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PLANETARY EXPLORER STRUCTURAL CONCEPT
EVALUATION MODEL USING NASTRAN

Dennis R. Hewitt
Engineering Physics Division

ABSTRACT

A structural evaluation of the phase A configuration

of the Planetary Explorer spacecraft used the NASA
structural analysis program NASTRAN. This report
describes the modeling techniques used to create a
versatile model while reaucing computer running time.
The evaluation predicted the optimum position of struc-
tural members, load paths, and deflections.

ii



T

CONTENTS

INTRODUCTION . ¢« ¢ ¢« o s 8 o ¢ 5 o s ¢ s o5 3 8 s s & s

FUNCTIONE OF THE MODEL - 005 "0 W @™ 2 ' 4 & & &

CREATING THE NASTRAN MODEL . . . ¢ ¢ ¢ ¢ ¢ ¢ o ¢ s « o &

CONCLUBION & v » o 2 9 s oos-» % 5 $lo-a 5385 5 5.8 6%

SOIJRCE . . . . . . . . . . . . . . . - . . . . . . - . . . .

APPENDIX: Listing of Input Cards for Concept Evaluation Model

PE-A L e I . . I

ILLUSTRATIONS
Figure

1 Planetary Explorer Concept: Grid-Point Numbering

SystemSier L5, 0 vl S e e e T sa S T e % . e
2 NxN-Coupled Structural Matrix . . . « « « « ¢ ¢« ¢ o o &
3 Bar-Element Coordinate System and Element Forces . . . .
4 Plate-Element Forces and Stresses . . . . . . . « « .
5 PE Concept-Evaluation Model, Undeformed Shape . . .
6 Platform Strut-Referencing Technique . . « « « « « . .
T PE Concept-Evaluation Model Boundary Conditions %
8 PE Concept-Evaluation Model with Missing Elements . .
9 PE Concept-Evaluation Model with Static Deformation .

10 PE Concept-Evaluation Models Usedin Study . . . . . .

24

24

27

Page

11
13
14
16

Ef



h"ﬂ'ﬂwmmr&:nw. .

Figure

11

13
14
15
16

17

ILLUSTRATIONS (continued)

Planetary Explorer Model,
Planetary Explorer Model,
Planetary Explorer Model,
Planetary Explorer Model,
Planetary Explorer Model,
Planetary Explorer Model,

Planetary Explorer Model,

Configuration A . .
Configuration C . .
Configuration G . .
Configuration I . .
Configuration J . .
Configuration K . .

Final Configuration

iv

Page

18

19

20

21

22

23



PLANETARY EXPLORER STRUCTURAL CONCEPT
EVALUATION MODEL USING NASTRAN

INTRODUCTION

Figure 1 is the conceptual drawing that evolved from the systems analysis
conducted by the Planetary Explorer staff. Structurally, it consisted of:

e A centertube to house the planetary insertion motor and provide support
to major structural members

o A honeycomb platform and struts to support experiments in a twelve-bay
arrangement 1

e An electrically despun antenna supported above the centertube by an
adapter cone and discrete struts attached to the top of the centertube

e Solar-array panel-support stringers above and below the experiment 3
bays and on the circumference of the spacecraft i

e A hydrazine system to be located and supported in the volume bounded by
the dotted lines shown }

Creation of a workable mathematical model requires an understanding of the ?
functions to be performed by the model. The purpose of this concept-evaluation

model was to define static load paths and deflections under predetermined worst-

case loading conditions for various configurations of the basic concept.

FUNCTIONS OF THE MODEL
Configuration options to be evaluated by the model were:
e The volume indicated in Figure 1 must take in the mass of the hydrazine
system as either discrete spherical tanks or a toroid. Variations in the
method of supporting this mass (and resulting load inputs) from the cen-

tertube or from the outer framework should he investigated.

e Analysis of the optimum number of struts to support the honeycomb plat-
form and the optimum dimension of the root 1
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e Number and orientation of the antenna-support struts

e Addition or removal of vertical stringers connecting the upper and lower
solar array to the platform, in order to isolate the effect of the platform
deflections on the outer framework of the array

Worst-case loading conditions to be imposed on the varying configurations
included:

e A 30g axial force coupled with a 120-rpm spin loading, corresponding to
prototype levels (1.5 x flight levels) of the third-stage burn and spin of
the Delta launch vehicle

e A 3g lateral load acting through the spacecraft center-of-mass, corres-
ponding to the prototype lateral load experienced during the pitch pro-
gram of the Delta vehicle

e A 23g axial load, corresponding to the prototype deceleration level of
the planetary-insertion motor burn

Because these loading conditions are axisymmetric, the mathematical model
can include only half the spacecrait and still represent the entire structure
through the use uf proper boundary conditions. This reduces the computer time

rnecessary to solve the problem and eliminates redundant data from the symmet-
ric half,

After considering the functions of the model, the actual creation of the NASTRAN
(NASA structural analysis program) model begins.

CREATING THE NASTRAN MODEL

The calculation began by deflining a cylindrical coordinate system with its origin
at the third-stage interface, and the positive 7Z axis pointing along the spin axis
toward the despun antenna (Figure 1). Grid points set up at key intersections
of the structural members connected the NASTRAN finite elements to approxi-
mate the structure; this grid arrangement permitted addition or removal of
various elements in areas where the number and orientation of struts were to
be investigated.

In order to budget computer time and obtain meaningful data, care is necessary
in choosing the number of elements and the numbering sequence of the grid
points. Accuracy in the NASTRAN model is directly related to the fineness of
the grid arrangement. Up to a point, decreasing the size of the finite elements



FOLDOUT FRAME |

UPPER CORNER SUPPORT STRUT-
( REMOVABLE ) \

= \ By
1 // \
|
49
\L
"“-\ \_ 5
~—
36.000 DIA ~L
CIRCULAR ARRAY ANTENNA
46000 | 20000 HYD.SYSTEM
HYD. SYSTEM AREA
AREA
.///
16.625 REF e
| [ = )
‘ [
1 I
i " .
™ FE]
°
A | N
|| L
|
Initial numbering started with 10 at the antenna on the cut plane. It proceeded ‘ e
circumferentially for 180 degrees and back to the next point down on the cut plane. . —18.000
D Indicates resequenced grid numbers which started at the antenna (m = 10) and L L—-__ —e—————n
proceeded downward as shown. A few one-half bay circumrerential jumps were -
made, always returning to the original plane one point downward.,




£0LDOUT. FRAME Z_

e— — 46588 —
= — 23.708 -
e 23524
«—— 21 000 HYDRAZINE SYSTEM —— > 500 ——— I3 24—
PORT STRUT- HEIGHT EXTREMITIES OF l——— 11,840 —
) ALLOWABLE AREA | vess
|| L -
/ FRAME SUPPORT Tox: .
\ -1 — - —
\\
\ - » e 800
N . - !
NN = = N
. - —— o S o T T
S )
~— \.
INSERTION MOTOR
9 MODIFIED TE-M-521
(=]
8 & '; :l - 3 ID 5 'y
o > o U
8 o n F
- 0
- o
. 5 [2] 3
2 TG : 22l |
. B -2
G.O— JiNe—————— 28 — 30268 —— 899 gg T w 9750
g " " GENTER SUPPORT & u n LY o
. @ = g ~ Ore! S ﬂ
_SEE - -
P 0898
- / —| AN T R
/ 3 10900 DIA =] H s
(. : ) TYP REF \ - &2
‘ | |18 @ -
‘ . i e =y q] "? " 8‘3 o =
; ~ O - B R § I
S o v ‘ 0 & Oflw]|
; W on ‘ gf\ ==
omle -5 H
“~ o w— " A Y =
| ol & T . \
|| el | TR of=] |
e | ———— . 1l\[;] |
© o
3 © 9 - JL
[j L e 14,674 ——————»
= —— 31,300 — »
— 40.000 ——— »
————— 46772 — — —_— >
8In—— -{
— ——— 63772 — >
— — 64272 _— = >

Figure 1. Planetary Explorer Concept (Grid Point Numbering Systems)

3




PRRECEDING PAGE BLANK NOT FILMED

used produces better results; however, as each grid point has 6 degrees-of-
freedom associated with it, a fine grid arrangement will produce a large struc-

tural matrix, which requires a large amount of computer time for its evaluation.

Figure 2 shows schematically a typical NxN-coupled structural matrix that re-
lates every existing degree-of-freedom to every other degree-of-freedom in the
model. The NASTRAN theoretical manual(®) describes this in more detail. The
consecutively numbered degrees-of-freedom for each grid point appear along the
first row and down the first column. A+ in Figure 2 indicates that a connection
between that particular row's and column's degree-of-freedom will appear in the
model; a 0 indicates that no connection has been made. NASTRAN decomposes
the smallest band of terms on either side of the diagonal »~f this matrix into a

smaller matrix that is easier to evaluate, and stores the terms further away
from the diagonal as "active columns."

The numbering system chosen for grid-point identification can give rise to a
large number of off-diagonal terms in the coupled structural matrix. A narrow
band of terms on either side of the diagonal may not be present; without such a
band of nonzero terms, NASTRAN will not work effectively in the decomposition
(evaluation), and the calculation will consume much computer time. Resequen-
cing the numbering system for a better bandwidth became necessary in the
Planetary Explorer model in order to reduce an initially large decomposition
time. Use of the numbering system that appears in Figure 1 (numbers enclosed
in boxes) produced a bandwidth of 143 terms, with approximately 700 degrees-
of-freedom (a 700 x 700 matrix) and a decomposition time of 86 seconds.

The next step in constructing the model was to select the finite elements that
would realistically approximate the Planetary Explorer structure. Figures 3
and 4 show several of the NASTRAN finite elements chosen. The bar element
of Figure 3, a connection between iwo grid points, acts as a beam to resolve
axiz} forces and the shears and moments indicated on its ends. An analysis us-
ing this clement (as with all elements included in NASTRAN) is in agreement with
linear small-deflection theory. The plate element in Figure 4 can resolve the
forces and moments shown, the output representing an average effect of these
forces near the center of the element. The plate element can describe a plate
structure of homogeneous cross section, or one of varying composition (such as
a honeycomb panel). Structural properties of the finite elements, input in the
bulk data portion of the program, include items such as the modulus of elasticity
or Poisson's ratio, Connection cards tell NASTRAN the manner in which the

elements are joined. Figure 5 shows how these elements were connected to des-
cribe the Planetary Explorer structural model.

Use of twelve circumferential flat homogeneous plates at three vertical positions
approximated the centertube. The third-stage adapter, the most rigid part of the
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Figure 2. NxN=Coupled Struciural Matrix

structure, did not require as fine a grid as the upper section of the centertube;
six circumferential flat homogeneous plates at two vertical positions served to
represent the adapter. To keep the assumptions embodied in the element-
defining equations accurate, the ratio of adjacent plate sides in any location
throughout the model did not exceed 2.5:1. Using triangular plate elements
(slight variations of the basic plate) below the platform strut supports made it
easy to change the dimension of a strut root by redefining only the connection
point at that particular vertex. These elements also provided a transit. »« from
the fine-grid upper section to the coarse-grid ad=pter.
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Figure 5. PE Concept-Evaluation Model,
Undeformed Shape

Twelve nonhomogeneous plates, also shown in Figure 5, approximated the honey-
comb platform. Shear stiffness (based on the honeycomb core) and membrane
and bending stiffness (based on the face sheets) were input as plate properties.

The structural design called for cantilevering the platform-support struts from
the centertube and fastening them radially to the platform. The I-section ta-
pered struts were to number either six or twelve; the member was to allow a
minimum amount of tip deflection under the platform loading. As the primary
concerns were the tip deflection and the force input to the centertube, the model
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of the strut was fairly coarse. The NASTRAN construction consisted entirely
of bar elements, using separate bars for each flange and web respectively, as
shown in Figure 6. Vectors emanating from existing grid points on the shelf or
the centertube served to define the grid points for the flanges and web, forming
a rigid connection between existing and referenced grid points and eliminating
the need to define new grid points or to constrain degrees-of-freedom when re-
moving or changing the position of struts. Investigation of the root depth of the
struts led to modifications of the model, shown by dotted lines in Figure 6; half
the inertia and cross sectional area of bar 5 was referenced to point 1, the
other half to point 2. This served to develop centertube stiffness at both
points 1 and 2, and did not require developing all the stiffness at point 1.

It therefore constituted a more realistic approximation of the actual
connection.

Homogeneous plate elements served to approximate the body-mounted solar-
cell panels; as these panels were not to be load-carrying structural members,
according to a predetermined requirement, the elements were given weight
(nonstructural mass) but no structural stiffness. The panels were supported by
vertical and horizontal stringers that, like all other connections from the outer
framework to the centertube, were modeled using bar elements having the cross
sections of the conceptual drawing.

A vector in the -Z direction, from an existing grid point on the spin axis in the
plane of the top of the centertube, referenced the mass of the planetary-insertion
motor; mass properties of this motor (moments-of-inertia, etc.) were input at
the end of this vector at the position of the center-of-mass. The existing grid
point (500 in Figure 1) was then connected to the top of the centertube by very
rigid bars (E = 90 x 10'"), allowing the development of realistic forces and mo-
ments at the upper corners of the flat plates on the centertube. This method
removes the necessity of writing multipoint constraint equations that relate de-
pendent degrees-of-freedom to one or more independent degrees-of-freedom,
and can be difficult to determine under some loading conditions.

This technique of modeling with rigid bars also proved useful in investigating the
effects of structural connections from the hydrazine system to the centertube.
The system was undefined except for weight and general location, and a rigid
torus was assumed as shown in Figure 5. Each bar in the torus had a nonstruc-
tural mass equal to 1/24 the total mass of the hydrazine. Modeling the connec-
tions to the centertube and outer framework with rigid bars resulted in transmit-
ting realistic forces and moments developed from the g-loading on the hydrazine
torus to these areas.

After defining the structural components, the analysis must completely and ac-
curately define the loading conditions. The worst-case loading conditions already

10
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described were input in the proper direction of the g forces: e.g., the side load
was defined as a unidirectional g field parallel to the cut plane. The spin load de-
scribed in NASTRAN applies a g load on the element-defining grid points that is
proportional to their radial distance from the rotation center, and to the spin rate.

The appropriate g loading acts upon the internal nonstructural mass associated
with certain elements: the experiments, for example, were distributed uni-
formly over the platform by using this nonstructural mass (lb/in.z ) as an input
to the properties of the plate elements of the platform. The total weight associ-
ated with the area of a particular plate is lumped proportionally at the four de-
fining grid points, and the g-load acts on these lumped masses. Contributions
from adjacent elements are also considered.

In the model, aluminum quadrilateral plates (Figure 5) represented the electron-
ically despun antenna weight; giving these plates zero weight and a nonstructural
mass equal to the antenna weight divided by the area allowed the antenna to input
realistic loads to the antenna supports without regard to the actual structural de-
sign of the antenna.

NASTRAN computes the structural mass of each element, using as a basis the
material density, cross sectional area, and distance between grid points: on
request, it outputs the entire spacecraft weight and the mass properties about
a given point,

As mentioned previously, application of proper boundary conditions makes it
possible to use a half-spacecraft model. Figure 7 shows schematically the
spacecraft cut plane and the numbering system for the three translational and
three rotational degrees-of-freedom involved. To represent the actual hardware-
test condition of a clamped third-stage interface,the bottom ring of grid points
appears in Figure 7 with all degrees-of-freedom removed (i.e., set equal to
zero). To effectively model half the spacecrait, degrees-of-freedom 2, 4, and
6 must be removed for all grid points on the cut plane, in order to compensate
for the equal and opposite forces and moments generated by each half along this
cut plane. This procedure completed the consideration and inputs needed to de-
velop the NASTRAN model, which is then described according to the NASTRAN
format and submitted for keypunching. The appendix is a listing of input cards
for configuration PE-A,

The next phase of the analysis is to debug the program to remove errors or in-
correcily defined elements, A common error is a matrix singularity, which
occurs when an unconnected grid point is not constrained; this produces zero
terms on the diagonal of the structural matrix, causing it to have an undeter-
minable value. NASTRAN will not proceed with the solution until the error is
removed.

12
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NASTRAN outputs diagnostic messages to inform the user of errors; however,

as the problem can run to completion with an improperly connected model, the
graphics portion of NASTRAN can serve to check for proper connections. In the
Planetary Explorer model, a plot was made of all connections input for each con-
figuration. Figure 8 shows an example of a disjoint model immediately discarded
as incorrect because of missing structural connections.
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Figure 8. PE Concept-Evaluation Model with Missing Elements



Once the model is working correctly, some procedure is necessary for effi-
ciently analyzing the many stress and deflection numbers output by NASTRAN.
The graphic output made it easy to evaluate the relative deformations under a
particular loading; using this NASTRAN option, the maximum deformation is set
equal to a desired length and the plotted structure is normalized to it. The de-
formed structure (greatly exaggerated) was plotted on the same graph as the
undeformed structure (Figure 9).

A meeting held after each computer run discussed the next configuration to be
analyzed., Figure 10 describes the various configurations considered in this
study. Figures 11 through 16 show the sketches used to efficiently portray the
results of each run and compare them with those from previous configurations;
the small figure in the lower righthand corner of each two-bay sketch shows the
hydrazine-mounting scheme for that particular run. Loads and deflections in
the Z direction at grid points were also recorded on these two-bay section
sketches of the model. Using these figures and the plotted deformed structure
made it possible to clearly define the changes induced by each configuration in
turn, and to make engineering judgment on the design based on proper load paths,
distribution of loads, and allowable deflections, without exceeding the design
stress.

For example, Figure 11 shows the relative amount of load carried by the outer
framework (57 to 414 1bf). Removal of the outer-frame vertical connection
(Figure 13) considerably decreased the load on the other fra:.ae member (9.5 to
15.41bf). The large deflection of the outer edge of the platform (Figure 13) and
the large load input to the outer framework (Figure 11) suggested the need for a
stronger strut design. Concept-evaluation models PE-I and PE-K (Figures 14
and 16) were iterations of the platform-strut dimension in an attempt to mini-
mize the conditions mentioned.

Figure 12 shows that use of the hydrazine system to support the platform tended
to reduce the loading on the outer framework as well as the platform deflection;
however, the final configuration reflected the philosophy that the hydrazine »:'s-
tem should be a self-supporting independent system with no significant impacc
on the rest of the structure. For example, vibrations initiated at the area of
the hydrazine system would under the latter support arrangement load up the
solar array; this unacceptable condition could be negated only by removing any
structural support of the outer framework by the hydrazine system.
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CONC LUSION

Figures 16 and 17 show the final structural configuration recommended for the
Planetary Explorer, with the following characteristics:

e Twelve platform-support struts with root dimensions of approximately
4 inches, positioned as shown in Figure 16

e Six antenna-support struts directly above every other platform-support
strut, as shown in Figure 16

e Removal of the platform-adapter ring connecting the platform to the
centertube

e Adequacy of the cross section and size of all other members of the con-
cept drawing

NASTRAN was most useful in this evaluation, where relative effects of struc-
tural changes were the criteria for establishing an optimum configuration.
NASTRAN analysis accomplished in 3 months a task that would have been almost
impossible to perform by hand calculation in a much longer period of time. With
only slight modifications, the model can serve for a future study amounting to a
complete dynamic analysis.

SOURCE

NASTRAN User's Manual. Caleb W, McCormick, ed. NASA SP-222, October
1969

NASTRAN Theoretical Manual. Richard H., MacNeal, ed. NASA SP-221, 1970
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