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ABSTRACT

A simple method of obtaining rational forms as approximations
to functions which may be expressed as power series is developed. The
method is near-optimal under the Tchebycheff norm. While most approaches
are iterative in nature, the method presented here is free of this
characteristic.

The technique is developed as a combination of Padé rational
approximation and Lanczos' Tau method, which uses Tchebycheff_polynomia]
properties for improving accuracy. In addition to some simpie non-
linear functions, some examples from the field of astrodynamics are

used to iTlustrate the method.

iv



ACKNOWLEDGMENTS

I extend my thanks to Dr. Ray Nachlinger for serving as chairman
of my thesis committee and to commi ttee members, Dr. Bart Childs, Dr.
George Born, and Dr. Pat Hedgecoxe.

In particular I thank my wife, Jean, for her encouragément and

for typing this thesis.



ACKNOWLEDGMENTS

LIST OF

Chapter

TABLE OF CONTENTS

FIGURES v v v v ot e v e e e e e e e e e e e e e e ‘

INTRODUCTION . . . . v v v v v v v v v i v v e e o

1.1 Rational Forms as Approximating-

Functions . . . ¢ & v v v v d 0t e e e e
1.2 Background Study of Rational Approximation . . . .

1.3 Scope of the Investigation . . . . . . .. SR

APPROXIMATION CHARACTERISTICS . . . . . . . . ..

2.1 Existence of Best Rational Approximations

2.2 Characterization of Best Rational

Approximations . . . . . . . . . . .. . .

PADE APPROXIMATION . o v v v e v v e e e e e v o
3.1 Development of the Padé Method . . . . . . . .-.
3.2 Example - Tan™ {%) . . . . . . .« .« .+ 4o ..

3.3 Error Expression . . . . . ¢« . . v v v 0 v e .

THE TAU METHOD . . . . v« v v v v v v e e e e e e s
4.1 Tchebycheff Polynomials . . . . . . . ..« ..
4.2 The Tau Method . . . . . . . . . . . . o+ o ..

vi

-----------------------

12
16

18
18
19



5'

TAU AND PADE METHODS COMBINED . + + v v v v v v v v« &
5.1 Development of the Tau-Padé Equations . . . . ..
5.2 Examples . . . . . . 0 . 0 e e e e e e e e .
5.3 Error Expression ., . . . . . . .. e e e e e e e

5.4 Applications to Kepler's Equation . . . . . . ..

EXPLICIT FORMS AND GENERALIZATIONS . . . . . . . . .. .

6.1 Explicit Expressions . . . . . . ¢« ¢« v o v o o« o

6.2 Generalization . . . . + v ¢« v v v v ¢ o o o 4 o s

7o SUMMARY © & v vt vt i e e e e e e e e e L

BIBLIOGRAPHY . . . . . . v v v v v v v v v v v e e

APPENDIX

---------------------------

vii

24
24
29

37

40

55
55
58-

62
65

67



Figure
2.1
3.1
4.1

5.1

5.2
5.3
5.4

5.5a
5.5b

5.6a
5.6b

5.7

5.8

5.9a
5.9b

LIST OF FIGURES

Condition of 0pt1ma1ity ....... e e e e e e e

Error Curves. for tan (x) (Padé Method) . . . . ..

Error Curves for e

Equations . . .

X (Tau Method) . . . . . e e e

Matrix Form of Tau-Paddé Coefficient

Error Curves for eX . . . . . . . . ... e e e e

Error Curves for an{l+x) . . . . &« + v v v v v v +

Error Curves for tan *(x) . . . .. . e e e e e

Error for Sin x .

Error for Sinh x

Error Curves fog E

Erro? Curves for H

------------------

------------------

-----------------

.................

Error for Quadratic Approximation to

Sin and Cos . .

Eccentric Anomaly Evror . . . . . . . . « ¢« « « 4 .

Error Curves for C

Error Curves for S

-----------------

15

22

27
32 -
%
38

43
43

44
44

47
43

53
54



CHAPTER 1
INTRODUCTZON

The concept of rational approximation is introduced and set in
perspective with the more familiar polynomial approximation. The
historical development is traced briefly and the scope of the investi-

gation is set forth.

1.1 Rational Forms as Approximating Functions

A common method of approximating transcendental and other non-
Tinear functions is through the use of polynomial approximation. It is
an attractive approach chiefly because of its simplicity, but gener511y
requires polynomials of high degree for high accuracy. In recent years
ratio;al functions as approximating forms have come under investigation.
Rational functions have been found to offer considerable flexibility and
accuracy in the approximation of certain functions. The rational form

dp F QaX F eoo +&m Xm

R (x) = ‘ (1.1)
mn bo + biX + «er + b "

is roughly equivalent in its "curve-fitting" ability to a polynomial of
degree mtn. In some instances, however, such rational forms are far
superior to polynomials.

Heuristically, the consideration of rational functions as approxi-
mating forms is motivated by a comparison with polynomial approximat%on.
Consider the approximation of a function, f, of a single independent

variable, x, by a polynomial:



n

flx) =~ cg + i + 00 + ¢, X (1.2)

The parameters to be determined, the ¢, » enter the problem in a linear
fashion. For a rational form, however, the parameters, enter in a non-

Tinear manner since

dg *T AyX F oeee + am Xm

{x) = (1.3)
"mn bo + bix + ese + b X!
can be written as
Rmn(x) =Ty F Xt oces b p XM (1.4)
where
a
. k
. (1.5)

bc + b1X + o090 + bn Xn

Unlike the Cys the r, are not constant but vary with x. Hence one would
expect greater flexibility in approximating with a rational form than
with a polynomial. In fact, a polynomial is but a special case of a

vational form, for if
bg+b1x+~=w+bnx“=1 :

then P T3 and one obtains the form of (1.4).

Algorithms for.qefermining "best" rational approximations (optimum
in some sense} have been found by various investigators (5), (6}, (13).
However, for optimality under the Tchebycheéf norm these aré, at best,
involved and are usually iterative in nature. This investigation is
concerned with the problem of approximating certain non-linear functions
in a manner which allows greater facility in their handling. In particular,
interest js in obtaining rational forms which approach optima1ity under

the Tchebycheff norm in their approximation of such functions.



1.2 Background Study of Rational Approximation

One of the earliest successful attempts to obtain a method of
analytically developing rational approximations was due to H. Padé in
1892, It is a simple but effective mgthod based upon a series expansion
" of the function approximated. 1t suffers from the disadvantage of the
Taylor expansion in that for a finite orderéd approxiéation, the error
increases as one progresses further from the origin. In spite of this,
the Padé method forms the basis of the method developed in this
investigation.

Apparently it was not until the Tate 1950's and early 1960's that
rational approximation was extensively investigated. Shanks (17) in
1954 investigated several useful classes of non-linear transformations
which yield rational forms from both converging and diverging-sequences.
Shanks' efforts also proved that Padé approximation is but a-special
case of his transformations.

Wynn (21) examined the rational approximation of functions defined

" also

by a power series and developed the so-called "epsilon algorithm,
a special case of Shanks' non-1inear transformations.

Cheney (4) and Boehm (3) among others have developed considerabie
formal theory, having investigated existence, characterization, and
convergence properties of rational Tchebycheff approximations {i.e.,
rational approximations which are optimal under the Tchebycheff norm).
Both Cheney and Maehly (13) have developed a number of iterative algo-
rithms for obtaining rational approximations which are optimal in the
Tchebycheff sense. The work of these investigators is generally repre-

sentative of the current level of development of optimal rational

approximation.



1.3 Scope of the Investigation

For this investigation a restriction is introduced regarding the
nature of the function to be approximated. Each function, f, must be
expandable in a Taylor series,

o0 k [ ]
) = 2 [d—-’,gl] o ¢ Xk (1.6)
x=0

k=0 Ldx k=0

“The reason for this restriction rests with the Padé method which forms
the basis for the development.

An important distinction should be made. The concern here is
with obtaining rational forms as approximations to functions expressed
as power series. The investigation is not concerned with approximating
a function knowing only a sgt of its values.

Within the restrictions set forth above, the purpose of the
investigation may be summarized. The purpose is to develop a relatively
simple method for obtaining rational forms as approximations to functions
admitting a power series representation, and which are near-optimal in
the Tchebycheff sense in their approximations of such functions. The
motivating question is, "To what extent can such functions be accurately

approximated by rational forms?"



CHAPTER 2
APPROXIMATION CHARACTERISTICS

This chapter sets forth some of the basic formal theory associated

with the development of best rational approximations and is based on

Cheney (4).

i
2.1 Existence of Best Rational Approximations

A family of rational functions, an, is first defined.

r b = {Rmn = %: 3 £m, 3Q £ n, Q(x) > 0 on [5,b]} (2.1)

Pmn is the class of rational functions defined on the closed interval

[a,b] where

mn

-
i

P (x)

i

dp F+ a3xX + e amx
(2.2)

i

Q

Q,(x)

bp + byX 4+ wee F bnxn

The polynomials P and Q are regular polynomials in the single independent
variable, x. The degree (38) of P and @ satisfy the inequalities

n (2.3)

VAN

op = m, 9Q
where m and n are integers specifying the order of the rational form,
Rmn' The inequalities (2.3) admit the possibiTity that the polynomials
comprising Rmn may have degrees less than m or n. The reason for this
will be illustrated in the next chépter. P and Q are further restricted

to have no factors in common other than constants. R = P/Q is then said

to be in irreducible form. The members of an must be bounded. Thus it



is both necessary and sufficient that Q have no roots on the interval
[a,b}. This m;} be accomplished without Toss of generality by requiring

that Q(x) > 0.

The condition of optimality will be the minimization of the

Tchebycheff norm (uniform norm, infinity norm),

min || ]| = min{ max _ | |} (2.4)
x€ fa,b]
Defining the error function (f is the function approximated},
§{x) = f(x) - Rmn(x) . (2.5)

the scalar, A, is obtained as

A=min |] 8(x) |] = min{ Cm[axb] | 8(x) I} (2.6) -
x€fa,

Thus for R to be a best approximation the local minima and maxima of
8(x) for all x€fa,b] must have the same absolute value, A (see Figure

2.1).

)\ i Oul WP W mmm TR R SduD ek mom wmin wlr R R el AR NS — —

Figure 2.1 Condition of Optimality
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Having defined the class LI and having set forth the condition

of optimality, an existence theorem is now given. This is due to Cheney
(4) and is stated here without proof.

Existence Theorem: To each function, f, continuous on the

closed interval [a,b}, there corresponds at least one best

rational approximation from the class rmn [a,b].

2.2 Characterization of Best Rational Approximations

The condition of minimum Tchebycheff norm is now extended to
more fully characterize best rational approximations. The concept of
T-alternations is introduced by %irst stating that there exist k values
fOor X, X3 < Xg < eo¢ < Ko such that 6(x1) 6(x1+1) <0, i =1, 2, sss,
k-1. (In Figure 2.1 there are six values of x for which the condition
holds.) Thus 6(x)'changes sign k-1 times and is said to have k T-
alternations. The condition of optimality may now be recast into the
following criterion:

Criterion: In order for the irreducible rational function

R = P/Q,Eﬁrmn to be a best approximation to the continuous

function, f, it is necessary and sufficient that the error

function, &, have at Teast 2 + max {(m +3Q), (n+ BP)}

T-alternations.

The reason for having to select the maximum of the bracketed
terms is because of the inequalities (2.3).. This is the criterion used
in this investigation for judging best rational approximations.

In addition to proving the above, Cheney also proves the

Tollowing:

Uniqueness Theorem: Best approximations in an[a,b] are always

unique.



8

The representation of best rational approximations, however, is not unique

since multiplication of the numerator and denominator po]ynomia1§ by an

arbitrary constant implies an ‘infinite number of representations.



CHAPTER 3

PADE APPROXIMATION

The Padé method of obtaining rational approximations to functions
defined by a power series is presented in this chapter. A matrix formu-
lation is utilized and the method is illustrated with a simple example.

An expression for the error is also derived..

3.1 Development of the Padé Method

Consider a function, f, which may be expanded in a Taylor series

about the origin.
f(x) = :E%;Cﬁ xi : (3.1)
‘]:

A rational function of the form (1.1) is desired which will

approximate f(x),
m
N ¥ |
ji: c, X! k:O- — + §(x) (3.2)

where 6(x) is the error in the approximation. Multiplying (3.2) by the

denominator on the right gives

it _ -k :?: J
Zgbjcix —gakx +6(x)- bjx (3.3)

j=0
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which can be rewritten as

o n
Z ib. Ck-j ~ 3 K = 8(x) ;Z(jbj xJ (3.4)

k=0 \3=0 ¢ _
with el = ¥ = 0t T 0, and Ckﬂj = 0 for k < j. Neglecting the error
term, the coefficientg of the first n + m powers of x may be equated to
zero to yield a system of n + m + 1 equations in n + m + 2 unknowns.
Th{s under-determinance may be relieved by normalizing one of the b's,
say bg, to 1. The result is then a system of n + m + 1 equations in
n+m+ 1 unknowns. For clarity, assume for the illustration that m = n.
The resulting equations are

Co = dg

n

cy + ¢o by = ay

éz+C1b1+Cab2=az

(3.5)

+ ¢co b =a

c + eec + 1 b
n 1 n n

n-1

+ see + ¢ b

It

cZn n+l “n-1 * Cn bn 0

The system (3.5) may be rearranged and written in the following matrix

notation:
-1 0 sowe 0 0 tssaven 0 i aﬂ ~C01
0 1 awo O ..cn sosres O al Cl
0 sss e 1 -Cn.-l...-. —c0 an _ 5 (3_6)
0 cseee 0 —cn “esev e -Cl b]. §
I-O secae 0 mczn—lnotn —CnJ i bn-' l..(:21:.!'




In general the size of the square coefficient matrix is (mn+l) x

/

(mn+1); the vector of unknown a's and b's, and the vector of c¢'s are

both (m+n+1) x 1.

—t

[P TR

<

The matrix equation (3.6) may be partitioned as

=

oy

a

-—— =

b

h

-

g

where the sub-matrices are given below.

[1]
[

"

[H]

(6]

(b)

Of course, in the

(n+1) x (n+1) identity matrix,

n x (ntl) zero matrix,

general case the dimensions of these are

-

0 sao 0
..Co LN O
. «1 , (ntl) xn
:C -1ecu uci
r:.c R Y C.‘F
n bl % |
: ], nxn
-c * 0 .-C
Zn-1 n
Y.HJ DCo
. m =t , () x2
% “n
] b1 Cn+1
3 B (@) =]: |, nxt
P “an

(3.7)

(3.8)
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[, (me1) x (me1) 5 [0, n x (m+l)
fH], (m+1) xn 3 [E]l, nxn
(a), (h), (mt1) x 1 ;5 (b), (g), nx 1

Because of the presence of the zero sub-matrix, the b coefficients may be

solved independent of the a's as

() = [6]7! (o) (3.9)
Hence only an n x n system of linear egquations need be solved simuitane-
ously. The a coefficients may then be determined immediately from

(a) = (h) - [H] (b) (3.10)

3.2 Example - Tan }{x)

The Padé method may be effectively illustrated using the inverse

tangent function,

X3 7

- -1 _ x> X
f(x) = tan {x) = x 3 tEg- Tt e (3.11)

Let the order of the desired rational approximation be arbitrarily
specified as m = n = 2. Note that the expansion for tan '(x) is not
strictly of the form of (3.1). Placing it in this form may be accom-
plished in either of two ways. One is by factoring and making the change

of variable, y = x2,

f(x) = xg(y) = x(l - -‘§-+ ’%ﬁ - -‘7’—3+ ) _ (3.12)

and then approximating g{y). The second approach is merely to include
the missing even powers of x with zero coefficients. This latter

approach may be designated as placing the series in fundamental form.

It is particularly convenient to use this approach in Chapter 5, and

provides additional insight in this example. Thus in fundamental form
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fx) =0+ x+ (0)x2 - X & (0)x - X4 .. (3.13)

From this the Padé equations

Co

c1 + Coby

C2 + Ciby *+ coba

c; + C2b1 + Clbz

"¢y t+ c3by * cabo

(recall by is normalized to 1).

1

To © o o

0

o O O

0 0 0
0 -c O
1 -c; -¢g
0 -¢c -3
0 -c; -cy

3 5

are found to be

dg

ds

adz

cog =0
c; =1
s ca = 0 ) (3.14)
Cy = -1/3‘
cy = 0

In matrix form,

)
ay
g2

by

- ]

Co
C:
= 1Cs

C3

b2

Cy

Corresponding to (3.8) the sub-matrices are

[H] -

(6]

Utilizing (3.9)

(b)

(a)

0 0
=10 o0
o -1]

/3 0]

and (3.10) the solution vectors are

i}

61" l(g) = [Ou
1/3

(h) - [H](b) =

0
(h) =11
0
~ (3.16)
(g) = |"1/?
0
- (3.17)
-1




14

Hence the resulting rational approximation is

~ tan~ lx - (3.18)

Note that Ry, from (3.18) belongs to T';> and that oP = 1 even though it
was desired that m = 2. Thus here is an example for which strict
inequality of the first of (2.3) hoids.

Figure 3.1 illustrates the behavior of the error curves associated
with Ry2 anq with the Taylor expansion used to obtain Ry,. Obviously for
the given number of terms the accuracy has been improved.- This is the
advantage of the Padé method.

While its advantage is improved accuracy, the Padé method'has an
important similarity to the Taylor serijes. In fact, Rmo’ obtained trivi-
ally from the Padé& method is just the Taylor ekpansion tom+ 1 terms.
Thus Padé approximation is the rational analogue to the Taylor series.

An interesting example froﬁ Leibnitz is the evaluation of the

expansion of 4 tan !(x) at x = 1. Thus,
4 tan (x) = 4(1 - 1/3 4+ 1/5 - YT + «+) =7 (3.19)

Consider now the rational approximation Ryu{x) = tan '(x). Solving the

corresponding Padé equations formed from the expansion (3.13) gives

ap =0 be = 1
a, =1 by =0
a, =0 b, = .85714286
as = .52380952 b; =0

8.57142857 x 1072

a;,=0 bq

for which the resultant raticnal form is
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8(x)
15 F
.12
N
.05 ¢ 04
: . )

Figure 3.1 Error Curves for tan !(x) (Padé Method)
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a1x + asx? _
Ray(x) = = tan '(x) (3.19)
1 + bax? + byx*

Again, 9P is less than the value sought, m = 4. Evaluating at x = 1,

4Rs(1) = 3.1372549

which yields an error of 4.3377 x 1073, To obtain this accuracy using
the Taylor expansion requires 23 .to 231 terms depending on summation
schemes. Thus for many slowly convergent series, the Padé method

provides a useful and accurate representation with 1ittle effort.

3.3 Error Expression

The basic equation from which the Padé coefficients are found is

just the sum of the first (n+m+l) terms on the left of (3.4) set equal to

nim '
k k .
; ; b‘j Oy X - gak X" =0 (3.20)

Substituting this expression back into (3.4) and solving for the error,

Zero:

8, yields

o n
k

b Cg-j X

= ': j
G(X) = k=n+m+1 J 0

b. xj
; ‘]

For convergent series an approximation of the error may be obtained using

' (3.21)

the k = mintl term in the numerator sum.

m+o+l
(cm+n+1 bo + Crpp by +oeee FCpyy By )x

§{(x)= -
b + byx + eee + bn X

{3.22)
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In the previous example for 4 Rso{1) = 4 tan (1) =,

3 (Cg + Cab1 + C-;bg + Cabg + Csbq) x3

[H

s(1)
1 4+ byx + byx? + bax® + byx*

(3.23)

5(1) = a|-111 - (.143)(.857) + .2(8.57 x 10'2)]
1 + .857 + 8.57 x 1072

f

.01028

This is admittedly a crude approximation to the actual error. Taking a

few. more terms would certainly improve the value.



CHAPTER 4

THE TAU METHOD

This chapter reviews some properties of Tchebycheff polynomiais,

and then presents Lanczos' Tau method by a simple illustration empioying

a series solution to a simpTe linear differential equation.

4.1 Tchebycheff Polynomials

A1l the common orthogonal polynomials may be derived as solutions

to the linear, second order differential equation due to Gauss,
(1 - x)y" +[y-(a+B8+ 1)x]y' -aBy =0

The solution to this equation is the hypergeometric function,

C V) = oB al{at1)B(B+1) .2
F(Ot, B, Ys x) 1+ -Y.l X + Y(‘Y+1).1.2 X

+ (o) (at2)B(p+1)(B+2) | ..,
y{y+1){y+2)-1-2-3

(4.1)

(4.2)

where o, B and vy are constants. The series is convergent for |x] < 1

and is divergent for |x| > 1 except if the series terminates after a

finite number of terms. When the constants are chosen as

vy =1/2
B=n

n: real, non-negative, integer
o= -n

and x is transformed to the new variable,

18
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the ‘hypergeometric function yieids the Tchebycheff polynomials.

F(-n, n, 1/2; 358 ) = 7 (2) (4.3)
The roots of these polynomials occur at

g = cos [(2-1)a/2n] , '
and their spacing is such that

A = min Egﬁhﬂl%wn =min |[T ()]] = 1 (4.4)

In other words, recalling section 2.2, each Tn possesses n+l T-alternations.
This is the property which makes the Tchebycheff polynomials useful in

approximation, particularly in the following sections.

4,2 The Tau Method

Introduced in 1938 by C. Lanczos (11), the Tau method utilizes
the uniform norm property of the Tchebycheff polynomials to improve the
solution of various Tinear systems. The method is most easily presented
using a series solution to a simple differential equation.

Consider the foliowing first order, linear differential equation:

y'-y=0, y(0) =1 (4.5)
Although the solution is simply y = e, a power series solution is

assumed for the illustration as

o0

y(x) = Zé °y XK (4.6)

Substituting into (4.5) and equating powers of x yields a system of

coefficient equations which leads to the recurrence relation,

n-1 _ ©o

c = = —r

n n n.
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Then, in the presence of the boundary condition, y(0) = 1, (4.7} pro-
vides the solution to the differential egquation (4.5),

n
ne

2
Y(x) = 14 x5+ cee t

>

{(4.8)

the 1imit of which, as n +«, is obviously ef. Since a series solution

is usually exact only in the 1imit, practically speaking it cannot satisfy
the differential equation exactly. Substituting (4.8) into (4.5) pro-
duces an error of (x"/n!). Thus there wi]llalways be an error which may
be made arbitrarily small but never zere. -

Now Lanczos reasoned that the error incurred by truncating the
series solution could be countered by introducing another variabié, Ty
into the differential equation. Thus the original equation, which was
solved approximately, is perturbed to result in one which may be solved
exactly. At the same time, judiciously choosing the way in which the
new variable would be introduced could improve the accuracy of the serijes
solution.

‘ Suppose the new variable, T, is multiplied by a Tchebycheff
polynomial of order n and the result added to the right side of the
di%ferentiaI equation. In effect this is an apﬁroximation of the error,
and the coefficients which result actually appear to improve the accuracy.
© of the series solution. Returning to the example, this operation
modifies (4.5} to yield

y' -y =T, T ‘ (4.9)

Now an additional requirement is that the range of x must be
known so that the Tchebycheff polynomials may be appropriately scaled.
Hence for x € {a,b],
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_ 2x -a-b
Tn = TTI (——5—:—3—-—) (4.10)

For the example let x € [0,1]. Then (4.10) yields the so-called "shifted"
Tchebycheff polynomials, Tn*. Letting n = 2,

y' -y =12 To* (4.11)
and the assumed solution becomes a quadratic:
¥y{x) = ¢o + C1x + Ccox? (4.12)

Substituting this into (4.11) and using T,* in its polynomial form
(To* = 8x% - 8x + 2)[{] the desired system of coefficient equations is
obtained as

€1 - Co = T2

2Cs - €3 = =871, . (4.13)

-Cs = 8T2

The solution of this system yields
o =1, ¢ =¢s = 8/9, 15 = -1/9

for which

y(x) = 1+ 8/9x + 8/9x%, x €j[0,i] (4.14)

Comparison‘of the Tau method with the corrésponding series solu-
tion is shown in Figure 4.1, giving the corresponding error curves.
Note that gaining in accuracy toward the right side of the interval
requires sacrificing some of the accuracy toward the Teft. In ;pite of
this, the net result is a gain in accuracy, under the Tchebycheff norm,
over the interval. |

The foregoing illustration of the Tau method utilized a simple

first order, linear differential equation for which one t-variable was
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uséﬁ. In the case of higher order equations additional t's may be
required. For example, a second order equation containing derivatives
of only second order would require two t-variables. Also, Lanczos
pointed out that the method is appiicab]e to any system of 1inear

equations, and use is made of this fact in the next chapter.



CHAPTER 5
TAU AND PADE METHODS COMBINED

As a system of linear algebraic equations, the Padé coefficient
equations are well-suited for appiication of the Tau method. Thi%
chapter develops the procedure, again using matrix notation, and dé}ives
the associated error expression. The nature of the method is examined
as applied to various transcendental functi&ns. Approximate solutions
and representations are obtained for the classic transcendental equation

of Kepler.

5.1 Development of the Tau-Padé Equations
Folliowing the development of the Padé method, a function, f,
expandable in a Taylor series about the origin is to be approximated

by a rational function of the form (1.1).

5
k
o0 a, X
= "k
f(x) § : ¢ %! k;O + §(x) (5.1)
30 )
:E: b, xI
j=0

where, as before, § is the error. The function is assumed to be expres-
sable in the fundamental form introduced in Chapter 3. As before,
multiplying by the denominator term and rewriting yields equation (3.4).
Neglecting the error term and taking the first N terms allows (3.4) to

be written as

24
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k _ _ .
i;igaks gakx—o,ck_j-o,k<3

N is an ‘integer, greater than ntm, whose value will be determined later.

(5.2)

Now, since N > n+m, equating coefficients of like powers of X results in
an overdetermined system. According to the Tau method, the procedure
would be to introduce'a t-variable as the coefficient of a Tchebycheff
polynomial. Here, however, greater flexibility is ‘available because ény
number of the ci's are already available. Thus not just one but any
number, &, of T-variables may be introduced. If 2 is determined as

= N-m-n, then the % t-variables may be added to {5.2) resulting in

' N
k k
; : S :b. c, . X = ; :a, X+ E ; {(x) (5.3)
¢ 3=0 Y k- = J k=mim+1 "k Tk

The value of N is thus seen to be just ntmtf. The Tchebycheff polynomials
must, of course, be scaled to the appropriate interval of x. Writing the

Tchebycheff poiynomials in their powers of x gives

_ r (5.4)
T (x) = ¢ Skr X
r=
where the coefficients Skp are found according to the relation
_ (. K (k-vr): (k-2r-1)
= (-1) k-r (k-2r)! r! 2 ’ :
(5.5}

sk,2r+1 =0, r=0,1, »+* k/2

In this notation (5.3) becomes

k k i : r
b. ¢ . x = a, X+ T, S X
E=; gi;; 37k E=O K k=n¥m+1 r=; k ke

(5.6)
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The double sum on the right may be reversed if the upper 1imit on r is
set to N. Then (5.6) may be rewritten to yield the basic equation for

the Tau-Padé combination,

N n m ) N N (5.7)
:E: k _ :E : r (5.7
bj Cp-5 X = a x + Ty Skp *

k=0 j=0 k=0 r=0 k=n+m+l

with the understanding that Choi = 0 for k < j and Sep © 0 for k < r.

If a step function of the indeces is defined as

. 0, k <j
u(k,j) = (5.8)
I, k>3]

then the restrictions on Ck—j and Skp My be expressed qualitatively in

the basic equation:

N n m

N N
Z by €y 5 u(k,j) x< = ay xK +Z Z Ty Sgy U(ksr) x"
k=0 j=0 k=0 r=0 k=ntmtl
(5.9)
The use of the step function, u, is most advantageous from a programming
standpoint.

Following the 1ine of development of the Padé method, the coeffi-
cients of Tike powers of X may be equated to yield the necessary system
of linear coefficient equations. These may also be written in matrix
notation. As before, let m=n for clarity, and normalize the by coeffif
cient to one. The resulting system is then given in Figure 5.1. Note
that the coefficient matrix is essentially the same as for the Padé
method except that now it is augmented by the inclusion of the scaled _

Tchebycheff coefficients. Correspondingly, the vector of unknowns is
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augmented by the addition of the t's. Partitioning the.systém yields,

.as before,

0 G |b g
with the appropriate sub-matrices defined as follows:

(1]
{0]

po— v

52ﬁ+1’0 aee SN,O 0 s ew 0

jdentity matrix, (n+l) x (n+l)

i

zero matrix, (N-n) x (n+1)

S sve Q -Co s 0
[H] = 2n+151 N,l

® . -
a

'\ L N ] - *e e —C'
Son+1,n SN,n Ch-1 0

(5.10)

{5.11)

6] = |} : : Do (n) x (en)
_0 ve cen . SN’N —CN-l . _cNhnﬂ -
Co Cn+1
th) = [: |, (n+1) x 13 (g) = |+ , (N-n) x 1
:Fn_ cN
- Ton+l
ao .
(@) =1 |, (n#1) x 13 (b) = |*N
3 bl
an_ .
b
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In the general case the dimensions of the sub-matrices are

[I], (m+1) x (m+1); [0], (N-m-1) x (m+1) : :
Hl, (m1) x (m-1); [6], (N-m-1) x (N-m-1) (5.12)
(a), (h), (m1) x 15 (b), (g}, (N-m-1) x 1

The corresponding expressions for the solution of the augmented system

are identical with those for the Padé coefficients,
(b) = [6]"*(a), (a) = (n) - [H](b) (5.13)

Since the applicaticn of the Tau method adds & t-variables to
the Padé equations, it is convenient to alter the notation slightly to
reflect the number of t-variables added. This is done by merely adding
a third subscript to the symbol Rmn‘ Hence a rafiona1 approximation of
order m,n found from the Tau-Padé equations using & t-variables is

indicated by Rmng'

5.2 Examples

The following examples serve to illustrate the Tau-Padé combina-

tion and to bring out some important aspects of the method.

f{x) = e*. This first example already has its Taylor expansion

in the fundamental form introduced in Chapter 3.
F(x) =ed =1+ x+ 1/2° x2 + 1/3" x® 4 «oo (5.14)

For the desired rational form let m = n = 2. Let the number of t-variables,
2, be six. Thus, N= g+ m+ n = 10. The choice of g is rather arbitrary,
being suggested primarily by experience. For rational forms of order {(2,2)
rarely will more than six t's be required, and fou} will often suffice.

For this example Tet x € [0,1]; then the scaled Tchébycheff coefficients
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correspond to the coefficients of the shifted Tchebycheff polynomials,

S = (DT gy s 2P, (5.15)

r= 0’ 1’ 2’ cu." k

Under these specifications the components of the partitioned augmented

coefficient matrix are

Sgg **e 0 0
W] = |: -ce 0], 3x8

Ssp *** =Ly -Cp

S53 *** 51053 -Cy -C
Sss E E

[G] = . . . , 8x8
0 % : (5.16)
_p *e** 516510 -Co ~Cs

()7 = (coc1co)

T _
(9) = ( C3 Cy Cs Cg C7 Cg Co Cyp )

Solving the system according to (5.13) yields the set of values listed

betow. For comparison the corresponding Padé coefficients are also

given.
Tau-Padé Padé
a¢ = 1.0000031 ag = 1.0
ay = .54164234 a; = .5
a, =. .10792084 az = .0833333
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Ts = 3.49986928 x 107 °
T¢ = 4.36506101 x 1077
17 = 3. 09266682 x 107 °
T = 1.55708614 x 107 °
Te = 5.66904584 x 107!
T10= 1.19460073 x 10722

bo = 1.0 ’ bn = 1.0

b; = -.45821125 by = -.5

b, = 6.50542644 x 10 2 b, = .0833333

X dp + aix + a,x?

e = Rzzs = 0,1 (5.17)

by + bix + byx® ° X

Figure 5.2 plots the error functions associated with the Taylor series
(GT), the Padé method (Gp), and the Tau-Padé combination (6T). For the
Taylor and Padé approximations five terms of the expansion (5.14) were
used. Although eleven terms were used to determine the coefficients in
(5.17), the results require no more computational effort for evaluation
of the rational form than for the standard Padé form. The maximum of
the Tau-Padé error, GT, is three orders of magnitude less than for GP
and 8. Under the criterion for an optimal approximation (Chapter 2},
the Tau-Padé approximation is nearly optimum. The error curve has

2 +max (m + 38Q, n + 3P) = 6 alternations which approach T-alternations:

min |l6. ]| = 3.09 x 10°¢, max ||6TI| = 6.68 x 10" ©

f(x) = 2n{1+x). As a second fllustration, consider the serjes
expansion for &n({1+x) whose fundamental form is

F(x) = an(1+x) =0 + x = 1/2 x2 + 1/3 x3 - 1/4 x* + ««+ (5.18)
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As before an approximation of order 2,2 for x € [0,1] will be obtained
" using six t-variables. Solution of the system of augmented coefficient
equations yields the f0110wing values which are compared with the

" standard Padé method:

Tau-Padé Padé
ag = -2.05651975 x 10" ° ag = 0.0
a; = 1.0009656 a; = 1.0
a, = .62730344 az = .b

Ts = -2.47728605 x 10°°
T¢ = -5.59521770 x 107°¢
17 = -1.62740556 x 107°
Tg = ~2.70964554 x 1077
Tg = -3.27816790 x 10”8

Ti9 = -1.63798206 x 107°

bo = 1.0 be = 1.0
by = 1.1344666 b, = 1.0
b, = .21541081 br =

. 16666667

Figure 5.3 shows the various error functions, 61’ ap, GT, for the approxi-
mations to n(1+x). In this example the Tau-Pad€ error behaves similar
to an optimal error curve up to x = 0.8. Thereafter, however, it grows
rapidly, much as the Padé error. Also there is not as extensive an
advantage with the Tau-Padé combination in this case as in the previous

example, 8  and GT being closer. The Taylor error appears to grow

p
extremely rapidly. This behavior is, of course, inherent in the nature
of the defining series. Consideration of the convergence of the series

offers a possible explanation. Because the convergence is quite slow,
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six t-variables may be not be enough to obtain the desired near-optimal
behavior. Also, near the upper limit of the interval the convergence

becomes extremely slow, divergence occurring at x = 1.0.

f(x) = 31/{1 + 2x + x®. An example is now offered which is

actually an irreducible rational function. Now one would expect that
both the Padé and Tau-Padé methods should produce the function exactly.

If the indicated division is carried out, the following series results:
f(x) =1 - 2x + 3x% ~ 4x% + oo (5.14)

For m=0, n=2, the Padé€ method gives back the rational form of f(x}. In
fact, in all cases where f(x) is itself an irreducible rational function
of the form (1.1), and m and n have the same values for the approximation
as for the function, fi and n, the Padé¢ method simply returns the original
function.  Similarly, using the Tau-Padé combination with any number of
T-variables gives the exact form of f(x}, the t-variables being zero. In
other words, if the function to be approximated is itself a member of
rmn then the Tau-Pad€ method yields the function exactly regardless of
the number of t-variables which may be introduced.

A natural question is to inquire about the performance of the
method when m and n do not happen to coincide with the actual order, m,
N, of the rational function, f. First if either or both m and n are less,
the resulting approximation merely will be a Tower order approximation.
Now ifm>@, n=nor ifms= i, n > n the Tau-Padé method will yield the

correct a's and b's with

0 for m > i,

i
-
L
-
It
=4
1

A1 T m

ba,, = ses = 0 for n > n.

ntl n
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uﬁ through xN be considered even though it does nof appear explicitly
in the series. The most consistent wa} to insure this is through re-
duction to fundamental form. ‘ -
Proceeding with the example, let 2=4 and again x € {0,1].- Then

the Tau-Padé eguations yield the following parameter values:

ag = 8.06609950 x 107° be = 1.0

a: = .9998780 ‘ by = .34753262

a; = .34783041 b, = 1.0408238

as = .70477263 bs = .20418535
= .17348426

a, = .19018504 by

1.06674826 x 107

I

Tg

Tio & 2.89900133 x 1078

T11 3.10652367 x 10—9

1.30341767 x 107!

Ti2

The error functions for both the standard Padé and Tau-Padé methods are
shown in Figure 5.4.

An evaluation of = may again be obtained,
4 Ryuu(1Y = 3.141114136

with an error of 4.775 x 10 *. To obtain the same accuracy by merely

summing the expansion requires 2090 terms.

5.3 Error Expression

The error expression for the Tau-Padé combination is found the
same way as for the standard Padé method. Substituting the basic
‘8
equation (5.7) into the general expression (3.42%5nd solving for &{x)

yields

PREGEDING PAGE BLANK NOT FILME
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@ n N N
2 2on; g XD D0 TSk X

s(x) = k=N+1 j=0 . r=0 k=n+mtl s (5. = 05 k < r)

J
ZE: by x

i=0 (5.21)

An interesting result is the limit of (5.16) as N -+ o

. k=nimtl . (5.22}

For convergent series a rough approximation of the order of magnitude of
the error may be obtained by this expression. In general the maximum
value of each Tk occurs at the interval 1imits and is +1.0. When x is

normalized such that |x] € [0,1] ,» (5.22) reduces to

§ (1) = E:E%mil___ (5.23)

Considering the example for eX, (5.23) yields

=B
5 (1) = 220 X0 — - 6539 x 107

which is sTightly less than the actual maximum error, 6.68 x 107°,
Caution must be used when using this method, however, since it loses

validity when the approximations are not close to the optimal.
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5.4 Applications to Kepler's Equation

A fundamental equation of astrodynamics s the transcendental

relation between time and angular position of an orbiting body.

i}

E-esintE (5.24a)
e sinh H - H (5.24b}

For elliptic motion: M

I

For hyperbolic motion: M

M is the mean anomaly (a function of the mean motion and the time), e is
the eccentricity, and E and H are the eccentric and hyperbolic anomalies,
respectively. As transcendental equations, (5.24a,b) generally are

so]véd for E and H using some iterative technique such as the method of
successive approximations or the Newton-Raphson method. Such algorithms
require reasonable starting values which are obtajned by some method of
approximation. 1In this section attention is given to the problem of
obtaining solutions for E or H using the Tau-Padé equations. In the

final paragraphs, Battin's modification (2) of Herrick's universal var-
iabie formuTation of Kepler's equation will be introduced, and a different

application of the Tau-Padé combination will be made.

Approximations to Sin and Sinh.. If rational approximations for

the sine and hyperbolic sine functions are obtained in the form '

ap + aix + axx?
Ra1(x) = T bix (5.25)

then (5.24a) and (5.24b) can be written in the common form,

g + a1x + axx? .
M=x-~-e (5.26)
1 +'byx

where x is E or H as required. Further, it is necessary to obtain the

approximations only over the positive values of x, since both functions
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are odd, and the sign on x is positive or negative according to the sign
on M. The identification of eiliptic or hyperbolic motion may be made
depending on whether e < 1 or e > 1, respectively (the case e =1
represents parabolic motion; the time-position relation for this motion
requires no iterative techniqué for solution). Thus {5.26) may be re-

written as

ag + a1x + azx?
™M = x - oe (5.27)
1+ byx

where

a=M|M , v = (1-e)/|l-e]

Miltiplying (5.27) by 1 + bix and combining coefficients of like powers

of x gives the quadratic,

Ax2 + Bx+C=0 (5.28)
where
- A =Db; - cea,
B =1~ oea, - yMb

C = -ceay - YM

]

vwhich may then be solved for x.

The values of the a and b coefficients will now be found for the
trigonometric approximations. First, scaling of the Tchebycheff coef-
ficients is done for x EL[C,ﬂJ since sine is periodic and odd. For sinh
the interval x €:[b,n/2] is chosen with the value w/2 being selected
arbitrarily since the hyperbolic_sine is not periodic. The number of

T-variables selected is eight. The results are summarized below.



42

3 5 7
sin x = X =~ %T-+ ET-— ;T-+ ce
ag = -2.738634 x 1072 bo = 1.0

a; = 1.271591 b, = -1.155438 x 107"

. ap = ~0.404789

3 5 7
sinh x = x + §7-+ %T'+ ;T‘+ *oe

ac = 2.565447 x 1073 bo

|

1.0

a1 = 0.948262 b; -0.356916

5

az = -0.193801

The plots of the error curves for these approximations are shown in
Figures 5.5a,b. Note that the errors are relatively large. One reason
is because the primary contributor to the approximations is the first
term in the Taylor expansions. Another important effect is that gen-
erally, the larger the interval, the harder it is to approximate the
function. In view of this, one might expect that the resulting solutions
of (5.28) would not yield very accurate values of x. This is indeed the
case as seen in Figures 5.6a,b.* The question as to which root of the
gquadratic to use has not been formally answered. However, experience

has shown that using

x = (~B + u/ B? - 4AC ) /2A,

+1, ellipse
u= -1, hyperbola

*Undoubtedly a betfern approximation would result 4§ one found
R3zg fon s4n and sinh, and recast {5.28) as a cubic. Howevern, cubde
equations are noit particularly convendient fo solve.
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Figure 5.6a Error Curves for E

e=1.01

8(H) = Hoctual - Happrox

/4 /2

§{0) = amin = -.164355
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consistently yields compatible results.

In Figures 5.6a,b there is another effect present which is due
to the nature of Kepler's equation itself. As e =1 and x + 0, a region
of non-uniform behavior is approached, emphasized by the fact that the
error curves go off scale. Moulton (14) has investigated this for the
elliptic case, and Russell (16) has shown, using perturbation methods,
that the non-uniform region is approached when 1 ~ e cos E ~ 0. One
empirical way of countering this is to set x = M when

1-¢ecos M <gy, elliptic motion,
e cosh M - 1 < g5, hyperbolic motion,

where £; and e, are some judiciously chosen values on the order of .01.

Variable Transformation. A second way to improve the accuracy

for elliptic motion is one motivated by a suggestion by Gottlieb (8).
Define a new variable,

wzE-M=esinkE (5.30)
The 1imiting values are obviously -1 <w < 1. Kepler's equation may be
rewritten in terms of w as

e sin (w + M) (5.31)

H

W

or

13

w = e(sinw cos M + cos w sin M) (5.32)
Now since the interval of interest is now smaller, one could expect better
accuracy. However, to retain the quadratic form (5.28) polynomials must
be used to approximate sin w and cos w which partially offsets the advan-
tage of a smaller interval. Approximating sine and cosine by R,;4»

sinw = sy + 5;W + S,W?

(5.33)
COS W = Cp + C;W + C,w?
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and defining

cos M (5.33)

H]

SM = siq M, CM

(5.32) becomes

Ww=e CM(su + 5w + Saw?) + e SM(co + ciw + cow?)

oy

(e CM s, +eS,co)wi+{eC,s,+eS, c; - 1w

M M M

+ (e CM So + € SM €g) =0 (5.35)

which may then be solved for w, and E subsequently found. Recalling
that sine is an odd function, and cosine, even, the shifted Tchebycheff
polynomial coefficients may be used in the Tau-Padé equations. Then the
sine approximations must be multiplied by the ¢ defined in (5.27) so
that (5.35) becomes

Aw> +Bw+C=0, (5.36)
with |

A

B

e(CM g Sp t SM CZ)

1)

e CM gs; t+te SM c; -1

C=e (CM o Sp t SM Co)

Here, the negative sign is used with the radical in the expression for
the root, i.e., u = -1 in (5.29). Finally, solution of the corresponding

Tau-Padé equations for coefficients of the Ryes approximations yields

sg = -4.63945315 x 10”2, co = 1.0021690
s, = 1.0851999, ¢y = -3.48778236 x 102
S, = - ,23475756, cy, = -~ 42972092

The associated error curves are shown in Figure 5.7, exhibiting the near-

optimal characteristics (maxima of approximately equal magnitude, and
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four T-alternations). The reason that the sine error 1s-larger than the
cosine error is due to the number of terms employed in the Taylor series,
only one term being taken for the sine as opposed to two for the cosine.
Now even though the sine and cosine functions are approximated by Rags
instead of a higher order Rmnﬂ; the advanfage of a smaller interval of
approximation predominates. This is seen in Figure 5.8, showing the
improved error behavior for E with e = .5 and e = .99, Immediately
obvious, however, is the irreqular behavior of these error curves. This
is due to the fact that w is formed as a combination of the two quadratic
approximations for sine and cosine, as shown by (5.32). This in turn
maps into the solution of {5.36) in a non-linear fashion and hence the

optimality exhibited in Figure 5.7 is not present in Figure 5.8.

Transcendental Functions for the Universal Variable Formuliation.

To this point, concern has been with obtaining approximate solutions of
Kepler's equation for the eccentric or hyperbolic anomaly. A different
application of the Tau-Padé combination is now made to a universal var-
iable formulation of Kepler's equation. Such a form, originally intro-
duced by S. Herrick, allows writing just one time -~ angular position
[ Y
relationship for both elliptic and hyperbolic motion. A modified
formulation is given by Battin (2) as ~
o * Vo
it = —— x% Clag x2) + (1 - rg 0g)x® S{og x%) + rp X
i
(5.37)

where
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To, Vo = initial position and velocity vectors,
t = time from initial to final position,
p = gravitational parameter of central body,
G = 2/ro - Yo¥/u 3 ro = |rals Vo = [V

The parameter, x, is termed the universal variable, and defined as

E - Eo

» elliptic motion

Yoo : (5.38)
H - Ho

>
1}

, hyperbolic motion

Y-ao

with Eos Es Hg, H being the initial and final eccentric and hyperbolic
anomalies respectively. The C and S are transcendental functions defined

by Battin (2) as

2 3

S(W) = 3r-gregrogre e (5.32)
2 3

C(u) =37~ Fregr-gre = (5.40)

While these series converge rapidly, over large intervals the development
of their Tau-Padé approximants to high order is useful and informative.
First, let u = ax2€ [—(Zw)z, (Zﬂ)ZJ. Here, no symmetry. of the S{u)

and C{u) exists. Hence no advantage of symmetry is present, and the

full range must be used. This presents a problem because the interval

is large, and scaling of the Tchebycheff coefficients requires multiplying
each coefficient by some power of the interval Téngth. This quickly leads
to numerical difficulties for high order approximations since, for exampie,

the twelfth order Tchebycheff polynomial has a scaled coefficient of x'?
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on the order of 10'%, while the lowest order coefficient is 1. This
problem (which can be encountered often for large intervais} is readily

circumvented by the alternative of scaling u to [-l,i]. Hence,

u" = (a0w)" (5.41)
so that
2
S(w) = %T“ i0u (4g¥) - oo (5.42)
2
C(w) = _;:_!‘__ 2(:}” 4 (431?) - sos - (5:43)

for w €1[;1,1]. With these changes, solution of the Tau-Pade equations

for the coefficients of Ry44e @5 approximations for C and S gives

c:

ap = 50000005 Te = -1.67491428 x 10°°

Cap = -1.3329425 Ti0 = 4.70365685 x 107°
a» = 1.2170535 T11 = -6.53462358 x 107°
as = - .44140671 Ty2 = 5.91614229 x 1071
a, = 5.73370383 x 1072 1,, = -3.89852249 x 10711
bo = 1.0 Tis = 1.98790997 x 107}2
by = .66744544 Tys = ~8.01643151 x 107"
b, = .21448521 Tie = 2.72493162 x 10715

by = 4.,03536694 x 1072
b, = 3.82170297 x 10~°




|

ao = 16666667 19 = -5.63359592 x 107°
a1 = ~ .23582030 Tio = 1.42027615 x 1072
as = .14947671 T11 = -1.78816313 x 1071°
as = -4.03986018 x 1072 Ti2 = 1.47893824 x 107!

ay = 4.16704687 x 1073 T13 = ~8.96491447 x 107 '3

be = 1.0 T1y = 4.22974700 x 107"
b; = .58507792 715 = -1.58967531 x 107 *°
by = .16225461 " Ty = 5.04612583 x 1077

by = 2.58883507 x 10" 2
by = 2.04894379 x 1073

The associated error curves for w € [—-1,1] are shown in Figures 5.9a,b.
Because of the rapid convergence of the series, the Padé and Taylor
results are practically the same. Hence the two errors are shown as

one.
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CHAPTER 6
EXPLICIT FORMS AND GENERALIZATIONS

The development of some explicit expressions for the coefficients
and t-variables for Tau-Padé approximations is outlined in this chapter.
The resulting expressions are, in part, recursive in nature thus pro-
viding compact and easily handled formulas. Generalizations of the Padé
and Tau-Padé algorithms are discussed briefly, noting that their utility

is Timited.

6.1 Explicit Expressions

Except for the simplist of problems, a computer-must be used for
solution of the Tau-Padé€ equations. With this in mind, efficiency may
be gained in terms of computer time and storage by employing explicit
formulas for some of the Tau-Padé parameters. The development of such
formulas is itlustrated by deriving the explicit forms for Ryix. The
extension to higher order forms will be obvious; explicit formulas for
the parameters of Rmoz and Rmn£ are éiven in the Aﬁpendix.

For Ry, the Tau-Padé equations are

Co = @8 t T3S3g * TuSyo t TsSs59 T TeSso (a)
€1 + Coby = a; + T3S31 * TuSu1 + TsSs1 T TeSe: (b)
Ca + Cib1 = T3S32 + TySyo f TsSsa + TgSe2 (¢)
Ca + Cz2b1 = T3S33 + TuSy3s t TsSs3 * TeSes (d) (6.1)
€y + Cabi1 = T4S4y * TsSsy + TgSey (e)
Cs + cuby = TsSss * TgSes (f)
Ce + Csby = TeSes )

55 L]
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As before, Skr is the coefficient of x' in Tk. The approach for solving
these equations here is to use Gauss reduction. Hence (6.1g) is solved

for T6»

To = = (Cs + Csby) (6.2a)
S6s .

Substituting into (6.1f) 15 is found as

1 565 Ses - '
Tg = 7—4Cs ~ Seo ce + {Cy - g;;’cs) b4 (6.2b)

Similarly, expressions for the other t's are found.

1 Ssy ( Ss54565 Sey )
Ty = — {Cy = — C5 + - Cs
Suy 555 S55566 Sg6
(6.2¢)
S5y ( Ss54565 Sey ) b
+ |cg - — ¢y T - - Cs
3 5s5 S55566 Se6 1
1 Sya ( S4355y  Ss3
Ty =7 —4Cs - ——Cu ¥ - Cs
3 S33 Suy SyySgs  Sss )
5453554565 SyaSey Ss535ss Sea
+ (- + + - } ¢g
SyyS5556¢ Sy4S6s Ss55548 566 (6.2d)
Sus Sy3SsuSes  Sss )
+ - — - - J Cy
2 5y B SyuS555¢68 Sgs

+ ( - + + -
SyyuSs55566 SuuS6s S555¢5 Sgs

Sy3z5s54565 Sn3Sen  Ss53Sgs  Ses
cs | by

Substituting these expressions into (6.1c) yields
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S32 ( Syz  S325u43 ’ . 532543555  S32553  SuaSsy
-C2+"'-—'C3+ < - Cy - - -
S33 Syy  Sa3Sun S33544S55  S33555  SuuSss

$s52 S32543554565 532543564 . 532553555  S32563
+— ) s+ (- = + + -
Sss S3354uSss56s  S33SuuSes  S33555%6s  S3356s
N Sy2Ss545s5 SeuSuz  Ss5256s . Se2 ) . [ . S30
- - C -c —C
SyuS55566 SeeSuu  Ss555g56 S 6 LY siy 2
(6.2e)
Syz  S32543 S325435sy  S32553  Sy2Ssy  Ss
+ (s - s ) ey ¥ S..5.25cc SaaSce  SnuS s ) ¢,
54 S335yy 33544555 33555 vySs5s 55
S30543554565  S3254,35g4  S325s53565 532563  Su2554Sss
+

- + -
$3354u555566 S3354uSes  S33555566  S33566  SuuSssSee

SeuSyz 552565 S

- - + ) cs] b, = 0

SeeSyu 555568 Sge

This expression may then be solved for b,. However, in its present

form (6.2e) is extremely cumbersome. Examination of the terms yields

a convenience which greatly facilitates the determination of the unknown
coefficients. Judiciously grouping the rational forms of the s's

results in the following recursion formulas:

S$32
D; = —
S33

D, = _l;'(sk2 - Dlsus)

Suy
(6.3)
D; = gl—‘(ssz -~ DiSss - Dzssu)
55
_ 1
Dy = —— (se2 - D1Sgs - DaSey = DsSes)

Se6
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Then in terms of these quantities, b; is simply

~Cz + Dic3 + Dacy + Dics + Dyce
b; = - (6.4)

~Cy *+ DiCy ¥ DaC3 *+ D3Cy + DuCs
The t-variables are then easily obtained by using equations (6.1d) -
'(6.ig). Similarly, a, and a; may be found immediately from (6.1a) and
(6.1b). As the foregoing implies, the algebra involved in the develop-
ments is quite tedious fo* even the simple forms o% Rmnz' By induction
on the formulas for Rigs, Ri1ns Raiu, and Raozy, those for the general

case€, Rmnz’ were found and are given in the Appendix.

6.2 Generalization

In Chapter 3 the classical Padé€ method was presented. It was
shown to be applicablie to those functions possessing a Taylor expansion.
In fact, the Padé method is applicable to any function which can be
representea as a Tinear combination of certain functions, for example;
Legendre po]ynomia1§. Cheney has shown this in (4). By way.of
illustration, let f(x) be répresented as

=]

Hx) = 2 e b (x) (6.5)
© k=0

where the ¢ are functions of the single variable, x. A rational

approximation to ¥,

8g Go * Ay Py t eee F a, @

by ¢o + by by + oo + bn ¢,

R " (6.6)

may be obtained in a manner analogous to the standard Pade method as long

as the & satisfy the relation
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i+
o 4= D Agi % (6.7)
k=0 .
where the Aijk are constant coefficients. Obviously this is the Padé

method in general form. The classical Padé method is but a special case
of this since then the ¢ are just the xk. Equation (6.7) is satisfied

since

TS Aygie = 0> K F 14
Qxazi:%ﬁxk=fﬂ:$ N (6.8)
k=0 Ajjk = 1> k=11

An interesting development concerning the generalized Padé method
vas made by Maehly and is ?rief]y presented by Snyder (18). Here the
¢k are Tchebycheff polynomials. The impiementation 0% the algorithm is
not a difficult task since the corresponding form of (6.7) is relatively

simple:

Ty 2 T+ T (6.9)

Generalizing the Tag-Padé equations is similar to the generalized
Padé. However, in addition to the requirement that the ¢k satisfy (6.7j,
the Tchbycheff polynomials also must be expressed as a linear combination

of the ¢k,

n
T(x) =D & 9 (6.10)
k=0

It is particularly interesting to consider the problem of obtaining the
Tau-Padé approximant when f(x) is of the form (6.5) with o = Ty In’

this case the procedure is nothing more than the application of Maehly's
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Tchebycheff form of the generalized Padé method. The introduction of the
T-variables has no advantageous effect on determining the coefficients
for the rational form. Thus the implication is that the Tau-Pade.méthod,
in effect, attempts to convert a power series into a "quasi-Tchebycheff"
series (it will never actua11y.make it since an infinity of terms would
be required) while at the same time making use of the flexibility of
rational forms. |

As one might suspect, relations (6.7) and (6.10) are generally
not readily available for ¢k's other than the simple powers of x or the
Tchebycheff polynomials. Even when they are, the algebraic manipulations
become ovenuhelm%ng as shown by the form of (6.7) when the ¢, happen to

be P, the Legendre polynomials {20):

. Am-r Ar An-r 2n+ 2m - dr + 1 |
Prn Pn - Z ( ) Pn+m-2r ’

=0 AN, 2n + 2m - 2r + 1

(6.11)

p o1+3.5 .. (2m-1)
m

m'

For these reasons, application of the generalized Padé or Tau-Pade method
is usually not particularly attractive. '

A natural question is to ask if the algorithm can be extended to
handle functions of several variables. For example, consider a-function

of two variables represented by the following series:

o

fx.y) = Z ¢ (¥) ¢, (x) ~ (6.12)
k=0
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Since the ck's are no tonger constants, direct application.of the Tau-

Padé algorithm results in a rational approximation of the form

m m '
Y 2 3k 6

_ 4=0 j=0
Rong(Xs¥) = (6.13)

n n
2 2 by e.(x)

i=0  j=0

This approach was attempted on the series associated with the gravita-
tional potential of the Earth (zonal harmonics only), the corresponding

form of (6.12) being

o«

k
V(g,r) = 4 Z Jk(%) P (sin ¢) ~ (6.14)
k=0 .

where u is the gravitatidnp] parameter of the Earth, r is the distance -
from the coordinate system origin, and ¢ is the geocentric latitude.
Unfortunately, the amount of effort involved is extensive and no mean-
ingful results have been obtained with this approach. Further investi-
gation is necessary to determine its utility.

Prabably one of the more notable generalizations of the Tau-Padé
algorithm is the realization that a different error behavior may be
obtained by merely using a set of weighting functions other than the
Tchebycheff polynomials. Thus, using the Legeﬁdre polynomials, for

example, would yield an approximation with different error characteristics.


http:application.of

CHAPTER 7
 SUMMARY

This thesis is concerned with the problem of obtaining approxi-
mations to functions defined by a power series in a manner which allows
facility in their handling and which yie]&s near-optimality under the
Tchebycheff norm. Rational functions are chosen as the-approximating
form because of their simplicity and flexibility, and are shown to be
superior in many cases to the more common polynomial approximation. The
results of this investigation offer-a method which yields just such
approximations.

The classical Padé method forms the basis of the technique
developed in the investigation, utilizing the Taylor series representation
of the.function to be approximated. One of the earliest analytical
schemes, it is also one of the simplest, merely requiring the solution
of a system of linear equations.

The Tau method developed by Lanczos provides a tool for modifying
the Padé method. It employs the important uniform error properties of
the Tchebycheff polynomials to weight the coefficients in the Padé
rational form to obtain near-optimal behavior of the associated error
function. The combination of these two methods forms what, in tais
thesis, is referred to as the Tau-Padé method. It is illustrated by
the approximation of numerous transcendental functions, and is shown

to return the approximated function exactly when that function is of

62
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“rational form. Applications to the classical equation of Kepler offer
additional insight into fhe method.

Some important conclusions are drawn concerning the use of the
Tau-Padé meﬁhqd. The approach is found to be effective in obtaining a
rational form which is near—opiima1 in its approximation of functions
admitting a power series representation. Since polynomials are but
special cases of rational forms, the method may be easily used to obtain’
near-optimal po]ynom{a] approximations. In generalizing thé Tau-Padé
method to functions defined by series other than power series, difficul-
ties are usually encountered which hamper impTémentation of the method.
However, when functions are represented by a Tchebycheff series, the
generalized Tau-Padé equations reduce -to a generalized Padé algorithm.
From this the conclusion is drawn that the regular Tau-Padé method; in
effect, attempts to "convert" a defining power series into a -Tchebycheff.
series. '

Two important restrictions are placed upon the Tau-Padé‘%pproach.
First, the function to be approximated must, of course, be expréssible
in the form of a known power series. Second, because of this, the algo-
rithm obviously may not be employed to obtain rational approximations
from discrete data values. The specifiéation of an_interval over which
the approximation is valid is an additional restrictioh but certainly
not a severe one.

In conclusion, the Tau-Padé method offers the capability of
approximating functions defined by a power series. The technique pro-

duces a near-optimal approximation in a non-iterative manner. It
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provides an answer to the motivating question, "To what extent can such

functions be accurately approximated?”
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APPENDIX

EXPLICIT FORMULAS FOR THE TAU-PADE COEFFICIENTS

(=]

f(x) = Z Cy X<, Rong(X) =

k=0 by + byx + ---+bnx

dg + a1X + === + am Xm

n

mos.’

2
ak=ck-ZDJ. Ck+j , K =m
j=1

%
ak = Ck - ETm+j Sm'l'j,k Y k .< m

j=1
j-1
.D..= Em_;L——- Sm+. " - ]:}_i Sm+. i
J m+j,m+j Jds s Js
j=1, *++, & ; (no sum for i > j-1)
N
r =2 [eo - z: _—
ros,\r iZi,e J?
=l

r=mtl, s+, N; (no sum for i > N}
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Rmn%’ n>0:
2
% -ZIm+n+j Smn+jLk k=0, «esym
j=1
n N
T, = 1 ¢, - b, ¢ - :E: Ts: S
r.os.. r Jjor-j i7i,r
j=1 i=r+l
r = mntl, «»+, N; (no sum for i > N)
D.. = 1

j-1
il s . . Sm+n+j i~ :E:: Dik Sm+n+j mntk |
mn+j mntj ? k=1 >
j=1, ¢««, 23 i=ml, +++, mtn; (no sum for k > j-1)

JA
Wop = "Cik +Z Di5 Cmenti-k °

k=0, =+, n; 1 =mtl, =<+, min

_,__1 — —
by wm+1,l Wprt,2 © 0 " wm+1,n Hoe1,0
bn wm+n,1 wm+n,2 vt wm+n,n wm+n,0

(n x1) {n x n) {n x 1)



