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I. TNTRODUCTION

This final report on project NAS 2-5643, Research in Sequential
Decoding conslsts of two main portions: results of Phase T and IT of
our work, .

Phase T deals with problems of reliable transmission through noisy
space channels and is subdivided into four areas:— A, Work on sequential-
decoding in general and the Stack algorithm in particular. B. Work on
the ﬁoatstrap Hybrid Scheme, €. Development of good convolubional codgs.
D, Development of a new bootstrapping hybrid approach to the Viterbi de-
coding algorithm,

. Phase TIT of the project deals with problems of encoding of space
sdufces for the purpose of data compression. It is subdivided inko two
areas. A. Work on tree encoding with fidelity criterion. B. Work on
Permuibatbion encoding with a £idelity criterion.

This report is written according to the abowve outline., A substantial
portion of it has already been presented in the three preceeding quarterly
progress reports., We follow The precedent established %here: The results
are summarized and their implications are discussed in the body of the

report, but details axe left for Appendices.



TI. REPORT OF PHASE I

IT-A. Work on Sequential Decoding

IT-A-1.. Path Specifications in terms of Parity Digits

In this section we will describe how parity digits of binary con-
volutional codes should be used to speed up sequential decoding both by
the Fano and the Stack algorithms., We will show what information ought

to be saved so that the decoded message sequence can be recovered by the
user, We confine ourselves to rate 1/2 codes, but generalization to
rate 1/n codes is very simple.

Tet G(D) of'degree u-1 ﬁe a binary convolutlonal generabor, and
let (D) be the input information sequence. ‘The output sequence is

Then given by
: i

(@) = a&(®) s(d) = z 55 b a(d) (1)

i=o
The digital circuit corresponding to (1) is given in Figure la, The

contents of the shift register stages Pi are "0"'s at timé 0. ILet

: u-2 . .
P?(D) = Z pz D" be the shift register state sequence after Sn—l
i=o
has been inserted. Then the output at. time n + 1 is
x =5 +D (2)

T n o
and in general, all the future outputs depend only on the initlal state

state sequence P7(D) and on the future inpubts s

-2
i n _Jj
Z i D Z By
J=0

8 ceat
n’ “ntl’

-
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S »’ o) (5)
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The realization of Figure la is particularly convenient for digital

computer implementation., ILet G*¥(D) be defined by
G{D) = g, + DG#* (D) (4)
Then

"0y = plPt i) + Pz-lD-l +s__, G*(D) (5)

with POCD) =0 , It follows from (2) and (5) that if the parity sequence

Pn(D) and the truncated generator sequence G*(D)} are stored in index
registers, then if s, = 1, the output will be the complement pg + 1
of the rightmost stage of the parity register, and the next parity register
contents will be obtained by first a shift right of that register fol-
lowed by an exclusive or into it of the contents of'the generator register.
Similarly, if s, = 0 then x = pg and the next parity register contents
are obtained by a shift right of the former contents. Lt follows that

as long as wv-1 does not exceed the sizé of the computer register, the
number of operations necessary to generate X(D)does not“ggaw with w.

In sequential decoding (this applies to both Fano and Stack algor=-
ithms), one must store as much information about a path being worked on as
would be necessary for recovery of the message sequence corresponding to
it. This is so because the path may become the decoded one in which case
its message sequence must be supplied to the user, We will now show how
§gsSyreees8 1 WY be recovered from Pn(D) and pZ‘l’ pg-z,...,p§—1
provided Byt~ 1 (which is so without loss of generality)., In fact,
since D-1 Pn(D) +-p2D“1 is of degree wv~3 then it follows from (3)

that

_ ..o
*a-1 T Py-2 (6)



Furthermore, using (6), for all n = 1,2;...

2oy = D@ +9l7 4l DE*D) %)

.q and " 1) can be obtained from PV(D) and pz_l .
n-1

1 s
By recursion therefore, Pn(D), P, -2+<sPg determine S, 1-125p-27 <35,

Thus both s

However, it follows directly from Figure 1 that for %k =1,2,...

‘ k-1
Xy = (oD gxepy Zsi Ij (8)
i=o0 |

-

wherell _J denotes the operation of -dropping all negative degree terms,

Since Byul = 1 then

. vl .
S\,_z - P\)‘z (9)
"Let
v-1 v=1
R™"() = P (D) and for k =1,2,...,v"1,
B lmy = D-[%k(D) + fﬁ_z G*CDEL mod DV7T . (10)

then it follows from (8) and (10) that
1

i+l
s, = r

i V=2 for i.=0,1,...,v=2 (11)

Thus 8,381 00038, o may be récovered from PvDICD) so that only
PR, pgn%,...,pznl ne12Sy_gr e+ +sS, as asserted. Figure

1b shows the digital circuit that does the job., It has the structure

determine s

that performs according to (6) and (7). However if we feed into it the

sequence

sesss Py s 0,0, 0, O (12)



then .after n - v+ 1 shifts the state sequence will be Rv-l(D), and
after n - y+ i shifts it will be RY ~(D) . The outputs will be
812 Spanr e85, a8 indicated, The computer implementation .0of the
process of Figure 1b is similar to that of Figure la. It shall be

.y s . n
observed that it is possible to recover S 98 1200095 from P (D)

-1 n-2 “kty-2
if we feed the sequence pz 1,p0 semes 2 v

» 03.40.,0 into Figure 1b.
We shall now apply the above results first to Fano decoding and

then to Stack decoding. In Fano decoding it is necessary to generate

both Pn-l(D) and Pn+1(D) from Pn(D) and when - recading o finﬁ

the likelihood of the precedifig mode. Consider a rate 1/2 code with

generators

A1

= i = 2
G, (D) E 8,1 D 1 + DG*, (D)

i=0
(13)
v-1

g i
D = D = -+ * (D

i=o

where AN < v and glgo = gZ’O = gl,h-l = gz,v-l = 1., For a systematic

code, A =1 and G?(D) =0 , The coder outputs are

[=]

_ B E i

Xl(D) = Gl(D) s(@) = XigiD
i=o

(14)

=]

i

X,@) = G,(P) s@) = E X1.D

If YICD) and Y2(D) are the corresponding received sequences (which

need not be binary) then a likelihood of a branch at depth n is given by

Az }ﬁ,yl,ﬁ) + szn; Yo n)



Therefore, for fast retreat, it would be useful if the decoder, located’

at depth n stored .the unrelative likelihood Ln , the :sequences

1 and x2 (as well as the received sequences

X --.nx t.x
1,0 """, ne 0’7 2,n-1

chD) and Yz(D)) and the parity sequences

*

A2 V-2
n _ Z n 5 n _ Z n i
Pl(D) - ) pl,jD and Pz(D) Pz,j D (15)
j:o j=0

When advancing, along a branch pertaining to 8, » the decoder generates

¥in = ®n *Pio
Py = 27! [PR) +p“:} + s GF(D) (16)
3 i i,0 n &

for i = 1,2,, This is accomplished by two circuits similar to that of
. n o+l
Figure la. It stores Xl,n’xz,n and replaces Pi(D) by Pi (0) for

i = 1,2, Finally, it replaces Lrl by

Yy ° L+ h(xl,n’yl,n) + k(xz,n’yz,n) an

When retreating, the decoder replaces Ln by

Ly = By - 7\'(Xl,rvl-l’yl,n-l) B 7"(Xz,rlt-l’:)r.‘a,n-l) (18)
and P?(D) by
n~-1 n n ol
= r3
217 ) D [Pi(D) + Pki G i(n)] L Pki (19)
where kl = A=2, kz = y=-2, Finally, it erases Xl,n«l and xz,n-l from

‘its storage. The operation (19) is accomplished by the circuit of

Figure 2a. If the code is systematic then P?CD) =0 for all n and



=35 , If the code is non-systematic then s.,8,,...,5 mustt
xlgn n L ys m 0! 13 3 P_l

somehow be recovered for the user. There are two ways to do this, Either

at the end of the block of feeding =X.. . oseee,X through the circuit
1,I=2 1,0

of Figure 2a for i = 1, or by forward generation using the circuit of
Figure 2b that corresponds to 1/G1(D) . This latter method has the
advantage that information may be released to the user before the block
is entirely decoded.

In stack decoding one does not recede, so there is no sense in

storing Xy 4 and Xy 5 e However, it is essential to conserve storage
2 ]

as far as possible. Therefore, a stack -entry corresponding to a path

of depth n ought to contain the sequences PE(D) and P;(D) as well

as pointers to its past pi-i,p?-i,...,pg-i . P?+1(D) and P;+1(9)
H H 2

are obtained by use of circuits like Figure 1, and the decoded sequence

SpperesSy is obtained at the end from a circuit of Figure 1b, Of

. . . I
course, if the code is systematic, then Pl(D) = { and one saves

. n-1 A1
S _175p.99 098, instead of pl,o"'°’P1,0 .



IL-A-2 Maintenance and Purging of the Stack and the Associated Map

for the Stack Decoding Algorithm

Tn the Stack algorithm, the Stack-entries must contain information
about the corresponding path necessary to extend the latter and to deter-
mine the corresponding message sequence (in case the path is eloser to
the decoded one). In the preceding section we have shown that it is
advantageous if each Stack entry contains (if R =1/2) the two parity

sequences P?CD) and Pg(D) and either the past parity seguence

n n~l n-2 =1

P, =D r P or the past information sequence s'=s -}
ol L,e’%1,0]002] Fl,0 ~ Tn-1?"np-2?

ceas 8y (the two are identical for systematic codes), We will deal
here with ;QF . Remarks about :Bn‘ would bé similar and they are made
wherever necessary in Appendix 1,

Since 2? is only needed at the. end of and not during -the decoding
process, access to it need not be a lost one., Thus, as described in
reference [1], the various rgn sequences are specified in a linked
.map, and the appropriate one is linked to the Stack entry by a pointer,
The map specification itself takes advantage of the tree structure of
the code.

The map must contain at all times the specification of all paths
corresponding to "live'! entries in the stack, 8ince the stack is
finite, it is purged -according to the principle '"least likelihood first."
The map may contain some paths no longer in the :stack, but efficient
storage use requires that there be as few dead paths as possible., Hence
the need for map purging.. A report [1] by the author describes how map
purging can be carried out in a manner directly dependent on .stack purging,
but the method requires establishment of counters for every live map

branch whose content indicates the number of live paths that have that



branch in common. New map management strategies were developed that
do not require any counters.

The first two strategies are for a map that specifies E? by
linking positions of I-branches to preceling ; l-branch positions.,

E.g., the path 100110100 is given by the linked position arrangement
=7>5—=>4-—51— - (v-1) (v 1is the code constraint length and
all paths are linked to position =-(y-1) by convention). The purging
principle of the first strategy is as follows: a branch can be elimin-
ated from the map if its depth is t less than the depth .of "the:path
on top of the stack and if that path leads through that branch., Of
course, it is understood that if the furthest : depth of advance irix the
tree is IMAX then all information digits up to depth IMAX - £t have
been definitely decided, The value of t must be chosen 50 that the
probability of erroneous paemature decision is sufficiently low,

It may also be desirable to make final decoding decisions according
to a different than IMAX - t depth rule, For instance, 1let LI’LZ”"’Lk
be the cumulative likeiihood values at depths 1,2,..., k of a path of
depth k that is on top of the stack, Then one might decide all informa-

tion digits up to depth m where
r
m A max {;Q: Lk - IQ = ?}

rand T is some ‘suitable fixed threshold. The second strategy purges all
map positions of .depth m or less where the value of m is determined
by any arbitrary rule (m is; of course, a non-decreasing function Af
time). This strategy does require the establishment of additional arrays
in storage.

Finally, the third maintenance and purging stragegy applies to maps

whose paths are specified by sequences of information digits. The stack



10
has locations Ml containing £v-1)+k binary digits (v is the con-

-straint length of the code and k 1is arbitrary), the right-most being
the most recent one, It has a counter indicating the depth of the path
and a pointer P1 to the location in the mbkp that -contains the péeceeding
path sequencé of length %k . The map has locations M2 of k digits,
pointers MPP indicating the location of the preceeding path sequence,

and pointers MPL linking all M2 locations that correspond to the

same path depth, There are also pointers to the firét and last map
locations of any given live depth (a fixed number j of depths are

live at any time) and a pointer to the first free (or replaceable) map
location, I£ IMAX is the depth of deepest penetration in the tree,

then the purging strategy assumes that the map will contain no locati ons

referring to depths preceding I ~(v=-1) - jk .

MAX
The details of the three .strategies are .described in Appendix 1,



II-A=3 Multibranch Advaﬁce through the Tree of the Decoding Algorithm

Rate 1/2 binary codes have 2R branches leaving every node, each
branch-containing 28 digits, In practice codes with 0 =1 are used
-only, since an advance by one node invoives finding the branch whose
likelihood is mth largest, The straight~forward way of doing this is
to evaluate -each of the 29 likelihoods and then order them. This is
.too large an undertaking., However, if the mﬁh branch could be looked
up directly in a moderate size table, making 9 > 1 would speed-up
both Fano and -stack decoding appreciably., Furthermore, simulaticon has

shown that the needed stack size could also be substantially reduced.

In Appendix 2 we show how such tables can be comstructed for binary

2
input symmetric channels,, The table size grows as K2 . The coefficient

K is larger for non-systematic .codes for the BSC than for systematic
‘ones, and an extension is more cumberéome. For a channel with 2 dinputs
and 2j outpﬁts the table sizes are also .of size KZZQ , but.exact
likelihood ordering is not possible, However, the approximation seems

sufficiently close as to make the procedure a worthwhile one.

11



I1-B Work on Rootstrap Hvbrid Decoding

IT-B-~1 Simulations -of Bootstrap Hybrid Decoding over the BSC

Appendix 2 contains a detailed desgription of three (progréssively
more sophisticated) bootstrap hybrid decoding algorithms as used_over
the BSC. The first is the.rudimentary algorithm in which the binary
channel .state stream is modified only if some received stream is completely
decoded. The second is the pull-up algorithm where the state stream is
modified even after partial decoding of some stream. Specifically, 1f
the furthest advance along a stream is to depth IMAX then all digits
up to depth iMAX - J are considerea definitely decoded and the state
stream is therefore modified up to depth IMAX_J . Finally, the two-way
algorithm is the pull-up algorithm with the added feature that attempts
at stream decoding are made in both forward and backward directions. It
is based on the observation of Dr, D%le Lumb that it is possible to
decode a convolutional code backward as well as forward, provided each
string of LU information symbols is terminated by wv-1 dummy bits known
to the deceder. The bootstrap algorithm starts by decoding forward in the
pull-up mode and continues to do-so until a full decoding round takes
place without completing any of the streams. 1In that case decoding in
the backward direction starts and continues until another unsuccessful.
full decoding round occurs, in which case forward decoding resumes, etc.
. A stack of 1000 entries is used and if succeeding forward and backward
rounds end without an advance of more than 20 branches on any stream in
either direction, the stack.is increased to 8000 entries for the next

two rounds.
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Table I contains a summary of three randomly selected decoding runs
that use the rudimentary bootstrap hybrid decoding scheme of convolu-
tional rate R = .5 over a ?BSC with crossover probability p = .07
(R_;:omP = .4). Btack decoding is utilized. We use m = 10 streams so
the net rate is Ryn. = .45, Other parameters of interest * are block
length I = 1000, block termination t = 25, and number of decoding steps
allowed on a stream M = 53000. The printout indicates which of the
m = 10 streams was worked on (JNOW), how many decoding steps were taken
(M3), how deeply the decoder penetrated (IMAX) into the tree within
the N3 steps taken, and how many undecoded streams were left (KLEFT).
Finally, the speed factor (SF) is given for the entire block. S8F is
defined as the ratio of the total number of decoding steps taken to the
number of information lists decoded. The Table shows quite clearly how
fast the remaining streams can be decoded once the first three-or four
are known.

Table 2 shows decoding progress in a typical runm of the pull-up
algorithm over a BSC with crossover probability p = .08. A convolu-
tional code of rate R = 1/2 was used and m = 10 - streams formed a
block. The maximum allocation M = 5000 and the stack KHad 700 entries,
The parameters JNOW, N3, IMAX, KLEFT, SF, and .KTRY have the same
meaning-as in Table 1, The value of JSTART indicates the depth of the
node at which the decoding of the particular stream began. The definitely
decoded back-up limit was J ='300. If in a decoding round no stream
advapced by more than 20 levels beyond its previous maximal depth, M
was temporarily increased to 20000 and the stack 'size to 8000 until

such an advance took place, This phenomenon can be observed in row 20

of the Table. It becomes apparent for the present example that ‘without



1h
bootstrapping it would be completely impossible to decode 9 of the 10

received -streams of this block -as the older Falconer scheme would require.
In fact, we were not able to decode the fifth stream without 27000 steps
even when using information from the decoded -streams 2 and 7 and the
-almost decoded stream 8! It seems fair to say that the Falconer ‘scheme
could decode at most three of the ten-received streams and nmo more.
Bootstrapping is mo 'endgame''~~it does not complicate the decoding
:search and ought to be used right from the start,

Table 3 shows an example of two-way decoding-over a BSC with
crossover probability p = .09, The parameters JNOW, N3, IMAX, JSTART,
KLEFT, SF and KTRY have the meaning given them in Table 2, except that
when decoding is backward, nodes are numbered in reverse order so that
forward node 1000 is backward node 1, etc, (this affects TIMAX .and
JSTART). Theléarameters IFORW is 1 when forward decoding took place
and is 2 otherwise. The p rameter KROUND indicates how many streams
were attempted in a given direction since the last successful decoding,
When its valwe reaches that of KLEFT, decoding direction is reversed.

We have run all of our simulations using the stack decoding algorithm
applied to transmission of data over a binary symmetric channel with
crossover probability p . The systematic code of constraint length
v = 72 whose taps in octal notation are 651102104421022041101101
(obtained by Costello [1969]) was used, the number of streams was m = 10
(this value was picked arbitrarily without any attempt -at optimization)
and there were always 1000 true information bits per information stream,
[i.e. 9000 bits per block‘].

OQur simulation results are summarized in Table 4 which gives certain

‘parameters of interest that we now explain. For different crossover



probabilities we have used different bootstrapping algorithms, The
crossover probability p = .056 was chosen because the corresponding
channel has Rcomp = .45 ;Which is equal to the net rate of .our scheme.
Hence the dB gain over straight sequential decoding is 0 . Figure 3

is based on 2000 blocks of data and shows the distribution -of computation

per decoded information bit [speed factor] when the rudimentary algorithm

is used. As is usual, an extension of a node by the decoder serves as a
unit of computation, and the speed factor was obtained by simply dividing
by 9000 the total number of computations necessary for decoding of a
block (the"rudimentary algorithm is a block ‘scheme and it is not clear
how to assign particular decoding steps to particular information bits).
The startling result of this simulation is that if tail behavior of the
distribution could be extrapolated as a straight line on the log-log plot
(which is certainly 0.K. in sequential decoding) then the asymptotic

computational distribution would be

P {SF > x} %1380 x-12'8

This would mean that a speed factor 5,17 would be needed only once in

106 blocks, and a speed factor of 8.92 only once in 109 blocks,

However, a glance at Table 4 shows that the largest limiting exponent
(derived according to the analysis of referencé [11) can only be 2.74

and we are at this time at a loss to explain tPis discrepancy. The most
likely reason is insufficient statistics - 2000 sample points is not enough.®

¥t is difficult to extend the sample size substantially, 2000 blocks
involves 18 x 10° bits and our Fortran algorithm took 80 minutes of IBM
360-91 computer running time. A similar discrepancy between an observed
and theoretical Pareto exponent was reported by Forney [2] who did high-
rate simulations of sequential' decoding on the Gaussian channel. 1In
his case it turned out that a theoretical exponent of 0.087 was observed
to have an experimental value in the range 0,38-0.41,

15


http:0.38-0.41
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Under this hypothesis the time distribution will assume its final .slope
-somewhere below the probability 10-3 . The intriguing point is that
should this take'place at a small enough probability then the practical
exponent might still be -12.8! -Another cause for the anomaly might be the
various computation truncations inherent in our algorithm. We shall
investigate further and report more completely at -a later date,

In any case, if the observed behavior can be extrapolated even
approximately then the bootstrapping algorithm may be used to great
advantage even at rates equal to Rcomp in order to stahilize the de-
coding effort and prevent block erasures due to buffer overflow. It is
particularly interesting that in the 2000 blocks decoded, only one required
more than 12 attempts at stream decoding (the minimum is 9), The capacity
of -this channel is C = .69, 8o R/C = ,731, and we have entered this
point as a circle into the plot of Figure 5,

We feel that -about the noisiest BSC.over which it is practicable to
run the rudimentary algorithm with -strelbm length I" = 1000 bits is one
whose crossover propability is p = ,07. Figure 4 displays-the-cor-
responding computational distribution. Again, the apparent Pareto
exponent of 2.66 is larger than the theoretical maximum of 2.2. The
R/C oparvameter.of this experiment is entered as a triangle in Figuré 5.

As a next experiment we ran the pull-up algorithm over the BSC with
.crossover probability p = .08. We used a stack with 1000 entries and
stopped -computaticn on a .stream either -if it was decoded or if a stack
overflow took place. We considered permanently decoded all but the last
2000 bits .of the path that was in the stack .immediately before it over-
f1owed, This caused. no errors in the 1000 blocks that we ran and suc-

cessfully decoded. If a round was completed without advancing the



L7
decoding of any of the remaining streams by more than 20 branches then
the stack -size ‘was increased to 8000 for the next round. We did not
obtain 'an experimental distribution, but only the average and maximal
speed factors. The R/C parameter of this experiment is entered as
a square in Figure 5.

The final entry in Table 4 involves a BSC with crossover ‘probability
P = .09 over which we ran a two-way algorithm,

8ince two-way decoding uses more information .than the one-way kind,
the bounds of reference [l] are not applicable to the fogﬁer. Neverthe-
less, the entry in the lower bound to Pareto exponent column of Table &
is derived according to the corresponding formula of reference [1].
Again, our simulation only determined the average and the maximal speed

factors based on a run of 500 blocks., The R/C parameter. of this

experiment is entered -as a star in Figure 5.



TABLE T

Simulation Examples of Rudimentary Bootstrap

Hybrid Decoding.of Ry..'= .45, m.= 10 over BSC with p.= 0.07

Block '1

. JHNOW N3 IMAX KLEFT
1 5000 473 10
2 5000 1008 10
3. 4864 249 i0
& 1948 1025 9
5 1534 1025 3
6 ‘3655 1025 7
7 1320 1025 6
8 +1849 1025 5
9 1495 1025 4
10 1178 1025 3
1 1350 1025 2
2 1079 1025 -1

SF = 3.36

Block 2

JNOW N3 IMAX ‘KLEFT
1 5000 842 10
2 5000 749 10
3 .2610 1025 9
4 5000 _ 1010 9
5 5000 929 9
6 ‘3735 1025 8
7 2132 1025 7
"8 5000 948 7
9 2553 1025 6

-10 5000 552 6
1 1739 1025 5
2 1863 . 1025 4
4 1297 1025 3
5 1160 1025 2
8 1066 "1025 1

SF = 5.34



TABLE .T CONT'D °

Block3

JNOW N3 _TMAX KLEET
1 .2524 1025 9
2 4377 278 9
3 5000 239 9
4 4880 1025 8
.5 -2288 -1025 7
-6 '3275 1025 6
-7 1659 1025 5

8 1246 1025 4
-9 1320 1025 3
10 ..1926 1025 P
2 1074 1025 1

SF = 3.28



TABLE 2

A Simulation Example of-Pull-up Bootstrap Hybrid
Decoding of Rar = .45, m = 10 over BSC with p = 0.08

N3 IMAX JSTART KLEFT

JNOW
1 2744 215 0 10
2- 2963 1025 0 9
3 2891 219 0 9
4 1858 93 0 9
5 2314 141 0 9
6 2207 192 0 9
7 3447 1025 0 8
8 5000 944 0 8
9 2958 294 0 8
10 2353 339 0 8
1 2729 235 15 8
3 2143 212 19 8
4 3052 212 0 8
5 2329 146 0 8
6 2767 . 166 0 8
8 3301 944 744 8
9 2037 293 94 8

-10 2468 341 139 -8
1 2834 235 35 8
5 27062 .800 0 8
6 3030 287 -0 8
8 -3301 944 744 8
9 2283 287 94 8
10 2422 341 141 8
1 5000 762 35 8
3 2421 1025 19 7
4 1322 1025 12 6
5 2671 716 600 6
6 2913 292 87 6
8 2799 944 744 6
9 5000 852 94 6
10 2040 1025 141 5
1 839 1025 562 4
5 774 1025 600 3
6 979 1025 92 2
8 302 1025 744 1

SF = 13,05
KTRY = 36



TABIE 3

A Simulation Example .of Two-way Bootstrap Hybrid Decoding
of RNET = 0.45, m = 10 over .BSC with p = 0.09

JNOW N3 TMAX JSTART KLEFT KROUND IFORM
1 5910 272 0 10 1 1
2 5356 139 0 10 2 1
3 5731 354 0 10 3 1
A 7514 640 0 10 4 1
5 4262 182 0 10 5 1
6 5537 164 0 10 6 1
7 3770 164 0 10 7 1
8 6002 200 0 10 8 1
9 5819 351 0 10 g 1

10 8401 734 0 10 10 1
1 5695 443 0 10 1 2
2 6542 589 0 10 2 2
3 8395 307 0 10 3 2
4 3740 166 0 10 4 2
5 4103 136 0 10 5 2
6 4671 114 0 10 6 2
7 4329 277 0 10 7 2
8 6909 733 0 10 8 2
9 5013 157 0 10 g 2

10 5373 332 0 10 10 2
1 3650 262 72 10 1 1
2 3306 1071 0 9 0 1
3 4589 388 154 9 1 1
& 4149 651 440 9 2 1
5 5443 228 0 9 3 ‘1
6 5440 254 0 9 4 1
7 10265 950 0 9 5 1
8 4095 224 0 9 6 1
9 5738 351 151 9 7 1

10 4480 722 534 9 8 1
1 5751 24 72 9 9 1
3 6377 309 107 . 9 1 2
& 8493 278 0 9 2 2
5 7566 715 0 9 3 2
6 4788 373 C 9 4 2
7 975 1071 77 8 0 2
8 4283 874 533 8 1 2
9 5202 443 o 8 2 2

10 3805 071" 132 7 0 2
1 4685 465 < 243 7 1 2
3 3510 1071 109 6 0 2
4 5007 443 78 6 1 2
5 3260 1071 515 5 0 2
6 1445 1071 173 4 0 2
8 438 1071 674 3 0 2
9 1230 1071 243" 2 0 2
1 779 1071 265 1 0 2

SF = 25.75 KTRY = 47
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TABLE 4

Summary of Simulation Parameters for

BSC, Rypn = 0.45, m = 10
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IT-B<2, Bounds .on Computing Effort for Bootstrap Hybrid Decoding -on

Binary Input Channels

Let us generalize the éncoding and decoding methods .of ‘Appendix 3
to channels symmetrical from the input -that have two input -symbols and
an arbitrary number .b(> 3) of output symbols. The enéoding is .one
involving m-1 information streams and an additional parity check
‘stream. Suppose we receive the m streams and wish to decode the last
of .them -(this happens to make notation convenient and is without loss
of generality), yrcn), yzﬁn),... Since for .every time.interval i <the

receiver has at its disposal the vector

D
L@ = M,y @,y @) )

the sequential decoder-ought.to calculate the likelihood function Am(i)

at depth i Dby the formula (capitals denote random wariables)

Py, =y @ /% @)
(5,0 = ,@)

k(1) = log (2)

M
where the algebraic constraint E§:Xﬁ(j) = 0 is assumed to hold and

.

must be used when caleculating the .probabilities im the argument of the
logarithm.

' .th .
It is shown in reference [37] that for the j received -stream

the expression (2) can be simplified to have the form

AL =1 - R - log [1+Q, @)]

. . gy () 3
+ log (-l(xi(J)/Yi(J)) 1+ ZQ(xi(j)/Yi(jD;)'-'l (3)



=)
where xi(j) e (0,1),

- w(y|x)
W = TGTey ¥ eGTD )
and .
m
oy, ) = . lfQ(O/'Yi(j)) - a1/, (3] (5)
L

The above formula suggests an efficient instrumentation for hybrid decoding
of the .class of channels .considered. The state -of the channel at the
various time instants is given by the -sequence QQXIOm)), Qggz(m)),
QQZ3@m)),... . In fact, except for -QSzi(j)), the formula (3) is a func-
tion of gvents .xi(j) and yi(j) that themselves pertain to the jth
stream,

Thus, upon receiving the symbols that correspon%-to the m trans-
mitted -streams, the decoder will compute the channel state .stream whose
ith entry Q; will be -the number Q(Zfom))* (i.e, not a binary digit
signifying the parity of the ith position as before), Decoding will
then proceed as outlined in Appendix 3, based on the likelihood func-
tion (3), until one of the -streams, say the j;h , 18 decoded., The
neceésary recomputation of the channel state -stream will -simply consist
of replacing the 1B entry Q, by its new value Q;=Qi/[2q(xi(j1)/yi(jl))-l]
where 'xi(jl) is the decoder's estimate of the fth transmitted digit
of the jgh ‘stream., Decoding of the remaining m-l .streams will then
start from the beginning and will continue to use the likelihood (3)

v th
based on the new 'state -stream walues Qi . When a stream, "say the j2 s

e Ll b -

"Since the number of possible values-of Q, is rather limited, the state
stream would in practice contain only the ddaress A(Qi) of a table entry
containing the number Q. . Or, even better, there would be a likelihood
table whose entries would be formed from the value of the ttriplet - [xi(j),
yi(j), A(Qi)]° The problem of .limiting the eize of such a table is dis-
‘cussed at the .ena of this section,



T
is decoded, the ith 'state stream entries Qi will be replaced by

entries Q; = Q;/[Zq(xi(jz)/yi(jz)) - 17, ete., until just one stream
remains undeccded., The latter's identity will be determined from the
parity constraint,

As mentioned in footnote * there might arise a problem of .storing
the state stream entries Qi . Let us consider the case where the output
alphabet size b is even. Since the channel is symmetric from the
input, every digit ¥ can be represented by a pair (u,v) where u

is binary, v e {o,l,...,(b/Z)-l} and

w(u=0,v/x) = w(u=l,v/x @ 1) (6)

for all =x.e (0,1) and v . It follows then that

A
g(v). = q(0/u=0,v) - q(l/u

= 0,v) =
- [4©/u = L,v) - al/u = 1L,v)] 7)
and therefore, .letting
2= ® u, @© .. O u @)
we get that
m
ym) = (D | |g) (%)
j=1
Since
2q(x/e,v) -1 = q(0/x © w,v) - ql/x © w vk 7
n* ® v g

then if xi(jl) is the decoder's final .estimate of the fth transmitted

digit on the -stream, Qi is to be replaced by its new value

i1

25



. %, (3.) + 1., (5,)
o = (it TH R

L

Q, /8(v;) (10)

Tf n{v) denotes the number of vi‘s whose value is v , then after

m-k ‘gtreams have been decoded, Qi will have the form

b/2- .
Q, =<4f1 |gwﬂ“) ()
v=0
where g(b/2) = 1 and n(b/2) =m~k ., Since
b/2-.
% n(v) = m
1 v=l)

it follows that Qi must have one of at most

b
2+m

values. Hence a complete likelihood table would be -of size

oot
+
=]

2b (12)

The values .of (12) ?95 a two bit and three bit output quantization

with m = 10 are‘- 52_8' and ,16016-' respectively., The .latter rigure
certainly seems -excessive and yet .three -bit quantization is used quite
frequently. One possible remedy is not-.to use all available .information
at the receiver, The simplest would be to use .in the -state stream only

the points z defined in (8) and use the .likelihood

26
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o (ai(3y v (3)i 2 /4 (o))

Mt) = 18 o T, v, G0 ) = (2)
where
w, (0;¥,0/0) .= v (1,v,0/0) = w(0,v/0) q__,(0)
‘wni(O,v,l/O) = Wm(l,v,l/l) = w(0,v/0) qm_l(l) (1)
wﬁ(l,v,o/o) = Wm(o,v,o/l) = w(1,v/0) qm_l(l)
Em(l,V:l/Oi = Wm(O,N)I/l) = w(L,v/0) qmrl(o)
is defined as in (1), and
®E-1
p = y w(1,v/0) (15)

Obvicusly, less scvere reatrictions on the information used are also
possible, E.G., for the purposes of Qi - -compubation one may wish to
partition the v-alphabet into subsets and represent each subset by some
new letter v'. The likelihood itable size is then -obtained by formula (lé)
into which I, the size .of the v' alphabet, has been substituted forb/ 2.

Let us nobe that the switch from likelihood (2) to (13) simply
involves a switch between equivalent channels used by the receiver for
decoding. The maximum information channel (using the Q-state stream)
is based on transmission probability P{Yi(m) = yi(m)ﬁi(m)} while
the binary state sbream channel is based on Wm(ui(j).,vi(j),zi/fci(j)).

In general, let vﬁ(ﬁ/x) denobe the transmission probability of the
equivalent channel used when decoding one of 'k undecoded streams,

and define the function

1 1+o

e
B (o) = (1+0) = logZ Z W (y/x)t (16)

v X=0

At
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Thus, for the BSC Ek(c) is given.by

1 1 4o
B (o) = o - log | {[@pa_ @1 +paq_ @) +
1 1)
[(L-pa,_, DI+ [p g @ (an

For the binary input, b-nary output symmetrical channel with a Q-type

state stream it is

; 1
: y  THo
B (o) = -1og{ E Er(y(k)/o) [y (7 k-1)) + g,gk-l))]}
y (k) Lo
1
. 14g .
+ furom £ geD) - _r;fy(k,-l))} "+ ko 18)
where
k-1
A ;
06D 2| | mewo +veom) o
i=
k-1
£ y-1)) 2 || wow -wewmmy (19)
i=1 :

Finally, for the '‘same channel, :when only the parity is used in the state

‘stream,

+o
E (o) = o - log E [w(0,v/0ay_; (O]  +

v

[ 1
(w(1,v/0) g (DI} 4 [[w(o,v/mqk_lcl)]”" +

1 lt+o
[w(1,v/0) q,_; (1) Jl“”"} L0


http:given.by

In reference [3] the following two theorems are proven:

Theorem 1

et R be the convolutional coding rate used in each of m streams
of a decoding block. The boofstrap hybrid ‘decoding proceaure based on
wk(y/x) leaas to a finite -yth moment Or computation per decoded digit )

provided

win (O(kR)), (&R®) +1) o) > v . 1)

is satisfied, where k(R) 1is the unique integer such that

kR) o(=) < ok(R)) (22)

c(k@®)H) < (K@) o) -

The funection o(k) ie the unique solution.of

E, (0) E,(2) .
R = for > < R < € (23a)
o}
and
Ek(Z) Ek(z)
o(k) = -R for 0O <R« 5 . (23b)

The function Ek(c-) is the concave, -positive, increasing function of

o >0 defined in (16).
Theorem 2
PEJ[N'Y] grows exponentially with block length I, whenever
min [6(2), ko(k)] < v (24)

where g(k) .is the solution of

E, (@)

o)

R =



In -this theorem it is assumed .that R <« C , and that the convolutional
code used is a good .one in the "sense .that its associated probability of
‘error is-exponentially optimal,

.Obviously, the net transmission rate (taking into ‘account the loss

due to .the extra parity stream) is’

_ m-1
Reer = = R (23)
Ordinarily, one would wish to transmit at a rate RNET exceeding Rcomp
of the underlying channel so that .ofe) < 1 . Define RL (v) -to be

BOOT

the supremum of rates for which -(21) is satisfied. Then we can say that

the vth computational moment will be Bounded for the bootstrap hybrid

scheme using m sktreams provided the net rate satisfies

m~1 L
Reer < “m Rpoor (V- (26)

Define R as the greatest lower bound on rates for which (24)

U
gooT (V)

ig satisfied. Then

th . . . .
tthe w computational moment will grow exponentially with

block length I if

Rygr > = Rpoor (V) (27)

In reference [3] we show that R%OOT(Y) and REOOT(NO -can be

computed by the formulas

Rooor (0 = miz {max [% Ekm,% E.,,,(%)]] (28)

and

REOOT(Y) = min {% Ey (V) , 112; [% E, (fé)]] (29)

30
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When evaluatin RL (v) one computes the differences l-E v) - 1—CE (35
& “goort P ¥k ¥ o'k

for k= 2;3,... until their value becomes negative, If -this .takes place

for E+ then

+

W, R ) (30)

L min[l E

Rpoor (V) Y

€1
. k Y _
It can be shown that the function ;-Ek(k), k = 3,4,... has at
most one local minimum and mo local maxima. Therefore when trying -to

evaluate REOOT(V) one computes the differences

k Yy o kL Y
v ® TN Fen @D

for k = 3,4,... until their value becomes negative, If this takes

place for E+ s then

K.

Yoo

U

RBOOT(Y) = min [ Eo (V) (%+)] (3D

i
Y
The qualitative improvement achieved by bootstrap hybrid decoding
over straight -sequential decoding for the BSC can be estimated from a
comparison of the curve Rcomplc vs. p (C 1is the capacity) with the

‘curve RgbOT(l)/c vs, p. Figure 5 shows the corresponding plots togethex

R U ,
with those of RFAL(I)/C vs. p and RBOOTSI)/C vs. p. The quantity
RFAL(l) is the rate above which the Falconer [4] scheme has an un-
bounded first computation moment., None of the latter three curves
takes account of the algebraic degradation factor Eil (see (26)) which

must be used when any particular hybrid -set-up is compared with straight-

sequential decoding.

L. U
comp® FBooT (P2 Bpoor (D) » Rpppe and €

plotted against the ‘signal-to-noise ratio (in dB) per bit trapsmitted

Figure 6 shows the curves R

through a hard-quantized gaussian channel with binary inputs., Tt can be
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seen that using convolutional codes.of rate 1/2 a hybrid scheme with m = 10
streams will perform satisfactorily with an SNR per information bit that
is at least 1,47 db -smaller than the SNR needed for straight sequential
decoding. - Figure 7 shows the first four curves normalized by the £ifth
(capacityc). Finally, in Figure 8 we plot the values of vy wvs, SNR per
transmitted list that are -solutions to equations R%OOT(Y) = 1/2 (Vlower)
and REOOT(Y) =1/2 (Vupper) for the BSC obtained from a Gaussian
additive noise chanmnel. For -comparison we also plot the Pareto exponent
¢ that corresponds to straight sequential decoding., In this connection
the reader should recall the simulatiof results of the precedihg: section
that seemed to indicate that the '"practical" Pareto exponent is higher
than the limiting theoretical one .of Figure 3.

We have 'also evaluated theoretical performance curves for the binary
input Caussian channel with octal and quarternmary quantization., To make
‘comparison easy, Figures 10 through 15 are all drawn to the "same scale,

The quantization levels used throughout are the -ones maximizing RCO R

mp
obtained by Lumbgsj Therefore slight improvements might be possible in
L U . . .
the G, RBOOT(l) , and RBOOT(I) curves, if the optimization were to be

carried out with respect to those parameters, Figure 10 shows the rela-
tionship between capacities and Rcomp's for binary, quarternary, and
octal quantizations, Figure 9 gives the ratios Rcomplc for these quan-
tizations which show the margin of possible improvement attainable through
more 'sophisticated methods ofwhith:bootstrap hybrid decoding is ‘an example.
We see .that the margin decreases as the number of quantization levels in-

cregses,

L
BOOT

digits for the three kinds of ‘quantization when maximal information is

Figure 11 contains plots of R (1) vs. SNR per transmitted

used to form the state stream., Figure 12 provides the 'same .curves ‘when
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the state 'stream is binary instead (i.e. when the likelihood is given by
(13)). The next two figures show clearly that the degradation in per-
formance is only a very slight one and it might well be worth that price
to obtain the attendant reduction in decoder complexity. Figure 13

compares C and Rcomp for the quarternary channel with RL (1) curves

BOOT
for the binary and full channel state., Figure 14 does the same things for
the octal channel, However, it turns out that in this case the difference
between full channel state performance -and a "quarternary" one is in

the third significant digit and thus the latter curve cannot be-.entered
separately into the graph. A ‘'quarternary" state is one that would
result if the 8 chammel outputs were -optimally partitioned into 4

classes and membership in the latter was used to determine the Q-type

channel state, Finally, Figure 15 is a plot of REOOT

(1) wvs, SHR per
transmitted bit for bimary, quarternary and octal channel quantizations
when & binary channel state is used, The quarternary and octal curves
are so clo;e to capacity that it would be impossible to draw the REOOT(I)
curves for full information channel states.
As the last comment we would like to caution once more that none
U

L , . .
of the RBOOT(Y) or RBOOT(Y) durves involve the algebraic loss fac-

m-1 . , . .
tor = that must be used for fair comparison with non-hybrid schemes.



TI-B-3. A Bound on a Computational Parameter of Bootstrap Hybrid Decoding

Let a bootstrap hybrid scheme involve transmission of m ‘streams,
m-1 carrying information. ILet -the decoding be of the rudimentary 'kind:
one either succeeds in decoding'a stream entirely, in which tase the state
information is adjusted and deco&ing of the rext stream is attempted, or
one does not ‘succeed in decoding a stream in which case one passes to
the next stream without having made any state adjustment. Decoding of
any undecoded stream always starts from the first digit, regardless of
whether previous decoding attempts at that stream have been made. Let
us next define Ni(K) to be the number of decoding steps in the first
incorrect 'subset of the ith ‘among the K .streams that have been left
undecoded (i.e. M > K streams were received, M-K were decoded by the
hybrid method, and K streams--probably the most difficult -ones-=are
:gtill to be decoded). We suggest that a very good measure-of computational
complexity is the parameter

E[ max min Ni(K) ]
2KM  1gi<K
which may be interpreted as the -expected maximum number of decoding
steps that need be done in the course of decoding of the entire hybrid
block in any first incorrect supset,

In Appendix 4 we find the rate below which the 'above quantity ‘is
bounded by a comstant. The derivation is applicable to all channels
symmetrical from the input (included in this class are all discrete
channels derived through quantization of Gaussian additive noise chan-
‘nels), In the next reporting period we will evaluate these limiting

‘rates for - -some channels of interest.
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IT-C, Development of Good Convolutional Codes

A binary, rate R = l/n convolutional code of constraint length .y

can be specified by n generators

¢ @) = géj) + 3 4 géj)Dz + e+ g8 oV ji=1,2,...n

1 v-1
(1)
Gy
It is assumed that for at least -one value of j1 and j2 : Bg =1 and
(3,) o
8y = 1, I1239 € {1,2,...,n] .

Every input sequence io,il,...,ik can be represented by its D-

transform polynomial

. . . ok
IMD) = ig + 11D ves I, D . (2)

If by convention, i = 0 for t > K, then the encoder outputs for such

an input are the ‘sequenges

vtk-1

D) = cPoye1oy= x4+ =P 4 D) oL s, n
&)
vhere
- > . j v-l j [1]
R R R R By
=
@)

A convolutional code is called systematic if G(l)(D) =1, In that

case Xcl)(D) = I(D) which is desirable for some applications.

[1] '
§§_ denotes summation over ‘GF(2)

E denotes -sutmation over the integers,
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The output sequences produced by the encoder are conveniently re-
presented by the state space 'trellig’' diagram of the code given in
Figure 16. The state S(t) of the encoder at time t is determined by

the (v-1) preceding  information digits;

S(E) = (g eesteogi) (5)

0>

‘where i 0 for t <0 and t >k . There are oY1 aifferent

t
states for an encoder of constraint length v. For each state S(t)
there are two -possible values of S(t+l), depending on whether it= 0
or 1 . The state space diagram shows the possible transitions for

t =0,1,2,..,. » The branches in the diagram are labelled with the outputs

corresponding to the transitions, The trellis of Figure 16 corresponds

to the rate 1/2 code G(l)(D) = 1+D2, G(z)(D) = 1+D+ D2 . Since
(iy)
g0 L. il for at least one j1 e 1,2,...,n , the two branches diverging
(ig)
from a state cannot be identical. Similarly, since Byml = 1 for at

least one j2 g 1,2,...,m , the two brancheés converging into a
state cannot be identical.

The coder is initially started in state S5(0) =0 = (0,0,...,0),
For.everf input polynomial I(D), there is a series of state transiti;ns
0 =5(0)—8(H—»8(Q2)—> ... S(vik-1)—> S(vtk) = 0 . Tracing
the path corresponding to this series of .transitions through the trellis
diagram determines the output sequence corresponding to I(D),

let 0% -denote the path 0—> 0 —>0 ———);Q——) i.e. the
path corresponding to am input of all zeros., Massey and-Sain [6] have

called a code catagtrophic if there is an infinite path through the trellis

that has no branch in common with the 0% -path and whose Hamming weight
*ts finite. The re%son for this nomenclature is that in such a coﬁe a

finite number of transmission errors may cause an infinite number of



errors in the decoded information sequence I(D) . Massey and Sain 6]

have shown that a rate l/n code is catastrophic if and only if
1 2 n T
g.c.d. {G‘ @); G (D);.vs;sG (D;} £ D 6

for some hnom-negative integer, r.

Let X = [xél), xéz),...,xén)] denote the block of n output

symbols at time t . The minimum distance of the code generated .by

Py, 3=1,2,...,n is

v=1 n
(1) M)y, _ . E . g (1 YN
d (67 ,...,6" ) = min (x.) = min /(D) mod DY)
m 1(D) wM t I@)- UJM
1=l =0 i,=1 j=1

(7
where Wy -is the usual Hamming weight operator. 1In the trellis diagram
this corresponds to the weight of .the minimum weight path of exactly v
branches which diverges from the state ( at & =0 , Bussgang [7],
Lin and Lync [8)] , and Costello [9] have explored methods for -con-

structing codes with large minimum distance.

The free distance of the code is

[+ n
(1) @, . zg . ZE j ()
d_ (G 7 ,...,G ) = min (x_ ) = min &7 (D)) (8)
t (D) T I(0) Yy

i0=1 t=0 i0=1 j=1
In the trellis dizgram this corresponds to the weight -of the minimum
Weiéht path of arbitra?y length that diverges from the state Q at
t = 0 and reconverges to the state 0 at some later time. For the
binary symmetric channel, maximum 1likelihood decoding corresponds to a
search for that trellis path whose Hamming distance from the received

sequence 1s minimal. Since convolutional codes are linear, free

37



distance is ‘a good indication of maximum likelihood decoding -strength of
+he code at -least for low .crossover probabilities. Minimum distance is
in the same way important for feedback decoding of convolutional codes,
Moreover, the computational effort in sequential decoding seems strongly

influenced by dm .

We have derived the following upper bound on dtlo

Theorem 1
For all rate 1/n .convolutional codes .of constraint length v ,

the free distance is upper bounded by

d; < 5 (v [logy v]+ 1)

The "evaluation of df of an arbitrary code is quite complicated, be-
cause one may ‘have :to 'search very deep into the coding tree to determine

what d. is . Although it is conjectured that the degree of the informa-

£

tion-sequence I(D) that achieves df is .only of .the -order -0of v log v ,

the .best general bound on that degree for rate 1/2 codes is [10]

(v + log v)(v-1) + 1.

For the class of complementarvy codes that bound can be lowered to[lo]

vw(y~3), but what is more important, a very efficient search procedure

determining d_. -exists that allows early identification -of I(D) se-

£

quences that cannot poussibly achieve df . Moreover, the df values of

the best complementary codes are excellent and seen to grow as v .

A rate 1/2 code is a complementary code if and only if

5078 Teg "Ly - 1 (s8)
and
‘g;gz) = gél) @& 1 for l<m<yv-2 (9b)

38
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The generators may therefore be written as

Wy - 2 V2 pvt
G () = 1+gD+gP ... g oD " +D
(2) _ - -2 - w2 v-2
VI = 1+gD+gh 4. g D " +D
where Ei is the binary complément of g i.e. gi =8 @1

2

G(Z)(D) = Ggl)(D)-:-D +0% + ... + V2

Following Massey, we can use this relation between G(l)(D) and
GZ(D) to reduce the number of adders needed to implement the -encoder.

If the indices 1 of G(l)(D) are selected so that

v=2 V=2
g w,(g;) < E v (g, )
i= i=

then the encoding circuit is that of Figufe-l?.

As mentioned the structure -of .complementary codes allows construction
of an efficient algorithm based on the stack decoding principle that deter-
mines Qf o

The .stack is arranged according to the values of a lower .bound W(t)
on the weights of all possible .codewords .corresponding to extensions of -some
given input sequence I(D) of length t . The top of the stack is
allocated to the .codeword of loweét weight., Since it turns -out that only
sequences T(D) of even weight can achieve df , the search considers

inputs

pp) = & (10)

to the .convolutional code
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cWwmy = am P

¢Pmy = am P (11)

‘éntry in the 'stack contains the following information:

a) ud) = (pt’Pt-"""Pt-v+1) , the current contents of the
2

‘encoder

b) W(t), the lower bound on the weight of codewords corresponding
to extensions of P(D) considered,

c) CP(t), a count of the ‘length of the last run of zeros in

P(D) = I(D)/(14D) (P(D) can be discarded if C°(t) > v-2)

d) Cv(t), a count of the length of the last run of zeros in

v, = VD et vtDt where V) = 140°"%/1490 1(®) (P®) can
be discarded if C'(£) > V) .

The following is then the algorithm

Initialization:

The ‘stack contains one entry

U0) = (1,0,...,0), W(O) =6 , C (0) =0, ¢'(0) = 0

Regular operation

1) TIf stack is.empty,.go to 17, else continue

2) "Eliminate top eantry of stack, u(t), w(t), GP(t), qv(t). 1f
cF(t) = v-2 go to 16,

3) U(t+l)<—6-(0,pt,pt_l,...,pt_v+25 , [Zero extn,]

4y 1f Prots = 0 eV (tHl)e—cV(t) + 1, else C'(t+l) = O,
1f Cv(t+1) = y go to 9, else continue,

5) P (e+L) «—Ch(t) + 1

(X,E_}_i:xéf_;) -wyp, D pt-\)-FZ) where

is the output -of the encoder.

6) W(tH) = W(E) + iy

(1) x(2),

EegroXer

ko



7y If W(t+l) > v+ 2, go to 9, else continue.
8) TInsert entry U(t+1), W(t+l), CP(t+1), CV(F+1) in stack ‘according
to value of W(t+l)

9) U(E+lYe——(1 [one's extn, ]

,pt,Pt-l’ e .’Pt_w_z)

10) If =1, cl(e+l)l—c'(t) + 1, else C'(t+l) = O

Pe-vi3

If CV(t+1) =v go to 1_, else céntinue.
11) ¢E(Hl) = 0
12)  W(EH)e—W(E) + o, KL E(ﬁ)) +2wm(l & p )

e 0t Wy 2
" gy @ Prgyp)

13) If w(t+l) > vt2, go to 1, else continue
14)  Insert TU(t+l) , w(t+l), 6P(t+1), Cv(t+l) in stack according

to value of (t+1)

15 -Go to 1
16) df = W) Stop.
17) -df = wvt+2 Stop.

The free diséance achieved by the -complementary codes given in Table I
is far in excess of any othér known rate 1/2 codes, TFigure 18 shows
a comparison of the free distance of complementary codes with various
bounds, It 'is seen that the -codes come quite close to ‘achieving -the
upper bound of Theorem 1. Weumarn [11] has obtained a lower bound for
free distance, but his bound is weaker than the asual Gilbert Bound for
short wonstraint lengths. Tt is seen that.the.complementaéy codes are
far better than the Gilbert bound, which is of course a lower bound on
df as well as dﬁx' Figure 16 also contains the Costelloé&ower bound
for time-varying codas. It should be pointed out that the Costello bound

is asymptotic and does .not necessarily apply at short constraint lengths.



Figure .19 shows a comparison -of the free distance .of .complementary
codes with ‘some -other known codes. Costello [9] , has devised two-- -
-algorithms A6 (systematic) and A9 (monsystematic) “to construct:codes
with large free distance. It is seen that .the complementary codes do
far better -than either of these .codes. Also included in. the .comparison
is the Lin-type .code [8] . Figure 20 gives a comparison of .the number
of -steps taken by 'the -usual stack algorithm (i.e. one that would examine
inputs I(®) ¢to G(l)(D) and G(z)(D) and would have -only the struc-
ture properties .of .general convolutional codes) with the :steps taken by
‘the 'special algorithm for complementary codes. The comparison is made
for the codes in Table II. It is evident .that the ‘special ‘algorithm
provides a tremendous advantage in computing the free distance of these
codes.

Figure '21 -shows that the minimum distance of the complementary codes
'always~éxceeds the Gilbert bound. At,most-constraint.lepgths the minimum
distance requals .the minimum distance of the Lin-;yne ;ode.

Some complementary codes were used in simulation studies for sequen-
tial -and maxiﬁum likelihood decoding .on a binary symmetric -channel. The
performance .of -these .codes was consistently better than all other known
codes [12].

The motivation for -this work was to look for methods of constructing
convolutional codes with,large free distance, The results are partially
successful -since we found a good class of rate .1/2 codes whose free
distance .exceeds the free distance -of 'any other known codes. However
sucﬂ-codes were found only for . < 24 and there .is no evidence .to ‘show
whether good codes do -or do not -exist férilonger constraint-?.engthsn
The major problem in searching for long codes is .that the amount -of com-

putation needed to calculate the .free distance grows at least exponentially.

ho


http:there.is
http:Figure.19

We were able to utilize the special properties -of complementary codes
to cut down on the amount of computation.
Unfortunately there does not appear to be "any simple way to generalize

these codes to rates other than /2 .

v Gen, (octal) dfree dmin wt.
3 ) 5 3 2
4 13 6 3 3
5 31 7 4 3
6 61 8 4 3
7 121 9 5 3
8 211 10 5 4
9 503 11 6 4
10 1065 12 6 5
11 2415 13 7 5
12 5121 14 7 5
13 12043 15 7 5
14 24421 16 8 5
i5 51303 . 17 7 7
16 120643 18 8 7
17 352411 18 9 8
13 425551 20 8 9
19 1411041 20 9 6
20 2734605 20 10 11
21 5011303 22 9 8
22 11047441 22 10 9
23 22517023 24 10 11
24 51202215 24 10 9

Table T, R = 1/2 Complementary Codes
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TI-D, Application of Bootstrapping to Maximum Liké&lihood Decoding

of Convolutional Codes

We are trying -to see if the basic idea of bootstrap hybrid sequential
decoding can also be helpful to the fiterbi decoder, It will hopefully
reduce the decoding complexity that grows as 2v-1 in the Viterbi
algorithm) for .a given probability of error and transmission rate D,

We have completed a Fortran program whose basic idea is as follows:
There are .m~1 convolutionally encoded .information streams and their
exclusive~or sum forms the mth parity stream (the BSC is implied),
After reception .the channel state :stream is found in the usual way.
Viterbi decoding -of the first str?am is undertaken whose likelihood
values are based on the 'state information. The likelihood .function
of the decoded path is then examinefd and with its help reliable 'sub-
intervals of the path are determined (e.g. a subsequence of the decoded
sequence is considered reliable if it -corresponds to a comsistently
rising likelihood). These are 'substituted for the corresponding por=-
tions -of the received 'sequence and the state sequence is accordingly
recomputed. The second stream is then decoded and its reliable sub-
dntervals determined, The transmitted digits falling within these
*subintervals replace the received digits and the state -sequence is
again adjusted. This work continues in a round robin fashion as long
'as re-decoding of received streams results in an enlargement of the
reliable ‘subintervals, When no such enlargement occurs for any of
the m %treams computation stops and the 'paths decoded -last are
‘supplied to the user,

The main problem in rumning this algorithm is the finding of cri-

Eeria that could be used to determine the .reliable subintervals, We
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have written a program that collects statistics on the behavior of the
likelihood function of decoded sequences when it corresponds to correct
and incorfect information supplied to the user. The criteria will -of

-course be more -stringent the -smaller the code constraint length and the

larger the channel error -probability. We hope to report 'some initial

results soon.
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Captions for Figures of PartiIl

Encoding circuit of a single convolutional generator;

Circuit that recovers information digits S 1% Sn-00 ¢ ver S,

“from parity polyﬁomial PP(D) and parity digits pg“l,

n-2 Y
PO "9-’p0

Circuit that obtains P?-l(D) from P (D) and %, . It
i i i,n=-1

can also be used to recover the information digits s

n
from Pi(D) and Xi,n-l’xi,n-2""’xi,0 .

n-l’ OGO’SO.

Feedback -circuit that obktains SgoesesSy 10 from XI,O""’xl,Ill°

Tnitial contents of the shift register are 0's.

Empirical distribution of the speed factor necessary for
rudimentary bootstrap hybrid decoding of Repr = 0.45, m = 10
over a BSC with p = 0,056,

Empirical distribution -of the 'speed factor necessary for
rudimentary bootstrap hybrid decoding of Repr = 0.045, m = 10
over a BSC with p = 0.07.

Comparison of performance characteristics of sequential decoding,
Falconer's hybrid decoding, and bootstrap hybrid decoding over
the BSC, The experimental points denote simulations.at R = 0.5

referred to in Table 4,

Comparison of performance characteristics of sequential decoding,
Falconer's hybrid decoding, and bootstrap hybrid decoding with
the capacity of a Gaussian channel with binary inputs and outputs.

L U
Plots of Rcomp/C’ RFAL/C’ RBOOT(I)/C9 and RBOOT(l)/C as a

function of SNR per transmitted digit in dB's for the binary

quantized gaussian channel with binary inputs.

Upﬁer and lower bounds to the Pareto exponent v for hybrid
decoding as a function of SNR per transmitted digit (dB) when
the convolutional rate R = 1/2 . The 'sequential decoding

Pareto exponent ¢ 18 provided for comparison.
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Rcomp/C vs. SNR per transmitted digit: (dB) for binary, quar-
ternary and octal optimal quantization of the GAussian channel

with binary inputs,

C -and RCOmp vs. SNR per tramsmitted digit: (dB) £for binary,
quarternary and octal optimal quantization of the Gaussian
channel with binary inputs. '

L

R (1) wvs. SNR per transmitted digit (dB)  for binary, quar-

BOOT
ternary and octal quantization when state stream contains maxi-

mal information,

The parameter of Fig. 1l when state stream is binary.

L
Cs Roomp? 24 Rpoor

stream for the quarternary output channel as a function of SNR

(i) Zfor binary and full information state

per transmitted digit (dB).

L
BOOT
stream for the octal output chaunel as a function of SNR

C’RCOmp’ and R (1) for binary and full information state
per transmitted digit (dB).

U
RBOOT(I) vs. SNR per transmitted digit (dB) curves for binary,

quarternary, and octal output channel with binary inputs when

the channel state stream is binary.

The trellis 'state diagram for the code G(l)(D) = 1+D+D2,

cZm) = 12 |
A simplified encoding circuit for complementary vate 1/2 codes,

Free distance of "bhegt complementary codes compared to the

best available bounds,
Free distance of complementary and other best codes.

Computational effort necessary to determine free distance of
an ordinary stack algorithm and of .the 'special algorithm

utilizing the structure of ¢omplementary codes,.

Minimum distance of the highest free distance complementary
codes compared to .the Gilbert bound and to the minimum dis-

tance of the best available codes.
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parity polynomial PH(D) and parity digits pa-1, p2-2,...,pY1
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Figure 6: Comparison of performance characteristics of sequential decoding,

Falconer’s hybrid decoding, and bootstrap hybrid decoding with the
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Figure 16: The trellis state diagram for the code G(l) (D) = 1+D+D

2

, GB(D) = 14D
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Figure 19: TFree digtance of complemenbary and other best codes,
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ITI. REPORT ON PHASE TT

IIT-A. Tree Encoding of Sources with a Fidelity Criterion

ITT~A~1, Experimental Comparison of Two Encoding Algorithms

The most general theoretical formulation of the data compression
problem was provided by Shannon in 1959 in his paper '"Coding Theorems
for a Discrete Source with a Fidelity Criterion."[1] He enlarged there
on his 1949 source coding ideas2 referred to in the literature as varia-
ble length source coding and block source coding. Concisely stated,
Shannon's results are as follows: Let a memoryless source of alphabet
A= (0,1,...,a~1l) governed by the probability distribution Q(z),

z € A be given. Let an approximation of the source outputs in the
reproducer alphabet B = (0,1,...,b-1) be desired {(in prattice b < a)
with an attached additive per letter distortion criterion d(z,ﬁ) defined
for all pairs =z g A,Q‘J-:B° (i.e, the distortion between sequences

z = Zyseeesz, and 2= ’z‘l,...,é‘n is defined to be d(gn,%“) = i’

P ha i=1
d(zi,zi)), Let @Pn(z ) be an éncoding function that assigns some re-

2 L 2! . n
producér sequence 2z &0 each possible source: sequence z . The rate
¥ T

denotes the number of sequences in the range of Yn () . Shannon shows

of the resultant -code is defined to be R = log /n  where

the existence of 2 rate distortion function R(D) [whose shape depends

on Q() and d( , ) only] that has the following properties:
a) for all wn and all codes ?{; , if R <« R(D) then the expected
. s 1 n, n
distortion E'[n d(ﬁ,;ﬁph(ﬁ N1 > D.
b) for R > R(D) there exists a sequence of codes QTz of rate

v,

log

l /n < R(D) such that E[% ags YT @1—n .
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In recent years a lot of work has been éone generalizing the above
results to a broader class of sources, evaluating the performance of
existing systems relative to the achievable optimum, and developing
methods for evaluation of the R(D) function, The first .consideration
of the actual coding problem was undertaken by J‘elinek3 who -showed that
the sequence of .coding functionsTﬂfz can possess theabove desirable pro-
perties even if it;;s restrictéd go generate tree codes (instead of block
codes to which Shannon's theorem applies). It was h?ped that a tree
code structure would facilitate the development of a computationallf
feasible encoding algorithm.

Our work concerns the performance of such algorithms as applied to
the restricted class of binary syﬁmetrical sources [Q(0) = Q(1) & 1/2 ,
a=b=2, d(0,0) =d(,1) =0, d(0,1) =d(1,0) = 1] . The algorithms
themeslves are, however, completely general. An example of a tree code
is given in Figure 1. The wvarious codewords are the -sequences associated

5

with the 27 = 32 different paths of the tree. A path is specified by a

binary map sequence g? which determines at each node level if the upper

(0) or the lower (1) branch was taken, Thus the map sequence -§f = Q1101

corresponds to the codeword 230 = 0011101100, The rate -of the code of

Figure 1 is R = lg%aég

average distortion is D = ,11l . Figure 2 shows an experimentally de-

1/2 so that the theoretically optimal achievable

tived, ultimate capability of specific codes (believed to be near optimal)
of constraint lengths 5,7,10, and 14, The curve does seem to indicate

that the ultimate performance of D = ,11 will be achievable with codes

of sufficiently long cwmstraint length. The simulation was carried out
with the help of a straightforward modification of the Viterbi algorithm
that necessitates Zv_l steps per encoded source digit pair. The top curve
in Figure 3 then gives the corresponding distortion performance as. a

function of the number £f encoding steps, The algorithm compares the



beginning subsequence of length > v of the source outputs with the
difference -sequences corresponding to the 2V initial paths of the code
trellis (see Fig. 14 of Section V)., “"Each state at depth v of the trellis
has two such paths entering it. TFor each state,the-one of these two
paths whose distortion from the source subsequence is least is retained
and the other is eliminated. Extensions of length vtl of the retained
paths are then compared with the initial course subsequence of length
2(v+1l) and the elimination profess is repeated at each trellis sgbte
of depth v . This continues until a preassigned depth I" in the
trellis has been reached, Then the best of the 2V niiver paths is
selected to represent the-source output sequence .of length a2l ,

The next algorithm evaluated is based on the stack prianciple,
Let D* be the per letter distortion desired by the user. To be real=-
istic (see the previously quoted results) we must have R > R(D%*).
Define a metric distortion function d*(z;;) = d(z;E) - D*¥ ., Then Ef
will be -a: acceptable approximation of a source sequence é} if and only
if 22% d*(zj,zj) < 0 (we assume that the code is indefinitely extensible,
i,e, that the number of levels in the tree is practicallﬁr infinite).
Suppose the sequence ,%? {n large) was generated by the source, let
d*(ﬁf) denote the metric relatiwve to f? corresponding -to the last
branch of the path i; [e.gs d*(101) = d*(zs,l) + d%(z,,0) and

d*(100) = d¥(zg,0) + d¥(z¢,1)], and let D(;sj) be the cumulative metric

* -

N .
along the path rgj . Dgﬁé) =3, d*(E}) where E} are the initial
i=1

subsequences of length 1 of E}(i < j). The stack will contain dif-

J
ferent paths 5

and their cumulative metrics D(E})s and will be
arranged in ascending order of the latter (i.e. at the top of the stack

there will be that path f? whose 1D(f:f) is least).

T2



1. At the beginning of the decoding-process, the paths £}=0
and éf = 1 are -arranged in the stack according to the values of
D{0) and D(L).

2, The-encoder checks whether the path fj on top of the stack
is such that D*(EP) <0 . If so, go to step 4, if not, .go to step 3.

3. The top -entry [ﬁ?,D(ié)] is eliminated from the .stack,
the branch metrics d*gi?O) and d*ggél) are computed, and two new
entries [sJ0, D(ijO) = p(ed) + ax(sdoy] ana rsdi,peiny syt

d*(sjl)] are insetrted in the proper location into the stack. Go to 2.

zzJ is encoded into the codeword ZZJ
~ ~
corresponds to the path ,53 . The stack is cleared of all its entries

4, The subsequence that

and encoding of the sequence starts with the insertion .

Zog+12 8254220
of two new entries [§90,0(s]0) = d%(s10)] and [ng,D(sj1)=d*(§31)]

in their proper order into the-stack, Go to 2,

The bottom -curve in Figure 3 is a plot of average distortion achieved
as a function of the average number of -steps necessary to encode a souvrce
digit pair when the code of constraint length v = 14 whose ultimate
performance is D = ,116 was used (see Figure 2). The performance
curve for the stack algorithm dominates that corresponding to the modified
Viterbi algorithm,

The stack algorithm is readily generalizable to tree codes .of rate

R = k with 2k branches leaving each node and n digits-per branch.

i}

Its suitability is determined by the average number of steps necessary

to encode a source digit.



ITII-A-2, Theoretical Analysis of the Stack Encoding Algorithm

Our analytical work with the stack algorithm has divided into
two efforts, finding equations in relevant variables and approximating
solutions to these equations. Presented Here is the result of the first
effort.

To facilitate analysis, consider several component processes, all
running on the copies of the same tree and source. These will combine
to form a stack encoder, let a >0 and b < 0 . As usual, let a
node .extension include scrutiny of the .d branches extending from a

common parent node,

Process 1 Suppose an entire tree is explored by the stack
algorithm until either the top metric in the stack exceeds
a or falls below b , whichever comes first, Define
N{a,b) ts be the number of extensions in the first of the d
subtrees stemming from the tree's root node,

Process_2 In this .process only the first subtree is explored
in the 'stack, again until the stack top exceeds a or falls
below b . Let WN*(a,b) be the number of extemsions.

Proéess 3 Here let subtrees 2,...,d be explored, until the
stack top exteeds a , b is.effectively -» , If
0> bl > b2 > ... and the possible top stack minima in
this process, let

1

1 if the stack top falls to bi and
_ no further

0 otherwise

j!
Th
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Concerning N*¥ and N , certainly
N(a,b) < WN¥(a,b) (1)

since in Process: 1 searching in the first subtree may be terminated
by events .in the other d-1 subtrees. Process 1 nearly constitutes
the stack algorithm, and N{a,b) 'is closely related to its computation.
In fact, defining NT(a,b) to be the computations in a stack encoder

which '"gives up" when its stack top £falls below b ,

ENn(a,b) = 1+ d EN(a,b) (2}

In (2), the unit term on the right representsthe:initial
computation needed to reach the d subitree structures. The d-factor
follows frem the statistically IXD behavior of the d subtrees, To

reflect exactly the four step stack algorithm of the previous section, a
i s set arbitrarily close to zerc and b is reduced to =~ , so that
the algorithm stops only when its top. path metric exceeds zero.
To pursue this further and arfive at an equation in EN_, , we

T

prove the following lemma about N and WN:

Lemma

N(a,b*) = E N (a,by) O(b;) + NE(a,b*) E 2 (3

b, > b* b, < b¥*
i i =

Proof: Case I, ¢(bi) =1 for bi > b¥ In Process 1, no paxrt of
subtree 1 can be examined whose path metrics fall below b, .

On the other hand, if Process 2 with b = bi can terminate by

its stack top rising above a , Stack 1 must hever have fallen

to b, . Overall, then, Process 1 éxamines in subtree 1 pre-

i

cisely what Process 2 does,



76
Case .II. ¢(bi) = 1 for bigb*
The all .subset 1 paths with metrics between a and bi are examined

in both Processes 1 and 2, QED

An expectation operation on (3) now yields,

EN(a,b) = ; EN* (a,b, ) Pg(bi) +-EN* (a,b¥) E .pg(bi) &)
b, > b% b, <b¥
L R 1=

where Pg (b) = Pr {Top Stack Minimum in Process 31
is b

By a few.more maneuvers, we can change (4) into a function of one ex-

pectation only, EN:}3 ., We can write immediately,
EN*(a,b) = E EN, (a-h,b-N) P(M) (5
N
where
P(N) = Pr {a g;ﬂven branch had incremental metric ?\]

and NT(a,b) =0 if a <0 or -b >0 . Now combining (2), (4), and

(5), we get

ENj(a,b%) = 1 +4 E 13_3(131) E P(\) ENj(a-M,b, -A)
A

*
b, >b

+ E Pg(bi) E P(?\.)ENT(a-?\.,b*—h)? (6)

b.<bh*® ™
12

. .
1f P?j(bi) were known, (6) would .constitute a linear difference

equation in the unknown ENT(a,b). Standard solution-methods could then
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be used to cbtain a tight bound on ENT(a,-m), the amount of computation
necessary for stack encoding, Unfortunately, Pg(bi) is itself a solution

to the non-~linear difference equation. In fact, let

In Process 2 with b = -», the
G(a,x) = Prob top of the stack falls below 7

the value x

Then

Gla,x) = E P(N) Gd(a-kib-k)—+ ZE::P(K) . (8)

a>h>b b

and Pg(bi) is related to G(a,x) by

cE = > By ©

b. <« x
;i =

We do not know how to solve (8), except numerically, In thg near future,
we will do “just that, and we shall apply the result to (6) so as to gain

a better feeling -about the behavior of ENT(a,~w) .



III-A-3. Another Tree Encoding Algorithm and a New Source Coding Theorem

In this section, we ﬂeécribe'a source encoding algorithm for use
with tree codes. Tree searching does not proceed in a stack manner as
in the preceding section, but instead uses two lists of temporary path
hypotheses,

Assume code words fbr encoding a binary digit IID source have been
arranged in a tree structure. The tree has rate R = 1og2d/n,-with d
Iranches stemming from each node and n source approximating binary digits
on each branch. The object of the encoder is to find a path of branches
through the tree, the digits -of which approximate the source sufficiently
closely. To measure distance between the source output and various paths,

we use the Hamming measure

3

a2l = Z 1 - 6(z;.2,) ) (1)

i=1

&

27 i& a source sequence, E?Q is an hypothesized path, and § is the
Kronecker delta fumction. "

The encoder.operates with two lists of tree path hypothese in
arriving at one 'path for release to the user. The main list functions
as a temporary "scrateh pad," and the auxiliary list is a repository

for "good'" paths. Goodness * of paths in these lists is judged by a

path metric that depends on path length as well as distortion,
sGh. = ox - gt Y (2)

Here 8 is the length of zQ {(note that Q must be a multiple of n) .
D* ig the distortion per encoded source digit desired at the end of
encoding, and D% > [S(R), the inverse rate distortion function relative
to (1) and the source, Eqn., (2) is justified in earlier reports on

the Jelinek stack encoder,



With this path metric in mind, we define two freezing barriers, one

at metric a 3 0 , the other at b < 0 . Further extension of paths
whose metrics rise above -a will be ﬁqxzen temporarily and the paths
removed to the auxiliary list. Paths falling below B, normally will
be dropped forever -- "permanently" fro:zen.
Specifically, the algorithm works as follows:
Step (1 Starting at the tree root node (which is assigned the
metric zero), paths are exténded in the main Ilist until all

root node descendants crash a freezing barrier and are frozen.

Paths which rise above the a‘ birriér .are placed in the auxiliary

list in order of their length, the longest being on top. The
longest of paths frozen at the b-barrier is also saved.

Step (2 When no paths remain in the main list, attention turns
to the auxiliary list. In this "good" 1list, the final node
of the iongest path (which is on top of the 1list) now becomes
a‘new root node (metric value 0 is assigned to it) for the
main list, and the encoder executes again Step (1). The rest
of the auxiliary list is retained and a-barrier crashing paths
keep being added to it in the proper order,

Step (3 If there:are no pathsiin the auxiliary list by the end of
gsome .execution of Step (1), the saved -longest path frozen
at the‘b—barrier is. chosen to supply the new root node and
again metric value 0 is assigned to it., The .encoder then

executes Step (1) again.

Definite encoding of the source sequence .takes place whenever step (3)
is involved, since only one path is then left. Some stopping rule must
also be sgpecified that will go into effect if the time elapsed since the

last invocation of Step (3) is large (as hopefully happens often).

9



The -analysis of this algorithm is an interesting ome. However, the
scheme has two practical advantéges: if b is not too negative (which
it nee& not be if D¥ dis not too close to A(R)) then the main list can
be allowed to be quite small. Also, the.stéck algorithm described in the
preceding two sections has a start-up problem which is mostly avoided
here: when encoding takes place there, only a single root: node is pro=-
vided and the patls that emerge from it might all approximate the source
sequence quite badly.

To analyze and understand the two-list encoder better, we can view
Steps (1) and (2) in terms of a branching process. In the language of
Feller,5 Pg. 293, let the paths that are frozen at a during Step (1)
be the particles of the brancﬁing process, SO thatkthe auxiliary list is
actually a list of untried progeny. With each particle associate also
the main list computation to follow., Corresponding to the tree root
node ‘and the first execution .of Step (1) is the branching process's
initial particle, and paths which now crash the a-barrier become the
first generation of particles, The first generation gives rise to the
second according to -some probability distribution independent from particle
to particle and determined by the statistics of the main list. We can
think of the succeeding progeny as occurring in generations, even though
the encoder does not necessarily exhaust all auxiliary list Yparticles'
on one generation before going te the next. The branching process
either terminates by extinction of progeny, or goes on forever. 1In the
former instance, Step (3) is imvoked to start a new process,

Our -analysis begins by finding the average computaticn necessary in
the main list. We assume both lists are of infinite length, so that the
parameters of interest are the freezing barriers (a,b) and the hoped

for distortion D¥*, It concludes by using the branching process analogy
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to prove the encoder can achieve any distortion D¥* > A(R) , so long as

b is less than some b¥* which depends on D¥* and a .

Main List Computation Related to (a,b), D¥*, and ‘R

In the main list, let

Na = Number of paths frozen at a-barrier
Nb = Number of paths frozen at b-barrier
N, = Number of paths remaining forever unfrozen

We state immediately, but without proof, that the expected value of N

is zero under -proper conditions:

Theorem 1 For a tree of rate R = 1og2d/n used to encode a binary IID

source with respect to the Hamming distortion measure.

|b - a] < w/w implies EN_=0 ,
where @ = (R, D¥) and .9 >0 for all -D¥ ¢ (AR),1/2)

(The proof follows from difference equation methods explored first by
Zigangirov6 in a sequential decoding context., The function w(R,D%)
is made specific in Appendix 5).

Assuming EN = 0 , the expected number of main list paths frozen

at the end of Step (1), EN, is

EN = E[N, +N,] (3)

A short derivation shows that the expected number of extended branches

present in a tree containing EN paths is related by

E[branches] = (Eg—E—L

b d @)



Customarily, a '"'Computation'" is meant to include the scrutiny of d

branches from their common -parent node, so that
)
E{Comps] = —/—— (5

Egqns. (3), (4), and (5) measure in various ways .the work done in the
main list,

It remains to estimate ENa and EN Between these, ENa is

b °
of erucial importance to a coding theorem because it corresponds to .the
expected number of descendants of each particle in the analogous branch-
ing process. Parts of the following proof are inspired by ideas used

by Gallager,7 again in sequential decoding analyses, The proof appears

in the Appendix,

Theorem 2 Under the hypotheses of Theorem 1, Ib - aY < w/o
implies
-a cos ¢ cos _
ENa = siz sin wa T osi 'u% '(62)
W, - inw,
=b cos @ - cos Wy,
iy a
ENb Z =sin sin o " sin w ) (6b)
P a b

w and r are functions of D% and R, and are ‘found as -shown in
Appendix 5. o NO as D*\[L(R), and t is typically mear (1-D¥)/D¥*,
‘A careful look at (6) reveals that as ]b - a| tends.to m/w , both ‘ENa
and ENb gend to infinity. In fact, given an a one may choose b to
make the right hand side of (6a) precisely unity. In this way, R;D%,
and g , with the aié of Theorem 3, specify a minimal b necessary for

the -encoder to achieve 'D¥ . In preparation for Theorem 3, -we restate

this as a


http:tends.to

Corollary

For any given a < g/w, there exists b¥*

|b-al < m/wand b < b¥ , then EN, > 1.

such that if

We feel confident that further information -about N is available

from these methods,

in a way similar to the proof of Theorem 1.

For -instance, higher moments of N may be found

Sample calculations have been mAde for R = L/2 and D* either
0.125 or 0.111. A(l/Z) is 0,110,
D¥ =0,125 D¥ = (,110
w 0.789 ) 0.206
T 6.46 7.98
o 3.98 15.25
Table 1
Sample Values of v & w
D* = 0,111 D¥ = 0,125
a b ENa ENb ENa ENb
0.3 -2 0.288 13.4 0.409 17.1
0.5 . -3 0.310 80.4 0.746 280
0.5 ~14.5 1.06 2.4x1013 ® »
0.5 -15.25 ® o © @
p.25 = 3.0 0,805 96,5
0.25 - 3.5 cr et ae s 1.28 737
0.25 - 3,73 P )
0.17 -3 0,669 29.9
0.17 ~14.5 0.921  3.5x10l2 e
0.17 -15.08 e o
Table 2
) %
ENa and ENb vs, a,b, and D

33



Coding Theorem Proof Using the Two-List Encoder

We now prove the source coding theorem for our present source and
distortion measure using the Two~List Encoder -- that is, we show the
encoder can achieve any distortion greater than AR). The proof uses
the fundamental theorem of branching processes (see FellerS,Pg. 297),

with the branching process analogous to the encoder.

Theorem 3 Under the hypotheses of Theorem 1, whenever EN, 6 > 1
the expected per source digit distortion produced by the Two-List

Encoder is at worst D* , for any D¥* > A(R) .

Proof: Let an encoder cycle run 'from the extension of a root
node to the invocation of Step (3). If the longest b-crashing path is of
length 1 then the total distortion for this cycle is 1D* - b . .Let

N(M) be the number of cycles it takes to encode a source sequence of

length M [the last of 'these cycles may be completed at some sequence length

that exceeds M] . .The distortion -per source digit D, is then upper

M
bounded by
% - _LHM
DM < D_ M b

so that the expected distortion is

b

E[DM] < D* v E[N(M)] < D* - E[N(=)] .

=4l

But by the fundamental theorem of branching processes, EN, .> 1 implies
that a cycle ends with infinite progeny (i.e. never ends) with probability
M>0.

Hence
co

E[N(=)] = Z k@-m*t g =

=1

==
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and
b
-y
E[QM} < D —
The theorem is thus proven by taking the limit as M—p ® . QED

Theorem 3 contains no necessity for a large a , so that a sensible
encoder would place a as close to zero as possible. With .this in mind,
sample calculations were carried out for R = 1/2 and D* = 0,125,

For a code chosen at random from the usual random ensemble EN ¥ &40 ,
and b i required to be about -3.1., If D¥ is lowered to 0.111
{(very near A(R) !), EN % 1012 and b ® -14.7,

The large literature on branching .processes suggests more results
can be .obtained by these methods. We hope in the near future to obtain
results concerning the auxiliary list size and the .computation per
encoded source digit needed in the main list.

The theorem is readily generalizable to other finite distortion

discrete memoryless sources,



ITI-B. Permutation Codes as Source Codes

Permutation codes are a class of codes originally described by
Slé,pean8 for use as a method of achieving reliable transmission of digital
data over an additive Gaussian noise channel, One variation of these
codes was considered by Dunng-10 for the vector dquantization of data
from a time discrete, Gaussian, memoryless source. In this study, we
have extended the work of Dunn in several ways: namely, (1) optimizing
the parametexrs of the codes, (2) considering a second variation of the
codes, (3) developing an efficient encoding-algorithm for the codes,
and (&) deriving some special properties associated with the codes.

The basic idea is that of block coding (or block quantizing) for
a time discrete source, The source is thought to emit a sequence of
statistically independent, identically distributed, random variables
X Xgoen each of zero mean and variance 02 . We will be concerned with
encoding the first N symbols, E(N) = (Xl’XZ"°"XN)° A set of M
N-vectors, géN), i=1,2,...,M, are chosen as code words and the_source
output vector is represented by the closest (in accordance with some

distortion measure) codeword. The rate of the code is defined to be

1og2M

R = 3 (L

and the resulting average distortion D is defined as

- L - )y ()
D ~NE{@u aE,e 9 (2)
i
where d(gFN), géN)) is the distortion between the source vector EFN)
and the 1" colleword QéN) .

Permutation codes are codes for which the ‘M codewords are.chosen

in a particular manner. Two different types of codes are considered and



are termed Variant I and Variant II codes as in Slepian. Their - desc-

riptions follow:

Variant I Codes: Let the first codeword géN)‘ be chosen as the N-vector
- &—n—> \%__nz-—a é—-nk —_—
N
91 = fgs e s eabbisbigs e esilga s N (3)

where ysbgs e eeslly are k real numbers such that

and

+ n, + +.. + n, = N s ’ (4)

where the n, are positive integers, The other words of the code are
chosen as all distinct permutations of the elements of the first codeword.

There are a total of K

M = N! ’ . n, : (5)

codewords.

Variant II Codes: The first codeword QEN) is again given as the M-wvector

Fnlﬁ %nz ﬁ %nk_ﬁ

) _
_(_:.1 = u,l,-co,p;l,p;z, ---,IJJZ, vae 3 pkyoonguk (6)

where now the p; are k mnonnegative numbers such that

By 2 Mg oeeee >y > 0

The .other words of the code are chosen by assigning a sign (positive or
negative) to each component of the first codeword and by permuting these

signed components in all possible ways. The number of codewords in the

87 .
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code is now:

K
M = éh N! l 1 n, : (7)
i=1
where
h = (8)
N-ny b = 0

The encoding procedure for hlock codes is in general a very complex

N
procedure., In ite worst form, each source output vector EF ) must

be compared with each of the M codewords géN) ,i=1,2,...,M and
is then represented by that codeword which attains the minimum distortion.
For very large M this is a horrendous task. Permutation codes are.of
particular interest in that they lead to a relatively easy encoding
algorithm for distortion.measures of the form
N N
a@®,x™y = > rax -y ©)

i=1

where £(l&|) is a nonnegative, monotonic, nondecreasing, convex upward
function of |w&| and Yi is the ith component of the vector chosen

o represent EFN), The encoding algorithm which encodes EFN) into the
code vector which minimizes the distortion is described below for Variant I

and Variant IT codes. The proof that this encoding algerithm minimizes

the resultant distortion is given in Appendix .6, -part A,
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Encoding Variant I Codes:

()

1. Replace the ny largest components-of X with g
)

2, Replace the next n, largest components of X with o

2

LI )

()

K. Replace the smallest n, components of X with p, . The

k
result is a permutation of the codeword given in Equation (3) and is

indeed a codeword in the code.

Encoding Variant TI Codes:

(M)

1. Replace the n, 1largest,.in absolute value, .components of X

1
with either +,p1 Or =y, the sign chosen to agree with the-sign of
the component it replaced

2. Replace the next largest, in absolute value,.components of

o

E(N)'

with either + By OF -uy » again the sign chosen to agree ‘with
the sign of the component it replaced,
K. Replace the 0, smallest in absolute wvalue components of KFN)

with either + B OF again the sign chosen to agree 'with the sign

of the component it keplaced,

It phould be noted that for identically distributed, -statistically
independent source outputs, all codewords for the Variant I codes are
equally probable.. .If" the source distribution is symmetric about zero
the same is true for Variant LI codes,

A commonly used distortion measure is “'mean-square error' dis-

tribution whereby £(lol) of Equation (9) is given by

E(a) =o (10



It is shown in Appendix 6, part B that for a given choice of Msfgseees Ny
the best .choice of the parameters Hqsligs e oesbly- in the sense of minimizing
the mean-square ervor is given by the following equations:

Variant I

nl+n2+...+nj

o, = ':11_ Z EiX(i)} §=1,2,...,k (11

1=n1+n2+...+nj_l+1

1 1 t
where E {X(l)} is the expected value of the 1 b largest of N inde-

pendent random variables: 1i.e., X(l) EZX(Z) > eee E:X(N) .
Variant LT
nl+n2+...+nj
1 i
o= D> s {1x @) (12)
] nj
i=n1+n2+...+nj_l+l _ )

where ESlleﬂ} is the expected value of the absclute wvalue of the ith

largest of N random variables, That is, the absolute value of N

random va?iables are ordered in terms of their magnitudes and E [leg}

is the expectation of the ith largest. For a mean-square error distortion
measure, and for the choice of “j given by Equations (11) and (12)

the resulting -average distortion is given as

- 2 1 E 2
D = o -3 TR (13)

The rate of a permutation code for a given N is a function of the
choice of the groupings L R TRERTL The highest rate codes occur

for n, = 1, for i=1,2,..., K=N . (For Variant II codes, in order

90i -
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to achieve the largest rate we have the added restriction that e >0 .)

The maximum rate is

1og2NI
N
R = | a4
1og2 N:

1+ N Variant II

Variant I

and the corresponding mean-square error distortion is

i [x(i)} i

R
N 2
& - §§ E{lxim}
i=l

For a Gaussian source with unit variance, the summation

N

Sy

i=1

is tabulated by David et alll for values of N up to 400 . The resulting
distortion for .maximum rate Variant I codes is found to be much greater
than the corresponding distortion given by Rate-Distortion theory;lz

namely
D = g 2° (16)

In fact, the resulting.performance is inferior to that of an ordinary
. . R 3 .
scalar quantizer with 2 edually spaced quantization levels. Thus
we -see that if such codes are to be of value, we must have a method for

the judicious choice of the groupings Nysfgyeeesy o



Many different choices of groupinsg Dyseeesly exist which result
in the same rate R < RMAX . (In fact any permutation of the values of
nl,...,nk yields the same rate.) The optimum choice of nl,nz,...,nk
and k for a given rate will be that set of parameters which yields
the minimum distortion. For a given K , it is shown in Appendix-C that
a necessary condition on the choice of DysTos eeesly ‘to yield the
minimum distortion is that ny Kng <03 < vee <y for Variant II

(n1+...+ni)
codes and that n; < ny < 0g eee <Dy where E (X >0

IA

for Variant I codes. .
The following approach was used in a computer optimization procedure
to find the best wvalues -of RysPgyeeesly and k for a Gaussian source.
Several approximations were -used in .this algorithm so the resulting
parameters may not be truly optimum. However,.there is reason to expect
that the -performance of the codes obtained from thus algorithm is essen-
tially that of the very best codes, The procedure is based upon the

following observations. Define
p, = mN , 1=12,....k an

Then, for large ng and N , the rate R can be written approximately

as: Kk
- E Py logz.pi VYariant I
i=1
R # (18)
k
1- g P 1Dg2pi Variant IT
Ti=l

Furthermore the distortiom (mean-squaréd erxror) is given exactly as
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2
D = 1- % Py My (19)

i=1

Treating (18) as an equality we can minimize D with respect to P1sPgsesesPy

subject to the rate constraint, The optimum 1] are .given as
p, = H—— (20)

j=1
where B is chosen so that (18) is -satisfied. Note that in actuality we

do not have an analytic solution for the best n, -for two reasons.
First, n, piN may not be an integer and second, P, is given in terms
of the By which are, in turn, functions of the groupings n,. Fur-
thermore the above -solution assumes that %k is known while 'we would also
want .te find .the best Lk .

The flow diagram for the computer algorithm used in finding good
codes is shown in Figure 4; A rough outline of -this algorithm can
be found in Appendix 6, part D,

As an example, for N =400, R =1.5, K odd, the groupingr obtained
is ‘

=4 p_=1

nl=1 n2=4 n3=74 n4=242 n5=74 ne 7

The resulting rate is R = 1,475i4,‘and distortion is D = 0.18595,

The .Gaussian orﬁer statistics required for Variant 1 codes were
taken from .the table of David et a1.’11 The results of this.computer
optimization for Variant I codes with N = 400 are-plotted in .Figure 5.
(A smooth curve has been-drawn.through the resultant R-D points,) Also

plotted on this graph are


http:plP2,o.pk
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1) The rate-distortion curve for the Gaussiap independent source:
as given by Equation 16
2) Several points corresponding to optimum scalar quantizers. The
quantization regions and representation points.have been optimized
to yield the smallest mean-squared error for that number of
representation points, The rate of the unccded quantizer is
log2 (number of quantization points). The coded quantizer's

rate is the entropy of the representation points. See Lloyd13

14
or Max .
3) The performance of a uniform quantizer whose spacing is optimized
and whose outputs are then Huffman coded.15

4) The performance of some Variant I, N = 400 found by Dunn,

In conjunction with this figure we see that:

a) The N = 400, Variant I codes are superior to ‘Lloyd-Max uncoded
quantizers for R <« 3.7 ahd a®& superior to Lloyd-Max coded quantizers
for R < 3.2. Their performance is approximately equal to that of the
uniform quantizer (coded and optimized) over the range 1 X R < 2,7,

b) For small rates (R < 1), the performance of the Variant T coges
approach that of the rate-distortion curve. The highest rate code
plotted in this figure corresponds to the grouping n, = 1, Ry = N-1.
This code is a simplex code and its rate and corresponding distortion is

given as IngN

R = — (21)

1 - (EEX(I)})z/N-l (22)

1 .
where, here, E‘{?( f} is the -expectation of the largest of N Gaussian

D
2
o



random variables of zero mean and unit variance. For very large N ,

Gum.bell6 has shown that

E&?};ﬂZMN+C (23)

Combining Equations (21),(22) and (23) we have, for laxge N

|t§

5 %1 - 2R In 2 (24)
g

Comparing Equations (24) and (16) we-see that the two agree for small
values of R, -.Thus, the simplex Variant T codes are -asymptotically
optimum for large N . Furthermore it is -easily shown that the best
quantizer which has two representation points for N outputs from a
‘Gaussian, independent source behaves as

Z—2=1-%R1n2 (25)
Thus, this type of quantizer is not asymptotically optimum.
¢) The codes obtained by Dunn are not quite as good as the .codes found
by the computer optimization-procedﬁre. In particular, the following
two .codes are easily compared:
Dunn: n = (5, 5, 35, 40, 65, 100, 65, 40, 35, 5, 5)

R = 2,86367

D = 0,03389
Computer: n = -(1, 2, 7, 20, 46,-77, 94, 77, 46,720, 7,"2,-1)
R = 2.79184

D = -0,03362

The computer generated code achieves essentially the same distortion as

the .code of Dunn but at a reduced rate,

%



The -evaluation of Variant II codes was hampered by the .unavailability
of tables for the.expected value of -absclute Gaussian order statistics,
-E{]XI(%E} . The only tables found were those of-Klatzl7-which gives
these 'statistics only for W < 10 . It was reasonably simple to.evaluate
the -performance .of all groupings for small N ., The results for N = 10

are plotted in Figure 6.

It is difficult to draw conclusions on the efficacy of Variant 'II
codes from the -present data since we need to evaluate the performance
of these.codes for "large values.of N , A computer program is presently
‘being written to .obtain the expected value of absolute Gaussian-order‘
statistics for large values of N .

Two interesting properties of Variant II codes follow.
1, .For any N , if we .choose only one grouping (i.e., ng =-N), then the
representation points are located on the vertices -of -a hypercube with
coordinates (% \Ig, + —E, ces s ‘i'\[%: ) . The representation points
and performance of this code are identical to those.of s optimum 1 bit
single ‘sample -quantizer.
2, For N =2 -and n, =n, = 1 , the eight represéntation points are

t
uniformly spaced on a circle of radijus

2 P
é-w[;ﬁ sin ‘g

Alfhough appealing from-the '‘standpoint of -symmetxry, this configuration is

a relatively poor quantizer with rate

.R = 1,5 bits/sample

"and mean-~square .distortion

sin2 g = 23

ERES

These values ‘are-plotted as an asterisk on.Figure 6,

9%



The method of .enceding described earlier for Variant I and Variant II
codes assumed that the. encoding process consisted of replacing -the output
of the source by its closest codeword. In actuality, for transmission
over a communications channel (or for storage:in a memory) one would
order the codewords and then transmit (or store) the rank onder of the
appropriate cgdeword. -We now give a method for achieving this. This
method is similar to Jelinek's18 version of the Elias wvariable length
noiseless coding scheme.

[

The idea of this scheme is to map each of the M = Na///ﬁ_r o, .

permutations of the vector
ny n n

k
My sevshhys Bosearsbins e 3 By oo esbly
into a point on the real lime in the interval (0,1). These points will
be equally spaced and the mapping will be one-one. Then, various methods
can be used to enumerate these points. In the method described later,

each point is represented by its binary fraction expansion.

We now give the method to map the 'sequence

(N}
U = o9 M. sees .
L p‘Jl !-1'323 s .!-LJN

onto the unit interval. .Define the set of integers I,(i), i =1,2,...,k,

Q =1,2,...,8 as follows:

I,(1)

I
=
l-l

t
I-.l
o
L]

.
-

(26)

Tpi) = f=2,3,...,8  (27)

97
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and

f=1,2,...,0 (28)

12(0) = 0
The C) it i ), . ]
mapping of U onto the unit interval, (U ) is then given as

jl'l jz-l j3-l
1,y I,(3)E,(3,)
I ALl : 147784 .
0 -3 > IﬁlHWZ L® FFEnes S T
i= i= i=0
3o 41  k
N-2 N-1 1
. L Gy LS
cest E‘ (Nfﬂ)- IN“l(l) + N? (29)
4=1 i=0

With this procedure, the sequence

u13u13°'°:glr Hz:uzs"-: uksuk"'-swk

k
maps to the point ([ | nigl///&f , the-sequence

i=1

Mpobgoevmabiys voe o By gibgeago s v oabpngy Hioteago (i oo oo by
-1

nk_l—l nk

k
maps to the-point 2 I niil//gl , etc., the last sequence

=1

s Higr oot B ol el g s 0 Bl el

mapping to the point 1 .
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The binary codeword corresponding to Q(N) is derived as follows:
.Expand n(gﬁN)) into an infinite, unique, binary fraction
n@®) = s @™ s, @™ g @™y L G0

where Sj(U(N)) ¢ (0,1) are chosen so that

i

0 g_(n(U(N)) - E s (E(N))n.?--j) < 2t 61

j=1

Let Q be the-smallest integer greater than 1ogéM . The binary code-

(M)

word @(EFN)) corresponding te U is the sequence

sa™) = 5,6, s,a™y, .50 (32)

The codeword @(U(N)) specifies QFN) uniquely since ‘%(QFN)) defined

as
g Q
2™y = E .Sj(U(N)) PA (33)
j=1
' .
falls in the half open interval (%(U(N)) - : N ramdi n(U(N)i]
Dye eee Mo =
An efficient decoding method is as follows. Rewrite (29) as
] 2
am, .1 y - L 1 ;
n@™?) =3 E ENORESNHE R I, (1)
i=1 i=1

- §ED 1(3)1(323\; NZEtI(l)J"'
N-2
(J) R
- A P L. .(0) ‘] %)
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In order to recover EFN) from n(gﬁN)), the decoder follows the fol-

lowing recursive procedure:

j
5 = min%— 1> Lo s n(,Q(N))} (35)
1=1

Knowledge of jl allows the decoder to compute Iz(i) for -i'= 1,2,...,k.

Then
jl“l ‘ 3 .
A PR Y ;E N ZE ? AL
jo = mingj : N Il(l) +'N(N-1) 11(31) 12(1) >m (U 7) ¢ (36)
i=1 i=1

This continues until the next to last step where

j;~1 jg-1
s =1-nj_.n"l I(i)‘{"‘"_']:"""'" I(.) I<i)+
IN-1 Iy 1 NN-1)y 1M1 2 o
i=1 i=1
h|
2 TG TG I, oG » Lo @) 2w @) (37
N 14977 ~oldglees Ayigtiyon N-1M 2T &

i=1

The final step determines j.N as

iy ={;z ENONE 1} (38)

APL-type encoding and decoding algorithms are given in Appendix 6,
part E.

The following is a summary of the various ‘steps required in a quan-
tization scheme based upon permutation codes, For convenience, only

Variant I codes are discussed,
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1. The outputs of a source are subdivided into blocks of N symbols,

2. The positions of the n, largest samples, n, next largest
samples,.,.,nk smallest samples are noted,

3. This position vector is coded into binary digits by Equations
(29), (30) and (32).

4, The binary digits are decoded into a position vector by the
method described by Equations (35)-(38).

5. The representation vector is then obtained by placing ia the
largest Dy positions, the real number By s in the next largest n,
positions, the real numbex uz, etc,, and in the -smallestk o, posi-
tions, the real number T If available, the values to be used for
w; are those given by Equatioen (1l1). Alternatively, the encoder

could i¢ollectr the sample order statistics and transmit these numbers

to the receiver at the end of the transmission. The receiver would
then use these sample statistics as if they were the actual order

stathstics.
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Captions for Figures of Part ‘III
An ‘Example of a tree code,
Best average .distortion achievable.of near-optimal convolutional
codes of constraint length 5, 7, 10, and .14,
Average .distortion vs., number of -encoding steps -of the
Viterbi encoding ‘algorithm when used with the codes of
Figure .1, Also plotted is the average.distortion vs, -average

number of encoding steps of the Stack Algorithm when used-with

" the code of constraint length 14 whose ultimate performance

Figure 4,

Figure 5¢

Figure 6.

is given in Figure 2,

Flow .chart for determining optiﬁal groupings {ﬁl,..,,qg}

for péfmutation-codes.

Comparison of Variant -I-type code performance with that'.achievable

by quantizers and with the rate-distortion function for Gaussian

“sources,

Short Variant IL-type code performance .compared to that achiev-
able by quantizers and to the rate-distortion function for

Gaussian sources.
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Figure 1: An Example of a tree code.
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Figure 4: Flow chart for determining .cptimal groupings {nl""’nk}

for permutation codes,
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APPENDIX 1

DETATLS OF STACK AND MAP MAINTENANCE AND PURGING

MANAGEMENT OF THE MAP OF VISITED NODES AND ITS 'PURGING

The following purging strategy will be based on the requirement
that if there is any entry of depth I in the stack, the.decoder has
made a final decision about information digits of depth at least I-t,
where t is some conveniently large integer exceeding the comstraint
length y of the code (good rule of thumb seems to be t = 3 v),

All wvariable names used in this description are those used.in the
FORTRAN stack decoding program. The operations cutlined below are
in addition to those already in that program.

1. Before a node is extended the decoder checks whether
0 < I-M1.(NPOINT(N1) < t . If not, the decoder sets NPOINT(W1) =-1
(the location of the root node is ML(1) = ~LIMASK). Also, should

i

I < IMA¥-t, the node is dropped f£rom the stack and no extension is made.

2. At the beginning of the decoding procéss,-we set ML(J) = -t,

J=2,3,...,IMAP, where IMAP is the number of locations in the map,

There will be a pointer IQCPUR whose initial walue 8. 2 , When a
new map entry is to be made corresponding to depth I, the decoder checks

whether

I - ML(IOCPUR) > t + 1

If so, the-entry -is made .into location ‘LOCPUR. If not, then we increment
LOCPUR by 1 and try again (when LOCPUR = IMAP, instead of incrementing,
LOCPUR is setf: equal to 2). If the search has been unsuccessful for
IMAP-1 tries, a map overflow is declared. One may stop at that point

or take a risk and replace that entry whose M1(J) value is smallest,

LOCPUR would then be set to J .
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3, Decision Making

When a node is to be extended such that I = IMAX, we set IMAX =
IMAX + 1 and make a decision on the node at depth -IMAX-t = I+I-tf.
This is .done as follows:

Set MII = I, NPOl = NPOINT(N1)

CASE I: . ML(NPOl) = I+l-t

In this case the decision is a 1.
CASE ITI: NP0l =1 or ML(NPO1) > MIL. In this case the decision is a O.
CASE TIII: Neither of the above, In this case set WMII = M1(NPO1)

and NPO1l = MP(NPO1) and repeat above,

Argument why strategy works:

Because of 1, when the -entry at location NPOl was made then either
MP(NPOLl) = 1 or ML(NPOl) - MI(MP(NPOl)) < t . 1In the .first case,
the value MP(NPOl) = 1 is either natural, or results from application
of rule 1, In either case, at depths M1(NPOl)-1, ML(NPOl)-2,...,Ml1(NPO1)-t,
the-path has 0 branches only. Suppose the latter case is true, Then
the entry at MP(NPOl) may be replaced only (see 2) by anentry whose
value M1' satisfies ML' > ML(MP(NPOl)) + t+l,i.e..such that Ml' >
M1(NPO1). The new 'unnatural' entry will then be recognized by the
decision procedure (as the  instance ML(NPOL) > MII of CASE 11).
Note from 2 and 3 that the replacement takes place when the decision
about depth M1(MP(NPO1)) has already been taken, Thus when the stop
of CASE II occurs, a decision ig .to be taken about a branch inside the
depth interval (M1(MP(NPOl)), ML(NPO1l)), and all such branches are
0's by definition.

Fipally, if the stop of CASE I occurs, -M1(NPOl) is the original entry
at NPO1l, and does correspond to a l-branch.

The fact Fhat either CASE I or II will eventually occur need not

be labored,
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Purging of Map when the depth of definitelv decoded digits is not

given by formula J-t where t is a fixed constant and J is the depth

of furthest advance in the tree.

Note: A good decision method may be: whenever the likelihood on

some path Ef =8 exceeds a maximal threshold T , all digits

1208y
28y (K <« J) are decided such that the likelihoods

Sqsee
L(i?) < T-a, for & =1,2,...,K, where the value .of a is chosen in
some convenient manner.

Asqume that in accordance with some decision strategy, all message
digits at levels 0,1,2,...,t _are definitely decoded for some t >0 .
We will create 2 new arrays: M2[ IMAP] and NPTMI[FKSTACK] (in addition
to those arrays that are utilized in -the original Fortran Stack Decoding
“Program). Their values will be

a) Initially: MI1(l) = -LIMASK, NPOINT (1) = 1, NPTMI1(1l) =
-LIMASK, MI1(J) = -LIMASK for J=1,...,IMAP,

b) Suppose a node at location N1 of depth Il is being extended,
the l-extension goes into stack location N2, and the newly created
map location will be J . Then we leave NPOINT(N1) and NPTML(NIL)
as before, We set ML(J) = NPTML[N2] = I1+l, MP(J) = NPOINT (N1},
M2(J) = NPTMI{N1}, NPOINT(N2) = J . As a result of the above .g¢rategy,

as long as no map location is purged, we will always have

M2[J}] = MLMP(J)) L
and

NPTML(K) = M1 (NPOINT (K)) (2)

The relations (1) and (2) will then provide a check on pointer wvalidity:
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MAP PURGING:

When levels 0,1,...,t have been definitely decoded, no node of
depth I <« t will ever be extended, and all map .locations J such that
MI(J) £ t will be available for re-assignment., This can be done by
a pointer LOCPUR that is initially set to 1 . LOCPUR is incremented by
1 until it has a value such that ML(IOCPUR) < £ . In that case the

new map entry will go into location LOCPUR.

DECODING DECISIONS

Suppose .decisions at levels 0,1,...,t have been made and a decision
at levels t+1,...,t+j is to be made next (j > 1 £for instance when
_ decisions are likelihood-oriéqted) with node at location N1 determining
the choice, Set NP0l = NPOINT(N1), NPTM = NPTML(N1) (we assume that
I > t+j)
1. If NPTM > t go to 2, Otherwise stop.
The digits at levels t+l,...,t+j are those revealed by the map so
far (i.e. those found by the usual following of back pointers.in the map).
2, If ML(NPOl) = NPTM go to 3. Otherwise-stopa ‘
Then for the purposes of the .decision all digits at levels .lower than
NPTM are zeros. The digit at level NPTM is a 1 and digits at levels
higher than NPTM are those revealed by the map so far.
3, Set NPTM = M2(NPOl), NP0l = MP(NPO1l) and go to -1,. The

map digits revealed so far are valid.

Note: This procedure is successful bgcause any new entry has a value
of M1 that exceeds.the old value of M1, Therefore if an 0ld pointer

NPO1 is involved, we will surely get ML(NPOL1) > NPTM.



STACK MATNTENANCE AND PURGING STRATEGY WHEN PATHS ARE SPECIFIED BY

_ACTUAL_ SEQUENCES OF INFORMATION DIGITS OR PARITY DIGITS

Stack: .- Has locations called ML of v-1+k digits, the rightmost being
the most recent, some of the leftmost possibly dummies. It has
an I counter indicating the depth of the path and a pointer Pl
to the preceding : location in the map. In the forthcoming discussion
it is assumed that Ml contains an info. sequence, If parity sequences
are involved, only step 11 usedrieed-be. ghanged: in atcordance with
Note T.below.

Hag locations called M2 of k digits (no dummies here), pointer

:

MPP indicating the preceding MZ2-location in the map, and pointers
MPL indicating the next M2 locatiocon of the same depth,

Table: Entries A(1l),...,A(j) indicate the values of the wvarious
"live" depths that exist in the map. Entries B(l),...,B(j),
B(j+l), €(1),...,C(j) are pointers, B(i) points to the first
location and C(i) to the last location in the map of depth
A@), i =1,...,5. B(i) 4is chained to C(i) by means of the
pointers MPL. 1In fact, C(i) = MPLt(B(i)) where t 1is such that
L (B(1)) = 0 and MPLT(B()) 0 for r =0,1,...,¢ .

B{j+1l) points to the first available location of the map.,

INITIALTZATION

CAQ) = -5, 000,405 =03 B(L) = ... =B(]) =0
B(j+l) = 1, MPL({) =i+l i =1,2,..., M2l -1

MPL(HM21}) =0 ,

Rest is initialized to 0,
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OQFERATION
1. Upon obtaining for extension some-stack location B, the decoder
checks whether I(B) = (v-1) + Sk for -some ¥ =3,2,...
If I(B) # (v-1) +\k go to 11, else.continue.
2, If 1(B) SIma go to 6, else Imax'i—-—_I(B) .

X

3. 1If Imax < (v~1) + (j+l)k go to 5, else continue.

k. Go through the chained list BL(B) ~ MPR(RL(B)) ~ ... ~ Mppi™!
(P1(B)) and release the digits in location MZ(MTPj-l (P1(3))) to the
user,

5, Find the value t* such that A(t¥) =Q-—j -and make available
tc the map those,lo;.'ations that are -linked to B(t*)., This is done by
setting MPL(C(t*)) €—B(j+l) and B(jtl) <« B(t¥).

If B(j+l) = 0, map overflow takes place and stop. Otherwise,
-set A(tF) =3, B(t*)<&— C(t*) «— B(j+1), B(j+l) & MPL(B(t¥)) ,
MPL(B(t*))e— 0 , -MPP(B(t*)) &« PL(B) , and P1(B) &— B(t¥*). Copy
the last k digits of ML(B) into M2(B(t¥)). Go to 11 .

6, 1If L oax -I(B8) < wv-l4+jk go to 8 , else continue,

H

7. In this case all of the decisions about digits contained in
M1{B) have already been made and this entry should therefore be -purged
from the stack. Go to . 12.

B. 1If thereismo t such that A(t) =9 go to 14, else continue,

9, Find 1:+ such that A(t+) =Q . See if there exists a loca~
tion gy+ -linked to B(t+) such that Ml(gl-]_‘) = P1(B8) (rhis requirement
is ignored if ﬂ = m%n A(t) and the -contents of -M2(oﬁ7) are identical
to the last k digits of MI(8) . 1If cy+ exists, set PL(R) (—-og+
and go to 11, else.continue (Note: if B(i:+) = 0 then no o.’+ extsts

by definition).



10. If B(j+l) = 0 , map overflow takes place and stop, Otherwisé
set B ¢—B(tD), B(ED) & B(HL), B e—wLa(eD) wneey e
(this puts old B(j¥l) to the top of the E+ set, and establishes a
new top for the set j+1). IE B+ = 0 then set C(t+)<5——B(t+) .

Also, set MPP(B(t ))e— P1(8) and PL(B) é—B(t'). Finally, copy
the last k digits of M1(B) into M2(B(t+)).

11, The rightmost (y-1) digits of MI(B8) are used to find the
likelihoods ko and hl of the two extensions of the path on top of
the stack. If the C~extension stays at stack location g and the
1l -extension goes into location Bl’ ‘then I(ﬁ)é——-l(ﬁl)<f=-I(B) + 1,
Pl(Ml)ér—-Pl(B) » ML(B) 1is shifted left by 1 stage, a 0 being

entered into the rightmost stage, ML(M) is copied into Ml(ﬁl) and

i=5

a 1 is entered into the rightmost stage of the latter, CUM(BI)~4—-CUM(B) <+ hl’

and CUM(B)¢— CUM(B) + ho + Appropriate pointers to locations f and
Bl are set in the auxiliary stack as usual.
12, Find the top of the stack,
13. Go to 1,
- [(v-1)+iK]

14. This is the case then Ima - {j=~Dk >I(B) > Ima

X b.o

so there exist. some digits in M1(8) that have not been decided yet,
but the pointer ©P1(3) does not point to any valid entry, and furthermore

min A(E) > 9 . Go to 11,
t

NOTE I,
If stack is not to contain message digits but rather the digits of
the parity vector, step 11 of the procedure must be modified, In this

case, what is to be saved are the parity digits,
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We have two parity sequences P?(D) and PE(D) (see: (i5) of

I1-4-1) that must be saved. Furthermore,

n
. = s_++ p.
x.,n n p1,0

n+1 _ -1 [ n n B
Pi D) =D Fi(D) + pi,J + S, Gi(D)

We assume as previously, that gl,O = gﬂ’o = gl,h:l = gl,v~1 =1,
Gl(D) and GZ(D) being of degrees M-1 and wy-1, respectively.
Therefore, ML(8) must contain k + (A-1) + (v~1) stages. One

possibility is that its contents are given by

n n . Rl
[Sn-k’""sn-l’pI,O’""pl,h-2'92,0’""Pz,v—z

The other possibility is to save v-1 positions in the map by taking

A1

n-1
o determine

advantage of the fact that p(n)(D) and p yress P B
1 1,0 1,
s. uniquely By use of the circuit of Fig. 1b of Part II,

] v
n-1’ 3

In this case M1{B) would contaihn

0

n-k n-1 n n n n n
PL,00°* +P1,0°P1,00P1, 177 2Py n-20P2 00 0 0 P, p2

-

We will denote the coefficient vector of P?(D) by -p:L .
Fa)

>

Therefore we get the following two possible alternatives to step 1ll.

1

1la. (M1{B) contains [é,pl,pzj, map contains s) p and
. NP s p Fas pa

8
~
11

pz are shifted separately to the left, the leftmost digits p? 0 and

P

being used to compute the likelihoods ko and A, of the two

n
P2.0 1

extensions of this path. After the shift the leftmost digits are dumped

and a 0 is supplied to all three rightmost positions of s, pl and p2.
Lol -~
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If the l-extension goes into location f§; then TI(B)e¢— I(Bl)éu-l(ﬁ)+1,
P1(B,) «>-PL(f) and MI(B )& ML(B) + [O, N I gl,ng where

1_ P
& T By qrcereBp g M B ‘32,1""=82;\,-1'

cuM(ﬁ1)4,4;CUM(B) +—k1 and CUM(B— CUM(B) + KO . Appropriate pointers

Finally,

to locations £ and 31 are set in the auxiliary stack as usual.
. 1 2 . -
11b. (M1(B8) contains [,p*,p P ], map contains p¥* , where
~ooAs o~ S
p* = piﬁg,...,pgné . (p*,pl) and (pz) are shifted -separately left,
~ ) H ~ I~
the digits p? 0 and p; 0 being used to compute the likelihoods ho
and hl after two extensions of this path, After the shift the leftmost
digitslof (p*,pl) and (pz) are dumped and a 0 1is supplied to both
) ~s Fasd

rightmost positioms, If the l-extension goes into location Bl then

1(B) ¢—T(B,)e— T(BYH1,2(B)4—(F), and ML(E))<—ML(A) + [0,%1.,0,8",8” |

La "4

Finally, CUM(Bl)q——-CUM(ﬁ)+K1 and CUM(B)e— CUM(B)+AO . Appropriate
pointers to locations S and Bl are set in the auxiliary stack as

usual,
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APPENDIX 2

TABLE LOCK~-UP FOR MULTIEBRANCH ADVANCE

L. Binary Symmetric Channel-Svstematic Code

Suppose we wish to advance 8 message bits at a time, and let
us -assume a rate 1/2, systematic codes.

We will desctibe how the move forward is carried out at some time
i at which the parity state pdlynomial is

P,(0) = py (1) +py(D + ...+ () DV W

where v is the copstraint length of the code. We will :assume that the

generator polynomial is

GMD) = 1+gDd+ ... tg pV-t (2)

Suppose the next § ~digit information polynomial is

-1
Si(D) = Sy TSl F et si—!-RD (3)

Then the .first-position transmitted polynomial is

X, (@) = 5,(D) (4)

and the -second-position transmitted polynomial is

K,®) = [P, () + 5, (@ cm)1* &)

where { ]R denotes truncation of §th and higher powers.,
Next, suppose first and second position polynomials Yl(D) Y2(D)
are received, respectively, and it is desired to .find the Ethzmost

likely sequence Si+l’°'°’si+ﬂ that could have caused it (k=1,2,.,..,‘25z )s-
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If the channel is BSC, then the answer depends strictly on the -weight

of the difference polynomials

I

Z, (@) X, (@) + Y, (D)

ZZ(D) ZZ(D) +-Y2(D) . {(B)
But, note from (5) and (4) that

- !
Zy(@) = ¥,(@) + [B, (®) + X @) 6()]

R
Yz(D) + [Pi(D) + ZI(D) GO + YI(D) G(Mm)]

il

{[Pi@) @ emP +r,m) + 2,0 em1?

BD) + [2,® ¢@) )

where B(D) is independent of Zl(D) .

It thus follows from (7) that we can arrange tables that will be
useful in evaluating likelihoods and identities of kth most likely
branches leaving a node,

The first table, called LTABM, lists for each of 2y possible
different values of B(D) the weight-ordered sequence of the 2Sz
different outgding branches Zl(D) {the weights are simply Wt(Zl(D))
+-wt(22(D)) both of which depend on ZI(D) and B(D) only).

The second table, called LTARBW, lists for each B(D) the weights
corresponding to the outgoing Pranches-of LTABM.

A third table, LIK, gives the correspondence between weights and
likelihood values.

Finally, it might be useful to have a fourth table, called CODEY

R

that would supply the correspondence between Yl(D) and [Yl(D) G(D)]



Suppose the kth most likely outgoing branch was wanted, -one would

proceed as follows:
1) Look-up [Yl(D) G(D)]R in -CODEY and form

BD) = [Pi@)]g + Y, @ 71 + X, (D)

2) Find the kth entry Zl(D) and the .B(D)-row of -LTABM and
form the corresponding message -sequence
Si(D) = 21CD) + Yl(D)

3) Form the next parity state polynomial Pi+&(D) recursively

as follows

2,1 0 {D“I[Pi(ﬁ) + 5, ,,C(0) ]} *

PR |

1

where'i;l % denotes the dropping of the D-1 term., Before generation
of Pi+j(D)’ the coeffic?ent pl(i+j-1) is stored in the map.

4) Find the weight W) of the kth entry in the B(D)-row of
-LTABW and look up.in LIK the likelihood of the corresponding branch.

The latter is then used in forming the cumulative likelihood of the rew

path.
NOTE: The value of B(D) should really be computed only when the node
is extended for the first time, i.e.along the most 1likely branch. Then

it 'should be stored for later use .if the .Eth (k=2,3,...,2&) most

likely branch is needed.
NOTE: Obviously a straight-forward modification of this .method -will

apply to any rate code., Regardless of the rate, the LTABM .and- LTABW
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tables will have 2" entries, where n is the number of received bits

that correspond to a path eXtension (In the preceding- discussion, n = 29.).

II. BINARY INPUT-M-ary OUTPUT SYMMETRICAL CHANNEL-SYSTEMATIC CODE

We will consider the situation where for simplicity the received
symbols can be written as pairs (Y,V), where Y is binary and V has
alphabet of size m = M/2 . Furthermore, the channel structure is such

that

w(0,V/0) w(l,V/1)

w(o,V/1)

il

w(l,V/0) (8)

for all V ¢ {0,1,...,M~1§ . In this formulation the Ames channel has

M =4 ., Note from-(8) that the likelihood

£(Y & XV
w(¥,V/X) 3 1
log 2 (T, V) ~-R = log fz(v) - R (9)

is a function of the pair (Y & X,V} only. Assuming that

fl(O,V) fl(l,V)
m%n —EE?GT— > max “E;?ﬁ?‘ (10)

v
(which is true on the Ames Channel), the following strategy is very
reasonable,
Create a table LTAB whichZfor each of the 29 possible different
values of B(D) (they are based on the Y-components of the received

9

symbols only!) lists . the weight-ordered sequence of 2% different
outgoing bratches (ZI(D)’ZZ(D)) (note that it will be hahdy to list
ZZ(D) also), Ties in weights are resolved in 'some arbitrary manner.

Create a table LIK giving the correspondence between the pairs

Z,v) = (¥ & X,V) and the likelihood values

129



fl(Z,V)
log — %o~
£5(M)

Finally, construct the .table CODEY that will have the .correspondence
between .Yl(D) and [Yl(D) G(D)]Q .
The path extension -procedure below will not be able.to pick

every time the .Eth most likely outgoing branch, because, e.g., in

case of ties although the distance between a received sequence
Y]_BYZ! b ‘3yn

1 1 . -
and two possible branch sequences  ERRETE N and Xl""’xn might” be

the same, the distances between the latter and the actual symbol sequence

(ylsvl) ] (YZS v2> E LA | (yn’vn)

may turn out to be very different. However, it is believed that most
of the time the errors in ordering ﬁill not damage the algorithm's
performance too much. Fuéthermore, experiments will no doubt bear
out the simplicity and speed advantage of the suggested extension
procedure:

X

1) Look-up [Yl(D) G(@)]" in .CODEY and form

%

B(D) = [Pi(n)] + [Yl(D) G(D)]Q +-Y2(D)

2) TFind the kth entry [Zl(D), ZZ(D)] in the B(D) row of

1TABM and form the corresponding me%sage sequence

5,0 = z;0) + Y ()

3) Torm recursively the next parity state polynomial Piﬁﬁ(n):

Pi+l(D) __‘{D-l [Pi(D) + 8.4 G(D)lg %

it

Py ® {D'l [Py q_1 @) + 55, 0 CD) ]1 *

130
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4) Using the results of (2), look-up in LIK the likelihoods

log (fl(zj,vj):/fz(vi) - R and form the likelihood increment X\ corre-

d
sponding to the branch Si(D)
24
£,(2,,7.)
A= [}og - g]
£,(v)
j:
ITI. BINARY SYMMETRIC CHANNEL - NON-SYSTEMATIC CODES

We will conclude by treating non-systematic codes of rate 1/2
for the BSC. The treatment of such codes for the symmetric channels
of Sec, IL, is similar and is left as an exercise,

Let the two generator polynomials be Gl(D)’ aﬁd 'GZ(D), and denote
teh two parity state polynomials by Pi(D), Pf(D) .

CASE T: One of Gl(D), GZ(D)q say Gl(D) is such that

=

= 0 (11)

81,1 £1,2 * T8 g-1

In this case the first position transmitted polynomial is

0 = [EOF +5,0 (12)

(it is assumed that 810 = 1), and the second position polynomial is
]

9

= [p2 9
Xo@) = 1B, @] + [S;0) 6,(0)] (13

Therefore, the difference -polynomials Zl(D) and Zz(D) are

Loy X

(14)

- 2 ipy X YL



! !

2 4 1
7,0) + (LT + [(2; @) + Y, @) + [B;®T) ¢y

B(D) +17, () ¢, (15)

where

po) = o + ol + o Eot) et as

is not a function of the branch being extended,

CASE TT: Neither Gl(D) nor GZ(D) has leading coefficients

that satisfy (11). In this case

T P : R
2,0 = [B;®1 +5,®)e @1+ r@) + 7,0 an

where DQ F(D) is identical with the polynomial consisting of higher

Q L]

than (|~-1) degree terms of Si<D)[G1(D)] Also, there exists a poly-

nomial H(D) of degree at most X -1 such that

6,7 50y = 1408 E) (18)

where -E(@) is some polynomial of degree at most X -2 . Post-multiplying

both sides of (17) by H{D) we get

@, ® + Loy + v, 00)80) = 5, 0wk ) 5, Or0EuE) (9

LT
Since R

IDYF@EE®)]Y = 0 and [DQE(D)Si(D)] = 0

we get that

9

5,0 = (@0 + EmP 1,0 101 (20)°

Therefore,
2,0) = T,@) + [F @)1 + [sicmc;z(m82 -

X ¥

+ et + v, 0me)e,m)]

§

.
T, () + [25(D)]

W [ 7y (DIH(DIGy(D)]

ize
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Hence

9

Zo®) = BO) +[2,(D) HO) 6,(D)] (21)
where

soy=r,0+22m ¥ + (@l 1Y 1, @), o) ]SE 22)

is not a function of the branch being extended,

It is clear that for the non-systematic codes, relations (14},
(15), and (16) (CASE I) or (20, (21), and (22) (CASE II) will be the
basis for our table constructior afid for our path extension strategy.

We suggest the formation of the following tables:

I. LTABM, listing for each of the 22 different values of
B(D) the weight-ordered sequence of the 29 different outgoing branches
Zl(D) (formula (15) is used for CASE I, and (21) for CASE II).

II. Table LTABW, listing for each B(D) the weights corresponding
to the outgoing branghes of LTABM.

III. Table -LIK listing the correspondence between weights and
likelihoods,

IV. Code T listing the correspondence between - Y(D) and

)

[Y(D).Gz(n)j for CASE I and between Y(D)'a;uil[Y(D)H(D)c;z(n)]ﬁ for CASE ITI.
V. CODE 1T listing for correspondence between Y(D)} and
[Y(D)H(D)]g.for CASE II.
We will now describe the method of finding the kth most likely
outgoing branch for CASE II. The treatment of CASE T is similar.

1) Look up W, () = ([(pi(n))y +Y,0)1 K@) GZ(D)9 in CODE I

and form

BOD) = Y,() + [sz_(D)_lgﬁ- W, (D)



h

2) Find the kt entry Zl(D) in the B(D)-row of LTABM, and form

L oLy 1X
Wy (@) = Z,(®) + Y, () + TP ()]

3) Look up Si(D) = [WZ(D) H(’D)]Q in CODE II and form recursively

the parity state polynomials Pi+Q'U®’ and P§+RO)). Store the coef~
ficients pi(i+j+l) in the map.

4) Find the weight L of the kth entry in the B(D)-row of
LTARW and look-up in LIK the likelihood of the extended branch.
NOTE: Extension of paths in non-systematic codes is clearly more

cumbersome than that for systematic codes. It is therefore the latter

that should be used wherever possible.

i3h
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APPENDIX 3

DESCRIPTION OF THE RUDIMENTARY AND PULL-UF DECODING ALGORITHMS

It has been shown in Jelinek and Cocke1 that boot-strap hybrid
decoding is applicable to all channels symmetrical from the input that
have input alphabets in a finite galois field. It is easiest to describe
the‘method first as it applies to binary symmetric channels (BSC). The
generalization to symmetrical channels with binary inputs and arbitrary
output alphabets is described in section II-B-2.

As usual, we will encode blocks of I binary information symbols
into codewords of length (L'+ t)/R where R 1is the sequential coding
rate and t dis the length of the dummy information sequence (known to the
decoder) that is used to make the sequential decoding of the last informa~
tion symbols reliable, Let us encode m-1 blocks of information using
the same convolutional code. We will refer to the resulting codewords
as information streams, Let us arrange these streams underneath each
other, obtaining the solid line array of Figure 1 . Let us then generate
the mth parity check stream (interrupred lime in Figure 1) whose

ith digit will be the parity of the ith digits of the m~1 information

streams. 8Stated in another way, the parity stream is a modulo 2 position-
by-position sum of the information streams, Because of the linearity of
convolutior.’]l encoding, the parity check stream corresponds to a path in
the coding tree Whosé information digits are the mod 2 sums of the informa-
tion digits underlying the“information streams. Hence, all m of the
streams are in principle sequentially decodable. Moreover, if any subset
0of m-l of these streams is correctly decoded, the remaining mth
stream can be determined by use of the parity relationship (in fact,

Falconer's [Ref. (4), Part II1] strategy is based solely on this obser-

vation). We now descxibe the rudimentary bootstrap hybrid decoding



scheme., Suppose that the m -streams are sent through the binary
symmetric channel, and that the corresponding received digits are

again arranged by the decoder into an m by ('+ t)/R array (see the
solid lines of Figure 2). If the jth received stream is to be decoded,
the received digits of all other streams should also be taken into account,
since these contain information about the transmitted digits of the jth
stream (the transmitted digits are rqlated by the parity comstraint).
However, it is easy to show that all the pertinent information of the
ith received digits yi(l), yi(Z),...,yi(m) about the ith transmitted
digit xi(j) in the jth stream is contained in the pair yi(j),

z; = y; (L @ Yi(?-) @ ... @ yi(m). Therefore, let the decoder

generate a @n+1)th channel state stream . (see interrupted line of

Figure 2) whose il digit will be the parity of the i'" digits of

the m received streams, Before specifying exactly how the state

stream is to be used in the decoding, let us note that if it has-a 1

. th A .
in its jJ position, an odd number of received streams have an error

in the jth position, and if the state stream has a 0 in the jth

.position, an even number of received streams have an error there.
.Let qk(O) [qk(l)] denote the probability ‘that of k .digits

independently transmitted through a binmary symmetric channel, an even

[odd] number was incorrectly received. By a well known formula

(see Gallager (1963), p. 40),

k ' k
qk(o) = liil:%ﬂl__ qk(l) = l:&%:gﬂl_ (1)

where p. is the ecrossover probability of the binary symmetric channel,

th
Let z; denote the i state stream digit, and let yi(j) and

xi(j) denote the ith received and transmitted digits of the jth
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t s
skream, For the purpcse of decoding of the j R stream we can view

the transmission process as having taken place over an asugmented channel

with inputs xi(j), and outputs the pairs (yi(j),zi). This channel is

governed by the tramsmission probability matrix Wﬁ(y,z/x) that is -spec-

ified by
w:(0,0/0) = w_(1,0/1) = (1-p) q__;(0)
w (0,1/0) = w (1,1/1) = (1-p) q__, (L)
w (1,0/0) = w_(0,0/1) = pq__;(1)
w (1,1/0) = w (0,1/1) = p q__;(0) (2)

When sequentially decoding the jth stream, the receiver should "use
in the usual way (Jelinek [1968] Sec. 105) the likelihood function
v (7 () 2 /%, ()

X 4 -
R X AOEN . @

w 2 2 5 (v (3,2/0) +w_(7,2/1) = Fq () ®)

We are now ready to describe precisely the rudimentary bootstrap
hybrid decoding algorithm. Let a step in the decoding process consist
of a change of the decoder’s node-location in the coding tree. .Let M
be some convenient positive integer., Let the decoder start out by de-
coding the first stream (using the likelihood function (3) with j =1).
If it does not -complete the decoding job within M steps, it stores
the "‘parameters necessary for resumption of decoding at the node at which
it was last located, and starts decoding the second stream from its
origin). Again, if within M ;teps it does not successsfully decode
the second stream, it stores the necessary parameters and switches its

attentions to the the third stream, etc. If it turns out that the
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decoding was not completed on any of the m received streams within the '
allotted—-M steps, the decoder returns to the first stréam and resumes
its decoding from the point at which it left off (the parameters stored
previously for -this purpose will enable it to do so). Again in this
second round a maximum of M additional steps is alloted to each stream
and if this does not -suffice a next round is started beginning with the
first stream, etc, After continuing in this manner the .decoder will
finally succeed in decoding one ‘stream, say the jlth « This means
that the decoder has found a path in the coding tree corresponding to
message digits whose symbols it believes to have been those of the
jlth transmitted stream: ., The receiver will then replace the jlth
received stream in the array of Figure 2 by the estimated jlth trans~-
mitted stream and will recompute the symbols of .the channel state stream.
Assuming the decoding to be errorless, a 1 in the ith position of the
new state stream will indicate that an odd number of the m~1 undecoded
streams has an error in the ith position, and a 0 will indicate that
an even number of transmission errors occurred, To.decode - any of the
remaining m~1 vreceived -streams the decoder will take advantage of the
newly cdeuted chamnel state stream., Thus it will use the likelihood
function Rmrl based on the probabilities wm_l(y,z/x) that are defined
by (2) if m is replaced everywhere by m-1 , .Decoding will start from
the beginning of the first stream (assuming that 3 # 1 ) and continue
in a round robin fashion (with the jlth stream excluded), each stream
being allocated M steps per try, until an additional stream is decoded,
say the jzth . As before, the jzth received stream is replaced by

the estimated transmitted stream and the channel state stream is

. th
12
accordingly recomputed. The decoding of the m~2 remaining received

streams then starts from the beginning node of the first undecoded stream
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again, the likelihood ?\n-z used being based on the probabilities
wm_z(y,z/x) defined in (2). The pattern is now clear, it only remains
to note that when m~1 stréams have been decoded,- the remaining stream
is determined from the parity constraint by taking mod 2 sums of the
corresponding digits of the m-1 decoded streams.

Our method is seen to be a bootstrapping operation, with each
additional decoded stream being helpful'in the decoding of the re-
‘maining streams. Just how helpful the state :stream is can be seen from
the extreme use when all but two streams have been decoded; Then, when
z; = 0 the error probability in the ith position on either of the
streams is pz/[p2 + (1—p52], and when z, = 1l , the error probability
is 1/2 [the original crossover probability of the BSC is assumed” to
be pl .‘ We therefore place great reliance on the correctness of those
received digits corresponding to a 0 in the state stream,and no reliance
on those corresponding to a 1 . This speeds up decoding immensely.

We describe next the'gull»ug decoding algorithm as it applies to a
Fano sequential decoder, The modifications necessary for stack decoding
are easy and can be found in Jelinek and Cocke.3 The pull-up scheme will
do away with the excessively frequent (one every M steps) changes in the
identity of the stream being decoded which involve a large overhead
ceost. In fact, there is no need to discontinue work om one stream as
long as the decoder has not run into computational trouble such as

tales place when the value of the running threshold T, drops by a

0
predetermined amount U below the maximal wvalue TMAX ever achieved,
We will say that a U-drop takes place at a node of depth i whose

cumelative likelihood value is greater than or equal to TMAX +T U,

and whose immediate predecessor has likelihood value less than or equal

to TMAX - U, where 7 is the threshold increment of the Fano Algorithm,
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The following suggepted procedure will apply directly to the BSC,

but its generalization to the various categories of channels symmetrical
from the input are obvious. To dgscribe the scheme simply, we will need
to equip the channel sta£e stream with an additional component 'ki, i=1,
2,...,(I#t)/R whose purpose will be to indicate how many streams have
undecoded digits at position i . Thus at the start of the process,

ki =m for all i . The function jkk‘(ﬂ) (see (3)) will be .used

in computing the likelihood of a branci of depth -1 beleonging to the

ch stream,

(1) 7Using the likelihood <hk.(1)‘= Am(l) the receiver continues
to decode the first stream until éither a U-drop takes-place or the
decoding of the block is completed. If the latter event .happens, the
received first stream is replaced by the estimated transmitted one, the
channel state stream is recomputed, and ki is decremented by 1 for
all & .,

(2) If a U-drop takes phace at a node of depth then all

il’
branches on the path to that node up to depth il-J will be considered
definitely aécoded3 where J is a -suitably large integer. Accordingly,
the corresponding received digits will be replaced by the e;timated
transmitted ones, and thé corresponding segment of the channel state
stream will be recomputed. All the parameters necessary for eventual
resumption of the decoding from the node at which the U-drop took place
will be-saved, Also, the value of a new parameter k*¥(l) will be set
equal to tﬁe current value of ‘kil-J+r where r s a convenient

integer. Finally,. the values kj will be decremented by 1 for

i=1,2,...,i,-J, and a parameter I(l) will be -set to il-J .

1

(3) Decoding of the 'second stream will now begin based on the

functions ‘hk (), and continue until either a U-drop or stream decoding
‘ i
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completion takes place. 1Imn the second eventuglity, the wvalues kj will
be decremented by 1 for all j . In the first eventuality, k*(2) and I(2)
are set equal to ki2 and iz-J , and then all kj , Je (l,...,iz-J),
are decremented by 1, where 12 is the depth of the node at which the
U-drop occcurred. Deccding continues in the indicated manner until all
m of the streams have been worked on,

(4) If there exist integers R, > 9.2 >0 such that k; =0,
i=1,..., 92, ky =1, 1 =92+1,..., §,» then we find the unique stream
i* whose digits on levels 92-+1,..., ' remain undecoded, These digits
are then decoded from the algebraic comstraint, the parameter T(j¥*)
is set to Rl’ki ig set to 0 for i = 92+1 sasey 91 , and the
parameters necessary to start decoding of the 3J% stream at the appro-
priate node of level 91 are stored,

{5) Undecoded streams are next divided into two categories. Category

1
t=1,...,8 (note that I(jt) is the depth of the furthesf ~ node of

8 includes streams j1’j2"'°’ig (Q'g'm-l) such that k*(jt) > kI(j e
t ]

stream jt that has been definitely decoded). Category 492 includes all
the remaining undecoded streams. Decoding of the j;h stream will now
start in the forward mode by placing the decoder at the node at which

the U-drop took place and setting the threshold and cumulative likelihood
values to 0 . The established pattern repeats until all of the streams
jl’j2’°"“& of ‘81 have been worked on, except yhat ki will be de-
cremented only for wvalues 1 > I(j) when work on the jth stream is
terminated., If any éegment of any stream can be definitely decoded from
the algebraic constraint, this is done and new parameters for that stream
are determined 4s desoribed in the preceding step., The undecoded streams
are again partitioﬁed into the categories ng and &; . Note that the

ew J?l may now include some streams that belonged to the cld JP% .


http:described.in

If @1 is not empty and more than one undecoded stream remains, decoding
of the streams of &1 continues as before., If only one undecoded -stream
remains, its identity is determined from the parity information and the
taslk is comple ted,

(6) lIf ‘21 is found emply while 5?2 antains more than one stream,
only one of two actioms is possible. .Either the decoding effort is
abandoned or the size of U 1is increased and all of the undecoded
streams are put into éPl . After all the latter have been worked on,

a new 81 is again formed in the regular manner. If the new -81 is
empty, U must be increased further; if not, then work on streams of
ng resumes with U equal to its original value.

As pointed out earlier, analysis of a slight modification of this
pull-up algorithm reveals Gee the Appendix of Jelinek and CockeE} that
7]

upper and lower bounds on r\?[N can be obtained that are essentially

independent of the block length I ..

FIGURE CAPTIONS

Figure 1: The structure of the encoding block,

Figure 2: The structure of the decoding block,.
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APPENDIX 4

NEW UPPER BOUNDS ON CERTAIN COMPUTATIONAL PARAMETERS

OF BOOTSTRAP HYBRID SEQUENTIAL DECODING

L. Introduction

We will be considering binary input discrete memoryless channels

that are symmet¥ical from the input. However, the results are completely

generalizeable to all channels symmetrical from the input., We impose th=
restriction to simplify our proofs.

A binary input channel of that class  can be described as follows:
Let any input x g [0,11 produce at the output a pair of digits (y,u)
v Q{O,i} , u e {0,1,...,b-€} and let the underlying channel transmission

.
.

probability distribution have the following characteristic}

I

w(0,u/0) w(ly,u/l)

w(I,u/0)

Il

w(0,u/l) (1)

for all u ¢ {0,...,b-1} . Except for (1), the transmission function
w(y,u/x) will be considered arbitrary., Note:that for the BSC, b =1 ,
so the u-portion of the pair'may be omitted, In the sequel we will be

considering the bootstrapping hybrid coding scheme that transmits M

streams, M-1 of which are convolutionally encoded binary information
digits, and the Mth stream is a. module 2, position-by-position sum of
the first M-l streams. The convolutional code used is the same for

each stream and as a consequence the Mth stream is also a codeword

and can thus be decoded. The code will generate a tree with 2k branches
leaving each node, m digits to a branch (thus the rate R = k/m), and

it will simplify our reasoning if the code constraint length will be

infinite.
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The decoding at the receiver will be done in the way deseribed in
Section VI of reference 2, Suppose K streams are left undecoded
(K < M), and let

[zisii] = [(Yi(l),ul(l)),(yl(z) 9ui(2))3 ""(Yi(K)’ui(K))]

be the vector pair of received digit pairs of the -K undecoded streams
, th . s . th .
in the i position. Then the decoding of the J stream will be

based on likelihoods

P LGN,
2oz /8y

A; () = log R (2)
where the subscript K indicates the number of undecoded streams, and

. .
ti is the parity of the i h position digits that the decoder determined
to have been transmitted in the M-K decoded streams, Section IV of
reference 2 shows how the righthand side of (2) can be simplified and

easily computed., The probability PEZ{ g is, of course, given by

Py {0 /5 @,5] + w0,y @/ @) x

% ¢ [T oy, wman €

- ita
S o,

5=

and
PK{li’Ei/ti} 2’%[%{11’9-1/0’%1 +'P1i {}%.’Eill’tiz 1 )

We conclude this section by proving
.Lewma 1 ‘
Let a channel satisfying (1) and a convolutional code bé given, The
distribution of the number of decoding steps for any stream as well as
the probability of error are invariant with respect &o the actual informa-

tion sequences encoded,



Proof

Let be the information sequences of the first

th
M-1 streams. Then by linearity of the convoluticnal code, the M

AR DIRRREN VIS

stream corresponds to the sequence v =5 +’§2 + ... +3§M-l where

mod 2, position-by-position sum is understood. TLet the corresponding
f
codewords be denoted by A§€51)""%§£5M)’ where, of course,

By = xZE) o FEE) (5)

Suppose the received sequence pairs are (y S0 ) s eees (T ) = (F,0) .
th
Consider the J stream (J ¢ {l,..,,Mg) and let x(s,J) be its
"
codeword corresponding to some arbitrary information sequéence 5.

Then the 1likelihood associated with this codeword depends on the

probabilities

nlre 9.9 (6)
and

By 22 /2 @

where O depnotes an all zero sequence,
L")
Now because of (1), the probability of receiving (y,u) when
e P

x(8.)y...,%(8.) was transmitted is the sameé as the probability of
receiving Szl +«§€§1)’E&)""’9¥M +r§£§M)*HM) when
x(0),...,x(0) =0,...,0 was transmitted, Furthermore, it follows
I~ ~ P o~ ~

from (3) that for any s and J ,

P; iglsh) 3000y ng:M) /’}E_(E;Qs O-} =

I . :
By 00+ 5@ e Oy TR m m( D + 6,0

=By § Oy FrG . REICORBEICEMD N S

17



where the last equality is a consequence of the linear character of

convolutional codes., It follows directly from (8) and (4) that also
Py 5’,%/9} = By (O RGOy a0 ) /,Oul 9

Since both whether or not am error was committed and the number of
decoding operations depend on the likelihoods associated with the
various paths in the tree and on their relation to each other, we see
from (8) and (9) that these parameters will have the same value when
Sis+e1s8y are transmitted and Eyl’kl)”'°’(ZMﬁEM) are received

~ o~

(event A) as when B, . 19 are transmitted and (Zl’_ixgil)’lil)s oy
(yMix(sM),uM) are received (event B). The conclusion of the.Lemma

~ A

then follows from the observation that both events A and B have equal

probabilities for any REERERTICNE and any (yl’ﬁl>""’ggM’EM) .

QED

Corollary

When evaluating the probabality of error or the distribution of
the number oi decoding steps in the bootstrapping hybrid decoding
scheme used with a binary input symmetrical channel, it may always be

assumed that all-zero information sequences have been sent.

2, Some Preliminaryv-Results

Let M streams be received and let N?(i e {l,...,bﬂ)be the
number of decoding -steps in the first incorrect subset of the ith
stream when the stack sequential decoding algorithm is used. In
this section we -will derive an upper bound on

. M .
E{ min Ni] (10)
l<izM

We will follow a modification of an approach developed by Zigangirov,

18
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Consider the operation of the stack algorithm in the incorrect
sﬁbset that starts with a particular branch emanating from some node
whose path likelihood wvalue is 2 , Let the stack algorithm continue
itsoperation until for the first time the likelihood value on the top
of the stack falls below &8(5 < z). Let ngz) denote the nuinber of
operations until the stopping rule is invoked, and let (the expectation
is over the ensemble of convolutional codes and over the transmission
process)

Ny(z) = Elng(z)] (1)

k =S
s U

Let 2 be the number of branches leaving each node, and let ¥y ?

]
be the sequences of length m of y,u,x corresponding to a branch.
Define the branch likelihood function
J> > >
P (y,u/%x,0)
- M =
‘AJ(X;?E,?:') = 1log — aas mR (12)
/0
PM(ZsE/ )
Then, since in the code ensemble the branches in the incorrect subset
are selected independently from the all-zeroc transmitted branches (see

Lemma 1), Na(z) satisfies the difference equation

M
N () = 2° N2+ A @R 2“‘“[ v, /0 +1
Y,4,% i=1
z > & (13)
Na(z) =0 z < &
Lemma 2
For § <0,
Né(z) < ._.k_]-._ [29(2'6"0:') - 1] (14)

27-1



where

o = min A& T X (15)

2 D >
¥, U, X

and p ¢(0,1) satisfies

L/p

p
P (7, u/x,0) L [1-(L-p)R]
E ' i w(y(i),u(i)0) ;E:: BN < 2 (16)

Proof
TR - ,
By the well-known maximum principle , N%(z) will be an upper bound
on Nﬁ(z), provided that

N¥(z) > O for z g (&ta,8) (A7)

and that the lefthand side of (13) is not smaller than the righthand

side for z > § when Ngz) is substituted for Na(z). Substituting

N-,g(z) = ._._..]:._ [zp (Z-S—Q) - 1] (18)

ok_g

into the righthand. -side of (13), we get

M
A >
L2 L pp(a-b-a)ylem § 27 & Rl B ETIORAGIS

k
2%-1  2%1 =1
Y. 5, ®
RS T 2y &, %, /5%, 0)
= | 2T ) 2R E ]w(ym,u(l)/m
z -1 > D P (i! _13'./& J
»y 4y X

-1 , (19)

150
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Since N*{z) does satisfy (17), then the bound (14) will be wvalid
8

provided the braced expression in (19) is smaller than or equal to 1.
Using HBlder's inequality and the relation (16) (we are making use of

the independence of digits along branches),

- N E g | ¢
l lw(y(i)ﬁ”(i)/m S Sa <
i=1 > P (y_,u/ )
7, =
[ i? !
M 1 > 3P P
REYRD | | )
| l v (@), T /0) E A < ml1-(-p)R]
i=1 = PM(z- 2/6)
u %
T —
zm-k:h'rlp R (20)

Therefore, the righthand side of (19) is less than or equal to W*(z)
&

and the Theorem is proven. QED

th

.- be the likelihood walues on the i

Next, let M

STLTYRY
(i > 0) nodes of the trxrue paths of the M received streams (by Lemma 1
these are the all-zero paths). Tet v < 0 be arbitrary and define the
indicator function Q6v(zl,z2,...,z ) to be equal to 1 if the likelihood
on all of M of the true paths leaving the ith node falls below the

value v, Otherwise let ¢%(Zl"'°’ M) be equal to 0 , Furthermore,

define

8, (210205 e e0rZy) = EfD, (212950002 (21)

Since the all-zero information path corresponds to the all-zero transmitted

sequence, @v satisfies the following recurrence:

NCHPPNER IS E B (2, + N GED, . n NG L0 o

>
y.u



o wFW), W0 ... wFon,Fow /0 G

if z, >y for some i ,

§8z1,...,zm) =1 if z. <v for all i
Lemma 3

g (z e .-I-ZM-MIV)

év(zl""’zM) < if m?x (zi,...,zM) > v (23)
where v <0, g >0 satisfies
"1
: P

M P\ (¥,1/0,0) - ;LHTp MR
E | [W(y(l),u(l)lo) ECATDN < 2 (24)

i=1
.2

and p e (0,1) is the parameter defined in -(16).

Proof
T . —
By the maximum principle , @v(zl,...,z ) will be an upper bound

on @v(zl,u..,z } , provided that
@v(gl,...,zM) > 1 if 2, <V for all® i (25)

and that the lefthand side of (22) is not smaller than the righthand
%
side when év is substituted for @v. The function

-p(zi+...+zM-Mv)

*
3 (B1se0er?y) = 2 (26)

surely satisfies (25). Substituting it for @v into the righthand

side of (22) we-get
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M i
-0z, F. . .4z, M) X (¥,4,0)
o 1 M E | | 2 W @, W =

>3 1=]
Ysu

M
~u(z,+.. .42, ~My
- w(zg M )Jl%ummR ;
ye

Thus 53 will be an upper bound on @v provided the wvalue of the braced

w (), 0 /0, 0)

(27)

expression in (27) does not exceed 1 . However for p ¢ (0,1) that

value is by Holder's inequality dominated by

1.,
(XJU/O e l-p .
ZE-’IM’LTIR % -”[P (X,JO)] W’(Y(l) u(l)/o 0) <

ZpMmR z-uMmR - 1

where the inequality is due to (24) and the fact that digits along

branches are independent, QED

Finally,let us define the function
P, 5 1o e Be® = EQ (3,2 0, (2)] (28)

where it I's understoed that
a) na(z) refers to the incorrect subset of some arbitrary but
fixed stream J ¢ {},2,...,N{}
b) the likelihoods ZyseeesZysZ  OCCUr on the same ith depth

level in all streams.

(Z.34005%,,2) may thus bhe interpreted as the expected number (over
v,g o 1 M 7
?
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the set of events for.which va(z z ) = 1 ) of decoding steps in

TERERTLY
the Jth incorrect -subset stemming from some branch that “leaves -2 node
on depth i whose likelihood value is =z , if decoding terminates when
the likelihood value of the top of the-stack falls below § "qihé then

-gatisfies the recurrence

.@;;6(21’.'.’214’2)

E[J' i K@),z + XN GED, 2+ AT TR
i%”

M
T EDIDBH| + oz, eenizy (29

.2“
i=1

if z.> 8§ and max (zl,...,zM) > v where

i
EP;’S(zl,a--,zM;Z) = Né(z) if mix (25 esZy) <V
QE;’S(ZI,...?ZM,Z) = 0 if z2<8 (30)
Lemma 4
!15,6(21’.’.’ZM’Z) S,;E%I [z“u(zl+.°.+ZM“Mv)+p(Z-6-a)_§v(;1’.."Z )

(31)
where p satisfies (16), - satisfies (24), and @ is defined in (15).
-Proof
Let g? (zl,., . M,z) be the righthand-side of (31). .Then by

(23) and (14),



3

EP\),S(ZI"“’Z‘M’Z) > NSCZ) if .mix (zl,...,z) < v

Furthermore, if 2z > §+ o then since p e (0,1), we get

e

- +. .otz ~My)
1 ) M _
Ty, 5oy 2 1 (2 - 2,(2), 000202 0

where the last inequality follows from Lemma 3. Thus by the maximum

pr:‘mc:i.p1194'(‘_7;?‘:,{5 will be an upper bound on ‘9};;,5 , provided the

righthand side of (29) exceeds the lefthand side when:‘t_b-i’& is sub-

stituted for I_p\; 5 into it., The righthand side of (29) is then equal to

»
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(B yF o ot MY (2 B-60) cf'u %) > >
L MR ) gl l ‘ oA G T D) <y<l),u(l>/3’0>
251 ‘f?? Lot
Zk

_‘2—1 @(Z . ,Z)"E‘@\}(Zl,---,Z?

Thus all we need to show is that the expression in braces does not exceed 1 . In

fact, it is equal to

\

i Pi(:??/ﬁbz ]
pl-m-puRHMIR _T_/E W (F1),32) 78,3
P (T, 0
?:E*ix
p
p

k-m~p R, MmR, T3 Pri (z 3/2,3)

< Ww(y(z) 2(1)/6,0 TN

»f,-b i=1 ~ EM&’E/)

1_
pl 2 &2/0,0) P
w@G) 2wy /6,0)
P (z,ulo)

glt-m-pmREMiR  om(l-(1-g)R) -pMmR _ (32)

96T
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The inequality in (32) follows from Holder's inequality, the
from the fact that k = mR, and the next-to-last equality from the fact
that ¢y and p satisfy relations (16) and (24) (by definition of the
probability measure Pi,
side of (32) is independent of J). QED

the first braced expression om the lefthand

3. An_Upper Bound on the Expécted Minimum Number of Decoding Steps

in the First Incorrect Subset

We will now use the conclusion of Lemma 4 to obtain an upper bound

on the quantity E[:mkn Nf] described at the beginning of Section 2.
1<i

Note first that the upper bound (31) is independent of the index J
of the stream whose incorrect subset is being decoded (see (28) and
following). ILet § be the maximum of the likelihood minima pertaining
to the correct paths of the M different streams, Lf this maximum
is attained on the Jth stream, then the number of steps in the first

incorrect subset of the Jth stream will be exactly na(O). Since

the first node of each stream has likelihood 0 , it follows that

1<i<M

s}
e W] < 2Fa A/[EEIP\:,& (0,...,0,05’\ dg  (33)
v, v=§

- k .
where the coefficient 2'-1 is necessary because there are that many

incorrect branches leaving the first node. Now using (31),

2 1 My - p(5te)
5o P0,...,0,0) < ho M2

since @v is an increasing function of vy. Hence

-oov
E [ min N?] < I:%—7—~y if M > p (34)
L<ig P



Now in (24) we have a relationship of the form

L . MR
[% X@] Y < 2 1-p

Since the lefthand side is a monotone increasing function of  , the
inequality is easier to -satisfy if |, is as-small as possible. But

(34) says that u>p/M . So.in order to find the rate R below which

the -lefithand side -of (34) is finite, we will set p = p/M . Inequality .

(24). then becomes equivalent to

1o
— - g
e Teweo] W) 0
7 (p) = ORISIDN S woxvon <
] - i
z.s.l_l. * (35)
and (16) can be rewritten as b
. 1\ 1-
G (o) = Zﬂ-wcycl) u(i)/0) = (L o) 3 <2
L5 * (36)

and it -is.understood that p-¢ (0,1). It can be shown that the -lefthand
side of (35), FM(p), is monotonically increasing with .p ¢ (0,1) ,-and
the lefthand side of (36), GM(p) is monotonically decreasing. There-
fore, if FM(O) g.GM(O) and FM(I) > GM(l), then there is a unique

M € (0,1) such that FM(pM) = GM(pM) and for all

R < ~log Fy(p) = - log Gylp,) 37

the expected minimal amount of computation in the first incorrect subset
is bounded by a constant. Since it can be -showm that FM(O) < QM(O)

and FM(l) E;GM(I) is true always, then we have
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Theorem 1

Let ¢ (0,1) be the unique value for which FM(pM) = GM(p

p M M) .

Then E [ min ﬁ?] is upper bounded by a constant for all rates
1<igM

R < -log F,(p) -

NM is the number of decoding steps in the first incorrect subset of the

th

i stream when M streams have been transmitted.

Let us néxt define Ni(K) to be tﬁe number qf decoding steps in the
first incorrect subset of the ith among the X streams that have been
left undecoded (i.e. M > K streams were received, M-K were decoded
by the hybrid method, and K streams--probably the most difficult ones—-
are still to be decoded). We suggest that a very good measure of com-

putational complexity is the parameter

E [ max  min ] N, < E[ min N, (K)] (38)
ZRKM 1<K 1<K
k=2
which may be interpreted as the expected maximum number of decoding steps
that -need be done in the course of .decoding of the entire hybrid block in
any first incorrect subset.
let il,-iz,...,.ik (ij e (1,2,...,M)) be the indexes of those ‘K

streams that remain undecoded, Now by definition,

[e+]

E [lgli%K.Ni(K):]. = E P NIE >,Q,N1§2>ﬁ,---, le >,Q} (39)

1 K
£ =0

But P'{%E >;Q,...,N§ >1€} is less than or equal to the probability

1 . K
that there is a subset of K streams from among the M which when

considered together are such that the first incorrect subset of each
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stream requires more than,ﬂ steps for its decoding., Hence by the union

bound,

M
(o >R b () PE\#; A >2}

Therefore by (38),

M =]
1 _M ]
E[max min Ni(K)] 5> > P{Nl.f | ,...,N§ >Q} -
2<RM  L<iK - AK '
K=2 =0
M .
- B[ min o] (40)
x) hax
K=2

From (39) and Theorem 1 we can then come to the following conclusion.

Theorem 2

Let py € (0,1), K = 2,3,...,M be the unique values for which

FK(pK) = GK(pK) . Then E[max min Ni(K)] is upper bounded by
2RM  1<i<K
a constant for all rates

R < min o [-log Fylp)] (41)
KM
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APPENDIX 5

ESTIMATION OF ENa AND EN,

Lemma 1: Eguation

2 ¥
21-R - es(D -1) 4 esD )

has a (possibly - complex) solution s for all D¥* g (0,®)

Proof
Suppose first D* = P/q , p,q .integers. Then (1) becomnes
- p/gq
ol R o . + ef )

Making the variable change (e_s)l/q = 2z and multiplying by 23 , (2)

becomes

79 IR _ P P (3)

Now (3), is a polynomial in =z , and as such, has at Teast one root by the

theorems of algebra, If Z is one of these roots, then clearly

f = (zo)q is a root of (1), Observing that rational numbers are
everywhere dense on the real line, the Lemma follows. QED

Theorem 2

Under the hypotheses .0of Theorem 1 lb-al < 7fw implies

EN_ = /(°°S @ =28 “’b) (5a)
a sin pa sin uﬂ sin wb
cos pa ‘cos fine]
ENb —  -sin u)b/ (Sln wa sin wb) (5b)

where r and ¢ are solutions of

Z
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- ko D*
21 L T 1 cos w(D%=1) + r cos yD¥

- *
0 = =" sin p@*-1) + 1D sin wD* )

which exist for all D¥ ¢ ( (R) ,1/2) .

Proof:

For paths :of 1ength.£ > 1, let the jth path cumulative metric
be denoted "Ea . Denote the metric of the jth single branch uj
Observe the b  r+all tkree branches are I,1I.,D .

For some complex s , define
d

T () = ) e’ (6)

and define
{
su. Sp“+1
Tp(e) = E o ij = e J 7)

where the E i.is meant to run over all paths frozen and unfrozen at

level ﬁ .

:Ej is defined in -one of two ways:
1) If node .j at level 2 is frozen,-we arbitrarily define there

to be one extension to level Q41 with zero additional metric. Thus

£, = 1+ e = 1 | (8)

2) If node j at level ,Q is not frozen, we define fj to reflect

d extensions with each branch having an I.I.D. N So
d !

Su,_ "
£, 4 E e - -(9)

i=

168
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Suppose -8 can be.chosen such that ETo(s) = 1 it will be seen that in
our case s Wwill exist and 'will be complex). By the.I.I.D, property om

the branch incremental metrics By s
S
ETO(S) = dE[e = 1 (10)

It follows immediately that for all nodes frozen or not,

EE, ="-1 11
3 (L

1

We now show ETR(S) ET£~1(S)’ thus proving by induction that

Lim  ETp(s) = 1 . (12)

9>
: Sy ..
E E e £ | i fixed
“(over j) J
hj
2
St
R E egj E £
|
j

Write E?R(s)

by (11)

It
[ex}
0w

&5

E Tﬂal(s)

We can now. rewrite.(l2), breaking up the sum into sums of paths
frozen at a , paths frozen at b , and paths remaining active over

an infinite length:

Al B A e

frozen frozen eoiy
at a at b active
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Theorem 1 implies that the third term in (13) is zero so long as

Ib-al < mfw . The first two terms are approximately
s sb .
- B 2 and E e respectively
3 ' 3

In actuality, frozen paths do not have precisely metrics a or Db ,
gsince paths may 'overshoot! the barriexsbelow freezing. The ambiguity
in (14) may be resolved but only with tedious calculations, ‘which will
not appear here,

Thus (13) may be rewritten

1= EN._{ 2% 4 ENb eSb (1)

If the value of s which satisfies (10) is expressed as

& = r[cosw + i sin w] (15)

we can write (12) in real and imaginary parts,

1 = ENa 2 coswa + ENb rb cos @b

0 & BN, r? sin ga + ENbrb sin wb (16)

(16) are simultaneous equations in two unknowns ENa and --ENb . -When
solved, (16) yields the claimed result,

It remains to show that s exists satisfying (10), Now,

n
i )] = 2™a Z )es(“D*'k) =1 an
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when the -source-and distortion measure -are used to evaluate the .expec-

tation. . (17) in turn reduces to

- - *
gl-R _ s(@*-1) , sD o

whose solution exists by Lemma 1. QED



166

APPENDIX 6

PROOFS AND ALGORITHMS ¥OR PERMUTATION CODING

A, Proof of Optimality of Encoding .Procedure

Theorem: ILet f(|a|) be any nonnegative, monotone nondecreasing, cohvex

upward function of |eg|. Let the distance between the vector }L(N)=(X:1,X‘2, ,Xg
and Y( )—(Y 2, ...,YN) be measured by
N
N N
a@®™,x™)y - E £(x,-v, 1) (a-1)
i=1
Let V(N) = {V,,V V._} be any vector for which V. > V_ > > V
< 12 ¥9? VN 12 Vg 2 e 2 N

¥ o)

and let B be a bleck .code whose codewords are all distinct per~
mutati;ms of ZN . Then if Xi denotes the kth largest component of
“k
(N), the }E_(N) ¢ B that minimizes d(}_(_(N),_'S_{_(N)) has Yi =V, for
k

[>4

k=1,2,...,N,

Proof: From the additive nature of Equation (4-1), it suffices to 'show

that 1F X 2%, > ... 2%, then Y= @,v,00,90 =1 g

1 . [
) a@® 3O,

¢ B that minimizes « Furthermore, once this

the ¥
has been established for N =2 , it is easily established for N » 2

by induction.

When N = 2 , there are six cases to consider: namely

Case 1 X) 2V 2Vy 2%y Case 4 V2 X 2%, 2V,
Case 2 x12v12x22v2 Case 5 V2R 2V, 2%,
Case 3 Xy 2 Xg2: Yy 2 Vg Case 6 V)2V 2% 2 Xy

In each case-we must establish that

£ =, -vi|) + £ 2y-vol) < < £z v+ xgmvy|) (A-2)
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Since f£(+) 4is a function of the absolute value of its argument, Cases
4,5, and 6 will follow immediately from the establishment of Equation
(A-2) for Case (1), (2), and (3).

Case 1: We have V

e 1Ky 2 VKo >0 and . X =V, > X~V >0 .

= 1'2="1"1=

Hence, (A-2) follows from the monotonicity of £( ) .

Before treating Cases (2), and (3), we note that if we can establish’
Equation (A-2) for %'(lx-v|) = £()x-v}) - £(0) then it will clearly
hold for £(*) as well, Hence we lose no generality be assuming
£(0) =0 .

Lemma For a >0, b>0, £(&) + £(b) < £(ath)

Proof See Figure A~1l. A straight line is drawn through the points
(a,£(a)and (b,£(k)) . Since _f('; is convex upward and £(0) = 0,
the line intersects the abscissa at a nonnegative wvalue, Trianglles
T, and T2 are similar. The base of T, 4is larger than the base of

1 2

Tl so the altitude of T2 is larger than £(a), the-altitude of T

Thus the straight line intersects the point (a+b,h) where

l-

£(a) + £(b) < h < £(ath) . QED
Case 2: We have
ECx vy |) + £00%,vol) < B mx\) + E(|xy=vol)
< Ellxvy) < £(he,vl) + £(lxy-v

where the first inequality follows from g <V and monotonicity,the
second from the lemma and the third from nognegativity.

Case 3: We have

f(lxz-vzl) Smin{f(lxl-vll),f(lxz-vzl)} < max{f(]xl-v:l‘),f”';sz_vzn}

< f(‘ X]_”V2| )



Let £(lal) = £(|o+ x5" 1[) - f(lx2~v1|) . Applying the lemma to
~
¥() yields

f('xl-vl|) + f(lxz-vzl) = f(lxl—le) + f(lvl-vzl) + 2f0x2-v1\)

< f(lx Xy v, vz[) . Zf(|X2"V1|)

£4 xl-vzl) + f(lxz-_-vll) QED

B. Best Choice of Moy for Mean-Square Error Criterion

let X(l) denote the ith largest of ¥ random variables, each

2 i)
with mean zero and variance o . Let \X \( ) denote the ith largest

of the absolute value of these random variables, Then the mean-squared
error for Variant I and Variant IT codes are:

5

1 ) X n1+coe'|‘n,

. 1
. ) E ; (1) - i
Variant T b = E ay (X B ) (B~1)

j=1 1=n1+...nj_I+l

n+...+n

Variant TI D = Z Z dx| -.y,.j)2 | (B-2)

j=l i=n 4- d11 +1

i=1 )

these equations can be rewritten as

v

Noting that

K L. Fo .., K
. 1 3

Variant I D = 02-2 E pj E X(i) = nj p% .(B-3)

= i=n +...4n, Fl j=
J 1 _']'1 J

[
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n,+...Hn,

K 1 i X
Variant II D = 52» 2 E ”j E ‘Xl(l) -+ E nj_p? (B-4)
j=1 l=nl+"“+nj~1+l j=1

Differentiating Equations (A-3) and (A-4) with vespect to uj , setting
the result equal to zero and solving for uj results in the expressions

given in Equations (11) and (12).

C. Monotonicity of n, for Minimum Distortion

Let o, be the appropriate ith coder statistic for Variant I or

Variant II codes. That is,

E {:X(i):} Variant I

5. ﬂxl (i)} Vatiant II (c-1)

Then from Equations (11) and (12), the optimum values of the uj whi.ch

minimize the mean-square exror are

nl+n2+.,..+nj

_ 1 E : s = -
p,j = nj @ i=12,...,K {C-2)

i=mi+,..+nj_l+1

and the resulting mean-square error distortion (from Equation (13)) is

2 1 2
D = - = n, . c-3
° Nz it ©-3)

Choose an 2 such that oy >0, 1= l,2,...,nl+n2+..nhy , and let

a = mgy >y o= (c-4)

It will now be shown that if all the other n, (i +# R -1 or f ) remain

fixed, the distortion given by (C-3) can be made smaller by reversing the
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roles of nﬂ-l and ng . That is, define a new set of groupings n,

given "as
n; = 7w, i # 0-1 or}
1
nR = nR“'l
T
= N -5
nﬂ-l nﬂ (C-5)
Then
K K
P2 15 :. 1,2 2 _1_5 : 2
D =0 -y nj(uj) < o N nyopy = D (C-6)
j=1 j=1
Proof

Iet L =n.+m.+...+F Then D-D' can be written as

12 Rony

2
1 2 1
D o= = L
D-D 7 lopggteestay, ) g ot b g )
I N ST SRV I o) (c-7)
b WLl T Y a OLib+l T T+a+b
After some manipulation, this can be written as
1
D! = = -
DD =% [("’L+"""ﬁ+a) (°’L+b+1+”‘+°‘L+a+b)] X
b~ - -
‘:( a) (ozL+1+...+oaL+a)+(b a) (°’L+b+1+"'+°’L+g+b) a(aL+a+1+"'+°’L+E|
(C-8)
Now
(o teeitor ) 2 (et @) (€-9)

so the first bracket is nomnegative, The following inequalities establish

that ‘the second bracket is nonnegative:

(b-a)(aL+1+---+aL+a) > (b-a)a o, (C-10)
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(-a) (o g Feertopayy) 2 Grada o (€-11)
a(ai&a+l+... L+b) < (b-a)a O ai1 (C-12)

The second bracket in Equation (C-8) is then bounded from below by

[ ] > (b-a)a EL+a O T a’L+.sz+1___l z 0 (C-13)

Thus D -D' > 0, as was to be proved,

D. Algorithm that Determines Almost Optimal Grouping‘fnllgz,...,nh}
L -y .o

for Permutation Codes

1. Choose N and R.

2. Initially set X as the smallest even.integer such that 1ogzK >R

3. Initially set the groupings to be approximately equal. (If X
divides N set n, = N/K for all 1i.)

4, Compute ,ul,uz,...,uK

5. Bet =1 . BSolve Equation (20) for Py - Adjust .8 until Equa-
tion (18)is satisfied for the desired rate.

6. Compute n, as the clogesgt integers to, piN such that Ei% ni=N

7. Test if any n, = 0 . If yes, proceed to step 11, 1If not, proceed
to step 8.

8. Test if new set of n, agree with old set of n, . 1f ves, proceed
to step 9, If no, go back to step &.

9. Store nl,nz,...,nK, and the exact values of R and D corresponding
to this partitioning.

10, Let X=—> K+ 2 and start with new grouping closely approximating
grouping stored in step 9., (For Variant I codes, let n1,=nK=1
and DgsTgseeeshy g be the same as the grouping stored in 9 except

that the largest n, has been reduced by 2.,) Return to step 4,
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1l. Print nl,nz,...,nk; R and D stored in step 9, If K is odd.go to

step 14,
12, Set K as smallest odd integer such that 1og2-K >R
13, Return to step 3.

14, Stop.

E. Binary Coding of Permutations Encoding Algorithms

1
nl. 112. eos HK:.

1, @ < ~
L1
Py
I(i) <= n; i =1,2,...,K
I(0)< 0O
<o
2, f <+
jR"’l
3. qg€&—g+?P E I(i)
' i=0

4, If ﬂ = N-1, go to (8) . Otherwise continue

I(3p)
N-R

5, p <=Pp

6. I(} <— I(jg) -1

7. Go to 2
8. Q<o
9. Q&g+

-0 g

10, If mp<« 2 , 524-'0 , otherwise (sR-e-O and r—1 - 2 )

11, 1If R< Q go to (8). Otherwise stop.



"Decoding Algorithm

10.
11.
12,
13,

14,
15.
16.

17.

Q .
P<—N Z 512-‘]'

I(:i.)=r1i i=12,...,K
<=0

g+

R <=0

i€—0

1€ i+l

R=<$—TR + TI(i)

If R & P, go to (&), otherwise continue..

et

if £< N=-1 continue, otherwise go to (12),.

P (PR + T(ig)) (-0 /1C3p)

I(jg)‘é""I(jf)'l

Go to (2)

1(jg)<—1(ip-1

i%=—=0 '

i <%——i +1

If I{i) =0, go to (14),-otherwise continue
jN-et-—i'

Stop.
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