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THERMOSPHERIC HYDROGEN: ABSOLUTE DENSITIES AND TEMPORAL

VARIATIONS DEDUCED FRONT IN SITU MEASUREMENTS

Henry C. Brinton and Hans G. Matiyr

ABSTRACT

The concentration of atomic hydrogen at 350 km altitude has been derived

from Explorer 32 measurements of ion composition and model n(0) values by

consideration of the charge exchange equilibrium O+ + H	 H+ + O. The

measurements, made at northern temperate latitudes between June 1966 and

January 1967, have made possible the first comprehensive study of thermospheric

hydrogen density and its temporal variations based on in situ observations. Dur-

ng the period of measurement the average F 10.7 increased from 100 to 140,

and n(H) varied between approximately 4 x 10 5 and 8 x 10 4 cm-3 , with a mean

value of 2.3 x 10 5 cm-3 . The derived nighttime hydrogen densities are ap-

proximately a factor of 2.4 higher than the Kockarts-Nicolet model values, and

the derived daytime values exceed the model by a factor of about 3.8. Employ-

ing the Jacchia formulation for the primary components of the exospheric tem-

perature, parametric analysis has resolved the n(H) variations into contributions

associated with temperature components due to solar activity, local time, geo-

magnetic activity, and the semi-annual effect. With one exception, the hydrogen

concentration is observed to vary inversely with each of the model temperature

components, as theoretically expected; the semi-annual variations in n(H).

though small, appear to vary directly with temperature. The solar cycle effect
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accounts for a factor of 2.5 decrease in n(H) over the period of measurement, in

reasonable agreement with a factor of 3 predicted by the Kockarts-Nicolet model;

this suggests that n(H) varies by more than a factor of 10 over a solar cycle. The i

observations show, for the first time, that the 27-day variation in solar activity

due to solar rotation is correlated with an inverse n(H) variation of as much as

a factor of 1.3. The diurnal variation of n(H) is observed as approximately a

factor of two increase in density between day and night (consistent with the

models of Patterson and McAfee), with a daytime phase lag of two hours between

model temperature and density, and a nighttime lag of four hours; furthermore,

z	 the magnitade of the n(H) diurnal variation is observed to increase with rising

solar activity. It is concluded that while these results confirm individual fea-

tures of several existing models, there appears to be, at present, no single

theoretical model which fully describes the behavior of thermospheric hydrogen.
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1. Introduction

One of the long-standing questions in atmospheric research is that of the

concentration and temporal behavior of thermospheric atomic hydrogen. The

concentration of thermospheric hydrogen is governed by dissociation of water

vapor in the lower atmosphere, diffusion, exospheric transport and thermal

planetary escape. The escape mechanism is highly temperature-dependent,

and since atmospheric temperature is, in turn, dependent on a number of geo-

physical and solar parameters, the hydrogen concentration varies with time in

a complex manner.

A number of experimental techniques have been used, with only moderate

success, to measure the hydrogen concentration and to determine its temporal

behavior. Direct mass spectrometer measurements have proved difficult to

interpret, due perhaps to instrumental effects [1-3]. Large uncertainties are

also associated with the thermospheric hydrogen concentrations determined from

airglow observations. These techniques all involve the measurement of integral

intensities, requiring for the derivation of n(H) at a particular location the as-

sumption of a model global hydrogen distribution. The interpretation of Lyman-a

observations in terms of thermospheric hydrogen concentration, for example,

is complicated by the effects of high-altitude scattering [4]. A better determina-

tion of thermospheric hydrogen variations can be made with ground-based Balmer-a

observations ^5], but the absolute concentrations derived are subject to uncer-

tainties in the solar Lyman-0 intensity and in the inte grated hydrogen content in
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the direction of observation. Finally, satellite drag techniques are not useful

for determining n(H) below 1000 km altitude because hydrogen is a minor con-

stituent in this region.

This paper describes a correlative study of Explorer 32 data obtained in the

period June 1966-January 1967, which has provided the first comprehensive de-

termination of thermospheric hydrogen density and temporal behavior based on

in situ measurements. The variation of n(H) at 350 km altitude, within a limited

range of latitude and longitude, has been resolved into density contributions as-

sociated with the primary exospheric temperature components. This paper,

which follows an early short report on the study [6], describes the derivation of

the n(H) values, discusses the observed dependence of hydrogen on each of the

exospheric temperature components, and compares our results with those ob-

tained by other experimental techniques and with current theoretical models.

2. Explorer 32 orbit and instrumentation

The Explorer 32 satellite was launched on May 25, 1966, and its comple-

ment of aeronomy instruments obtained useful data until March, 1967. The or-

bit, with an inclination of 64. 7*, perigee of 277 km, and apogee of 2725 km, pro-

vided measurements covering a full diurnal cycle at a selected altitude and

geographic location in a period of approximately four months. This feature has

made the satellite especially useful for study of the n(H) diurnal variation.

The instrument complement was designed to make in situ measurements of

positive ion composition and concentration, electron concentration and tempera-

ture, and neutral particle composition, concentration and temperature. The

2



present study, as described in § 3, is based upon correlation of data from sev-

eral of the Explorer 32 instruments.

3. n(H) derivation technique

At thermospheric heights the charge-exchange reaction O + + 11 = H + + O

proceeds so rapidly that the 11 + distribution is governed by the chemical equilib-

rium relationship

n(H+) = 8 n(0) n)(H)	 (la)

[71 For the present study relation (la) has been written in the form

n(H) = 9 n(O+^ n(0)	 (lb)

and n(H) has been derived from Explorer 32 measurements of the ion ratio and

model n(0) values verified by Explorer 32 density gage results. (A more de-

tailed discussion of this method of determining n(H) was presented in [8]). 'The

measurements selected for analysis were made between June 1966 and January

1967, during perigee passes of the satellite over ground stations at Ft. Myers

(Florida), Rosman (North Carolina), and Mojave (California). Figure 1 indicates

the dates and altitudes of the measurements, and shows that with the exception

of a few points at the end of the measurement period, all data were obtained in

the altitude interval 280-400 km. By restricting the data to those obtained at the

three selected ground stations, the geographic spread of the measurements was

purposely limited in longitude (-65° to -124') and latitude (23' to 47'). This re-

striction assures, as explained below, that the model n(0) values used in the

3
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n(H) derivation are valid, and that the deduced n(II) variations are free from

any longitudinal effects that might be associated with longitudinal variations in

the ion composition [9-11].

The n(H +) values were obtained from the ',xplorer 32 Bennett RF ion mass

spectrometer (described in [12]). Due to amplifier saturation the accuracy of

the ion spectrometer n(O+) measurements at Finax was degraded; the two com-

panion cylindrical Langmuir probes [13] measured n e at the time of each n(I{+)
t

observation however, and since to a close approximation ne = n(O +) in this al-

titude range, the n. values were used for n(O +) in relation (lb). Simultaneous

with these determinations of n(H +) and n(O+), the Explorer 32 density gage ex-

periment [14] provided measurements of atmospheric density, which at this al-

titude is predominantly atomic oxygen. Newton has reported [15] that the gage

measurements at midlatitudes, for altitudes below 550km, agree closely at all

local times with the Jacchia 1965 model atmosphere [16,17] density values. Fig-

ure 2 compares measured and model densities for Explorer 32 passes over

Rosman, Mojave, and Ft. Myers during the period May-October 1966. the for-

mat of the figure is that used in [15l, presenting versus local time, the ratio of

measured to Jacchia model density on the right-hand vertical axis, and the log-

arithm of this ratio on the left. The demonstrated agreement between measured

and Jacchia model densities affirms the validity of the model for the time period,

altitude range, and geographic location of our n(H +) and ne measurements. On

this basis, the values of n(0) used in relation (lb) were obtained from the Jacchia

4



1955 model atmosphere, computed for the solar and geophysical conditions ex-

isting at the time of each n(H +) and ne measurement. (The Jacchia 1970 model

[18] includes n(0) values which, for the altitude range of our study, are at most

10% higher than those of the 1965 model.)

4. Hydrogen concentrations

The eight-month period of Explorer 32 measurements is shown in Figure 3

in the context of the long-term variation of solar activity. Our observations

span an interval of rapidly increasing solar activity in which the mean 10. 7 cm

solar flux rose from a value of approximately 100 to approximately 140.

Our derived n(11) values are shown in the center panel of Figure 4, in which

horizontal scales indicate the approximate day and local time of each observation

(note that local time decreases from left to right, governed by the precession of

the satellite orbit). To facilitate subsequent analysis we have normalized the

hydrogen concentrations to an altitude of 350 km, assuming a scale height of

600 km which corresponds to a temperature of 900'K, the average of the day and

night model values for the period of observation. The e.xospheric temperature,

Too, for the time and location of each derived n(H) value has been calculated using

the Jacchia 1965 model equations F16,17], and the variation of T.. with time is

shown in the upper panel of Figure 4. The variations of the daily and 54-day

mean values of the 10.7 cm solar flux for the period of our n(M observations

are shown in the lower panel.

Comparison of the three panels in Figure 4 reveals that the long-term in-

crease in solar activity indicated by the rise in F 10 7 is correlated with (1) an

3
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iLL	 overall increase in calculated exospheric temperature and (2) a corresponding

decrease in the concentration of thermospheric hydrogen. Furthermore, com-

parison of the daily F10.7  behavior with n(H) reveals a periodic n(H) variation

which is inversely correlated with the 27-day variation of solar activity associ-

ated with solar rotation.

5. Analysis of n(II) variation

The complex variation of n(H) apparent in Figure 4 has been resolved by

-	 means of a least square analysis into a number of density components, each of

-1	 which is associated with a primary component of the exospheric temperature,

T.. The formulas for the temperature components are those of the Jacchia 1965

model, and include contributions associated with 11-year solar cycle, 27-day

solar rotation, diurnal variation, geomagnetic activity, and semi-annual variation.

The solar activity components of the n(H) variation determined by this anal-

ysis are shown in Figure 5. The density component associated with the 11-year

variation in solar activity is represented by the light solid line. The heavy line

fitting the computed points (one point for east ► ii(H) value in Figure 4) represents

the sum of the density components associated with the 11-year solar cycle and

the 27-day variation of solar activity associated with the sun's rotation. Figure

6 shows the sum (heavy line) of the components associated with the diurnal n(H)

variation and the 11-year solar activity variation; the 11-year component alone

is also shown (light line). the behavior of these n(H) contributions, ;:ad of those

associated with the other exospheric temperature components, are discussed in

the following section.

r'
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6.	 Discussion of n(H) components

6. 1. Solar activity components of n(H) variation

The behavior of the solar cycle n(H) component in Figure 5 indicates that

during the eight months of Explorer 32 measurements the thermospheric hydro-

gen concentration decreased by a facto-- of approximately 2. 5 due to the long-

term increase in atmospheric temperature which is associated with rising solar

activity. Although our absolute n(H) values are higher than those given by the

Kockarts and Nicolet theoretical model [19,20] (discussel in § 7), the observed

decrease by a factor of 2.5 agrees well with the approximate factor of 3 decrease

in n(H) at 350 km which is predicted by the model for an increase in thermo-

pause temperature from approximately 780° to 920'K. These temperatures are

the nighttime minimum values, for quiet magnetic conditions, calculated from

the Jacchia 1965 model [16,17] for average F i o . ; values of 100 and 140, the ac-

tivity levels at the beginning and end, respectively, of our measurement period.

Our n(H) observations, then, indicate that the variation of thermospheric hydro-

aen concentration over a solar cycle will be large, perhaps well over a factor of

ten as predicted by the Kockarts and Nicolet model.

The n(H) component associated with the 27-day variation in solar activity

due to solar rotation modulates the long-term n(H) behavior in the manner shown

by the heavy line in Figure 5. Our study has shown, for the first time, that this

periodic component accounts for density variations of as much as a factor of 1.3,

the hydrogen concentration again varying inversely with the related atmospheric

temperature component. This result may have implications for the magnitude
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of the 27-day variation in solar Lyman-a flux deduced by Meier from airglow

measurements [21] , since the latter analysis assumed a constant geocoronal

hydrogen density.

6.2. Diurnal component of n(H) variation

The heavy line in Figure 6 represents the sum of the n(H) contributions

associated with the diurnal and solar cycle atmospheric temperature compon-

ents (note that local time decreases from left to right). The diurnal variation

of n(H) is observed as approximately a factor of two increase in concentration

between day and night. Consideration of the diurnal component alone reveals

that the n(H) diurnal variation, defined as the night-to-day density ratio, was

larger for the second local time cycle covered by our observations than for the

first cycle. This observed increase in the magnitude of the n(H) diurnal vari--

tion with increasing solar activity (and higher average exospheric temperature)

is consistent with the behavior predicted by the Patterson [22] hydrogen model. A

second characteristic of the n(H) diurnal component is an apparently variable phase

lag between the Jacchia model exospheric temperature and hydrogen density. The

error in our least square analysis is minimized when phase lags between model

temperature and n(H) of two hours during daytime and four hours during night-

time are introduced; the phase lag was aF -limed to vary sinusoidally. Patterson's

model predicts a phase lag of two hours at night, but no phase lag during day.

Characteristics of the n(H) diurnal variatior determined from our Explorer

32 observations are compared in Table 1 with model predictions and with recently

8
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reported airglow results. (The models chosen are for low solar activity, F 10.7

100.) The quantities compared are the night-to-day thermospheric hydrogen

density ratio and the n(H) - model temperature phase lag. It is apparent that our

in situ observations are in considerable disagreement with the COSPAR Inter-

national Reference Atmosphere 1965 (CIRA, 1965) [23] and the Jacchia 1965

model [16,17] which is based on the theoretical model of Kockarts and Nicolet

[19, 20]. Our factor of two for the diurnal variation of n(M is in excellent

agreement, however, with the theoretical predictions of Patterson [22,24] and

McAfee [25] whose models include the effect of lateral hydrogen transport. Tinsley

has also deduced a factor of two from ground-based Balmer-a observations 151,

and Meier and Mange have determined an upper limit of four for the diurnal den-

sity ratio from OGO-4 Lyman-a measurements [26]. The variable phase lag

which we have observed between the diurnal variation of n(H) and the Jacchia

model exospheric temperature is greater by two hours than that predicted by the

Patterson model. The implications of this result are currently under study and

will be discussed further in a later paper. As shown in the table, Tinsley has

reported a nighttime phase lag of two hours. The hydrogen models used by Meier

and Mange, however, include the assumption of azimuthal symmetry about the

Earth - Sun line, and their data thus far apparently support a symmetrical

hydrogen distribution [26].

6. 3. Geomagnetic activity component of n(H) variation

By extending the data sample upon which our earlier report [6] was based

to include n(H) values derived from measurements made on magnetically disturbed

9
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days, we have determined an inverse relationship between thermospheric hydro-

gen density and the Jacchia [16,17] geomagnetic activity temperature component.

The measurement period, June 1966 - January 1967, was a time of generally

low magnetic activity (average a p = 12, K  = 3-), and approximately 70% of

our observations were made under conditions of a p S 10 (reported in [6] ) . The

remainder of our measurements were made under conditions of moderate-to-

high magnetic activity, including periods in late August, early September, and

January when ap exceeded 150 for time periods of up to 15 hours. Our analysis
I

reveals a consistent inverse relationship between thermospheric hydrogen con-

centration and the Jacchia temperature component derived from the value of ap

six hours prior to each n(H) observation.

6.4. Semi-annual component of n(H) variation

I
Unlike the four previously discussed components, the n(H) contribution as-

sociated with the Jacchia model semi-annual temperature component appears to

vary directly with temperature. Although this result should at this time be con-

sidered preliminary, i+ may constitute further evidence that the atmospheric

semi-annual effect is not explainable simply as a temperature phenomenon, but

that in addition, neutral composition changes in the lower thermosphere should

also be invoked[27-30]. Tinsley has drawn a similar conclusion from analysis

of Balmer-a variations [5].

7.	 Discussion of absolute n(H) values

As discussed in §6. 1 we have compared our derived hydrogen densities

with the Kockarts and Nicolet model [19,20] values for appropriate exospheric

10
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temperatures. The average nighttime n(H) at 350km derived i~om measure-

ments made in June and October (Figure 4) was approximately 3. 3 x 10 5 cm-3

Based on the Jacchia model, the average nighttime minimum temperature in

this period was approximately 820'K. For this temperature the Kockarts and

Nicolet model predicts an n(H) of 1.4 x 10 5 cm-3 ; thus, for nighttime, the model

value is approximately a factor of 2. 4 lower than our derived density. Similarly,

the average daytime hydrogen density derived from measurements made in Aug-

ust and December was approximately 1. 5 x 105 CM-3, and the average model day-

time temperature was about 980°K. For this temperature Kockarts and Nicolet

predict an n(H) of 4 x 104 cm-3 , which is approximately a factor of 3.8 lower

than our derived value. Thus, our derived hydrogen densities are higher than

the Kockarts and Nicolet model values by an average (night and day) factor of

about 3. It appears that these discrepancies result from (1) the neglect, in the

model, of exospheric hydrogen transport, an effect which tends to damp the mag-

nitude of the diurnal variation of n(H), and (2) the underestimation, in the model,

of the hydrogen production rate or base level density at 100 km. It should be

pointed out that Liwshitz , using Monte Carlo numerical techniques, has devel-

oped a hydrogen model [31] which predicts thermospheric hydrogen densities that

are higher than the Kockarts and Nicolet values by a factor of 2-3 for an exo-

spheric temperature of 1000'K.

Airglow investigations of the atmospheric hydrogen content have also led

to the conclusion that the Kockarts and Nicolet n(H) values may be low. Meier

11
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and Mange [4,26] have found that their Fall, 1967 OGO-4 and OSO-4 Lyman-a

observations are consistent with the Kockarts and Nicolet hydrogen model nor-

malized upward by a factor of 3, to a density of 3 x 10 7 cm- 3 at 100 km altitude.
t

In reviewing Balmer-a observations made since 1958, Tinsley and Meier [32]

report a large discrepancy between measured and theoretically expected Balmer-a

intensities. They suggest that one way to resolve this difference is to invoke an

atmospheric hydrogen abundance of up to ten times the Kockarts and Nicolet

model value; they point Qaj.t-; however, that the discrepancy could also arise from
+► r

the use of inappropriate solar Lyman-0 flux values, or from neglect of the di-

urnal variation in n(H) .

Prior [33] has derived two high-altitude n(H) values from satellite drag

data obtained in the period March-May 1967. His densities, for altitudes of

2325 km and 2872 km and for local tiines near 0600 hours, exceed the Kockarts

and Nicolet values by about a factor of three. This result is in good agreement

with our nighttime thermosphere hydrogen density which is 2.4 times the

Kockarts and Nicolet value.

8.	 Accuracy of results

The determination of relative n(H) variations by the method employed in

this study is extremely accurate, since systematic errors associated with in-

strument calibration and inflight performance affect only the values of absolute

hydrogen density. The primary sources of inaccuracy in the determination of

relative n(H) variations are random factors such as instrument noise and data

12
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reading error. The amplitude of this small random error in the n(H) temporal

variation, based on estimated uncertainties in n(H +) and ne, and substantiated

by the results of our curve-fit analysis, is ±15%. This error has been filtered

out of the n(H) components shown in Figures 5 and 6.

The uncertainty in our absolute hydrogen concentrations is primarily due

to a possible inaccuracy of ±25% in the density gage verification of the Jacchia

model n(0) values (Newton, personal communication). An inflight H+ calibra-

tion of the ion spectrometer was performed using ne data from the companion

cylindrical Langmuir probes (the technique is described in[12]), thus eliminating

possible errors due to mass discrimination in the spectrometer and to aerody-

namic effects in the satellite sheath [34]. Further, any systematic error in the

probe measurement of ne cancels out, since it is the ratio n(H+)/n(O+) which is

used in the determination of n(H). As pointed out by Banks [35] a small systema-

tic error, of magnitude 0 to +10%, arises from the use of equation (lb) when the

ion and gas temperatures are not equal. In summary, the uncertainty of our

absolute n(H) values is (+35/-25)%.

9.	 Summary and conclusions

The concentration of atomic hydrogen at 350 km altitude has been derived

from in situ measurements of ion composition and model n(0) values by consid-

eration of the charge exchange equilibrium O + + H :# H + + O. The uncertainty

in the absolute values of n(H) is estimated to be (+35/-25)%, due primarily to

the ±25% uncertainty in the n(0) values. The selected measurements were made

i
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within a limited geographic region, at northern temperate latitudes, between

June 1966 and January 1967.

The average derived nighttime n(H) for the period June-October was ap-

proximately 3. 3 x 10 5 cm -3 , a factor of 2.4 higher than the Kockarts and Nicolet

model value for a temperature of 820°K (Jacchia model T.). The average

derived daytime n(H) for the period August-December was approximately 1. 5 x

10 5 cm- 3 , a factor of 3.8 higher than the Kockarts and Nicolet value for T.0 _

980°K. These discrepancies apparently result from the failure of the model to

consider the effects of exospheric hydrogen transport, and from an underestima-

tion of the hydrogen production rate or base level density at 100 km, 	
t

The variation of hydrogen concentration between approximately 4 x 10 5 and

8 x 10 4 cm' 3 during the period of measurement has been resolved by a least

square analysis into density contributions associated with the primary exospheric

temperature components given by the Jacchia model. The results for each com-

ponent are summarized below:

(1) Solar Cycle: The rise in average solar activity (F 10.7 ) from 100 to

140 between June 1966 and January 1967 and resultant atmospheric temperature

increase caused the derived n(H) at 350 km to decrease by a factor of 2. 5. This

result agrees well with the factor of 3 decrease in n(H) predicted by the Kockarts

and Nicolet model for the appropriate exospheric temperature rise, and indicates

that the concentration of thermospheric hydrogen may vary during a solar cycle

by considerably more than a factor of ten.

14



(2) Solar Rotation: Oui results show, for the first time, that the 27-day

variation in solar activity and the corresponding exospheric temperature com-

ponent are correlated with an inverse n(H) variation of as much as a factor of

1.3.

(3) Diurnal: The derived concentration of therm.)spheric hydrogen in-

creased by approximately a factor of two between day and night, with a nighttime

phase lag of four hours between model exospheric temperature and n(H), and a

daytime phase lag of two hours. The magnitude of the observed n(H) diurnal

variation agrees with those predicted by the Patterson and McAfee models, 	 i

which consider exospheric hydrogen transport, but our variable phase lag is

greater by two hours than that given by Patterson.

Our observations also reveal, an increase in the magnitude of the n(H) di-

urnal variation with rising solar activity.

(4) Geomagnetic activity: Our observations constitute the first evidence

of an inverse relationship between geomagnetic activity, its associated exospheric

temperature component, and thermospheric hydrogen density.

(5) Semi-annual: Unlike the four previous density components, the n(H)

contribution associated with the model semi-annual temperature component, 	 I'

though small, appears to vary directly with temperature. This result may in-

dicate that the semi-annual effect is not simply a temperature phenomenon, but

that semi-annual changes in the neutral composition at low altitudes could also

be important.
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The results reported in this paper constitu*e the first comprehensive study

of thermospheric hydrogen densities and temporal variations based on in situ

measurements. Although Pidividua! features of several existing models are

confirmed by our measurements, it appears that there is, at present, no single

theoretical model hich fully describes the behavior of thermospheric hydrogen

and its response to changing solar and geophysical conditions.
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