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I. INTRODUCTION
 

This final report on project NAS 2-5643, Research in Sequential 

Decoding consists of two main portions: results of Phase I and II of
 

our work. 

Phase I deals with problems of reliable transmission through noisy
 

space channels and is subdivided into four areas: A. Work on sequential
 

decoding in general and the Stack algorithm in particular. B. Work on
 

the Bootstrap Hybrid Scheme. C. Development of good convolutional codes.
 

D. Development of a new bootstrapping hybrid approach to the Viterbi de­

coding algorithm.
 

.Phase II of the project debls with problems of encoding of space
 

sources for the purpose of data compression. It is subdivided into two 

areas. A. Work on tree encoding with fidelity criterion. B. Work on
 

Permutation encoding with a fidelity criterion.
 

This report is written according to the above outline. A substantial
 

portion of it has already been presented in the three preceeaing quarterly 

progress reports. We follow the precedent established there: The results 

are summarized and their implications are discussed in the body of the 

report, but details axe left for Appendices.
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II. REPORT ON PHASE I
 

II-A. Work on Sequential Decoding
 

II-A-I.. Path Specifications in terms of Parity Digits
 

In this section we will describe how parity digits of binary con­

volutional codes should be used to speed up sequential decoding both by
 

the Fano and the Stack algorithms. We will show what information ought 

to be saved so that the decoded message sequence can be recovered by the
 

user. We confine ourselves to rate 1/2 codes, but generalization to
 

rate 1/n codes is very simple.
 

Let G(D) of degree u-i be a binary convolutional generator, and
 

let S(D) be the input information sequence. The output sequence is
 

then given by
 

DiX(D) = G(D) S(D) 	 j s i G(D) (!) 

i=o 

The digital circuit corresponding to (1) is given in Figure Ia. The
 

contents of the shift register stages P. are "O"'s at time 0. Let 

- u-2 
pn(D) = E p be the shift register state sequence after snl 

has been inserted. Then the output at.time n + 1 is 

Xn =Sn n () 

and in general, all the future outputs depend only on the initial state 

state sequence pn(D) and 'on the future inputs sn ' Sn+l..: 

i u-2DD' : nDj 	 Dj D ) (3) 
p j + n+j 

i=0 j=o j=o 
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The realization of Figure la is particularly convenient for digital
 

computer implementation. Let G*(D) be defined by
 

G(D) = g0 + DG*(D) (4) 

Then
 

Pn(D)= D- I Pn-r (D) + P-lD'I +n1 G*(D) (5) 

with P0 (D) = 0 . It follows from (2) and (5) that if the parity sequence
 

pn(D) and the truncated generator sequence G*(D) are stored in index
 
n 

rdgisters, then if s = 1 , the output will be the complement pn + 1 

of the rightmost stage of the parity register, and the next parity register 

contents will be obtained by first a shift right of that register fol­

lowed by an exclusive or into it of the contents of.the,generator register.
 
=n
 

=
Similarly, if s 0 then x = p and the next parity register contents
 

are obtained by a shift right of the former contents. It follows that
 

as long as v-1 does not exceed the sig& of the computer register, the
 

number of operations necessary to generate X(D)dods not grow with v.
 

In sequential decoding (this applies to both Fano and Stack algorF..
 

ithms), one must store as much information about a path being worked on as
 

would be necessary for recovery of the message sequence corresponding to
 

it. This is so because the path may become the decoded one in which case
 

its message sequence must be supplied to the user. We will now show how
 

s0sl,...,S I may be recovered from Pn(D) and pn-I n-2 'Po -.
 
n1 0 P6 ,., 0
 

=
provided gVl 1 (which is so without loss of generality). In fact,
 

since DI pn(D) + p>-i is of degree v-3 then it follows from (5)
 

that
 

S n (6)
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Furthermore, using (6), for all n = 1,2i...
 

n- n 2 DG*(D) (7)
 

Thus both a and Pn' (D) can be obtained from Pn(D) and p -I
 
-n-i
 

By recursion therefore, Pn(D), p0 '.°.p0 determine Sn~iSn-2,...,o
 

However, it follows directly from Figure I that for k =1,2,...
 

k-i 

p() = -) G*(D) ks ai (8) 

i=o 

where L ] denotes the operation of-dropping all negative degree terms. 

Since g- = I then 

9-I (9)
V-i
 
= Ps-2
av-2 


Let
 

RV"(D) = P' I(D) and for k=,2,...,v-l,
 

1
Rk-i (D) D + -I G*(DJ mod DV- (10) 

then it follows from (8) and (10) that
 

s. i+l for i-= 0,l,...,V-2 (11)

V_=2
 

Thus s isl,.,s .2 may be r~covered from Pv-I(D) so that only
 

p0n(),0P '°Pop determine n .... as asserted. Figure
pnD) deem nlSn_2,..,s
 

lb shows the digital circuit that does the job. It has the structure
 

that performs according to (6) and (7). However if we feed into it the
 

sequence
 

n-i -n-2 V-I
 
(12)
P0 'po ,°'.,P 0 , ,0 ... ,0 


v-1I times
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then after n - v + 1 shifts the state sequence will be RV"(D), and
 

after n - v + i shifts it will be R -i(D) . The outputs will be 

Sn-ln-2' .,'so as indicated. The computer implementation of the 

process of Figure lb is similar to that of Figure la. It shall be 

observed that it is possible to recover snSn-l,.°.$Sn-k from Pn(D) 

n-l n-2 n-k+v-2

if we feed the sequence p0 po "...,Po , 0,...,0 into Figure lb.
 

We shall now apply the above results first to Fano decoding and
 

then to Stack decoding, In Fano decoding it is necessary to generate
 

both Pn-I(D) and Pn+(D) from pn D) and when -receding to find
 

the likelihood of the prepeding mode. Consider a rate 1/2 code with
 

generators
 

x-I
 

GI(D) = gli D = + DG*1 (D)
 

i=o
 
(13)
 

v-i
 
G2(D) = g Di = I + DGC(D)
 

i=o
 

where X < v and g 1 0 = g2 ,o = g=,-I = I.. For a systematic 

code, X = I and G(D) = 0 . The coder outputs are 

= Di xI(D) = GI(D) S(D) 

1,i
 

i=o
 

(14)
 

D
x 2 (D) G2 (D) S(D) = Xl;.i


i=o
 

If Y1(D) and Y2 (D) are the corresponding received sequences (which
 

need not be binary) then a likelihood of a branch at depth n is given by
 

X(xIYl, + %(x2 .Y 2 )
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Therefore, for fast retreat, it would be useful if the decoder, iocated
 

at depth n stored the unrelative likelihood Ln , the tsequences
 

(as well as the received sequences
l,o ....,,nI and x2,o ... X2,n- I 


YI(D) and Y2 (D)) and the parity sequences
 

X-2 v-2 

pn(D)= >7Pl,jDj and Pn(D)= P, j Dj (15) 

j=o 1=0 

When advancing, along a branch pertaining to sn , the decoder generates
 

n
 
Xi,n n 1Pi,o
 

pn+l (D) = D"1 P() P, o'] + sn -(D) (16) 

for i = 1,2.. This is accomplished by two circuits similar to that of 
Figure la. It stores x ,x and replaces Pn(D) by pn+I (D) for 

2l,n ,n i 

i = 1,2. Finally, it replaces Ln by
 

Ln+I = Ln + Xil,nYl,n) + (X,nY2, ) (17) 

When retreating, the decoder replaces L byn 

L =L - X( l,nlYl,nl) - %(x 2,nlY2,nl) (18) 

and Pn (D) by 

p () ) D [pn(D) + Pk G*(D (19)+nn-lk3 +Pn 

where kI = %-2, k2 = V-2. Finally, it erases xl,n-I and x20-1 from 

its storage. The operation (19) is accomplished by the circuit of 

Figure 2a. If the code is systematic then P,(D) = 0 for all n and 



7 

X1,n = s n If the code is non-systematic then s,, ...,. I mustt
 

somehow be recovered for the user. There are two ways to do this. Either
 

at the end of the block of feeding x1.112 ,...,xl, through the circuit
° 


of Figure 2a for i = 1, or by forward generation using the circuit of 

Figure 2b that corresponds to I/G (D) . This latter method has the 

advantage that information may be released to the user before the block 

is entirely decoded. 

In stack decoding one does not recede, so there is no sense in
 

storing x l i and x2 i . However, it is essential to conserve storage
 

as far as possible. Therefore, a stack -entry corresponding to a path
 

of depth n ought to contain the sequences Pn(D) and Pn(D) as well
 

n-l n-2 %-I n+l n+l
 
as pointers to its past pl,0Pl,o..,Pl (D) and P () 

are obtained by use of circuits like Figure 1, and the decoded sequence 

Sr-l,*.,s ° is obtained at the end from a circuit of Figure lb. Of
 

course, if the code is systematic, then Pn(D) = 0 and one saves
 
n-i X-I
 

instea d of p 1l , ...P 1 .
 
Sna ,Sn 2 . os 
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II-A-2 Maintenance and Purging of the Stack and the Associated Map
 

for the Stack -DecodingAlgorithm
 

In the Stack algorithm, the Stack-entries must contain information
 

about the corresponding path necessary to extend the latter and to deter­

mine the corresponding message sequence (in case the path is closer to
 

the decoded one). In the preceding section we have shown that it is
 

advantageous if each Stack entry contains (if R =1/2) the two parity
 

sequences Pn(D) and Pn(D) and either the past parity sequence
 

n n-I n-2 %-I n 
rg = l, , .,:'' or Q =n-lSn-2,P 0'Pi, PI 0 the past information sequence 

... ,S (the two are identical for systematic codes). We will deal 

here with s 
n 

Remarks about p 
n 

would be similar and they are made 

wherever necessary in Appendix 1. 

Since s n 
is only needed at the end of and not during -the decoding 

process, access to it need not be a lost one. Thus, as described in 

n
reference [], the various s sequences are specified in a linked
 

,ma, and the appropriate one is linked to the Stack entry by a pointer.
 

The map specification itself takes advantage of the tree structure of
 

the code.
 

The map must contain at all times the specification of all paths
 

corresponding to "live" entries in the stack. Since the stack is
 

finite, it is purged-according to the principle "least likelihood first."
 

The map may contain some paths no longer in thestack, but efficient
 

storage use requires that there be as few dead-paths as possible. Hence
 

the need for map purging. A report [1] by the author describes how map
 

purging can be carried out in a manner directly dependent onstack -purging,
 

but the method-requires establishment of counters for every live map
 

branch whose content indicates the number of live paths that have that
 



branch in common. New map management strategies were developed that
 

do not require any counters.
 

The first two strategies are for a map that specifies n by 

linking positions of 1-branches to precalihg 1-branch positions., 

E.g., the path 100110100 is given by the linked position arrangement 

-- 7-- 5--- 4--l--4 - (%)-i) (v is the code constraint length and 

all paths are linked to position -(%-l) -by convention). The purging 

principle of the first strategy is as follows: a branch can be elimin­

ated from the map if its depth is t less than the depth of-the :path 

on top of the stack and if that path leads through that branch. Of
 

course, it is understood that if the furthes-t . depth of advance in the
 

tree is TMAX then all information digits up to depph IMAX - t have
 

been definitely decided. The value of t must be chosen So that the
 

probability of erroneous pmmature decision is sufficiently low.
 

It may also be desirable to make final decoding decisions according
 

to a different than I - t depth rule. For instance, let LIL2...,L 

be the cumulative likelihood values at depths 1,2,..., k of a path of
 

depth k that is on top of the stack. Then one might decide all informa­

tion digits up to depth m where
 

m A= max{?:x - > 

-and T is somesuitable fixed threshold. The second strategy purges all
 

map positions of depth m or less where the value of m is determined
 

by any arbitrary rule (m is, of course, a non-decreasing function of
 

time). This strategy does require the establishment of additional arrays
 

in storage.
 

Finally, the third maintenance and purging stragegy applies to maps
 

whose paths are specified by sequences of information digits. The stack
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has locations MI containing v-l)+k binary digits (% is the con­

-straint length of the code and k is arbitrary), the right-most being 

the most recent one. It has a counter indicating the depth of the path 

and a pointer PI to the location in the mbp that contains the preceeding 

path sequence of length k . The map has locations M2 of k digits, 

pointers MPP indicating the location of the preceeding path sequence, 

and pointers NPL linking all M2 locations that correspond to the 

same path depth. There are also pointers to the first and last map 

loqations of any given live depth (a fixed number j of depths are 

live at any time) and a pointer to the first free (or replaceable) map 

location. If IMAX is the depth of deepest penetration in the tree, 

then the purging strategy assumes that the map will contain no locations 

referring to depths prece di:hg IMAX - (v - 1) - jk . 

The details of the three strategies are described in Appendix 1.
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II-A-3 Multibranch Advance through the Tree of the Decoding Algorithm
 

Rate 1/2 binary codes have 2 branches leaving every node, each 

branch-containing 2 digits. In practice codes with 2 = I are used 

,only, since an advance by one node involves finding the branch whose 

th 
likelihood is m largest. The straight-forward way of doing this is 

to evaluate each of the 29 likelihoods and then order them. This is 

th 
too large an undertaking. However, if the m branch could be looked 

up directly in a moderate size table, making > 1 would speed-up 

both Fano and -stack decoding appreciably. Furthermore, simulation has 

shown that the needed stack size could also be substantially reduced. 

In Appendix 2 we show how such tables can be constructed for binary 

input symmetric channels.- The table size grows as 1(2 . The coefficient 

K is larger for non-systematid -codesfor the BSC than for systematic 

tones, and an extension is more cumbersome. For a channel with 2 inputs 

22
 
and 2j outputs the table sizes are also of size K2 , but exact 

likelihood ordering is not possible. However, the approximation seems
 

sufficiently close as to make the procedure a worthwhile one.
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II-B Work on Bootstrap Hybrid Decoding
 

II-B-I Simulations -of Bootstrap Hybrid Decoding over the BSC
 

Appendix 2 contains a detailed description of three (progressively
 

more sophisticated) bootstrap hybrid decoding algorithms as used over
 

the BSC. The first is the rudimentary algorithm in which the binary
 

channel state stream is modified only if some received stream is completely
 

decoded. The second is the pull-up algorithm where the state stream is
 

modified even after partial decoding of some stream. Specifically, if
 

the furthest advance along a stream is to depth IMAX then all digits
 

up to depth 'MAX - J are considered definitely decoded and the state
 

stream is therefore modified up to depth IMAX-J . Finally, the two-way 

algorithm is the pull-up algorithm with the added feature that attempts
 

at stream decoding are made in both forward and backward directions. It
 

is based on the observation of Dr. Dale Lumb that it is possible to
 

decode a convolutional code backward as well as forward, provided each
 

-string of 1' information symbols is terminated by v-1 dummy bits known
 

to the decoder. The bootstrap algorithm starts by decoding forward in the
 

pull-up mode and continues to do -so until a full decoding round takes
 

place without completing any of the streams. In that case decoding in
 

the backward direction starts and continues until another unsuccessful.
 

full decoding round occurs, in which case forward decoding resumes, etc.
 

A stack of 1000 entries is used and if succeeding forward and backward
 

rounds end without an advance of more than -20 branches on any stream in
 

either direction, the stack-is increased to 8000 entries for the next
 

two rounds.
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Table I contains a summary of three randomly selected decoding runs 

that use the rudimentary bootstrap hybrid decoding scheme of convolu­

tional rate R = .5 over a IBSC with crossover probability p = .07 

(Rcom = .4). Stack decoding is utilized. We use m = 10 streams so 

the net rate is RNET = .45. Other parameters of interest are block 

length r = 1000, block termination t = 25, and number of decoding steps 

allowed on a stream M = 5000. The printout indicates which of the 

m = 10 streams was worked on (JNOW), how many decoding steps were taken 

(N3), how deeply the decoder penetrated (IMAX) into the tree within
 

the N3 steps taken, and how many undecoded streams were left (KLEFT).
 

Finally, the speed factor (SF) is given for the entire block. SF is
 

defined as the ratio of the total number of decoding steps taken to the
 

number of information lists decoded. The Table shows quite clearly how
 

fast the remaining streams can be decoded once the first three-or four
 

are known.
 

Table 2 slows decoding progress in a typical run of the pull-up
 

algorithm over a BSC with crossover probability p = .08. A convolu­

tional code of rate R = 1/2 was used and m = 10 streams formed a
 

block. The maximum allocation M = 5000 and the stack had 700 entries.
 

The parameters JNOW, N3, IMAX, KLEFT, SF, and KTRY have the same
 

meaning-as in Table 1. The value of JSTART indicates the depth of the
 

node at which the decoding of the particular stream began. The definitely
 

decoded back-up limit was J = '200. If in a decoding round no stream
 

advanced by more than 20 levels beyond its previous maximal depth, M
 

was temporarily increased to 20000 and the stack-size to 8000 until
 

such an advance took place. This phenomenon can be observed in row -20
 

of the Table. It becomes apparent for the present example that'without
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bootstrapping it would be completely impossible to decode 9 of the 10
 

received-streams of this block'as the older Falconer scheme would require.
 

In fact, we were not able to decode the fifth stream without'27000 steps
 

even when using information from the decoded-streams 2 and 7 and the
 

-almost decoded stream 8> It seems fair to say that the Falconer-scheme
 

could decode at most three of the ten-received streams and no more.
 

Bootstrapping is no "endgame"--it does not complicate the decoding
 

:search and ought to be used right from the start.
 

Table 3 shows an example of two-way decodingover a BSC with 

crossover probability p = .09. The parameters JNOW, N3, IMAX, JSTART, 

KLEFT, SF and KTRY have the meaning given them in Table 2, except that 

when decoding is backward, nodes are numbered in reverse order so that 

forward node 1000 is backward node 1, etc. (this affects IMAX -and 

JSTART). The parameters IFORW is 1 when forward decoding took place 

and is 2 otherwise. The parameter KROUND indicates how many streams 

were attempted in a given direction since the last successful decoding. 

When its value reaches that of KIEFT, decoding direction is reversed.
 

We have run -all of our simulations using the stack decoding algorithm 

applied to transmission of data over a binary symmetric channel with 

crossover probability p . The systematic code of constraint length 

v = 72 whose taps in octal notation are 651102104421022041101101 

(obtained by Costello [1969]) was used, the number of streams was m = 10
 

(this value was picked arbitrarily without any attempt -at optimization)
 

and there were always 1000 true information bits per information stream.
 

[i.e. 9000 bits per block].
 

Our simulation results are summarized in Table 4 which gives certain
 

parameters of interest that we now explain. For different crossover
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probabilities we have used different bootstrapping algorithms. The
 

crossover probability p = .056 was chosen because the corresponding
 

channel has R = .45 which is equal to the net rate of-our scheme.
 
comp
 

Hence the dB gain over straight sequential decoding is 0 . Figure 3
 

is based on 2000 blocks of data and shows the distribution-of computation
 

per decoded information bit [speed factor] when the rudimentary algorithm
 

is used. As is usual, an extension ofa node by the decoder serves as a
 

unit of computation, and the speed factor was obtained by simply dividing
 

by 9000 the total number of computations necessary for decoding of a
 

block (the-rudiinentary algorithm is a block scheme and it is not clear
 

how to assign particular decoding steps to particular information bits).
 

The startling result of this simulation is that if tail behavior of the
 

distribution could be extrapolated as a straight line on the log-log plot
 

(which is certainl4 O.K. in sequential decoding) then the asymptotic
 

computational distribution would be
 

P [SF > x3 Z1380 x-12.8
 

This would mean that a speed factor 5.17 would be needed only once in
 

106 blocks, and a speed factor of 8.92 only once in 109 blocks!
 

However, a glance at Table 4 shows that the largest limiting exponent
 

(derived according to the analysis of reference [1]) can only be 2.74
 

and we are at this time at a loss to explain this discrepancy. The most
 

likely reason is insufficient statistics - 2000 sample points is not enough.*
 

*It is difficult to extend the sample size substantially. 2000 blocks
 

involves 18 x 106 bits and our Fortran algorithm took 80 minutes of IBM
 
360-91 computer running time. A similar discrepancy between an observed
 
and theoretical Pareto exponent was reported by Forney r2] who did high­
rate simulations of sequential- decoding on the Gaussian channel. In
 
his case it turned out that a theoretical exponent of 0.087 was observed
 
to have an experimental value in the range 0.38-0.41.
 

http:0.38-0.41


Under this hypothesis the time distribution will assume its final .slope
 

-3
somewhere below the probability 10 . The intriguing point is that 

should this take place at a small enough probability then the practical 

exponent might still be 12.8! Another cause for the anomaly might be the 

various computation truncations inherent in our algorithm. We shall 

investigate further and report more completely at -a later date. 

In any case, if the observed behavior can be extrapolated even
 

approximately then the bootstrapping algbrithm may be used to great
 

advantage even at rates equal to Rcomp in order to stakiie the de­

coding effort and prevent block erasures due to buffer overflow. It is
 

particularly interesting that in the 2000 blocks decoded, only one required
 

more than 12 attempts at stream decoding (the minimum is 9). The capacity
 

of this channel is C = .69, so R/C = .731, and we have entered this
 

point as a circle into the plot of Figure 5.
 

We feel that-about the noisiest BSC-over which it is practicable to
 

run the rudimentary algorithm with -strehm length r = 1000 bits is one
 

whose crossover probability is p = .07. Figure 4 displays the -cor­

responding computational distribution. Again, the apparent Pareto
 

exponent of 2.66 is larger than the theoretical maximum of 2.2. The
 

R/C parameter-of this experiment is entered as a triangle in Figur6 5.
 

As a next experiment we ran the pull-up algorithm over the BSC with
 

crossover probability p = .08. We used a stack with 1000 entries and
 

stopped -computation on a stream either if it was decoded or if a stack
 

overflow took place. We considered permanently decoded all but the last
 

2000 bits of the path that was in the stack immediately before it over­

flowed. This caused-no errors in the 1000 blocks that we ran and suc­

cessfully decoded. If a round was completed without advancing the
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decoding of any of the remaining streams by more than 20 branches then
 

the stack -size was increased to 8000 for the next round. We did not
 

obtain-an experimental distribution, but only the average and maximal
 

speed factors. The R/C parameter of this experiment is entered as
 

a square in Figure 5.
 

The final entry in Table 4 involves a BSC with crossover -probability
 

p m .09 over which we ran a two-way algorithm.
 

Since two-way decoding uses more information than the one-way kind,
 

the bounds of-reference [1] are not applicable to the former. Neverthe­

less, the entry in the lower bound to Pareto exponent column of Table 4
 

is derived according to the corresponding formula of reference [1].
 

Again, our simulation only determined the average and the maximal speed
 

factors based on a run of 500 blocks. The R/C parameter. of this
 

experiment is entered-as a star in Figure 5.
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TABLE I
 

Simulation Examples of Rudimentary Bootstrap
 

Hybrid Decodingof RNET'= .45, m.= 10 over BSC with 


Block 1
 

.JNOW N3 IMAX KLEFT 

1 5000 .473 10 
2 5000 1008 10 
3 4864 249 10 
4 .1948 1025 9 

5 1534 1025 8 

6 "3655 1025 7 
7 1320 1025 6 
,8 '1849 1025 5 
9 1495 1025 4 

10 1178 1025 3 

1 1350 1025 2 
2 1079 1025 1 

SF = 3.36 

Block 2
 

JNOW N3 IMAX "KLEFT
 

1 5000 842 10
 

2 5000 749 10
 
3 2610 1025 9
 

4 5000 1010 9
 
5 5000 929 9
 
6 -3735 1025 8
 
7 2132 1025 7
 
"8 5000 948 7
 
9 2553 1025 6
 

"10 5000 552 6
 
.1 1739 1025 5
 
2 '1863 .1025 4
 

4 1297 1025 3
 

5 1160 1025 2
 
8 1066 "1025 1
 

SF = 5.34 

p,= 0.07
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TABLE.I CONT'f)
 

Block'3 

JNOW N3 IMAX KLEFT 

1 -2524 1025 9 
2 4377 278 9 
3 5000 239 9 
4 4880 '1025 8 
,5 "2288 -1025 7 
-6 '3275 1025 6 
17 1659 1025 5 
8 1246 1025 4 
-9 1320 1025 3 
10 -1926 "1025 2 
.2 1074 1025 1 

SF = 3.28 
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TABLE 2
 

A Simulation Example of'Pull-up.Bootstrap Hybrid 
Decoding of RNET = .45, m 10 over BSC with p = 0.08 

JNOW N3 IMAX JSTART KLEFT
 

1 2744 215 0 10
 
2- 2963 1025 0 9
 
3 2891 219 0 9
 
"4 1858 93 0 9
 
5 2314 141 0 9
 
6 2207 192 0 9
 
7 3447 1025 0 8
 
8 5000 944 0 8
 
9 2958 294 0 8
 

10 2353 339 0 8
 
1 2729 235 15 8
 
3 2143 212 19 8
 
4 3052 212 0 8
 
5 2329 146 0 8
 
6 2767 -166 0 8
 
8 3301 944 744 8
 
9 2037 293 94 8
 

-10 2468 341 139 -8
 
1 2834 235 35 8
 
5 27062 .800 0 8
 
6 3030 287 -0 8
 
8 -3301 944 744 8
 
9 2283 287 94 8
 

10 2422 341 141 8
 
1 5000 762 35 8
 
3 2421 1025 19 7
 
4 1322 1025 12 6
 
5 2671 716 600 6
 
6 2913 292 87 6
 
8 2799 944 744 6
 
9 5000 852 94 6
 

10 2040 1025 141 5
 
1 839 1025 562 4
 
5 774 1025 600 3
 
6 979 1025 92 2
 
8 302 1025 744 1
 

SF = 13.05
 

KTRY = -36
 



TABLE 3
 

A Simulation Example -of Two-way Bootstrap Hybrid Decoding
 
=
of %ET 0.45, m = -10 over .BSC with p = 0.09
 

JNOW N3 IMAX JSTART KLEFT KROUND IFORM
 

1 5910 272 0 10 1 1 
2 5356 139 0 10 2 1 
3 5731 .354 0 10 3 1 
4 7514 640 0 10 4 1 
5 4262 182 0 10 5 1 
6 5537 164 0 10 6 1 
7 3770 164 0 10 7 1 
8 6002 200 0 10 8 1 
9 5819 351 0 10 9 1 
10 8401 734 .0 10 10 1 
1 5695 443 0 10 1 2 
2 6542 589 0 10 2 2 
3 8395 307 0 10 3 2 
4 3740 166 0 10 4 -2 
5 4103 136 0 10 5 2 
6 4671 114 0 10 6 2 
7 4329 277 0 10 7 2 
8 6909 733 0 10 8 2 
9 5013 157 0 10 9 2 

10 5373 332 0 10 10 2 
1 3650 262 72 10 1 1 
2 3306 1071 0 9 0 1 
3 4589 388 154 9 1 1 
4 4149 651 440 9 2 1 
5 5443 228 0 9 3 1 
6 5440 254 0 9 4 1 
7 10265 950 0 9 5 1 
8 4095 224 0 9 6 1 
9 5738 351 151 9 7 1 

10 4480 722 534 9 8 1 
1 5751 244 72 9 9 1 
3 6377 309 107 9 1 2 
4 8493 278 0 9 2 2 
5 7566 715 0 9 3 2 
6 4788 373 0 9 4 2 
7 975 1071 77 8 0 2 
8 4283 874 533 8 1 2 
9 5202 443 0 8 2 2 

10 3805 1071 132 7 0 2 
1 4685 465 24St 7 1 2 
3 3510 1071 109 6 0 2 
4 5007 443 78 6 1 2 
5 3260 1071 515 5 0 2 
6 1445 1071 173 4 0 2 
8 438 1071 674 3 0 2 
9 1230 1071 243' 2 0 2 
1 779 1071 265 1 0 2 

SF = 25.75 KTRY = 47 



TABLE 4
 

Summary of Simulation Parameters for
 

BSC, NET =0.45, ,m =10
 

0 L 

ro ~ a) 00 4 

Q)l 0 d M Cd 0 0 10 
0 c 0 0 0J LW.-4. 

(v r4 rq -A0 .,4 0 .,-)40 c c 0 

0rIn 
M 1 

5-Mr 

4 
fra-to4-a)iC 
OCQbo $ 

0 

C 
Cci 

C 

aN A4 

4) 0 

-fr(S)
PrS4-3 

o 
4-u 
C)0) 

0 
44 
a) 

4 
0) 

'1 

(D 

0.0 -V CC0.f ) C)Q $ a.0 'CW WO 0 S W 0 
02,H Opqa)4 C DC C) 0 >O Ma Wn) 

0.056 0.00 0.731 1.0 2.74 2.25 rudim 12.8 1.53f 3.93 2000 

0.07 0.54 0.788 0.75 2.2 1.5 rudim 2.66 4.23 16.3 500 

0,08 0.97 0.837 0.55 1.9 1.2 pull u----------7.00 24.5 1000 

0,09 1.36 0.887 0.41 1.6 0.81 two way--------22.90 100.0 500 
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II-B"2. 	 Boundson Computing Effort for Bootstrap Hybrid Decoding-on
 

Binary Input Channels
 

Let us generalize the encoding and decoding methods ,of Appendix 3
 

to channels -symmetrical from the input -that have two input -symbols and 

an arbitrary number -b(> 3) of output symbols. The encoding is ,one 

involving m-I information streams and an additional parity check
 

-stream. Suppose we receive the m streams and wish to decode the last
 

of.them -(this happens to make notati-on convenient and is without loss
 

of generality), y,(m), y2 (m),... Since for.every time-interval i the
 

receiver has at its disposal the vector
 

Ym)= 	 (Y(1),.y(2),...,yi(m)) (1)
 

the sequential decoder-ought to calculate the likelihood .function % (i)
 

at depth 	i -bythe formula (capitals denote random variables)
 

Pf.(m) =y.im) /x i (M 
X (i) = log - R (2) 

P t(M) = Y M 

m 

where the algebraic constraint 5j x'(j) = 0 is assumed to hold and 

must be used when calculating the -probabilities in the argument of the 

logarithm. 
th 

It is shown in reference [3] that for the j received-stream 

the expression (2) can be simplified to have the form 

tm(i) = 1 	- R - log rI ± Q(y.(m))] 

+ log q(xj)/yi(j)) + 2q (ai) ) 	 (3) 
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where xi(J) e (0,1),
 

q(xly) w(ylx) (4)
w(ylo) + w(y1)
 

and
 
m 

Q(Vyi(m)) [q(0jyi(j)) - q(1/yi(j))] (5) 

j=l
 

The above formula suggests an efficient instrumentation for hybrid decoding
 

of the class of channels considered. The state of the channel at the
 

various time instants is given by the -sequence Q(Yl(m)), Q(y2 (m)),
 

Q(Y3(m)).... In fact, except for Q(y.(j)), the formula (3) is a func­
p.'. 

.x.(j) and yi (j) that themselves pertain to the jth

Lion of events 


3.­

stream.
 

Thus, upon receiving the symbols that correspond-to the m trans­

mitted -streams, the decoder will compute the channel state -stream whose
 

ith entry Qi will be -the number Q(yi-(m))* (i.e. not a binary digit
 

.th
 
signifying the parity of the i1 position as before). Decoding will
 

then proceed as outlined in Appendix 3, based on the likelihood func­

th
 
tion (3), until one of the -streams, say the ji , is decoded. The
 

necessary recomputation of the channel state stream will -simply consist
 

thI

of replacing the i entry Qi by its new value Q1=Qi/[2q(xi-(J)/yi(Jl))-l
 

where -xi(jl) is the decoder's estimate of the ith transmitted digit
 

th
 
of the stream. Decoding of the remaining m-i .streams wi-il then
 

start from the beginning and will continue to use the likelihood (3) 

V .th 
based on the new state stream values Qi. When a stream, -say the j.
 

Since the number of poasible values-of 'Q. is rather limited, the state
 
stream would in practice contain only the adaress A(Qi) of a table entry
 
containing the number Q. . Or, even better, there would be a likelihood
 
table whose entries woula be formed from the value of the :ttiplet [xi(J)
 ,
 
yi(j), A(Qi)]. The problem of -limiting the size of such a table is dis­
cussed at the .ena of this section.
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th


is decoded, the ± state stream entries will be replaced by
 
It
 

entries Qi = Qi /[2q(xi(J2)/Yi(j2)) - 1], etc., until just one stream 

remains undecoded. The latter's identity will be determined from the 

parity constraint. 

As mentioned in footnote t there might arise a problem of-storing 

the state stream entries Q. . Let us consider the case where the output 

alphabet size _b is even. Since the channel is symmetric from the 

input, every aigit y can be represented by a pair (u,v) where u 

is binary, v e (o,l,...,(b/2)-l1 and 

w(u=O,v/x) = w(u=l,v/x E 1) (6) 

for all x.e (0,1) and v . It follows then that
 

g(v). = q(O/u = O,v) q(1/u = O,v) = 

- [q(O/u = l,v) - q(l/u = l,v)] (7) 

and therefore,.letting
 

z u @ u2 ED"". @m (8) 

we get that
 
m 

z
Q(y(m)) = (-1) FZ g(v) (9) 

j=l 

Since
 

2q(x/uv) I1 q(O/x 49 u,v) q(l/x (D u, v).
 

= (-l)X D U -g(v)
 

.th
 
then if -i (jl) is the decoder's final.estimate of the f transmitted
 

digit on the j, -stream, Q. is to be replaced by its new value
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, i ) + u(Jl) 

Q (-i) 1 Qi/g(vi ) (10) 

If n(v) denotes the number of v. 's whose value is v , then after 

m-k -streams have been decoded, Qi will have the form 

b/2­

n
Qi = (-)fl g(v) (v ) (11) 

v=o 

where g(b/2) = 1 and n(b/2) = m-k . Since 

b/2--.­

= m§17 n(v) 

v=0 

it follows that Q. must have one of at most
 

2 2 +r),
 

values. Hence a complete likelihood table -ould be'of size
 

Rb (12)
 

The valuesof (12) for a two bit and three bit output quantization
 

with m = 10 are , 528 and 16016., respectively. The -latter figure
 

certainly seemsexcessive and yet .three.btt quantization is used quite
 

frequently. One-possible remedy is -not-touse all available -information
 

at -thereceiver. The simplest would be to use.in the-state-stream only
 

the points 'z defined in (8) and use the .likelihood
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W,-(u:('j1v V.i J4; 'z.Jx :Cj:)Yl 
=m(i)log m 2- - 1I2 - R (13) 

where 

W (OjVYO/O) c Wm(lpvO/O) = w(Ov/O) %_ (0) 

•W (oxl/O) = wM(l,v/l) = w(O,v/O) ._1 (l) (4) 

wm(lvO/O) = m(Ov$O/l) w(lpv/O) %_l(a) 

Wm(lV:l/0) = (O-v,/l) = -w(-,v/O) _ci,(o) 

is defined as in (i), and
 

b/2 - 1
 

p w(l,1/O) (15)
 

v=O
 

Obviously, less severe restrictions on the information used are also 

possible. E.G., for the purposes of Qi - -computation one may wish to 

partition the v-alphabet into subsets and represent each subset by some 

new letter v1. The likelihood table size is then obtained by formula (12)
 

into which 2,the size .ofthe v' alphabet, has been substituted forb/2.
 

Let us note that the switch from likelihood (2) to (13) simply
 

involves a switch between equivalent channels used by the receiver for
 

decoding. The maximum information channel (using the Q-state stream)
 

is based on transmission probability P{Yi(m) = y.(m) xi(m)1 while
 

the binary state stream channel is based on wM(uiW(.?vi(),zi/AW)).
 

In general, let y(y/x) denote the transmission probability of the
 

equivalent channel used when decoding one of 'k undecoded streams,
 

and define the function
 

(/
 
E (a) -= (1+G) -log (Y/) (16)
 

YNw ,=-o
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Thus, for the BSC Ek(a) is given.by
 

Ek(a) = a i(-p)qk-1(0)]lt+[p qk _l +- log + 1] 

_ N­
+ ( )
) i(-p)-qkl[p q 1_ (17)
 

For the binary input, b-nary output symmetrical channel with a Q-type
 

state stream it -is
 

= -log (y(k)/o) [f+(y(k-1)) + f z(k-l))] 1-Ia 
IEk(a) 

Sy(k) i+a)-+ fwykml f+I&(k-i)) ~y(k-i))3 +kt, (18) 

where
 
k-i
 

f+(y(k-1)) = T [w(y(i)/O) + w(y(i)/i)] 

i=l
 

k-I 

f_-(y(k-)) =T [w(y(iy/O) - w(y(i)/i)J (19) 

i=1 

Finally, for the same channel, ;when only the parity is used in the state
 

stream, 1
 

ida
 

Ek(a) = a - log w(O,v/)qk I (0)] + 

qk- ~l (l)itII~[w~~v/) 5 + [I[w(O,v/O) k + 

[wliv(1
q1-t-(

[w(l,v/O) _kl]~j )(20)
 

http:given.by
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In reference [3] the following two theorems are proven:
 

Theorem 1
 

Let R be the ,convolut-onal coding rate used in each of m streams
 

of a decoding block. The bootstrap hybrid decoding procedure basea on
 
th 

wk(Y/x) leans to a finite y moment or computation per decoded digit 

provided 

min (C(k(R)), (k(R) + 1) a(=)) > y (21) 

is-satisfied,-where k(R) is the unique integer such that
 

k(R) a(m) < a(k(R)) (22) 

a(k(R)+l) :, (k(R)+1) a() . 

The fun.cti-on a(k) i-s the unique solution-of
 

E'k(a) Ek( 2 ) 

R = - for -2 < R < C (23a)
2a-­

and
 

Ek(2) Ek(2)
 

c(k) .= R for 0 < R*< 2 (23b)
 

The function Ek() is the concave,-positive, increasing function of 

a > 0 defined in (16). 

Theorem 2 

E[N ] grows exponentially with block-length I, whenever 

-min a(2J, .ka(k)] < y (24) 

where a(k) -is the solution of
 

Ek(a)

R 
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In -this theorem it is assumed .that R < C , and that the convolutional
 

code used is a good-one in -the-sense ,that -its associated probability of
 

-error *ts-exponentially optimal.
 

-Obviously, the net transmission rate (taking into account .the loss
 

due to the extra parity stream) is
 

- mNET R (25) 

Ordinarily, one would wi-sh to transmit at a rate RNET exceeding Rcomp 
L 

of the underlying channel so that .a(w) < I . Define RLOOT(y) -to be 

the -supremumof rates for which -(21) is 'satisfied. Then-we can say that 

the yth  computational moment will be tounded for the bootstrap hybrid 

scheme using m streams provided the net rate satisfies 

m-_ RL
 
RNET < m RBOOT (N) (26)
 

Define RU (y) as the greatest lower bound on rates for which (24-)
 

is satisfied. Then
 

th

t'he Y computational moment will grow exponentially with 

block length F if 

in-i U 

RNET > m RBOOT (y) (27) 

In reference [3] we show that OOT(Y) and RBOOT -can be 

computed by the formulas 

RBOO(y ) = min max [-L Ek(), - E (Y) (28) 

and 

RBOOT(y) = min I E2 (y) mi k (29)
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When evaluating RLo0(y) one computes the differences L Ej), 

for k -= 2i3,... until their value becomes negative. If thi-s -takes place 

for k+ then 

+L
RBOOT Y .+- Y k
RL (y) = min[- E, (Y) k+ E ()(30)
 

It can be shown that the function Ek(), k = 3,4,... has at
 

most one local minimum and no local maxima. Therefore when trying to
 

evaluate OT(Y) one computes the differences
 

k E() Ek+l(_

kVC Y k+lk~l
 

for k = 3,4,... until their value becomes negative. If this takes 

place for k± , then 

RBOOT(Y) = min I' Eb(y), " (31) 

The qualitative improvement achieved by bootstrap hybrid decoding
 

over straight-sequential decoding for the BSC can be estimated -from a
 

comparison of the curve Rcomp/C vs. p (C is the capacity) with the
 

-curve ROOT(1)/C vs. p. Figure 5 shows the corresponding plots together
 
with those of %AL(l)/C vs. p and RBOOT(1)/C vs. p. The quantity
 

RFAL(1) is the rate above which the Falconer [4] scheme has an un­

bounded first computation moment. None of the latter three curves
 

takes account of the algebraic degradation factor a-- (see (26)) which
 m
 

must be used when any particular hybrid-set-up is compared with straight­

sequential decoding.
 

Figure 6 shows the curves Rcomp' RBOOT(1) 00T ( ) RFAL, and C
 

plotted against the signal-to-noise ratio (in dB) per bitE transmitted
 

through a hard-quantized gaussian channel with binary inputs. It can be
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seen that using convolutional codes-of rate 1/2 a hybrid scheme-with m = 10
 

streams will-perform satisfactorily with an SNR per information bit that
 

is at least 1.47 db smaller than the SNR needed for straight sequential
 

decoding. -Figure -7shows the first four curves normalized by the fifth
 

(capacityc). Finally, in Figure 8 we plot the values of y vs. SNR per
 

LOOTCY) 1/2 (Y1wer)

transmitted list that are solutions to equations 


forwer 1/2 

and ROOT( ) = 1/2 upper) r the BSC obtained from a qaussian 

additive noise channel. For -comparisonwe also plot the Pareto exponent 

a that corresponds to straight sequential decoding. In this connection 

the reader should recall the simulatio results of the prece.dihg; section 

that seemed to indicate that the "practical" Pareto exponent is higher 

than the limiting theoretical one of Figure 8. 

We have also evaluated theoretical performance curves for the binary 

input Gaussian channel with octal and quarternary quantization. To make 

-comparison easy, Figures 10 through 15 are all drawn to the same scale. 

The quantization levels used throughout are the -ones maximizing Rcomp, as 

obtained by Lumbf 5 I Therefore slight improvements might be possible in 

the Q, RBOOT(1) , and R OT(1) curves, if the optimization were to be 

carried out with respect to those parameters. Figure 10 shows the rela­

tionship between capacities and R 's for binary, quarternary, and 

RUOO (y) = 

comp
 

octal quantizations. Figure 9 gives the ratios R omp/C for these quan­

tizations which show the margin of possible improvement attainable through
 

niore -sophisticatedmethods ofw1ikhbootstrap hybrid decoding is'an example.
 

We -see that the margin decreases as the number of quantization levels in­

creases.
 

Figure 11 contains plots of ROOT (1) vs. SNR -per tiansmitted'
 

digits for the three kinds of quantization when maximal information is
 

used to form the state stream. Figure 12 provides the -same curves when
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the state stream is binary instead (i.e. when the likelihood is given by
 

(13)). The next two figures show clearly that the degradation in per­

formance is only a very slight one and it might well be worth that price
 

to obtain the attendant reduction in decoder complexity. Figure 13
 
• L
 

compares C and Rcomp for the quarternary channel with RBOOT(1) curves
 

for the binary and full channel state. Figure 14 does the same things for
 

the octal channel. However, it turns out that in this case the difference
 

between full channel state performance -and a "quarternary" one is in
 

the third significant digit and thus the latter curve cannot be entered
 

separately into the graph. A "quarternary" state is one that would
 

result if the 8 channel outputs were -optimally partitioned into 4
 

classes and membership in the latter was used to determine the Q-type
 

channel state, Finally, Figure 15 is a plot of RU (1) vs. SNR per

BOOT
 

transmitted bit for binary, quarternary and octal channel quantizations
 

when a binary channel state is used. The quarternary and octal curves
 

close to capacity that it would be impossible to draw the ROOT(1)
are so 


curves for full information channel states.
 

As the last comment we would like to caution once more that none
 

of the RBOOT(Y) or RUO(y
 ) iurves involve the algebraic loss fac­

tor -- that must be used for fair comparison with non-hybrid schemes.
 m
 



II-B-3. A Bound on a Computational Parameter of Bootstrap Hybrid Decoding
 

Let a bootstrap hybrid scheme involve transmission of m -streams,
 

m-i carrying information. Let the decoding be of the rudimentary'kind:
 

one either succeeds in decoding -astream entirely, in which base the state
 

information is adjusted and decoding of the next stream is attempted, or
 

one does not -succeed in decoding a stream in which case one passes to
 

the next stream without having made any state adjustment. Decoding of
 

any undecoded stream always starts from the first digit, regardless of
 

whether previous decoding attempts at that stream have been made. Let
 

us next define Ni(K) to be the number of decoding steps in the first
 

ith
incorrect -subset of the among the K -streams that have been left
 

undecoded (i.e. M > K streams'were received, M-K were decoded by the 

hybrid method, and K streams--probably the most difficult -ones--are 

still to be decoded). We suggest that a very good measure-of computational 

complexity is the parameter
 

E[ max mm N (K) I 
li<K2_<M 

which may be interpreted as the-expected maximum number of decoding
 

steps that need be done in the course of decoding of the'entire hybrid
 

block in any first incorrect subset.
 

In Appendix 4 we find the rate below which the above quantity is
 

bounded by a constant. The derivation is applicable to all channels
 

symmetrical from the input (included in this class are all discrete
 

channels derived through quantization of §aussian additive noise chan­

nels)0 In the next reporting period we will evaluate these limiting
 

-rates for-some channels of interest.
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II-C. Development of Good Convolutional Codes
 

A binary, rate R = 1/n convolutional code of constraint length *v
 

can be specified by n generators
 

G( j ) (D )  1g J) + gU)D + gJ)D 2 + ... + -(J) D 'V 1,2...n 

(1) 

(1) 
It is assumed that for at least -one value of j, and j2 , go = 1 and 

=g(V i1 lj2e[,2,...,n] 
=V~ 1 , :l~~2 e I 

Every input sequence 0il,'....k can be represented by its D­

transform polynomial 

DkI(D) = i 0 + ilD ... + i k (2) 

If by convention, it = 0 for t > K, then the encoder outputs for such
 

an input are the sequenpes
 

( j ) D + k X(J)(D) = G(J)(D)- T(D)= x j)+ xJD + . x l 1 

1 \)+k-I = 2 

(3) 

where
 
v-1 

1-~ "'0 V-1 = t-mgm
'~j got.0 e it14g 1 E) ... E) i I-~g()i g~i) 

(4) 

A convolutional code is called systematic if G(1 ) 1 . In that 

case X (I) (D) = I(D) which is desirable for some applications. 

GF(2)

denotes summation over
E 

Edenotes -summation over the integers.
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The output sequences produced by the encoder are conveniently re­

presented by the state space Urelliqz diagram -of the code given in
 

Figure 16. The state S(t) of the encoder at time t is determined by
 

the (\-l) precedifig- information digits;
 

,. (5).S(t) = (i t l t . . i t _V _l) 

•A v2-i
 
where 0 for t < 0 and t > k . There are 2 different
it 


states for an encoder of constraint length v. For each state S(t)
 

there are two -possible values of S(t+l), depending on whether it= 0
 

or I The state space diagram shows the possible transitions for
 

t = 0,1,2,.... The branches in the diagram are labelled with the outputs
 

corresponding to the transitions. The trellis of Figure 16 corresponds
 

to the rate 1/2 code G(l)(D) = I+D2 , G(2 )(D) = I + D + D Since

(Jl) 

90go = for at least one j, e 1,2,...,n , the two branches diverging
 
(j 2 )

from a state cannot be identical. Similarly, since g- 1 for at
 

least one j2 1,2,...,n , the two branches converging into a
 

state cannot be identical.
 

The -coder is initially started in state S(0) = = (0,0,,..,0). 

For every input polynomial I(D), there is a series of state transitions 

O = S(0)---> S(1)---,S(2)----> o.. S(u+k-l)----- S(v+k) = 0 . Tracing 

the path corresponding to this series of.transitions through the trellis 

diagram determines the output sequence corresponding to I(D). 

Let 0* -denote the path 0-> 0-40 .o. -- ---- i.e. the 

path corresponding -to an input of all zeros. Massey and-Sain [6] have 

called a code catastrophic if there is an infinite path through the trellis 

that has no branch in common with the 0* -path and whose Hamming weight 

6is finite. The re~son for this nomenclature is that in such a co1e a
 

finite number of transmission errors may cause an infinite number of
 



errors in the decoded information sequence I(D) . Massey and Sain [6]
 

have shown that a rate 1/n code is catastrophic if and only if
 

g.c.d. G(D), G2(D),...,Gn(Dj # Dr (6) 

for some non-negative integer, r.
 

Let Xt = [xt ), x ,..,x denote the block of n output 

symbols at time t . The minimum distance of the code generated .by 

G(J)D) , j = 1,2,...,n is 

V-I n
 

' d (G(1),...,G(n) =min zu M)(xt) =rainYZ M(x(J)(D) mod D)
mI(D) I (D)
 

i0=l t=0 i0=l j=1
 
- (7) 

-is the usual Hamming weight -operator. In the trellis diagram
 

this corresponds to the weight of the minimum weight path of exactly v
 

branches which diverges from the state 0 at t = 0 . Bussgang [7]
 

Lin and Lync [8] , and Costello [9] have explored methods for -con­

structing codes with large minimum distance.
 

The free distance of the code is
 

where -


Wn 

dt (G(1),...,G(n) =min Zu (Xt) =min %(X (J)(D)) (8) 
I(D) I(D) 
i0=l t=0 i0=l j=l 

In the trellis diagram this corresponds to the weight -of the minimum
 

weight path of arbitrary length that diverges from the state 0 at
 

t = 0 and reconverges to the state 0 at some later time. For the
 

binary symmetric channel, maximum likelihood decoding corresponds to a
 

search for that trellis path whose Hamming distance from the received
 

sequence is minimal. Since convolutional codes are linear, free
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distance is a good indication of -maximum likelihood decoding -strength of
 

-the code at least for low crossover probabilities. Minimum distance is
 

in the same way important for feedback decoding of convolutional codes.
 

Moreover, the computational effort in sequential decoding seems strongly
 

influenced by d
 

dt10
 
We have derived the following upper bound 

on 


Theorem I
 

For all rate I/n convolutional codes -of constraint length V
 

the free distance is upper bounded by
 

n 

df (+[log 2 v] + l)
 

The evaluation of d of an arbitrary code is quite complicated, be­
f
 

cause one mayhave :to :search very deep into the coding tree to determine
 

what df is Although it is conjectured that the degree -of the informa­

tion-sequence I(D) that achieves df is -only of the order-of v log v
 

the .best general bound on that degree for rate 1/2 codes is [10]
 

(v+ log V)(v-i) + 1 . 

For the class of complementary codes that bound can be lowered to
[10 ] 

v(v-3), but what is more important, a very efficient -search procedure
 

determining d exists that allows early identification-of I(D) se­
-f 

quences that cannot possibly achieve df * Moreover, the df values of
 

the best complementary codes are excellent and seen to grow as v
 

A rate 1/2 code is a complementary code if and only if
 

9(i),= g (2) =g(l) = g (1) = I (9a)
 
go 0 g-1 V-1
 

and
 

-g(2) g(I) (B 1 for 1 < m <v-2 
 (9b)

-mi 
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The generators may therefore be written as
 

G( ) ( D ) = I1 + gID + gD 2 + g- 2 D 2 +D -1 

Gg(D) = + . - 2 V-2(2)) l~~I+ gl-
D + 22 . + D v-2 

where gi is the binary complment of g, i.e. g, = g, ) I 

G( 2 ) (D ) = G 1 ) (D) + D + D2 + ... +DV-2 

Following Massey, we can use this relation betweet G(I) (D) and 

G2 (D) to reduce the number of adders needed to implement the encoder. 

If the indices i of G(i)(D) are selected so that 

v-2 v-2
 

-wH(gi) >7 WWgi) 

i=l i=l 

then the encoding circuit is that of Figure -17.
 

As mentioned the structure of complementary codes allows construction
 

of an efficient algorithm based on the stack decoding principle that deter­

mines df
 

The stack is arranged according to the values of a lower bound W(t) 

on the weights of all possible codewords corresponding to extensions of -some 

given input sequence I(D) of length t . The top of the stack is 

allocated to the codeword of lowe't weight. Since it turns -out that only 

sequences I(D) of even weight can achieve df , the search considers 

inputs 

P(D) = I(D) (10)
It D
 

to the-convolutional code
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G I 	 G( 1 ) (D) 	 = (I+D) (D) 

G(2 ) (D) G( 2 ) (D)=(I+D) 	 (I 

Each 	entry in the stack contains the following information:
 

a) U(t) = (ptpt_;, ...,pt _ + l) , the current contents of the
 

'encoder
 

b) W(t), the lower bound on the weight of codewords corresponding
 

to extensions of P(D) considered.
 

c) CP(t), a count of the length of the last run of zeros in
 

r(D) 	 = I(D)/(-D) (P(D) can be discarded if CP(t) > v-2) 

d) CV(t), a count of the length of the last run of zeros in 

v 0 = vID + ... + vtDt where V(D) = 14D /1-2/1DI(D) 	(P(D) can
 

be discarded if cV(t) > V)
 

The following is then the algorithm
 

I. 	 Initialization:
 

The 'stack contains one entry
 

U(O) (1,0,...,0), W(O) =.6 , C2(0 ) = 0, cV(0) = 0
 

II. 	 Regular operation 

1) If stack is empty, -go to 17, else continue 

2) ['Eliminate top entry of stack, u(t), w(t), CP(t), C (t). If 

CP(t) = v-2 go to 16. 

3) U(t+l)<---(,PtPt-l,.... , [Zero extn.] 

4) If pt-,+3 = 0 , v(t+l)e:---cV(t) + 1, else Cv (t+l) = 0. 

If Cv(t+l) = v go to 9 , else continue. 

5) cP(t+l)<-CP(t) + I
 
•X( 1 ) X(2). 

6) W(t+l) = W(t) + %(X t+1 1 xt+l ) -f(Pt ppt-\2) where 

) X ( 2 ) t
(Xt+ll t+l1 is the output -of the encoder.
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7) If W(t+l) v + 2, go to 9, else continue. 

8) Insert entry u(t+l), W(t+l), CP(t+l), CV(t+l) in stack 'according 

to value of -W(t+l) 

9) U(t+l)- (l,PtPtt.,...,Pt_,+2) [one's extn.]
 

10) If P t-v3 I, cV(t+l)---cV(t) + I , else cV(t+l)= 0
 

V
If C (t+l) v go to I-, else continue. 

11) CP(t+l) = 0
 

12WW(t))+ O(X 1) + 2 H

12) W(t+l)<---~t H t+l I t+l ml Pt+2 

- (Pt E Pt.+2 ) 

13) If W(t+l) > v+2, go to 1, else continue .
 

14) Insert U(t+l) , w(t+l), Cp(t+), CV(t+l) in stack according
 

to value of W(t+l)
 

15) Go to 1
 

16) df = W(t) Stop.
 

17) -dr = .V+2 Stop.
 

The free distance achieved by the -complementary codes given in Table I
 

is far in excess of any other known rate 1/2 codes. Figure 18 shows
 

a comparison of the free distance of complementary codes with various
 

bounds. It 'is seen that the -codes come quite close to achieving -the
 

upper bound of Theorem 1. Neumann [l1]:'has obtained a lower bound for
 

free distance, but his bound is weaker than the usual Gilbert Bound for
 

short-Constraint lengths. It is seen that the complementary codes are
 

far better than the Gilbert bound, which is of course a lower bound on
 

df as well as 4,m . Figure 16 also contains the Costello,,lower bound
 

for time-varying codes. It should be pointed out that the Costello bound
 

is asymptotic and does not necessarily apply at short constraint lengths.
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Figure.19 shows a comparison -of the free distance -of-complementary
 

codes vi-th some other known codes. Costello [9], has devised two-- ­

-algorithms A6 (systematic) and A9 (nonsystematic) "to construct-.eodes
 

with -large free distance. It'Ss seen that the -complementary codes do
 

far better -thaneither of these codgs. Also included in,the -comparison
 

,,is the-Lin-type.code [8] . Figure '20 gives a comparison of .the number 

of-steps taken by the-usual-stack algoritht (i.e. one that would examine 

inputs I(D) to G(D) and G(2) (D) and would have only the struc­

ture properties -of general convolutional codes) with the steps taken by 

-the 'special-algorithmfor complementary codes. The comparison is made
 

for the codes in Table II. It is evidentthat the 'special-algorithm
 

provides a tremendous advantage in computing the free distance of these
 

codes.
 

Figure 21-shows that the minimum distance of the complementary codes 

-always,exceeds the Gilbert bound. At most -constraint.lengths the minimum 

-distance -equals .the minimum distance of the Lin-jyne code. 

Some ,complementary codes were used in -simulation studies for sequen­

tial -andmaximum likelihood decoding on a binary symmetric-channeL. The 

performance ,of-these-codes was consistently better than all other ,known 

codes [12]. 

The motivation for-thiswork was to look -for methods of constructing 

convolutional codes with,large free distance. The results are partially 

successful -since-we found a good class of rate -1/2 codes whose free 

distance-exceeds the free di-stance-of'any other known codes. However 

such -codeswere found only for -V< 24 and there.is no evidence .to'show 

whether good codes do -or do not -exist fohr longer constraint -lengths, 

The major problem in searching for long codes i-s that the amount-of com­

-putation needed to calculate the .free distance grows at least exponentially.
 

http:there.is
http:Figure.19


We were able to utilize the special -properties of complementary codes
 

to cut down -on the amount of computation.
 

Unfortunately there does not appear to be 'any simple way to generalize
 

these codes to rates other than 


v Gen. (octal) 

3 5 

4 13 

5 31 

6 61 


121 

8 211 

9 503 

10 1065 

11 2415 

12 5121 

13 12043 

14 24421 

15 51303 

16 -120643 

17 352411 

18 425551 

19 1411041 

20 2734605 

21 5011303 

22 11047441 

23 22517023 

24 51202215 


Table I. R = 

1/2 .
 

dfree din wt.
 

5 3 2
 
6 3 3
 
7 4 3
 
8 4 3
 
9 5 3
 

10 5 4
 
11 6 4
 
12 6 5
 
13 7 5
 
14 7 5
 
15 7 5
 
16 -8 "5
 
17 7 7
 
18 -8 7
 
18 9 8
 
20 8 9
 
20 9 6
 
20 0 11
 
22 9 8
 
22 10 9
 
24 i0 11
 
24 10 9
 

1/2 Complementary Codes
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II-D. 	 Application of Bootstrapping to Maximum Likdlihood Decoding
 

of Convolutional Codes
 

We are trying-to see if the basic idea ofbootstrap hybrid sequential
 

decoding can also be helpful to the Viterbi decoder. It will hopefully
 

reduce the decoding complexity @hat grows as 2 V
-1 in the Viterbi
 

algorithm) for .a given probability of error and transmission rate D.
 

We have completed a Fortran program whose basic idea is as follows:
 

There are m-1 convolutionally encoded information streams and their
 

th
 
exclusive-or sum forms the m parity stream (the BSC is implied),
 

After -reception the channel state ,stream is found in the usual way.
 

Viterbi decoding -of the first stream is undertaken whose likelihood
 

values are based on the state information. The likelihood function
 

of the decoded path is then examined and with its help reliable sub­

intervals of the path are determined (e.g. a subsequence of the decoded
 

sequence is considered reliable if it -corresponds to a consistently
 

rising likelihood). These are -substituted for the corresponding por­

tions of the received -sequence and the -state sequence is accordingly
 

recomputed. The -second stream is then decoded and its reliable sub­

-intervals determined. The transmitted digits falling within these
 

tsubintervals replace the received digits and the state sequence is
 

again adjusted. This work continues in a round robin fashion as long,
 

-as re-decoding of received streams results in an enlargement of the
 

reliable subintervals. When no -such enlargement occurs for any of
 

the m ptreams computation stops and the paths decoded -last are
 

'supplied to the user.
 

The main problem in running this algorithm is the finding of -cri­

teria that could be used to determine the reliable subintervals. We
 



have written a program that collects statistics on the behavior of the
 

likelihood function of decoded sequences when -it corresponds to correct
 

and incorrect information'-supplied to the user. The criteria will-of
 

-course be morestringent the-smaller the code constraint length and the
 

larger the channel error-probability. We hope to report-some initial
 

-results soon.
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Captions for Figures 6f PartXI
 

Fig. la: 	 Encoding circuit of a single convolutional generator.
 

Fig. ib: 	 Circuit that recovers information digits Snl Sn_2,....' 0
 

from parity polynomial P (D) and parity digits Pn-l
 
0

n-2 V-1 

Pop ...,po
 

Fig. 2a: Circuit that obtains P. (D) from P'(D) and x. It
 

can also be used to recover the information digits Snl,...,So
 

from pt(D) and x. ,x. ',.. ,
 
,n-	 1,n-


Fig. 2b: 	 Feedback-circuit that obtains so,..., anl from x1 ,02...,xl n.I
 
Initial contents of the shift register :are 0's.
 

Fig. 3: 	 Empirical distribution of the speed factor necessary for
 

rudimentary bootstrap hybrid decoding of %ET = 0.45, m = 10 

over a BSC with p = 0.056. 

Fig. 4: 	 Empirical distribution -of the -speed factor necessary for 

rudimentary bootstrap hybrid decoding of RNET = 0.045, m 10 

over a BSC with p = 0.07. 

Fig. 5: 	 Comparison of performance characteristics of sequential decoding,
 

Falconer's hybrid decoding, and bootstrap hybrid decoding over
 

the BSC. The experimental points denote simulationsat R = 0.5
 

referred to in Table 4.
 

Fig. 6: 	 Comparison of performance characteristics of sequential decoding,
 

Falconer's hybrid decoding, and bootstrap hybrid decoding with
 

the capacity of a Gaussian channel with binary inputs and outputs.
 

Fig. 7: 	 Plots of R /C, RAL/C, RLOOT(l)/C, and RBOOT(1)/C as a
 
comp FLC OTBO
 

function of SNR per transmitted digit in dB's for the binary
 

quantized 	gaussian channel with binary inputs.
 

Fig. 8: 	 Upper and lower bounds to the Pareto exponent y for hybrid
 

decoding as a function of SNR per transmitted digit (dB) when
 

the convolutional rate R = 1/2 . The sequential decoding
 

Pareto exponent y is provided for comparkson.
 



Fig. 9: R omp/C vs. SNR per transmitted digitf (dB) for binary, quar­

ternary and octal optimal quantization of the Gaussian channel 

with binary inputs. 

Fig.10: C'and R vs. SNR per transmitted digit: (dB) for binary,comp 

quarternary and octal optimal quantization of the Gaussian 

channel with binary inputs. 

Fig.1l: RLOOT(1) vs. SNR per transmitted digit (dB) for binary, quar­

ternary and octal quantization when state stream contains maxi­

mal information. 

Fig. 12: The parameter of Fig. 11 when state stream is binary. 

Fig.13: C, Rcamp , and RLOOT(i) for binary and full information state 

stream for the quarternary output channel as a function of SNR 

per transmitted digit (dB). 

Fig.14: 

-ig.15: 

C,Rmp nd RBOOT( ) for binary and full information state 

stream for the octal output channel as a function of SNR 

per transmitted digit (dB). 

RURBOOT(l) vs. SNR per transmitted digit (dB) curves for binary, 

quarternary, and octal output channel with binary inputs when 

the channel state stream is binary. 

Fig.16: The trellis state diagram for the code 
2 2G (D) e- I+D2 

G(1 )(D) = I±D+D2 

Fig.17: A simplified encoding circuit for complementary r&te 1/2 codes. 

Fig.18: Free distance of 'best complementary codes compared to the 

best available bounds. 

Fig.19: Free distance of complementary and other best codes. 

Fig.20: Computational effort necessary to determine free distance of 

an ordinary stack algorithm and of the'special algorithm 

utilizing the structure of complementary codes. 

Fig.21: Minimum distance of the highest free distance complementary 

codes compared to -the Gilbert bound and to the minimum dis­

tance of the best available codes. 
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~gv-2 1 P go41 
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Figure la: Encoding circuit of a single convolutional generator. 

n +n OPpa3 + ~ I; 
n-I n-2SnSn..1, Sn-2,* o o 

Figure ib: Circuit that recovers information digits sn-lsn_2 . froms° 


1n - lparity polynomial P (D) and parity digits .pn-2" ". o2,-l 
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9 ( k: ' . - < -- -- --

Sn-2 +p P. + . + n + Xin-I 

Figure 2a: Circuit that obtains -r) fom r() and x 

beused to recover the information digits sn 1 ,...,s 

n( ) and xi, n -1, i,,_2'-.. x i o 

It can 

° from 

ajso 

•Xl I X1, 0 

Figure 2b: Feedback circuit that obtains So'...'Sn-i' from x 

Initial contents of the shift register are O's.
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Figttxe 3: Empirical distribution of the speed factor necessary for rudimentary bootstrap hyrbrid deeoajng 
of I TET = 0.45, m = 10 over a BSC with p - 0.056. 
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Figure 6: Comparison of perfonance characteristics of sequential decoding,
Falconer's hybrid decoding, and bootstrap hybrid decoding with the
 
capacity of a Gaussian channel with binary inputs and outputs.
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Figure 7: Plots of R 0 OJO §L/"' PBOOT (l)/C, and 401()cas a function of' SI'R 

dB's for the binary quantized gaussian channel with 
per transmitted digit in 


binary inputs.
 



56 

4 

Yupper,8 

// 

z
wO 3 - x 

H 
II 
Ii 

! 
lower, 

0 

w / • I 

Lu. 5'
/ 

/ 

2/ 
/ /

I
/ 

/ / 
/ 

* I!! 

0 1 2 

dB=1O tloo/N 

Figure 8: 	 Upper and lower bounds to the Pareto exponent Y for hybrid decoding as
 
a function of SNR per transmitted digit (dB) when the convolutional
 
rate R = 1/2. The sequential decoding lareto exponent oris provided

for comparison.
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R JcoC vs. SNR per transmitted digit (dB) for binary, quarternary 
and octal optimal quantization of the Gaussian channel with binary 

dnputs. 
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Figure 16: The trellis state diagr'am for the code G ()( = i+n+n , G (n) +2 
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Figure 17: A simplified encoding circuit for comPlenentary rate 1/2 codes. 
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Fignre 18: Free distance of best complementary codescompared to the best 

available bounds. 
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Figure 19: Free distance of complementary and other best codes. 
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Figure 20: taptational effort necessary to determine free distance of an 

ordinary stack algorithm and of the special algorithm utilizing
 
the structure of complementary codes.
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Figure 21: 	 Minum distance of the highest tree distance complementary codes 
compared to the Gilbert bound and to the minirum distance of the 
best available codes. 
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III. REPORT ON PHASE II
 

Ill-A. Tree Encoding of Sources with a Fidelity Criterion
 

Ill-A-l. Experimental Comparison of Two Encoding Algorithms
 

The most general theoretical formulation of the data compression
 

problem was provided by Shannon in 1959 in his paper "Coding Theorems
 

for a Discrete Source with a Fidelity Criterion."[l] He enlarged there
 

on his 1949 source coding ideas2 referred to in the literature as varia­

ble length source coding and block source coding. Concisely stated,
 

Shannon's results are as follows: Let a memoryless source of alphabet
 

A = (0,l,..,a-l) governed by the probability distribution Q(z),
 

z e A be given. Let an approximation of the source outputs in the
 

reproducer alphabet B = (0,1,.o.,b-l) be desired (in praetice b < a)
 

with an attached additive per letter distortion criterion d(z,$) defined
 

for all pairs z e Az SB, (i.e. the distortion between sequencesn
n n 

zn = and Al A 	 defined to be d(zn Y')z.z 1 '...,z is bez 

A ~ i=l 

d(zi,zi)). 	 Let (z n) be an Ancoding function that assigns some re­

^nn
 
producr sequence 	 z to each possible source2 sequence J The rate 

of the resultant -code is defined to be R = log Jjn j /n where H niI 
denotes the number of sequences in the range of *T ( ) Shannon shows 

the existence of a rate distortion function R(D) [whose shape depends 

on Q( ) and d( , ) only] that has the following properties: 

a) for all n and all codes "Y , if R < R(D) then the expected 

distortion E [1 d ; (,n)] D 

n "" 

b) for R > R(D) there exists a sequence of codes T* of rate 
n
 

-nl1 /n < R(D5 such that E1d n-n
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In recent years a lot of work has been done generalizing the above
 

results to a broader class of sources, evaluating the performance of
 

eisting systems relative to the achievable optimum, and developing
 

methods for evaluation of the R(D) function. The first consideration
 

of the actual coding problem was undertaken by Jelinek who-showed that
 

the sequence of -coding functions-* can possess theabove desirable pro­

perties even if itis restricted to generate tree codes (instead of block
 

-codes to which Shannon's theorem applies). It was hoped that a tree
 

code structure would facilitate the development of a computationally
 

feasible encoding algorithm.
 

Our work concerns the performance of such algorithms as applied to 

the restricted class of binary symmetrical sources [Q(0) = Q(1) g 1/2 

a = b = 2 , d(0,0) = d(11) = 0, d(0,1) = d(l,0) = 1] . The algorithms 

themeslves are, however, completely general. An example of a tree code
 

is given in Figure 1. The various codewords are the-sequences associated
 

with the 25 = 32 different paths of the tree.. A path is specified by a
 
5
 

binary map sequence s which determines at each node level if the upper
 

5
(0) or the lower (1) branch was taken. Thus the map sequence - 01101
 

^10
 
corresponds to the codeword z = 0011101100. The rate -of the code of
 

Figure I is R = log 32 1/2 so that the theoretically optimal achievable

10 

average distortion is D =.11 . Figure 2 shows an experimentally de­

tived, ultimate capability of specific codes (believed to be near optimal) 

of constraint lengths 5,7,10, and 14. The curve does seem to indicate 

that the ultimate performance of D = .11 will be achievable with codes 

of -sufficiently long c-astraint length. The simulation was carried out 

with the help of a straightforward modificaton of the Viterbi algorithm 

that necessitates 2 -1 steps per encoded source digit pair. The top curve 

in Figure 3 then gives the corresponding distortion-performance as a 

function of the number ff encoding steps. The algorithm compares the 
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beginning subsequence of length v of the source outputs with the 

difference-sequences corresponding to the 2V initial paths of the code 

trellis (see Fig. 14 of Section V), -Each state at depth v of the trellis 

has two such paths entering it. For each statethe one of these two 

paths whose distortion from the source subsequence is least is retained 

and the other is eliminated. Extensions of length v+l of the retained 

paths are then compared with the initial course subsequence of length 

2(v+l) and the elimination proless is repeated at each trellis sLite 

of depth v . This continues until a preassigned depth r in the 

trellis has been reached, Then the best of the 2' "live" paths is 

selected to represent the -source output sequence -of length 2r . 
4
 

The next algorithm evaluated is based on the stack 
principle.


Let D* be the per letter distortion desired by the user, To be real­

istic (see the previously quoted results) we must have R > R(D*).
 

Define a metric distortion function d*(z,z) = d(zz) - D* . Then z
 
,i
 

will be -a acceptable approximation of a source sequence z if and only
 

if X: d*(zz)< 0 (we assume that the code is indefinitely extensible, 
j=l j 

i.e. that the number of levels in the tree is practically infinite).
 

7
Suppose the sequence p (n large) was generated by the source, let
 

d*(s3 ) denote the metric relative to zn corresponding -to the last
 

j
branch of the path s [e.gj d*(10!) = d*(z5 ,1) + d*(z 6,0) and
 

d*(l00) = d*(z 59 0) + d*(z 6,1)], and let D(sj) be the cumulative metric
 

alnh ahsi .1j
 
along the path s D(s)) J d*(si) where ' are the initial
 

Ni.
 

subsequences of length i of '(i j). The stack will contain dif­

ferent paths sJ and their cumulative metrics D(sj), and will be
 

arranged in ascending order of the latter (i.e. at the top of the stack
 

there will be that path si whose D(sj) is least).

r I /I' 
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1. At the beginning of the decoding-process, the paths =0
 

and '2= I are arranged in the stack according to the values of
 

D(O) and D(l).
 

J
2. The -encoder checks-whether the path ,s on top of the stack 

is such that D*(sJ) < 0 . If so, go to step 4, if not, go to step 3. 

3. The top-entry [si,D(sj)] is -eliminated from the-stack, 

the branch metrics d*(sjO) and d*(sil) are computed, and two new 

entries [sJO, D(jJ0) = D(,sj ) + d-(sjO) and rsjl,D(sjl)=D(sj)+ 

d-(sjl)] are insetted in the proper location into the stack. Go to 2. 

2j
4. The subsequence is encoded into the codeword z2j that 

corresponds to the path si . The stack is cleared of all its entries 

and encoding of the sequence z2j+lsz2j+2,.. starts with the insertion, 

of two new entries [sJO,D(sJ0) = d*(sJ'0)] and [sJl,D(s 1l)=d*(sjl) 

in their proper order into the-stack. Go to 2. 

The bottom curve in Figure 3 is a plot of average distortion achieved
 

as a function of the average number of-steps necessary to encode a source
 

digit pair when the code of constraint length v = 14 whose ultimate
 

performance is D = .116 was used (see Figure 2). The performance
 

curve for the stack algorithm dominates that corresponding to the modified
 

Viterbi algorithm.
 

The stack algorithm is readily generalizable to tree codes -of rate
 

2k
R = - with branches leaving each node and n digits-per branch.n 

Its suitability is determined by the average number of steps necessary
 

to encode a source digit.
 



iII-A-2. Theoretical Analysis of the Stack Encoding Algorithm
 

Our analytical work with the stack algorithm has divided into
 

two efforts, finding equations in relevant variables and approximating
 

solutions to these equations. Presented here is the result of the first
 

effort.
 

To facilitate analysis, consider several component processes, all
 

running on the copies of the same tree and source. These will combine
 

to form a stack encoder. Let a > 0 and, b < 0 . As usual, let a
 

node extension include scrutiny of the d branches extending from a
 

common parent node.
 

Process I Suppose an entire tree is explored by the stack
 

algorithm until either the top metric in the stack exceeds
 

a or falls below b , whichever comes first. Define
 

N(a,b) to be the number of extensions in the first of the d
 

subtrees stemming from the tree's root node.
 

Process 2 In this -process only the first subtree is explored
 

in the stack, again until the stack top exceeds a or falls
 

below b . Let N*(a,b) be the number of extensions.
 

Process 3 Here let subtrees 2,...,d be explored, until the
 

stack top exteeds a . b is effectively -= . If
 

0 > b1 > b2 > .. and the possible top stack-minima in
 

this process, let
 

1f if the stack top falls to b. and
 

no further
S(bi) 


'otherwise
I 
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Concerning N* and N , certainly
 

N(a,b) N*(a,b) (1)
 

since in Process 1 searching in the first subtree may be terminated
 

by events in the other d-l subtrees. Process I nearly constitutes
 

the stack algorithm, and N(a,b) 'is closely related to its computation.
 

In fact, defining NT(a,b) to be the computations in a stack encoder
 

which "gives up" when its stack top falls .below b
 

ENT(a,b) = 1 + d EN(a,b) (2) 

In (2), the unit term on the right representst~einitial
 

computation needed to reach the d sub-tree structures. The d-factor 

follows from the statistically lID behavior of the d subtrees. To 

reflect exactly the four step stack algorithm of the previous section, a 

i s set arbitrarily close to zero and b is reduced to - , so that 

the algorithm stops only when its top-path metric exceeds zero. 

To pursue this further and artive at an equation in ENT , we 

prove the following lemma about N and N*: 

Lemma
 

N(a,b*) N*(a,b i) 4(bi) + N*(a,b*) (b (3) 

b. >b* b. < b* 
1 1 -

Proof: Case I. *(b.) = 1 for bi > b* In Process 1, no part of
 

subtree 1 can be examined whose path metrics fallbelow bi
1 

On the other hand, if Process 2 with b = bi can terminate by
 

its stack top rising above a , Stack 1 must hever have fallen
 

to bi. Overall, then, Process I examines in subtree 1 pre,­

cisely what Process 2 does.
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Case-IT. 4(bi) 1 for bi < b*
 

The all subset 1 paths with metrics between a and b. are examined
 

in both-Processes 1 and 2. QED
 

An expectation operation on (3) now yields,
 

EN(a,b) = EN*(a,bi) Pg(bi) +--EN*(a,b*) aP(bi) (4) 

b. > b* b.<b* 

where P3(b) Pr= Top )isStack Minimum in Process 31


ex­

pectation only, EN . We can write immediately, 

By a few-more maneuvers, we can change (4) into a function of one 


EN*(a,b) EN1 (a-X,b-X) PQ') (5) 

where
 

P(X) Pr fa given branch had incremental metric
 

and NT(a,b) = 0 if a < 0 or -b > 0 . Now combining (2), (4), and 

(5), we get 

EN (a,b*) =1 + d a1g(b )3 p(%) ENT (a ,X 

(b.>b* 

1-1 

P(b)[ P(X)ENT (a Xb*~X] (6)+ [T 

If P3(b i ) were known, (6) would .c6nstitute a linear difference
 

equation in the unknown ENT(a,b). Standard solution-methods could then
 

b 
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be used to obtain a tight bound on ENT(a,-=), the amount of computation
 

T
 

necessary for stack encoding. Unfortunately, P3(bi) is itself a solution
 

to the non-linear difference equation. In fact, let
 

In Process 2 with b = - thee 

G(a,x) Prob of the stack falls below (7)(top 

!the value x
 

Then 

G(a,x) = P() Gd (a-Xb-X) + >7- ) (8) 

a>%>b X<b 

and Pa(bi) is related to G(a,x) by
 

G(a,x) = a(bi) (9) 

b. < x 
I --

We do not.know how to solve (8), except numerically, In tho near future,
 

we will do'just that, and we shall apply the result to (6) so as to gain
 

a better feelingabout the behavior of ENT(a,-=)
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III-A-3. Another Tree Encoding Algorithm and a New Source Coding Theorem
 

In this section, we describe'a source encoding algorithm for use
 

with tree codes. Tree searching does not proceed in a stack manner as
 

in the preceditg section, but instead uses two lists of temporary path
 

hypotheses.
 

Assume code words for encoding a binary digit ITd source have been
 

arranged in a tree structure. The tree has rate R = log 2d/n,-with d
 

]ranches stemming from each node and n source approximating binary digits
 

on each branch. The object of the encoder is to find a path of branches
 

through the tree, the digits of which approximate the source sufficiently
 

closely. To measure distance between the source output and various paths,
 

we use the Hamming measure
 

33 
i=l
 

-4S 
z is a source sequence, z is an hypothesized path, and 6 is the 

Kronecker delta 
function.
 

The encoder operates with two lists of tree path hypothess in
 

arriving at onepath for.release to the user. The main list functions
 

as a temporary "scratch pad," and the auxiliary list is a repository
 

for "good" paths. Goodness of paths in these lists is judged by a 

path metric that depends on path length as well as distortion,
 

p(9). = D* - d(z,z) (2) 

Here 9 is the length of z (note that 9 must be a multiple of n) 

D* is the distortion per encoded source digit desired at the end of 

encoding, and D* > L (R), the inverse rate distortion function relative 

to (1) and the source. Eqn. (2) is justified in earlier reports on 

the Jelinek stack encoder. 
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With this path metric in mind, we define two freezing barriers, one 

at metric a > 0 , the other at b < 0 . Further extension of pabhs 

whose metrics rise above -a will be frozen temporarily and the paths 

removed to the auxillary list. Paths falling below B, normally will 

be dropped forever -- "permanently" fro:zen. 

Specifically, the algorithm works as follows:
 

Step (1) Starting at the tree root node (which is assigned the
 

metric zero), paths are extended in the main list until all
 

root node descendants crash a freezing barrier and are frozen.
 

Paths which rise above the a' bqrri(r .are placed in the auxiliary
 

list in order of their length, the longest being on top. The
 

longest of paths frozen at the b-barrier is also saved.
 

Step (2) When no paths remain in the main list, attention turns
 

to the auxiliary list. In this "good" list, the final node
 

of the longest path (which is on top of the list) now becomes
 

a new root node (metric value 0 is assigned to it) for the
 

main list, and the encoder executes again Step (1). The test
 

of the auxiliary list is retained and a-barrier crashing paths
 

keep being added to it in the proper order.
 

Step (3) If there:are no pathsin the auxiliary list by the end of 

some execution of Step (1), the saved longest path frozen 

at the b-barrier is chosen to supply the new root node and 

again metric value 0 is assigned to it. The-encoder then 

executes Step (1) again. 

Definite encoding of the source sequence takes place whenever step (3)
 

is involved, since only one path is then left. Some stopping rule must
 

also be specified that will go into effect if the time elapsed since the
 

last invocation of Step (3) is large (as hopefully happens often).
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The-analysis of this algorithm is an interesting one. However, the
 

scheme has two practical advantages: if b is not too negative (which
 

it need not be if D* is not too close to A(R)) then the main list can
 

be allowed to be quite small. Also, the stack algorithm described in the
 

preceding two sections has a start-up problem which is mostly avoided
 

here: when encoding takes place there, only a single root Yode is pro­

vided and the patis that emerge from it might all approximate the source
 

sequence quite badly.
 

To analyze and understand the two-list encoder better, we can view
 

Steps (1) and (2) in terms of a branching process. In the language of
 

Feller,5 Pg. 293, let the paths that are frozen at a during Step (1)
 

be the particles of the -branchingprocess, so that the auxiliary list is
 

actually a list of untried progeny. With each particle associate also
 

the main list computation to follow. Corresponding to the tree root
 

node and the first execution of Step (1) is the branching process's
 

initial particle, and paths which now crash the a-barrier become the
 

first generation of particles. The first generation gives rise to the
 

second according to some probability distribution independent from particle
 

to particle and determined by the statistics of the main list. We can
 

think of the succeeding progeny as occurring in generations, even though
 

the encoder does not necessarily exhaust all auxiliary list "particles"
 

on one generation before going to the next, The branching process
 

either terminates by extinction of progeny, or goes on forever, In the
 

former instance, Step (3) is invoked to start a new process.
 

Our-analysis begins by finding the average computation necessary in
 

the main list. We assume both lists are of infinite length, so that the
 

parameters of interest are the freezing barriers (a,b) and the hoped
 

for distortion D*. It concludes by using the branching process analogy
 



to prove the encoder can achieve any distortion D* > A(R) , so long as 

b is less than some .b* which depends on D* and a 

Main -ListComputation Related to (ab), D*, and-R
 

In the main list, let
 

Na = Number of paths frozen at a-barrier 

Nb = Number of paths frozen at b-barrier
 

-NM = Number of paths remaining forever unfrozen
 

We state immediately, but without proof, that the expected value of N
 

is zero under-proper conditions:
 

Theorem 1 For a tree of rate R = log 2d/n used to encode a binary IID
 

source with respect to the Hamming distortion measure.
 

b - a] < iT/w implies EN = 0 

where w = w(R,D*) and .w > 0 for all D*.e (A(R),1/2)
 

(The proof follows from difference equation methods explored first by
 

Zigangirov6 in a sequential decoding context. The function w(R,D*)
 

is made specific in Appendix 5).
 

Assuming EN = 0 , the expected number of main list paths frozen
 

at the end of Step (1), EN, is
 

EN = E[N + Nb] (3)
a 


A short derivation shows that the expected number of extended bianches
 

present in a tree containing EN paths is related by
 

.EN - 1. 
E[branches] = -) 1 d (4) 



Customarily, a "Computation" is meant to include the scrutiny of d
 

branches from their common -parent node, so that
 

E[Comps] = EN - 1 (5)
d 11
 

Eqns. (3), (4), and (5) measure in various ways .the work done in the
 

main list.
 

It remains to estimate ENa and ENb . Between these, ENa is 

of crucial importance to a coding theorem because it corresponds to the 

expected number of descendants of each particle in the analogous branch­

ing process. Parts of the following proof are inspired by ideas used 

by Gallager, 7 again in sequential decoding analyses. The proof appears 

in the Appendix. 

Theorem 2 Under the hypotheses of Theorem 1, lb - al < r/w
 

implies
 
-a cosa c
 

EN r ( a I (6a) 

a - sin a i Wa siwb 

n)b / sin - sin wb 

w and r are functions of D* and R, and are found as shown in
 

Appendix 5. wNO as D*\&_(R), and r is typically'near (1-D*)/D*.
 

A careful look at (6) reveals that as )b - al tends.to T/rw , both EN
a 

and ENb tend to infinity. In fact, given an a one may choose b to
 

make the right hand side of (6a) precisely unity. In this way, R;D*,
 

and a ,-with the aid of Theorem 3, specify a minimal b necessary for
 

the-encoder to achieve 'D* . In preparation for Theorem 3,-we restate
 

this as a
 

http:tends.to
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Corollary For any given a < Tr/w, there exists b* such that if 

lb-al < T/)a-and b < b* , then 'ENa > I . 

We feel confident that further information'about N is available
 

from these methods. For instance, higher moments of N may be found
 

in a way similar to the proof of Theorem 1.
 

Sample calculations have been m de for R = 1/2 and D* either
 

0.125 or 0.111. A(1/2) is 0.110.
 

D* = 0.125 D* = 0.110 

0.789 0.206
 
r 6.46 7.98
 

/A 3.98 15.25
 

Table 1
 
Sample Values of r & m
 

D* ' = 0.1250.111 


a b ENa ENb ENa ENb
 

05 - 2 0.288 13.4 0.409 17.1
 
0.5 - 3 0.310 80.4 0.746 280
 

0.5 -14.5 1.06 2.4xi013
 

0.5 -1,5.25
 

P.25 - 3.0 0.805 96,5 
0.25 - 3.5 1.28 737 

0.25 -3.73
 

0.17 - 3 0.669 29.9 
0.17 -14.5 0.921 3.5x,012
 
0.17 -15.08
 

Table 2
 

ENa and ENb vs. a,b, and D*
 



1 

Coding Theorem Proof Using the Two-List Encoder
 

We now prove the source coding theorem for our present source and
 

distortion teasure using the Two-List Encoder -- that is, we show the
 

encoder can achieve any distortion greater than 4(R). The proof uses
 

the fundamental theorem of branching processes (see Feller ,Pg. 297),
 

with the branching process analogous to the encoder.
 

Theorem 3 Under the hypotheses of Theorem 1, whenever ENa > 1
 

the expected per source digit distortion produced by the Two-List
 

Encoder is at worst D* , for any D* > A(R)
 

Proof: Let an encoder cycle run from the extension of a root
 

node to the invocation of Step (3). If the longest b-crashing path is of
 

length L then the total distortion for this cycle is LD* - b . Let
 

N(M) be the number of cycles it takes to encode a source sequence of
 

length M [the last of these cycles may be completed at some sequence length
 

that exceeds M] . The distortion per source digit DM is then upper 

bounded by 

DM _ D*- N(M) b 

so that the expected distortion is
 

EDM] < D* b. EIN(
-- D -- L E[N(M) D* - M E[N()] 

But by the fundamental theorem of branching processes, ENa,> 1 implies
 

that a cycle ends with infinite progeny (i.e. never ends) with probability
 

>0. 

Hence
 

E[N(-)] = I k(l-T)k- 1 = U 

k=l
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and
 

E[DM] < D* - b 

The theorem is thus proven by taking the limit as M-- . QED 

Theorem 3 contains no necessity for a large a , so that a sensible
 

encoder would place a as close to zero as possible. Wit'.this in mind,
 

sample calculations were carried out for R = 1/2 and D* = 0.125.
 

For a code chosen at random from the usual random ensemble EN 40,
 

and b is required to be about -3.1. If D* is lowered to 0.111
 

(very near A(R) !), EN z 1012 and b z -14.7. 

The large literature on branching processes suggests more results
 

can be ,obtained by these methods. We hope in the near future to obtain
 

results concerning the auxiliary list size and the-computation per
 

encoded source digit needed in the main list.
 

The theorem is readily generalizable to other finite distortion
 

discrete memoryless sources.
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III-B. Permutation Codes as Source Codes
 

Permutation codes -are a class of codes originally described by
 
8
 

S1&pean for use as a method of achieving reliable transmission of digital
 

data 	over an additive Gaussian noise channel. One variation of these
 

-10
codes 	was considered by Dunn
9 for the vector quantization of data
 

from a time discrete, Gaussian, memoryless source. In this study, we
 

namely, (1) optimizing
have extended the work of Dunn in several ways: 


the parameters of the codes, (2) considering a second variation of the
 

codes, (3) developing an efficient encoding-algorithm for the codes,
 

and 	 (4) deriving some special properties associated with the codes.
 

The basic idea is that of block coding (or block quantizing) for
 

a time discrete source. The source is thought to emit a sequence of
 

statistically independent, identically distributed, random variables 

x1x2 o.. each of zero mean and variance a 
2 

. We will be concerned with 

encoding the first N symbols, E(N) = (XIX2,...,N)o A set of M 

code 	words and the source
N-vectors, C(N) 1,2,.°.,M, are chosen as
=i'
 

output vector is represented by the closest (in accordance with some
 

The rate of the code is defined to be
distortion measure) codeword. 


log2 M 
N 	 (1) 
N
 

and 	the resulting average distortion D is defined as
 

D = E min d(X(N),4N) 	 (2) 

(N 	N' ()
 

where d(X(N), CN)) is the distortion between the source vector x(N)
---'I 

and 	the ith coaeword
 

-M codewords are-chosen
Permutation codes are codes for-which the 


in a particular manner. Two different types of codes are considered and
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are termed Variant I and Variant II codes as in Slepian. Their desc­

-riptions follow:
 

Variant I Codes: Let the first codeword C(N), be chosen as the N-vector
 

-
( )<--nl----, <.-- n2 --- -nk 


=lb ...,1111, 2,..., 
 ,. . k . . 
-1 I 2 . '1 l .. P (3) 

where ll,'2,"'k are k real numbers such that
 

PI > P2 > > Ik
 

and
 

n + + ... + n N (4)
n 2 


where the n. are positive integers. The other words of the code are
 

chosen as all distinct permutations of the elements of the first codeword.
 

There are a total of K
 

S= N ]n. !(5)
 

/i=l
 

codewords.
 

Variant II Codes: The first codeword 0(N) is again given as the N-vector
 

--nl--­ /-->
> --n 2 --nk-­

c (N) = (6)
-l
 

where now the pi are k nonnegative numbers such that
 

P1 > "?.... > "k 0
 

The other words of the code are chosen by assigning a sign (positive or
 

negative) to each component of the first codeword and by permuting these
 

signed components in all possible-ways. The number of codewords in the
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code is now:
 

K
 

M = NhN' ni ! (7) 

i =I 

where
 
" k> 0
 

h ()
 

N-nk Pk = 0
 

The encoding procedure for block codes is in general a very complex
 

procedure. In its worst form, each source output vector x(N) must
 

be compared with each of the M codewords CN), i = 1,2,...,M and 

is then represented by that codeword which attains the minimum distortion.
 

For very large M this is a horrendous task. Permutation codes are-of
 

particular interest in that they lead to a relatively easy encoding
 

algorithm for distortion.measures of the form
 

N
 

d(x(N),Y(N)) = (X i - Yil) (9) 

i=l 

where f(l,'a) is 'anonnegative, monotonic, nondecreasing, convex Mpward
 

function of IjyI and Yi is the ith component of'the vector chosen
 

to represent x(N). The encoding algorithm which encodes X(N) into the
 

code vector which minimizes the distortion is described below for Variant I
 

and Variant II codes. The proof that this encoding algorithm minimizes
 

the resultant distortion is given in Appendix.6, part A.
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Encoding Variant I Codes:
 

1. Replace the nI largest components-of X (N) with
 

2. Replace the next n2 largest components of X(N) with 'P2
 

K. Replace the smallest n1k components of X(N) with k ' The
 

result is a permutation of the codeword given in Equation (3) and is
 

indeed a codeword in the code.
 

Encoding Variant 1I Codes:
 

X (N )
largest, in 'absolutevalue,,components of
1. Replace the n I 


with either +'*I1 or pl,, the sign chosen to agree with the-sign of
 

the component it replaced
 

2. Replace the next n2 largest, in absolute value,.components of 

x(N)' with either + 12 or "P2 , again the sign chosen to agree-with 

the sign of the component it replaced. 

.smallest in absolute value components of x(N)
K. Replace the n ' 


with either + Pk or k , again the -sign chosen to agree with the sign
 

of the component it teplaced.
 

It phould be noted that for identically distributed, -statistically
 

independent source outputs; all codewords for the Variant I codes are
 

equally probable°. ,1f'the source distribution is symmetric about zero
 

the same is true for Variant II codes.
 

A commonly used distortion measure is "mean-square error" dis­

tribution whereby f(Ial) of Equation (9) is given by
 

f(1l) = .2 (10) 
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It is shown in Appendix 6, part B that for a given choice of nl,n2,"...nk)
 

''
' 
the best choice of the parameters itt . k " in the sense of minimizing
 

the mean-square error is given by the following equations:
 

2 


Variant I 

nl+nB+ ... +n. 
12 

i T E x(i)) j =.1,2,...,K (11) 

i--nlI+n 2+...-+n.j1+1 

whe x(i)l .th 

where E is the expected value of the i largest of N inde-

X ( I ) pendent random variables: i.e., > X > ... _> X 

Variant II
 

nl+n2+...+n
 

j - nj 1 2"xi E M
 

i
 

i--n1+n2+...+njl+l 

where E IXM is the expected value of the absolute value of the ith
 

largest of N random variables. That is, the absolute value of N
 

random variables are ordered in terms of their magnitudes and E {iXi(Q
 
•th
 

is the expectation of the i largest. For a mean-square error distortion
 

measure, and for the choice of pj given by Equations (11) and (12)
 

the resultingaverage distortion is given as
 

K 

D = y2 - n. 2 (13) 

The rate of a permutation code for a given N is a function of the 

choice of the groupings nl,n2, ... nk . The highest rate codes occur 

for n. = 1 , for i = 1,2,..., K = N . (For Va.riant II codes, in order 
1
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to achieve the largest rate we have the added restriction that Pk > 0 )
 

The maximum rate is
 

('log2 N!
 
N! 
 Variant I
N
 

R MAX 10og 2 N! 14
 

1 + N Variant II
 

and the corresponding mean-square error distortion is
 

f N 
2N 2 

=i1(15)
 

2 
 E XN 
~i~l 

For a Gaussian source with unit variance, the summation
 

N 2 

i ~l 

is tabulated by David et al for values of N up to 400 . The resulting 

distortion for .maximum rate Variant I codes is found to be much greater 

than the corresponding distortion given by RateDistortion theory;
12 

namely
 

2 2-2R (16) 

In fact, the resulting-performance is inferior to that of an ordinary
 

2R
scalar quantizer with equally spaced quantization levels. Thus
 

we see that if such codes are to be of value, we must have a method for
 

the judicious choice of the groupings nl,n 2,°..,nk
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Many different choices of groupinsg nl,.., k exist which result 

in the same rate R < RMA . (In fact any permutation of the values of 

nl ,...,nk yields the same rate.) The optimum choice of nl,n2?..n k 

and k for a given rate will be that set of parameters which yields 

the minimum distortion. For a given K , it is shown in Appendix-C that 

a necessary condition on the choice of nl,n2,...,nk "to yield the
 

"ik 

codes and that n, n 2 n3<.., <n where E IX(nl+...+fni)I> 0 

for Variant I codes. 

The following approach was used in a computer optimization procedure
 

minimum distortion is that n,1 n2 < n3 . ... for Variant II
 

to find the best values-of nln 2,...,nk and k for a Gaussian source.
 

Several approximations were used in .this algorithm so the resulting
 

parameters may not be truly optimum. However, there is reason to expect
 

that the -performance of the codes obtained from thus algorithm is essen­

tially that of the very best codes. The procedure is based upon the
 

following observations. Define
 

pi = ni/N , i = 1,2,-...,k -(17) 

Then, for large and N , the rate R can be written approximately
ni 


as: k
 

" Pi log2 .pi Variant I
 

i=l
 
R (18)
 

k
 

S Pi log 2pi Variant II
 

Foi=l
 

Furthermore the distortion (mean-squared error) is given exactly as
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k
 

DPi Pi (19)
 

i=l
 

Treating (18) as an equality we can minimize D with respect to plP2,o.pk 

subject to the rate constraint. The optimum p, are given as 

2 

P - (20) 

2 

j=l
 
where P3 is chosen so that (18) is-satisfied. Note that in actuality we
 

do not ha-&e an analytic solution for the best n. -for two reasons.
 

First, ni piN may not be-an integer and second, pi is given in terms
 

of the p.j which are, in turn, functions of the groupings n.. Fur­

thermore the above'solution assumes that k is known while'we would also
 

want .to fjnd-the best k .
 

The flow diagram for the computer algorithm used in finding good
 

codes is shown in Figure 4. A rough outline of-this algorithm can
 

be found in Appindix 6, part D.
 

As an example, for N = 400, R ± 1.5, K odd, the groupingr obtained
 

is
 

nl=1 n2= n3=74 n4=242 n5=74 n 6= n7=1
 

The resulting rate is R = 1.47514, and distortion is D = 0.18595.
 

The.Gaussian order statistics required for Variant I codes were
 

taken from -the table of David et al.* The results of this .computer
 

optimization for Variant I codes with N = 400 are-plotted in.Figure 5.
 

(A smooth curve has been-drawn through the resultant R-D points,) Also
 

plotted on this graph are
 

http:plP2,o.pk
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1) 	The rate-distortion curve for the Gaussian independent source:
 

as given by Equation 16
 

2) 	Several points corresponding to optimum -scalar quantizers. The
 

quantization regions and representation points.have been optimized
 

to yield the smallest mean-squared error for that number of
 

representation points. The rate of the uncoded quantizer is
 

log 2 (number of quantization points). The coded quantizer's
 

See Lloyd1 3
 

rate is the entropy of the representation 
points. 


14
 
or Max
 

3) The performance of a uniform quantizer whose spacing is optimized
 

1 5
 

and whose outputs are then Huffman 
coded.


4) The performance of some Variant I, N = 400 found by Dunn.
 

In conjunction with this figure we see that:
 

a) The N = 400, Variant I codes are superior to-Lloyd-Max uncoded
 

quantizers for R < 3.7 ad azM superior to Lloyd-Max coded quantizers
 

for R < 3.2. Their performance is approximately equal to that oz the
 

uniform quantizer (coded and optimized) over the range 1 < R < 2.7.
 

b) For small rates (R < 1), the performance of the Variant I codes
 

approach that of the rate-distortion curve. The highest rate code
 

plotted in this figure corresponds to the grouping nI = 1, n2 = N-1.
 

This code is a simplex code and its rate and corresponding distortion is
 

given as log2N
 
N (21)
 
N 

D2 - -xI 	 (22) 

where, here, E(xIlj is the-expectation of the largest of IN, Gaussian
 



random variables of zero mean and unit variance. For very large N
 

Gumbel16 has shown that
 

E§X(3 2 InN + -C (23)
 

Combining'Equations (21),(22) and (23) wehave, for large N
 

D Z - 2R in 2 (24) 

a 

Comparing Equations (24) and (16) we-see that the two agree for small
 

values of R. Thus, the simplex Variant I codes are asymptotically
 

optimum for large N . Furthermore it-is-easily shown that the best
 

quantizer which has two representation points for N outputs from a
 

'Gaussian,independent source behaves as
 

D2
 
2 = - R in 2 (25) 

Thus, this type of quantizer is not asymptotically optimum.
 

c) The codes obtained by Dunn are not quite as good as the.codes found
 

by the computer optimization-procedure. In particular, the following
 

two.codes are easily compared:
 

Aunn: n = (5, 5, 35, 40, 65, 100, 65, 40, 35, 5, 5)
 

R = 2.86367
 

D = 0.03389
 

Computer: n -(1, 2, 7, 20, 46,-77, 94, 77, 46,-20, 7,2,-l)
 

R = 2.79184
 

D = -0o03362
 

The computer generated code achieves essentially the same distortion as
 

the.code of Dunn but at a reduced rate,
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The-evaluation of Variant.-l codes was hampered by the unavailability 

of tables for the-expected talue of-absolute Gaussian order statistics, 

-E[1XI ( i j . The only tables found were those of-Klatz 1-which gives 

thesestatistics only for N < 10 . It was reasonably simple to evaluate
 

the-performance .of all groupings for small N . The results for N = 10
 

are-plotted in Figure 6.
 

It is difficult to draw conclusions on the efficacy of Variant'II 

codes from the-present data since we need to evaluate the performance 

-of these-codes for'large values-of N . A computer program is presently 

being written to-obtain the expected value of absolute Gaussian-order
 

statistics for large values of N .
 

Two interesting properties of Variant II codes follow.
 

1. For any N , if we.choose only one grouping (i.e., nI =-N), then the 

representation points are located on the vertices-of-a hypercube with 

coordinates (± - ,+ -, -.. , ± ) . The representation points 

and -performance of this code are identical to those -of m optimum I bit
 

single sample-quantizer.
 

2. For N =-2 -and = = I , the eight represantation points aren1 n2 


uniformly spaced on a circle of radi us
 

4 sin7 

Although appealing from-the-standpoint of -symmetry, this configuration is
 

a relatively poor quantizer with rate
 

R = -1.5 bits/sample 

and mean-square-distortion
 

D =- L 4 sin2 17 z °23
 

4 rr 8
 

These values-are-plotted as an asterisk on-Figure 6.
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The method of encoding described earlier for Variant I and Variant II
 

codes assumed that the.encoding process consisted of replacing -the output
 

of the source by-its closest codeword. In actuality, for transmission
 

over a communications channel (or for storage;in a memory) one would
 

order the codewords and then transmit (or store) the rank order of the
 

appropriate codeword. We now give a method for achieving this., This
 

method is similar to Jelinek's version of the Elias variable length
 

noiseless coding scheme.
 

The idea of this scheme is to map each of the M = N! iT n.

Si=l ' 

permutations of the vector 

n n2 nk
 
I l...,l i, P2,...,P2,... P k....,l k
 

into a point on the real line in the interval (0,1). These points will
 

be equally spaced and the mapping will be one-one. Then, various methods
 

can be used to enumerate these points. In themethod described later,
 

each point is represented by its binary fraction expansion.
 

We now give the -method to map the-sequence
 

u (N ) = Ph , PJ2 ''''' PJN
 

onto the unit interval. Define the set of integers Ij(i), i = 1,2,...,k,
 

= i,2,...,N as follows: 

II(i) ni i = 1,2,...,k (26)
 

- 2,3, (27 

19(i) =9 = 2,3,...,N (27) 

I1_1(i) j2l 
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and
 

1R(0 ) = 0 = l,2,...,N (28)
 

The mapping of U(N) onto the unit interval, ( (N)) is then given as
 

1 J 3-1
 Jl-iIj2 


(N) i + l+l )2(j2) 
r(.(UN) N 1 N(N-1) 2(i) N(N-l)(N-2) 3 

i=0 i=0 i=0 

1N-l1
N-2 

+1 I (i ( i ) i=l 1
N (N-) N-1 N! (29) 

A=i i=9 

With this procedure, the sequence
 

' ' ' ' 
III PJi... . 1 '2 2 .. k' Pk -....k 

maps to the point ( n.!')IN! , the-sequence 

Pi i....0............2 ....Pk ...'k.k.l, .
 

nk-I1 nk-i 

maps to the-point 2 ( k ni1) N! , etc., the last sequence 

'
 mapi" " k' k-'1k-ln...
p 1k-l
 

mapping to the point Io
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U (N )
The binary codeword corresponding to is derived as follows:
 

.Expand (U(N)) into an infinite, unique, binary fraction
 

-2 TT(U(N) ) = Sl(U(N 2-1 + S2(U(N))2 + ... + S (U(N))2-k+ ... (30) 

where S.(U (N ) (0,1) are chosen so that
 

i 

2-i  
 (31)
o <((U(N)) - 7 s. (U(N))" 2 J < 

j=l
 

Let Q be the-smallest integer greater than log2M . The binary code-

U (N )
word 6(U (N )) corresponding to is the sequence
 

(N) ' (32)N)(N

(U ) ( N)) , S2u(N)),. Q(U) (32) 

() spcfe (N)A (N
 

The codeword _(U specifies U uniquely since 7(U defined
 

as
 
Q 

-
A((N)) E ISj(U(N)) 2 (33) 

j=l
 

n- K,falls in the half open-interval (U(N)) ! 


An efficient decoding method is as follows. Rewrite (29) as
 
Jl J2
 

TT(UN ) 1 / l(i) - i ) i 7( 2 I 

i=l i=l
 

j3
 

-N(W-I) 1l(J 1 ) T 2 (j 2 ) N-2 3' 
i=l
 

N-2 JN-I
 
(34)"1(j1) I -_O0I '; I. 
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In order to recover U(N) from r((N)), the decoder follows the fol­

lowing recursive procedure:
 

J 

Jl min 1l(i) > rru(N) (35)
 

i~~l
 

Knowledge of j, allows the decoder to compute 12(i) for -i'= 1,2,...,k.
 

Then
 

=J2 min N 11fi N(N-I) 	 -- -­miI4 I (i) + NI-l I 1 (Q)Z I2 (i) > T"T(k(N)j (36) 

1=l i~l 

This continues until the next to last step where
 

r j1-l1 j2 1
 
J-=min : 1 lI(i) (i+..
 

J) 1 ).. I N(_) 1 	 ((N) 3l
 

+ N 	 Z(I) 1 2)IN-)... (U()9 (-) 

i=1 

The final step determines j as
 

(38)JN N(U) ­

APL-type encoding and decoding algorithms are given in Appendix 6,
 

part E.
 

The following is a summary of the various steps required in a quan­

tization scheme based upon permutation codes. For convenience, only
 

Variant I codes are discussed.
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1. The outputs of a source are subdivided into blocks of N symbols.
 

2. The positions of the nlI largest samples, n2 next largest 

samples, ... ,nk smallest samples are noted. 

3. This position vector is coded into binary digits by Equations
 

(29),(30) and (32).
 

4. The binary digits are decoded into a position vector by the
 

method described by Equations (35)>(38).
 

5. The representation vector is then obtained by placing in the
 

largest n, positions, the real number p, I in the next largest n2
 

positions, the real number P2 I etc., and in the-smallest nk posi­

tions, the real number Pk ° If available, the values to be used for
 

Pi are those given by Equation (11). Alternatively, the encoder
 

could col'lect- the sample order statistics and transmit these numbers
 

to the receiver at the end of the transmission. The receiver would
 

then use these sample statistics as if they were the actual order
 

statLstics.
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Captions for Figures of Part III
 

Figure l. An'Example of a tree code.
 

Figure 2. Best averagedistortion achievable-of near-optimal convolutional
 

codes of constraint length 5, 7, 10, and 14.
 

Figure,3. Average-distortion vs. number of-encoding steps-of the
 

Viterbi encoding'algorithm when used with the codes of
 

Figure.l. Also plotted is the average.distortion vs.-average
 

number of encoding steps of the Stack Algorithm when used-with
 

the code of constraint length 14 whose ultimate performance
 

is given in Figure 2.
 

Figure 4. Flow.chart for determining optimal groupings
 

for permutation-codes.
 

Figure.5.- Comparison of Variant-I-type code performance with that-.achievable
 

by quantizers and with the rate-distortion function for Gaussian
 

-sources,
 

Figure 6. ShortVariant IT-type code performancecompared to that achiev­

able by quantizers and to the rate-distortion function for
 

Gaussian sources.
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Figure 1: An Exbample of a tree code. 
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APPENDIX 1 

DETAILS OF STACK AND MAP MAINTENANCE AND PURGING 

MANAGEMENT OF THE 'MAP OF VISITED NODES AND ITS 'PURGING 

The following purging strategy will be based on the requirement 

that if there is any entry of depth I in the stack, the-decoder has 

made a final decision about information digits of depth at least I-t, 

where t is some conveniently large integer exceeding the constraint 

length v of the code (good rule of thumb seems to be t z 3 v). 

All variable names used in thts description are those used.in the
 

FORTRAN stack decoding program. The operations outlined below are
 

in addition to those already in that program.
 

1. Before a node is extended the decoder checks whether 

0 < I-Ml(NPOINT(Nl) < t . If not, the decoder sets NPOINT(Nl) = I 

(the location of the root node is M1(l) = -LIMASK). Also, should 

I < IMAX-t, the node is dropped from the stack and no extension is made. 

2.. At the beginning of the decoding process, -we set Ml(J) = -t,
 

j = 2,3,...,IMAP, where IAP is the number of locations in the map.
 

There will be a pointer LOCPUR whose initial value is 2 . When a
 

new map entry is to be made corresponding to depth I, the decoder checks
 

whether 

I - MI(LOCPUR) > t + I 

If sothe -entry -is made into location LOCPUR. If.not, then we increment 

LOCPUR by I and try again (when'LOCPUR.= I-MAP, instead of incrementjng,
 

LOCPUR is set: equal to 2). If the search has been unsuccessful for
 

IMAP-l tries, a map overflow is declared. One may stop at that point
 

or take a risk and replace that entry whose M1(J) value is smallest. 

LOCPUR would then be set to J . 
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3. Decision Making
 

When a node is to be extended such that I = IMAX, we set IMAX=
 

IMAX + I and make a decision on the node at depth -IMAX-t = I+l-t.
 

This is.doneas follows:
 

Set MII= I, NPOl = NPOINT(NI)
 

CASE I: MI(NPOl) = 1+1-t 

In this case the decision is a 1.
 

CASE II: NPOl = 1 or ML(NPOI) > MII. In this case the decision is a 0.
 

CASE III: Neither of the above. In this case set MII = MI(NPOl)
 

and NPOI = NP(NPOl) and repeat above. 

Argument why strategy works:
 

Because of 1, when the entry at location NP01 was made then either
 

MP(NPO1) = I or MI(NPOI) - MI(MP(NPOl)) < t . In the first case,
 

the value MP(NPOl) = I is-either natural, or results from application
 

of rule 1. In either case, at depths MI(NPOl)-l, Ml(NPOl)-2,...,Ml(NPOl)-t,
 

the path has 0 branches only. Suppose the latter case is true. Then
 

the eitry at MP(NPOl) may be replaced only (see 2) by anentry whose
 

value MI' satisfies MI' >M(MP(NPOI)) + t+l,i.e..such that Ml' >
 

Ml(NP01). The new "unnatural" entry will then be recognized by the
 

decision procedure (as the [instance Ml(NPO) > MlI of CASE II).
 

Note from 2 and 3 that the replacement takes place when the decision
 

about depth MI(NP(NPOI)) has already been taken. Thus when the stop
 

of CASE II occurs, a decision is .to be taken about a branch inside the
 

depth interval (MI(MP(NPOi)), MI(NPOI)), and all such branches are
 

00s by definition.
 

Finally, if the stop of CASE I occurs, MI(NPOI) is the original entry
 

at NPOI, and does correspond to a 1-branch.
 

The fact that either CASE I or II will eventually occur need not
 

be labored.
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I 

Purging of Map when the depth of definitely decoded digits is not
 

given by formula J-t where t is a fixed constant and J is the depth
 

of furthest advance in the tree.
 

Note: A good decision method may be: whenever the likelihood on
 

some path s sl,...,s 1 exceeds a maximal threshold T , all digits
 

Sl,.. Isk (K < J) are decided such that the likelihoods
 

L(s') T-a, for i = 1,2,...,K, where the value-of a is chosen in
 

some convenient manner.
 

Asiume that in accordance with some decision strategy, all message 

digits at levels 0,1,2,...,t are definitely decoded for-some t > 0 

We will create 2 new arrays: M2[ IMAPE and NPTMI[KSTACK] (in addition 

to those arrays that are utilized in the original Fortran Stack Decoding 

'Program). Their values will be 

a) Initially: Ml(l) = -LIMASK, NPOINT (1) = 1, NPTMI(l) = 

-LIMASK, MI(J) = -LIMASK for J = 1,...,IMAP. 

b) Suppose a node at location Nl of depth 11 is being extended, 

the 1-extension goes into stack location N2, and the newly created
 

map location will be J . Then we leave NPOINT(Nl) and NPTMI(N)
 

as before. We set MI(J) = NPTMI[N2] = Ii+, NI'(J) = NPOINT(NI),
 

M2(J) = NPTM1[NI], NPOINT(N2) = i . As a result of the above strategy, 

as long as no map location is purged, we will always have
 

M2rJ)= Ml(h(J)) (1)
 

and
 

NPTMl(K) = MI(NPOINT(K)) (2) 

The relations (1) and (2) will then provide a check on pointer validity:
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MAP PURGING:
 

When levels 0,1,...,t have been definitely decoded, no node of
 

depth I < t will ever be extended, and all map .locations J such that
 

Ml(J) < t will be available for re-assignment. This can be done by
 

a 'pointer LOOPUR that is initially set to 1 LOCPUR is incremented by
 

I until it has a value such that MI(LOCPUR) < t . In that case the
 

new map entry will go into location IOCPUR.
 

DECODING DECISIONS
 

Suppose decisions at levels 0,1,...,t have been made and a decision
 

at levels t+l,...,t+j is to be made next (j > 1 for instance when
 

decisions are likelihood-oriented) with node at location NI determining 

the choice. Set NPOI = NPOINT(NI), NPTM = NPTMI(Nl) (we assume that 

I ->t+j) 

1. If NPTM > t go to 2. Otherwise stop.
 

The digits at levels t+l,...,t+j are those revealed by the map so
 

far (i.e. those found by the usual following of back pointers in the map).
 

2. If Ml(NPOl) = NPTM go to 3. Otherwise stop.
 

Then for the purposes of thedecision all digits at levels-lower than
 

NPTM are zeros, The digit at level NPTM is a 1 and digits at levels
 

higher than NPTM are those revealed by the map so far.
 

3. Set NPTM = M2(NPOI), NPOl = NP(NPOI) and go to .I.. The
 

map digits revealed so far are valid.
 

Note: This procedure is successful because any new entry has a value
 

of MI that exceeds.the old value of MI. Therefore if an byd pointer
 

NPOI is involved, we will surely get Ml(NPOI) > NPTM.
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STACK MAINTENANCE AND PURGING STRATEGY WHEN PATHS ARE SPECIFIED BY
 

ACTUAL SEQUENCES OF INFORMATION DIGITS OR PARITY DIGITS
 

Stack: ." Has locations called MI of v-l+k digits, the rightmost being
 

the most recent, some of the leftmost possibly dummies. It has
 

an I counter indicating the depth of the path and a pointer Pl
 

to the preceding: location in the map. In the forthcoming-discussion
 

it is assumed that MI contains an info. sequence. If parity sequencps
 

are involved, only step 11 used ieed-'be.chafged'in accordance with
 

Note Ibelow.
 

Map: Has locations called M2 of k digits (no dummies here), pointer
 

-P indicating the preceding M2-location in the map, and pointers
 

MPL indicating the next M2 location of the same depth.
 

Table: Entries A(l),...,A(j) indicate the values of the various
 

"live" depths that exist in the map. Entries B(l),...,B(j),
 

B(j+I), C(l),...,C(j) are pointers. B(i) points to the first
 

location and C(i) to the last location in the map of depth
 

A(i), i =l, ...,j. B(i) is chained to C(i) by means of the
 

pointers NPL. In fact, C(i) = NPLt(B(i)) where t is such that
 

MPLtI(B(i)) = 0 and MPLr(B(i)) & 0 for r = 0,1,...,t
 

B(j+l) points to the first available location of the map.
 

INITIALIZATION 

*A(l) = -(j-l),...,A(j) = 0 ; B(1) ... = B(j) = 0 

B(j+l) = 1, MPL(i) = i+l i = 1,2,..., IIM2 -1 

MPL(11141) =10 . 

Rest is initialized to 0.
 



OPERATION
 

1. Upon obtaining for extension some-stack location fl, the decoder
 

checks whether I(P) = (V-I) +9 k for-some 9 =-1,2,...
 

If. I(fl) j (V-l) +Tk go to 11, else continue.
 

2.I ~l max - max2. If (P) Ima go to 6, else Im -- I(P) 

3. 	If I < (v-1) + -(j+l)k go to 5, else continue.
 

-

-l(p) 1-MPP(Pl(p)) 7 ... - WP j

4. Go through'the chained list 
1
 

(Pl(fg)) and release the digits in location M2(MPPj -1 (Pi(j3))) to the
 

user0
 

5. Find the value t* such that A(t*) =tR-j -and.make available
 

to the map those-locations that are linked to B(t*). This is done by 

setting -MPL(C(t*)) <-B(j+l) and B(j+.l),-B(t*). 

If B(j+l) = 0, map overflow takes-place and stop. Otherwise, 

. set A(t*) r- , B(t*)E--C(t*) <- B(j+l), B(j+l)c--.PL(B(t*)) , 

NFL(B(t*))---- 0 ,.MPP(B(t*)) <--Pl(p) , and Pl(P)--B(t*). Copy 

the last k digits of Ml(P) into M2(B(t*)). Go to 11 .
 

6. If Imax --I(P) < v-l+jk go to 8 , else continue.
 

7. In this case all of the decisions about digits contained in
 

M(j3) have already been made and this entry should therefore be-purged
 

from the stack. Go to,_2.
 

B. If thereisno t such that A(t) = go to 14, else continue. 

9. Find t -such that A(t+ ) =S . See if there exists a loca­
++
 

tion 01 linked to B(t ) such that MI(a+) = Pl(pG) (This requirement
 

+
is ignored if = min A(t) and the-contents of -M2(c ) are identical 
t 

+ 	 +
 
M1(P) . If a+ exists, set Pl() (- 0
 

to the last k digits of 


B+ + ­

and go to 11, else-continue (Note: if B(t ) 0 then no a exists
 

by definition).
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10. 	 If B(j+l) = 0 , map overflow takes place and stop. Otherwise
 

+
 
B+ <-- B(t+), B(t+ )<--B(j+l), B(j+l)---MPL(B(t+) MPL(B(t+)4--B

+ 
(this puts old B(j+l) to the top of the t set, and establishes a 

B+ 

set 


new top for the set j+l). If = 0 then set 0(t ) (---B(t+ ) 

Also, set MPP(B(t+))<- P1(g) and P1(0) 4--B(t+). Finally, copy 

the last k digits of MI(P) into M2(B(t+)). 

11. The rightmost (v-1) digits of MI(P) are used to find the 

likelihoods X 0 and X 1 of the two extensions of the path on top of 

the stack. If the 0-extension stays at stack location P and the 

1-extension goes into location p1, then I(p)(<-I(l)<-- I (p) + 1, 

Pl(MI)<--Pl() , MI(P) is shifted left by I stage, a 0 being 

entered into the rightmost stage, MI(M) is copied into MI(p1 ) and 

a I is entered into the rightmost stage of the latter, CUM(fll) 4-"--CUM(P) + %I, 

and UM()<- CUM(g) + %o . Appropriate pointers to locations p and 

P, are set in the auxiliary stack as usual.
 

12. Find the top of the stack.
 

13. Go to 1. 

14. This is the case then Ima x - (j-l)k >I(P) > Imax - [(-1)+jk] 

so there exist. some digits in Ml(3) that have not been decided yet,
 

but the pointer Pl(p) does not point to any valid entry, and furthermore
 

min A(t) > .oG to 11. 
t 

NOTE I. 

If stack is not to contain message digits but rather the digits of 

the parity vector, step 11 of the procedure must be modified. In this 

case, what is to be saved are the parity digits. 



We have two parity sequences Pn(D) 

II-A-I) that must be saved. Furthermore, 

and Pn(D) (see (15) of 

x'.,n n 
n 

+Pi 

i = 1,2 

PD (D) =D 
- [Pn(D) + n, + s G (D) 

=
 We assume as previously, that gl,0 g2,0 = gl1 -I = gl,v-l 

G1 (D) and G2 (D) being of degrees %-I and 9-1, respectively. 

(X-l) + (v-1) stages. OneTherefore, Ml(p) must contain' k + 


possibility is that its contents are given by
 

[ n n n n ­
ISn-k' Sn-l'Pl,O'-"' pI,-2' P 2,' '01p2, ]
 

The other possibility is to save \-I positions in the map by taking
 
()n-I X-idermn
 

P lt...,Prin0
fact, that p n)(D) and 

advantage of the 


Sn-l ...'so uniquely by use of the circuit of Fig. lb of Part II.
 

In this case Ml(p) would contain
 

pn-k n-In n n n n
 

''',P 2, - 2
 ... ,Pl,% 2'P2,o ,
1,0 ,...,Pl,0,P l, 0,P l,l 


We will denote the coefficient vector of Pn(D) by pi
 

Therefore we get the following two possible alternatives to step ii.
 

1 2 1
 
lla. (MI(fl) contains [s,p p J,map contains s) s,p and
 

2nd 

p are shifted separately to the left, the leftmost digits pl 0 and
 

P20 being used to compute the likelihoods X and X of the two
 

extensions of this path. After the shift the leftmost digits are dumped
 

1 2
 
is supplied to all three rightmost positions of s, p and p.
and a 0 
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If the 1-extension goes into location P1 then I()<- x(pi)(--3)+1, 

1p(Al)<__i-Pl() and MlQ(3 )9-Ml(f) + [0,...,i, g ,g 2 ] where 

.,g _ and g= g 2 ,1 '.g 2 -" Finally,= g 

CUM(I)--.CUM(P) + %l and CUM(f- CUM(f) + %o . Apprbpriate pointers 

to locations p and 61 are set in the auxiliary stack as usual. 

2llb. (MI( ) contains [p*,p1 ,p ], map contains p* , where
 

u-k n-l 1 2­

p. = Pl,0 ' 'Pl,0 (p.,pl) and (p ) are shifted-separately left, 

n a n b 
the digits Pl,0 P2,0 being used to compute the likelihoods %, 

and N I after two extensions of this path. After the shift the leftmost 

digits of (p*,p ) and (p2 are dumped and a 0 is supplied to both 

rightmost positions, If the 1-extension goes into location P, then
 

and Ml(j31)<-MI(P) + [0,...o,g 1g2
P(P), 

Finally, CUN(P)<-CUM(P)+X1 and CUM(P)-- CUM(P)+X . Appropriate° 

pointers to locations P and P1 are set in the auxiliary stack as 

usual. 
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APPENDIX 2
 

TABLE LOOK-UP FOR MULTIBRANCH ADVANCE 

I. Binary Symmetric Channel-Systeiatic Code
 

Suppose we wish to advance N message bits at a time, and let 

us -assume a rate 1/2, systematic codes. 

We will desctibe how the move forward is carried out at some 
time
 

i at which the parity state pblynomial is
 

- 2
Pi(D) = pl(i) + p2 (i)D + ... + pVl(i) D (1) 

where v is the corlstraint length of the code. We will assume that the
 

generator polynomial is
 

1
Dl DV-G(D) = +g + ... + gV-1 (2) 

Suppose the next -digit information polynomial is
 

Si(D) s i+ 1 + si' 2 D + . + i (3) 

Then the first-position transmitted polynomial is
 

X1 (D) = Si(D) (4) 

and the ,second-position transmitted polynomial is
 

X2 (D) = [Pi(D) + Si(D) G(D)] 0) 

where [ )] denotes truncation of gth and higher powers.
 

Next, suppose first and second position polynomials Y1 (D) Y2 (D)
 

are received, respectively, and it is desired to .find the kt h 'most
 

likely sequence si+l'',,i+R that could have caused it (k=1,2,...;2 );
 



If the channel is BSC, then the answer depends strictly on the weight
 

of the difference polynomials
 

ZI(D) X1(D) + Y(D)
 

Z2 (D) X2 (D) + Y2 (D) 	 (6) 

But, 	note from (5) and (4) that
 

z2 (D) = Y2 (D) + [Pi(D) + X1 (D) G(D)]) 

= Y2 (D) + [Pi(D) + ZI(D) G(D) + Y I(D) D)] 

= [IPi(D) + YI(D) G(D)]9 + Y2 (D)3 + [ZI(D) G(D)] 

= B(D) + [Z1 (D) G(D)]R 	 (7) 

where B(D) is independent of ZI(D)
 

It thus follows from (7) that we can arrange tables that will be
 

kth 
useful in evaluating likelihoods and identities of most likely
 

branches leaving a node.
 

The first table, called LTABM, lists for each of 29 possible
 

different values of B(D) the weight-ordered sequence of the 2
 

different outgbing branches ZI(D) (the weights are simply wt(Zl(D))
 

+ 	wt(Z2D)) both of which depend on Z1 (D) and B(D) only). 

The second table, called LTABW, lists for each B(D) the weights 

corresponding to the outgoing branches -of LTABM. 

A third table, LIK, gives the correspondence between weights and 

likelihood values.
 

Finally, it might be useful to have a fourth table, called CODEY
 

that would supply the correspondence between Y1 (D) and [YI(D) G(D)]J
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kth 
Suppose the most likely outgoing branch was wanted, -one would
 

proceed as follows:
 

1) Look-up [Y1 (D) G(D)] in-C(WEY and form
 

B(D) = [Pi(D)]a +f[YI(D) G(D) ] +1 2 (D) 

kth 
2) Find the entry Z1 (D) and the -B(D)-row of-LTABM and
 

form the corresponding message-sequence
 

Si(D ) = ZI(D) + YI(D)
 

3) Form the next parity state polynomial P + (D) recursively
 

as follows
 

Pi+l(D) ID lPi ( D) + s i+G(D)i 

P.I (D) tD -l + _,D + sc+fD)~ 

-
wheretU * denotes the dropping of the D term. Before generation 

of Pi+j(D), the coefficIent pl(i+j-l) is stored in the map. 

kth  4) Find the weight wk of the entry in the B(D)-row of
 

LTABW and look up.in LIK the likelihood of the corresponding branch.
 

The latter is then used in forming the cumulative likelihood of the new
 

path.
 

NOTE: The value of B(D) should really be computed only when the node
 

is extended for the first time, i.e.along the most likely branch. Then
 

it should be stored for later use if the kth (k=2,3,...,2 most
 

likely branch is needed.
 

NOTE: Obviously a straight-forward modification of this.method-will
 

apply to any rate code. Regardless of the rate, the LTABMand-LTABW
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2n
tables will have entries, where n is the number of received bits
 

that correspond to a path eXtension (In the precedihg- discussion, n 29.).
 

II. BINARY INPUT-M-ary OUTPUT SYMMETRICAL CHANNEL-SYSTEMATIC CODE
 

We will consider the situation where for simplicity the received
 

symbols can be written as pairs (Y,V), where Y is binary and V has
 

alphabet of size m = X/2 . Furthermore, the channel structure is such
 

that
 

w(O,V/O) = w(1,V/l)
 

w(o,V/l) = w(1,V/O) (8)
 

for all V S 0,1,..,M- . In this formulation the Ames channel has 

M = 4 . Note from (8) that the likelihood
 

w(Y~V/l)Y X,V)
 
log w(Y'V/X) - R = log fI()- R
w (Y, V) (9)f 2(V) 

is a function of the pair (Y E X,V) only. Assuming that
 

min ( max (10)
V f2 (v) V f2(v)
 

(which is true on the Ames Channel), the following strategy is very
 

reasonable,
 

Create a table LTAB whi6hfor each of the 29 possible different
 

values of B(D) (they are based on the Y-components of the received
 

symbols only!) lists the weight-ordered sequence of 2 different
 

outgoing braftches (Z1 (D),Z2 (D)) (note that it will be hahdy to list
 

Z2 (D) also). Ties in weights are resolved in some arbitrary manner.
 

Create a table LIK giving the correspondence between the pairs
 

(Z,V) = (Y ) X,V) and the likelihood values
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log f1 (Z,V)
f2 (V) R
 

Finally, construct the table CODEY that will have the-correspondence
 

between YI(D) and [Y1 (D) D)]
 

The path extension-procedure below wi-li not be able.to pick 

every time the k 
-th 

.most likely outgoing branch, because, e.g., in 

case of ties although the distance between a received sequence 

andY.2,-..,Ynb
 

1 i
 
and two possible branch sequences x1 ,...,x and x1,.o..,x mighte
 

the same, the distances between the latter and the actual symbol sequence
 

(Yl,Vl) , (y2 ,v2),...,(Yn,vn)
 

may turn out to be very different. However, it is believed that most
 

of the time the errors in ordering will not damage the algorithm's
 

performance too much. Futthermore, experiments will no doubt bear
 

out the simplicity and speed advantage of the suggested extension
 

procedure:
 

1) Look-up [YI(D) G(D)] in.CODEY and form
 

B(D) = [Pi(D)J + [Y1 (D) G(D)]2 +Y 2(D)
 

kth  
2) Find the entry [ZI(D), Z2 (D)] in the B(D) row of
 

LTABMand form the corresponding message sequence
 

Si(D) ZI(D) + YI(D)
 

3) Form recursively the next parity state polynomial Pi+ (D):
 

Pil (D) '[D-1 [Pi(D) + si+l G(D) *
 

p+(D) [D -1 [i+_l (D) + si%+ G(D)] *
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4) Using the results of (2), look-up in LIK the likelihoods
 

log (fl zjvX):/f 2 (v) - R and form the likelihood increment ' corre­

sponding to the branch Si(D) 

29 

f2(v.)X Z [log f R]v 

j=l
 

III. BINARY SYMMETRIC CHANNEL - NON-SYSTEMATIC CODES 

We will conclude by treating non-systematic codes of rate 1/2
 

for the BSC. The treatment of such codes for the symmetric channels
 

of Sec. II. is similar and is left as an exercise.
 

Let the two generator polynomials be GI(D), and 'G2 (D), and denote
 

teh two parity state polynomials by P.(D), P2(D)
 

CASE I: One of GI(D), G2 (D)., say GI(D) is such that
 

= gl2 = - = g1, -i = 0 (1i)
g11 


In this case the first position transmitted polynomial is
 

XI(D) [F.(D)] + S(D) (12)
 

(it is assumed that gl,0 = 1), and the second position polynomial is
 

X2 (D) = + [Si(D)G2(D) (13)
 

Therefore, the difference-polynomials Z1 (D) and Z2 (D) are 

ZI(l) = YI(D) + [P (D)]) + S.(D) 
0D) =Y() +D 


(14)
 
2 (D) = Y2(D) + [P 2(D)] + CSI(D) G2(D)]3 



= ' 	( ) + []n )4+K ~ ( l ) + 1 D 

= B(D) +-[Z 1 (D) G2 (D)] 	 (15) 

where
 

2

B(D) = Y2 (D) + [Fir(D)] + [(Y (D) +'[P(D)] ) G&(D)]) (16) 

is not a function of the branch being extended.
 

CASE II: Neither GI(D) nor G2 (D) has leading coefficients
 

that satisfy (11). In this case
 

ZI(D) = [Pl(D)]P + Si(D)[GI(D)] + D F(D) + YI(D) (1,7) 

where Dq F(D) is identical with the polynomial consisting of higher 

.than (1-l) degree terms of Si(D)G1D) . Also, there exists a poly­

nomial H(D) of degree at most 5 -1 such that 

[GI(D)] H(D) = 1 + D E(D) 	 (18) 

where -E(D) is some polynomial of degree at most 1 -2 . Post-multiplying 

both sides of (17) by H(D) we get 

(ZI(D) + [PI(D)]9 + Y-(D))H(D) = Si(D)-IPE(D) S1 (D)+DXF(D)H(D) (19) 

Since [D F(D)H(D)] 9 
 = 0 and [D2E(D)Si(D)]R = 0 

we get that 

S.(D) = [(ZI(D) + [P.(D)] + H(D)]Q (20)­

.There	fore, 

Z2 (D) = Y2 (D) + [Pi(D)]' + [Si(D)G 2 (D)
9 

-

Y(D) 	+ 2Z(D) +()P(D)]2 [P.() + 1 + 

+ [ Z1 D)H(D)G 2 (D) ]2 



ITENTIONALLY LEFT BLANK
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Hence
 

z2(D) = B(D) + [Z 1 (D) H(D) G2 (D) 2 (21) 

where
 

B(D)=Y2 (D)+p2(D) J + [([P.(D)] +YI))H(D)G2(D)] (22) 

is not a function of the branch being extended.
 

It is clear that for the non-systematic codes, relations (14),
 

(15), and (16) (CASE I) or (20, (21), and (22) (CASE II) will be the
 

basis for our table construction aM for our path extension strategy.
 

We suggest the formation of the following tables:
 

I. LTABM, listing for each of the 2 different values of
 

B(D) the weight-ordered sequence of the 2 different outgoing branches
 

zI(D) (formula (15) is used for CASE I, and (21) for CASE II).
 

II. Table LTABW, listing for each B(D) the weights corresponding
 

to the outgoing branqhes of LTABM.
 

III. Table-LIK listing the correspondence between weights and
 

likelihoods.
 

IV. Code I listing the correspondence between -Y() and
 

Ey(D).02 (D)i& for CASE I and between YQ)'and[Y(D)H(D)G 2 (D)] for CASE III.
 

V. CODE I listing for correspondence between Y(D) and
 

[Y(D)H(D)]Afor CASE II.
 

kth 
We will now describe the method of finding the most likely 

outgoing branch for CASE II. The treatment of CASE I is similar. 

1) Look up W1 (D) = ([(P (D))A + YI(D)l H(D) C2 (D)? in CODE I 

and form 

B(D) = Y2 (D) + [P2(D)JR+ WJ(D) 



2) Find the kth entry ZI(D) in the B(D)-row of LTABM, and form
 

W2 (D) +Z(D) (D)+ Y(D) 

3) Look up Si (D) = [W2 (D) H(D)
] 9 in CODE II and form recursively
 

the parity state polynomials P -(D) and P2+(D). Store the coef­

ficients pl(i+j+l) in the map.
 

kt h  
4) Find the weight wk of the entry in the B(D)-row of
 

LTABW and look-up in LIK the likelihood of the extended branch.
 

NOTE: Extension of paths in non-systematic codes is clearly more
 

cumbersome than that for systematic codes. It is therefore the latter
 

that should be used wherever possible.
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APPENDIX 3
 

DESCRIPTION OF THE RUDIMENTARY AND PULL-UP DECODING ALGORITHMS
 

It has been shown in Jelinek and Cocke that boot-strap hybrid
 

decoding is applicable to all channels symmetrical from the input that
 

have input alphabets in a finite galois field. It is easiest to describe
 

the method first as it applies to binary symmetric channels (BSC). The
 

generalization to symmetrical channels with binary inputs and arbitrary 

output alphabets is described in section II-B-2. 

As usual, we will encode blocks of r binary information symbols 

into codewords of length (r+ t)/R where R is the sequential coding 

rate and t is the length of the dummy information sequence (known to the 

decoder) that is used to make the sequential decoding of the last informa­

tion symbols reliable. Let us encode m-i blocks of information using
 

the same convolutional code. We will refer to the resulting codewords
 

as information streams. Let us arrange these streams underneath each
 

other, obtaining the solid line array of Figure 1 . Let us then generate
 

th 
the m parity check stream (interrupted line in Figure 1) whose 
th .th 

i digit will be the parity of the i digits of the m-I information 

streams. Stated in another way, the parity stream is a modulo 2 position­

by-position sum of the information streams. Because of the linearity of
 

convolutior i encoding, the parity check stream corresponds to a path in
 

the coding tree whos information digits are the mod 2 sums of the informa­

tion digits underlying the'information streams. Hence, all m of the
 

streams are in principle sequentially decodable. Moreover, if any subset
 

~th
 
m
of m-l of these streams is correctly decoded, the remaining 


stream can be determined by use of the parity relationship (in fact,
 

Falconer's [Ref. (4), Part II] strategy is based solely on this obser­

vation). We now describe the rudimentary bootstrap hybrid decoding
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scheme. Suppose that the m -streams are sent through the binary
 

symmetric channel, and that the corresponding received digits are
 

again arranged by the decoder into an m by (r+ t)/R array'(see the
 

th
 

solid lines of Figure 2). If the j received stream is to be decoded,
 

the received digits of all other streams should also be taken into account,
 

since these contain information about the 
transmitted digits of the jth
 

stream (the transmitted digits are rqlated by the parity constraint).
 

However, it is easy to show that all the pertinent information of the
 
th
 

*t
th received digits yi(1), Yi(2),...,Yi(m) about the i transmitted
 

digit xi (j) in the j stream is contained in the pair yi(j) , 

zi = Yi(1) ® yi( 2 ) G ... ® yi(m). Therefore, let the decoder 

generate a (m+l)t h  channel state stream-(see interrupted line of
 
th diitho
 

Figure 2) whose i digit will be the parity of the i digits of
 

the m received streams. Before specifying exactly how the state
 

stream is to be used in the decoding, let us note that if it has-a 1
 

.th
 
in its j position, an odd number of received streams have'an error
 

th 
0 in the J.th
 

in the j position, and if the state stream has a 


-position, an even number of received streams have an error there.
 

.Let qk(0) [qk(l)] denote the probability-that of k digits
 

independently transmitted through a binary symmetric channel, an even
 

[odd] number was incorrectly received. By a well known formula
 

(see Gallager (1963), p. 40),
 

q (i)q+(l-2p) k 
2
k = 2 k 

where p is the crossover probability of the binary symmetric channel. 
.th 

Let z. denote the i state stream digit, and let yi(j) and 

x.i(J) denote the '.th received and transmitted digits of the *th 
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th
 

stream. For the purpose of decoding of the j stream -wecan view 

the transmission process as having taken place over an augmented channel 

with inputs xi(j), and outputs the pairs (yi(j),zi). This channel is
 

governed by the transmission probability matrix wm(y,z/x) that is-spec­

ified by
 

wm(0,0/0) w(1,0/1) = (-p) qm_l(O) 

wm (0 ,1/0) wm(1,1/1) (l-p) qml() 

wm(l,0/0) = w (0,0/1) 

wm(l,1/0) wm(0,1/1) p qm_,(0) (2) 

th 
When sequentially decoding the j stream, the receiver should 'use 

in the usual way (Jelinek [1968] Sec. 105) the likelihood function
 

w (Y. (j), zi/xi (j))2m(i) = log Ry.(,3).
 

y Wm(Y i (J),(zi )
 

w (yZ) - - [Wm(YZ/0) + Wm(Yz/l) q (z) (4) 

We are now ready to describe precisely the rudimentary bootstrap
 

hybrid decoding algorithm: Let a step in the decoding process consist
 

of a change of the decoder's node location in the coding tree. Let M
 

be some convenient positive integer. Let the decoder start out by de­

coding the first stream (using the likelihood function (3) with j =1).
 

If it does not -complete the decoding job within M steps, it stores
 

the-parameters necessary for resumption of decoding at the node at which
 

it was last located, and starts decoding the second stream from-its
 

origin). Again, if within M steps it does not successsfully decode
 

the second stream, it stores the necessary parameters and switches its
 

attentions to the the third stream, etc. If it turns out that the
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decoding was not completed on gfiy of the m received streams within the
 

allotted -M steps, the decoder returns to the first stream and resumes
 

its decoding from the point at which it left off (the parameters stored
 

previously for-this purpose will enable it to do so). Again in this
 

second round a maximum of M additional steps is alloted to each stream
 

and if this does not-suffice a next round is started beginning with the
 

first stream, etc. After continuing in this manner 	the.decoder will
 

th
 
finally succeed in decoding one -stream, say the j1 This means
 

that the decoder has found a path in the coding tree corresponding to
 

message digits whose symbols it believes to have been those of the
 

Sth . th
 
i1 transmitted streamr. The receiver will then replace the J1
 

•th
 
receited stream in the array of Figure 2 by the estimated j1 trans­

mitted 	stream and will recompute the symbols of the channel state stream.
 

th
 
Assuming the decoding to be errorless, a 1 in the i position of the 

new state stream will indicate that an odd number of the m-l undecoded 

.th
 
streams has an error in the i position, and a 0 will indicate that 

an even number of transmission errors occurred. Todecode' any of the 

remaining m-I received-streams the decoder will take advantage of the 

newly cdmputed channel state stream. Thus it will use the likelihood 

function km-1 based on the probabilities wm_l(y,z/x) that are defined
 

by (2) if m is replaced everywhere by m-I . -Decoding will start from
 

the begining of the first stream (assuming that jl 1 ) and continue
 

jIth  
in a round robin fashion (with the stream excluded), each stream
 

being allocated M steps per try, until an additional stream is decoded,
 

th th
 say the . As before, the received stream is replaced by 
s th 

the j2 estimated transmitted stream and the channel state stream is 

accordingly recomputed. The decoding of the m-2 remaining -received
 

streams then starts from the beginning node of the first undecoded stream
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again, the likelihood XM_2 used being based on the probabilities
 

Wm_2 (yz/x) defined in (2). The pattern is now clear, it only remains
 

to note that when m-I streams have been decoded,-the remaining stream
 

is determined from the parity constraint by taking mod 2 sums of the
 

corresponding digits of the m-1 decoded streams.
 

Our method is seen to be a bootstrapping operation, with each
 

additional decoded stream being helpful in the decoding of the re­

-maining streams. Just how helpful the state stream is can be seen from
 

the extreme use when all but two streams have been decoded; Then, when
 
.th
 

z= 0 the error probability in the i position on either of the
 

2[2 '
 
streams is p /[p + (l-p) ], and when z. = I , the error probability


1 

is 1/2 [the original crossover probability of the BSC is assumed to 

be p] . We therefore place great reliance on the correctness of those 

received digits corresponding to a 0 in the state stream,and no reliance 

on those corresponding to a I . This speeds up decoding immensely. 

We describe next the pull-up decoding algorithm As it applies to a
 

Fano sequential decoder. The modifications necessary for stack decoding
 

are easy and 'can 'be found in Jelinek and Cocke. 3 The pull-up scheme will
 

do away with the excessively frequent (one every M steps) changes in the
 

identity of the stream being decoded which involve a large overhead
 

cost. In fact, there is no need to discontinue work on one stream as
 

long as the decoder has not run into computational trouble such as
 

takes place when the value of the running threshold, TO drops by a
 

predetermined amount U below the maximal value TMAX ever achieved.
 

We will say that a U-drop takes place at a node of depth i whose
 

cumulative likelihood value is greater than or equal to TMAX + T - U
 

and whose immediate predecessor has likelihood value less than or equal
 

to TMAX - U , where T is the threshold increment of the Fano Algorithm.
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The following suggested procedure will apply directly to the BSC, 

but its generalization to the various categories of channels symmetrical 

from the input are obvious. To dqscribe the scheme simply, we will need 

to equip the channel state stream with an additional component -k, i = 1, 

2,...,(r+t)/R whose purpose will be to indicate how many streams have 

undecoded digits at position i . Thus at the start of the process, 

k = m for all i . The function k () (see (3)-) will be.used 
1l
 

in computing the likelihood of a branch of depth -i belonging to the
 

th 
 stream.
 

(1) Using the likelihood Ak (1) Am(1) the receiver continues 
-3­

to decode the first stream until either a U-drop takes-place or the
 

decoding of the block is completed. If the latter event happens, the
 

received first stream is replaced by the estimated transmitted one, the
 

channel state stream is recomputed, and ki is decremented by I for
 

all i
 

(2) If a U-drop takes place at a node of .depth il, then all
 

branches on the path to that node up to depth i -J will be considered
 

definitely decoded., where J is a-suitably large integer. Accordingly,
 

the corresponding . received digits will be repladed by the estimated
 

transmitted ones, and the corresponding segment of the channel state
 

stream will be recomputed. All the parameters necessary for eventual
 

resumption of the decoding from the node at which the n-drop took place
 

will be-saved. Also, the value of a new parameter k*(l) will be set
 

equal to the current value of -. where 'is a convenient
kilJ+r r 


integer. Finally,-the values k. will be decremented by 1 for
 
3
 

j = 1,2,...,i 1-J, and a parameter 1(1) will be set to il-J .
 

(3) Decoding of the-second stream will now begin based on the
 

functions 'k. () , and continue until either a U-drop or stream decoding
 
1
 



1$
 

completion takes place. In the second eventuality, the values k. will 

be decremented by 1 for all j . In the first eventuality, k*(2) and 1(2) 

are set equal to ki1 and i2-J , and then all k. , i e (l,..,i2-J), 

are decremented by 1, where i2 is the depth of the node at which the 

U-drop occurred. Decoding continues in the indicated manner until all 

m of the streams have been worked on. 

(4) If there exist integers RI > 2 > 0 such that ki 0
 

i = ,.., 2' ki = I, i = 22+1,..., I' then we find the unique stream 

j* whose digits on levels 92+1,..."1 remain undecoded. These digits 

are then decoded from the algebraic constraint, the parameter 1(j*)
 

is set to R1,ki is set to 0 for i = V2+ ' 2 1 , and the 

parameters necessary to start decoding of the j* stream at the appro­

priate node of level RI are stored.
 

(5) Undecoded streams are next divided into two categories. Category
 

includes streams jl,J2,...,j (9'< m-l) such that k*(Jt) > k (Jt+r 

t = l,...,5 (note that I(jt) is the depth of the furthaSst, node of 

stream jt that has been definitely decoded). Category -Y2 includes all 
*th
 

the remaining tndecoded streams. Decoding of the j stream will now
 

start in the forward mode by placing the decoder at the node at which
 

the U-drop took place and setting the threshold and cumulative likelihood
 

values to 0 . The established pattern repeats until all of the streams
 

jlJ2,o..,4 of 21 have been worked on, except yhat ki will be de­

th 
cremented only for values i I(j) when work on the j stream is 

terminated. If any segment of any stream can be definitely decoded from 

the algebraic constraint, this is done and new parameters for that stream 

are determined 's described.in the precedfig step. The *indecoded streams 

are again partitioned into the categories 2 and . Note that the 
1 2
 

new 2i may now include some streams that belonged to the old 22
 

http:described.in
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If is not empty and more than one undecoded stream remains, decoding
 

of the streams of i continues as before. If only one undetoded-stream
 

rena-ins, its identity is determined from the parity information and the
 

ta c is compl ted.
 

(6) If is found empty while 22 contains more than one stream, 

only one of two actiors is possible. Either the decoding effort is 

abandoned or the size of U is increased and all of the undecoded 

streams are put into 1I. After all the latter have been worked on, 

a new 21 is again formed in the regular -manner. If the new .21 is 

empty, U must be increased further; if not, then work on streams of 

2i resumes with U equal to its original value. 

As pointed out earlier, analysis of a slight modification of this 

pull-up algorithm reveals @ee the Appendix of Jelinek and Cocke'l that 

upper and lower bounds on E[N ] can be obtained that are essentially 

independent of the block length r 

FIGURE CAPTIONS
 

Figure 1: The structure of the encoding block.
 

Eigure 2: The structure of the decoding block.
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APPENDIX 4
 

NEW UPPER BOUNDS ON CERTAIN COMPUTATIONAL PARAMETERS
 

OF BOOTSTRAP HYBRID SEQUENTIAL DECODING
 

I. Introduction
 

We will be considering binary input discrete memoryless channels
 

that are svmmetkical from the input. However, the results are completely
 

generalizeable to all channels symmetrical from the input. We impose the
 

restriction to simplify our proofs.
 

A binary input channel of that class-can be described as follows: 

Let any input x s 0,fl produce at the output a pair of digits (y,u) 

y e0,11 , u e {0,l,....b-l] and let the underlying channel transmission 

probability distribution have the following characteristic:
 

w(O,u/O) = w(l,'U/l)
 

w(I,u/O) = w(O,u/l) (1)
 

for all u s L0,...,b-lJ . Except for (1)., the transmission function 

w(y,u/x) will be considered arbitrary. Note~that for the BSC, b = 1 

so the u-portion of the pairImay be omitted. In the sequel we will be 

considering the bootstrapping hybrid coding scheme that transmits M 

streams, M-1 of which are convolutionally encoded binary information 

digits, and the Mt h  stream is a. modulo 2, position-by-position sum of 

the first M-1 streams. The convolutional code used is the same for
 

each stream and as a consequence the, M th  stream is also a codeword
 

2k
and can thus be decoded. The code will generate a tree with branches
 

leaving each node, m digits to a branch (thus the rate R = k/m), and
 

it will simplify our reasoning if the code constraint length will be
 

infinite,
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The decoding at the receiver will be done in the way described in
 

Section VI of reference 2. Suppose K streams are left undecoded
 

(K<M),and let
 

[iski] = [ ( yi(l),u i (l)) ( y i ( 2 ) ,u i (2)),...,(y (K),u i (K))]
, i 

be the vector pair of received digit pairs of the -K undecoded streams
 
th t ra ilb
 

in the i position. Then the decoding of the J stream will be
 

based on likelihoods
 

PJ) uYa/x(J)'t.] 
R (2)(J)= log PK 

pK Y i /t i 

where the subscript K indicates the number of undecoded streams, and
 

th
 
t. is the parity of the i position digits that the decoder -determined
 

I 

to have been transmitted in the M-K decoded streams. Section IV of
 

reference 2 shows how the righthand side of (2) can be simplified and
 

easily computed. The probability PK I is, of course, given by
 

PKi' ./xi(J)'ti + w(yi(J)'ui(J)/xi(J)) x 

x K w(yi(j),ui(j)/xi(j)) (3) 

xi(j)=ti 

j=l 

and
 

PKtY,'Itj~ = 12[pJ V(1i' I1) +*PK , (4) 

We conclude this section by proving
 

-Lemma I 

Let a channel satisfying (1) and a convolutional code be given. The
 

distribution of the number of dccoding steps for any stream as well as
 

the probability of error are invariant with respect to the actual informa­

tion sequences encoded.
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Proof
 

Let Sl, s2, .. ,s be the information sequences of the first 

th 
M-I streams. Then by linearity of the convolutional code, the M 

stream corresponds to the sequence s =s + s + ... +M where 
I.M Sl "v2wN-i
 

mod 2, position-by-position sum is understood. Let the corresponding
 
f 

codewords be denoted by x(s I ) ,...,x() where, of course,
 

x(sM) = X~l)+..+xS ) (5) 

Suppose the received sequence pairs are (y ,Ul),-,°,(Y,'UM) =y

Suppose 

Consider the Jth stream (J e 1l,...,M?) and let x(s,J) be its 

codeword corresponding to some arbitrary information sequence s 

Then the likelihood associated with this codeword depends on the 

probabilities 

and
 

N IQ'j/01(7)
 

where 0 denotes an all zero sequence.
 

Now because of (1), the probability of receiving (yju) when 

x(s ),...,x(s ) was transmitted is the same as the probability of 

receiving (yl +(SUl''),u),...,(yM +x(s ),UM) when 

x(0),...,x(0) = 0,...,0 was transmitted. Furthermore, it follows 

from (3) that for any s and J 

Pj (' .t(YM,9/3~sJ), 01 

P x(i),u),...,(Y ;+x(s ),UQfX(S +xs9)'Os,0 = 

{ 1 +s'J),O, (8)t
 



where the last equality is a consequence of the linear character of
 

convolutional codes. It follows directly from (8) and (4) that also
 

M= [(l sB)i + 2 M M M) (9)
 

Since both -whether or not an error was committed and the number of
 

decoding operations depend on the likelihoods associated with the
 

various paths in the tree and on their-relation to each other, we see
 

from (8) and (9) that these parameters will have the same value when
 

21' .. M are transmitted and (y 1,u 1),.°,(y , u ) are received 

(event A) as when 0,...,0 are transmitted and (y,+2x (s ),U), .'
 

(yg~x(sM),uM) are received (event B). The conclusion of the-Lemma
 

then follows from the observation that both events A and B have equal
 

probabilities for any al'''"' 5 M' and any (y,4),..,(y .
 

QED
 

Corollary
 

When evaluating the probabality of error or the distribution of
 

the number o3 decoding steps in the bootstrapping hybrid decoding
 

scheme used with a binary input symmetrical channel, it may-always be
 

assumed that all-zero information sequences have been sent.
 

2. Some Preliminary-Results
 

Let M stteams be received and let N.(i e be ethe
 

number of decoding-steps in the first incorrect subset of the *th
 

stream when the stack sequential decoding algorithm is used. In
 

this section we-will derive an upper bound on
 
(
 

E[ min N] (10)
 
l<iKl 


We will follow a modification of an approach developed by Zigangirov.
3
 



Consider the operation of the stack algorithm in the incorrect
 

subset that starts with a particular branch emanating from some node
 

whose path likelihood value is 2 . Let the stack algorithm continue
 

its operation until for the first time the likelihood value on the top
 

of the stack falls below 8(8 :__z). Let ngz) denote the number of
 

operations until the stopping rule is invoked, and let (the expectation
 

is over the ensemble of convolutional codes and over the transmission
 

process)
 

N(z) = E[n(z)] (11) 

Let 2 be the number of branches leaving each node, and let y,u,x
 

be the sequences of length m of y,u,x corresponding to a branch.
 

Define the branch likelihood function
 

= lg M(,u/x,O)S(, 
 l M mR (12)
PM( y ' Ru/A 

Then, since in the code ensemble the branches in the incorrect subset
 

are selected independently from the all-zero transmitted branches (see
 

Lemma 1), NJ(z) satisfies the difference equation
 

M 

N8 (z) = 2 k Ns(z+ ' (,x) 2 "mV w i>I
 

y,2 us 7x i=l
 

z > 6 (13) 

N8(z) = 0 z < 8 

Lemma 2
 

For 6 < 0, 

[2P (z -0) 
 (1
N8 (2) k1 (14) 
2 -1
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where
 

= i X(( - ) (15) 

and p e(0,l) satisfies
 

M PI (Y-,PMQ5X 0) I1(~pR 

< 2P
w(y(i),u(i)10) (16) 

Proof
 

4
 
By the well-known maximum pinciple4 , N*(z) will be an upper bound 

on N8 (z), provided that 

N'(z) , 0 for z e (6+Cf, ) (17) 

and that the lefthand side of (13) is not smaller than the righthand
 

side for z > 8 when INgz) is substituted for N6(z). Substituting
 

N%(z) k1 E20(zsa) - 1] (18)
2l 

into the righthand -side of (13), we get
 
M 

4 4
k 

1- 2 k ' + 1 2 p(z-8-a) 2 k-m > 2p%(I I Tw(i),(i)/O ) 

Wd" i i ' k + k 

2k-1 2-1 i=l


Y-9 u, 

> 1MP*l(, 

- 7[ :/S[2P (z 8C) "2 k-m-mpR 1, /(IX0 ) j 0)
k_ (1)(i)su 

-1 (19)
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Since N*(z) does satisfy (17), then the bound (14) will be valid
 
8 

provided the braced expression in (19) is smaller than or equal to 1.
 

Using H'Older's inequality and the relation (16) (we are making use of
 

the independence of digits along branches),
 

N(~i, 10--. _- e 

i-

Mw (Y(i) -;>(i)/FPml8) < =~-lpR 

2m-k+mp R (20) 

Therefore, the righthand side of (19) is less than or equal to N*(z)

8
 

and the Theorem is proven. QED
 
•th
 

on the i
be the likelihood values
Next, let ZlZ2...z M 


(i > 0) nodes of the true paths of the M received streams (by Lemma 1
 

these are the all-zero paths). Let v < 0 be arbitrary and define the
 

indicator function ¢,(lz 2,...,zM) to be equal to 1 if the likelihood
 
th 

on all of M of the true paths leaving the i node falls below the 

value V. Otherwise let b(z,...M) be equal to 0 . Furthermore, 

define 

V(Zl, 2,...,ZM) = E[ (ZlZ2,...ZM)] (21) 

Since the all-zero information path corresponds to the all-zero transmitted
 

sequence, V satisfies the following recurrence:
 

(zl .. ,z )'(z 1 +2 (+ uO) 
zv'l' ­

,U
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Sw(Y(i),U(i)/O).. w((M), M)/) (22) 

if z. > v for some i
1 

,. = if z. < V for all i 

Lemma 3
 

(zl,...,z) < 2 -"z(l+ '+zMMV if max (zi,... z M) > V (23) 
i 

where v < 0 , p > 0 satisfies
 

-U
 

M i l-p . l0fMR 
IUw (i)u(i)/O) L 2 (24) 

and p e (0,1) is the parameter defined in .(16).
 

Proof
 

.By the.maximum principle4 , V(zl,...,zM) will be an upper bound
 

on V (Zl,.. .,ZM) , provided that
 

i(Zl,...,ZM) > 1 if z. < v for allt i (25) 

and that the lefthand side of (22) is not smaller than the righthand
 

* 

side when @ is substituted for a . The function 

(Zl,...,ZM) = 2 t I+...+Z MV) (26)
 

surely satisfies (25). Substituting it for & into the righthand
 

side of (22) we'get
 



I , )

2-P(Z 1l+ .+ *M~v)ZyE,2Z -i~t~ 1 +. (i) 1)/0S] 

M, (x0))*-* . 

. .. 

-- > i=1 

2 'i * MM"jf7-r RLMcno j w((i)A /i)0,) 

yU
 

(27)
 

Thus a" will be an upper bound on provided the value of the braced
 
-V V 

expression in (27) does not exceed I ° However for p e (0,1) that 

value is by H3lder's inequality dominated by
 

M,- ' iI 0 1 1 ­

2P Y1iO) w(_(i),u(i)/oo <
 

gpMmR 2- 1nR
 

where the inequality is due to (24) and the fact that digits along
 

branches are independent. QED
 

Finally,let us define the function
 

rT8(Zl,...,Z, Z) = E[ (zl..,zM)n (z)] (28)
 

where it is understood that
 

a) n (z) refers to the incorrect subset of some arbitrary but
 

fixed stream J e'l,2,...,MJ
 

th
 
b) the likelihoods zl, ...,Zzpz occur on the same S. depth
 

level in all streams.
 

z) may thus be interpreted as the expected number (over
 



the set of events for.which 0,(Zl,...,zMi) = 1 ) of decoding steps in
 

the Jth incorrect-subset stemming from some branch that lteaves -a node
 

on depth i whose likelihood value is z , if decoding terminates when
 

the likelihood value of the top of the-stack falls below 8 • then
 

-satisfies the recurrence
 

t; - (zl" ...IZM'z)=
 

2k •>- + (,- ),Z+J
 
8(Zl + l _.o 11) ) 

M
 
I (y.i),u(i)/0, 
 M+ (29)
 

i-I01
 

if z-> 8 and max (zl,...,zM) > v where
 
i
 

,6(zI,...,ZM,;z) = N6(z) if max (zl,...,ZM) __ 
i
 

= 0 if z < 8 (30)
 

Lema 4
 

+ ' 6 "!)
k [2 "P(Zl . MMV) P(z " 

k, 1''M' - 2k_l (Z' ZM) 

(31) 

where p satisfies (16), pvsatisfies-(24), and -a is defined in (15). 

-Proof
 

Let Z , (Zl*'°"ZM;z) be the righthand-side of (31). Then by 

(23) and (14),
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tv,(Zl,...,zM, z) N8 (z) if -max (zl,...,zM) < 
i 

Furthermore, if z > 8+a then since p e (0,1), we get
 

* > -l! [2(Z - (z, ... I zM)]> 0 

where the last inequality follows from-Lemma 3. Thus by the maximum
 

principle4 : will be an upper bound on t provided the
prncpl 8,6 prvde'h
 

righthand side of (29) exceeds the lefthand side when t, is sub­

stituted for V,6 into it. The righthand side of (29) is then equal to
 



1 l(Zl+ '" .+Z M'M)'tp (z-6-60 k- X) ->-
2-P Cy' -3.y(i),ut(i)/1, ) 

2k (Zl'''"zM) + @ (zl
,...,zM)
 

Thus all we need to show is that the expression in braces does not exceed I In
 

fact, it is equal to
 

M pi-- "
 

2k-rn-prrMnR]7 

wmR)S(i)/tyt


P"
 

_ 
 m,
 

2 WU ( U't W(i)/I',i/1-


i*_I 


2 W(Y, 0
/OH 
 i),U~i 


k-pm-t
2 .'inR2r(l-(l-p)R) 2 b 'R = (32) 
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The inequality in (32) follows from Wilder's inequality, the
 

from the fact that .k = mR, and the next-to-last equality from the fact
 

that p and p satisfy relations (16) and (24) (by definition of the
 

probability measure PM the first braced expression on the lefthand
 

side of (32) is independent of J). QED
 

3. An Upper Bound on the Expected Minimum Number of Decoding Steps
 

in the First Incorrect Subset
 

We will now use the conclusion of Lemma 4 to obtain an upper bound
 

on the quantity E[: tin i] described at the beginning of Section 2.
 
1<M
 

Note first that the upper bound (31) is independent of the index, J
 

of the stream whose incorrect subset is being decoded (see (28) and
 

following), Let 8 be the maximum of the likelihood minima pertaining
 

to the correct paths of the M different streams. If this maximum
 

is attained on the Jth stream, then the number of steps in the first
 

incorrect subset of the Jth stream will be exactly n (0). Since
 

the first node of each stream has likelihood 0 , it follows that
 

d6
E l 2 k-i f - (0,...,o,0 (33)l<iM f 
0 

where the coefficient 2k-I is necessary because there are that many
 

incorrect branches leaving the first node. Now using (31),
 

<h 1­
b VT17(0..,'0,0) 2-k_- MA 2 LMV - P(+? 

since § is an increasing function of v. Hence
 

V 
E min N < -P ) if i p> P (34)


-AUrl<i<M 
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Now in (24) we have a relationship of the form
 

-i MR
 

Since the lefthand side is a monotone increasing function of P , the
 

inequality is easier to satisfy if p is as-small as possible. But
 

(34) says that > p/M . So-in order to find the rate R below which
 

the-lefthand side-of (34) is finite, we will set p = p/M . Inequality
 

(24). then becomes equivalent to
 

__ f p
 

M(P) =)/0) LPM(Y,0)
 

(35)
 

and (16) can be rewritten as P
 
1-p
 

(- J0)'\P)/MiPMlzW0) 

, l (36)
 

and it -is.understood that p-s (0,1). It can be shown that the -lefthand
 

side of (35), FM(p) is monotonically increasing with p s (0,1) -and
 , 


the lefthand side of (36), GM(p) is monotonically decreasing. There­

fore, if FM(O) _,GM(O) and FM(l) GM(1), then there is a unique
 

pM e (0,1) such that FM(PM) = GM(pM) and for all
 

R < -- log FM(PM) = - log GM(pM) (37)
 

the expected minimal amount of computation in the first incorrect subset
 

is bounded by a constant. Since it can be-shown that FM(0) < GM(0)
 

and FM( is true always, then we have
1 ) > GM(l) 
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Theorem I 

Let pm s (0,1) be the unique value for which FM(PM) = GM(pM ) . 

Then E [Tmin INfl is upper bounded by a constant for all rates
 
di<M 

R < -log FM(PM)
 

NM 
 is the number of decoding steps in the first incorrect subset of the
 

i stream when M streams have been transmitted.
 

Let us next define Ni(K) to be the number of decoding steps in the
 

.th
 
first incorrect subset of the i among the K streams that have been
 

left undecoded (i.e. M > K streams were received, M-K were decoded
 

by the hybrid method, and K streams--probably the most difficult ones-­

are still to be decoded). We suggest that a very good measure of com­

putational complexity is the parameter
 

E [ max min Ni (K)< 2 E min Ni(K)] (38) 
2<K<M 1i4K . <i'K 

k=2 

which may be interpreted as the expected maximum number of decoding steps
 

that-need be done in the course of.decoding of the entire hybrid block in
 

any first incorrect subset.
 

Let i1 'i2 , ik (i. e (1,2,...,M)) be the indexes of those -K
.
 

streams that remain undecoded. Now by definition,
 

E[!jNK. Ni(K] > IPQK>-l1 NK>I K (39) 

2=o
 
K >
 

But P , > is less than or equal to the probability
 

that there is a subset of K streams from among the M which when
 

considered together are such that the first incorrect subset of each
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stream requires more than ) steps for its decoding. Hence by the union
 

bound,
 

P KIN " N K (--- P N >' NK"SK KK NKK 

Therefore by (38),
 

M 

El max min N (K]_; t(:>)KK 
P .,N > = 

12<K<M I <i<K 

M 
SEnl<i<K NK  (40) 

K=2
 

From (39) and Theorem 1.we can then come to the following conclusion.
 

Theorem 2
 

Let PK S (0,1), K = 2,3,...,M be the unique values for-which 

FK(PK) = GK(PK) . Then E [ max min Ni(K)] is upper bounded by2<K<M l<i<K 
a constant for all rates
 

R < min 4I-log FK(PK)) (41)KP)
2<K<M 



APPENDIX 5
 

ESTIMATION OF EN AND ENt
 

Lemma 1: Eguation
 

(D
s
-R e (D2-1)

2
 

has a(possibly,complex) solution s for all D* e (O,w) 

Proof 

Suppose first D* = P/q , p,q integers. Then (1) becomes 

2 = e q + p/q (2) 

Making the variable change (eS) I / q = z and multiplying by z , (2) 

becomes 

P P + q  zq 21-R = z + z (3) 

Now (3), is a polynomial in z , and as such, has at least one root by the 

theorems of algebra. If z is one of these roots, then clearlyo 

e = is a root of (1). Observing that rational numbers are
 

everywhere dense on the real line, the Lemma follows. QED
 

Theorem 2
 

Under the hypotheses .of Theorem I jb-al < nw implies
 

r-aco a csb
 
ENr c o b (5a)

a sin Wa sin ae sin tb(
 

-b
 
ENma cos b(5b)


b " -sintub sinwa sinb)
 

where r and W are solutions of
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l1-R rD*-IlD
 
2 = r cos w(D*1I) + r cos wD*
 

0 = r sin w(D*-l) +" r sin 0:* (4) 

which exist for all D* e ( (R) ,1/2) 

Proof: 
,th 

For pathq :of length R > I , let the j path cumulative metric 
oth 

be denoted gj . Denote the metric of the j single branch pj 

Observe the p, : 'all ttee branches are I.I.D
 

For some complex s , define
 

d 

To(s) Iie J (6) 

j=l 

and define
 

+1 

T (s) 1je j fi = (7) 

where the T..is meant to run over all paths frozen and unfrozen at
 

level
 

f. is defined in-one of two ways: 

1) If node j at level R is frozen,-we rbilrarily define there 

to be one extension to level A+i with zero additional metric. Thus 

= J• es.O = 1 (8) 

2) If node j at level I is not frozen,'we define f. to reflect:
3 

d extensions with each branch having an I.I.D. p. So
 
d 

f. - eP -(9) 

i =1
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Suppose s can bechosen such that ET (s) = I Ct will be seen that in
 

our case s will exist and'will be complex). By the.-..D. property on
 

the branch incremental metrics pi
 

ET (s) = d Ee = 1 (10) 

It follows irmediately that for all nodes frozen or not, 

Ef. = (11) 

We now show ETR(s) A ET _l(S), thus proving by induction that 

lim ETA(s) = 1 (12) 
.R-*coM 

Write ETA(s) = e
(over j) LS 

L J j fix 

=~~EJi E fj 
IE
 

= by (11) 

E TR-s)
 

We can now- rewrite.(12), breaking up the sum into sums of paths
 

frozen at a , paths frozen at b ,and paths remaining active over 

an infinite length: 

1 =BE e' ] + E [ e erj + E i ~ (13) 

- frozen frozen 0 
at a at b active 



Theorem I implies that the third term in (13) is zero so long as
 

Ib-al < T/w The first two terms are approximately
 

-E[jae3 and E [ ee respectively
 

J1 J
 

In actuality, frozen paths do not have precisely metrics a or b
 

since paths may "overshoot" the barriers below freezing. The ambiguity
 

in (14) may be resolved but only with tedious calculations, which will
 

not appear here.
 

Thus 	(13) may be rewritten
 

I=ENCa + ENb e 	 (14)
 

If the value of s which satisfies (10) is expressed as
 

e 	 = r[cosw + i sin w] (15) 

we can write (12) in real and imaginary parts,
 

a 	 bar + ENb1 ENe coswa rbcos Wh 

0 - ENa ra sin a + ENbrb sin Wb 	 (16) 

(16) 	are simultaneous equations in two unknowns ENa and -EN When
 

solved, 	(16) yields the claimed result.
 

It remains to show that s exists satisfying (10), Now,
 

n
 

T= n d ()es(nkk) 
 =(17)
 

k=O
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when the-source'and distortion measure are used to evaluate the-expec­

tation..(17) in turn reduces to
 

21-R s(D*-l) + sD* (i)
 

whose solution exists by Lemma 1. QED
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APPENDIX 6 

PROOFS AND ALGORITHMS FOR PERMUTATION CODING 

A. Proof of Optimality of Encoding Procedure
 

Theorem: Let f(IaI) be any nonnegative, monotone nondecreasing, cohvex
 

upward function of IcVi. Let the distance between the vector X(N)= I '2,...,Xa 

and Y(N)=(YIY2,.,YN) be measured by
 

N 

d (X(N) y(N)) f (I Xf-Yi) (A-i) 

i~l
 

Let V(N) = (V1,V2,..,VN) be any vector for which V 1 > V2 >... > VN 

,and let B be a block code whose codewords Y(N) are all distinct per­

mutations of -VN . Then if X. denotes the kth largest component of 

(N) tey(N) Bkha 1 (N) (N)
X N , the Y e B that minimizes d(x,Y ( ) has Yi = Vk for 

k = 1,2,...,N. 

Proof: From the additive nature of Equation (A-1), it suffices to-show
 

that if X >X 2 > ... >X ,then Y_(N)= (VI,V2,.'.,Vi = V(N) is 

the Y_(N) e B that minimizes d(x(N)KY(N)) . Furthermore, once this 

has been established for N = 2 , it is easily established for N > 2 

by induction. 

When N = 2 , there are six cases to consider: namely 

Case I xI >v>v 2 > x 2 Case 4 v x >x 2 >v 2
 

Case 2 xI >v I Case 5 v
x 2 v 2 x2
 

Case 3 xI x2 2: v1 v2 Case 6 v 1 v. x. 2 

In each casewe must establish that
 

f ( I x f(Ix l - v l lj) + f(Ix 2-v 21) - l -v 21) +f(Ix2 -vll) (A-2) 
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Since f(.) is a function of the absolute value of its argument, Cases
 

4,5, and 6 will follow immediately from the establishment of Equation
 

(A-2) for Case (1), (2), and (3). 
Case 1: We have VI-X 21 > V2-X2 _:O and. V2 '_XI-V1 _0 

Case1:- _12Xl 

Hence, (A-2) follows from the monotonicity of f( )
 

Before treating Cases (2), and (3), we note that if we can establish'
 

Equation (A-2) for f(fx-vj) = f(tx-vI) - f(O) then it will clearly 

hold for f(') as well. Hence we lose no generality be assuming 

f(O) = 0 

Lemma For a > 0, b > 0 , f(a) + f(b) < f(a+b) 

Proof See Figure A-1. A straight line is drawn through the points 

(a,f(a))and (b,f(b)) . Since f(') is convex upward and f(0) 0, 

the line intersects the abscissa at a nonnegative value. Triangles 

T and T2 are similar. The base of T2 is larger than the base of 

T so the altitude of T2 is larger than f(a), the altitude of TI. 

Thus the straight line intersects the point (a+b,h) where
 

f(a) + f(b) h < f(ab) QED 

Case 2: We have
 

f(1xl-vll) + f(Ix2 -v2 1) (Ix 1 -X21) + f( x2-v2I) 

< f(Ixl-v21) f(Ixlv)) + f(Ix 2-v11) 

where the first inequality follows from x2 < v, and monotonicity,the
 

second from the lemma and the third from no4negativity.
 

Case 3: We have
 

f(1x2 -v 21) __min f(Ixl-vl),f(x 2 -v 2 )J <_ max {f(Ix 1 -v1j),f (I 2 -v 2I)J 

< f(1X1 -V21) 
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Let f(kI) f( +x 2 -vl1) - f(dx 2 -v1 1) . Applying the lemma to 

f(.) yields
 

f(Ixi-vil) + f(Qx 2 -v 2 ) =f (1xl-x2 1) +f(dvl-v21) + 2f x2 -vl) 

< "(Ix-xl-x 2 + v1 -v 2 1) + 2f(Ix 2 -vlI) 

- f(X -v 21 ) + f(Ix2v1) QED 

B. Best Choice of it for Mean-Square Error Criterion
 

'(i )  
Let X denote the ith largest of N random variables, each
 
2(i 

with mean zero and variance a Let IX I denote the ith largest 

of the absolute value of these random variables. Then the mean-squared
 

error for Variant I and Variant II codes are: 

k~ ~ I( 3~t Kn+...+n.} 

Variant I D E (x(i) Ij )2)j (B-l) 

-ii--nl+...njil+l 

n ' + n " K I 2+ 

Variant II D = E n dX (i) ) (B-2)41(Z -

ij---hi+. . '+n j4.+1 

Noting that
 

N N1 

i=l
 

these equations can be rewritten as
 

K n+°..+-n. K
 

Variant I D = a 2 -2 = nj (B-2
( 3(i) 

j=l i=n.. .+nj_1+1 j=l 

j-l 
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K
K +...+n 


Variant II D 2 2 (Q) + n. -1 (-4) 

j=l i-n1+...+nj-1 j=l 

Differentiating Equations (A-3) and (A-4) with respect to pj , setting
 

the result equal to zero and solving for gj results in the expressions
 

given in Equations (11) and (12).
 

C. Monotonicity of ni for Minimum Distortion
 

Let a'. be the appropriate ith coder statistic for Variant I or
 

Variant II codes. That is,
 

ViE x Q) Variant 'I 

I(it aXatiant II (C-1) 

Then from Equations (11) and (12), the optimum values of the pj which
 

mininize the mean-square error are
 

nl-Hn2+...+n. 

Pj n j= 1,2,...,K (C-2) 

i +...+n 1+1 

and the resulting mean-square error distortion (from Equation (13)) is
 

K 

D = a2 1 nj 2 (C-3) 

Choose an - such that ai > 0 , i = 1,2,...,n 1 +n 2 +...+- , and let 

a = n_ 1 > n2 b (C-4) 

It will now be shown that if all the other n. (ij P -1 or 9 ) remain 

fixed, the distortion given by (C-3) can be made smaller by reversing the 
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roles of 

given as 

ni. I 

!n. = 

and 

n. 

nP That is, define a new set of groupings 

i -Ior 

ni 

nR = n2_1 

n_= niM "(0-5) 

Then 

-'=2 
-K 

1 E 

D a ) 

j=l 

n 

j 

(,)2 

) < 

c2 i 
K 

, 

3 

j=l 

nj 

2 

D (C-6) 

Proof 

Let L= n+n 2 +...+nR 1 . Then D-D' can be-written as 

a (t!L+I+. ..+oL+a)2 + L(Ll+a+..o+ ciL+a+b ) 

1 

b (L+l + " + 

Lh 2 

L+b 

1 
+-(y 
a (VL+b+l 

+ 2 
+ + OL+a+b 

2 

(C-7) 

After some manipulation, this can be written as
 

DD' =--I [( L+ -+?+a) (C!L+bli+'''+Uab x 

[(b-a) (aL+I+-•.+La)+(b-a) (+aL+b+l+.. •+L+ ab) a(L+a+l+. • .+b] 

(C-8)
 

Now
 

(C-9)
( L+O'-'L+a) > (+b+l+ .+ a+b) 

so the first bracket is nonnegative. The following inequalities establish 

that the second bracket is nonnegative: 

(b-a)(o!L+l+...+ L+a) > (b-a)a CIL+a (C-10) 
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(b-a)(oL+b+l+...4aL++b) (b-a)a L+a+b 	 (C-lI)
 

a(VL~a+l .- aLb) < (b-a)a La+l 	 (C-12)
 

The 	second bracket in Equation (0-8) is then bounded from below by
 

[ ] (b-a)a LL+a +L+a+b - L+a+I] > 0 	 (C-13) 

Thus 	D - D' > 0 , as was to be proved. 

D. 	 Algorithm that Determines Almost Optimal Groupin {n 2,... 

for Permutation Codes
 

1. 	 Choose N and R.
 

2. 	 Initially set K as the smallest even-integer such that log2K > R
 

3. 	 Initially set the groupings to be approximately equal. (If K
 

divides N set n. = N/K for all i.)
1
 

4. 	 Compute ulU2,..u
 K
 

5. 	 Set -p= I . Solve Equation (20) for -pi . Adjust fi until Equa­

tion 	(18)is satisfied for the desired rate.
 
K
 

6. 	 Compute n. as the closest integers to. piN such that 2 n.=N 
i=l 1 

7. 	 Test if any ni = 0 . If yes, proceed to step 11. If not, proceed 

to step 8. 

8. 	 Test if new set of n. agree with old set of n. If yes, proceed
1 	 1
 

to step 9. If no, go back to step 4.
 

9. 	 Store n1,n2,...,n , and the exact values of R and D corresponding
 

to this partitioning.
 

10. 	 Let K--> K + 2 and start with new grouping closely approximating
 

grouping stored in step 9. (For Variant I codes, let nl,=nK=l
 

and n2,n3 ....nK 1 be the same as the grouping stored in 9 except
 

that the largest n has been reduced by 2.) Return to step 4.
 
2l
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11. 	 Print nl,n2,...,nk; R and D stored in step 9. If K 


step 14.
 

12. 	 Set K as smallest odd integer such that log2K > R
 

13. 	 Return to step 3.
 

14. 	 Stop.
 

E. 	 Binary Coding of Permutations Encoding Algorithms 

n 1 n2! .. , Y 
1.~ N!
 

P e - N:
 
N 

I(i)<-- n.1 i = 

I (o) 0
 

240
 

-o , 


3. 	 17 -+ P(i) 

i =0 

4. 	 If 9 N-i, go to (8) Otherwise continue 

6. 	 IQjj <- I(jj) - 1 

7. 	 Go to 2 

9. 	 94-
+1
 

10. 	 If T < 2-1 , sp-O , otherwise (s A-- 0 and T-r-

11. 	 If R < Q go to (8). Otherwise Stop.
 

is odd.go to
 

- 2 ) 



'Decoding Algorithm
 

Q 
1. 	 P4-N Ls.2 

I(i) 	 = n. i = 1,2,..., K 

2. 

3. 	 R-0 

i 4-0 

4. 	 i '-i+l 

5. 	 R-R +-1(i) 

6. 	 If R < P , go to (4), otherwise continue.. 

7. 	 jl----i 

8. 	 If A< N-I continue, otherwise go to (12).
 

9. 	 P<-(P-R + -l(ij)) (N-9)/I(j 2 ) 

10. 	 I(j) 4-(jg)-i 

11. 	 Go to (2)
 

12. 	 I(jR)-- I(jj)-I 

13. 	 i <- 0 

14. 	 1 -<--i + I 

15. 	 If I(i) = 0, go to (14),-otherwise continue
 

16. 	 N­

17. 	 Stop.
 


