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by Wendell Mayo, Paul G. Klann, and Charles L. Whitmarsh, Jr.
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INTRODUCTION

The Lewis Research Center is conducting a technology program in
support of a compact fast spectrum reactor to be used as a heat source
for generating electric power in space. To provide a focal point, a

reference reactor has been chosen and performance goals established.

The reactor is to operate at a thermal power level of 2 megawatts for

50 000 hours with a lithium 7 coolant outlet temperature of 1222 K and

would provide about 500 kilowatts of electric power from a Brayton cycle
power conversion system.

The reasons for selecting this reference reactor and details of the
mechanical design, thermal and hydraulic aspects, fuel swelling, and

reactor dynamics are discussed in reference 1. Reference 2 discusses

materials compatibility and irradiation experiments for this reactor.

It is the purpose of this report to summarize and describe the

nuclear design characteristics of the reference reactor, to present re-

sults of critical experiments which have been conducted by Atomics

International to check nuclear calculations, and to discuss alternate
reactor designs which have been considered.

REFERENCE REACTOR

Description of the Reference Reactor

Figure 1 shows an isometric and figure 2 shows a cross section of
the reference reactor. The core consists of 181 fuel elements arranged
in the shape of a six-pointed star and located by a honeycomb core sup-

port structure. Reactivity control is achieved by six rotating fuel
drums containing 11 fuel elements each. The control drums are imbedded
in a TZM (a molybdenum alloy) radial reflector and located between the
points of the star. A 0.635-centimeter thick T-111 (a tantalum alloy)
pressure vessel encloses the reactor. The 5.06-centimeter thick end

reflectors (TZM) are separated from the active core by grid plates, into
which the fuel elements are anchored, and by coolant plenums which dis-

tribute lithium 7 coolant to the single pass flow channels.

The fuel elements fit within the honeycomb core support structure

consisting of 2.16-centimeter diameter (0.025-cm thick) tubes welded

along points of contact. This honeycomb structure provides uniform
annular coolant flow passages (0.102-cm thick) for each fuel element

and also provides a means of limiting fuel element bowing. Also indi-

cated on figure 2 are the three zones of fuel volume fractions used to
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flatten the radial power distribution. The fuel volume fractions in the

unit cells (defined for calculation purposes) indicated on the figure
are chosen to satisfy fuel burnup criteria so as to Limit diametral

creep in the fuel pin cladding to less than 1 percent over the 50 000

hour core life (discussed in more detail later). An additional impor-

tant benefit of fuel Zoning is enhanced reactivity worth of the con-

trol drums.

Figure 3 shows a cross section of a unit fuel cell. The uranium

nitride (93.2 percent uranium 235) volume fraction is varied by vary-
ing the central hole (void) diameter. The void provides space for the

accumulation of released fission product gases and for some fuel swell-

ing, although the majority of the fuel swelling is in the axial direc-
tion. Crushable spacers (vibration suppressors) are provided at the
ends of the fuel pin to accommodate axial deformation. Active fuel

length is 37.6 centimeters. The tungsten liner (0.013-cm thick) acts
as a separator to prevent physical contact between the UN fuel and the

T-111 clad (0.147-cm thick).

Total coolant mass flow is 9.4 kilograms per second. Eighty four
percent of the lithium 7 coolant flows in the 0.102-centimeter thick

annulus between the clad and the honeycomb tube. Most of the remainder
flows around the control drums, in the reflector and in the triflute
spaces between adjacent honeycomb tubes. The flow rate in the triflute

spaces is orificed to a low value. Additional details on the refer-
ence reactor heat transfer can be found in references 1 and 3.

Analysis ana Results

Methods. - Multigroup cross sections used were generated by the
GAM-II program (ref. 4). The GAM-II cross section library was used

inasmuch as reevaluated ENDF/B cross sections were not available. Two

basic energy group structures were routinely employed; a 13 fast energy

group set (E > 0.414 eV) has been used for one dimensional calculations

with the TDSN program (ref. 5), which is a one- or two-dimensional dis-
crete ordinates transport program, and a four energy group set (a con-

densation of the 13 group set) is used for two dimensional- (RZ or XY)
calculations with the TDSN program and also for Rb calculations with
the DOT-IIW transport program (ref. 6). When a thermal group is re-
quired, e.g., a water immersion accident, the GATHER-II program (ref. 7)
is used to obtain thermal cross sections.

Figure 4 shows a typical XY model for the reference reactor with
the control drums in the fuel fully inserted position. The XY grid

used is shown superimposed on the actual geometry. Transverse leakage

is accounted for by first performing an RZ calculation to incorporate
the axial end reflectors and then establishing an effective core height
for use in computing axial buckling terms for use in the XY (or RB)

model. The symmetry of the 1/4 core geometry is useful for most calcu-

I
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lations; but with the requirement that all drums rotate in the same
direction, it is necessary to use 1/2 core geometry to calculate the
case of two adjacent control drums stuck in their most reactive posi-

tions. The DOT-IIW Rv model is most convenient foc all drums partially
rotated and was used in obtaining the radial power distribution and

reactivity control as a function of time.

Power distributions_ - As the control drums rotate from their

start-up hot critical position of 118 0 to fuel full-in position of

1800 at the end of core life, the radial power distribution changes

with the fuel movement	 On the other hand, the axial power distribution

remains fairly ^onstant with a maximum-to-average power ratio of Pz/Pz

of 1.23. Figure 5 shows the result of time-averaging the local radial
power distribution (P r /P r ) over 50 000 hours of core life. The fuel
pins with the highest P r /P r for each fuel zone are noted on the fig-

ure by A, R, C, and D.

In this type of reactor, which is fuel clad material creep limited,

it is desirable to zone the power so as to equalize clad stress in

each fuel pin. This is illustrated by figure 6 in which the curve

shows the allowable value of P r /Pr as a function of volume fraction

of fuel in a cell which will limit clad creep to one percent in 50 000
hours. The curve was derived from a fuel swelling analysis as de-

scribed in references 1 and 3.

The fuel pins with the highest P r /P r noted on figure 5 are also
shown on figure 6 along with the range of variation as the control drums

are rotated. Note that a fuel drum pin is closest to the limit curve.

Reactivity and reactivity control requirements. - The calculated
available control swing (drums: fuel full-out to fuel full-in) is 8.51
percent Ak/k. Table 1 shows how the control swing is used. Fuel
burnup (U235 atoms destroyed) requires 1.47 percent. ^k/k over 50 000
hours.	 The temperature defect, which includes 0.26 percent Ak/k for
coolant expansion, 0.58 percent Ak/k for fuel and structure expansion
and 0.25 percent Ok/k for Doppler effect, requires a total of

1.09 percent Ak/k. The coolant temperature operating range is from
460 K, the melting point of the coolant, to 1222 K, the coolant outlet
temperature. Long term axial fuel swelling requires 0.95 percent Lk/k.

With an uncertainty allowance of 0.61 percent ^k/k, the total excess
reactivity required is 4.12 percent Ok/k. The further required ability
to shut down to a keff of 0.99 with any two of the six control drums
stuck in their most reactive position requires an additional shutdown
margin of 4.39 percent Lk/k; this includes 0.54 percent Ak/k for
drum interactions for the case of two adjacent stuck drums.

Additional details. - The total flux at rated power is about

1.02 X 10 14 neutrons per square centimeter per second; about one-third
of this flux are for neutrons of energies greater than 0.8 MeV. The

median flux energy is 0.44 MeV and the median fission energy is
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0. 36 MeV.

The prompt neutron lifetime is calculated as 40 nanoseconds and

the effective delayed neutron fraction is calculated as 0.0067 based
on a delayed neutron fractional yield of 0.0065.

A partial "water immersion accident" simulated by surrounding the

pressure vessel of the reactor radially by water increases the rear.-

tivity by 0.49 percent ^k/k. A total loss of coolant is equivalent
to -1.52 percent ^W k.

CRITICAL EXPERIMENTS

A series of critical experiments was performed by Atomics

International (contract NAS-12982) to provide checks on the neutronic

calculational methods and cross sections used for the reference reactor

and to provide experimental information on reactivity effects and con-

trol drum worths. Reference 8 gives complete details of all experi-

ments; representative experiments and com-arisons with calculations are
presented here.

Description of the Critical Assembly

Figure 7 is a photograph of the critical assembly. It was designed
to provide a good geometric representation of the reference reactor.
Figure 8 is a cross section of the critical assembly which shows the

degree of similarity attained when compared with figure 2 showing the
reference reactor. Fine control is obtained by rotating control drums
as for the reference reactor. A scram device for the assembly relies
on rapidly tilting two-thirds of the radial reflector away from the core.

Provision is also made for the reactivity measurement of samples of
materials of interest at the positions marked "S" on the figure. The

samples are about 1.3 centimeters in diameter and extend the full length
of the active core. The reactivity measurements are made relative to

void using the inverse kinetics method. Resu'cs of the measurements
are presented in reference 8. A proton recoil spectrometer has been in-
serted into the central region of the core for neutron energy spectrum
measurements.

The fuel element has been designed so that materials of interest

can be added to the core uniformly and cumulatively. Figure 9 shows

the critical assembly fuel element design. Note that the axial end re-
flectors and honeycomb tubes are integral parts of the fuel element.

Oralloy rods (93.2 percent uranium 235) are used as the fuel. Three

rod sizes were available to allow small adjustments to the fuel load-
ing; the large rods are 0.432-centimeter diameter, the intermediate
size is 0.168-centimeter diameter and the small rods are 0.066 centi-
meter diameter. All are 37.51 centimeters long. Lithium nitride (fully

ri
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enriched in lith'	 7) is used to simulate both the nitrogen from the

UN and coolant of the reference reactor. The ceramic-like lithium
nitride pieces fit between the honeycomb tube (Ta) and the fuel tube

(Ta). There is sufficient space between the fuel rod bundle and the
fuel tube to wrap as much as 4.1 kilograms of hafnium, 15.2 kilograms
of tungsten and 21.7 kilograms of tantalum foil distributed uniformly

an.ong the 247 fuel elements. In addition, since the full complement

of available fuel rods is not needed for criticality, space for an

additional 0.279 centimeter diameter tantalum rod is available at the

center position of each fuel element. Furthermore, a 0.356 centimeter
diameter tantalum rod that is the full length of the fuel element

(59.7 cm) can be inserted in the triflute regions between adjacent

fuel elements (300 positions) in the star-shaped core region. Parts of
these rods extend into the end reflector regions.

Note in figure 9 that there is an eccentricity built into the fuel

element. The fuel rod bundle is offset from the center of the honey-
comb tube by 0.051 centimeters. This allows simulation of core fuel

expansion or compression radially by merely rotating all of the fuel
elements. The normal null position is indicated by a fiducial mark on

the fuel e-ement end cap that is positioned perpendicular to the radius
of the core.

Analysis and Results

The analytical methods used to calculate the critical experiments
are very similar to these discussed for the design of the reference

reactor. Use of the same methods was convenient to provide precritical
calculations of the expected critical masses and desirable to test the
validity of these methods. The critical mass predictions, calculated
spectra and radial power distributions for a fuel zoned experiment and
details of the calculational models are given in references 9, 10,
and 11.

Measured and calculated excess reactivities. - The first critical
assembly contained 179.64 kilograms of Oralloy. No other materials

except those structurally necessary, such as the honeycomb and fuel
tubes, were present. The predicted critical mass of 179.7 kilograms
(ref. 9) was in remarkable agreement. A relatively large correction of
-0.036 Ak was applied to the calculated multiplication factor obtained
with the S4P, 4-group XY TDSN calculation. This correction included
-0.013 ^k for the difference between lower order and higher order cal-
culations (S8Pl 13-group), +0.006 Ak for structure and materials in
the critical assembly that were not conveniently included in the XY

calculations, and -0.029 Ak for cross section uncertainties estimated
from corresponding calculations of several small critical assemblies
containing similar materials (see ref. 9 and 12). It is hoped that
much of this large discrepancy may be removed by recalculation using

ENDF/B cross sections.
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Table 2 gives the results of additional experiments and shows a
comparison of the measured and calculated excess reactivity in each
assembly. Assemblies 1-4 in table 2 have the same uniform fuel load-

ing, amount of hafnium foil and lithium 7 nitride inserts. Materials

are added cumulatively to assembly 1 to create assemblies 2-4. The
measured and calculated excess reactivity for each assembly is given
in the last two columns. Although differences of less than 25 cents

are observed between measured and calculated excess reactivities f,r

each assembly, the measured and calculated worth of the incremental
material additions have large discrepancies. For example, the meas-
ured worth of the tantalum addition in assembly 2 is -50 cents while
the calculated worth of this addition is -14 cents. For assemblies 2

and 3 where additional tantalum is added to the core and to the end
reflectors the incremental reactivities show less discrepancy. Finally,

comparing assemblies 3 and 4, a reactivity of +46 cents was measured
for the tungsten addition while the calculation indicates a reactivity
of +22 cents. These comparisons indicate that there are errors in the

multigroup cross sections of tantalum and tungsten used in the present

calculations.

Assembly 5 is a fuel zoned configuration having very closely the

same total fuel loading as the previous assemblies (within 30 grams

out of about 175 kilograms). Again the measured and predicted total

excess reactivity are in very good agreement which indicates the multi-

group calculational model used adequately accounts for the reactivity

effects of fuel redistribution. A correction of +6 cents has been

made to the calculated value of reactivity for this assembly to account
for a 120 gram difference in fuel loading between the critical experi-
ment and calculation. The worth of a uniform addition of fuel in these

experiments is about 50 cents per kilogram.

It should be reiterated that the same relatively large correction
to the calculated 4 group multiplication factor of -0.030 Ak was

applied to all five assemblies in table 2. The only difference in the
magnitude of this correction term, as used for the first critical ex-
periment described earlier, is that the calculated lower order-to-
higher order discrete ordinate approximation effect is -0.007 Ok

instead of -0.013 Ak (ref. 11).

Radial power distribution. - Measurements of the radial power
distribution for the fuel zoned reactor (assembly 5, table 2) were
made at the axial center of the reactor by gamma-scanning the small

diameter fuel rods. S 4P o 4-group calculations (ref.11) were made

prior to the measurements. Figure 10 shows the comparison for each

fuel pin in a 30 1 sector of the reactor. The measurement and calcu-

lation agree to within ±5 percen t_ for all 27 pins measured except one

in which the maximum difference is 7 percent. The calculated values

of Pr /Fr and the measured values are normalized at the second pin
from the center. The center pin would ordinarily have been used for

this normalization, but the experiment shows an irregular decrease at
the center position that cast doubt on the measurements for this par-
ticular pin.

P
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Drum control reactivity. - Measurements were made of the reactivity

worth of control drums in several of the experimental configurations.

The results for a configuration containing all materials except the

0.356-centimeter diameter tantalum rods is shown in figure 11. The in-

verse counting method (1/M) was used (ref. 8) for all 6 control drums

ganged which gave 13.45$ for the total control swing. Estimated accu-
racy is ±10 percent. Two detectors, one at the side of the reactor and

one at the bottom, were used to obtain the experimental points on fig-
ure 11. The dashed curve on figure 11 is an empirical curve (sin 2 e/2)
found to fit the experimental points rather well. The empirical func-
tion has been found to agree with detailed transport calculations of the
drum worth also.

The inverse kinetics method (ref. 8) was used to obtain the worth
for one drum as 2.15$. However, this method was found unreliable for

measuring large reactivities, such as for all six drums gang-operated,

probably because of the slow drum drive-out rate. If there is no sig-
nfiicant mutual interaction between adjacent drums, the worth of one

drum times six should represent the total control swing. This value
(2.15$ x 6) is 12.90$. A DOT-IIW S4Po 4-group calculation gave 12.83$

suggesting that there is no interaction between drums. On the other
hand, drum worth experiments for the fuel zoned reactor in which suc-

cessively 1, 2, 5, and 6 control drums were driven to fuel full-out posi-

tions in separate measurements, indicate a drum interaction effect of

about 50 cents (0.34 percent dk/k) when comparing movement of two
opposite versus two adjacent drums. This is smaller than the 0.54 per-

cent ok/k calculated for this effect for the reference reactor.

Neutron energy spectra. - The proton recoil gas proportional counter
method was used to measure neutron energy spectra in three of the ex-

perimental configurations. The detector was placed at the center of
the core. A GAM-II calculation was performed for each case to compare

with the experiment. Figure 12 shows the spectrum for the first critical

assembly before any additional materials were added. Figure 13 shows
the spectrum after 10.1 kilograms of lithium 7 nitride was added. Note

the pronounced dip in the flux at about 0.25 MeV caused by the lithium 7
scattering resonance at that energy. Figure 14 shows the spectrum after

all materials were added to the core. The lithium 7 resonance effect
is still pronounced and well delineated by the experiment. Agreement
between the calculation and experiment is qualitatively good for this
case except for energy region below -0.08 MeV.

Additional measurements. - The Rossi-alpha technique was used to
measure the ratio of the prompt neutron lifetime to the effective de-
layed neutron fraction, Z/Beff+ for the unzoned configuration contain-
ing all the material additions. With S eff - 0.0067, an R of 32 nano-
seconds was obtained. This compares with about 40 nanoseconds calcu-
lated for the reference reactor and 41 for a configuration very similar

to the experiment calculated by Atomics International for the hazards
analysis (also reported in ref. 8).
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The fuel rotation experiment for the same reactor configuration

gave an average value of -47 cents per millimeter for core radial

expansion. A calculation for a reactor very similar to the reference
reactor gave -39.4 cents per millimeter.

ALTERNATE DESIGNS

Several alternate reactor designs have been considered in this
technology program. Figure 15 shows a composite of various designs
in cross section. All six designs shown on the figure have the follow-

ing in common:

1. fuel pin in honeycomb tube design

2. T-111 cladding and pressure vessel

3. TZM end reflectors

4. Lithium 7 coolant; except sodium is used for design D which

uses uranium dioxide fuel

5. about two thermal megawatts power level with coolant outlet
temperature of 1222 K; except design E which is rated at

0.45 megawatts

6. the benefit of radial power tailoring, not indicated on the

figure

The reference reactor is shown in sector A. The sector B reactor

is a poison drum controlled reactor using dry wells for the drums which
are cooled by radiation to the dry well walls of each drum. Reference 13
discusses a conventional poison drum concept in which the drums are out-

side of the core pressure vessel. Both uranium 235 and uranium 233
nitride were considered for the fuel. The sector C reactor is controlled

by 12 poison rods operating in dry wells and cooled by radiation. Both
designs B and C using poison control could have vents for the helium,

produced by the lO B (n,a) 7 L1 reaction. But behavior of the boron car-

bide for the long life at high temperatures (of the order of 1600 K) is

largely unknown.

The sector D reactor shows a UO 2 design ( ref. 14). The benefit in
reactor size reduction by using UN is quite apparent upon comparing this

reactor with the reference reactor in sector A. Design E is a near	
Iminimum size reactor, capable of 0.45 thermal megawatts for 5 years, 	 I	 M^

using uranium 233 nitride. Plutonium 239 nitride would serve about as

well as fuel for this reactor. Tantzlum beryllide ( Ta 2 Be 17 ) was con-

sidered for the radial reflector and appears neutronically acceptable.
With a density of about 1/2 that of TZM, a considerable reduction in
reactor mass is possible; the sector E reactor would weigh about
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320 kilograms compared to about 1600 kilograms for the reference
reactor. Sector F shows a reactor controlled by axially translating
radial reflectors outside the pressure vessel. The sliding reflector

pieces are cooled by radiation to the pressure vessel and to a sta-
tionary reflector around the reactor (ref. 15). Beryllium oxide canned
in molybdenum was also considered for the sliding reflectors of this

reactor. However, the combination of molybdenum in the reflector and

the pressure vessel (both fairly absorptive of thermal and epithermal

neutrons) detracts from the reflector worth so that the beryllium oxide

design was no better than the molybdenum design (ref. 16).

Figure 16 shows a side view of the sliding reflector reactor.

A major concern for this concept is a water immersion accident. Requir-

ing a movable poison annulus just outside the pressure vessel would de-

tract from the reactivity control and complicate the actuator design.

CONCLUDING REMARKS

A summary of the neutronic results of a technology program using

nuclear reactors for the generation of electric power in space has been
presented. The discussion was devoted primarily to a reference reactor

concept and critical experiments performed to check neutronic calcula-
tions. Experiments and calculations are in general agreement. For

example, the excess reactivity of several experiments were predicted to
within about 25 cents, radial power distributions agreed to within
about ±5 percent, control drum worth also agreed within a few percent
and neutron energy spectra comparisons were in reasonable agreement.

However, a persistent discrepancy of about 3 percent in the cal-
culation of absolute multiplication factors (S 4P o 4-group) indicates
significant errors in some of the neutron cross sections an y /or the
calculation procedure.

Several alternate reactor design concepts, using different reac-
tivity control methods and materials, were also discussed.

REFERENCES

1. M. H. KRASNER, H. W. DAVISON, and A. J. DIAGUILA: "Conceptual De-

sign of a Compact Fast Reactor for Space Power," to be presented

at the Am. Nucl. Soc. 17th Annual Meeting, Boston, Mass.
(June 13-17, 1971).

2. R. E. GLUYAS and A. F. LEITZKE: "Material Technology Program for the

Compact Fast Reactor for Space Power," to be presented at the Am.
Nucl. Soc. 17th Annual Meeting, Boston, *lass. (June 13-17, 1971).



10

3. C. L. WHITMARSH, Jr., "Neutronic Design for a Lithium-Cooled
Reactor for Space Applications," TN D-6169, NASA (1971).

4. G. D. JOANOU, and J. S. DUDEK, "GAM-II. A B3 Code for the Calcu-

lation of Fast-Neutron Spectra and Associated Multigroup Con-
stants," GA-4265, General Atomics Div., General Dynamics Corp.

(Sept. 16, 1963).

5. C. E. BARBER, "A FORTRAN IV Two-Dimensional Discrete Angular Seg-

mentation Transport Program," TN D-3573, NASA (1966).

F. R. G. SOLTEZ, R. K. DISNEY, and G. COLLIER, "Users Manual for the

DOT-IIW Discrete Ordinates Transport Computer Code," WANL-TME-
1982, Westinghouse Astronuclear Lab., Westinghouse Electric

Corp. (December 1969).

7. G. D. JOANOU, C. V. SMITH, and H. A. VIEWEG, "GATHER-II, An IBM-
7090 FORTRAN-II Program for the Computation of Thermal-Neutron

Spectra and Associated Multigroup Cross-Sections," GA-4132,

General Dynamics Corp. (July 8, 1963).

8. W. H. HENEVELD, et al., "Experimental Physics Characteristics of a

Heavy Metal Reflected Fast Spectrum Critical Assembly," NASA

CR-72820, Atomics International (1971).

9. W. MAYO, and E. LANTZ, "Analysis of Fuel Loading Requirements and

Neutron Energy Spectrum of a Fast-Spectrum, Molybdenum-Reflected,

Critical Assembly," TM X-5276'., NASA (1970).

10. J. L. ANDERSON and W. MAYO, "Eftect of Adding Lithium Nitride,
Hafnium, Tantalum, and Tungsten to a Fast-Spectrum Molybdenum-

Reflected Critical Assembly," TM X-52787, NASA (1970).

11. W. MAYO, "Precritical Analysis of a Power-Tailored Fast-Spe 	 Im

Molybdenum-Reflected Critical Assembly," TM X-52895, NASA k1970).

12. P. G. KLANN, W. MAYO, and T. H. SPRINGER, Trans. Am. Nucl. Soc.,

13, 731 (1970).

13. V. MAYO, and R. M. WESTFALL, "Reflector-Based Poison-Drum Control
on Equal-Size Reactor Cores Fueled with Uranium-233 and with

Uranium-235, TM X-1883, NASA (1969).

14. W. MAYO, and R. M. WESTFALL, "Radial Power Tailoring for a Uranium
Dioxide - T-111 Clad Reactor with Contained Fission Product

Gases," TM X-1795, NASA (1969).

15. W. MAYO, C. L. WHITMARSH, Jr., J. V. MILLER, and H. W. ALLEN, "Char-
acteristics of a 2.17-Megawatt Fast-Spectrum Rer,ctor Concept Using

an Axially Moving Reflector Control System," TM X-1911, NASA

(1969) .



11

16. C. L. WHITMARSH, Jr. and W. MAYO, "Neutronic Comparison of Beryl-
lium Oxide and Molybdenum for Movable Reflector Control of a
Fast-Spectrum Reactor," 'fM X-1822, NASA (1969).

i



12

TABLE 1. - REACTIVITY COMPONENTS OF CONTROL SWING

Component	 Reactivity,
percent Ok/k

Fuel burnup	 1.47

Temperature defect:	 1.09
Coolant expansion (0.26)
Fuel and structure expansion (0.58)
Doppler (0.25)

Fuel swelling	 .95

Uncertainty allowance 	 .61

Total excess reactivity 	 4.12

Shutdown margin 	 4.39

Total control swing 	 8.51

1
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Figure 1. - Space power reference reactor.
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Figure 2. - Cross section of reference reactor.



Figure 3. - Cell and fuel pin geometry.
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Figure 4. - XY calculation model.
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Figure 7. - Critical assembly.
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Figure 11.	 Measured and calculated control drum reactivity.
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Figure 15.	 - Alternate reactor concepts compared with reference reactor.
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