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SOLUTION SCHEME FOR TIME DEPENDENT

HYDRODYNAMIC PLASMA FLOW ALONG

A MAGNETIC FIELD LINE

by

J. M. GrebowskY

R. K. Smith

ABSTRACT

A mathematical procedure, using the method of characteristics, is developed

for solving the hydrodynamic flow equations in a nonhomogenous magnetic field

for plasma flow along a field line in the presence of a gravitational field. Along

a dipole magnetic field line with two supersonic plasma streams symmetrically

directed towards the magnetic equator (a situation applicable to the earth's en-

vironment) the solution is obtained byassumingthe existence of shock disconti-

nuities which propagate along the field line. The solution technique for the time

development of the plasma flow is considered for both adiabatic and isothermal

flow. A sample calculation for an adiabatic flow state shows explicitly the time

evolution of adiabatic cooling and shock heating along a magnetic field line.
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SOLUTION SCHEME FOR TIME DEPENDENT

HYDRODYNAMIC PLASMA FLOW ALONG

A MAGNETIC FIELD LINE

Usually a sharp drop in the ambient electron density occurs with increasing

altitude at a geocentric distance of a few earth radii in the earth's equatorial

plane. This drop, referred to as the plasmapause, corresponds to the boundary

separating plasma that drifts always across closed (i.e., both ends intersect the

surface of the earth) magnetic field lines from plasma that at some time in its

motion drifts onto polar magnetic field lines which connect the earth to the inter-

planetary magnetic field (Nishida, 1966). On the latter field lines — the 'open"

lines — plasma is lost from the earth's environs by transport along the lines of

force. This depletion along the open polar field lines occurs in the form of a

supersonic polar wind of H+ ions directed away from the earth (Banks and Holzer,

1968).

Since the plasma which is transported along the open polar field lines also has a

drift component perpendicular to the magnetic field lines due to the solar-wind

magnetosphere interaction, the supersonic polar wind will convect onto closed

magnetic field lines as shown in Figure 1. Assuming symmetry about the mag-

netic equatorial plane, supersonic streams directed away from the earth in both

hemispheres will be convected onto closed magnetic field lines. These streams

1
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will collide near the equator producing collisionless plasma shocks (Banks,

et al., 1970) which propagate down the field lines towards the earth.

This paper will describe a mathematical scheme for solving the differential

equations which govern the time development of plasma flow along a closed

magnetic dipole field line when two supersonic streams directed along the field

line are assumed initially to collide at the equator forming plasma shock waves.

Although the differential equations to be considered are expressed in terms of

a plasma state only, they also describe the flow of a compressible fluid along a

channel with varying cross section. Hence the solution scheme to be described

also has applicability within the field of fluid dynamics.

System of Equations

Only the plasma flow at high altitudes (i.e., above a few thousand kilometers)

where the plasma consists of essentially H+ ions and electrons is considered

for simplicity. Chemical production and loss processes are ignorable in this

region. If adiabatic flow is assumed (isothermal flow will be treated later) the

hydromagnetic relations (see for example Montgomery and Tidman, 1964)

describing plasma flow along the direction of the magnetic field can be written:

p t + vps + pvs = B BS

pv t + pv V , + P y = — pg	 (1)

C^ t+ v s l (pp-'r) _ 0

2

i

t
9

i



where an isotropic pressure and a one dimensional coordinate system along the

field line is assumed. The first of these equations is the continuity equation for

flow in a tube (i.e., a magnetic flux tube) of varying cross section; the second

is the momentum equation; and the last corresponds to the energy equation for

adiabatic flow. The parameter t denotes time, s is the coordinate distance along

the field line under consideration, p is the mass density (equal approximately to

nM where n is the electron-ion number density and M is the proton mass), v is

the flow velocity along the magnetic field direction, B is the magnetic field, P

is the total plasma pressure (P = nkT where T is the sun of the electron and

ion temperatures and k is Boltzman's constant), g is the component of the gravi-

tational acceleration along the field line and y is the ratio of specific heats. The

subscripts denote partial differentiation.

Since the plasma parameters usually measured by satellite probes are in number

densities and plasma temperatures, a more convenient form for these conser-

vation relations is:

n t + vn s + nv s = nvF

nv t + nv V S + M n s + M nT s = -ng	 (2)

n(T t +vT,,)+(1-y)T(nt +vns)=0

where F is defined as B S /B. This system of equations is a set of quasilinear

partial differential equations of the first order for the three dependent variables

i

i
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v, n and T which are functions of the two independent variables t and s. 'These

equations are to be transformed into a system more suitable to a numerical

solution.

Characteristic Equations

A system of hyperbolic differential equations may be transformed into a system

of total differential equations by choosing appropriate paths in the s-t plane

(see Courant and Friedricks, 1948). As is shown in the Appendix, the hydro-

dynamic equations (2) are hyperbolic provided, as the case in real physical sys-

tems, the temperature remains positive. Hence the set of partial differential

equations previously developed can be transformed into a system of total differ-

ential equations along characteristic directions in the s-t plane.

The characteristic directions for the hydrodynamic equations can be obtained

directly by forming linear combinations of these equations and determining

which of these combinations involve differentiation of the three dependent vari-

ables v, n and T along the same direction (t (Q), s (a)). For convenience the

number density n will be expressed in terms of ^ = In n and each equation will

be labeled as

Ll= vt+vvS+MTrs+MTS+g=0	 (3)

L 2 = ^t +vrs +vs —vF=0	 (4)

. M

1 .
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L 3 = (fi t + V^,) + (1
-1Y)T 

(T t + vT , ) = 0.	 (5)

The linear combination can then be written

3

L = L X  L µ =

u=1

^ 1 v t + (X I V + X 2 ) V S + ( X 2 + X3) ^t + ^ 1
 M 

+ k 2 V + X 3 V) ^9
C

+ (1 y)T T t + 1^1 
M 

i X 3 ( 1 vy)T)TS + (k 1 g-^ 2 vF) = 0.

The equations describing the characteristic directions are, by inspection of (6)

s o, _ 
r^2

	
t

1V) v
^ 	 (7)

kT

1

S o = (^ 
+1\ 

M + v) t o 	 (8)
2	 3

- I 1 ( 1 •- '/) MT + V) t
	 (9)s^	 \	 P	 (

3

s.

M	 1

Solving these equations for the ratios X 2 /\ 1 and '\ 3 /X, when k	 0 yields the

characteristic directions

so,

= v ± c	 (10)
to

5
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where c = ykT/M is defined as the acoustic speed. The third characteristic

direction corresponds to X 1 = X 2 = 0:

so
- v

sQ	
(11)	 ^^

For convenience these characteristic directions will be expressed as

i
S

t v+ac	 (12)

where Q = +1, 0, -1.

The corresponding linear combinations of the hydrodynamic equations (6) along

the characteristic directions become:

1	 2=+1: v Q +yc^ Q +y c^+(g- cvF)t,=0	 ^.3)

= 0	 ^^	
(y 

2 
1) c C	 0	 (14)

v o - 
y ^

0. - 
y 

cor + (g + cvF) t^ = 0	 (15)

where the subscript rr denotes differentiation along the characteristic.. The six

characteristic equations — (12) through (15) — replace the original three flow

equations (3) through (5).

6 jI,
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Solution Scheme and Boundary Conditions

Assume that the variables n, v and '1' are specified along a given boundary

curve (this curve cannot be a characteristic) in s-t space. Consider a point

(s, t) near the boundary curve (see figure 2). If no discontinuities exist at

this point, it will correspond to the intersection of three (i.e., P = - 1, 0, 1) dis-

tinct characteristics which also intersect the boundar y curve. The variation of

the variables n, v and T along these characteristic directions will be described

by equations (13), (14) and (15).

If the computation point (s, t) is selected very near the boundary curve, then the

characteristics will be essentially straight lines between the boundary curve

and (s, t) and will be described by ds/dt = v Q +/8 c3 where 8 = + 1, 0, -1. The

subscripts now denote boundary values and not differentiation (e.g., vi is the

velocity at the point where the boundary curve is intersected by the P = 1

characteristic passing through (s, t). Differentiation will be denoted explicitly

in the work to follow so this change of notation should cause no difficulties.

For each selected point (s, t) near the boundary, the boundary curve is searched

to locate the characteristics which pass through (s, t) and to d3term.ine the

boundary values (i.e., nR, v 139 T13 
where R = - 1, 0, 1). The finite difference

equations corresponding to the characteristic equations (13), (14) ane tl. 5) can then

be solved at the point (s, t). The finite difference equations can best be solved

if considered in matrix form:

7



1	 cl	 2	
v	 ^bl

y	 y

0	 1	 -	
2 _
	 = b2

(y- 1) co
C-

y	
c	 b3

I

(16)

where

bl = v l + y c l ^ l + y c l - ( g l - c l v l F l ) ntl

b2=^o	
2

- (^-1)

c ? ^_l	 2
b 3 = v_ l- 	

y	 - y 
c _l - ( g_l + c_ 1 v_ l F_ 1 ) At-1

and g^, Fp denote averages along the segment of the 8 characteristic between

the point (s, t) and the boundary whereas 4t ,8  is the time increment along this

characteristic segment.

After the solutions are generated along a curve located a short distance from the

initial boundary (e.g., along the dashed curve in figure 2), then this curve can

be treated as a new boundary curve for further calculations. By proceeding in

this manner, the solution can be generated at each point in s-t space at which

the three intersecting characteristics can be traced back to the initial boundary

curve. is remains now to determine what type of boundary curve is best suitable

for the problem under consideration.

8
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Since the plasma state along the earth's outer magnetic field lines will depend

upon the rate at which ionization is supplied from the lower ionosphere and upon the

rate at which the ionospheric parameters change, a natural choice for a boundary

condition is the specification of n, v and T as a function of time at a base level

altitude. This base level point (s o ) must be within the protonosphere since the

flow equations have been developed assuming a neutral proton-electron plasma.

However if the plasma flow is everywhere supersonic along the field line, this

boundary condition alone is not sufficient to determine the solution at every

point along the field line. This is due to the fact that the only points (at time t)

which correspond to the intersection of three distinct characteristics emanating

from the boundary curve s = s o are those points with s coordinates smaller

than or equal to the s position (at time t) of the R = - 1 characteristic which

passes through the point (s o , t = 0). As seen in Figure 3, these points (region

C) do not cover all of s - t space.

If, on the other hand, boundary conditions are also specified along the boundary

t = 0, then the solution can be obtained everywhere in s - t space. This is

readily seen in Figure 3, where region A depicts those points at which the solu-

tion is obtainable using characteristics which cross the t = 0 boundary only, and

where B defines the s - t region in which solutions are generated using a mixture

of characteristics, some of which cross the t = 0 boundary and some of which

cross the s = s o boundary curve.

a

,
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It should be noted that the t = 0 and s = so boundary values must be selected

so that they are compatible with one another. For example if subsonic flow

exists near the point (s o , t = 0), then 8 = - 1 characteristics (i.e., ds/dt _ v - c)

emanating from the boundary curve segment t = 0 near (s o , o) may cross the

curve s = s o . In such a case the value of n, v and T cannot be selected arbi-

trarily on both boundary curve segments, but must be chosen so that equation

(20) is satisfied. Even in the supersonic regime, if the boundary values are not

selected properly, accidental discontinuities can be introduced near (s o , 0).

From the physical viewpoint the most convenient computation scheme consists

of determining the plasma state at equally spaced points along the entire field

line as a function of time. That is, initially the solution is obtained at all of the

selected points along the field line at time At, where At is a time increment

selected small enough that the characteristic segments between the initial

boundary t = 0 and the computation curve t = At in (s, t) space are approximately

straight lines. The values of v, n and T determined at t = At are then used to

generate the solution along the field line at t = 2At, etc. This procedure will

develop explicitly the time evolution of the plasma flow along the field line.

Shock Problem

As indicated in the introduction, the two supersonic plasma streams (one in the

northern hemisphere, the other in the southern hemisphere) directed along the

chosen field line away from the earth will interact initially at the equator

II
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forming shock discontinuities. Assuming equinoctal conditions (i.e., reflection

symmetry of the plasma state about the magnetic equatorial plane) two shocks,

one on each side of the equator, will be formed initially at infinitesimal distances

from the equatorial plane. The existence of these shocks satisfies the symmetry

condition at the equator (i.e., v = 0) as the upward directed supersonic flow be-

comes subsonic in its passage through the shock. After the shocks have been

formed initially at the equator, they will propagate along the field line towards

the earth as shown in Figure 4. In the following sections only one of the two

shocks will be treated explicitly — i.e., the plasma flow will be developed ex-

plicitly along only half of the considered field line. The flow with its associated

shock on the other half of the field line can be obtained by a simple mirror re-

flection about the equatorial plane.

Shock Relations

In order to relate the plasma state on the earth side (i.e., upstream) of the shock

to the plasma state on the equator side (i.e., downstream) use is to be made of

the fact that conservation of the particle number flux, momentum flux, and

energy flux must be maintained through the shock. If the plasma parameters

on the earth side of the shock discontinuity are denoted by the subscript 0 and

the equator side values by the subscript 1, these conservation relations are

(see Courant and Friedricks, 1948, for the deviation of these relations from

the fluid equations):

11
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P l v i = Povp

	

(P l v l )vi — (Po v o)v a = P o — P 1	 (17)

1	 2	 1	 2
P 1 2 v 1 + e l v l -P O 2 ^0 + e 0 V O =P O V O - Plvl

where the primes denote flow velocity with respect to the shock which is moving

with velocity VS (e.g., v i = v l - V S ) and where a is the internal energy/mass of

the plasma. It should be noted that the velocities are considered to be positive

when directed along the field line away from the earth.

In equations (17) if y / 1 (the isothermal case y = 1 will be discussed in a later

section) the energy density e can be expressed as

e=	 1	 kT _ 	1	 C2
(y - 1 ) M	 y(y - 1)

whereas the pressure P, as defined earlier, is dust nkT and the mass density P

is nM. Using these expressions, equations (17) are expressible' in terms of n

and c rather than p, e and P:

n l v i z: novo

1
nlulvl - n O V O V O - y (nC - r1 c 20 02	 1 1)

(19)
n e vi 1 vi +	 1	 c 1 _ n o vo 1 v 2 +	 1	 e0 =

2	 Y0/ — 1 )	 2	 Y(Y — 1)

1 (n o v 0 c 2 - nlvlci).
y

12
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When upward directed supersonic flow exists everywhere downstream of the

shock, the solution to the flow equations on the earth side can be determined

completely at all points using the previously discussed procedure. The shock

discontinuity does not enter into these computations except as an upper cutoff

boundary. However the plasma state on the equator side of the shock cannot be

determined without considering the effects of the shock since all of the charac-

teristics connecting this region to the s = s o boundary would pass through the

shock. In fact, as will be seen, the characteristics on the equator side of the

shock are determined in part by using the shock path in s - t space as a boundary

curve. The corresponding boundary values on the equator side of the shock can

be determined by solving the shock jump conditions - equations (19).

Since the earth side flow can be determined without taking into account the

shock whereas the equator side flow cannot, equations (17) are best solved for

the parameters on the equator side of the shock in terms of the parameters up-

stream of the shock. Such a solution is given by the following expressions:

n o	 (y - 1) va
a
 + 

z 

2co
n =	 (20)

1	 (y + 1) vo,

	

vi	 no

	

_ —	 (21)

	

v 0'	 n 1

c i = ô [cp -yvo (vi - Vol)]	 (22)
i

These equations correspond to the Rankine Hugoniot equations.

'N

F"
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Equations (20) through (22) determine the downstream parameters at the shock

only when the shock velocity or one other downstream parameter is known. Since

a nonsteady state is under consideration, these equations will not, in general,

form a closed system except at t = 0 when the shock is only an infinitesimal

distance from the equator and v 1 = 0 by symmetry. In such a case equation (21)

can be replaced by the relation for the shock velocity which is:

V g = - a - a2 +,8 2	 (23)

where

a = 4 (y - 3)vo

and

= 2 (y - 1) vo + 2co .
;i

When t 0 the downstream flow equations must be utilized to determine the con-

ditions at the shock. This procedure will be discussed in the next section.

Shock Solution

Since the flow on the equator side of the shock depends upon the shock conditions

and since the shock jump conditions do not in general form a closed set of equa-

tions, another equation must be set up, downstream of the shock, which does not
I.

increase the number of dependent variables. One of the previously developed

characteristic relations — equation (15) — describing the flow downstream of

the shock will be used for this purpose.

I 

14



1
r

Consider the situation near the shock as depicted in Figure 5. The flow at all

points on the earth side of the shock, as demonstrated previously, can be de-

termined without reference to the shock. Now assume that the solution has been

obtained at all points on the field line downstream of the shock at time t ^. Then

since the flow is subsonic at these locations, 8 = - 1 characteristics connect

downstream points at t = t . to the shock path between t ,, and t c + A t (see Figure

5). Hence equation (15) des ribing variations along these characteristics can be

used to complete the solution to the jump conditions. The Q = + 1, 0 character-

istics, on the other hand, have positive slopes in s - t space and do not connect

the t = t downstream points to the shock and hence do not directly relate to the

solution for the shock motion.

Assume that the shock position at time t . , denoted by X 0, and the corresponding

shock velocity are known (i.e., they were previously computed). Then if the

shock velocity changes only slightly in the time interval At, the shock velocity

at t = t, + At can, to a good approximation, be expressed as a linear function of

X 1 which denotes the position (as yet unknown) of the shock at time t C + A t.

That is:

VS(X1) = 
2(XAt XO) - V S (X O )	 (24)

r

15



_y

Since the flow solution is known everywhere on the earth side of the shock, the

variables no, vo, co are determinable functions of s and hence of X, at time

t, -+ A t. Substituting equation (24) into the shock relations (20) through (22) will

then yield three simultaneous equations for the four unknowns n 1 , v I , C 1 and X 1.

The dependent variables along the field line on the equator side of the shock at

t = t c are assumed to have been previously determined and are thus known

functions of the distance along the field line - in this region these variables are

denoted by the subscript I. Therefore the P = - 1 characteristic passing through
i,

the shock point (X,, t + 0 t) relates the downstream shock parameters n 1, v I, c 1
 c

and the shock position X 1 to the position s I at which this characteristic crosses

the t = t line:

5 
=X — V I +V I — C I —

 
CI At

I	 I	 2	 (25)

where v., c I are functions of s 1 . The finite difference form of equation (15)

along this characteristic segment is:

	

1 C I + CI	 2	 (CI+ C I ) (VI +VI)—
VI- v 1 - y 

n+
 n (n I - n I ) - 

y 
( C I - c I ) + (

g 
+	 2	 F At = 0. (26)

1	 I

This equation in conjunction with equation (25) yields a relation between v l , n 1,

C 1 and the shock position X 1 . Hence these relations and the shock jump condi-

tions form a closed set of equations which can be solved for the shock position

and the downstream shock variables.

16



Downstr<aam Solution

The solution at points between the shock and the equator can readily be obtained

using the method of characteristics described earlier. However, the boundary

curve is not the same as was used for the upstream solution. The t = t. line

segment in s - t space on the equator side of the shock is still a valid boundary

curve segment for computing the solution at a later time t = t C +Z^ t. However

the s = s o boundary curve segment used previously is not directly applicable to

the downstream solution. It is replaced by the shock path in s - t space. Hence

the shock position at time t  + At must be computed along with the equatorward

shock variables before the solution can be obtained downstream from the shock.

The variation of n I , v I , c  along the shock path is obtained by interpolation be-

tween the values at t c and t, + A t.

Isothermal Flow

The flow solution thus far has been developed explicitly for the case y # 1. If

an isothermal state (y = 1) exists along the field line (ignoring the shock mo-

mentarily) the solution scheme must be modified slightly. When y = 1 the

temperature, which is specified as a function of time at the base level s0(i.e.,

along the s = so boundary curve segment), is known at all points along the field

line and only the 8 = + 1 and -1 characteristic equations are required for a 	 ?

solution. The energy equation (14) is no longer applicable nor is it needed for

a solution. Otherwise the solution is obtained in the manner previously

described.

17



When the shock discontinuities are included and isothermal conditions prevail

upstream and downstream of the shocks, the field line is separated into two dis-

tinct isothermal regions each with its own characteristic temperature. The

spatially invariant temperature on the equator side of the shock is coupled to the

upstream temperature via the shock jump conditions. The shock process, how-

ever, is not isothermal and hence cannot be described by simply setting y 1

in the shock relations (19). The conservation conditions (17) are still valid

when the temperature is spatially invariant on both sides of the shock, and the

first part of (18) relating the internal energy to the temperature is correct if

y is taken to be the value leading to the internal energy per mass (e) of the

plasma (e.g., if three internal degrees of freedom exist y = 5/3;. However the

relationship between a and the sound speed c must be modified since the iso-

thermal sound speed on either side of the shock is c 2 = kT/M and hence is not

related to the factor y describing the energy transfer through the shock in the

first equality of equation (18). That is, (18) is replaced by

e _	 1	 C2

0/ - 1)

where y / 1. When this change is made, the modified form of the jump conditions

(20) through (22) are readily obtainable and the solution scheme then follows the

procedure described previously using the P = +1 and -1 characteristics.

18



Sample Computation

A sample calculation will show explicitly the type of time evolution which is

sought. The solution is developed along a field line of the earth's magnetic

field (assumed dipolar) which intersects the e quatorial plane at a geocentric

distance of 6 earth radii (1 earth radius corresponds to 6370 kilometers). For

simplicity the dependent variables n, v and T are fixed at constant values along

the boundary curves (i.e., along the field line initially, and at all times at the

base level-selected to be at an altitude of 3000 km). The fixed values selected

were:

n = 300 particles/cc

v 11 km/sec

T = 8000°K

These values were selected arbitrarily and are not to be taken as representative

of any real geophysical state.

With these boundary conditions the flow develops along the field ,line as shown

in Figure 6. The shock which is formed initially at the equator is accelerated

towards the base of the field line leaving behind a hot, relatively dense, subsonic

flow. In this case a steepening compression wave Is seen to propagate towards

the shock. The computed density and temperature on the earth side of the shock

in a short period of time approach a state of rapid decrease with increasing

distance along the field line. This results from the adiabatic expansion of the

plasma along the diverging magnetic flux tube. These computations indicate the
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type of flow behavior which can be explored using the solution scheme discussed

in this paper.
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APPENDIX A

The equations under consideration can be expressed in the general form

	

L^ =a M u (c) +f 'U	 (A-1)

where the summation convention is assumed (G, is summed over the number of

dependent variables, v is summed over the number of independent variables).

The greek letters denote labeling indices whereas the subscript x v denotes

differentiation with respect to the independent coordinate x . . The coefficients

aµcr are, in general, functions of the independent variable x " and the dependent

variable u (°).

In equations (A-1) the functions u (°) are differentiated in different directions.

It would simplify the numerical computations if characteristic surfaces could

be determined for which a linear combination L = XA Lij of these equations in-

volves derivatives of the functions u (tr) only in the direction of the surface ele-

ment. The condition for the existence of the multipliers ;^. is the determinant

equation

a(V) ^ M	 0	 (A-2)

for the components of the normal vector { ^ ( " ) I characterizing the surface ele-

ments (see Courant and Friedricks, 1948).
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The system of equations (A-1) is identical to equations (3), (4) and (5) it the vari-

ables are defined as:

µ= 1,2,3; o = 1,2,3; v= 1,2

	

U (1) = v ( s, t )	 f 1 = ng

(A-3)
u(2) = n(s, f)	 f 2 = -nvF

u(3) = T(s, t)	 f 3 = 0

and the matrix elements a ( V ) where µ denotes the row and a the column are

given by

0	 1	 0

a(1) _
	

u(2)	
0	 0.

flP

0	 (1 - 7)U (3)	 U(2)

and
	 (A-4)

u(2)	 u(1)	 0

a( 2 ) = U ( 2 ) U ( 1 ) k U ( 3 )	 k U(2)
jLa	 M	 M

0	 (1 _ y)u( 3 )u( 1 )	 u(2)u(1)

Substituting these relations into equation (A-2) and expanding the determinant
x.

yields the relation

(U(2))2 
(77+U (1) ) ry M 1_1 (3) -"+7 2 - 2u (1) 71+ (U(1) ) 2] = 0	 (A-5)
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where

^(1)

77= ^(2)

defines the direction of the vector Q (v)

One solution of (A-5) is readily seen to be -77 = -u (1) which is always real. The

other solutions are obtained from the quadratic relation formed when the square

bracketed term in (A-5) is set to zero. Both solutions of the quadratic equation

in q are real if -/k /M u (3) > 0. Since U (3) = T and since the temperature is

always positive in a real physical state, this latter relation is always satisfied.

Hence three distinct characteristic surface elements exist and the system of

hydrodynamic equations under consideration are totally hyperbolic (Courant and

Hilbert, 1937), making a numerical solution along characteristic directions possible.

IM
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Figure 1. Flow Character of H + Ions Within the Earth's Magnetic Field.
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t= to t

Figure 3. Region A Is Covered by Characteristics Emerging from the t = to
Boundary, Region B Is Connected to both the t = to and s = so
Boundary Curve Segments, Whereas Region C Is Coupled to
Only the s = s o Boundary. The Subscript b Denotes Values

•	 Along the Characteristic Emerging from (so Ito).
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Figure 4. The Shocks Produced Initially at the Equator Propagate
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Figure 5. The Figure Shows That 	 -1 Characteristics (dashed lines)
Connect Computed Points (x's) to the Shock Path Whereas
the a = +1 Characteristics (dotted curves) on the Equator
Side of the Shock do not.
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