up rate, k, was chosen to be 8 because that value is nearly
optimum, and it is a power of 2 and, therefore, easy to implement.
The rate 1/2, K=5 code was used with hard receiver quantization.
Fig. 2.2.5.4 shows Egy VS the threshold T. This limited data
supports the analytical results which state that Efa rises
exponentially with T, Naturally, for a given T, Efa is larger
for smaller channel crossover probabilities p.

Fig. 2.2.5.5 shows thg other parameter Ers as a function of
T, Ers also rises with T, but more slowly. In fact it is nearly

linear with T, as predicted by theory (Appendix B). Ers is not a

function of p because it is the expected time to re-sync when the

-57-

Efa

109

108

107

106

105

10Y

103

| [J

32 64 128

Sync Threshold T

Fig. 2.2.5.4 Average number of bits decoded be-
tween false loss of sync events vs. sync counter
threshold =-- p is the channel crossover prob-
ability.

-58=-

rs

104~ 1

103

102

| 1 {] | |
25 26 27 28 29 210
Sync Threshold

Fig. 2.2.5.5 Average number of bits to recover
after loss of node synchronization vs. sync-
counter threshold (hard decision decoder).

50~

decoder is out of sync. When out of sync, the received data has
the same random statistics regardless of the noise.

‘These results show that a value of T can be selected to make
Efa truely negligible, while maintaining Eogr the>resync time, as
low as several hundred to a thousand bits. The increase in
system bit error rate due to false loss of sync is

2Ers/Efa

This is because, on the average, for Efa bits decoded sync is
lost once, It takes, on the average, 2Ers to return to the proper

sync state.

2.2,5.2 Transparent Codes. As mentioned in the previous

section, another way to resolve 180° phase ambiguities is to use
a code which is transparent to 180° phase flips, precode the data
differentially and use differenti&l decoding. A transparent code
has the property that the bit-by-bit complement of a codeword is
aiso a codeword. Such a code must have an odd number of taps on
each of its encoder mod-2 adders. This insures that if a given
data sequence generates a certain codeword, its'complement will
generate the complementary ¢ode word.

If the received data is compleﬁented due to a 180° phase
reversal, it will still look like a codeword to the décoder, and
will likely be decoded into the complement of the correct data
sequence. Now decoding to the complement of the sequence input
to the encoder is no problem if the data was precoded differential-
ly. This means that information is contained in the occurrence or

non-occurrence of transitions in the encoded output sequence rather
-60-

than the absolute sequence itself. These transitions occur in
the same places even if the decoded sequence is complemented.

The major fault with this scheme is that when an isolated
bit error occurs in the decoder output, it causes . two differen-
tially decoded errors, Since two transitions are changed. At
first glance, this would seem to indicate a doubling of the
output bit error rate. In fact, this doubling does not occur
because errors typically occur in short bursts. Two adjacent bit
errors, for instance, cause only two differentially decoded bit
errors., This indicates the possibility of only a small increase
in bit error rate with differential encoding=-decoding.

Fig. 2.2.5.6 shows bit error rate performance curwes for the
K=7, rate 1/2 code with and without differential encloding-
decoding., fhe degradation is error probability is least at low
Eb/NO' Here decoder error bursts are relatively long (on the
average one to two constraint lengths), so differential encoding-
decoding loses very little. At higher Eb/No, bit error rate |
degradation is slightly larger--but nowhere near a factor of two.
The worst bit error rate degradation factor is about 1.2 over
the range shown, Using differential encoding-decoding, the Eb/No
required increases by less than 0.1 db. K=7 was selected for
this example because the optimum code for this constraint length
is transparent (see Table 2.2.1).

The use of differential encoding-decoding reduces the
synchronization problem to 2-state node synchronization with BPSK,

and 2~-state 90° phase ambiguity resolution with QPSK,
-61l-

.Bit Error Probability

Pt il

—

o
]
w

=
o
1

Lt 11 lllll

L1 llllll

[y
o
1
o
|

111 Illll

| T | .I |.| l‘[

Fig, 2.2.5.6 Performance Comparison of
Viterbi Decoding With and Without
Differential Encoding-Decoding. K=7,
Rate 1/2 Transparent Code Used. Q=8
Levels

differential
_.. encoding

no differential
encoding

IR

Lol |

||11|l| 1 lLllllII]

]

1 Ijlll

T SR R SRS B

3
Ep/No in db

-62=

&

“r

2,2.5.3 Channel Reliability Information. The up-down

counter used for node and/or phase synchronization also provides

a means for very sensitive measurement of channel performance. In
the absence of decoder errors, the counter counts up whenever a
received symbol with a channel error is processed. Thus, the
number of times the counter counts up per unit time is directly
proportional to the channel error rate p. This will be true as
long as the decoder output error rate is low, which corresponds

to good system performance. If p becomes large due to a system
failure or loss of code sync, the count will tend to remain above
zZero.,

One method of monitoring system realiability is to sum the
count over a number of bits which is large compared with 1/p,
where p is the lowest channel error rate to be monitored. The
integrator output will be stable and proportional to p when p is
in the range corresponding to decoder error rates lower than
about 10"%, As p rises beyond this point, the integrator output
will rise monotonically, but not proportionally. When p becomes
greater than about.ll, the integrator output will saturate. This
is because the number of decoder corrections (metric increases)
for a rate 1/2 code never exceeds .ll on the average as was dis-
cﬁssed in the previous section.

Integration of the sync counter value over a fixed time
window therefore provides a sensitive measure of p when the decoder
is putting out useful data. It also is a good indicator of system
failure.

-653-

2,2.6 Sensitivity to AGC Inaccuracy. Coded systems which

make use of receiver outputs quantized to more than two levels
require an analog-to-digital converter at the modem matched filter
output, with thresholds that depend on the noise variance. For
instance, all of the 8=level quantized Viterbi decoder simulations
reported on thus far hawe used level thresholds at 0, *0.50, o0,
and *1.50.

Since the level settings are effectively controlled by the
automatic gain control (AGC) circuitry in the modem, it is of
interest to investigate the sensitivity of decoder performance to
an inaccurate or drifting AGC signal. Fig. 2.2.6 shows the decoder
performance variation as a function of A-D converter level thres-
hold spacing (in all cases the thresholds are uniformly spaced).
These simulations used the K=5 rate 1/2 code, with Eb/N0 = 3.5 db,
It is evident that Viterbi decoding performance is gquite insensi-
tive to wide variations in AGC gain. In fact, performance_is
essentially constant over a range of spacings from 0.50 to 0.7c.
This allows for a variation in AGC gain of better than 20% with no

significant performance degradation,

2.3 Other Code Rates.

The preceding sections have concentrated on Viterbi decoding
of rate 1/2 convolutional codes. Most of the results on perform-
ance fluctuation due to decoder parameter variation carry over
qualitatively, if not quantatively, to other code rates.

Code rates less than 1/2 will buy improved performance at

the expense of increased bandwidth expansion and more difficult

-64-

Bit Error Rate

1.8x10-3

l,6x10"3

1.4x10-3

1.2x10"3

1.0x10=3

Fig,

3q 40‘ V 50 . 60 70

2,2,6 Viterbi decoder Bit Error Rate Perfor-
mance as a Function of Quantizer Threshold
Level Spacing -~ K=5, Rate 1/2, Ep/Ng=3.5 db,
8-level Quantization with Equally Spaced
Thresholds.

=G5~

symbol tracking due to decreased symbol energy to noise ratios.

Rates above 1/2 conserve bandwidth but are less efficient in

energy.

2.3.1 Description of Code Search Program. Optimum short

constraint length, rate 1/3 codes have been found previously
(Ref, 2,3). Our efforts in searching for good codes were confined
to rate 2/3, K=6 and 8, and rate 3/4, K=6 codes. Since the
number of possible codes is quite large (there are 22" rate 2/3,
K=8, and rate 3/4, K=6 codes), a fast method was needed to
evaluate and select, or reject codes. The method chosen uses
the convolutional code transfer function described in section
2,2.2 and Appendix A. Before going into the technique in detail,
it will be instructive to discuss a result which limits the
number of codes which must be considered.

The optimum rate 3/4, K=6 eﬂcoder is shown in Fig. 2.3.1l.1.
The encoder consists of a K stage shift register, as in the rate
1/2 case. For a general rate k/n code, however, k binary digits
are shifted into the coder simultaneously. The'coder stages are
connected to n mod-2 adders. Note that the trellis formed by

Z(K-k),states with 2k branches leaving and

a rate k/n code has
entering each node. This is because any one of Zk groups of k
binary digits can enter the coder at once. Decoding involves

K=k

making a Zk—wise decision for each of 2 states per k bits

decoded.
It can be shown that no generality is lost if the codes are

restricted in the following way. Suppose we label the mod-2 adders
-66_

information
bits —

(3 at a time)

/)

Y

2nd mod-2 adder — &—>

15% mod-2 adder ——) +

Fig. 2.3.1.1 Optimum Rate 3/4,
K=6 Code Encoder

-7~

from 1 through k, and concern ourselves with connections to the
first k encoder stages. Connect adder 1 to stage 1, adder 2 to
stage 2, ..., and adder k to stage k. Make no other connections
between the first k stages and the first k adders; This reduces
the number of codes to be searched by a factor of 2k2. The
encoder in Fig. 2.3.1l.1 is of the type described.

Recall that the code transfer function (for N=1) is of the
form
dg

T(D) = a D + a + LI) +a Ddf+l+ e se (20301)

dg + 1
1 2 D £

i+l
where df is the code minimum free distance, If we set D=10-6,
and if the rate of growth of the a; satisfies certain conditions
(see Appendix A), then T(10~%) will be very close to a; 107%df,
The code search program has as an input a target value of df. It
evaluates the first few terms of the transfer function, with
D=10—6, for each code, and tests to see if their sum exceeds
10-6(df-1). If it does, this means that the code must have a
minimum free distance smaller than df (or a, > 106 which is
impossibly large). Thus, the code is rejected. On the other
hand, if the itératively evaluated transfer function remains helow
10-6(df-1) taken to a sufficiently large number of terms, the
code's free distance is at least df, and the code is printed out.
This technique often results in the generation of many
candidate codes (or none of the target df is too large). The
codes are then tested using the numerical transfer function union
bound program to approximate the bit error rate performance.

Final code selections are made on this basis.

-68-

2.3.2 Good Rate 1/3, 2/3, and 3/4 Codes. Optimum rate 1/3,

K=3 through 8, rate 2/3, K=6 and 8, and rate 3/4, K=6 codes are
tabulated in Tables 2.3.2.1, 2.3.2.2, and 2.3.2.3 respectively.
Included also is the free distance of each code df, the number of
bit errors in paths at the minimum distance n,. ahd the value of
an upper bound on minimum free distance d;, analogous to that
obtained for rate 1/2 codes.

The rate 1/3 codes were reported previously (Ref. 3) and
are simply repeated here, The rate 2/3 and 3/4 codes are the

result of the code search program,

2,3.3 Simulation and Numerical Performance Data. Figure

2.3.3.1 shows bit error rate vs. Eb/NO performance obtained from
simulations of Viterbi decoding with optimum rate 1/3, K=4,6, and
8 codes, and 2 and 8 level quantization. The K=4 and 6 results
were reported elsewhere (Ref. 2) previously. The K=8 code used
in Ref., 2 was suboptimal; thus, the curve shown here for the
optimum code is somewhat better than the previously reported
result,

Figures 2.3.3.2, 2.3.3.3, and 2.3.3.4 show numerical bound
and simulation performance results for the rate 2/3 K=6, K=8 and
rate 3/4 K=6 codes respectively. Simulation curves are for 2
and 8 level quantization, whi;e the numerical bound curves are,

as usual, for infinitely fine receiver quantization.

-69=

Code
Generators

111
111
101

1111
1101
1011

10

10

11111
11011
10101

12

12

12

111101
101011
100111

13

13

1111001
1100101
1011011

14

15

11110111
11011001
10010101

16

17

Table 2,3.2.1 Optimum Rate 1/3 Codes

Code *
Generators £ e £

101111
011001 5 5 6
110010

10110110
01111001 7 86 8
11110111

Table 2.3.2,2 Optimum Rate 2/3 Codes,

Code *
Generators f e £

100001
010011
001110
111101

Table 2.3.,2,3 'Optimum Rate 3/4 Code.

Bit Error Rate

w

10™

L1t

T T I]

K=4, 6 and
Decoding.

Fig. 2.3.3.1 Performance of Rate 1/3,

t I 1 l i

Pl

8 Codes with Viterbi

I

|

1074 |
i _
]
] K=4
/
10°3 |
] K=8 -
108 _ —
. \ _
— —
- \ |
102]
— Upper Bound 7
1 —O—0— Simulation]
108 1 | 1 I 1 i) lﬁ&] |)
3 4 5 6 8. .
Ep/Ng in db (signal energy to noise ratio}

-72-

Bit Error Probability

10-?

L1l

|

[
(=
!

W

Ll

[
o
]
=

IRERI

l

[
o
!

&

! Lllllll

1

—
O
)

k=2

| IIIIII[

10-7

Y |

1 ‘] 1]

o

Fig. 2.3.3.2 Performance of Rate 2/37
K=6 Code with Viterbi Decoding, |
Numerical Bound and Simulatio

Results,

Upper Bound

T ‘ [I—

—

]

Ll

1

l L,llllll

||||1|l]

Lt

]

5 6
Eb/NO J‘tn db

-73=

Bit Error Probability

—

(=}
'
n

1 it

102
-
]
107 |
]
-
Z
]
1025
]
1076 |

10~7

] I] 1 []

Fig. 2.3.3.3 Performance of Rate
2/3 K=8 Code With Viterbi
Decoding - Numerical Bound
and Simulation Results.

2

(
g

Upper Bound

Lt

1

Ll

i

1

{ l|HJJJ

i

Lt

i

L

C Lol

o
Ry

103
—
vt

ey
alQeh
~ —f
ord —
a
[}
'Q —
0 _
| 3]
(<% —
R
1Y
3
m —
44
-
m

10-5
pon—
|

1Q°6;
e

10-7

8 e

] I] 1 I]

. Fig. 2.3.3.4 Performance of a Rate
3/4, K=6 Code with Viterbi De=-
coding - Numerical Bound and
Simulation Results. :

Upper Bound

L1t llli,

| | llll,

Ll

1 llllll]

Pt

|

I

1

L

2.3.4 Comparison with Rate 1/2 Code. Comparing the per-

formance data obtained through simulations of Viterbi decoders
with rate 1/2 (Figs. 2.2.4.1], 2.2.4.2, and 2.2.4.3), and rate

1/3 codes, it is apparent that the latter offers a 0.3 to 0.5

db improvement over the former for fixed K, in the range reported.
This is close to the‘improvement in efficiency of a channel with
capacity 1/3 compared with one of capacity 1/2, and is therefore
expected.

Performance efficiency of the higher rate codes also is
predictable when compared with the rate 1/2 codes over the range
with the simulation data spans. The fairest comparisons are
probably those between decoders with like number of states.
Thus, the K=6 rate 2/3 data should be compared with the K=5,
rate 1/2 data.

Figure 2.3.4 shows the union bounds on performances for the
rate 2/3, K=6, and rate 1/2, K=5 codes. Both encoders have 16
states, df = 7 for the rate 1/2 code and 5 for the rate 2/3
codes. At very high Ep/Ny, the rate 1/2 must be superior. This
is because asymptotically, at high Ep/N,, the error probability

goes as
Pe nvoexp (des/NO) = exp (deEb/NO)
This gives the rate 1/2 code an advantage of about 0.2 db in the
limit,
In Fig. 2.3.4, the difference between the two curves is about

0.1 db in the error probability range of 10™°% to 107°. This small

-76-

Bit Error Probability

10-*%

L 1 1itl

1

[
o
L

3.1

L

L L1 Illri

]

[

[ang
[
~

L1 1 Illll

1

o]

107

[llll[

18-9

Fig.

—

2.3.4

for the rate 1/2,
2/3, K=6 bit code.

!

I I f

Bit error probability bound

K=5, and the rate

il

1

1

L1 lllll

|

Lol

L lll| |

L

| T | 11111

difference is due to the fact that the rate 2/3 code used is a
particularly good code (it has a minimum distance coefficient of
only 5 in the union bound for bit error probability). Some
additional discussion on decoder complexity vs. rate is contained

in section 2.4.

-78-

2.4 Viterbi Decoder Implementation*

2.4.1 Review of Decoder Algorithm. The present discussion

is specialized to a decoder for a constraint length K=4 code.
The design principles are the same for other vaiues of K. Six
features will be discussed in the following sections relating to:
1) the assignment of metric to the received data (metric
compression)
2) the efficient storage of state metrics (overflow=-protection)
3) the design of the decision-memory and the selection of the
output bit (maximum likelihood selection)
4) the time sharing of state metric calculation
5) choice of logic family (TTL or MECL)
6) relation of cost to constraint length, code rate, speed, etc.
To set the stage for this discussioh, we first review the
fundamental operations of the Viterbi decoder. The code under
discussion is that given by the K=4 convolutional encoder of
Fig. 2.4.1.1, The states of the code at any time correspond
to the contents of the first K-1=3 stages of the shift register.
The coder is shown in state 0l11l. It previously was in state 110;
an input 0 caused a coder transition to state 01l and a coder

output of the 2 check digits c,c, = 01l.

*Many of the ideas in this section concerning metric compression,
overflow protection and output selection were first formulated
in Ref., 10, and are the subject of patent applications either in
preparation or pending.

-79=

A 4 state transition diagram for states 110, 111, 011, and
111 is given in Fiq. 2.4.1.2. For any value of K, sets of 4
states group together with x0 and xl1 on the left and 0x and 1lx
on the right, where x is any k-2 bit sequence. For good codes,
both the first and last encoder shift register étages are con-
nected to all the mod-2 adders. For these codes, the check
digits c,c, for the group of 4 are always complementary as

depicted in Fig. 2.4.1.3.

A block diagram of a Viterbi decoder is shown in Fig., 2.4.1.4,

The channel and modem cause the conversion of the transmitted
digits ¢,c, to received digits r,r,. From r r,, 4 "metrics"
R R R

are calculated by the input section, R cor-

oo’ 01’ 10’ 11’

responding to the 4 possible values of c,c,. On the basis of
these, the decoder must decide, for all values of x, whether
state 0x was entered from state x0 or state x1 and similarly
whether state 1lx was entered from state x0 or state xl. These
decisions are made by the ACS (add-compare-select) circuits.
These binary decisions are denoted by the variables Dix‘ For i=0
or 1, Dix = 0 indicates a decision in favor of the transition
from state x0 to state ix, whereas Dix = 1 indicates a decision
in favor of the transition x1 to ix.

The decisions are made on the basis of metrics associated
with each state., Let ij denote the metric associated with
state xj, j=0, 1. Then the decoder makes decisions =~ see

Figure 2.4.1.3 =-- as follows (the convention that small metrics

are "good"” is used):

-80~

Input Bit

Note:f:) denotes modulo-2 addition

Fig. 2.4.1.1 K=4 Convolutional Encoder, Rate = %

110 01 . 011

01

111 >— 111
Initial Check Final
State Digits State
Fig. 2.4.1.2 l-State Transition Diagram for a One

Input Step for Coder of Fig. 2.4.1

(0 input causes transition to upper state;
1 input causes transition to lower state)

" 0x

1x

Fig, 2.4.1.3 General U4~State 1 Step Transition Diagram

(ci =1 - ci)

-81~-

DATA
ouT

T

OuTPUT
SECTION

Y

DECISION
MEMORY

K-1

2 x 4K

BITS

N k-
,K-1
DECISIONS

2K-l

ACS CIRCUITS

+
STATE METRIC

NOR-

BEST
STATE

MALIZE | SYNC

CIRCUIT

STORAGE
]
BRANCH
METRICS
INPUT
SECTION
CHANNEL INPUT
Fig, 2.4.

1.4 VITERBI DECODER
BLOCK DIAGRAM

-82=

4+ Re= - =
MxO + Rclcz hl Mxl Rclcz DOx 0
) 4+ Re = =
MxO + Rclcz g Mxl Rclcz DOx 1
(2.4.1)
4+ R= = =
MxO Rclcz < Mxl + Rclcz Dlx 0
- - + =
Meo * Rclcz > Ma Rclcz P1x 1

Following the decisions, the set of D's (for K=4, Dgyggq,

Doo1s Deror Do11s Digor Dro1s Di1os P111) are passed to the
decision-memory section and are used to set the new values of
the state metrics (exclusive of overflow-protection; see Section
2.4.3)., For example, if D = 1, the new value of the state

Ox
metric Mox is Mxl 4+ Re =

cicy”

For K=4, x takes on the values 00, 01, 10, and 11. Thus,
4 sets of decisions corresponding to (2.4.1.2) must be performed
by the decoder. To implement the add and compare operations
at high speed and reasonable cost, it is essential to minimize
the number of bits used to represent the M's and R's, We dis-
cuss the minimization of the R representation, or metric compres-
sion, in Section 2.4.2 and the minimization of the M representation,
overflow-protection, in Section 2.4.3. The method of overflow-
protection has two dividends; it permits an inexpensive imple-
mentation of the maximum-~likelihood output selection as discussed
in Section 2.4.6 and of the code synchronization as discussed in'’

Section 2.4.7. Tradeoffs in speed, complexity, logic family,

constraint length, etc, are discussed in Section 2.4.8.

-83=

2,4,2 Metric Compression, The smallest achievable error

probability would result if the received symbols, r, and r,,
were equal to the unquantized (or infinitely finely quantized)
outputs of the appropriate matched filters, say u, and u,. To
permit digital implementation of the adder function, however,
u, and u, are guantized to Q levels (For example, 0=2 denotes
hard decisions where only the sign of the u,'s is kept). The
loss in performance incurred by using Q=8 rather than Q== is
less than 0.2 db for a reasonable choice of quantizer thres-
holds.

For the decoder to he maximum likelihood, the branch metric,

Rij’ should equal the log likelihood of the digits r, and r,

received for that branch given that i and j are transmitted:

Rij = log P(r, | i trans) + 1log P(r, | j transmitted)

for a digital implementation, however, it is also necessary to
quantize the {Rij} to a small number of levels. This quanti-
zation causes an additional performance loss,

We are interested in repfesenting the branch metrics R, ,,
R

R and R,,; in a minimum number of bits. As noted earlier,

01’ 107

the use of the quantized numbers r, and r, themselves to form the
metrics provides system performance within 0.25 db (with Q=8) of
the value achieved with Q=«, Of course, as Q»*=, use of r, and

r, becomes identical to use of u, and u, and hence is maximum

-84 -

likelihood, while for Q=2, use of binary-valued r; and r, is the
same as the use of Hamming distance and again is maximum likeli=-
hood.

Consider a Q level quantizer with the Q quantizer levels
labelled by the integqgers 0, 1, 2, ..., O0-1 from most negative
to most positive. (Any other labelling scheme can easily be
mapped into this labelling scheme.)

If r, and r, denote the received symbols and take on the
above values, then a choice of branch metrics shown to be accep-

table by computer simulation is:

Rég =ry, + r,

Rgy = £y, + (0-1-r))
Rfo = (Q—l-rl) + r,
R{; = (Q=1-r;) + (QO-1l-rj)

The LINKABIT technique of metric compression permits a reduction
by 1 bit in the number of bits required to represent these numbers
without degrading performance. Subtracting the same constant

from each of the Rij does not affect decoder decisions (see Eqg.
2.4.1), We choose to subtract the smallest of the Rij from each of
the Rij' thus yielding (at least) one value equal to zero and all

the others non-negative. If Rgy; is smallest, for example, then

-85

Rig = Rgo — Rjy = 2r; - O+l
Rjf = Rgy - Rgy = O

R{g = Rip - Rjy = 2r; - 2r
R{{ = R{; - Ry = -2r; + 0-1

Observe in Egs. 2.4.2 that if Q is odd then each of the Rij
is even and the least significant bit may be discarded. This is
true in general and is the basis for the LINKABIT metric com-
pression technique. If Q is even, however, this compression is
not possible. Compression has a great impact on the amount of
hardware required since, without compression, an extra bit is
required throughout the arithmetic section and metric storage.
This produces the peculiar result that 20% more hardware is
required to implement Q=8 than (Q=9. Fortunately, there is a
simple solution to the problem of providing compression with an
even value of Q, namely, to regard Q=8 as though it were Q=7

by mapping the two central zones of Q=8 into one zone. Although
this results in slightly nonoptimum metrics, the degradation is
guite small, especially at low error rates.

The above metric compression scheme is most easily implemented
by using a read-only memory if the decoder is for data rates less
than 10 Mbps. For rate 1/2, there are two received symbols,
each quantized to three bits if (=8 for a total of six bits.

The ROM look up table must therefore have 64 entries. Since four

branch metrics must be computed, each being a three bit number,

-86-

each word of the look up table must contain twelve bits. The
table can be implemented by using two 512 bit ROM's,

A logic diagram of a TTL input section using ROM's is shown
in Fig., 2.4.2.1, The circuit accepts either seriél BPSK with the
received digits, r, and r,, interleaved or QPSK with digits r, and
r, in parallel. The circuit then provides node sync by the
selective insertion of a one symbol time delay in BPSK or by the
selective interchange of the symbols in QPSK. If an interchange
occurs, then r; is complemented. The sync circuit (explained in
section 2.4.7), controls the bit insertion or interchange opera-
tions.

The symbols then address the 1024 bit ROM, vThe ROM is
organized into 64 words of 12 bits each., The ROM outputs are the
four branch metrics. The remaining circuitry subtracts four from
the branch metrics when normalization (explained in section 2.4.3)
is required.

At data rates higher than 10Mbps a different approach is
used. The quantizer levels are labeled from =3 to +3 instead of
from 0 to 6 as in the previous case. We then consider the symbols
as sign-magnitude numbers, i.e., r; = s, t,, where s, is the sign
and t, is the magnitude. The compressed metrics are then given by

the following table:

sl SZ ROO ROI RlO Rll
0 0 0 t, t, tl+t2“
0 1 t, 0 t,+t, t,
1 0 t, t,+t, 0 t,
1 1 t,+t, t, t, 0

SOVHAIW
HONVYG

~
'y

uoT3Des ndur I ‘wexberg orbotd

T°C*y°C @anbiy

1o3713s

L,VA_FF

._UA

&

N

T ONAS IQON

O_d <

N

b A i ?&Mx

{.{\
-4 -

194 .A

00 <

? b4 A‘g

o Ofe 8
_ < ASAY/ ASA
9 N Q- — 1,
deQA\ .AAXMHHWHMMWMMIL N
— D tdgl
w v g \T 11a %sdd
j@ —qla el b
© [|
aWDA <€ 118 Acd
Gﬁol — Wi
nq maO]
9 ale 2y <
70% WO 5.& | .tz 1a eeo
¢ L — 5_
emwo - rZAe] ——<Z 1194 HSd
mvmmo < W
r ||
— &d IOAJ
D Q- . °
L by 2dq
© 249)\T:m ASAD
rlllleAdtm Hnsd
® q

FZVIYWION

]
oo}
@

L)

The assignments of this table are easily implemented as shown
in Fig, 2.4.2.2, This circuit is preceded by node sync circuitry
as in the previous example. The magnitudes are added and the
branch metrics are obtained by using a multiplexef that is con-
trolled by s, and s, to route 0, t,, t, and t, + t, to the appro-
priate branch metrics. Normalization can be obtained by sub-

tracting four as shown in the diagram.

2,4,3 Overflow Protection., 1In Section 2.4.2, we demon~-

strate how to compress the metrics to permit Ryor Ryyr Rygo and
R,, to be represented in the minimum number of bits. We now

K=1 .tate

concentrate on mimimizing the maximum size of the 2
metrics, M, M iy oeey sz-l' The technigque is applicable to all
K although the example is for K=4,

Consider the coder state diagram given in Fig. 2.4.3.1. It
is possible to calculate the minimum Hamming distance in going
from the 000~state to each of the other states. These numbers
are shown in the square boxes adjacent to each state. Note that
the maximum Hamming distance is 4, Because of the group property
of the code, this means that any state is at most Hamming distance
4 from any other state.,

This observation is critical to minimizing the number of bits
required to represent the M's., For Q=8, Hamming distance 1 can
imply an actual metric difference no greater than 3. Thus, it is
possible for one state, say the 000 state, to have state metric

My, ,=0 while another state, for example the state 001, has state

0

metric M;,,=12. It is not possible for any state metric to be

-89

NOILOAS IOdNI T0d

¥3dq0o0dd Ig¥IALIA

~
—

gns

*bTa

dZI'TYWION
— O
aum
°AMII Omml_ |
HOLOdTES
SOIYLIAN
HONVY 9 |
-] 0dY
1oy 4
oIy
mﬂMll <

ddaaav

a0s

el

f—————

LI°

=

4 —

OVH

¢ HXS
NOIS

T WXS
OVK

T WXS
NOIS

-90~

'Tig. 2.4.3.1 = State Diagram with c,;c, Labelling Branches

Minimum Hamming Distance of Each State from the
000 State is Shown in Scuare Box Adjacent to State

-0}~

larger than 12 when M°°°=0 (or any other M=0), since the state in
question can be reached from state 000 with at most Hamming
distance 4 and hence compressed metric = 12,

We conclude that the difference between the smallest and
largest state metrics never exceeds 12, It is therefore possible
to represent the state metrics with 4 bits if a means of prevent-
ing overflows is also provided. To do so, we first observe that
in a single transition, the smaller state metric in a pair of
metrics can increase by at most 3. Furthermore, if the spread is
equal to 12, the largest metric cannot increase at all. These
claims are verified by examining the state-pair metric transition
diagram in Fig. 2.4.3.2a and the possible sets of compressed
metrics in Fig. 2.4.3.2b. The state-metrics are shown on the left
in Fig. 2.4.3.2a for a case in which the spread between smallest
and largest metric is the maximum wvalue, 12. The range of the
state metrics at the outputs are shown on the right (recall that
the smaller (better) metric of the 2 metrics accessible to a
state is chosen as the new state metric; see Equation 2.4.1.

We conclude that if the smallest state metric is in the range
0 to 4, the largest metric is less than or equal to 15 and hence
does not overflow a 4 bit register. Furthermore, since the maxi-
mum increase in the smallest metric is 3, subtracting 4 from all
state metrics whenever all of them exceed 3 prevents the set of
state metrics from moving out of the range 0-15, This is the
overflow-protection strategy that we have adopted. Note that we

could equally well subtract 3 whenever the metrics are all greater

-92-

0 0-6 Rj;i RIJ Rig RIS
0 3 3 6
1 0 2 3 5
2 6-0 0 1 3 4
0 2 2 4
0 1 2 3
0 1 1 2
6 6-12 0 0 2 2
0 0 1 1
0 0 0 0
12 12-6
| ><6'-9
9 . 9-6
| ><9-12
12 12-9
(a) State Metrics at Extreme Spread (b) Possible Compressed

Metric Sets

Fig. 2.4.3.2 State Metric Transition Ranges

~93-

than or equal to 3 but the test for Mij greater or equal to 4 and
the subtraction of 4 is more easily accomplished in hardware than
similar operations using 3,

With the combination of metric compression and overflow
protection, the additions Mx + Rij involve the addition of a 4

bit and a 3 bit number.

2,4,4 Storage of State Metrics. As explained in previous
,K-1

sections, state metric values must be stored for each of

the possible encoder states. At each bit time, 2K additions must

K-1 . .
comparisons and select operations.

be performed followed by 2
If the decoder is operating at a relatively high bit rate, then

all of the operations must be performed in parallel; however, if
the data rate is low to moderate, then the arithmetic operations
may be performed partly or completely in serial. 1If the operations
must be performed completely in parallel, there is no organization
problem in the storage of state metrics since they must all be
simultaneously accessible, If, however, the operations may be
performed partly or completely in serial, then more efficient
organization of the state metric storage becomes a possibility.

As explained in previous sections, each arithmetic operation
consists of the addition of the branch metrics Rij and RI§ to the
state metrics MOx and Mlx resulting in metrics Mxo and Mxl'
Suppose, for example, that completely serial operation is possible.
The state metrics can be stored in a random-access memory such

that state metric M < is stored in location 0x. The problem with

0
this organization is that the result of the computation produces

-04-

state metric Mxl‘ Now state metric Mxl may not yet have been
accessed in the present cycle of computations, so the result of
the present computation may not yet be stored in this location.
Therefore, state metric storage must be duplicated to temporarily
store the results of the computations.

A more efficient technigque makes use of the following
propertys if the parity of state 0x is even, then the parity of
1x is odd and vice versa, The state metrics may be stored in two
sets of random-access memories, one of which contains the metrics
of all states having even parity and the other containing metrics
of all states having odd parity. For example, if x has even
parity, then 0x has even parity and 1lx has odd parity. In per-
forming a computation, the metrics of states 0x and 1lx are read
out of the memories, the computation is éerformed and the result-
ing metrics x0 and x1 are written into the memories in the
locations from which the original metrics were taken. Obviously,
the metric of state 0x will be found in a different location in
the memory at each computation. However, the progression of
locations through which the metric 0x passes can be very simply
computed.,

The preceding example of metric storage using random-
access memories is useful for up to two computations performed in
parallel., 1If, however, more computations must be performed in
parallel, random-access memories may no longer be used since the
organization of such a random=access memory would become unduly

complicated.

-95~

If more than two computations must be performed in parallel,
then all state metrics must be simultaneously accessible and the
arithmetic sections are switched between state metrics by the use
of multiplexers. Also, the storage must be duplicatad to tempor-
arily store the results of the computations., The requirement for
multiplexers and duplicated storage tends to offset the savings

achieved by sharing a small number of arithmetic units.

2.4,.5 Arithmetic Logical Section. The principle functions

of the arithmetic-logical section are:
1. to implement the decision logic of equations (2.4.1),
generating a set of decisions Dj'
2. to generate updated state metrics and to transfer the
new metrics into the state metric registers following a
clock, |
3. to detect an increase in the minimum state metric above
the value 3 and to subtract 4 from all state metrics
following such a detection in accordance with the over-
flow management strateqy,
4, to set the values of the output decidion gating variable
xj.
An xj is set equal to one only if its corresponding state metric
is less than or equal to 3. (This function will be explained in
the next section.)
These functions are implemented in the ACS (add-compare-~
select) functional block depicted in Fig. 2.4.5. Two ACS's are

required for each pair of states if all computations are to be

Y

-

HdALSIDIY JIdLdW 3 SOV

—y

83e3S SO 3 OZTTEWION OfF,

P |

YILSIDIE

C |
)/IIIIH

JOoLOdTdaS

¥IA0DEA ISNIALIA S*v°z *bta
V > K V¥ > W
M AAAY
]
L1d m &
- 3 ¥
NOIS | Q
qdaay

\—Nm

< W

carried out in parallel., Since the ACS block is the critical
block both in terms of number of components and maximum speed
capability, complete designs for this block have been worked out
in both ECL logic and TTL logic using MSI. The ECL design can be
constructed in three different versions. One version, using
MECL III throughout, will obtain the maximum possible speed. The
other two designs use MECL II% and MECL II for lower speed and
greater economy., Several different TTL designs were worked out
but the one presented here was the best; both in terms of number
of parts, cost, and speed so this will be the only one presented.
Both designs are specialized to K=4 in that a 4 bit state metric
and 3 bit branch metric are assumed.

Normalization can be obtained in two ways: 1) by determin-
ing that all state metrics exceed 4 and subtracting 4 from all of
them during the same computation, or 2) determining that all
state metrics exceed 4 and subtracting 4 from the branch metrics
for the next computation. The first approach is suitable for
small constraint lengths at high speeds where all arithmetic
operations are performed in parallel. The second technique must
be used at lower speeds and higher constraint lengths where partly
or completely serial arithmetic operations are performed. It is
clear that the first technique cannot be used in this case since
most of the state metrics are computed and restored bhefore it is
known whether or not a subtraction of 4 is necessary. At high
speeds where fully parallel operation is used and at lower
constraint lengths, there is no particular advantage of one

-98-

technique over the other except that the first technique will be

easier to understand and debug.

2.4.5,1 ECL Arithmetic=Logic Unit. A block diagram of the

ECL-ACS unit is shown in Fig. 2.4.5.1, a, b, and c. Sheets a and
b show the adders that add the state metrics to the branch metrics.
Sheet ¢ shows the comparator and selector. The adder used in this
ACS unit is a form of adder known as the carry-save adder in which
ripplé carries are used between the stages. The designs of the
carry circuits are such that there is only one logic delay per
carry. Since only three carries must be generated, the total
carry propagation delay is then only three logic delays. For an
adder this size, there will be no speed advantage to using look-
ahead-carry over this ripple carry technique, and furthermore,
the ripple carry technique results in a more economical design.

The comparator is implemented by subtracting the two sums
from each other., In this application, we are not interested in
the actual difference but only in the carry out of the most
significant stage of the subtractor. Hence, we'need only imple-
ment the carry portion of the subtractor. Another interesting
feature of this design is that the carries will be rippling
through the adders simultaneously with the carries rippling
through the comparator, so that the total add and subtract time
is not equal to the sum of the add plus the subtract time but
rather one logic delay more than the add time.

Another function that must be performed is determining
whether the result is less than 4., If none of the results of the

-99-

Ris

My

k4]

14

Y

11

Y

Y

Fig. 2.4.5.1 a

VITERBI DECODER
ECL ACS SECTION
-100-

g
-3

Ts

R21
M2,
Rz

'

Y
~i_l

(2]

X
9
-

Y

«C2

D’ L.Tl4
7/

Fig. 2.4.5.1 b VITERBI DECODER
ECL ACS SECTION

 -101-

L.T.4

FROM
ALL ADDERS
Ty —;‘;
- D _IM
S, Q—
S2
Ty
Ss
)
2o 1
/
_ @]
T gamand
’ / D Q M,
S, % — Qf
. —
T
T T o
Mz 1
L.T.4
C 1
2 _ / Q-
> "3
Q-——

Fig. 2.4.5.1¢c VITERBI DECODER

ECL ACS SECTION
-102-

computations of the ACS unit produces a result less than 4, then

4 must be subtracted from all of the results in order to obtain
the required normalization. The result will be less than 4 if
either of the two sums is less than 4 since the smaller will be
selected., Each of the sums will be less than 4 if the carry out
of the second stage, the third and fourth bits of the state
metric, and the third bit of the branch metric are all zero. Thus,
the less than 4 signal may be obtained in only three logic delays.
The less than 4 signals from all of the ACS units are then ORed
together., If the result of the ORing operation is zero, then all
resulting state metrics will be greater than 4. While this is
taking place, 4 is subtracted from each of the sums, The output
selector will then select first the smaller of two resulting sums
and then select either the smaller or the smaller minus four,
depending upon whether normalization is required. The results are
then stored in the state metric storage flip flops, thus com-
pleting the computation.

Chip counts and typical computation rates have been obtained
for this design implemented with three different versions of ECL
logic, MECL III, MECL II%, and MECL II., The MECL III design will
require 25 chips per ACS including the state metric storage. The
typical maximum computation rate is 90 MHz. The MECL II% design
requires 35 chips and will operate at 40 MHz. The MECL II design
requires 25 chips and will operate at 25 MHz. The MECL III version
will be considerably more expensive than either of the MECL II

versions since much more sophisticated technigues are required to

=103~

package the MECL III devices. These advanced techniques include
the use of strip transmission lines, multilayer circuit boards,
and complicated cooling because of the high power dissipation of
the MECL III devices. The MECL II and MECL II% désigns may be
packaged using approximately the same techniques as required for
TTL. The MECL II devices are, however, slightly more expensive
on a per chip basis and the level of integration available is
somewhat less than that available with TTL, as will be seen in

the following example of a TTL design.

2.4.5.2 TTL ACS Unit. A logic diagram of the TTL arithmetic

section is shown in Fig. 2.4.5.2. The inputs to the arithmetic
section are two state metrics and two branch metrics. The state
metrics are each represented as 4 bit binary numbers; the branch
metrics are represented as 3 bit binary number plus a sign bit.
(Subtracting four from the branch metrics for normalization can
result in negative values.) Both the branch metrics and the state
metrics are represented in complemented form. The two additions
are performed by two SN74181 4~bit arithmetic uhits operating in
the add mode, The SN74181 is a 4-bit full adder with full carry
look ahead, The sum is produced, typically, in 24 nanoseconds.

If the sum is larger than 15 a carry-out of the 4th stage of addi-
tion is produced. A carry-out of the 4th position is also pro-
duced when the branch metric is negative. Therefore the 5th bit
of the sum is generated by NANDing the carry-out with the sign of

the branch metric.

-104-

SOv 1Ll
430003 IWILIA

2°G°b*C L@anbra

JAoK .v

aavy
0

\
P S -
-
FS
—
3
STV LAN Q
I~
e m
]
x - —
P Su— |
-
\
‘omUo i L‘
m.mo. “
i A) M llm m
8°dD° -

S

JAOW
aqay

NOISIDAG™*

OTHLAW
dIVLS

OTdLIW
HONWNE

T
OTILAN
dILVLS

DT LAW
HONWYE

-105-

The smaller of thé two wesulting sums is determined by sub-
tracting one from the other using an SN74181 in the subtrgct'mode.‘
A carry-out of the subtract will result if sum B is larger than
sum A, Note that we must compare two 5 bit numbers and the
SN74181 is only a 4 bit subtpactor. The 5 bit comparison is per-
formed very simply by smbtracting the 4 most significant bits of
the two sums in the SN7418l1, Since we are interested only in the
carries in the subtraction process, we need only provide the
carry-out of the subtraction of the two least significant bits as
input to the carry-in of the 4 bit subtractor. ‘fhus a 5 bit
comparison can be accomplished with a single adder chip plus a
single two input NAND gate. The resulting decision is stored in
the decision memory section, |

The smaller of the two sums is selected by the four and/br/
invert gates provided by the two SN74H51 chips. The an/or/invert
gates are connected as single pole-double throw switches. The
result is stored in'the state metoric register, |

It is also necessary to determine whether the output is
greater than or equal to 4, or greater than or equal to'8. The
greater than or equal to 4 signal is used to control normalizatioﬂ
and to determine the decoder output bit. The greater than or
equal to 8 signal is used for the later purposé when all metrics
are greater than or equal to 4., Greater than or equal to 4
is determined by examining‘the three most significant bits of the
two sums., If the 3 most significant bits are all equai to 1, then

the number is less than 4 (remember that the sums are expressed in.

=106~

complemented form). Greater than or equal to 8 is determined by
examining the two most significant bits, If both are egqual to 1,
then the result is less than 8. These functions are performed by
NAND gates which invert the results, converting less than 4, for
example, into greater than or equal to 4. If this logic were
performed on the metric output, the time required would be added
to the total ACS time. Instead, the greater than 4 and greater
than 8 detection is performed on the two sums prior to comparison
and selection, The desired result is obtained since, if the
smaller of the two sums is less than 4, then at least one of the
greater than or equal to 4 outputs is 0.

Each arithmetic (ACS) unit can be implemented with 10 inte-
grated circuits including the metric storage. It should be noted
that 3 of these IC's are large (24 pin) and relatively expensive
compared to the other IC's. 1Including the propagation delay of
the metric storage units, an arithmetic operation can be per-

formed in under 100 nanoseconds.

2.4.6 Decision Memory and Output Selection. As each check

digit pair is input to the decoder, decisions Dix are made by the
arithmetic section as explained in previous sections and trans-
mitted to the memorv-output sections For each state, 16 bits are
stored as shown in Fig. 2.4.6. The first bit stored for state ix
is the most recent decision Dy e The remaining bits reflect the

results of earlier decisions.

0x* 1f DOx = 0, the decoder has decided

that for the most recently received check digits, state x0 is more

-107-

Consider decision D

NOTE3 OUTPUT
L denotes a 1 bit register

M denotes a single pole,
double throw switch

¥ | P ¥ (P || Ed

Y e ST e W s A |

010 110 0601l 101 011 111

[z

Fig. 2.4.6 DECISION MEMORY
AND OUTPUT SECTION

-108-

likely than state xl1 to have been the predecessor of state 0x.
Conversely, if DOx = 1, state x1 is a more likely predecessor to

O0x than is x0., When D the 16 bits associated with state

0x i
xi are shifted right 1 stage and transferred into the stages
associated with state 0x. The first stage for state Ox is set
equal to i, as shown in the figure. ©Note that the boxes denoted by
L are flip~-flops which each store one bit while the boxes labeled
M are switches which transfer one of the two inputs to the output
depending on the value of the appropriate D.

The bit shifted out of the 1l6th stage of the memory for
each state is either discarded or, for one state, selected as the
output from the decoder. The optimum decoder would select as
output the bit from the state with the smallest value of M,
Simulation results have shown that a memory of 12 bits per state
would suffice if the smallest value of M were used. Such a
selection is difficult to implement in hardware, since an examin-

ation of all eight state metric values is necessary in order to

select the smallest.

An alternate approach is to always select the output fromn,
say, the 000 state. This approach, ignoring the state metrics
entirely, requires a memory of 24 bits per state to keep the
degradation small,

The approach adopted by Linkabit is based on the overflow-
management strategy and is almost optimum. The Linkagit decoder
memory is conservatively extended to 16 bits to account for the
slight nonoptimality. Recall that the overflow-management

=-109-

strategy forces the smallest state metric to have a value between
0 and 3. Because nearest states have a Hamming distance of 2, the
compressed metric separation generally exceeds 4, and in general
only 1 state has a metric between 0 and 3. Moreover, if 2 (or
more) states had metrics less than or equal to 3, they would

tend to have similar past histories and hence the same 16th bit

in memory.

The selection mechanism is based on examining each state
metric and setting the variables xj = 0 if Mj > 4 and equal to 1
otherwise, j = 000, 001, ..., 111, As shown in Fig. 2.4.6, the
variable X5 is used to gate the output from the 16th stage of
memory for state j via an OR gate to the decoder output. If
more than one xj is non-zero, the corresponding bits are ORed
together to form the decoder output. This method is nearly
optimum and very inexpensive to implement., The slight non-
optimality is more than offset by the extension of the decision
memories to 16 rather than 12 bits, Examples of the design of
the memory output section are giwven below for both TTL and ECL

logic families.

2.4.6.1 ECL Memory Output Section. The following design is

based upon the use of the MECL II MCl040 Quad Latch. This circuit
contains 4 latches with individual output gates. The circuit can
be used to provide both the storage and the switching capability
required for the decision memory. One and one third stages of
storage per chip are obtainable using this integrated circuit.
Each stage is stored in three latches and three different chips

~11l0-

as shown in Fiqure 2.4.6.1. The three latches are arranged as
one master and two slave flip-flops. The output gating on the
slave flip-flops is used to perform the switching operations,
The total number of bits stored for K=4 is 8 x 16 = 128, At
4/3 bits per chip, this requires 96 chips. The output gating
requires an additional three chips for a total of 99. This
MECL II quad latch circuit can be used at speeds up to 40 MHz,
For higher speeds, MECL III must be used. Motorola is
planning the introduction in the near future of a MECL III cir-
cuit equivalent to the MECL II MCl040. When this circuit is
available, the memory output section for speeds up to 90 Megabits
can be implemented in the same way as in the MECL II case. Until
this chip becomes available, the decision memory can be con-
structed using one MCl670 flip-flop preceded by two 2-input NOR
gates to accomplish the switching for each stage. One and one
half chips are required per stage of storage. For K=4, this

requires 192 chips.,

2,4.6.2 TTL Memory Output Section. There is only one TTL

MSI circuit that can be easily used to form the memory output
section, the SN74L98, which consists of four storage registers,
each of which is preceded by a two way switch. Using this cir-
cuit, 1/4 IC would be required per stage of storage. In the case‘
of K=4, this would require 32 IC's. This is a low power, low
speed IC with a maximum clock rate of only 3MHz. For higher
speeds, a more brute force approach is necessary. For speeds up
to 10 Megabits, the storage register can be obtained by using the

-111-

To 000 state
Master Latch

noon noo (bits j+1 to j+4)
»>— STATE STATE —
>— MASTER ikggg -~
1 LATCH —
> BITS -—
1 to j+3
Ty 11
C Dooo
001 001
> STATE STATE [
™1 MASTER SLAVE
= LATCI LATCH
1 BITS
i to j+3
C 9 ET - T
Dooo To 000 state
Master Latch
C IS CLOCK INPUT % (bits j+1 to j+4)
STATE >
=== = | SLAVE >

; D _ —j::::¥>L— * LATCH >
"_I‘CQ | . >
I
el H > S
| C | Diogo
' .

Q
|
D _ } 001
[5 Pj::::}>%— STATE [—
I < SLAVE
| ' LATCH
D 4 I —
:. c© ! |
Bl Iy 1T
- C -
o C, Dioo

MECL MC1040 QUAD LATCH

Fig. 2.4.6.1 - Four stages of 009 and 001 state memories
using quad latches. Output gating on
latches provides mechanism for selective
memory transfer and shift.

=112~

SN7495 which contains 4 storage registers, together with a quad
2=-input multiplexer chip. Thus, 1/2 IC would be required per bit
of storage for a total of 64 chips in the case of K=4,

At lower data rates, it is possible to make use of a rela-
tive speed factor to decrease the number of components required in
the decision memory. For example, at data rates below 500 Kilobits,
the memory could be constructed using 16 SN7491 devices which are
8 bit shift registers, They would be connected as 8 16 bit shift
registers., Since a relative speed factor is available, the
register transfers can be accomplished by serially shifting the
contents of the 8 registers through 8 2-input multiplexers.

Thus, the memory could be implemented using only 18 IC's. At
lower data rates, two quad 16 bit MOS static shift registers
could be used to form the memory together with 2 chips for the
switching, yielding a total of only 4 IC's for the whole memory

section.

2.4.7 Synchronization Section. The purpose of the sync

section is to obtain node synchronization. This is the only
synchronization required by a transparent code Viterbi decoder.
If the code used were nontransparent, then the sync section could
also resolve the 180° phase ambiguity of the PSK of QPSK demod.
The sync circuit operates by comparing the rate of increase

of the best state metric with its expected value. If the rate is
too high then it is assumed that a bad node sync state exists

and the node sync state is changed. This is accomplished, in the

case of PSK, by either inserting or deleting a one symbol time
=113~

delay in the input section. If the input is from a QPSK modem
then the sync state is changed by interchanging the received
symbols r, and r, and inverting r,.

A logic diagram of the sync circuit is shown in Fig. 2.4.7.
As can be seen from the diagram, the LINKABIT synchronization
technique is extremely simple. This, of course, demonstrates
one of the inherent advantages of convolutional codes over block
codes. The circuit operates as follows: Every time a metric
normalization occurs, an up/down counter is counted down by one
count. The rate at which this occurs is proportional to the rate
of increase of the best state metric since normalization does not
occur unless the metric value of all states exceeds 3, The actual
rate is slightly greater than the hard decision error rate
divided by four when the node sync state is correct. When the
node sync state is incorrect, the normalization rate is much
higher, approximately the bit rate divided by eight.

The up/down counter is counted up at the bit rate divided
by a constant., The optimum choice for this constant is approxi-
mately 16. The up/down counter is not permitted to overflow, i.e.,
when the counter reaches all ones, the up count input is gated
off., If the counter underflows, then the node sync state is
changed. When the node sync state is correct, the average drift
of the counter will be up and the counter will spend most of its
time in the all ones state with occasional short downward ex-
cursions. When the node sync state is incorrect, the average drift
of the counter is down and the counter will soon underfldw, thus

changing the node sync state., Obviously, there is a tradeoff
' -114-

&5

LINDYID ONAS-HVUOVIA OIDOT

L°Yy*Z @anbtg

9ZTTewION

HO0TD

if) e}
af {1 N ¢ ol

ucq ug ,
£ 0 'O "OEO O 0]

[}
wn
-~
~t

]

30919Ss dSulgs SPON

involved in the size of the up/down counter. The larger the
counter, the longer is the time required for synchronization,
whereas, the shorter the counter, the larger the probability of
false loss of node sync. The optimum size of the.counter has not
been determined exactly but is known to be between four and six
stages,

The node sync state is actually changed by allowing the
borrow-out of the most significant counter stage to toggle a
flip-flop. The state of the flip~flop is the node sync state.
Thus, when the borrow-out of the up/down counter occurs on counter
underflow, the node sync state is changed. The node sync state
is sent to the input section where it controls the addition or
deletion of the one symbol time delay in PSK. . In QPSK, the node
sync state controls the interchanging of»received symbols r; and
r,.

The up/down counter is implemented in TTL by using two
SN74191 four stage up/down counter chips. If the counter is to
be 6 stages long, then the first six stages of the two cascaded
dividers form the required counter. The seventh stage becomes
the node sync state flip-flop. Overflow is inhibited by ANDing
together the first six stages of the counter. When the first
six stages of the counter are all ones, further up counts are
inhibited. A MECL circuit can be implemented in a similar

manner.

=116~

2,4.8 Trade-Off Section.

2.4.8.1 Cost=Complexity Trade-Offs. This section presents

the results of the cost-complexity tradeoff study for the Viterbi
decoder, based on the K=4, rate 1/2, Q=7 designs presented in
previous sections. Parts counts have been tabulated for four
different designs; a io megabit TTL decoder, a 25 megabit MECL

IT decoder, a 40 megabit MECL II%, and a 90 megabit MECL III
decoder. Weighting factors have been assigned to the different
logic families to reflect differences in parts cost, design cost,
and packaging cost. The results are presented in the table below..
The weighting factors used were; 1 for TTL , 1.5 for MECL II, 2,5
for MECL II%, and 7 for MECL III. It should be pointed out that
these weighting factors are based on a number of subjective
judgements on the part of the author, and should not be considered
to be exact or invariant. Any number of things could cause these
relationships to change in time, for example, a continuation of

the present TTL price war, new MSI circuit announcements, etc.

Max No .
Logic Data of. Relative
Family Rate IC's Cost
(Mbps)
TTL ’
MST 10 185 , 1
MECL IIX 25 365 3
MECL II% 40 450 6
MECL III 90 470 18

-117-

The best way to build a 40 megabit Viterbi decoder will now
be considered. With the designs that have been worked out in the
previous sections there are four possibilities. The decoder
could be built by using MECL III logic, or by using MECL IIX%
logic, or by building two 25 megabit MECL II decoders operating
in parallel, or by bqilding four 10 megabit TTL decoders operat-
ing in parallel.

The last two examples require that an overhead factor of
approximately 10% be used to account for the cost of the extra
encoders and the cost of tying the decoders together. The MECL III
decoder would have a relative cost of 18, the MECL II% a relative
cost of 6, the MECL II decoder a relative cost of 6.6, and the
TTL decoder a relative cost of 4.4, Thus, it appears that the TTL
design would be the most inexpensive way to obtain a 40 megabit
Viterbi decoder. Clearly, the MECL III design is not desirable
from a cost standpoint. The TTL design appears to be superior
over the whole range from 10 to 100 Megabits, however, a change
in the weighting factors used could alter this conclusion. An
additional advantage to the paralleling approach to obtain high
speeds is that it is very easy to include provisions for fault
isolation and maintenance. For example, suppose that a 40 mega-
bit decoder were desired. This could be provided by building
four TTL 10 megabit decoders. If a fifth decoder were provided,
then fault isolation could be obtained by switching the spare
decoder in parallel with each of the other decoders, and comparing
the output. When a discrepancy is found, the fault isolation

-118~

circuitry would then automatically determine which of the five
decoders is defective and automatically switch the spare decoder
into its place. The maintenance of the faulty decoder would then
take place while the remaining four decoders continue to operate
on line.

In this section we have determined the relationship between
data rate and cost. In the following sections we will determine
the relationship between cost and other decoding parameters such

as code rate, constraint length, and quantization level.

2.4.8.2 Cost Vs. Constraint Length. In the previous sec-

tion we have shown that the relatiomship between cost and data
rate is approximately linear, The relationship between cost and
constraint length is, however, exponential. As the constraint
length increases by one, the number of states required doubles.
This will require doubling the total number of arithmetic units
and more than doubling the decision memory. The decision memory
will double in one dimension and increase linearly in the other
dimension. Also the number of bits required t& represent the
state metrics will increase as the constraint length increases,
since the distance of the code increases, thereby increasing the
spread between the best and worst state metrics, Overall the
decoder complexity relative to the K=4 design goes approximately
as

K - 2(K-—l)
4 . 23

-119-

The cost relative to the K=4 decoder design will be then K . ZK—G.

For example, a K=6 decoder will be approximately 6 times as

complex and therefore 6 times as expensive as a K=4 decoder.

2,4.8.3 Cost vs. Code Rate. Changing the denominator of the

code rate has its primary effect on the input section of a Viterbi
decoder. In general there are Zd branch metrics to be computed
where d is the denominator of the rate. Thus the input section
grows exponentially with the denominator of the rate. The size

of the largest branch metric grows linearly with d. This causes
an additional increase in complexity as a function of lnzd. This
occurs both in the input section and the arithmetic section since
larger branch metrics require larger state metrics. The com=-
plexity multiplying factor relative to rate 1/2 is approximately

d

46 + 2 lnzd

50

The numerator of the rate affects decoder complexity in a
rather complicated way. The number of states is an exponentially
decreasing function of the numerator of the rate, thus‘decreasing-
the state metric storage requirement. However, the éomplexity of
the arithmetic operations increases exponentially with the
numerator of the rate. Thus, for rate 2/4, we do twice as com~-
plex an arithmetic operation on half as many quantities as we do
for rate 1/2. The net result is no change in arithmetic hardware
for a fully parallel decoder. The decision memory decreases
exponentially with increasing numerator. The overall relative

=120~

complexity multiplying factor is approximately .6 + .8 x 270
where n is the numerator of the rate. This factor is relative to

the rate 1/2, Q=8, K=4, TTL decoder.

2.4.8.4 Cost vs. Quantization. The number of quantizer

levels is linearly related to the size of the branch and state
metrics., Thus, the complexity is a function of lan. The com-
plexity relative to the Q=8 design is given by
3 + lan
6

-121-

lo.

REFERENCES
SECTION 2
McEliece,and H., C. Rumsey, "Capabilities of Convolu-

tional Codes," Jet Propulsion Laboratory, SPS 37-50,
vol, III, 1968.

A. Heller, "Short Constraint Length Convolutional Codes,"

Jet Propulsion Laboratory, SPS 37-54, Vol, 'III, 1968,

P. Odenwalder, Optimal Decoding of Convolutional Codes,
Ph.D. Thesis, System Science Department, UCLA, Los
Angeles, 1970.

M, Wozencraft and I. M, Jacobs, Principles of Communication

Engineering, Wiley, New York, 1965.

J. Viterbi, "The State-Diagram Approach to Optimal Decoding

and Performance Analysis for Memoryless Channels,"
Jet Propulsion Laboratory SPS 37-58, Vol. III, 1969.

J. Viterbi, "Convolutional Codes and Their Performance
in Communication Systems," LINKABIT CORPORATION,
January 1970.

W. Petersion, Error Correcting Codes, M,I.T. Press,
Massachusetts - Wiley, New York, 1961,

J. Viterbi, "Error Bounds for Convolutional Codes and
an Asymptotically Optimum Decoding Algorithm," IEEE
Transactions on Information Theory, Vol. IT-13, Number
2, April 1967.

L. Massey and M. K, Sain, "Inverses of Linear Sequential
Circuits," IEEE Transactions on Computers, Vol. C-17,
April 1968.

LINKABIT Corporation, "Unsolicited Proposal - A Very High

Speeq Viterbi Decoder for Convolutional Codes,"
Submitted to the U.S. Army Satellite Communications
Agency, Fort Monmouth, N.J., September 1969.

-122-

3.0 SEQUENTIAL DECODING

3.1 Background. Sequential decoding is a procedure for
systematically searching‘through a code tree, using received
information as a guide, with the objective of eventually tracing
out the path representing the actually transmitted information
sequence.

Most sequential decoder implementations to data have used
some modification of the Fano algorithm. Briefly, the operation
of the Fano algorithm is as follows. Starting at the first node
in the code tree, a path is traced through the tree by moving
ahead one node at a time. At each node encountered, the decoder
evaluates a branch metric for each branch stemming from that node.
The branch metric is a function of the transition probabilities
between the received symbols and the transmitted symbols along
the hypothesized branch,

The decoder will initially choose the branch with the largest
metric value (corresponding to the closest fit to the received
symbols), The metric is then added to a path meﬁric, which is
the running sum of branch metrics along the path presently being
followed. Along with the path metric, the decoder keeps track of
the running threshold T. As long as the path metric keeps increas-
ing, the decoder assumes it is on the right track and keeps moving
forward, raising T to lie within a fixed constant, A, below the
path metric. If, on the other hand, the path metric decreases at

a particular node, such that it becomes less than T, the decoder

=123~

assumes it may have made a mistake and backs up. It will then
systematically search nodes at which the path metric is greater
than T until it finds a path that starts increasing again, or
until it exhausts all nodes lying above T. At this point it is
forced to lower T, and search again. Eventually it will find a
path that appears to hawve an increasing path metric.

Eventually, the decoder will penetrate sufficiently deep
into the tree, that with high probability the first few branches
followed are correct, and will not be returned to by the decoder
in a backward search. At this point, the information bits corre-
sponding to these branches can be considered decoded and the de-
coder may erase received data pertaining to these branches.

A major problem with sequential decoding is the variability
in the number of computations required per information digit de-
coded. The number of computations is a measure of the time re-
quired to decode, for a fixed decoding speed in computations per
second. A computation is defined, for theAtime beingg -as either
looking forward or backward one branch and evaluating and testing
the metric involved, The cumulative distribution of computations
performed per digit decoded, c, has been upper and lower bounded
for the discrete memoryless channel by a Pareto distribution
(Ref. 1, 2), that is

Pr[c>L}] ~ k L™%, L>>1, (3.1.1)

=124~

where k is a constant and a is determined by the relationship

E, (a)

5 (3.1.2)

R =

where R is the code rate,

Here Eo(a) is a convex function of a which is determined by the
channel transition probabilities, which are in turn a function of
Eb/No' This function has the properties that EO(O) = 0, and
Eo(l) = Rcomp‘ Therefore, we can see from Eq. (3.1.2) that if
R=Rcbmp' a=1l. RCOmp is the so called computational cutoff rate
of sequential decoding.

Because a>1 for R<Rcomp' the average number of computations
per node decoded is finite, but for rates greater than Rb' this
average is unbounded. Actually, for finite constraint lengths,
the computation distribution drops off faster than Pareto for
very large L, Thus, the average computation remains finite but
large for R>RO.

Because of the variability of the amocunt of computation
required, there is a non-zero probability that incoming received
data will fill up the decoder memory faster than old outgoing
data can be processed. If the decoder tries to search a node
for which received data has passed out of buffer‘memory, an over=-
flow is said to occur., When an overflow occurs, the decoder must
have some mechanism for moving forward to new data, reacquiring

code synchronization and starting to decode again. There are

presently two techniques for doing this., One involves segmenting

-125~

the data into blocks. After each block, a fixed constraint

length long sequence is inserted. Should the decoder buffer over-
flow while decoding a given block, it can simply give up decoding
that block and jump to the beginning of the next block to resume
decoding., Code sync is immediately attained through knowledge of
the fixed data sequence preceeding a block. This technique has
the disadvantage that it requires an initial search to acquire
block sync, and there is a loss in efficiency due to the insertion
of known sync bits into the data stream,

Another overflow recovery technique does away with data block~
ing (Ref. 3). When an overflow occurs, the decoder jumps ahead to
new data, and guesses the coder state at that point based upon
received data. This technique is described in detail in a subse-
quent section.

The probability of overflow for sequential decoding can be
related to the distribution of computations per bit only in an
approximate manner. Suppose the decoder hés a speed factor of yu,
that is, it is able to perform u combutations per branch worth of
data received. Suppose also, a decoder buffer capable of storing
B branches worth of received data is used. With an initially empty
buffer, the decoder may perform uB computations in progressing
one bit deeper before an overflow occurs. Thus, from Egq. (3.1.1),
the initial overflow probability is‘

_ -a
P, = k (uB) (3.1.3)

-126-

Since overflows can occur through the concatenation of several
shorter searches, one intuitively expects that the actual overflow
probability would be larger than (3.1.3). However, as long as u
is somewhat larger than the average number of computations per
bit, simulations have shown (3.1.3) to be remarkably accurate.

Of course, when an overflow does occur, many bits will be lost,
whatever the restarting method. Thus, the rate of bits lost due
to overflow will be

Pp = LPO (3.1.4)

When u is close to the average computations per bit, as is
the case in a high data rate sequential decoder, simulation is the
only reliable means of determining overflow frequency.

The error probability with sequential decoding can be made
as small as desired by increasing code constraint length. Long
constraint lengths are practical for sequential decoding because
decoder complexity is only a weak function of code length, unlike
Viterbi decoding.

It has been shown (Ref. 4) that for systematic codes, the

undetectable error probability can be upper bounded by

ple) < k- 2 K(1-R)Rcomp/R (3.1.5)

for R<R o’ where K is the code constraint length. The actual
b
achievement of this rate of decrease in P(e) with K is dependent

on the choice of branch metrics for the decoder. This will be

-127~

Iopooap

I9p0Oa(g SWOIPUAS YITM

wa3sAS UOTIERDTUNUMIOD

I9pooap

1°2°¢ *b1a

TPuUueyd

aspooua

+

-128-

——

53Tq
UoT3euwIOIUT

Kl

discussed in section 3.2,

3.2 Hard Decision Decoder. This section will deal in part

with the interesting Fano algorithm modifications that offer po-
tential advantages for a high speed hard decision sequential de-~
coder. Simulations will be reported for decoders using these
modifications. Non-real time simulations have provided information
on distributions of computations and undetected error rate. Real
time simulations, using simulated decoder speed factors and buffer
sizes, determine the overflow behavior of the decoder.

Also considered are code synchronization, code selection,

and data quality information.

3.2.,1 Syndrome Sequential Decoder. We will restrict our

attention to systematic rate 1/2 convolutional codes with hard
receiver quantization, for the sake of example. The technique
generalizes easily to non-systematic codes, other rates, and even
soft decisions,

For a rate 1/2 systematic code, a received information bit
and a received parity bit are input to the decoder at each bit
time., To form the code syndrome, the received information bits
are passed through a replica of the encoder and the generated
parity bits are exclusive-ORed with the received parity bits.
Fig. 3.2.1 shows a representation of the encoder, channel, and
syndrome calculator for a K=3 code. The noisy channel is mod-
elled by the mod-2 addition of occasional errors (ones) to the

encoded information and parity streams.

~129-

Clearly, in the absence of noise, the syndrome bits input to
the decoder are all zero regardless of the information sequence.
This is because the parity bits generated in the syndrome calcu-

»p

lator, p°“, and the received parity bits, 2‘, are both equal to
the actual parity bits, p. Thus, since the code and the channel
action are linear, the syndrome is a function only of the noise
sequences. We can assume, therefore, without loss of generality,
that the all zeros code sequence is transmitted.

This being the case, note that a single error in the informa-
tion stream manifests itself in Fig. 3.2.1 as three consecutive
1's in the syndrome. 1In general, an information error causes the
code generator to be exclusive-ORed into the syndrome. Each pari-
ty error, on the other hand, causes a single 1 to be exclusive-
ORed into the syndrome,

It can be shown that putting the received data into the form
of a syndrome is information lossless. A decoder operating on s
can perform as well as one operating on i; and p“. The function
of a decoder operating on a syndrome sequence is to determine the
most likely information and parity error sequences that could have
resulted in that particular syndrome sequence. For a binary sym-
metric channel, this corresponds to determining the minimum weight
error sequence consistent with the syndrome. The decoder forces
the syndrome sequence to zero, by exclusive~ORing a "1" where it
believes a parity error occurred, and the code generator where it

believes an information error occurred.

=130~

A syndrome sequential decoder keeps track of a metric as it
"zeros" the syndrome. Each time it hypothesizes the occurrence
of an error, the metric decreases. When it hypothesizes no error,
the metric increases. If the decoder finds it has to correct too
many errors in forcing the syndrome to zero, it will back up and
change hypothesized information error decisions. Note that each
information error decision affects the syndrome over a full con-
straint length,

Functionally, the syndrome decoder can be viewed as a box
whose input is a syndrome sequence, and whose eventual output is
an information error location sequence. This sequence is then
used to correct errors in the received information sequence to

form the decoder output.

3,2,2 Algorithm Modifications

3.2.2.1 Guess and Restart Overflow Strateqgy. The guess and

restart technique was developed and successfully implemented in a
sequential decoder previously (Ref, 3). When a buffer overflow
occurs in a sequential decoder due to a long search, the decoder
must jump forward in the syndrome stream and resume decoding. If
the data is not blocked, the decoder does not have definite know-
ledge of the coder state when it starts decodingragain. What is
required is knowledge of one constraint length of information bits
at the point decoding is resumed.

The best "guess" that can be made is that no information errors

have occurred in the vicinity of the restart point. This "guess"

~131~

can be implemented by assuming a zero syndrome when restarting. If
information errors actually occurred, the decoder will likely over-
fléw again, requiring another restart. If the guess was correct--
an if the succeeding data is not too noisy=--the decoder will work
its way through the buffer and resume normal operation,

The decoder skips over a segment of the syndrome in restarting
after an overflow. The information error decisions are set equal
to zero over this segment. Thus when an overflow occurs, the de-
coder output corresponding to the unprocessed data will be the

raw, uncorrected received information bits. These bits have

errors occurring at the channel error rate.
Simulations using guess and restart are presented in section
3‘2.4.

3.2.2.2 Quick Threshold Loosening. A sequential decoder op-

erating below RcOmp (Eb/N0 greater than 4.6 db in the case of a
rate 1/2 code with hard quantization) spends much of its time
plowing forward on the correct path, or in short searches, correct-
ing single or double errors. Long searches contribute less and
less to the average computation per bit as Eb/No goes up. Reduc-
tion of the time consumed just "plowing forward" or "keeping up
with the data" is treated in section 5.0 of this report. Here
we are concerned with reducing the number of short searches re-.
quired. The technique of quick threshold loosening achieves this
end for a hard quantized, rate 1/2 decoder,

A single error in the received data stream is usually suffi-

cient to cause the path metric to fall below threshold and initiate

a backwards search. In general, the decoder must search backward
~132~

at this point, rather than lowering the threshold and resuming
the forward search. This is because, in backing up, the decoder

may find another path that it can follow without lowering the

threshold. Had the decoder lowered the threshold when the metric
first violated it, the possibility exists of getting on a path for
which the algorithm will not allow further threshold tightening.
Thus, the thfeshold cannot be lowered unless all accessable paths
above the threshold eventually lead below it. —

For a rate 1/2 hard quantized decoder there are three pos-
sible branch metrics. The first corresponds to two matches between
branch code symbols and received data. The second is for one
match and one mismatch, and the third for two mismatches. Fur-
thermore, good codes always have the property that branches stem-
ming from the same node have complementary code symbols on them,
Suppose the symbol match metric is equal to 1, and the mismatch
metric is -a (the optimum range for a is from about 9 to 1ll).
This means that either one branch leaving a node has metric +2
and the other =2a, or they both have metric l-a. Fig. 3.2.2.1
shows the way in which a typical short search is initiated due to
a single error.

When node A is reached for the first time, the threshold is
tightened to the value Tl. The decoder then proceeds on to node
B, C and D, Looking forward from D the decoder sees a tie vote
(branch metrics of 1l-a on both branches). Both path metrics at
nodes F and E are below T‘. This would normally initiate a back-
search thru nodes C, B and A, requiring tests of metrics at nodes

=133~

Tyt

T

« N

Fige. 3.2.2.1 Typical Sequential Decoder
Search Due to a Single Error.

=134~

G, H and I. Then at node A the threshold would be lowered to T, =A
and the decoder would step forward again thru B, C, D and then E or
F. In this situation the decoder could have avoided the backsearch
by lowering the threshold to TI-A‘when threshold T, was first vio-
lated in looking forward from node D. This can be done because
there is no other path remaining above T, which can be followed.
Thig "instant" threshold lowering can be done if A < a-1l. This
restriction insures that a threshold violation on the path being
followed determines that no other path remains above threshold.
Quick ﬁhreshold loosening is allowed only when the threshold has
been previocusly tightened to its present value (it is tightened

to T, at node A in Fig., 3.2.2.1), If the threshold has been
previously loosened all bets are off, since now a backsearch after
threshold violation is necessary to insure non-existence of another
path that remains above the present threshold.

The quick threshold lowering scheme is easy to hardware imple-
ment.* It only requires a one bit flag indicating whether or not
the threshold had been previously tightened, and logic to prevent
entering backsearch mode when a "quick threshold loosening" 1is
possible.

A simple modification of the "quick threshold loosening"
scheme allows decoding past isolated pairs of error without initia-
ting a backsearch to lower the threshold.

Fig. 3.2.2.2 shows a section of the code metric tree near a

pair of symbol errors. The correct path segment consists of

* G,D., Forney informed us this form of threshold loosening was
implemented in Codex's 5 Mbps sequential decoder (Ref. 3).
=135=-

T,+A

T,=~4

T,=24

H

Fig. 3.2.2.2 Tree Section in the Vicinity

of a Pair of Channel Errors.

«136=-

v.a

branches from nodes 0 to 8, Symbol errors have occurred at branch
levels F and H. If the initial two bits of the code generator are
11, then not only do 2 branches stemming from a common node have
complementary symbols, but the four branches stemming from thesé
nodes must contain all four combinations of the two code symbols.
This insures that a tie vote at a node (such as node 1 in Fig.
3.2.2.2) must be followed by another tie vote at one node (node 2),
and by a complete match and a complete mismatch stemming from the
other node (node 3). Therefore, when an error occurs, the metrics
on all paths except one, must fall through at least two threshold
levels,

Suppose that the threshold has been tightened twice in a row,
as is the case in going from node 0 to node 1. The decoder may
go to node 3 and lower the threshold to Tl - A, since there are
no other unsearched paths in the Tl to T1+A interval. At node 4
the decoder faces another tie vote that takes the metric below
the present threshold, T!-A. Now because of the properties of
codes with generators beginning with 11, there cannot be any
unsearched path segments in the range Tx-A to Tl. Thus the
threshold may be lowered again, and the decoder may continue on
to nodes 7 and 8. |

This modification of "quick threshold loosening" is also
simple to implement. An up-down counter which counts from 0 to
2 is needed. Starting at "0", each time the threshold is tight-
ened the count is incremented by 1, saturating at 2. When the
threshold is violated in looking forward, it may be immediately

-137-

loosened if the count is positive. If so, the count is decrement
by 1. When the count is zero, a backsearch must be initiated. As
in ordinary "quick threshold loosening”", we must have A = a-1,.
When stepping forward to a node in the case of a tie vote, care
must be taken to not step first to the node having another tie
vote following it (node 2 in Fig., 3.2.2.2). This requires the
ability to look at one syndrome bit into the future.

These "quick threshold loosening"” schemes have been simulated
to determine their effectiveness in reducing the number of short
searches. Fortunately the value A = a~1l is the near optimum
choice of threshold spacing. These simulations, along with almost
all of those reported here, use code reported in Ref. 3. Factors
influencing the choice of code are discussed in section 3.2.3.
Fig. 3.2.2.3 shows the distribution of computations per bit de-
coder with

1) The unmodified Fano algorithm

2) "Quick threshold loosening”

3) Modified "quick threshold loosening”.

These simulations were performed with p = .02. Included in the
figure is the average number of computations per bit, E, for each
run. Both quick threshold loosening schemes cleérly eliminate
searches with computations below about 20 to 40.

The modified "quick threshold loosening” is somewhat more
effective than the loosening scheme described first. This is be-
cause it is capable of eliminating searches due to more error
patterns. Fig. 3.2.2.4 shows a comparison of the computation

=138~

10-}

1072

Pr (c>L)

103

10-"*

Fano Algorithm
C=1.60

Quick
Threshold
Loosening

2=1.35 =102

0
O

modified
quick threshold

loosening

€=1.17

1 |

10 L 100 \

Fig. 3.2.2.3 Distribution of Computations per Bit Decoded
for Standard Fano Algorithm and "Quick Threshold Loos~
ening" Sequential Decoders. Threshold Spacing = 8, a=9,
Channel Error Rate = ,02,

=139~

10-!

p 111

c= 3,38

Fano Algorithm

Modified
-2 "Quick Threshold
10__ Loosening”
- c = 2.44
S-
A
L 4
H
-
- pP=.035
10=3
- Fig. 3.2.2.4 Distribution of COmpuéation
Comparison for the Standard Fano Algorithm
7] and the Modified "Quick Threshold Loosening™
_ Sequential Decoders. A4=8, a=9, .and p=.035.
10=*
|] lllllll i i li'lllil | LR
1 10 cope 100 1000

=140~

distributions for the standard Fano algorithm and modified quick
threshold loosening decoders for p = .035,

Neither scheme substantially affects the tails of the compu-
tation distribution. This is because the long searches typically
involve lowering the threshold by more than one or two levels, at
which point in the search quick threshold loosening is disabled.

Because of the simplicity and effectiveness of the scheme,
qguick threshold loosening was used in many of the simulations,

including all of the real time simulations that will be described.

3.2.2.3 Look Ahead Sequential Decoding. Look Ahead Sequen-

tial Decoding is another technique which attempts to improve the
distribution of decoding computations. The standard Fano syndrome
sequential decoder examines and acts upon the syndrome one bit at
a time. If a path being followed is destined to fall below the
current threshold, the decoder must follow the path until it actu-
ally does fall below the threshold before backing up and changing
direction,

With look ahead decoding, the decoder examines N syndrome
bits at a time. This is equivalent to looking forward N branches
into the tree from the present branch. Using a table look-up
procedure, the decoder determines if there is Eﬂi path N branches
ahead that satisfies the current threshold. If such a path exists,
the decoder is allowed to step forward on a next branch if that
can be done without violating the threshold. If no path exists N
branches ahead that satisfies the threshold, then it is useless

to allow the decoder to proceed forward. In that case, the look

-141-

ahead decoder initiates a backsearch, regardless of whether or
not the next branch path metric satisfies T,

This scheme clearly does not do anything the standard Fano
algorithm does not eventually do; however, it has the potential
for doing considerable less. It reduces the depth to which a
path must be searched before it is rejected.

Fig. 3.2.2.5 compares the distribution of computations for
sequential decoding with and without look ahead, with a look a-
head parameter of N = 6 branches., Use of the look ahead decoder
with N = 6 results in an improvement in the computational dis-
tribution of about a factor of two.

From this figure, it is apparent that while the distribution
is lower, the Pareto exponent, or the slope of the curves, is the
same. It can be shown analytically that no sequential decoding
algorithm which "looks ahead" a finite number of branches can
change the asymptotic slope of the computation distribution curve.
The most that can be hoped for is a lowering of the constant in
front of the distribution (k in Egq. 3.1.1).

It is interesting to note that the effect of a scheme like
looking ahead, which reduces the frequency of long searches, will
be to reduce initial buffer overflow probability; while a scheme
like "quick threshold loosening” will allow a full buffer to
empty more quickly - allowing for a smaller decoder speed factor.

Practically speaking, the look~ahead mechanism is not as
simple to implement as "quick threshold loosening", especially in
very high speed decoders. The syndrome table look-up is a complex

=142~

FANO ALG-ORITHM

“"Look AHEAD'

F%-(Cj>lt>

10—

.C ' l

Fig. 3.2.2.5 NDistribution of Computations per Bit Decoded
For Standard and "Look-Ahead" Fano Algorithm
Sequential Decoders. Threshold Spacing = 10,
a = 9, Channel Error Rate = .039.

~143~

logical function which grows more complex exponentially with N,
For N larger than about 6 it would have to be implemented using a
read-only memory. Implementation would tend to slow down the
decoder computation rate, which partially counteracts the improved
computation distribution. Also, although‘the impfovement in the
distribution looks substantial, it only represents an improvement
of about 0.1l db over the standard algorithm at points in the dis-
tribution which affect overflow probability with the real-time
decoder parameters that were studied. For these reasons, look-
ahead decoding was not used in the real-time decoder simulation

reported in section 3.2.4.

3.2.2.4 Sequential Decoding with Sideways Looks. When a

sequential decoder is stepping back to a node in the code tree,

and the branch it is stepping through is a "best branch", its

next step will be to look forward along the next best branch. 1In
practice looking at the next best branch can be accomplished very
conveniently before stepping back. If this node satisfies the
threshold, and if the previous node also does, then a "step side-
ways® can be made directly to the next best node. Thus, what was
two computations becomes one computation. Sideways looks will be
counted as one rather than two computations in the simulation which

follows.

3.2.3 Decoder Undetected Error and Computational Performance.

The sequential decoder simulations described thus far, and the ones

presented in this section are for decoders operating in a non-real

~-144-

time mode. That is, received data is generated as the decoder

needs it. The»performance data gathered is, therefore, that for
a decoder in which buffer overflows do not occur. Real time de-
coder behavior, with a simulated buffer, is reported in the next

section,

3.2.3.1 Code Selection. Choosing codes is not as critical

for sequential as it is for Viterbi decoding. Decoder complexity
is not a strong function of code constraint length; so, the unde-
tected error performance of a code can be improved by increasing
K rather than trying to optimize a code for a given value of K.
Still there are several reasons for having as good a code as
possible.

1) The guess and restart overflow technique performance
degrades with increasing constraint length. This is
because a constraint length worth of data must be
correctly "quessed" to restart décoding.

2) The constant, k, in the computational distribution
is somewhat sensitive to the code. Good code distance
properties will result in value of k=1 or less.,

3) The encoder replicas in the decoder do grow linearly
with K, resulting in some additional cost and cbmplexity.

It has been found through simulation that of the known codes,

the various truncations of the rate 1/2 systematic codes due to
Lin and Lyne (Ref. 7), and Bussgang and Forney (Ref. 3,5) proved

best in undetected error rate, and distribution of computations.

=145-

Forney's extensions of Bussgang's code seem to have the
slight advantage. Since this code has already been used in two
high speed sequential decoder implementations we have concentrated
our efforts on it. A search for more optimal codes is probably
not worthwile because

1) The number of codes of constraint length 40 or thereabout

is huge.

2) The truncations of Forney's code have minimum free dis-

tances close to the upper bound on df.

Forney's code, to constraint length 45 has the generator
715473701317465 in octal digits. The first two binary digits in
the generator are 11, satisfying the requirement of the modified
"quick threshold loosening™ scheme. All ‘simulations in this

report use this code generator or its shorter constraint length

truncations,

3.2.3.2 Decoder Parameters., Two decoder parameters which

must be selected are the threshold spacing A, and the symbol mis-
match metric, -a.

Simulations have shown (Ref. 3) that decoder computational
performance is not extremely sensitive to A. A broad minimum in
c, the per bit average computation, exists centered about A = 10.
This value of A is convenient, as it turns out, in that it meets
the requirements of the "quick threshold loosening" scheme.

Whereas computational performance is not strongly affected by

A, it is very sensitive to the symbol metric ratio l1/-a. Here 1

-146-

is the metric assigned to a match in code and received symbols,
and ~a is the metric assigned to a mismatch. When operating at
R=Rcomp (corresponding to p = .0447 for rate 1/2), the value of a
that maximizes the computational distribution Pareto exponent is
a= 9.1. Ahy different value of a will decrease the Pareto expo-
nent. However, as p decreases, Rcomp increases, and the optimal
value of a increases, At p = .035, the best choice for a is near
10, From an implementational point of view, by far the simplest
values of a to use are odd integers. Therefore, the choice seems
to be between 9 and 11.

It has been shown (Ref. 4) that for a systematic code, when
a is chosen to optimize the distribution of computation, the error
probability does not go down as rapidly with K as shown in the
bound in Eq. 3.1.5. This means that significantly larger values
of K are needed than would be necessary for a larger a. Our sim-
ulations, which are in substantial agreement with those in Ref. 3,
indicate, for instance, that for p = .0447 (RComp = 1/2), about
the same bit error rate is attained with K = 45 and a = 9 as with
K = 37 and a = 11, That error rate was just above 10~°, Other
simulations indicate that the behavior of the error rate with K
is consistant with the bound of Eq. 3.1.5 when a = 1ll. Also,
since the optimum a is closer to 11 than 9 when p is greater than
.035 (which is really the range of interest for high data rate,

low error rate operation), we have elected to concentrate on simu-

lation with a metric ratio of 1/-11.

-147-

3.2.3.3 The Distribution of Decoding Computations. Before

proceeding to present the computational statistics gathered through
simulation, we redefine a computation to be consistant with what
happens in a hardware computational cycle. For this purpose it is
more accurate to define a computation as having occurred when the
decoder steps rather than looks forwards, backward or sideways.
This eliminates counting as a computation: for instance, a look for-
ward by the decoder that does not result in a step forward.

Using this new definitation Fig. 3.2.3.1 present the distri-
bution of computations per bit decoded for a range of channel
error rates, p. For each value of p, 8 x 10° bits were decoded.
The straight lines are best fits to a section of the tail of the
distributions where significant data exists. The negative of the
slopes of these lines are the measured exponents of the assumed
Pareto distribution. As expected, the fit to the Pareto distri-
bution is excellent. Table 3,.,2.3.1 shows the measured Pareto
exponent a, Vs. P. Also included is the ﬁheoretical Pareto expo-
nent, e which assumes the use of the optimum metric ratio, 1/-a.
Clearly, there is some degradation in the exponent for the higher
values of p., (corresponding to operation near Rcomp); however,
for p > .035, the measured and theoretical values are close., This

indicates that the optimum range for a is broad when p is low,

3.2.3.4 Measured Undetected Error Rates. Table 3.2.3.2

shows the measured number of bit errors vs. p for the constraint

length K = 33, 37, and 41 codes. 1In each case 8 x 10° bits were

=148~

10-?

p tit

1
(¢}

10=3 N N\
b | ! LA | ' UL Voo LRI
10 - 10? L - 10’ ‘10*

Fig. 3.2.3.1 Sequential Decoding .Distribution
of Computations for Several Channel Error .
Rates, p. Runs are all of 8x10° Bits. K=41,
A=10, Metric Ratio is 1/=1l. o

=149~

ol

Ep/No p A a

4,7 db .043 1.05 0.97 7.08

4.9 db .039 l.16 1.12 3.09

5.1 db .035 1,28 1.29 2,03

5.4 db .030 1.46 1.44 1.50

5.8 db .025 l.67 1.66 1.25

Table 3.2.3.1 Measured and Theore=
tical Computational Distribution
Parameters. K=37, A=10, Metric
Ratio is 1/-11,

=150~

33 37 41

.043 390 205 79

.039 128 120 0
«035 37 0 0
.030 25 0 0
025 0 0 0

Table 3.2.3.2 Undetected Bit Errors
vs. p and K, For Decoder Runs
of 8x10° Bits Each.

=151~

decoded. Only a small number of error events, if any, have

occurred at the smaller values of p, making this data rather insig-

nificant, At p = ,043, however, the error probability is

K/2

fairly close to 2 7/, as the upper bound predicts.,

3.2.4 Real Time Sequential Decoder Simulation. In the real

time sequential decoder simulation program, the decoder buffer
waiting line is simulated by a counter. The counter is incre-~
mented every u decoder computations to simulate the periodic
arrival of received data. The counter is decremented when a new
node level is reached by the decoder. Thus, the count represents
the number of branches of received data in the buffer waiting to

be decoded. When the count reaches a number equal to the simulated
buffer size, an overflow is declared. At this time the guess and
restart routine attempts to jump‘forward about one constraint
length, and resume decoding.

In a high data rate decoder, where the speed factor u is
only slightly larger than c (the average number of computations
per bit), the overflow probability will not obey the heuris-
tically derived formula of Eq. 3.1.3. Also, when an overflow
does occur, it will take many resync trials to successfully start
decoding again. This is true because even when the correct
syndrome guess is made, the decoder speed advantage is so slight
and the.buffer is so full, that the decoder will often overflow
again.

Fig. 3.2.4.1 shows measured decoder composite output error

probability vs. constraint length for a decoder with a buffer size
=152~

Bit Error Rate

7x10<°

6x10:i

5x107 %

4x10~°

3x10:i

2x107°]

Fig. 3.2.4.1 Decoder Composite Output

Error Rate vs. K. p=.035; u=2.5
Buffer Size, B=64x103, Each Point
Represents 75x106 Bits Decoded.

1x107°] Measured & = 2.1 in All Cases.

=153~

of 64 x 10°% bits, a speed factor, u, of 2.5 and a channel error
rate p = .035., Here composite output error raﬁe refers to errors
due to overflows, as well as undetected errors. 1In all cases the
average number computations per bit was about 2.1. This figure

is somewhat surprising in that error rate goes up with constraint
length. This peculiar behavior can be explained as follows. With
the longer constraint lengths, errors due to overflows completely
dominate the composite error rate. At a constraint length of 45,
the average number of related overflow events following an initial
overflow is about 16, Each overflow causes about 300 raw undecoded
information bits to be output by the decoder. Since the error rate
on these undecoded bits is p = .035, each overflow results in about
10 output errors. Since overflows occur in bursts of an average

of 17 apiece, an overflow burst typicallylresults in 170 output
errors.

Shortening the constraint length will cause undetected errors
to take the place of some of the overflows. The average number of
bit errors in an undetected error event is far less than 170.

Thus, decreasing the constraint length has the net effect of
improving the composite error rate. Of course, after a point
undetected errors will dominate, and decreasing K further will
increase the error rate. This point, however, has not been
reached in going down to constraint length 30, as shown in the
figure.

The reason that about 300 pits are output in uncorrected

form in a overflow, is as follows. When an overflow occurs,

-154-

error posgition decisions up to 256 branches back from the point
of deepest decoder penetration are considered unreliable, and are
erased. The decoder then jumps over about a constraint length
worth of untouched data, for a net of about 300 bits. The reason
that 256 decisions are erased is that, in a long search, the de-
coder may back up and change decisions‘as many as 200 nodes back
or more. The most recent nodes must therefore not be considered
finally decoded until the decoder has progressed at least 200
nodes deeper into the tree.

Fig. 3.2.4.2 shows composite bit error rate, in the neighbor-
hood of 107°%, vs. p for two decoder speed factors, u = 2.5 and
u = 1,5, Clearly the curves are extremely steep. Operation at a

=% requires a de-

speed factor of 1.5 with a bit error rate of 10
crease in p of only about .006 compared with operating at the same
bit error rate with a speed factor of 2.5.

This comparison can be made even more dramatic if it is put
in terms of data rate and Eb/No' Suppose we have a sequential
decoder which is capable of 100 mega-computations per second. At
a data rate of 40 Mbps, the speed factor is 2.5; A composite bit
error rate of 10~% is achievable with a p of about .033 or an
Eb/N0 = 5,2db.

Likewise the decoder can operate at a data rate 6f 66 Mbps
with a2 p of about ,027, or Eb/N0 = 5,7 db. The decoder data rate

can be increased by over 50%, with the same output error rate, at

the expense of only about 0.5 db!

=155-

5x10=%

4x10~5

3x10";

2x10~°%

1073

Bit Error Rate

9x10~ "

8x10” ¢

7x10°°

6x10=°¢

2.5

3

/u.# 1.5

Fig. 3.2.4.2 Composite Bit Rrror Rate vs,
p for Speed Factors, u=2.5, and -u=1l.5.
K=41 Code, Syndrome Buffer Size =
64x10° bits,

~156=

Clearly there is a continuity of data rates and Eb/No that
correspond to a composite bit error rate of 10”%, Fig. 3.2.4.3
shows a curve of such data rates vs, EL/Nb. The curve is an
interpolation and extrapolation of the two points chktained

from Fig. 3.2.4.2.

3.2.5 Erasures vs. Undetected Errors. In some applications

erasures are not nearly as bad as undetected errors., If this is
the case, output error can easily be decreased by orders of
magnitude by

1) 1Increasing K until overflow errors dominate

2) When an overflow occurs declare the 300 or so bits

affected by the overflow as erased.,

This results in a bit erasure rate of about 1/p times the

original composite error rate. However, undetected error rate

can be as small as desired, depending on K.

3.2.6 Systematic vs. Nonsystematic Codes. All of the

gimulations reported were run using systematic codes. Systematic
codes have the advantage over nonsystematic codes that in the
event of decoder failure, the raw information bits are available
directly as back-up. This advantage has been obviated, to a
degree, by the invention of the "quick~look" nonsystematic codes
(Ref. 6). Use of these codes allows for simple information bit
generation without a decoder. The resulting information stream
does have an error rate of about 2p, however., There are two main

advantages in using nonsystematic codes

-157~

Fig. 3.2.4.3 E,/No Required For 10~°
Composite Bit Error Rate as a
Function of Data Rate. Decoder
Speed is 100 megacomputations/
sec; K=41; 64x10% Bit Syndrome
Buffer.

30l

4d

50‘ 60‘ 70l l
Data Rate (Mbps)

-158=-

P >

1)

2)

The

.035.

A constraint length of only about half the systematic
code constraint length is required for the same detec-
ted error rate performance, and

The optimum metric ratio, on the basis of the distribu-~
tion of computations, also results in the achievement
of the optimum undetected error probability exponent.
This is unlike the case for systematic codes, where a
larger value of "a" is required for optiﬁal error
performance.

metric ratio advantage in 2) is completelvy lost at

In this most interesting range, for high speed decoders,

the optimum metric ratio range is broad enough to allow joint

optimization of the computation distribution and error exponent

with systematic codes.

With the guess and restart overflow strateqgy, some form of

"qguess" of undecoded information bits must be output when the

decoder overflows. Using a non-systematic code, these "guesses"

will be less reliable than with a systemaﬁic code,

For

these reasons we have elected to concentrate on system-

atic codes.

=159~

3.2.7 Code Synchronization and Channel Reliability

Prediction. Code synchronization and channel reliability can be
handled in much the same manner as discussed in conjunction with
Viterbi decoding. Recall in that case that an up-down counter
was used, which counted up k on the occurrence of an error and
down by 1 at each bit time, never going below zero. Code sync
state is changed when the count exceeds a value T. In the
sequential decoder it is even simpler. The counter now counts
up by one when a threshold is loosened, and down by one when a
threshold is tightened. The skewing of the count is done auto-
matically by the skewed metric ratio. False alarm, and resync
rates are directly obtainable from the Efa and Ers curves in

Figs. 2.2.5.4 and 2.2,5.5.

3.3 Soft Decision Sequential Decoding

3.3.1 Syndrome Decoder. A syndrome sequential decoder can

be used to advantage with a soft decision decode; as well as a
hard decision decoder. The syndrome is formed using only the hard
quantized information in the received data. Passed on to the |
decoder, along with the syndrome bits, is 2 data quality bit per
branch for 4 level quantization, or 4 quality bits per branch for
8-level guantization.,

The decoder uses the 3 or 5 bit per branch information to
generate information error decisions just as in the hard decision

case, Now, however, efficiency is improved by the availability

-160~

Fig. 3.3.1 Sensitivity of Measured
Pareto Exponent to Deviations
From the Proper Metric Bias,
Ep/Ng=2.0 db; Rate 1/3. Code;
8=Level Quantization.

|
5

0% " =5% -
¢ Change in Metric Bias 108

~1l61~

of the quality data. The error decisions are used to correct

the stored, raw, hard quantized received information bits.

3.3.2 Fano Algorithm Modifications. The guess and restart
overflow strategy is applicable to a soft decision decoder. Here
the "guesses" will be less frequently correct, because of the
lower required Eb/N0 with a soft decision decoder.

Quick threshold loosening does not carry over to soft deci-
sions. The wider range of branch metrics makes it hard, if not
impossible, to take advantage of code and metric structure to

allow quick threshold loosening.

3.3.3 Sensitivity to Incorrect AGC. Unlike Viterbi decoding,

soft decision sequential decoding is extremely sensitive to im-
proper threshold level setting, dge to inaccurate or drifting
AGC, This is illustrated in Fig. 3.3.1. In this figure, the
effect on the Pareto exponent of variations in the decoder metric
bias as a percentage of the maximum branch metric are shown.
Clearly, even these small changes in metric bias result in large

changes in computation distribution.

~162~

3.3.4 Comparisons of Soft and Hard Decision Sequential

Decoders. An 8fleve1 quantized sequential decoder, with the same
size received data buffer as a hard decision decoder, can buffer
only 1/5 as many received branches. Also, the increased com-
plexity of the decoder logic will mean a computation speed reduc-
tion of about a factor of 2 under that of a hard decision decoder
(see section 3.4).

This along with the AGC problem, and the nonexistence of a
*quick threshold loosening® scheme will reduce the 2 db perform-
ance advantage, inherent in fine receiver quantization, over hard
decisions. In fact at very high speeds, where speed factors are
low, there may be no performance advantage to a soft decision
decoder. For these reasons - especially the AGC sensitivity, we
cannot recommend soft decision sequéntial decoding for very high
speed communication.

A technique is described in section 5.0, however, which
uses a Viterbi predecoder before data enters a soft decision
sequential decoder. This techhique effectively improveé the
sequential decoder speed factor, and lowers the amount of memory
required, and may provide a means of attaining the efficiency of

a soft decision sequential decoder at high speeds.

3.4 Sequential Decoder Implementation, This section consid-

ers implementation techniques for syndrome sequential decoders

operating at data rates from 1 to 40 Mbps. Trade-offs consid-

=163~

UOTJBWJIOJUT
pPe309JdJ0)

7 QLSUH&

SJ0JdJY UOF3BWIOJUT

wopuey

Japoouy

AetTe(

7

fa
SS800Y PUOJIPUAG

1

(o)

83T M0aYD

—_—=<

JA0D JILYWILISAS ‘% HIvY HOd
HAAOOHA TVILNANLAS FWOHANAS

WYHOVIA 40071d

S97d UOIJ3RWJIOJUT

)

jndur
Tsuuey)

-164~

ered are choice of logic family and hard vs. soft decisions.

A block diagram of a syndrome sequential decoder is shown in
Fig. 3.4. The input from the channel is separated into two bit
streams, one cbntaining received information bits and the other
containing the received check bits. The received information
bits are passed through an encoder which is identical to the one
used at the transmitter, and are exclusive-ORed with the received
check bits, thus generating the syndrome. The syndrome is then
stored in a random-access memory. In the case of soft decisions,
the quality bits are stored in the memory with the syndrome.
Meanwhile, the information bits are stored in a delay line which
is equal in length to the total delay through the random-access
memory and CPU., The processer reads the syndrome bits (and quality
bits, if any) from the random-access memory and, using a modifica-
tion of the Fano algorithm, determines a likely information error
sequence., The decoded information error sequence is then read
back into the random-access memory. The information error se-
quence remains in the random~access memory until the correspond-
ing received information bits are shifted out of the delay line.
The information bit sequence and the information error sequence
are then exclusive-ORed, correcting any errors present in the
received information sequence. The resulting corrected data is
the decoder output.

All implementations considered would use semiconductor
memory devices to form the main memory, TTL logic circuits for
memory buffer, control, and syndrome generation and either TTL

=-165=-

or MECL for input and output interface circuits as required by
the data rate. The choice of logic family for the CPU section
is more critically dependent on the maximum data rate desired.

The implementation study has found that the maximum compu-
tation rates for MECL III, MECL 1I, and TTL are, respectively,
100, 25, and 13 megacomputations per second. The corresponding
data rates for speed factor 2.5 are, respectively, 40, 10, and
5 Mbps. The relative cost factors are the same as for the
Viterbi decoder, i.e., 18, 3, 1 for MECL III, MECL II and TTL,
respectively.

The trade off study for Viterbi decoding showed that.the
most cost effective way to obtain 40 Mbps decoding was to par-
allel four 10 Mbps TTL decoders. Such is not the case for
sequential decoding.

A 40 Megabit sequential decoder could be obtained by build-
ing one decoder with a MECL III CPU, or four decoders in parallel
with MECL II CPU's or eight decoders in parallel with TTL CPU's.
In the case of the MECL III decoder, CPU accounts for approxi-
mately 60% of the total cost and the memory and 1I/0 circuitry
account for 40%. The memory and I/0 circuitry for a MECL II
CPU decoder would run about 85% of the cost for the MECL III de-
coder. The memory and I/0 for a TTL CPU decoder will cost about
75% of that required for the MECL III decoder. The results for

40 Mbps are shown in the following table:

-166-

CPU | COST OF | COST OF | RELATIVE COST | NUMBER OF | RELATIVE
TYPE MEMORY CPU OF 1 DECODER DECODERS TOTAL COST
MECL

III .4 .6 1.0 1 1.0
MECL

I .35 .1 0.45 4 1.8

TTL .3 .03 0.33 8 2.64

Thus, the MECL III design turns out to be the most inexpensive for
this data rate. The MECL III decoder for hard decisions is pre-

sented in detail in the following section,

3.4.1 40 Mbps Sequential Decoder. A detailed block diagram

of the 40 Mbps sequentail decoder is shown in Fig. 3.4.1. The
input from the channel is accepted in either of two forms; as in
serial bit stream at a maximum rate of 80 Megasymbols per second,
or as two parallel lines at a maximum rate of 40 Megasymbols/
second each, corresponding to a maximum data rate of 40 Megabits
per second.

The parallel inputs are provided for decoding QPSK modulated
data. Received information and parity bits are routed separately
from the modem to the decoder. 90° demodulator phase ambiguities
are resolved by the code synchronization circuitry.

The 80 Mbps serial input is for use with BPSK modems. 1In

=167~

this case, the interleaved received information and parity bits
are decommutated in the decoder. Node synchronization is pro-
vided again by the code sync circuitry. For both BPSK and QPSK,
180° phase ambiguities will be handled by using codes trans-~
parent to 180° phase flips and differentially encoding and de-
coding the data.

The input circuits exclusive of the serial input decom-
mutation are implemented using MECL II logic. The input lines
are then buffered down to eight parallel lines operating at a
maximum rate of 10 Megabits per second per line, The eight result-
ing lines are then converted to TTL logic levels and delivered to
the encoder replica and buffer.

The syndrome is then formed from the received information
and parity bits. The syndrome is collected into 72 bit words
and delivered to the random-access memory. The random-access
memory is a semiconductor memory consisting of 1,024 words of 72
bits each. . The memory has a read/write cycle time of 400 nano-
seconds. The syndrome words are written into sequential locations
in the random-access memory. Prior to writing the syndrome word,
the present contents of the addressed word are read out of the
memory. This word contains the decoded information error
sequence, The word is sent on to the output buffer where it is
exclusive~ORed with the delayed information bit sequence.

The random=-access memory has two ports. The input-output
section is connected to the first port and has priority. The CPU
buffer is connected to the second port. The CPU buffer reads a

~-168~-

72 bit word out of the random-access memory and delivers it to
the CPU four bits at a time whenever the CPU requests new data.
After reading out the new syndrome word, a new information error
word is written into the memory at the same address. When the CPU
buffer memory address catches up to the input-output address, the
CPU buffer must wait until a new word is written into the random-
access memory from the input-output section. When the CPU buffer
falls so far behind the input-output section that the input-out-
put section attempts to write over an undecoded word, a buffer
overflow is declared. Whenever an overflow occurs, a signal is
sent to the external equipment indicating the next word of data
is likely to contain errors. The overflow signal is also sent to
the Fano algorithm logic so that it may restart at a point further
ahead in the memory.

When the CPU section reaches the front of the back=-up buffer,
a new four bit syndrome word is requested from the memory section
via the CPU buffer. This four bit word is exclusive-ORed into
the encoder. The encoder is capable of shifting in either direc-
tion. If the algorithm logic determines that the present node
contains an information bit error, then the code impulse function
is exclusive-ORed into the encoder. Likewise, when the decoder
is backing up, the impulse functions that were exclusive-ORed
into the encoder while proceeding forward must be removed. The
bits shifted out of the right hand side of the encoder while
moving forward correspond to the check bit error sequence. These
bits are shifted into the back=-up buffer along with the informa-

=169~

1°p°¢ auandgy

ALVIS
ONXS
0TDOT
ILTHODTY
SHONNA uAdand oy
NOTLIVMHOANI dnyove HOMNS
5314 9%¢
A Y
SHOUM HALANG e THIOONE
MOHHD aN¥ovY
s91g 962 1
]
o
. Y s
| wmaana :
ndo LINOHID
ONAS
2L % yzol ‘
XHOWEN .
1OTdHIAC udddng . HAddnd £ g e <
e e s11g uot3 ymddng| Indnr
i ~ewIojuI| INdNI | _TgTIVEVd
HEQOONT
104100 £ i
T HadAnd B “4's 9t |, HALINE |e TVINES
-~ ;
vIva INdIN0 {AH”HHW Hdddng X gnoe

WVHDVYIA %0019 HIA02dd TTVILNIANGAS QdIdS HODIH

tion error sequence. When the decoder is backing up, the
original syndrome is reconstituted by shifting the check error
sequence back into the right hand side of the encoder, and by
exclusive-0ORing in the code impulse function wherever an infor-
mation error previously was hypothesized. The syndrome bits are
shifted out of the left hand side of the encoder when backing up
and are shifted into the back~up buffer.

Functionally, the back-up buffer is a right-left shift
register that is two bits wide and 256 bits long. The back-up
buffer is actually implemented by using a very fact ECL random=-
access memory that is addressed by up-down counter, thus giving
the effect of a right-left shift register. The function of the
algorithm logic is to direct the progress of the CPU through the
decoding tree, The algorithm logic determines whether the decoder
may proceed forward or backward and determines the changes in the

decoder metric.

3.4.2 Code Synchronization. The function of the synchroni-

zation circuit is to obtain correct code sync. This is accompli-

shed by comparing the rate of metric threshold loosenings with

the rate of metric threshold tightenings. If the code sync state

is correct, then the rate of metric tightenings will exceed that

of metric loosenings. However, if the code sync state is incorrect,
then metric loosenings will exceed the rate of metric tightenings.
The sync circuit contains a counter which is counted up every

time a metric threshold loosening occurs and is counted down

-171-

every time a metric threshold tightening occurs. The counter has
a reflecting boundary at zero. If the counter overflows while
counting up, a bad sync state is declared and the code sync state
is changed. Code sync resolves the 90° phase ambiguity in the
QPSK input case and accomplished node sync in the BPSK case. The
counter is large enough that the probability of falsely declaring
a bad sync state is negligible compared with decoder error rate.
The code sync state is changed if the input is from a PSK modem
by inserting or deleting a one symbol time delay. If the input is
from a QPSK modem the sync state is changed by interchanging the
two symbols and inverting one of them. Also, when the sync state
is changed the CPU buffer address is set equal to the input-output

address and the CPU is restarted at that point.

3.4.,3 Input Buffer. A detailed logic diagram of the input

buffer is shown in Fig, 3.4.3. The inputs from the channel are
each received on twisted pairs which are terminated in the charac-
teristic impedance of the line, and then fed to a set of line
receivers. The output of the clock line receiver is then fed to
the clock conditioning circuit which provides all of the necessary
clocks to the decoder, The data inputs are then fed to three
flip-flops which format the various inputs into two parallel
lines, one line containing the information bit stream and the
other line containing the check bit stream.

If the serial PSK input is used, the three flip-flops are

connected as a three bit shift register. The information bit

=172~

SLId
ADHHO

SLId
NOTILVIWHOANT

Chn
-HAA -—
-N0D
TLL
Odie *HIY
TOHKH 1OLV'T [IIHS
II¢y LIl LIdl
HHL
Bticit
-NOD
TLL
(o * DI
T0EW| BOLvI| JdIHS
| 1.Idh L1dn LIdh

L

'L 2anJTy

{INOILIUNOD
M0071D

. < %0010

LIN

—

S

e

o4uI0
ONAS
WOHel

q8dU/ASd

A 5

LNdINT

TATIVHV A

pd
iz

Mm v Wam
S

44408 LNdNI HYHd00dd TVILNYNDIES

T4

Yd/IVIYES

LOdNT

TV Id

r

o

o
[e)

-173-

43

output is taken from the first register and the check bit is
taken from the second register in one sync state. In the other
sync state, the information bit is taken in the second flip-
flop and the check bit is taken from the third flip-flop, thus
resulting in a selective insertion of a one symbol time delay as
required to obtain node sync.

If the input is on two parallel lines from a BPSK modem,
the first bit is shifted into the first flip-flop and the second
bit is shifted into the second flip-flop at each bit time. Also,
the output of the first flip-flop is shifted into the third flip-
flop. The information bit and check bit may now be taken from
the three bit register as in the previous case thereby obtaining
node sync.

If the input is from a QPSK modem, then the first line is
shifted into the first flip-flop. The complement of the first
line is shifted into the third flip-~flop. The second input line
is shifted into the second flip-flop. Code sync is then obtained
by using the same set of switches as in the previous case.

The information and check bits are each shifted into a four
bit shift register. Every four bit times, the contents of the
two shift registers are loaded into two four bit latches. The
two four bit latches each drive a quad MECL II to TTL converter.
The resulting TTL signals are then delivered to the rest of the

decoder.

3.4.4 Received Information Bit Storage. Received Information

Bits must be stored in a 72,000 bit long delay line while the

-174-

BELBEIN

-UQQ

nOuHI‘I

FeH"E QandTg

et
-J938
013
TSTT1Y
-aed
13 TA6],

NOAH ret—

nonH T

LR & g™

pe—403e]

13d
9¢

g g

3TQ gnoc

L 4

48d 3JTYs

319 ggoc

HN
~175=-

s

yoge]
17d
9¢

A

N

decoding is taking place. A block diagram of the information bit
storage is shown in Fig., 3.4.4. This storage is accomplished by
using dynamic MOS shift registers, since this form of storage is
presently the most inexpensive available. Since the MOS shift
registers used are not capable of operating at 40 Megabits, a
number of registers must be operated in parallel to obtain this
effective speed.

The information bits from the input buffer are collected
into 36 bit words, using a serial to parallel converter followed
by a 36 bit latch. The output of the 36 bit latch drives 36
2,048 bit long shift registers. The output of the shift registers
are clocked into a 36 bit latch. The latch drives a parallel to
serial converter which converts the information bits back to four
parallel lines. Since the MOS registers are dynamic shift regis-
ters, there is a minimum clock rate of 10 KHZ which corresponds
to a data rate of 300 kilobits. If it is desired to provide for
operation of data rates lower than 300 kilobits, the following
technique could be used: Below 300 Kbps, the dynamic shift reg-
isters are replaced by static registers of reduced length. The
total storage is reduced by a factor of 128, The speed factor -

buffer size product remains higher at 300 Kbps than at 40 Mbps.

3.4.5 Syndrome Generator. A logic block diagram of the

syndrome generator is shown in Fig, 3.4.5. The syndrome generator
receives the information bits and check bits from the input sec-

tion in two words of four bits each. The syndrome generator

=176~

S'v°t 3WNOI14

43ddv Z QOW avno - +

dO14 414,44, avnNO - 4
3 3 3 3
+ SLiF WO3HD
10 3T
' 20 of
J.M (2] :HLH \.AI-.[L — 4
— ¥ +0 Skt -~ —
— WH ; Pr—— L —
1S - . P — —
- - T ITT 1 | & ¢ o & o — [|
Nm.wlll l-_ + u + - u e e 2 o o 2 u] u - + .
b=y —] pe——t [1] e e o s s o — — m
m_Hl_H.A !
pan S = 3]

HOLVHINTS INOHANAS

l—
—
Samand
}—x

S8 NOILYIWYO04N!

computes the syndrome, four bits at a time, thereby permitting it
to operate at the data rate divided by four. The syndrome
generator is implemented using SN7495 shift registers and SN7486
quad modulo two adders. Since this logic is fast enough to permit
only one level of mod two addition between the flip-flops, all 16
possible mod two combinations of the four parallel information
bits must be computed. This is accomplished in two levels of
flip~flops. In the first level, information bits one and two

and information bits three and four are each modulo two added and
stored in two flip-flops. 1In the next level, the nine remaining
combinations are computed, thus resulting in the signals I-1 thru
I-15. The check bit word is delayed three clock times, so that it
appears at the appropriate time in respect to the information
bits. The remainder of the syndrome generator consists of four,
12 bit long shift registers with a modulo two adder between each
stage. One input to each mod two adder comes from the previous
stage in the register. The other input comes from one of the I-1
thru I-15 signals. The output of the next to the last stage of
the syndrome generator is a set of computed check bits. The
syndrome is formed in the last stage of the syndrome generator

by exclusive=-ORing the four received check bits with the four
generated check bits. The resulting syndrome is delivered to the

memory.

3.4.6 Decoder Memory. The function of the decoder memory is

to store the syndrome while it is awaiting processing by the CPU

-178-

section of the decoder. A block diagram of the memory is shown in
Fig. 3.4.6. Since the number of computations required to decode
one bit is a random variable, and the rate of computations is
fixed, a large amount of storage is required in order to make
the probability of buffer overflow sufficiently small., Simula-
tions have shown that a memory size of 72,000 bits will provide
the required performance with 40 Megabit data and a computation
rate of about 10°® Fano algorithm computations/second. The
previous two quantities also set the throughput rate of the mem-
ory, since the CPU must be able to access about 10° bits per
second in order to achieve its maximum computation rate. An
additional 40 Megabits per second must be accessed in order to
store and retrieve the syndrome input and the information error
sequence output; thus, the total throughput requirement of the
memory is about 140 Megabits per second.

At the present time, economical semiconductor random-access
memories are available with read/write cycle times in the neigh-
borhood of 300 to 400 nanoseconds. If a 400 nanosecond memory
is used, then a very wide word is necessary in order to obtain
the required throughput rate. Random-access memory cards are
presently available from several manufacturers containing 1,024
words of 18 bits each in the required speed range. Combining
three of these cards to form a 54 bit word does not gquite meet
the required throughput rate, consequently four cards will be
used, resulting in a 72 bit wide word, in order to achieve the
desired througnput rate.

=179~

13
ty

tq

hlc!

P ¢

—d

b1 2.

89494

Jd9z13nd Ndo
oL

" ———

A A

9t oandTg

-uo0?d
T°T1®
-Jed
11q
i 03
I811®
-Jed

Jd93Unop Ja3unop Ja3indgd NdD
ndo 319 0Yo/I 37 0T wody
xnuw gqndut g 0T
SSAYAQqY
Lo NI .
vIva VARTS . . te— TS
14
Wvy y , le— CS
2l MAXTT HHIHIANOD
X ¢ . THTIVHVd
III0K e— €g
2ot L0aNT 2 | L1g 2. 0L
TITTIVHY .
. I1g f fe— 1S
4
TTOHINOD
ANV DNIWIL AHOWHW
ZHOWHEW HAJ00dd TVIINANDES

-180-

The memory must have two ports; one port to serve the input-
output and the other port to serve the CPU., The input-output
port must have priority so that data will not be lost,

The syndrome is collected into 72 bit words for access into
the memory. When 72 bits have been collected, the memory timing
and control circuit is signalled and the next available cycle is
given to the input-output. A 72 bit two input multiplexer selects
the syndrome word for data input into the random-access memory.
During the cycle, the word stored in the present input-output
address is read out and loaded into a 72 bit latch. After the
read operation, the 72 bit syndrome word is written into this
address and the cycle is completed. The word read into the 72
bit latch is then converted into a four bit parallel line and is
sent to the output circuit. When the CPU requires a memory access,
the 72 two input multiplexers and the 10 two bit address multi=-
plexers connect the CPU address counter and the CPU data lines
to the memory and the cycle is initiated. The memory addresses
are stored in two 10 bit counters, one for the input=-output and
one for the CPU., The memory timing and control circuit controls
the read/write process. This circuit also generates a signal

whenever a buffer overflow occurs.

3.4.,7 CPU Buffer. A block diagram of the CPU buffer is shown
in Fig. 3.4.7. The function of the CPU buffer is as follows:
When a 72 bit syndrome word is read from the memory, it is stored

in the 72 bit latch. When the four 18 bit shift registers are

-181~-

R

)

—~

4

T

BUFFT

H

~ure 3.4.7

.
[}

CPU

E
oD jo)
| SR eW O Py
O (S R®]
+ + L +
@ .H X P @ o 0o S O o — O o
~ @m0 ~MmMwn — 0w — MU
" v e “ 8 & & 8t 2 8 6 & 3 SN 8 Y A g4 et e geedeaen s, CEE 3K WK
“« 58 o eV e e e L K N N SR S SR N S I B B)
£ kel
© o
+ +
e e @
o0 M~
- ® 9% § 6 @ ® 4 %A B ¢ S e . 6 20 &) 90 80 00) & 2 0

"lemory ‘J
“Yemory ‘<

From
To

-182-

Vempty, the contents of the 72 bit latch are loaded in parallel
into the four 18 bit shift registers. The contents of these
registers are then shifted out to the CPU four bits at a time,
With each shift, a four bit word is shifted into the four 18 bit
shift registers from the CPU. Thus,after 18 shifﬁs, the old
word will have been shifted into the CPU and a new 18 bit word
will have been shifted back into the shift register. At this
time, the present contents of the four 18 bit shift registers
are loaded in parallel into the second 72 bit latch and the con-
tents of the first 72 bit latch, which now contains a new word,
is then loaded into the four 18 bit registers and the process
continues, If a new 72 bit word is not yet ready, then the CPU
waits until a memory access can be obtained, The latches and the

shift registers are implemented using SN7495 devices.

3.4.8 CPU. A block diagram of the CPU is shown in Fig,
3.4.8.1, The four bit words from the CPU buffer are translated
from TTL logic levels to MECL logic levels and stored in a four
bit latch, The contents of the four bit latch are loaded in
parallel into the encoder every four computations when the decoder
is proceeding forward to new nodes. A logic diagram of three
stages of the encoder is shown in Fig. 3.4.8.2. The encoder is
capable of shifting in either direction., The code impulse
function can be exclusive~ORed with the present contents of the
encoder on a shift in either direction. The encoder may also be

synchronously reset. Each stage of the encoder consists of one

-183-

flip-flop and one quad two input NOR gate., The output of the
right hand side of the encoder is the hypothesized check error
sequence. This sequence is stored in the back-up buffer. When
the decoder is backing up, the bits that are shifted out of the
left hand side of the encoder are stbred in the béck-up buffer.
If an information bit error is hypothesized at a node, then the
code impulse function is exclusive=-ORed into the encoder, and a
one is shifted into the four bit information error register.

The information error sequence is also shifted into the back=-up
buffer when proceeding forward. When backing up, the information
error sequence is returned to the four bit register and the ori-
ginal syndrome is reconstituted in the encoder by shifting in the
check error sequence and by exclusive=-ORing the contents of the
encoder with the code impulse function at every node at which an
information error was hypothesized., The information error
sequence that is shifted out of the back-up buffer when proceeding
forward is shifted into a four bit right/left shift register.
Every four shifts forward to new nodes, the contents of this
register are loaded into the four bit latch. The contents of the
latch are then translated from MECL logic levels to TTL logic
levels, and returned to the CPU buffer. The function of the
back=-up buffer is that of a 256 bit long, two bit wide, right/
left shift register. Since this size register would be prohib-
itively expensive if implemented using MECL III logic, the
function is actually implemented by the use of a very fast ECL
random-access memory. A random~access memory can be made to look

-184-

1°8*n*E aunity

eHmmm) 01901 HALSTOMY
L WHILIHODTY OTHIAW
r A y
Tiinnool > aAv01/ld4T/IHOTH -
SSHYAAY HHAOONH
4 A
b 4
UL
wA -SIHaY
—inge— Vo1
4119 Ld1/ 1Y -
" no | Jirg g
WYY N '
wy
8 X 19 @
SWY T y)
193 ol
gt avot
118 »|LdT/ 1Y
y » 118 DY JAIHS| |
d TLAFT/LHOTYH
1 ﬁ | e’ 119 § [©
THUINOD %
ONIWIL HOLYT HOIVT
1 LI4 LId 4
T09H TLL
0L 1LL 0L TOdAW
NOILOHES Nd0 adAddS HOHIH ¥ T I «
WH Wwod
2 =0 ‘% JIvd *YI000Hd TVIINZOLIS W d

KIW oL

N.MWU-:O.M mw-H:MwH_nH

1 1 T T JASHY
1 T T U oA *dove
1 T 0 T 510Vd
T 0 T L]y dod
0 T T T HOd
hX | X | 2X X IV
HINYL
X
£X = —
2x —
19'¢ ~
MD0'i0 * . .
— IvvIs
B o) SNOIATMd
- [b il ~ Woud
COLARY
IXAN O = ®) L
> dDVIS
ADVIS _ SROIATYd
IXIN = Ok
woud

HHIAOONE LAdT/LHOIH NdD

-186~

like a right/left shift regiéter if the random-access memory is
addressed by an up~down counter, which counts up when a right
shift is desired and counts down when a left shift is desired.
The RAM is a 64 word, eight bits per word, ten nanosecond access
time memory that is manufactured by Advanced Memofy Systems. The
RAM is interfaced to the CPU through the two, four bit, right/
left, parallel load registers and the two, four bit, buffer
registers. A six bit up-down counter provides the address.

The algorithm logic controls the progress of the decoder
through the decoding tree. Each computation £he algorithm logic
decides, 1) whether to move forward, backward, or sideways, 2)
whether the node being computed has an information bit error,

3) whether to raise or lower the threshold, and 4) the amount by
which the decoding metric should change. Two infrequently used
functions are:

1) Dback-up buffer overflow, and

2) main buffer overflow

When back=-up overflow occurs, the decoder has come to the end
of the back=up buffer and can go no further in a back search. In
this situation, the algorithm logic lowers the threshold and goes
back to forward searching. In the case of a main buffer overflow,
the decoder must attempt to restart at some point ahead of its
present location, The decoder jumps to the front of the back-up
buffer, requests a new word from the main buffer, resets the en-
coder, resets the metric register, and attempts to begin decoding

in the forward direction., If the decoder is unable to restart,

-187-

the main buffer will soon overflow again and another restart

attempt will be made.

3.4.9 Physical Description. The CPU is implemented using

MECL III logic. Approximately 250 MECL III IC's are required.
The CPU can be packaged on one or two multilayer circuit boards.
Five or six layers will be required. Two layers are reserved for
ground and power planes. The remaining layers are required to
provide the necessary interconnections. All circuit board runs
longer than 2 inches are terminated strip transmission lines of
50 ohm impedance.

The MECL III stud mounted flat package is used. The packages
are mounted with the stud passing through the circuit board.
Cooling can be provided by soldering a U shaped fin to the stud
on the side of the board opposite the component. Cooling air
will then be blown across the fins, Using this technique, the
temperature rise in the equipment will be less than 20 degrees.
With 50°C ambient temperature, the maximum component temperature
will then be 70°C.

The remainder of the decoder is implemented using MECL II,
TTL and MOS logic devices. Approximately 325 of these devices
are required. They can be mounted on five or six circuit boards,
using the welded stitch wire technique. The main buffer can be
packaged on four additional circuit boards, and the back-up
buffer can be packaged on one circuit board.

The complete decoder, together with power supplies, can be

-188-

packaged in a standard 10%"'high rack mountable chassis., All
data input and output connectors can be mounted on the front panel

together with all necessary controls,

3.4.10 Modifications Required by Soft Decisions. As

explained in previous sections, an improvement in Ep/Ng of 1.5 db
is available by increasing Q from 2 to 4. But the cost is a sub-
stantial increase in the hardware requirement.

A soft decision syndrome sequential decoder would form the
syndrome as in the hard decision case by regarding the most
significant bit of each symbol as a hard decision. This is most
easily done if the gquantizer levels are labelled by a sign-
magnitude representation. The sign bit then corresponds to a
hard decision,

The syndrome is stored in the main memory along with the
magnitude (or quality) bits for each symbol. This requirement
triples the size of the main memory for Q = 4 since a syndrome bit,
and one quality bit for each symbol must be stored for each node.
The hard decision bit for the information bits is stored in a
‘delay line as in the case of the hard decision case. This re-
quirement causes the hardware in the memory and 1I/0 section of
the decoder to increase by a factor of 2.5.

The CPU uses the syndrome and quality bits to determine a
likely information error sequence. This sequence is then stored
in the main memory for later use in correcting the delayed infor-

mation bit stream., All bit paths in the CPU must now be three

-189~-

times wider than for a hard decision decoder, thus, tripling this
portion of the CPU hardware. The algorithm logic becomes consid-
erably more complicated since the metrics must be gquantized to a
much finer level than in the hard decision decoder. This results
not only in an increased number of gates, but in an increased
number of logic levels, thus slowing down the computation rate.
The computation rate will be reduced from about 100 Megacompu-
tations per second in the hard decision case to about 70 Mega-
computations for Q = 4. The CPU hardware will increase by a
factor of three. Thus the overall increase in hardware (and in

cost) will be a factor of 2.8 relative to a hard decision decoder.

=190~

REFERENCES
SECTION 3

Savage, J. E., "The Computation Problem with Sequential
Decoding,” Ph.D. Thesis, Department of Electrical
Engineering, MIT, February 1965.

Jacobs, I.M., and E. R. Berlekamp, "A Lower Bound to the
Distribution of Computations for Seguential Decoding,"
IEEE Transactions on Information Theory, Vol. IT-13,
April 1967.

Codex Corporation, Final Report on High-Speed Sequential
Decoder Study, Contract DAAB07-68-C-0093, U.S. Army
Satellite Communication Agency, Fort Monmouth, New
Jersey, 1968.

Bucher, E. A., and J. A. Heller, "Error Probability Bounds
for Systematic Convolutional Codes," IEEE Transactions
on Information Theory, IT-16, Number 2, March 1970.

Bussgang, J. J., "Some Properties of Binary Convolutional
Code Generators," IEEE Transactions on Information
Theory IT-11, 1965,

Massey, J. L., "Quick~Look Convolutional Codes,"” National

Aeronautics and Space Administration Coding Conference,

Jet Propulsion Laboratory, Pasadena, 1970.
Lin, S., and H. Lyne, "Some Results on Binary Convolutional

Code Generators," IEEE Transactions on Information
Theory, IT-13, pp. 134-139, 1967.

-191-

4.0 CODING FOR DATA OF VARYING SPEED AND ERROR RATE REQUIREMENTS

Consideration has been given to the problem of transmitting
a data stream on which, by time-division multiplexing, data from
sources with different data rates and error requirements have been
combined. Three approaches have been considered and analytical
results obtained for each. These are designed to protect the
high-reliability low-rate data by one of the following methods:

a) concatenated coding (originally outlined in section 4

of the proposal for this contract.)

b) lengthened symbol times for the low-rate data

c) use of lower rate codes for the low-rate data

To obtain specific results, it was assumed that the ratio of
high~rate to low-rate is no greater than 10 and that the required
high-rate bit error probability is 10-3%, which probably represents
a worst case.

Also, the basic code for the high-rate data was taken to be
the best rate 1/2 constraint length 4 convolutional code. While
this is used primarily because it has been thoroughly analyzed
and simulated, it is also a reasonable candidate for data rates

above 10 Mbps with Viterbi decoding.

4.1 Concatenated Coding. The goal is to find a very simple

outer code to be used on the low data-rate source only, which will
decrease the error probability to the desired level., The overall
coding system is shown in Fig., 4.1. If the outer code has rate
1/2, the overall Eb/No is increased only by 0.4 db.

=192~

In order to render the inner code errors nearly independent,
interleaving mﬁst be introduced. Five constraint lengths of
interleaving seem more than sufficient. Thus, an interleaving
memory of 20 bits is all that is required for constraint length 4.

The outer code then operates essentially on a binary-symmet-
ric channel with crossover probability p=10-?. A two-error
correcting BCH code is unsatisfactory because it requires R=7/15
and only achieves

P, =

3
B (Jég P’ 2 2.1 x 10-7

7
15 3

A more satisfactory block code, the Golay (24, 12) three-error

correcting code has R=1/2 and

Pp =z 1 (§Z> (§£>. p* x 1771p* = 1.7 x 10~°
However, this requires a moderately complex decoder when operating
at high data rates. Block code synchronization may add to the
complexity if not already provided by a separate framing reference.

A more suitable approach is to use a convoiutional outer code.
The two=error correcting, rate 1/2 code (Fig. 4.2a) yields for the
BSC

Py % 50p° T 5 x 107°

while the best three-error-correcting rate 1/2 code yields (Fig.
4,2b)

=193~

Py ¥ 560p* = 5.6 x 107'°

In each case, the results are better than the corresponding block
codes, the decoder is simpler, and code synchronization is not
required for the convolutional code. Node synchronization, which
is required, can be obtained using the methods outlined in
section 2.2.5.

While Viterbi decoding is required to obtain the above
results, a feedback decoder, the L-10ll presently marketed by
LINKABIT Corporation, obtains nearly equivalent results for the
BSC, and affords a much simpler mechanization for both the two-

and three-error correcting decoders.

4.2 Lengthened Symbol Times for Low-Rate Data. This is

undoubtedly the simplest approach., If a rate 1/2 outer code were
used for the low-rate data, its effective Eb/No would be increased
by 3 db (resulting in an overall increase of 0.4 db). Rather

than using a code, the low rate symbols might simply be repeated
or lengthened. To achieve PB'=10"'3 with a K=4 code for the high-
rate data, the required Eb/No = 3,75 db as established by analysis.
and simulation., Thus, using this approach for the low-rate
data, we would have Ep/No = 6.75 db. For high Ep/N;, the bit
error probability (without gquantization) for this code is asymp-

totically
~ 2 e
B s 1.1 x 10-

This figure may be slightly optimistic if 8-level quantization is

-194-

used,

4,3 Lower Rate Codes. Instead of doubling the symbol length,

we may keep this fixed but double the humber of symbols, thus
changing from an R=1/2 code for the high-rate data to an R=1/4
code for the low=-rate data., Preliminary analysis indicates that
the rate 1/4 constraint length 4 code with minimum bit error
probability at high Eb/No has the generator matrix

1111

1011

1101

1101

and that for this code at Eb/No = 6,75 db

P, ~ 4 erfc /&.BE /N = 6.5 x 107 °

If such a lower~rate code is used for the low-rate data,
separate decoders must be used for the high-and low=-rate data.
The two decoders may time-share some subsystems, such as the
arithmetic unit, but in some respects, they must be distinct.

In view of the very modest improvement, it is quéstionable wheth-
er the complexity is warranted relative to the approach of
doubling the symbol time, which requires virtually no additional
decoding complexity.

On the other hand, it also appears that concatenation with
a simple convolutibnal outer code gains about two orders of

magnitude in performance over the other two approaches.

-195=-

Type I data source (s)———

Type II data source(s)—j

L Outer| |Inter-| | Time
Coder| |leaver[”| DPivision
Multi-
pPlexer

Inner
Coder

-+ Modulator = Channel

Type I data

Demodulatori+ Inner |—
Decoder

De~

Multi-
plexer

De=-
Inter-
leaver

Outer
_7 Decoder

—» Type II data

Figure 4.1. Coding for data of varying error-rate

requirements.,

[

(a) two-error correcting

iy

(b) three-error correcting

Figure 4.2. Outer Convolutional Code

=196~

1.

REFERENCES

SECTION 4

A, J., Viterbi, "Convolutional Codes and Their Performance
in Communication Systems," LINKABIT Corporation Semi-
nar on Convolutional Codes, January 26, 1970.

=197~

5.0 PREDECODING FOR A SEQUENTIAL DECODER:

A HYBRID IMPLEMENTATION FOR VERY LOW ERROR PROBABILITY.

5.1 Intpoduction., To achieve very low error rates with a

sequential decoder at very high data speeds, it is necessary to
operate well below Rcomé' For at high speeds, even a speed fac-
tor of 2.5 may be prohibitively expensive, especially in a soft
quantized sequential decoder. Furthermore, for very low sequen-
tial overflow probability, large quantities of storage are required,
particularly with 8-level quantization which requires six bits
of storage per branch.

On the other hand, if we operate well below Rcomp’ most of
the data can be correctly decoded by a short constraint length
Viterbi decoder. As was pointed out in the original description
of the algorithm (Ref. 1), a Viterbi decoder can decode a long
constraint length (K) convolutional code treating it as if the
constraint length were much shorter (k<<K), by operating only on
the first k symbols of the convolutional code generators. Of course,
when an error occurs, remerging to the correct path is extremely
unlikely and generally all subsequent bits will be decoded incor-
rectly. The point is, however, that most of the data can be
correctly decoded in this way and only the more difficult (noisy)
segments of data are incorrectly decoded, and if errors can be

detected, then segments can be passed on to a more powerful sequen;

tial decoder.

*This technique was proposed by G. D. Forney, Jr., who was a
consultant on this study.

=198~

The approach that is therefore suggested is to use a short
constraint length Viterbi decoder (k*5) to "predecode" a long
constraint length convolutional code, detecting the incorrectly
decoded segments, and passing these on to a sequential decoder,
which is more powerful since it utilizes the full cénstraint
length (K>30) of the code. The mechanization block diégram is
shown in Figqure 5.1.

We assume that data is encoded, in frames of 1000 bits,
into a constraint length K=40, rate 1/2 nonsystematic convolu-
tional code, each frame being followed by a tail of 39 known
branches, to be used for resynchronization. The received demod-
ulated data (soft or hard quantized) is passed first to a Viterbi
predecoder operating as a decoder for a k=5 code corresponding
o the first 5 symbols of the generator sequences. All decoded
data is passed to a long digital delay line capable 6f storing
D:256 decoded frames (256 K bits).

All undecoded received data from a given frame is also passed
to a one~frame buffer (6000 bits for 8~level soft quantized data*;
1000 syndrome hits for hard quantized data). The Viterbi decoder
output is also monitored in an effort to detect all frames in
which an error occurred. This can be performed in a number of ways.
The probability that an incorrect pa&h remerges with the correct

path at any given node is of the order of Z-K. Hence, with K=40,

*This can be reduced to 5000 bits if we use a soft decision syn-
drome decoder, as disaussed in Section 3.3.

=199~

*I9pOdSpPaId TUISITA pue I8poosd
Terjusnbag jo uorjejuswaTdwl pTIqAH 1°6 °*bT4

I9pooag
Tet3juonbeg

| 93RO

>

|
I
souex _ burssoooag
s oo& | Pur3ztemy
papoosq n sewexj
\ \

o3e9

S9UIT], swexq snoauoxaxy

10309390 owex
sSNOBUOIIT

\ /ﬂ \

\ NN

gawWeId snoauoalqy
-~ _sowelj -

autT Aetad 1e3THTQ

F—— - == .
. !
|
swelg T Iozexsusy | _
N | farrend pue |
| BUIOIAPUAS |
ke e — = = &
o
o~
]
g=Y
Iopodoopald i <
1qI133TA Indino
I03eINpOWap

poztjuenb woxjy
e3ep POATIODY

it will remerge at any one of 103 nodes with probability on the
order of 10~%. By merely observing K-k-1=34, decoded tail branches
and comparing them with their known values, the probability that

an error will not be detected is much less than 10-8,

When an erroneous frame is detected, it is tégged for future
reference and gated to a large B frame buffer to await processing
by the sequential decoder., This buffer is divided into two segments.
In the front portion is stored data from frames awaiting sequential
decoding. In the rear portion are the already sequentially decoded
frames awaiting insertion into the decoded data stream as it exits
from the delay line., 1In all, there is storage availablevfor B
undecoded and B decoded frames.,

There remain the problems of determining a) the percentage
of deletions, which establishes8 the sequential decoder load and
buffer size requirements, b) the computational complexity of
sequential decoding of the erroneously predecoded frames, and
c) the overflow probabilities due to finite delay D and finite
buffer size B,

We shall consider these three problems in the state order.

5.2 Deletion Probabilities of Predecoder. Deletions corres-

pond to first event errors in a short constraint length convolu-
tional code decoded by a Viterbi decoder. With soft gquantization
(0=8), a rate 1/2 k=5 code was simulated at an Eb/N0=4.5 db. Out
of 1500 frames of 852 bits each, 32 were erased resulting in an

estimated erasure probability p¢=.02. Extrapolating to 1000 bit

=201~

frames, we estimate conservatively a deletion probability no
greater than p¢=.625. On the other hand, with Ep/No=4 db,
the deletion probability exceeds 8 percent.

With hard quantization, simulations were run at a crossover
probability p=.025 which corresponds to Ey/Nog=5.7 db. The result
of decoding approximately 5000 frames of 500 bits each was a
deletion probability p¢ * ,10. A particularly short trellis
memory (7 branches) was employed in order to make a resulting
implementation particularly simple and inexpensive. 1In the
following examples, we shall consider operating a hard quantized
system at Ep/No = 6.2 where p=,.02 and the Pareto exponent is
2.0, However, since we use longer frames (1000 bits), we shall

use an estimated deletion rate p¢ 2 ,10 even at this higher

Ep/Ngy value.

5.3 Computational Complexity of Sequential Decoding for

Erroneously Predecoded Deleted Frames. Extensive simulations

were performed on hard quantized data only. First 14,000
frames with crossover probability p=.025 were sequentially
decoded using the Fano algorithm with quick threshold loosening.
The resulting distribution of computations was very closely
approximated by the Pareto distribution with exponent p=1.67,
which follows precisely from the theoretical result

E (o)

R

=202~

since R=1/2 and E_(1.67) =0.83
p=.025

Then with p.025, the 466 erroneously predecoded frames
(approximately 10% of the total--see previous section), were
sequentially decoded. The distribution of computétions was
in all cases above the previous one, and at the high end it
approached between 8 and 10 times the ordinary distribution.

In retrospect, this is exactly as expected. Predecoding will
correctly decode all the easier cases but generally fail on

most frames which require longer computation searches in
sequential decoding. Now suppose that it fails on all the long
computation searches (say, above 1000 computations/bit) and suc~
ceeds whenever such long searches are not present in a frame.
Then the incorrectly decoded frames will contain all of these
long searches, and since sample size is réduced by a factor of
10, the probability distribution of long computations is raised
by a factor of 10.

In any case, we shall be upper bounding the decoding com=-
plexity for the incorrectly decoded frames if we use the ordinary
Pareto distribution divided by Py the frame deletion (or incor-
rect predecoding) probability.

Also of importance is the fact that for ordinary sequential
decoding, the average number of computations per bit was 1.245, while
for the 10% of the frames which were incorrectly predecoded, this
rose to only 1.89 computation per bit. Thus, even though the
tail of the distribution rose by a factor of 10, the average

=203~

computation effort rose by only a factor of 1.5.

5.4 Overflow Probability of Hybrid Implementation. Over-

flow with resulting deletion or errors can occur in either of
two ways:
a) A search is so long that an incorrectly predecoded
(deleted) frame reaches the end of delay line D prior
to the completion of its processing by the sequential
decoder;
b) While a long search is proceeding on a given frame,
the sequential decoder buffer fills up with B frames
awaiting processing and cannot accept any new deleted
frames, |
We assume that normally the buffer is neakly empty so that
successive overflows are essentially independent. This is justi-
fied for sufficiently large Pareto exponents (p>2), which we
shall insure. Then for an initially empty buffer, the probability
of overflow for any given frame is Py = p¢[Pr (overflow on a

deleted frame)]

o more than B
Pp = Py 22; Pr (deleted frames

out of K frames

sequential decoding
lasts K frame times

; p sequéhtial decodina of
,frame lasts K frame times

+ p Pr sequential decoding of given
p¢' frame lasts D frame times

-204-

where P, is the probability of deleting (incorrectly predecoding)
. ‘

a frame, It is shown in Appendix C that

+ (5.1)
(uB/p,)° (uD) P

exp (Bpi/2)

Po 'f: Bp
4

provided P, < B/2D.

deletion probability

where p¢
B = buffer size in frames
D = delay line size in frames

103 = frame length in bits

) Pareto exponent

speed factor

u

Thus, it appears that the buffer size is effectively increased

by a factor of 1/p¢.

5.5 System Analysis of Possible Hybrid Implementation. We

now analyze bofh soft quantized and hard quantized hybrid systems,
and compare each with ordinary sequential decoders. Our goal
will be to ach#eve an error probability on the order of 10-8, 1In
order to establish-a basis for comparison, we assume that in each
case we have available a digital delay line of length 256 K bits
and a sequential decoder buffer capable of storing 64 K bits.

Also we assume that the data speed is so high that u=2.5 computa-

*Note, a correctly predecoded frame naturally cannot overflow
since it is not processed by the sequential decoder. hence, the
overall overflow probability is p, times the overflow probability
for deleted frames. 1In particulag, if we require Py310-8 with

a p,=0.1, the overflow probability for deleted frames must only

be Ro greater than 1077,
-205-

tions per bit is the highest speed factor feasible.

Thus in each case D=256, For a soft quantized (Q=8) system
B=64/6 = 10.7 (since each branch requires 6 bits of storage),
while for a hard quantized (Q=2) system, B=64 (since only one
syndrome bit needs to be stored per branch, and either parity
bit is inserted in the delay line for the deleted frames),.

We consider first the requirements of ordinary (non-hybrid)
sequential decoding. For soft gquantization, we assume a K=25
rate 1/2 nonsystematic code blocked in 1000 bit frames separated by

24 branch blockes of known symbols. Then the overflow prokability

(error probability if deletions are treated as errors) is

103

Pp § ———
(103By)°

with B=10.7 and u=2.,5, it is clear that we must have p=2.5
for Py < 1078, This corresponds to Ep/Ng = 4.7 db. An addi-
tional 0.1 db loss results from the resynchronizing sequence

of 24 bits for every 1000 data bits. The undetected error
-kR /R

probability is approximately P_ < 103 2 COmP Since R

E
corresponds to Ep/Ng = 2.6 db and K=25, we find P

comp
B < 10-9,
Thus, the error rate due to both deletions and undetected errors
is less than 1078,

For the hard gquantized ordinary sequential decoder, we take
the automatic resynchronization implementation described in

Section 3.2.2.1 which does not require framing. We take either

a K=25 nonsystematic code or a K=45 systematic code. Here B=64

-206-

since we store only the syndrome, using the delay line with D=64
td store the information bit (for a systematic code) or a parity
bit (for a nonsystematic code). Then as is shown im Section 3.2,
the bit error probability due to overflows is roughly

200

p 200
(103By)°

B -

If u=2.5 and B.64, it is clear that with p=2, we have P_ < 8x10-2,

B
This corresponds to Eb/No = 6.2 db., The undetected error prob-
ability is of the same order of magnitude.

We now turn to hybrid implementations, beginning with soft
quantization. Having fixed the buffer and delay line sizes, the
only parameters to be varied are speed factor u and Eb/No, which
establishes the Pareto exponent, p. Clearly to minimize cost
of implementation, we should try to minimize u. On the basis
of average number of computations, it wouid appear that u could
be reduced almost in p;oportion to p¢, the deletion rate, since
only a fraction p¢ of the frames must be processed by the se-
quential decoder and the average number of computations only
rises slightly fior these frames.,

However, it appears from (5,1) that the minimum value of u
is limited by the magnitude of p¢, B, D. We indicated in Section
5.2 that with Q=8 and E, /Ny = 4.5 db, the deletion rate py=<025
and that lower Ep/Ng results in greatly increased deletion rates.
Also sequential decoding with Q=8 and Ep/Ng=4.5 db results in a

Pareto exponent p=2.2 (Ref. 2). Then with D=256, B=10.7, p=2,.2,

-207=-

it is possible to make u=0.4 and achieve P, 10~8, With K=40,
the undetected error probability is well below this. Thus, we
have reduced the speed factor by 6. If we made Ep/Ng= 4.7 db
with a-corresponding p=2.5 (as for the ordinary sequential decoder
above, we could make p=0.1 with a corresponding saQing of a fac-
tor of 24 in speed).

For hard quantized hybrid decoding, we have D=256, B=64.
If we take p=2 corresponding to crossover p=.02 and Eb/No=6.2 db,
we have estimated in Section 5.2 that p¢ 2 .10. Then it appears
from equation (5.1) that we can make u no less than 1.25 with a
resulting Py = 10-8, 1In every case, K=40 requires an additional
0.2 db for resynchronization. These results are summarized in

Table 5.1.

5.6 Conclusions. With soft quantization (Q=8), we have

found that the principal advantage of hybrid decoding is the
saving of a factor of 6 in speed factor and 0.2 db in E;/Ng or

a factor of 24 in speed with no gain in Ey/Ng. This is due
primarily to the fact that for undeleted frames only 1 bit/branch
storage is required rather than 6 bits/branch. For a soft
quantized sequential decoder operating on data transmitted at
speeds of 20 Mbps, such a saving is crucial for feasibility and
cost, since soft quantized metric computations need be made only
at 8 MHz (for u=.4) or 2 MHz (for u=.l) speeds rather than 50

MHz (for u=2.5), as would be required with ordinary sequential

decoding,

=208~

paxtnbax butwexy ONg

. . . . (9T3eWA3SAS
C°0 + L°Y S°¢ 1°0 —uoN) 0 ¥=X
: (s=¥
. oy . Idpooapaaxd
20 + ¢°9 ¢0 < LT 8 ¢°0 + S°% (A F°o 1q1937A)
I9Yy3 1o pPTaqiH
(o130Wa]
~-SASUON)
Z°9 20° 4 s°¢ T°0 + L°V s*¢ R4 qZ=4
. I9pooaq
TetT3uanbag
d n d f
0n /4 juauodxd JI03o0vd 00 /d juauodxyg Ix030%Jg
(qp) On/"a d o3aaed paads (ap) °N/7E o3axedq poaads

uorjezriuend pIel

8=0 ‘uotjezriuend 33jos

I233nq ITq M ¥9 = g 'Kero9p 319 X 96Z = a

olOHnmm d0d NOILVINIWIATIWI ¥3Q003d IVILININOIS ANV AI¥9AH JO AIVWRAS

1'S a1avy

-209~

On the other hand, with hard quantization (Q=2), only
‘the moderate saving of a factor of 2 in computation speed is
achieved, primarily because the storage saving is not nearly
as great. The only advantage is that afforded by quadrupling
delay iine size., Further increase of D will improve matters,
of course, For examplé, we might increase D to 512 frames
(512 K bits) and thereby achieve a reduction of speed factor
to u=0.6 (an overall reduction of a factor of 4 in speed).
Further significant reduction of u for hard quantized data
is not feasible, since the deletion rate is p¢ = 0.1 but the
average computation rate for sequential decoding of deleted
frames is 1.5 times the average for all frames; thus, the speed
can certainly not be reduced by more than a factor of 6 with-
out degrading performance. (For soft quantization, the much
lower deletion rate p¢ = 0.025 made a much greater speed reduc-~
tion possible.)

Hybrid decoding increases complexity in three ways. It
requires:

a) A predecoder operating at the data speed, and frame

error detection equipment, '
b) A long delay line is required (the cost of such serial
storage represents.a small increment).

c) Blocking of data and reinsertion synchronization.

For a soft quantized sequential decoder, blocking of data
is probably required in any case, and the price of (a) and (b)

above is small indeed for a speed factor reduction of an order

=210~

of magnitude which it gains. In fact, at data speeds above
20 Mbps, this may be the only way to achieve 10~8 error rates
with the Ep /Ny advantage of soft quantized data.

On the other hand, with a hard quantized sequential decoder
blocking of data is not required. The moderate speed factor
advantage may not be sufficient to justify the costs of the

hybrid system,

=211~

REFERENCES

SECTION 5

1. A, J. Viterbi, "Error Bounds for Convolutional Codes and an
Asymptotically Optimum Decoding Algorithm," IEEE Trans-
actions on Information Theory, Vol. IT-13, Number 2,
April, 1967. '

2. I. M, Jacobs, "Sequential Decoding for Efficient Communica-

tion from Deep Space," IEEE Transactions on Communica=-
tion Technology, COM-=15, No. 4, August, 1967.

=212~

APPENDIX A

Computational Technique for Evaluation of

Convolutional Code Performance

The calculation of a convolutional code transfer function
essentially involves the inversion of the code transfer matrix.
For the K=3, rate 1/2 code shown in Fig. 2.2.1 we have the follow-

ing linear relations among nodes, or states of the diagram:

X10 0 0 N X1o0 ND?2
X11 - ND ND O * X11 + 0
Xo1 D D 0 Xo1 0
and T(N,D) = D? x,, (N,D) . (A.1)

Thus denoting the state column vector, %, the transfer matrix A,

= 1, we find that in general * we

and the column vector (1,00...0)

must solve

8.

(T - Al ND J‘(%)

tx
i

*In this case §3=2; in general the best binary code for any K and
R will have all 1's in the first branch, corresponding to Gi=1/R.

=-213~

where 6i is the weight of the initial branch. The magnitude
of the eigenvalues of the matrix A are all less than unity,
for otherwise the code can be shown to be catastrophic. Con-
sequently, the inverse of I-A exists and

S.

x = ND - [I-A}]"! 1

s,

1 n

[I+A + A + A2 + ... + 2 + ...1 1

= ND . (A.2)

Finally it follows from eq. A.3 that the transfer function

is the scalar bilinear form

(Gi+6

)
T(N,D) = ND £

1- [I+4A + A2 + ... +2a% + ...1 1 (A.3)

-~ ~

where 1° = (0,0,...1) is a row vector and S¢ is the weight of the
final branch,

In general, the normalized truncation error is bounded by

(6.+6.) > ' ||al|®
le] /N0 2 E 2 A - =

=n 1-||af|

The norm of a matrix is just the magnitude of its largest eigen-
value, which must be less than unity as noted above. Obviously,
for a given n this is a decreasing function of D.

The first-event error probability of eq. 2.2.5 is obtained
directly from A.3 by setting N=1 and D at the channel parameter
values desired. The bit error probability of eq. 2.2.6 is
obtained by numerically differentiating eg. A.3 at N=1l; that

is, by approximating the derivative by

-214-

dT (N,D) . T(l+e,D) = T(1,D)
dn N=1 € (A.4)

Since T(N,D) is a polynomial in N with positive coefficients,
the second derivative is always positive. Consequently, taking
e>0, yields an upper bound on the derivative while e<0 yields
a lower bound.
In general, multiplying matrices of dimension oK is a
very lengthy numerical procedure. But here we note that actually
all that is required is successive multiplication of matrices
by a vector, since the nth (vector) term of eq. A.2 is obtained

from the (n-l)st by

Also, the matrix A has at most, 2 nonzero entries per row an in
all 2K-3 entries. Thus the total number of multiplications re-
guired in computing the first n terms of eq. A.2 and A.3 is less
than nZK. Thus even a K=10 code at high channel noise level,
which may require n=100 for accuracy, can be evaluated in seconds.
We note finally that the distance properties of a given code
can be evaluated using eq. A.3 independent of the channel charac-

d

teristics. For.setting N=1 and D=10" " in eq. A.3, where d is

an integer, we obtain

-ds

T() =10 ¥ (k, +k -d -2d

u+l 10 + k 10 + ...) (A.D)

where ku is the number of paths of minimum weight 6u, ku+l is

-215-

the number of paths of weight 6u+1' etec, Thus provided ku+y<10d
for y =1, 2, ..., the first few nonzero digits will determine

the integer k etc. The number 6f terms which can be correctly

u+l’
determined in this way depends on the word size of the computer.

It may also be possible to determine higher order terms by sub-
tracting the effect of already determined lower order terms and
renormalizing,

The total number of bits in error in the union of all erro-
neous paths at a given distance from the correct path can similarly
be obtained by first differentiating as in eqg. A.4 and then
applying the procedure of eq. A.5. The coefficient with subscript

p+y now denotes the total number of bit errors in all paths at

distance 6u+y from the correct path.

-216=

Effect of Memory Truncation

This technique can be extended to determine the effect of
memory truncation on the first-event error probability. Suppose
path memory is truncated n branches prior to the last received
branch and that a maximum likelihood decision is made to determine
the output bit at that point. In this case, an error occurs
whenever the likelihood function of any state (or node in the
state diagram) exceeds that of the all zeros state, assuming
this was the correct path. The probability of this event is
union bounded by

T (D) =D Y aP~l

~

where u = 111ll...1 (row vector)

and 1

100.,..0 (column vector)

and A is a function of D only.

§,
Note that the first branch is accounted for by D 1. We note

that truncation eliminates the ordinary errors due to remerging
paths beyond the nth. Thus a union bound on the overall first-
event error probability is

P, < T(D) + T, (D)
E n=2 t

5. (6 :
=p 1 {D £y [1 + A+ A2 + ... An-z] 1+ uAn-ll}

For the Gaussian channel, this may be refined by multiplying this
' -8
expression by erfc(vs REb/No)D Y as in eq. 2.2.5.
u

=217~

APPENDIX B

A variety of communication systems canAbe'mééhanized:to
include an ocutput variable which is bimodal, with a large mean
when system operation is unreliable and a small mean when it
is reliable. An important source of possible unreliability is
in the system synchronization. The required variable fo deter-
mine unsynchronized operation is the estimate of the number of
errors made, which in a coded system may be the modulo-2 sum
of the received sequence and the nearest possible codeword.

For synchronized operation, the expected relative frequency of

a one, Pg, is just the channel probability of error, while for
unsynchronized operation, it will be considerably higher,

P,>>Pge We shall assume that successive symbols of this observed
sequence are independent.*

Detection of unreliable operation then proceeds as follows.
After each bit (event) time, a one is subtracted from a counter
if the bit was zero. If the bit was a one, an integer k-1(k>1)
is added to the counter. Only non-negative summands are stored;
if the total sum ever becomes negative, it is reset to zero.

Thus, we have a reflecting boundary at the origin. Whenever the

count reaches a threshold N, we detect unreliable operation. Thus

there is an absorbing boundary at N, By making kps<l and kpu>l,

it follows that the expected drift is kpu-l > 0 (to the right)

*This is clearly true for synchronized operation if channel errors
are independent; for unsynchronized operation, dependencies will
actually improve operation.

-218~

when the system is unreliable (unsynchronized), while it is
kps-l < 0 when it is reliable (synchronized).

As is standard, we define a false alarm as the event that

reliable operation causes a threshold crossing, and detection
as the event that unreliable operation causes a threshold
crossing. Of interest are the first passage time statistics
in both cases, and in particular, the first and second moments;
i.e., mean time to false alarm and detection and the corres-

ponding variances.

-219-

Exact Analysis

For independent events, the Markov sequence random walk is
completely characterized statistically by the transition matrix,

where p equals Pg O P, corresponding to either system mode

(Ref. 1).
< k >
N\
1=p0===m====0p
1-p0em=ce -===0p
1-pos---=-=-0p, ,
N\ AN\ i
\
\Q‘ NN
N AN
AN \ \\\
= AN
P \{\ \\\ N+1
N NN
N AN
N P
AN .
NG -]k
N\ e
1-p0p
01 |V

- \V4

We number the rows and columns from 0 to N, corresponding to
the states (contents) of the counter. The Pij‘term indicates
the probability of a transition from state i to state j. We

%*
assume as a worst case that the counter always starts in state 0.

*This will be the case in the synchronized mode if we take our
time origin as the instant of initial synchronization. For the
unsynchronized mode, the initial state will be the state of the
counter when synchronization is lost, but the first passage
time to detection will then be upper bounded by taking this to
be 0.

=220~

Then the probability distribution of state occupancy

!ﬁ)= (n@, w@...w%) after one transition (bit time) is
= (, 0, 0,,..0) P (B.1)

and after n transitions it is

Now we are interested in the distribution of time to first
arrival at state N, Clearly, the Nth component of E(n)
(n) _
T = Privy < n) (B.3)

where vy is the time of first arrival (passage) at the threshold

N. Thus equations B.l and B.2 yield the desired distribution.

From this, we can obtain the mean and variance of first passage

time by
= (n) (n-1)] (n)
E(v,,) = n in - = 1= (B.4)
N nZ;___ [N N] rg) [N]
e [(n) (n-1) ‘
var (v,) = n? |« -7 - E2(v.)
N n; R N] N

00 -

= 2 Z n 1-1r1\(1n)] - :z""% '[l-wlgn):l}z {B.5)
n=

n=0 -

The numerical algorithm which generates (3) simply post-multiplies
(1, 0...0) by P n times successively. Each time it selects the
last term of the resulting vector, which is the distribution

ﬂén). Also, it augments an accumulator to form the mean of
equation B.4 and also forms the weighted function of equation

=221~

B.5 to obtain the variance.

While equations B.3, B.4, and B,5 yield all the results
desired, the mean time and hence the mode of the distribution
will tend to be very large for the false alarm and hence the
total number of iterations required for a meaningful result
may be several million, thus rendering this direct approach

impractical.

-222-

Asymptotic Analysis

When the ratio of the threshold N to the maximum step size
k-1 is very large, we may model this process as a continuous ran-
dom walk, For this purpose, let us consider spatial parameters
and continuous time, each step taking At seconds and being either
-Ax or +(k=1)Ax. Thus, the threshold becomes

4 nax (B.6)

a
the mean drift per unit time
m & (kp-1) (Ax/at) (B.7)

and the drift variance per unit time

o2 & x2p(1-p) (ax)2/at (B.8)

The moment-generating function for the first passage time

of this continuous random walk satisfies the equation (Ref. 2)

2 g2¢ £
of dfflx,A\) , mdf(x,A) - ,g(x,)) (B.9)
dx? dx

where E(x,x) = E[é_xf(x,tﬂ i/ﬂ e e (x,t)at
. 0

and f(x,t) = d/dt[?r(vt<t | starting at xﬂ

From this, we can also obtain equations for the mean first passage

time E(v, | starting at x) = :2£é§Lll :
A=0
2 g2
of dfyyx) . mdy; _ 4 (B.10)
dx? dx

-223~

and more generally for the jth moment tj(x) = E(vg starting at x)
02 d?t, (x)
J +mdt.(x) = ~jt.) (x) (B.11)
2 dx2 J J

j=2’ 3,0.....

Thus each moment can be obtained by iterating on the solution for
the next lower equation. Of course, we could also obtain the
negative jth moment by differentiating the moment generating func-
tion f(x,)) and setting x=0,

The boundary conditions associated with equations B.10 and
B.1l1l are obtained as follows. Since the threshold (absorbing
boundary) is at x=a, and since the dependent variable x indicates
the starting point,

tj (a) = 0 j = l, 2,.0... (Btlza)

Also, whenever x becomes negative, it is éutomatically returned

to zero, giving rise to the boundary condition,

dt. (x)

X =0 j=1, 2,.... (B.12b)

X=a

For the moment generating function
t. (x)

fix,x) = 'J--:—- (—A)J
=0 J
since tj(O) = 1, we obtain the boundary conditions
fla,A) =1
af (x,12) =0
dx xX=a

=224~

The solution of B.10 for the mean first passage time with

the boundary conditions (B.l2a, b) is

2 2
£ (x) = e-2M a/d° _ g-2m X/0 , a=x
1 2m2 /o2 m

Insertion of this solution into B.ll for j=2, yields the second

moment t,(x). Of interest are,

2
, 1 [e-2m /0% 4
E(v starting at 0) = t;(0) = = [(B.15)
t | g 1 m ?..I’ﬂ/dz
and
var (v, | starting at 0) = t;(0) - t2(0)
2 2
= %? [a(l+2e‘2am/°) + (e=2am/0% _j) (g-2am/0? g 02/4m]
(B.16)

It is also possible to solve for the entire moment-generating
function by solving equation (9) with the boundary conditions

(B.13a, b). The result evaluated at x=0 is

£(0,)) = E[e-kv | starting at @
= €2-€1
Ezeﬁla - EIBEZB
£1,€2 = (-m t\/mz + 202))/02

t, (0) and t,(0) of equations B.l5 and B.1l€ could also be obtained
as the negatives of the first and second derivatives of B.17

at A=0. The inversion of equation B,17 to obtain the density

=225~

*
function is not a simple procedure and could be of questionable

value,

*A Chernoff bound on the distribution is easily obtained and is
of some value in the unsynchronized detection case.

=226~

Interpretation of Asymptotic Results

In order to properly interpret the asymptotic results of
equations B,.1l5 and B.16, we must note that the continuous approxi-
mation assumes that step sizes are much less than the threshold

size; that is k/N<<l, Also for the unsynchronized case
kpu -1>0

while for the synchronized case
kpS -1<0

Referring to the definitions B.6, B.7, and B.8, and letting

v = v_At, we have in the unsynchronized case

t

: exp |-2N (kp, =1)/k?p (1-p.)| -1
E[Vu | starting at 0] EﬁirT {N + [u n u u] :
: u .2(kpu-l)/k p, (1=p,)

N
K1 (B.18)

i

which is essentially linear in N, the threshold value, and

a k?p (1-p)N ,
Var[v | starting at 0}= (kpu‘1)3 1+2exp[-2N(kpu-1)/k2pu(l-puq
2 -
= = Pu70y) (B.19
. (kpu_l) 3 .)
and the normalized variance
var (vY) k?p (1-p_) k(1l-p)
- u u_ o u (B.20)
E2(v") N(kp ~1) N|1-1/(kp)

-227-

In the synchronized case, on the other hand,

s 1 exp[ZN(l—kps)/kzps(l-ps)]- 1
E[v | starting at 0] = ' + N
1-ko 2(1-kps)/k2ps(l-ps)

(B.21)

which grows nearly exponéntially with N, while

. [kzps(l'ps)]z

Var vslstarting at 0] exp[4N(l-kps)/k2ps(l-psﬂ

4(l-kps)¢
(B.22)
so that
S
Var(v™) .
= -1 (B,23)

E2 (v)
S

From B.20, we see that for detection of unsynchronized operation,
the normalized variance is very small for k/N, so that the mode
is quite peaked. On the other hand, from (B.23), it follows, that
for a false alarm when the system is synchronized, the mode is
quite broad, reminiscent of either a Poisson or a Rayleigh dis-
tribution.

The basic assumption which justifies the continuocus model is
that k/N<<1l, If this is not the case, the asymptotic formulas

lose their validity and the numerical exact solution is required.

=228~

Application to Loss-of-Phase-Lock Indicators

As an application of the above techniques to other than
decoder synchronization, consider an unmodulated carrier or
subcarrier tracking loop. A convenient measure of loop per-
formance is the sign of cos ¢ (t) where ¢(t) is the instantaneous
phase error, and cos ¢ (t) can be generated by multiplying the
received signal by the quadrature VCO output and low pass fil=-
tering. Thus cos ¢ (t)>0 implies |[¢(t)| < /2, while cos ¢ (t)<0
implies n/2 < |¢(t)]| < .

Now suppose we sample this signal periodically, but with a
sufficiently long period that successive samples are nearly in-
dependent. The counter contents are incremented by k-1 when-
ever the sample is negative and reduced by 1 whenever the sample
is positive. When the phase-locked loop is properly tracking,
the phase error probability density function (Ref. 3) is given
exactly for a first-order loop, and approximately for higher
order loops, by the expression

acosé

P()=E———'-< <
s ¢ ZNIO(a) mLécw

where a = S/NoBL

When the loop is out of lock, on the other hand

P(4) = 3=, -1 < ¢ <

=229~

Thus, clearly, using the notation of the previous sections,

1
p=2f P (4) do = &
u n/2 u 2
while

p=2fW P_(4) d¢
s /2 s

and is given for various values of a in Table 1, which is extracte
from Figure 4.7 of Reference 3. Thus even at 0 db, P, > 2ps so

that the approach seems practically feasible.

a Pg
6 db <,001
3 db .09
2 db .13
1 db .18
0 db 22

Table B.1l pg as a function of signal-to-noise ratio

=230~

REFERENCES

W. Feller, "An Introduction to Probability Theory and Its
Application," Wiley, 1950.

D. A, Darling and A, J. F, Siegert, "The First Passage Pro-
blem and a Continuous Markov Process," Annals of
Mathematical Statistics, Vol. 24, pp. 624-639, 1953.

A, J. Viterbi, "Prihciples of Coherent Communication”,
McGraw-Hill, 1966.

=231~

APPENDIX C

Overflow Probability in a Hybrid System

The overall overflow probability of the system for an

*,._}fihitially.enpty buffer is

Po = Py ° Pr (overflow in a deleted frame)

- Pr (more than B sequential decoding) , (K)
po = ‘deleted frames lasts K frame times s
in K trials .
+ Pr(K>D)} {(C.1)

sequential decoding of deleted frame
Where Ps(x)-Pr(lasts exactly K frame times

We have established in Section 5.3 that the computational
distribution for deleted frames is upper bounded by the Pareto
distribution divided by the deletion rate p¢.

Thus for 1000 bit frame, we shall use

103

Pr(K>J) < ——=——
P¢(103Ju)p

and consequently*

3(1=p)
e < L0207

(Ccz)
p¢upKo

Since frames are deleted independently for a memoryless channel

*This is the only strictly valid bound which we can obtain from a
bound on the cumulative distribution. Also this is the only upper
bound which we shall use whose tightness is questionable. All '
further bounds are very tight, and all approximations can be changed
into tight upper bounds by including appropriate additional terms
which approach zero for very large buffer sizes.

=232~

56

py (MOre than B sequential decoding
deleted frames lasts K frame times

J=

7278

The inequality is a Chernoff bound for the binomial distribution

provided B/K > 2p¢ and
H(Y) = =Y&nvy-(1-Y) £&n(l-Y)

Thus inserting C.2 and C.3 in C.l, we obtain for the overall

overflow (error) probability

| B ,3(l=p)) = 403 (1)
Pg < KB/K) (g k-2 Dg D et
KBl w (Ru)® (pu)°
3(1-p) exp B[xH(l/x)+(x-l)£n(1—p)] Py
2107) 1, 9 ¢
WP p° =t /2T x° B°*s
(Cl4)

where X K/B and B/D >> 2p¢
Since K ranges over the integers and B>10, x ihc;eases in increments
of 1/B<0,1. Thus, we may accurately approximate the sum by an

integral and obtain

B D/B
3(1=p) P - _ -(x=-1)B __,__
e e 2O L B [e () TP v
H D B 1

where y = -Bﬂn(l-p¢) > 0 (c.6)

-233-

Using the tight inequality,

(1_%)- (x“l) s e

we obtain,

1-p) [B _B+y D/B
103/ 1 p, e /‘
B-p -YX
Pp, § ——— | —+ -—1———1; x e ' dx
uP p° /3% BPTE Uy
(C.7)
The integral is just the incomplete gamma function which is
closely bounded by taking the complete integral
B +
103 (1-0) 1 ' P eBHY T {B-p+1)
Pp ¢ — |+ =
- uP o° /ImBPTH YB p+l
Now substituting(p.@ for vy and noting that
Y -B
e (1-p,)
yowern R =5 Py) (1-p,/2)
BB-p+l BB O+H_£n(1_p¢)]B P+l ¢ ¢
we obtain
103 {1=0) [1 pg-l eB T (B-p+1)
Py ¢ —m—— |— + (C.8)
u? p° /ZW 1313"3/2(1-%/2)B

Finally using Stirling's formula
n
r(n+l) = 2nn (%)

-233-

" we obtain, using (l‘-p/B)B”,p"'e-p since B>>p,

-1
p < _10%(1-p) L, 5 _
o =~ o) p p+l B
u D B (l-p¢/2)

-

-B) BP¢/2
or since (l-p¢/2) ~ e

103 (1-p) 1 e 1
Py % [ﬁm * ("‘5{") WP},

provided B/D > 2p¢, the first term being due to delay line over-
flows and the second to buffer overflows. Thus the buffer size is

effectively increased by the factor l/p¢.

=235~

