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GAMMA RAY OBSERVATIONS OF THE GALACTIC
7	 CENTER AND SOME POSSIBLE POINT SOURCES

C. E. Fichtel, R. C. Hartman, D. A. Kniffen, and M. Sommer*
NASA/Goddard Space Flight Center, Greenbelt, Md. 20771

I
ABSTRACT

A (.5 m by .5 m) digitized spark chamber gamma ray telescope was

flown on three balloon flights to look at the galactic center region,

Virgo, and the Crab. An excess flux above atmospheric background of

over four standard deviations was found for gamma rays exceeding

100 MeV coming from the galactic center region, corresponding to a

line intensity of (2.0 +0.6) x 10 -4 y's(cm2rad see),but there was no

statistically significant excess in the 50 to 100 MeV interval, with

a 95% confidence limit for the ratio EJ(50-100 MeV) /J(> 100 McV)]being

0.50. As a result, there is only a 6% chance that Compton or synchrotron

radiation from electrons with a power law spectrum having an exponent of

2.6 could make as much as a 50% contribution to the gamma radiation in

this energy range. No positive evidence was found for radiation from

any of the sources M 87, 3C273, and the Crab Nebula, and 95% confidence

upper limits for the gamma ray flux from these objects were set at

1.0 . 10-5 , 1.0 . 10 -5 , and 6 . 10-5 /(cm2 sec) respectively. The M-87 limit

eliminates the possibility that the power law spectrum observed at X-ray

energies extends unchanged to the high energy gamma ray region.

*NAS-NRC Postdoctoral Resident Research Associate. Present address:
Max-Planck Institut fur Extraterrestriche Physik, Munchen, Germany.
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I. INTRODUCTION

In spite of the considerable effort that has been extended during

the last decade to detect high energy (> 20 MeV) celestial gamma rays,

relatively few positive results have been obtained, although signifi-

cant upper limits on the flux from several possible discrete sources

have been set using data from balloon experiments. The most positive

evidence for an extraterrestrial source of high-energy 7 -rays has come

from the counter telescope experiment of Clark, Garmire, and Kraushaar

(1968) flown on OSO-III. These authors have presented convincing

evidence for the detection of 7-radiation from the galactic plane, with

the greatest intensity coming from the region of the galactic center.

Both in an attempt to measure the intensity and energy spectra of

galactic y-rays above 25 MeV from balloon altitudes and with the

goal of developing a satellite-qualifiable 7-ray telescope, a large

digitized spark-chamber y-ray detector was built and flown on high-altitude

balloons. This detector, whose active spark chamber area is about 2.5 x

103 cm2, is about ten times the size of the original Goddard spark chamber

first flown in 1966. Preliminary results from one of the flights with

the larger telescope, which confirmed the existence of the galactic center

radiation, were presented earlier (Kniffen and Fichtel, 1970). Here, the

experiment will be described in more detail together with the final

results from the balloon flights made thus far.

II. DESCRIPTION OF THE GAMMA-RAY TELESCOPE

A schematic diagram of the spark chamber gamma-ray telescope is

shown in Fig. I.....,The active parts of the detector are the 0.5 x 0.5 m

1
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digitized spark chambers and the triggering counter system. The spark

chamber stack is assembled from a total of thirty-two modules, eleven

of them being placed above the celitral scintillator level. Each module

consists of two orthogonal sets of 400 parallel wires forming two wire

grids with 4 mm vertical spacing. Stainless steel plates of 0.03 radia-

tion lengths thickness between the upper wire modules provide conversion

of gamma-rays into pairs. Plates of 0.02 radiation lengths between the

lower modules are used to obtain information on the energy of the

individual positron and negatron from Coulomb scattering. Sparks will

occur along the paths of the electrons when a high voltage pulse is

applied to the wire grid shortly after detection of the electron pair

by the counter telescope. The resultant spark current propagates along

the orthogonal wires setting ferrite cores at the end of the wires. In

this manner, x- and y- coordinates are obtained for each electron track

at every module or z-level. The spark coordinates are described by a

number of 16-bit words which are transmitted by telemetry to the ground

station within a total time of about 0.3 seconds for an average event.

The spark chamber triggering logic is chosen to accept gamma-rays

and to reject other events to a high degree. A coincidence signal is

required from one of the nine charged-particle-telescopes. Each of these

is formed by a 16.5 x 16.5 x 0.48 cm plastic scintillator and a 16.5 x

16.5 x 5 cm piexiglass Cerenkov counter. The spark chamber is triggered

when a neutral particle is converted into one or more downward-moving

relativistic charged particles actuating one or more of the nine charged-

particle-telescopes. Primary charged particles are rejected by anti-

coincidence signals produced in the surrounding scintillator dome. The

3
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dome is a highly polished single-piece casting of plastic scintillator

measuring 1.2 m inside diameter, 0.8 m in height, and 1.6 cm in thick-

ness. It is viewed by 18 photomultiplier tubes spaced evenly around

the lower edge.

A more detailed description of the 0.5 m by 0.5 m digitized spark

chamber gamma ray telescope is given by Ross et al. (1969).

III. DATA REDUCTION AND ANALYSIS

Data including a variety of housekeeping parameters and informa-

tion on which of the magnetic cores in the spark chamber have been set

in each event are telemetered from the balloon gondola and recorded on

magnetic tape together with time signals accurate to two milliseconds.

The housekeeping information includes 3-axis magnetometer reaL.ngs

which together with time and balloon position provide the basis for

determining the experiment aspect, individual counter and coincidence

rates, experiment dead time, and engineering parameters such as tempera-

tures, pressures, voltages, and currents.

The spark chamber data reduction includes identification of gamma

ray events, estimation of the gamma-ray energy from the scattering of

the electron pair in the steel plates, and determination of the celestial

arrival direction, utilizing the magnetometer data to obtain the instru-

ment orientation. The general approach and details for the calculation

of the energy and arrival direction of individual gamma rays, have been

described previously together with the method of determining flux values

(Fichtel et a1., 1969). Therefore, they will not be repeated here. In

the interim, however, the computer programs have been developed to the

extent that gamma ray identification and electron track recognition are

4
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largely automatic, and the human interface time has been greatly

reduced. A minimum interface for the purpose of verifying that the

program is functioning properly is maintained.

The procedures for automatic recognition will now be summarized.

The automatic analysis program rejects any event which:

1) has any set cores in the top deck (representing generally

either a gamma ray which has converted in the pressure

vessel shell under the anticoincidence dome or a charged

particle missed by the anticoincidence system),

2) has a set core within two wires of the edge of any of the

top ten modules (and therefore would usually correspond to

a gamma ray which interacted in the spark chamber walls),

3) has less than 15 cores set in either orthogonal view

(indicating no event, usually a false trigger).

The program then begins the search for gamma ray events by

averaging groups of two or more adjacent set cores to obtain points

which will represent the basis for the "picture" of the events in each

of the two orthogonal views (x-z and y-z). The program then scans down-

ward from the top of the spark chamber until it finds the occurrence of

three decks containing points within a five-deck span. Within those

three decks, it forms all possible triads with one point in each deck.

For each triad it forms the second difference $ i = Xi -2Xi +1 +Xi +2"

'	 Triads which lead to a P i -value greater than a fixed limit are rejected

under the assumption that they cannot represent a segment of an electron

track of interest. After all possible triads have been examined, the

unmatched points are saved and the next deck with points is found. New

f.°	 1
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triads are found and the procedure iterates. Track segments containing

the most points are examined further to ascertain their inter-relationship

in an attempt to form full tracks from the segments.

For a gamma ray.,two basic forms occur depending on how fast the

electrons separate, the "inverted Y" and the "inverted V". In the case

of the "Y" configuration, the stem is considered to be two unresolved

electrons and is associated with each of the two separated tracks. Some

events appear to contain only a single track segment. These are classi-

fied as either low energy electrons, or an unresolved pair (high energy,

straight track), depending on the amount of Coulomb scattering. Expe-

rience has shown that the single tracks do indeed fall in these two

groups with essentially no tracks having intermediate Coulomb scattering

values.

There remain some spark chamber events which the computer is unable

to handle satisfactorily. The following are examples of situations which

cause the program to abandon an event:

1) Less than — 45% of the total X or Y points being contained

in the two longest segments,

2) Less than 13 decks containing points,

3) No acceptable triads,

4) No acceptable tracks (? 5 points),

5) Too many segments (z 15), which cannot be formed into

longer tracks,

6) Ambiguous relationship between the two main tracks,,

7) Two main tracks not joined.

6
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Events which are abandoned by the computer are then subjected to

visual analysis in the following manner. The digitized "picture" of

each of these events is displayed on an automatic graphics display

unit where the necessary editing is accomplished by "light pen inter-

action and the remainder of the analysis is completed by machine, if

it is an acceptable event. If it is evaluated to be a false event,

it is rejected.

Although most of the results presented here are from the computer-

analyzed data, extensive checks have been made by reanalyzing samples

of the data visually. In its present stag ,; of development, the computer

analysis produces results of comparable or even slightly superior quality,

when it is applied to high quality data. When the spark chamber effi-

ciency is less than optimal, the computer analysis is less dependable

particularly for gamma-ray energies below about 70 MeV, where the

electrons undergo considerable scattering. For that reason, all of the

results presented here for gamma-ray energies below 100 MeV are based

on either visual analysis of the events or computer analysis checked by

visual examination of the pictures.

IV. THEORETICAL BACKGROUND AND RESULTS

a) The Galactic Center Region

It is well known that mesons are produced in the interaction of

cosmic rays with interstellar matter, and by far the most common mesons

are n-mesons, both charged and neutral. The rr° decays into two y-rays,

each with about 70 MeV in the rest frame. Many of the other mesons and

hyperons also decay into neutral rr mesons. As a result, the great

l
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majority of the high energy gamma rays resulting from nuclear inter-

action are from rr° mesons, most of which are formed in the initial

interaction.

The energy spectrum of the gamma rays resulting from TT' decay is

quite different from that resulting from most of the other astro-

physical processes, such as bremmsstrahlung, synchrotron radiation,

and the inverse Compton effect. The basis for the relatively unique

spectrum is the Tr°'s isotropic decay	 into two gamma rays of equal

energy (N 70 MeV) in the rest frame. As a result for a given velocity

of the parent rr°, the probability of observing a given energy for the

secondary gamma ray is a constant from a minimum energy of

Wo [(1 -S) /(1 +(3)] 1/2 to a maximum energy of Wo [(1+0/(1 -(3)] 1/2 where

WO
 is the energy of the gamma ray in the rest frame. Thus, if the

observed gamma rays come from 7*' s formed by cosmic rays interacting

with interstellar matter, a spectrum will be formed which peaks at

WO since this energy is always included, and extends further on the

high energy side. The exact shape of the spectrum depends on the

energy distribution of the cosmic rays and the details of the inter-

action process; the related calculations have been completed in detail

in the literature, e.g. Stecker (1971). 	 The actual intensity of the

gamma rays was also calculated with the most uncertain parameters being

the density of hydrogen and the cosmic ray intensity.

The OSO-III satellite experiment of Clark, Garmire, and Kraushaar

(1968) and Garmire (1970) has detected a celestial gamma ray flux con-

centrated in the galactic plane. Their angular resolution (+15 0 ) is

8
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substantially larger than the structure of the plane; so the detailed

structure cannot be seen. It is possible to quote the result as a

line intensity and compare it to the result deduced from the 21 cm

data integrated over the appropriate solid angle. The value of the galac-

tic line intensity averaged over the observing angle of the OSO-III

experiment is in the range (2 to 4) x 10 -5 y's/(m2 rad sec) in reasonable

agreement with expectation except near the galactic center. The

intensity from the direction of the galactic center is not immediately

explained. Even after normalizing to the rest of the galactic plane,

the intensity averaged over a 60° wide region including the galactic

center is about three times the expected flux. Kniffen and Fichtel

(1970) in a preliminary letter have confirmed the existence and inten-

sity of the flux from the galactic center with a balloon flight.

The explanation of the enhanced gamma radiation might be postu-

lated to be due to an increase in the intensity of the cosmic radiation

and interstellar matter near the center of the galaxy, or it may be due

in part to interactions of electrons with matter, magnetic fields, or

photons. The unique energy spectrum of the Ti* decay makes it possible

to separate this mechanism from bremsstrahlung, synchrotron radiation,

and Compton radiation all of which reflect the presumed power law

spectrum of the parent electrons. Specifically, if the parent electrons

have a spectrum of the form j e = CW-a , the gamma ray spectrum will have

the form j76^4-a for bremsstrahlung radiation and j y — W-(a +1)/2, for

Compton and synchrotron radiation.

The radiation observed from the galactic center and reported pre-

viously (Kniffen and Fichtel, 1970) has now been an-.lyzed fully, including

3
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information on the energy spectrum. Fig. 2 shows the ratio of the

observed intensity to the intensity expected for atmospheric back-

ground as a function of galactic latitude for intervals of galactic

longitudes from -25 0 to +20 0 . The atmospheric background normaliza-

tion was determined from regions away from the galactic plane in the

same flight and was found to agree to within better than 5% with that

determined previously with a similar, but smaller gamma ray telescope

(Fichtel et al., 1969). The excess of gamma rays above atmospheric

background was determined for the interval - 6 0 s b11 s +6° and

-35 0 s b II 5 +25° for the energy intervals 50 to 100 MeV and > 100 MeV.

In this solid angle, there were 274 gamma rays whose measured energies

were ;above 100 MeV compared to 210 expected from atmospheric background.

Thus, the excess for gamma rays above 100 MeV corresponds to over four

standard deviations and leads to a line intensity of (2.0 + 0,6) x

10 -4 y's/(cm2 ^rad • sec.).	 The value is in good agreement wi^.h the

corrected 'line intensity of (1.2 11- 0.3) x 10 -4 photons (cm2 rad sec)-1

for energies above 100 MeV observed by Clark, Garmire, and Kraushaar

(Garmi.re, 1970). Both of these results are inconsistent with the upper

limits (95 percent confidence) set by Frye ; Staib, Zych, Hopper,

Rawlinson, and Thomas (1969) for energies above 50 MeV of 3 x 10-5

(cm2 rad sec) -1 for a region bounded by -2° S 1, II S 2.3° and

7 x 10-5 (cm2 rad sec) -1 for a region bounded by -15° s b1z 5 . 15°. The

lII range is similar to that of this experiment.

There is no statistically significant excess in the 50 to 100 MeV

interval and the following 95% confidence upper limit- was obtained:

10
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R = [J(50 .-100 MeV) /J (> 100 MeV) ] < 0.50

For rr° decay alone, this ratio is expected to be 0.12 (Stocker, 1971)

consistent with the experimental result. C:rrent estimates of the cosmic

ray electron spectra in the high energy region which would produce these

gamma rays indicate that the spectral index for the electrons is between

2.5 and 2.8 (Anand et al., 1970; Agrinier et al., 1970; Bleeker et al.,

1970; Earl et al., 1970; Fanselow et al., 1969; Marar et al., 1970;

Nishimura et al., 1970; and Rockstroh and Webber, 1969). For an electron

spectrum with a = 2.6, the ratio R would be 2.03 for bremsstrahlung

radiation and 0.74 for Compton or synchrotron radiation. The experimental

result, therefore, suggests that the radiation from the galactic center

region is probably predominantly from rr° decay. More quantitatively,

there is only a 6% chance that Compton or synchrotron radiation from

electrons with a spectrum having a 2.6 exponent could make as much as a

50% contribution to the gamma radiation in this energy range and the data	 -

:Ire in agreement with the radiation being entirely of TT * decay origin.

B) Virgo	 s

One of the most surprising results of X-ray astronomy has been the

discovery (Byram et al., 1966; Friedman and B,iram, 1967; Bradt et al.,

^^1967) of a surprisingly int ense extragalactic discrete source of 1 to 10 	 -

keV X-rays in the direction of the Virgo cluster. Recent high resolution

satellite studies (Kellogg et al., 1971) 'have provided convincing evidence

that the source coincides with the radio galaxy M-87 (Virgo A) and that

M-84 and the quasar 30273 are other likely discrete source emitters in

the direction of Virgo. Measurements of high energy (40-100 keV) X-rays

11
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from Virgo A have also been reported (Haymes et al., 1968; Fif^hman

et al., 1970), but these measurements lack independent verification

and, in fact, conflicting results have been reported (Peterson, 1970;

McClintock et al., 1969; Webber and Reinert, 1970). Felton (1970) has

summarized the existing observations over the entire electromagnetic

spectrum of the "jet" of Virgo and finds that the data over 13 decades

of energy are reasonably consistent with a single power law spectrum,

given by

N(E) = 8.2 x 10 -4 E-1.75 photons/(cm2 sec MeV).

Extending this spectrum 2 to 3 decades above the highest observed

energies gives an expected flux above 30 MeV of about 9 x 10 -5 (cm2 sec).

It is most probable that the power law in the visible and radio

portions of the spectrum is generated by the synchrotron emission of

energetic electrons traveling the magnetic fields in the source galaxy.

However, until the X-ray spectrum is better known, it is not clear if

this emission represents an extension of the power law synchrotrom emis-

sion at lower frequencies, which would create a very puzzling dilemma

because of the very short lifetimes of the electrons at these energies,

or indicates the presence of additional processes such as the thermal

bremsstrahlung suggested by Sartori and Morrison (1967). The resolution

of this question depends upon further experimental results, and for this

reason we undertook a balloon flight to examine the Virgo region for the

emission of > 30 MeV gamma radiation.

The detector was flown October 14, 1970 on a 27 million cubic foot

balloon from Palestine, Texas. It reached a depth in the atmosphere of

.	 1
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2.5 g/cm2 at 8:55 a.m. CDT and remained at float until terminated by

command at 5:00 p.m. CDT. The detector was tilted 20° and oriented to

point toward the south in order to more efficiently examine M-87 which

lies at a declination which passes the meridian plane about 20° south of

the Palestine latitude. M-87 passed overhead at about 12:15 p.m. CDT.

At about 2:15 p.m. the detector was commanded level and allowed to examine

the sky centered at a declination of about +31.5° corresponding to the

latitude of the balloon.

The data from this flight were analyzed by the automatic analysis

program, with no human interaction, Since a significant portion of the

events below about 70 MeV require human interpretation, the analysis

reported here includes only gamma rays with measured energies in excess

of 100 MeV.

The background was determined by analyzing all portions of the sky

which were examined except for the areas surrounding possible sources.

Table I summarizes the results obtained from M-87 and 3C273. The 95 per-

cent confidence limits were obtained by the method outlined by Fichtel et

al, (1969). The M-87 limit clearly rules out the possibility that the

power law spectrum extends unaltered to gamma ray energies as seen in

Fig. 3. However, the limit places no constraint on the secondary pro-

duction model of Felten (1968) which attempts to explain the presence of

electrons in the jet as arising from the decay of pions produced in

collisions of energetic protons from the core with matter in the jet.

The decay of accompanying neutral pions would be expected to produce a

gamma ray flux orders of magnitude below the observed limit.

13



C) Crab Nebula

On July 15, 1969, a balloon flight of the 50 cm by 50 cm spark

chamber was conducted at Palestine, Texas, to examine the Crab nebula

for possible discrete source gamma ray emission, either steady or

pulsed. Unfortunately a random electronic component failure prevented 	 '!

a full exposure to this region. No evidence was obtained for discrete

source gamma ray emission in the Crab nebula and 95 percent confidence

limits of 6 x 10 -5 /(cm2 sec l ) and 8 x 10 -5 /(cm2 sec l ) were obtained for

integral fluxes above 50 and 100 MeV, respectively. The arrival times

of the gamma rays coming from the direction of the Crab nebula were

tested against the observed optical period for this date (Fazio and

Helmken, 1971) and no evidence for pulsation was seen. The limited

statistics prevent the upper limit for the pulsed mode from being sub-

stantially lower than those for the steady mode given above.
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FIGURE CAPTIONS

Fig. 1:	 Schematic diagram of the 0.5m x 0.5m digitized spark-

,	 chamber 7 -ray telescope.

Fig. 2:	 Ratio of observed line intensity of > 100 MeV gamma rays

to expected background intensity for -25° < 21I <_ +200,

plotted as a function of galactic latitude, b II . The

lower curve shows data plotted in 2° bin widths, the

approximate angular resolution of the detector. The

upper curve includes the same data in +6° bins to increase

statistics and more clearly show the latitudinal dependence.

Fig. 3:	 The upper limit to > 100 MeV gamma rays from M-87 obtained

in this experiment is plotted together with the empirical

curve for the jet in M-87 obtained by Felten (1970). The

dashed curve represents an extrapolation of the curve above

the highest observed energies.
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