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SYMBOLS

A,B,C,D amplitude terms in the polynomial representing the power spectral
density of phase jitter

BL equivalent noise power bandwidth of a phase lock loop

€q modulated signal plus additive noise

ep output of the telemetry phase detector

L low pass filtered telemetry phase detector output

fe carrier frequency, Hz

F(jw) transfer function for the linear model of the loop filter in a phase
lock loop, PLL

G peak amplitude of a telemetry signal

g(x) probability density function for cos ¢(t)

H(jw) transfer function for the linear model of a phase lock loop

h(x) probability density function for 7%E 4:rn(t) dt, a gaussian density

I, zeroth-order modified Bessel function

K modulation constant proportional to the modulation index for the
telemetry

KD transfer constant for the linear model of a phase detector

X integration transfer function for the linear model of a voltage

4 controlled oscillator

M(t) modulating signal on the telemetry carrier

n; (t) in-phase component of additive noise

nq(t) quadrature component of additive noise

n(t) additive noise on the modulation

P probability of an error in the telemetry symbols

pq(x) combined probgbility density function, formed from g(x) and h(x)
by convolution

p(4) probability density function of phase jitter



¢ (t)

vi

normalized decision variable
decision variable
power spectral density of phase jitter
symbol period
. . 1
carrier period, (f—)
c
time

mean square value of the upper bound approximation for ¢in

U2_, the root mean square value of U,
in in
reciprocal of the variance of phase jitter

time increment

phase increment

damping factor of a phase lock loop

variance of phase jitter

time constants for F(jw)

mean square value of ¢

phase jitter internal to a signal

$Z , the root mean square value of ¢.
in in

phase jitter, one realization of the random process

phase jitter external to a signal and proportional to the noise-to-
signal ratio

frequency, rad/s

carrier frequency, rad/s

half the bandwidth of a receiver intermediate frequency amplifier,
rad/s

natural frequency of a phase lock loop, rad/s



EFFECT OF OSCILLATOR INSTABILITY ON TELEMETRY SIGNALS
Terry L. Grant and Randolph L. Cramer

Ames Research Center

SUMMARY

This paper discusses short-term oscillator instability and its effect on
telemetry signals. Instability measurements are related to the total phase
jitter expected in a telemetry receiver and the resulting degradation of telem-
etry performance. The analysis of phase jitter present in the telemetry
system of Pioneer VI through IX serves as an example. The instability is
described by the measurement of oscillator phase jitter, and the function and
operation of the measuring instrument are explained.

INTRODUCTION

In spacecraft telemetry the trend has been to use a pulse code
modulation - phase shift keyed - phase modulated (PCM-PSK-PM) system because,
with coherent carrier detection, such a system can theoretically provide the
lowest error rate for a given signal-to-noise ratio of all the known modula-
tion techniques. The key factor in obtaining this performance, however, is
the coherent or phase-tracking detection process, and deviation from this
ideal model quickly causes a loss of performance. It was the quest to make
the Pioneer telemetry system perform as well as possible which motivated the
measurement of oscillator instability and the analysis of its effect on a
telemetry system. (Performance here is understood as the channel error rate
versus a normalized signal-to-noise ratio.) Lack of coherence in carrier
tracking also affects the resolution of any range and range rate measurements
that may be made on the telemetry carrier.

In the design of an optimum coherent, or phase-tracking telemetry system,
several sources of phase jitter must be considered. The most obvious source
is the additive noise in the bandwidth of the tracking loop. A second source
of phase jitter is oscillator instability in the transmitter reference oscil-
lator or the receiver voltage controlled oscillator (VCO)}. Other sources are
propagation anomalies that affect the phase of the carrier. The latter are
caused by small time varying changes in the dielectric medium (ref. 1). Only
oscillator instability as a source of phase jitter will be treated here and
its effects on the performance of a one-way (spacecraft-to-ground) telemetry
system will be analyzed. It then will be shown how this source of phase
jitter forms an important bound on telemetry performance.



This paper is a tutorial description of oscillator instability and its
effects on a phase lock loop (PLL). Measured phase jitter is used to analyze
statistically the conditions under which this jitter will degrade the perfor-
mance of a one-way (spacecraft-to-ground) telemetry system. The appendixes
discuss the concepts of probability and statistics which are key to the analy-
sis. Finally, the oscillator instability measuring instrument is described
and the results of measurements on the oscillator circuits of the Pioneer
transmitter are presented. These data formed the basis for the assumptions of
the character of oscillator instability. (The Pioneer telemetry system
provided the example that motivated the analysis of the effect of oscillator
instability on a telemetry system.)

ANALYSIS

The key factor in obtaining optimum performance with a PSK communication
system is maintaining a coherent reference to compare with the transmitted
signal. Although theoretically no signal power is allowed for this reference,
it is necessary in practice. Theoretically, both the transmitter and the
receiver have perfect time information available; therefore nothing would be
gained by including a time reference with the signal. In reality, sufficiently
accurate time information is not available to allow coherent phase detection.
The following example illustrates this point. Suppose the clocks at a trans-
mitter and receiver measure time to a relative accuracy of *1 us (a difficult
feat within the present state of the art). Suppose further that the known
signal is PSK modulated of the form, sin[w.(t + tgy) #m/2], where to corresponds
to a known time of a maximum modulated signal. The receiver would multiply the
incoming signal by cos w.(t + to +At) and average the result over one symbol
period. The decision that the transmitted n/2 rad phase shift is plus or minus
depends on whether the average is positive or negative. It is obvious from
figure 1(b) that the average result is zero and no information is received

(1) sin [wc(’f+1 )iv/Z] (1) sin [wc(f‘*fo)iv/Z]
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(2) cos we(t+t,+ At); At=0 (2) cos welt+1t,+ At); At = 7/2w,
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(a) Correct time information. (b) Time error At =7/2w,.

Figure 1.- Effect of incorrect time on phase detection.



if At = m/2wc. It can be easily shown that if At is slightly greater than
T/2we, the wrong decision would be made. Since At = 10°® implies that

we < w/ZXIOG, then wc/2m = f; would have to be less than 1/4 MHz for coher-
ent detection, a frequency much too low for spacecraft communication. There-
fore the relative time must be derived from the signal itself, which is the
function of a phase tracking receiver. In the design of such a receiver
oscillators are not as ideal as postulated for the above example. An oscil-
lator has phase instability, and this instability can be modeled in terms of
the above discussion by letting At be a random process instead of a fixed
uncertainty. Thus, even with the phase tracking receiver, the question to be
answered is: For a given signal frequency, what is the maximum variance of

At that allows the detection process to be considered coherent? More specif-
ically: How does performance differ from that of coherent detection as a func-
tion of At vs. 1/f. or, equivalently, the ratio At/T. (where T is the
period corresponding to f.)? This ratio relates jitter in time to jitter in
fractions of a cycle, but more conventionally, the ratio is multiplied by

2T to relate time jitter to radians of ''phase' jitter. Note that frequency
is a rate of change of phase; that is, wc 4 A4/At or Ap = weAt = 21At/Te; so
the definitions are consistent. The rest of this discussion will concern time
uncertainty expressed as phase jitter.

The first question regarding a telemetry system with ccherent detection
ist: How much phase jitter can be tolerated before the system performance is
degraded? Before one can answer that question the character of the phase
jitter must be known.

Characterization of Phase Jitter

It should be emphasized at this point that discussing only 'phase"
jitter restricts the type of oscillators considered. In particular, the
assumption is that the oscillator average frequency, denoted by

Zﬁ%_:%: J;T I:(j%-t(ﬂ]dt

does not drift in the interval of interest (up to 100 s). Thus the time
waveform of the oscillator can be represented as

G cos [2nft + ¢(t)], |o(t)] < 7 rad (1)

where G 1is an arbitrary constant, t 1is time, and ¢(t) is a realization of
a random process (described as A¢ above) with an expected value E(¢) = O.
The term ¢(t) accounts for the difference between the actual time of zero
crossing of the waveform and the expected time of zero crossing of the func-
tion cos 2nft. If the waveform is phase modulated by a telemetry signal, it

takes the form M(t) = G cos [2nft + ¢(t) + 6(t)] where 6(t) is the telemetry
information. A common way to characterize ¢ 1is by its power spectral



density, which is useful (for our purpose) because in the phase domain the
telemetry information can be separated from the noise if the power spectral
densities of each are compared. Let S, (w) be the power spectral density of
¢(t). Many researchers in the field of oscillator stability have studied

Sy (w). The resulting characterization has been reported in references 1 and
2, which list numerous references, so the results will be stated here only
briefly. The power spectral density of the phase jitter can be represented
by the following polynomial:

Sp (W) = A/w3 + B/w? C/w + D (2)

in which A, B, C, and D are constants. The terms of the polynomial can be
explained as follows.

Within the tuned circuit of an oscillator, perturbations (noise) cause
frequency changes. Two sources of noise are characterized. Because of ampli-
fier gain variations and variations in the crystal itself there is a flicker
(1/w) component of noise and, because of thermally induced voltages in the
circuit losses, there is a flat component of noise. Together these components
form a frequency power spectral density Sg(w) = A/w + B (rad?/s?)/rad. Since
w = ¢, the equivalent phase power spectral density S¢(w) can be derived from
the frequency spectrum. The equivalence can be readily shown (although the
method is not mathematically rigorous) using Fourier transform theory. The
transform of ¢(t) is:

SL(8)] = ju3[e(t)] (3

but 2]3[¢(t)]|2can be termed the power spectral density, Sy(w). Thus the power
spectral density, S¢i(w), of the internally generated noise is

o A
o, () =~igs¢(w) ;§-+f%rad2/rad (4)

Outside the tuned circuit, amplifiers and multipliers operate on the
oscillator signal, and perturbations in these circuits cause phase jitter.
These perturbations can also be either flat or 1/w. This power spectral
density is labeled S¢o(w) = C/w + D rad?/rad. If ¢; and ¢, are statisti-

cally independent, the combined power spectral density is
S¢i+¢o(w) = A/w3 + B/w? + C/w + D rad?/rad

where the constants A, B, C, and D will be different for different circuits
and also dependent on the choice of components.

Equation (2) gives an idea of the qualitative character of the modulation
phase jitter. For large frequencies, S¢(w) appears to be flat and for




components near D.C. it appears to be steeply rising. The assignment of
quantitative values of phase jitter to the oscillators and carrier in the
design of a telemetry system can only be done by measurement. Unfortunately
the implementation of such a measurement is not easily accomplished.

The probability density function of phase jitter is gaussian with respect
to some reference phase if the phase domain is unlimited. However, when
dealing with periodic functions of phase, as in a phase tracking receiver, we
think of phase as being restricted to the region from -w to +m radians;
thus the density must be modified by ''folding over the tails'" of the gaussian
probability density function. Viterbi's formulation (ref. 3, p. 90) for the
modified probability density function is

o cos
e ¢

p(9) = m, lo] < w (5)

i
where I, is the zeroth-order modified Bessel functionI4(a) = %—j. e €0S ede
o

(see eq. 9.6.19, p. 376, ref. 4). In the ensuing discussion, a linear model
will be assumed in which a = 1/0% and 0% is the variance of ¢. It should
be realized that, for the operating range of interest for a phase tracking
receiver (04 < w/4 1is a reasonable bound for "in-lock'" conditions), this
density looks much like a gaussian density (see figs. 2 and 3).

1.4 I [ [ 1 A T T T

o4 =0.283

n

: ($)
0 1 I ! ! | i | 1 I !

-87 -4 0 4 8
¢, rad

Figure 2.- Comparison plot of two formulations of the probability density function of phase jitter;

n(@) = (e29°/2)j(2n/a)! 12, p(g) = (e €S Py2nly(e), & = 1/0}.
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Figure 3.- Comparison plot of two formulations of the probability density function of phase jitter;

n(¢) = (e@”/)/(2n/a)'/?, p(¢) =(e® 08 ?)/ 27 o), & =1 Jo}.

Total Phase Jitter in a Telemetry Receiver

The discussion so far has concerned the character of phase jitter in an
oscillator or transmitter; now it will be shown how this jitter is manifested
when filtered by a phase lock loop receiver. First, however, the functioning
of a phase lock loop (PLL) will be reviewed. Although the receiver is more
complex, it will be sufficient to assume it to be a simple second-order loop.
The PLL tracks, or follows, both the phase and the frequency of a signal and
effectively filters out all but a narrow band of noise centered on the signal
frequency.

Three components are used to mechanize the PLL: A phase detector
multiplies the input signal by a reference frequency to extract the relative
phase error; a low pass filter removes all but the slowly varying or "D.C."
components of the phase error; and a voltage controlled oscillator (VCO)
generates the reference frequency for the phase detector. The VCO changes
frequency in proportion to the output of the low-pass filter. A linear, phase
domain model of the PLL will be used for analysis because it is directly appli-
cable for small phase jitter, and the linear model is required for Fourier
transform analysis. The phase-to-voltage transfer function of the phase
detector is derived from the low-frequency part of the trigonometric identity

sin(wct + ¢i) cos(wct + ¢O) =1/2 Sin(¢i - ¢O) +1/2 sin(ZmCt + ¢i + ¢O)



and from the approximation (¢i - ¢o) small, sin(¢; - ¢0) = (¢i - ¢0). The
voltage-to-phase transfer function representing the VCO can be seen to include
integration 1/jw, since a voltage offset causes a frequency offset, which is
a ramp in phase. Thus, we have the linear model:

Adder Loop filter Units-
Kp = V/rad
Fliw)=V/V

K/jw=rad/s/V

Integrator
Sketch (a)
Define
by = 20U KgpFOY) “
¢; Gw)  Ju + KyKpF(Gw)
and for simplicity let KD = 1. Then
¢ 6. - ¢
o T = 1 - HGW (7)
i i
For a second-order loop, F(jw) = (jwt, + 1)/jwt; (which provides proportional

plus integral control), and the phase transfer function becomes

szgK/T1 + K/T1

H(jw) =7 > B S
-w% o+ J(MZK/T1 + K/Tl

2

»ijéwn + wp

H(Jw) = :-LDZ + jwz(swn + wnz (8)
The phase error is
1 - H(ju) = o (9)
- HQw) =2 y 2
ws - Jw26wn - Wy

where § = (12/2)(K/Tl)1/2 is the loop damping factor (8§ = 0.7 for critical

damping) and w, = (K/Tl)l/2 is the natural frequency of the loop. See

figures 4 and 5.
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Figure 4.- Phase transfer response for a high-gain, second-order loop where & = 0.707.
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Figure 5.- Phase error response for a high-gain, second-order loop where & = 0.707.

To understand how these functions affect the total relative jitter in the
receiver, one must differentiate between what we shall call internal and
external sources of phase jitter on the incoming signal. '"Internal' means
phase jitter that is truly part of the signal as described in the previous
section, and for simplicity it includes any inherent VCO instability since we
are concerned with relative jitter between signal and VCO. "External" jitter
means phase jitter arising from thermal noise and is inversely proportional to
the signal-to-noise ratio in the receiver PLL. The portion of these types of
jitter which appear at the receiver phase detector will be designated ¢in

and ¢X, respectively.
The frequency spectrum S¢ is flat and the portion near the signal

X
frequency is tracked out by the receiver. Thus the total power out of the
receiver phase detector due to this phase jitter is proportional to



v wif .
= Tsy (@) [HGW)[? do
Wif
=S H(jw)|? 4
b, J; [HGGw) |2 do 0y
or
42 = (2mB)Sy = 2 (%)L (11)

where (N/S)L is defined as the noise-to-signal ratio measured in the loop
(ref. 5), B; is the standard definition of a single sided noise power band-
width for a PLL, and wjf is half the intermediate frequency bandwidth in
rad/s. For wjg.> 100 wp, and with a critically damped PLL, By, = 0.53wp Hz
(ref. 5). (The bandwidth limitation w; ¢ 1is due to the intermediate frequency

bandpass of the receiver which may be thought of as prefiltering the linear
model of the PLL.)

The frequency spectrum Sy(w) as described in the previous section is

_A B
Splw) =73 *;2 + D
(the C term is negligible in most oscillators) and the portion of this
spectrum which appears as phase jitter in the receiver is that which is not
tracked by the PLL (i.e., the phase error). Thus the total power out of the
receiver phase detector due to this phase jitter is proportional to

—— wif .
42 = bf sy |1 - HGw)|? dw (12)

The exact computation of this integral is tedious, but the result can be
bounded and the important terms can be found by apgroximating the phase error
function from figure 4. Let | 1 - H(jw)] = (wz/wn } for w < wp, and let

[1 - H(Gw)] = 1 for w > wp. The approximation to the above integral is

defined by UZ :
in



) “n L0y 12 if 0y 12
vz = _/; Sp(w) |1 - HGw) |? du +_£n Sp(w) [1 - H(jw) |2 duw
w 2 100w
nfA B ws \2 n/A B
A vl R o7 KR M e R [SOELE
n
100w
1 ‘n 2 L n/A B
= Aw + Bw® + Dwt)dw + ( + + D)dm
oy j; ( ) J;)n w3 T L2

1 |Aw?  Bwd | Dw5]wn . [—A B w]loown
wy L 2 3 51

A B Duwp A A B B
[2 2 " Zuy * TS ] ' [an2 T 3x10%an? Twp T T00w, T Pen 100D‘”n]

Wy Wn
(13)
Neglecting terms in A, B, and D of 1% or less,
— __A A B B
Uy, = anz + ang + B0n + ur + 100Dwp (14)
or
2 = A2 +3B . 100Dw. radians?
in wn Swp n
Then
A 4B .
URMS _‘/“’nz + 3u, + 100Dw, radians (15)
where
_ 2
URMS = Uin

From measurements on the Pioneer spacecraft transmitter (see measurement
results, p. 22) typical numbers can be assigned to the constants A, B, and D
at S-band frequency to give a better perspective of the important terms for a
narrow PLL (2Bj < 100 Hz). Typical values are A = (0.5 rad®/rad, B = 1073
rad%/rad, D = 2x10710 rad?/rad. Thus the A term clearly dominates for
w, < 100 rad. Figure 6 shows that the approximation for 1 - H(jw) | (A/w?) is
an upper bound for this term. It has been shown by approximation that only

10
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Figure 6.- Power spectral density (PSD) for the relative phase error in a phase lock ioop where the predominate
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Figure 7.- Total RMS phase jitter in a phase lock loop where the PSD of
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the A term is important,
and fortunately its contri-
bution to ¢gMg can be
calculated accurately (see
appendix A). Figure 7
shows Urms and ¢pmg for
the A term versus 2Bj.

The value of separating
the two components of phase
jitter lies in exposing
conditions under which
oscillator instability or

¢%n must be considered in

the design of the threshold
loop bandwidth of a
receiver. Normally the
receiver design threshold

11



is based on only the signal-to-noise ratio in the loop or ¢2. In most
receivers the phase detector is preceded by a bandpass limiter which suppresses
the signal and thereby reduces the loop bandwidth at signal-to-noise ratios
near threshold. Therefore it is not surprising that ¢;, can be a small phase
jitter under strong signal conditions (where 2B; is large) and still be large
enough to reduce performance from the design value when the receiver is near
threshold (where 2Bj 1is small). Note the 10-times increase in ¢grMg for a

10 to 1 change in 2Bp in figure 7.
Effect of Internal Phase Jitter on PCM Telemetry Performance

In order to calculate the effect of internal phase jitter on telemetry
performance, several assumptions are needed to further define the problem
and limit the complexity of the solution:

1. The receiver acts as a single conversion type with the PLL phase detector
operating at the carrier frequency. The PLL is a second-order type
critically damped as described in the previous section.

2. The effect of receiver thermal noise in the tracking loop bandwidth will
be ignored for this part of the discussion (i.e., only ¢;, is
considered).

3. No differentiation will be made between phase jitter originating in the

transmitter and that originating in the receiver. All the jitter is
shown in the receiver VCO. For the purpose of calculating the effect on
telemetry error rate, only the relative jitter is of concern.

4, The problem of subcarrier demodulation will be considered negligible;
therefore the carrier input to the telemetry phase detector is modeled
as being directly phase modulated with PCM. Also, perfect bit
synchronization is assumed. The block diagram of the model is:

Loo,
'l

sin[wet + in( 1]

In the model, n(t) is the receiver additive
noise represented by its in-phase and
quadrature components, and epy 1is the
baseband telemetry signal. Thus

G cos w¢t

G wet+M(t) low i
oo e ']+ eoep frL e =G cos [wt + M(t)] +n.(t) cos w t +
n(t)én,(t)coswct+nq(t)sinwct o ¢ 1 ¢
nq(t) sin mct (16)
Sketch (b)
17
ep = e sin [wct + ¢(t)] (7

(For simplicity the subscript "in'" is dropped from ¢(t).) Using trigonometric
identities and neglecting higher frequency terms (the low pass filter removes
all high order terms):

12



ni(t) . ng(t)
7 sin ¢(t) + 5

ep, = = sin [4(t) + M(t)] + cos ¢(t)  (18)

PL

but the first term can be written

E-cos ¢(t) sin M(t) + E-sin p(t) cos M(t)

2 2
Note:
M(t) = +d for PSK; cos #d = cos d = v (y is a constant)
Then
n. (t) n_(t)
G _. G . i . q
ep, =5 sin M(t) cos ¢(t) + =y sin o(t) + > sin ¢(t) + 5 cos ¢(t)
In the above equation
1. %% y sin ¢(t) has a noise spectrum near DC, but in practice the data are
on a subcarrier; thus this term is filtered out.l
n. (t) n_(t) .
2. 12 sin ¢(t) + 5 cos ¢(t) is an expansion of ngt) as shown in
sketch (b).
Therefore
G .
epp, = 5 sin M(t) cos ¢(t) + ngt) (19)

where G sin M(t) = #K; the magnitude of K is determined by the modulation
index and the sign determined by the telemetry (+ corresponds to one;
- corresponds to zero).

For correlation and matched filter detection of a binary signal such as
this, the following decision variable is formed:

G = [ T(+K cos 6(t) + n())]dt

o
T T
= in cos ¢(t)dt +f n(t)dt (20)
o} ()
The symbol '"one' is sent if Q. is positive or ''zero" if q is negative.
Now

Pe = Pr(error) where Pr( - ) is the probability of the event (-).

IThis is strictly true only for small ¢(t) where sin ¢(t) = ¢(t). With
o¢ = w/4, the sin ¢(t) will have energy at harmonics of the bandwidth of ¢(t),

but only the higher harmonics would be in the bandpass of the subcarrier, and
they are small enough to be neglected.
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Then
Pe = Pr(1) Pr(error/1) + Pr(0) Pr(error/0)

Also, by symmetry,
Pr(error/1) = Pr(error/0) and Pr(1) + Pr(0) = 1
thus

Pe = Pr(error/1)

Therefore it is necessary to use only

q; = K’QTcos ¢ (t) dt +J;Tn(t)dt (21)

To calculate the error probability, qj can be normalized by multiplying by
1/KT without changing the decision point; then

_1 T 1 T 22
q = '/;cos d(t)dt + TKJ;n(t)dt (22)

and

Pe = Pr(error/1) il;?pq(x)dx

where ©p,(x) is the probability density function of q. Unfortunately,

finding the probability density of g is not easy. As can be seen from the
above equation, q is the sum of two random variables which we will assume to

be independent.

The second term,-%% .QT n(t)dt, is the random variable derived from a

white gaussian process; it also is gaussian with zero mean and variance
62 =No/2K?T. (Ng=single-sided density; see appendix D for evaluation of this

term. )

The probability density function of the sum can be found by convolution
(see appendix E):

pq(x) i{;w h(x-u)g(u)du (23)

If ¢(t) is small (i.e., ¢(t) << 1) g(x) approaches a delta function at x = 1,
then p_(x) is a gaussian density with mean one. We know that for a gaussian
pq(x), Po is the error function for coherent PSK given by
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Finding the probability density function of th%‘first term is the main
problem. The probability density function of T Jg cos ¢(t)dt has not been

found in general for the case where Sy(w) is arbitrary and ¢(t) is assumed
to be a gaussian process (see appendix B). Therefore, the analysis will be
restricted to the case when the symbol period T is short compared to the
time required for ¢(t) to change appreciably.

Symbol rates larger than the loop noise bandwidth are the main concern
because the performance degradation for coded telemetry is of primary interest
and the symbol rate for coding is relatively high. To illustrate this point,
let P, = 0.001, corresponding to a normalized signal-to-noise ratio of 6.8 dB.
If the loop bandwidth were equal to the symbol bandwidth and the power split
equally between the carrier and the symbol, the loop signal-to-noise ratio
would be at threshold (6 dB) which means, of course, that the receiver would
hardly maintain lock. Actually lower symbol signal-to-noise ratios are used
and less power is allowed for the carrier. Thus to maintain a higher signal-
to-noise ratio in the loop, the loop bandwidth would always be a fraction of
the symbol rate.

Under these conditions cos ¢(t) is practically constant over the

integration interval T. Thus the following approximation holds (see
appendix B):

T
%; .E cos ¢(t)dt z.% cos ¢(t)J:T dt = cos ¢(t) (25)

and its probability density function is easily calculated (see appendix C):

A Q02
g(cos ¢) = g(z) = szl <1 (26)
mIg(a) 1-22
where
1 1
o =—— =
2 2
O¢ ¢in
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Figure 8.- Parametric error rate curves showing the effect of phase jitter. Column A labels the curves for different
values of total RMS relative phase jitter between the carrier signal and the receiver VCO. Column B labels the
curves for different receiver loop bandwidths (2B ) assuming that the dominant source of relative phase jitter
is that which was measured on Pioneer VI — 1X type of transmitter.
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From physical reasoning g(z) is expected to be a function of the general
shape shown in sketch (¢). The mean value of ¢(t) is zero, and the highest
probability of ¢(t) occurs in the region about zero. Since cos ¢(t) is
approximately 1 in this region, the highest probability of cos ¢(t) occurs
near 1. The probability of realizing larger values of the magnitude of ¢(t)
decreases smoothly according to the gaussian process, as the magnitude of ¢(t)
increases. Therefore, the probability density of cos ¢(t) would be expected
to decrease smoothly as |¢(t)] increases.

gl(z)

_L——"/ !

-1 0 I

> Z

Sketch(c)

This form for the phase jitter has been used to evaluate

Pe =j'oh(x)*g(x)dx

-0

on a computer for various values of

No )
_ — _ 2 a
o= xer @4 % =/bin = fpus

(See appendix E for the details.) Figure 8 illustrates the results.

Three important conclusions can be derived from the results. First, if
the total phase jitter is low (¢pMs < 0.28 rad), the telemetry performance is
nearly ideal over the range of Pg of interest (Pg > 5x10"%). The performance

17



matches the theoretical error curve for coherent PSK within 0.2 dB for

¢égMs = 0.2 rad. Second, for higher values of total phase error, the normalized
signal-to-noise ratio for the telemetry symbols rapidly loses influence on the
error rates. It can be shown that for a given ¢gyg there is a Pg which
cannot be reduced by any increase in signal strength (see appendix E). For
example, if ¢pyg = 0.56, the minimum P, attainable would be approximately
2.0x1072. Third, in figure 6, which is drawn for oscillators such as those in
Pioneer VI through IX, it should be observed that ¢pyg 1is inversely propor-
tional to the receiver loop bandwidth in the range of interest (2B, = 12 Hz).
Thus, for any given maximum allowable probability of error in telemetry, a
minimum receiver loop bandwidth is established. For other oscillators and
other ranges of P, and 2By, a proportional relationship between 2B[, and

¢pMg Will not be given in general; however, the same min-max relationship
exists between 2Bf, and P,. Fortunately, this bound often lies outside the
range of Pg and 2By of interest to the designer. For Pioneer telemetry,

the receivers currently used have a minimum loop bandwidth of 3 Hz and thus
the effect of Pioneer oscillator instability on the telemetry is negligible

as shown by the analysis results in figure 8 column B.

THE OSCILLATOR INSTABILITY MEASUREMENT SYSTEM

The difficulty in measuring ¢(t) is that one must generate a reference
carrier equivalent to that of the test oscillator but without the ¢(t) phase
jitter. As has been demonstrated above, in communications a time reference
must be generated to measure or extract any phase modulation, including PM
telemetry. In fact, the precision reference source built to extract ¢(t)
contains a phase lock loop, just as a coherent PM receiver is basically a PLL.
Of course, the design is different because the emphasis is on reducing the
self-induced phase jitter to a minimum and on having a high sensitivity to
phase variations. The resultant extracted phase jitter is the sum of the
jitter from the two sources, and hopefully the phase jitter from the measuring
instrument will be small. One such device was developed and built, under
NASA-Ames contract, to measure phase noise in the telemetry link for the
Pioneer series of spacecraft. It is called an Oscillator Instability
Measurement System (OIMS), and consists of an extraction section
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Figure 9.- OIMS extraction section.

{see fig. 9) that extracts phase jitter from an intermediate carrier frequency
of 10 MHz #1 percent and a frequency conversion section that mixes various
carriers, used in the Pioneer telemetry link, down to 10 MHz. To understand
the design, one salient point must be demonstrated about phase jitter. If

the passband for the carrier is always broad with respect to S¢(w) and the
carrier frequency is multiplied by n, via a nonlinear device

Acos n[2nft+¢(t)]= A cos[2nnft+né (t)] (27)

which means that the power spectral density S¢(w) is scaled up by n? but the
envelope shape is unchanged. Likewise, if n is less than 1, say n = 1/D,
S¢(w) is scaled down by 1/D?. For low phase jitter, the PLL for the OIMS has
been built around a frequency standard with low phase jitter. Mixing its
frequency with a relatively noisy synthesized frequency, which is partly
voltage controlled and frequency divided by D = 100 (1/p2 = 107%), produces

a combined frequency which is variable. The divided synthesized component

has a low phase jitter, and therefore the phase jitter is still small compared
to most oscillators.
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Figure 9 shows in detail how the extraction section of the OIMS functions.
The 10 *0.1 MHz reference is composed of two sources; a 9 MHz signal which has
the stability of the frequency standard, and a 1 0.1 MHz signal which has
components from the standard, the synthesizer, and a voltage controlled
oscillator or VCO (which is physically part of the synthesizer). In this
simple block diagram a linear model is used to describe the nonlinear elements
that add and subtract, and scale frequencies up or down. Filtering and
buffering requirements are not shown in the diagram.

The 9 MHz signal is generated by simultaneously scaling the 5 MHz from
the standard up to 10 MHz and down to 1 MHz, then taking the difference. The
other component of the reference 1.0 *0.1 MHz signal is generated by combining
the 5 MHz standard, scaled up to 60 MHz, with the 40 *10 MHz output of the
frequency synthesizer. This produces a 100 MHz +10 MHz signal which is scaled
down to 1 #0.1 MHz. The frequency of the synthesizer output can be selected
manually over a range of *10 MHz and has automatic tracking, via the PLL, of
up to 10 KHz from the VCO in the kilohertz decade of the synthesizer. This
range, of course, is scaled down to #0.1 MHz and 100 Hz, respectively.

The extraction section has three outputs which are limited to baseband
frequencies. Each is buffered by low-pass filtering amplifiers (not shown)
with variable gain , but only the most sensitive output transfer functions are
indicated. The only output of concern to this discussion is labeled PM for the
extracted 'phase modulating" signal or equivalently phase jitter. The
extractor also outputs the related ''frequency modulating'" or FM signal and a
signal proportional to any incidental "amplitude modulation' (AM).

The 10 MHz reference, which is generated as described gbove, will track
the phase and frequency of the signal under test without introducing much
phase jitter of its own. Figure 10 shows the residual power spectral
density of phase jitter for the OIMS extraction section when operated in a
self-test or common mode condition.? Under this condition the frequency stan-
dard also provides the signal to be tested and thus only the phase jitter due
to the PLL amplifiers, phase detector, VCO, and synthesizer is displayed.

Figure 11 shows the power spectral density of the phase jitter for a
similar external frequency standard as extracted by the OIMS at 10 MHz. If
one can neglect the residual, and both standards contribute equally to the

2Note that these plots, which were taken directly from low frequency
spectrum analyzers, are in units of S, (f) rad?/Hz versus Hertz. The
conversion to Sg(w) is simple if one remembers that the power in a fixed

bandwidth is the same, then
AfCS¢(f) = chs¢(w)
AfcSy(£) = A(2mf)Se (w)

therefore

S¢(f) = 2ﬂS¢(w) (28)
The crosshatched area indicates the band of uncertainty in the measurement.
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jitter, the amount associated with the OIMS standard is 3 dB less than this
plot. Note that the phase jitter of the standard is greater than the common

mode residual.

The other section of the OIMS is the frequency conversion section (not
shown) and its function is to heterodyne, up or down, signals under test into
the range of the extractor (10 #0.1 MHz). The phase jitter on the local
oscillator in the converter also must be as low as possible since, when it is
mixed with the signal under test, the resulting phase jitter power is the sum
of that originating in the local oscillator and from the input signal. Thus
all the local oscillator frequencies needed for tests are directly synthesized
in the converter from the frequency standard used in the extractor section.
Synthesis is performed in the same way as for the frequencies needed in the
extractor, so the frequency converter is not described in detail.

MEASUREMENT OF PIONEER OSCILLATION STABILITY

Most measurements of the Pioneer oscillator stability were made at the
intermediate frequency of 114.6 MHz. Thus a mixing or local oscillator (LO)
frequency of 104.6 MHz was generated for this purpose in the frequency
converter. The frequency multiplying and mixing from the standard's frequen-
cies (5 MHz, 1 MHz, and 100 KHz) are represented by the following equation:

LO = [(20x5) + (4x1) + (6x0.1)] MHz. The phase jitter on this local oscillator
is dominated by the first term of 100 MHz. As was explained above, the phase
jitter of this term has the same spectral shape as that of the frequency
standard (fig. 11), but the magnitude is scaled up by nZ = 102 or 20 dB.

Figure 12 shows a plot of S¢(f) vs f for the Pioneer oscillator taken
directly from OIMS measurements of several oscillators of the same design;
notice that the spectrum is considerably above S¢ for the local oscillator
for frequencies below 100 Hz; thus the correct measurement of the Pioneer
oscillator phase jitter is assured in this region. Also notice that the shape
of Sy for frequencies below 100 Hz is 1/£3. The rapid roll-off of S¢ for
frequencies above 1.5 KHz is caused by narrow band-pass filtering of the out-
put of the Pioneer oscillator. It is this plot that provides the basis for
the terms A, B, and D used in the calculation of the total phase jitter in
the Analysis section.

From measurements made with the OIMS it was possible to simplify the
general problem of calculating the effects of phase jitter on the telemetry
performance by neglecting terms in the polynomial for the power spectral
density. Knowing the actual magnitude and power spectral density of the tele-
metry oscillator phase jitter made it possible not only to solve the specific
problem of determining the oscillator's effect on Pioneer telemetry, but to
draw general conclusions about conditions under which oscillator phase jitter
is a critical parameter.

22



-60 1 (I R AR N [ I R A RN (T e B N R

70+

S,(f), 4B rad?/Hz

-100 -1

-1o} —

-120 -

| ot bl | [ I ool | P Ll
10 100 1k 10k

Frequency, Hz
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CONCLUDING REMARKS

It has been shown quantitatively that short-term oscillator instability
degrades telemetry performance. Instability was defined as a phase jitter
with a general power spectral density, S¢(w) = A/w3 + B/w? + C/w + D, and the
oscillator instability measurement system for extracting the phase jitter of
an oscillator was described. The instability in the Pioneer VI through IX
telemetry transmitter circuits was used as an example, to derive an expression
for the total phase jitter expected from a telemetry receiver as a function
of receiver loop bandwidth. Finally it was predicted analytically that even
under strong signal conditions, oscillator instability can degrade telemetry
performance if the receiver loop bandwidth is narrow. Unfortunately the
complete theory was not verified with data since in the Pioneer telemetry
system the effect of phase jitter was negligible.

The oscillator instability measurement system was key to these results.
Measurement of the power spectral density of the phase jitter on the oscillator
was a necessary first step. The problem of the effect of oscillator instabil-
ity on telemetry is too broad a topic to treat generally, and data were needed
to limit the parameters properly. The problem has been solved for a specific
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case in great detail so that it will be easy to apply the results with
confidence to another similar telemetry problem.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, March 11, 1971
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APPENDIX A

CALCULATION OF THE MEAN SQUARE VALUE OF THE
INTERNAL PHASE JITTER

In the Analysis section, the expression for the phase jitter in a phase
lock receiver was derived. Presented here is the evaluation of the integral
for the phase jitter, which is given by:

w.

2 = [T 5,1 - H(Gw) |2de (A1)
o]

The above expression represents the total phase jitter of ¢jn in the
sum-of-squares sense. It also represents the variance of ¢;, if ¢ip 1is a
process with zero mean; a third interpretation of ¢§n would be that it is

the modulation power loss on a carrier frequency due to oscillator phase
jitter. The term S¢(w) is the single sided ''power'" spectral density of ¢ip
and has units of radians? per radian. To relate Sy (w) to a measurement made
using the OIMS (see p. 18), it should be noted that S, (w) = (1/2m) S (f) where
S¢(f) has units of radians? per Hertz. Since S4(f) 1s measured by a sweeping
wave analyzer, which sweeps only positive frequencies, Sy (f) is twice the
density used when integrations are made over the whole frequency domain.

To evaluate the integral, expand 1 - H(jw) and write the square of its
magnitude

. 2 w2 2
1 - G = 1o T e, T w2 (A2)
Since
21| _ |z TN w212
£ R e A L D Kl P T

and |z|2 = zz* where =z* 1is the complex conjugate of z. Thus

u
- 3 2 - v
|1 - HGw) | W2 - wy2)2 + 4620202
, w!
= b 2,2 i 2, 2,2
(w* - 20p%0% + wy') + 48w, %w
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But for a critically damped PLL, 26 = V2, 482 = 2; thus

—at (A3)

1 - HGw[? =T

The other factor in the integrand is S¢(w) which has been shown to have
the general expression A/w3 + B/w? + C/w + D. However, approximations show

that for loop bandwidths of interest, only the A-term in S¢(w) is
significant; thus

Wif A wh
2 = IV S (N L I
qbin I w3 <w“ + an*)dw

0
Wif Aw
= fo (wl_{, + wnq)dw (A4)
Performing a change of variable, let 1z = w?; then dz = 2w dw and for

0 <w<uwje, O :_V@_f_wif, or 0 < z §~w%f

w.
A if 2y dw
T L
o W' * uwp
w?
_A lf___d__z__
_2 fo) zz+mn’+
w?
A 1 -1 2 if
=5 |0z tan > (ref. 7, p. 294) (AS5)
n “n Jg
2
w4
2 _ A -1 -if
qbin - 2wn2 tan wn2 (a6)
so that
1 /A wlg
A 92 o2 2 ggp-l 2
rus = ¥ %in T o, V2 L7 (A7)
Expression (A7) is exact for the total RMS relative phase error if S¢(N) = ﬁa

in the region of interest. (However, the proper application of these results
is predicated upon the PLL maintaining lock.)
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APPENDIX B

APPROXIMATION OF THE INTEGRAL OF A DECISION VARIABLE

In the Analysis section, the decision variable q was used in the
expression for the probability of error. This decision variable is the sum of
two random components whose distribution must be determined. This appendix
concerns the approximation

T
—,il,- _C cos ¢(t)dt = cos ¢ (B1)

which will physically be justified for the choice of parameters. The
alternate approximation

1 T 1 T 1

= cos ¢(t)dt = = [1 - =92 t:]dt

T_/; ) TJ; 562 (1) (B2)
is not advantageous in this case. (The subscript "in' again has been dropped
from ¢(t) for simplicity.)

The integral of a physically occurring random process, such as cos ¢(t),
over definite limits of time, is a random variable (see appendix D). Thus in

the approximation -%-.ET cos ¢(t)dt = cos ¢, the random variable

%-.GT cos ¢(t)dt is replaced by the random variable cos ¢ that is obtained

from the random process cos ¢(t) by fixing the time t = t, (with 0 < tg < T).

Proceeding with the discussion of the quantity % .éT cos ¢(t)dt,

consider the following hypothetical experiment. Suppose that a particular
time function (realization) from the random process cos ¢(t) is the input to

an averaging device that performs the operation T .g . Thus the output is

1 T . . . .
T % cos ¢(t)dt, and the question arises, When is it nearly the same as the

instantaneous value of the input? Clearly, the output will be almost the
same as the input when the input does not change appreciably in the interval
of time from O to T during which the device perfeorms its averaging operation.
Consequently, the relationship between the fluctuations that the input can
undergo and the averaging time T needs to be examined. Since in reality T
is tne (telemetry) symbol period and it is fixed by the given bit rate %, it

is preferable to study the changeability of the input. Furthermore, since
the input cos ¢(t) to the hypothetical averaging device is a function of
¢(t), it suffices to study the fluctuations that ¢(t) can undergo. Thus the
power spectral density S that contains information about the frequency

content of ¢(t) will be studied.

In the analysis section, it was explained that the phase jitter process
¢(t) in a phase lock loop receiver has the power spectral density

Aw (B3)
S¢(w) = wnu + of

27



over the frequency range of interest, and S, 1s negligible outside of this
range. Since S decreases as 1/w3 when "w increases, ¢(t) does not con-
tain any high frequencies within the significant range. This implies that

cos ¢(t) varies only slowly so that its instantaneous value is close to the
average value over a reasonably small interval of time. Defining the cutoff
frequency £, (in Hertz) as the frequency at which the value of the power
spectral density Sy is 3 dB below its maximum value, a quantitative relation-
ship can be obtaineg between the length of time T over which the device
averages the input and the frequency characteristics of ¢(t). Since the aver-
aging device gathers information about the input only during a T-second inter-
val, an analogy to the Sampling Theorem for nonrandom signals may be drawn.
According to this theorem, a time function containing no frequencies higher
than f. Hertz can be completely characterized by values of the function at
instants of time separated by 1/2f. seconds. Applying the theorem it be-
comes evident that the time function cos ¢(t) does not change much during the

interval T seconds when T < 1/2f.. Thus the output %:_%T cos ¢(t)dt from
the device performing the operation %—.GT will be almost the same as the

input, cos ¢(t), for some fixed t between O and T < 1/2f.. Since the time
function <cos ¢(t) does not fluctuate much during the T-second interval, it
is clear that an arbitrary point t,, with O < ty < T, may be chosen to

represent the average value % ,6 cos ¢(t)dt by the instantaneous value

cos ¢(ty) of the time function cos ¢(t). Writing cos ¢ for cos ¢(ty), the
approximation

-%; fT cos ¢(t)dt = cos ¢

0o

is obtained when T < 1/2f. with f, the 3 dB cut-off frequency of Sy.
This approximation will be useful in appendix E where the distribution of the
decision variable q will be determined.

Now the disadvantages that arise from the alternate approximation will
briefly be indicated (ref. 8, pp. 192-195)

% j;T {1 - —;¢2(t)] dt

T
= 1 -%, j; $2(t)dt

1]

T
—,},—_’; cos ¢(t)dt

First the approximation, cos ¢(t) = 1 - (1/2)$2(t) when ¢(t) is small, must be
made; then one has to determine the distribution of the random variable

E%-éT $2(t)dt. The distribution of this random variable has been only approx-
imately found when (i) ¢(t) is a normal process and (ii) for power spectra of
the form S¢(w) = 1/(a + w?) and of the form Sg(w) = constant for Wy < W < W,
S¢(w) = 0 otherwise (refs. 9, 10). Since in this model the phase jitter
process ¢(t) is not of this type, rather ¢(t) has Viterbi's distribution (as
stated in the analysis section) and S¢(w) = Am/(wnl+ + w”), the wealth of
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existing knowledge does not help. Fortunately the physical situation
suggested a simpler approximation so that there was no need to use a number
of approximations that do not apply directly to the model.
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APPENDIX C

DERIVATION OF THE PROBABILITY DENSITY FUNCTION OF cos ¢(t)

In this appendix the probability density function g
Z(t) & cos ¢(t), at a fixed time
of the random variable

variable
density func

tion p

of the random

t, is derived from the probability

$(t).

Since ¢(t) represents the

phase jitter process, it was reasonable to assume in the analysis that its
probability density function has Viterbi's form (ref. 3)

The real number ¢

Let z
Z(t) = cos ¢

p(¢) =

(t) at the same time

o cos
e ¢

b

3

—TT<¢><1T
(C1)

otherwise

stands for one value of the random process ¢(t) at time t.
stand for the corresponding value of the transformed random process

Now the probability density function g(z) will be expressed in terms of

the probability density function p(¢).

Since

z 1s the argument of the

desired function g(z) and since the argument of the given function p(¢) is
z so that p(¢) can be written in

¢, first ¢

the form pl¢(z)].
for any given real number 2z,

is obtained as a function of
Z = COS ¢

From

/2

30

1

Figure 13.- The function cos *'z.

it follows that
that lies between -1 and 1, the equation

Zo

¢ = ¢(z) = cos lz. Now

(€2)

has two solutions, denoted by
¢ = ¢; and ¢ = ¢,, which lie
between -7 and w, as shown in
figure 13 for one particular
choice of zy. This figure
shows that the function cos™ "z
is symmetrical with respect to
the z-axis. This means that
one of the solutions of the
equation ¢ = cos”lzy is the
negative of the other solution;
that is,

1

do = =91

which will subsequently be
used in the argument of the
function p(¢).



The transformation cos ¢ = z of the value ¢ (of the random variable
¢(t) for fixed t) to the corresponding value z (of the new random variable
Z) transforms the probability element [p(¢;) + p(¢2)]dé¢ to the corresponding
probability element g{z,)dz. In fact, the two probabilities are equal;

that is,

g(zo)dz = [p(¢1) + p($2)]d¢ (C3)

because probability must be conserved under the transformation. This trans-
formation of probability can be represented graphically as a transformation of
area elements in figure 14. (Note that the sum of the areas of the shaded
elements equals the area of the crosshatched element.)

z Z=C0S¢

ANy o+ dz—| A .
p B/
- de|%e r
—0 }/¢[ ! o : ‘¢ | -
4o . ': ‘\‘ o

-
The crosshatched v T "o
area is g {(z,) dz ‘ !

The shaded areas are

[pig)+pgo)] dg

-7 $ O $2 ™

Figure 14.- The transformation of probabilities.

As can be seen in figure 14, the magnitude of the derivative
d¢/dz = (d cos™1z)/dz at the point zy 1is the scale factor by which the
shaded areas are transformed to the crosshatched area. From this geometrical
reasoning, which is based on the principle of conservation of probability, the

general relationship follows

d¢é

| [P(61) + p(¢2)] (C4)

g(z) =
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which expresses the transformation of probabilities under the transformation
cos ¢ = Z of random variables. Computing

d¢ d cos~!z
dz dz
1
R —— z £ +1 (C5)

V1 - z2

and realizing that p 1is an even function, that is,

p(¢1) = p(-¢2)
= p(¢2)
(because ¢o = -¢;), the formula
d
g(2) = |32 2po)
1 o2

T (C6)

is obtained. The variable ¢ is restricted to the interval -m < ¢ < w,

and z = cos ¢ is restricted to the interval -1 < z < 1. When either

z < -1 or z > 1, there are no values of ¢ corresponding to these values
of z. Thus the probability that either the random variable Z < -1 or Z > 1

is 0.

This completes the proof that the random variable Z 8 cos ¢ has the
probability density function

az

1 e
Mo A7

s -1 <z <1

g(z)

0 , otherwise
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Figures 15 and 16 show this_probability density function for various values
of the parameter o A 1/v€j and figure 15 also shows the transformation of

p(¢) to g(z).

r 3.0

- 2.5

| 2.0

- 1.5

dF (cos¢)=dF,(¢)+dFa ()
dF, ()= dFy(g)

F/

eQlcosd) - 1.0

7 I(a) Vi-(cos$)? 7

glcosg)=

Figure 15.- Transformation of PDF under the change of
variables from “¢” to “cos ¢.” The PDF’s are drawn
to scale for Oy = 0.56, a = 0.312 (o = l/oj));
p(¢) is on the cylinder of unit radius, perpendicular to
the x-y plane; ¢ is on the unit circle; g(cos ¢) is in the
x-z plane; cos ¢ is on the x-axis; dF denotes elements
of probability.

g(z)

Figure 16.- Probability density function;
g(z) = e¥/al(a)(i - 223" * o= 1/0g.

for two values of Op.
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APPENDIX D

DERIVATION OF THE PROBABILITY DENSITY FUNCTION OF _3; T n(t)dt

KT *o

The decision variable q was used in the expression for the probability
of error associated with a telemetry signal. This decision variable is the

sum of two random components. The first random component f cos o (t)dt

was treated in appendixes B and C. The second random component fT n(t)dt,
where K 1is a real constant, will be discussed here.

It will be necessary first to give a physical meaning to the quantity
%-.an(t)dt. The random process n(t) consists of a collection of determinis-

tic time functions (realizations) that can be represented in the set
{n;(t), np(t), . . . , nj(t), . . . , nk(t), . . . }. In any one particular
experiment, one time function, ni(t) is integrated over an interval of T

seconds yielding the number _QT ni (t)dt. Then this number is divided by the
integration time T giving the number %-'gT n; (t)dt which is recognized as
the time average of the function nj(t) over the interval of T seconds.

When this experiment is repeated, a different time function, ny(t) is involved
whose time average % JgT ny (t)dt is computed. Continuing the experiments in

this manner, a collection of time averages is obtained which may be repre-

sented in the set {%-.QT n; (t)dt, % .gT np(t)dt, . . ., % _QT nj (t)dt, . . .,
f'rnk(tJdt, .o .’ . The elements of this set are real numbers that

resulted from having performed the experiments 1, 2, . . . , i, . . .
k, . . . . Before each of these experiments it was not known Wthh one of the

time function averages would be computed. Consequently, it was also not known
which one of the elements in the above set would be the outcome of the partic-
ular experiment. This ignorance renders the set above a random collection,

and it is represented by the symbol %—JZT n(t)dt that is called a random

variable in probability theory. Thus, for any random process such as n(t},
from which the integral over a constant interval T of time is computed, such
as J;T n(t)dt, a random variable is obtained. Figure 17 summarizes graphically

these introductory remarks. The sum of the shaded areas above the t-axis minus
the sum of the crosshatched areas below the t-axis represents T times the
time average of the respective time function. Figure 17 is drawn for an
arbitrary random process n(t); in the following discussion n(t) will stand

for a white, Gaussian noise process.
Now some qualitative statements follow about the random variable
T
ALl
Y A= j; n(t)dt
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() In the analysis it was
assumed that the noise

T o ~N\| /N [QX /</~\\ //v~ - process n{t) obeys the
y &

\ S had normal probability law
with zero mean and vari-
nait) ance 02 so that the
probability density
T /ﬂ\ Y/ N 0 function of n(t) is
BERVAL B A
n(t) -n?

1 262

h(n) = o
7 . /IU %W@W%‘@A‘”%%JVAUL’T 5 N

for -« < n < «, This

=0 beT means that the noise
Irtegration inferval process n(t) takes a

value ng in the interval

from a to a + dn with

probability

Figure 17 - Typical time functions from the random process n(t).

When the value n, approaches infinity, thezprobability %igw h(n)dn of

-n
this happening tends to 0 at the rate e K, Thus it follows that the
integral J“Tn(t)dt exists and converges for almost all time functions in the

set {nl(t)q np(t), . . . } =n(t). Davenport and Root (ref. 11) show that
under these conditions the integral of a normal random process is itself
normally distributed. Since a normal random variable is statistically com-
pletely specified by giving its mean and variance, it is necessary to deter-
mine only those parameters in order to write its probability density function.

The following is the determination of the mean E{Y}, and the variance
oy of the random variable

L

T
A
y A KTj; n(t)dt

that represents 1/K times the time average of the random process n(t) over
the interval of length T seconds. Since the expectation E is linear
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_ 1 T
E{Y} = E{ﬁ L n(t)dt}

1 T
— E{n(t) }dt
KT J; n(t)

Since the mean E{n(t)}} of the noise process n(t) was assumed to be 0, it
follows that

E{Y} =0

In such a case the variance 0% 4 E{[Y - E{Y}]2} reduces to the mean square
value E{Y?} which will be computed next:

e )

1
(KT) 2 E{JfTJan(t)n(u)dt du}
0

E{Y?2}

e}

Since the double integral in the second equation above can be regarded as the
limit of a double sum, and since a double sum is simply one large sum, the
linearity of the expectation E allows us to interchange the order of
expectation and integration. Thus

E{ _/'TfT n(t)n(u)dt du}

o O

fT fTE{n(t)n(u) }dt du

0O o

J‘OT.QT R (t,u)dt du

where R is the autocorrelation function of the noise process n(t) which is

n
also assumed to be stationary so that Rp(t,u) = Ry(t-u). Since

Sn(f) = (Nyo/2) W/Hz for -» < f < o, it follows from the Wiener-Khintchine
Theorem! that

Ry (t - u) =3 1S, (£)}

No
7?-6(t - u) watts

1The Wiener-Khintchine Theorem states that the autocorrelation function
and power spectral density of a wide sense stationary process are a Fourier
transform pair.
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where the symbol J-1 denotes the inverse Fourier transformation. Using one
of the properties of the Dirac delta function, that is,

Ssonaw = 1

and with the limits on the integral suitably chosen, the following equations
can be written:

(t - u)dt du = — §(t - u)dt du
L I
No pT
"2 M
_ NoT
)
Thus the mean square value
No
E{Y?} = SK2T

is obtained which equals the variance 0% of the random variable

1 T
Y = 5 j; n(t)dt

The probability density function of Y then is

2
1 ____lL_jr__
hey) = — o« 2(No/2KT)
V (No/2K2T)Y 2m
for -« <y < o , This completes the determination of the probability density

function of the random variable %T .ET n(t)dt, taking real values y, that is

the second random component in the decision variable q.
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APPENDIX E
EVALUATION OF SYMBOL ERROR PROBABILITY

In the analysis the expression

P =./_:°O pq (x) dx (E1)

represented the probability of error where Pq is the probability density
function of the decision variable q. Since the random variable q 1is the
sum of two independent random variables with probability density functions h
and g, respectively, it follows from the Convolution Theorem! that

pq(x) = h(x)*g(x)

=f Y24 (x - wgw)du (E2)

u]

In appendix D the probability density function

_x2
2
1 _ 2(Ny/2K2T)

\/(NO/ZKZT)\/—Z_n

and in appendix C the probability density function

h{x) = -w < x < o (E3)

3

ax

© -, 1< x <1

mIg(a) Qﬁ ; xé
g(x) = (E4)

0 , otherwise

were derived. Since the function g(u) in the integrand of (E2) is zero for
values of the argument u that are outside of the interval from -1 to 1 and
since the argument x - u of h 1is unrestricted, the range of integration has
only to extend from wuj; = -1 to up = 1. (This observation can be proved
rigorously by the method outlined in the article cited in the footnote.)

1The cdncept of convolution and its physical meaning are lucidly
presented in the article by T. J. Healy, reference 12.
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Substituting the integral for Pq into the expression for the probability
of error (El) results in

o} 1
Pe :l;; [[1 h(x - u)g(u)du] dx (ES)

Now P, will be expressed in terms of tabulated functions. Since the
integrand h(x - u)g(u) is (absolutely) continuous for -1 <u < 1 and
-o < x < 0, the order of integration may be interchanged so that

1
Pe i[: [l;f h(x - u)d%]g(u)du (E6)

Now define

v& . __ x-u
V2 (No/2K?T)
where u 1is fixed, so that
dx = - V2(No/2K2T)dv
The limits of integration x = -~ and x = 0 become v = + and
A
v = = v

u
2(N,/2K?T) 2

Then the integral in brackets of (E6) is written

(0] 1 L -V2
j. h(x - u)dx = v e dv (E7)
e i v

having used the formula

-,/;afw)dy =j;bfchdy

The co-error function, erfc, is defined by (ref. 4, entry 7.1.2)

© .2
erfc(vy) é—2—_/‘ eV dv
v TV,
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so that

o _y2
—ALZ/‘ eV dv =—%—erfc(v£)
Vi v,

The final expression for the probability of error is

1 1 u
P =5 erfc g(u)du (E8)
-1 V2 (Ng/2K2T)
where
QU
I () Vq_t_57_3 -l<uxl
glu) =
0 , otherwise
and
A1l 7 o cos ¢
Io(d) = ? o e dd)

is the modified Bessel function of order zero (ref. 4, entry 9.6.19). Also,

1 1 1

o =TieZ T ° or 77
in

since the mean of ¢in is zero.

The final question concerns the form that the expression for Pe assumes
under strong signal conditions. Under such conditions the random variable

Y = K% .gT n(t)dt is much more likely to take on small values than large.

Since 0% = No/2K?T the variance of Y (or the noise-to-signal ratio), a
strong signal condition is then equivalent to the requirement that oy
become vanishingly small. In such case the probability density h(y) of Y
will be large about its mean E{Y} = 0 and will decrease rapidly for values
y away from the mean. In the limit as 0% approaches 0, all probability
is concentrated at the mean, that is,

2
lim h(y) = lim —21 ¢ 2°Y
0Y+o 0Y+o OYVZW
= §(y)
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From the sifting property

b
S, 80 - W = g0

it follows that

Pq(¥) = h(x)*g(x) = g(x)

when o - 0. Thus

Po =j;° g (x)dx =f1°g(x)dx

because g(x) = 0 for x < -1. Substitution of the probability density
function g yields the expression

X

1 0 e®
Pe =Fo(a)_/_'l VI - x2 9%

for the probability of error under strong signal conditions. In this case Pg
equals the probability of cos ¢ taking negative values which is a function
of the variance. Evaluation by computer showed that the previous expression
for Pe (containing the co-error function erfc) yields the same values for

P when oy 1is small as does the preceding expression. Figure 8 shows Pg
as a function of the standard deviation of ¢;, and as a function of

— =+ 4 ST (expressed in dB).

2(Ny/2K%T) Ny
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