NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 83-482

A Multiclass Sequential Hypothesis Test With
Applications in Pattern Recognition

Jung Pyo Hong

N 4 1 2 98
(AccsssronN MBER) (THRU}
Pa
; &ﬁ% Vg
ASA CR OR TMX OR- iﬁ) NUMBER) (CATEGORY)

LABORATORY

FACHITY FoRM 602

JET PROPULSION
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

June 15, 1971

NATIONAL TECHN!GAL

E iNFGRMATION SERVICE




June 11, 1971

Recipients of Jet Propulsion Laboratory
Technical Memorandum 33-482

Subject; Erratum
Gentlemens

Please note the following corrections to Technical Memorandum 33-482,

A Multiclass Sequential Hypothesis Test With Applications in Pattern

Recognition, by Jung Pyo Hong, dated June 15, 1971:

Pzge v, TABLE OF CONTENTS, should read:

Acknowledgment . .. ... ... vt e it Tiv
Listof FIgures . ... ¢ i v it v vt v v v an v v aunos viii
Abstract . ............ B e e e e e e e e e X

Delete the following entry:

Glossary ........ e . S e e e e e e xi

Very truly yours,

T

John Kempton, Manager
Publications Section

JET PROPULSION LABORATORY California Institute of Technology » 4800 Oak Grove Drive, Pasadena, Californig 91103

Tz 213-449-2451

Telephone 354-4321



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-482

A Multiclass Sequentialcﬁypothesis Test With
Applications in Pattern Recognition

Jung Pyo Hong

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

June 15, 1971



Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administration



PREFACE

The work described in this report was performed by the Astrionics

Division of the Jet Propulsion Laboratory,

The research reported in this Technical Memorandum is a disserta-
tion presented to and accepted by the Faculty of the Graduate School,
University of Southern California, in partial fulfillment of the require-

ments for the Degree Doctor of Philosophy (Electrical Engineering).

The examples in this report pertain to pattern recognition of char-
acters, However, the theory of multiclass sequential hypothesis test can
be applied in other disciplines., The theory is useful in signal detection as

well as in detection of objects by a robot, for instance.
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ABSTRACT

In recent years there haé been a sharp rise inﬂthe
need and inferest for pattern recognition. In particular
much work has been done on the problems of: machine read-
ing. There are algorithmé which pértially solve the
problem of reading. impact printed matgrial. This dis-
sertation presents an algorithm‘which can be used to
build a reading machine that will read iﬁpact printed
characters and handwritten letters.

Invariant features_ are extracted by random lines.
The number of intersections and also the-total length
of interSection_théé-tﬁese 1ines:produée a;e the random
variable observations used as inputs té a hﬁpothesis
best.  This method allows the patbern to.be anywhere in
the retina. It eliminates the cost of fine.alignment of
the pattern before .taking samples. - ‘Many previous users
of these features utilized only the mean of the randém
variaple. Here the whole probability distribution of
the random variable is used. This allows the intro-
duction of size inﬁériant methods.

The sequential muliticlass hypothesis test presented
in this dissertation is in such a form as to allow rapid

computation of the errors of the first and second Kinds

JPL Technical Memorandum 33-482



for cach possible decision. .This is useful because in
any practlcal system the user desires tg have easy access
to the parameters whiech control the performance of the
machine.

One interpretation of this test is that it computes
the ratio of the likelihood of an observation coming from
a class to the likelihood of an observation coming from
any other class. When this ratio exceeds a threshold
a decision in favor of the class is made. For each sam-
ple, there are as many such comparisons as there are
classes.

The sequential multiclass hypothesis test proposed
in this dissertation is a Bayes test at each step. .The
proposed test is Wald's sequential probability ratio test
for the two-class problem. It is not like the general-
ized Wald's test which tests all combinations of two
hypothese;:_kor is it l1like the M-hypothesis test which
also tests the same number of combinations. The number
of comparisons these tests make is (1/2)M(M-1), where M
is the number of classes. .They reguire far more com-
putations than the proposed test.

Extensive experiments with block letters and hand-~
written numerals are reported. These experiments verify
the usefulness of the proposed multiclass hypothesis tvest.

These experiments show that the error rates are under the

JPL Technical Memorandum 33-482
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control of the user and that the average length of the
test can be predicted.
A survey of the methods in paﬁtern recognition 1is

presented to put the author's contribution in perspective,

xii JPL Technical Memorandum 33-482



CHAPTER I

INTRODUCTION

A. THE PROBLEM-

There are two aspects to pattern recognition. 1In
one form of the proﬁlem a field of data is glven to a
recognition machine and it is asked to state whether
there are patterns., In the second form, the algorithm
is required to decide under certain eriteria which of
the known patterns the data represent. (Often the null
pattern or the reject option is 1ncluded as a possible
decision.} In this work the emphasis shall be on the
solution of the second problen.

Pattern recognition is a two step process. Filirst,
observations are made, then an algorlthm uses fhese
cbservations to arrive at & conclusién. Observations
include all forms of measurement, filtering, and digi~'
tizingt The decision algorithms may be linear, non-
linear, or statistical functions of the observations.
There are abundant examples of such processes in nature.

One first hears sounds of speech, then understands their

properties., One must see the printed page before one

can read the words.

JPIL Technical Memorandum 33-482



It is not the object here to study how these pro-
cesses operate in nature. But these examples clearly
point out the Important interrelationship between the
phservation apd the algorithm. Hence to obtain a goecd
pattern recognition machine, it is required that the
observation and the decision algorithm be studied to-
gether.

Often investigators in pattern recognition have
taken the observation phase of the process 4n aﬁ ex—
pedient manner. -By arbitrarily limiting the type of
.observation, one severely narrows the possible class of
compatible or feasible decislon algorithms. As an ex-
ample consider the early Investigators who used  the time
signal from a television-~like scanner. The two di-
mensional region- of interest 1s divided in a checker-
board manner—and each square is assigned .a gray level
according to the image. The.choice of such a set of
n by m samples as the observation features is unfortu-
nate. Computational requirements on the large set of
numbers-1imit the types of algorithms.

The reqguirements of the problem often suggest a
class of decision algorithms. Then ore must know how
to choése the best features: For instance, when the
requirements of the problem are stated 1ln ferms of

minimizing the average risk or in terms of the probability

JPI1, Technical Memorandum 33-482



of the recognition, certain statistical tests come to
mind. What remains is to find the feature extractlon
scheme which will meet the needs of the statistical
methods consistent with computational and other require-
ments. ‘ -

An example of a practical problem in. pattern recog-
nitioh with some of its-requirements would be the design
of a méchine which could read fhe address of é letter
and sort it according to the postman's.route, with as-
signable probability of thg correctness of the sort.

It woﬁld reject as few as possible and sort at the high-
est-possible speed. So far the conly "mgchine“.that_
comes closé to meeting these requirements is man.

Exactly‘what features man exﬁ:acts f:om.t@e address
lébel is not known nor is it known what algorithm-he -
uses 1o read written material. The motivation behind
dévelOping a machine wh;ch wilihpenform reading is‘that
.the-machine may be fastgr for. a §ubseﬁ of "gasyﬁ probm-

_leﬁs.'_It seems that ;qQ spged of the algorithm can be
enhanced if.the glgprithm is based on some .random sam-
-plipg of the data rather than on some fixed extraction
‘such as contour tracing which takes more effort.

The pa?tern recognition system presented.in this

thesis will‘use a statistical hypothesis test.. The

method used in the observation phase is carefully chosen

JPIL, Technical Memorandum 33-482



to assure the stochastic nature of the input.

B. THE DISSERTATION

This dissertation explores a solution to the pattern
}ecognition problem which attains a requested performance
level and which optimizes speed (amount of computation)
and storage requirementé. One may observe that a proba-
bilistic decision machine 1s most natural to the reguire-
ments of certain problems. Then suitable features are
chosen as the 1nput to the algorithm.

This dissertation rellies heavily on the problems

of character recognitioﬁ for examples and illustrations.
Let it ﬁe noted that the ideas of randomized feature
"extraction may be used for other types of problems.
For instance they'may be used for feature extraction

of phonemes in audio signals.

Chapter II contains a survey 6f pattern recognition.
A few of'the‘impoftant tools used in pattern recognition
are presented to put this dissertation in persﬁective.
The works of certain inveétigators are discussed so that
the two steps in pattern recognition can be illustirated.
Multiclass hypothesis testing is discussed in Chapter II.
Maximumllikelihood and Bayes procedures are reviewed.

In general it is difficult fo compute the signi-
ficance of a test. That is, it is difficult to comque

how many samples are needed for a level of performance

JPIL, Technical Memorandum 33-482



because n-fold integrals are Involved. Chapver IIIl-
describes a method of approximating the significance of
a tést when the test 1s of a special form. Since the
significance of the test can be monitored easily for
each sample as it is observed, a sequential multiclas
hypothesis test results.

The requirements of the problem demand a stochastic
decision algorithm. Line intersection length and the
number of intersections of a random line with the figure
are presented as two invariant feature extraction tech-
nigues. The properties of these features relevant to
font, size, and noise are discussed in Chapter IV.

Chapter V presents experimental results using the
features of Chapter IV and the algorithms of Chapter III.
Chapter V also includes the results of a recognition

experimenﬁ_of hand printed digits.

C. NOTATIONS AND DEFINITIONS

The notations and definitlons used in this disser-
tation are consistent throughout. A glossary is included
at the beginning of this dissertation.

In the problems considered in this work if is assumed
that there are M = 2,3,... hypotheses. ©Only one hypothe-
sis is actually true. The 1th hypothesis, denoted Hj,
shall be the proposition thét the observations v, =

(vi,V2,...,V,) are taken from the ' ith class of

JPL Technical Memorandum 33-482



distribution ﬁi' The symbol above the function name (~)
allows the same name Fy to be given to a family of
functions associated with a hypothesis., Strictly, the
functions ﬁi(yl,...,vlo) and ﬁi(vl,...,v55) are not the
same thing. Fy; will be used to denote the distribution.
function of one variable Fj(vy).

It is assumed that the distributions Fy are distinct,
That is, Fi#FJ if i#j. If the depsities exist, then dFy
is the probability density function.

The a priori probability that Hy is true is

2.
1}

5 Prob{H; is really truel (1.1)

= Prob{Hj is true and (1.2)

g

[N
oM
zh

R
~
<
N

!

v = (vy,Vs,...,Vy) 1s observed}
Or’

dﬁi(v) = Probiv = (vy1,vy,...,Vy) is observed

glven Hy 1s true} : (1.3)

The algorithms considered here will be allowed to
verify one of the hypotheses or none at all, This last
decision is often called a reject.

Dy = reject . ) (1.4)

Dy = accept iy i= 1,?,...,M (1.5)
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The ratio of two probability densities will be named

Z,(1,3)

Zn(i,j) - df‘.j(vl,vb,..,vn) (1.6)
dF;5(V1.Vo,eeesVy)

When the samples are independent,

n
- dFj(vm)

m=1 §r; (vp)

(1.7)

it

2 (1,3)

U
s

2 (1,3) (1.8)

m=1

vhere

dFj(Vm)
dFi(Vm)

Zp(1,3) =

Often the logarithm of Ratios 1.6 and 1.9 are useful.

4

Zn(1,5) = 1n Zp(i,3) {1.10)

In zp(i,3) €1.11)

u

Zn(1,3)

Because the logarithm .of a product is.a sum the logarithm,

- n
an{i,d) = ] Zp(i,5) . (1.12)
m=1
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Any statistical decision algorithm is subject %o
errors. The probabilities of the errors are given the

lames elj .

ejj. = Prob{accepting H;j when Hs is true}-

Prob{DilHJ true} (1.13)

More precisely, let v (n) be the region in v = (v{,Vo,...)
i . 1,Y2

such that a decision Dy 1s made at the nth stage.

{ve wi(n)}:?{decision D; is made exactly when

n components of v are observed} (1.14)

Also let eij(n) be the probabilities of error for de-

cisions made with n samples. Then

. (n)

eij = j (n)dﬁj(vl,VE,...,Vn) (1.15)

vy

The superscript is used to stress that there are h SO~
ponenté’in the vector v. This is necessary to compute
the error probabilities for the sequentizl tests.

Let p(n) be the probability that the test ends at

the nth stage.

p(n) = Prob{sequential test ends

at the nth stage} (1.16)
{

i
i
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The total error rates are

€33 = ) ?ij(n) (1.17)

=3

¥ 1.18
L wi(n)dFj (_V) ( )

where the last equality is by Definjtion 1.15.
A table of [eiJ] is called a confusicn matrix. The

probability of correctly accepting the ith-hypothesis

given that H4 1s true is

e13 = Prob{Dy |H;{ truel} (1.19)

Of course this is not an error, but the letter "e" is
used for consistency with the other entries of this
table. The probability that a dec¢ision algorithm will

correctly cﬂoose 4 hypothesis is
P;ej3 = Prob{D; and Hj} (1.20)

This term appears frequently 1n subsequent chapters. It

will be called the probability of detection and given the

noetation

Two types of errors are of particular importance in

pattern recognition. The first is the probabiiity that

l

the result of a classification is incorrect. The second |
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1s the probability that, given a known pattern, the algo-
rithm will not correctly detect it.

An example of an application of a pattern recog-
nition algorithm will clarify this point. Suppose a
reading machine is scanning a typevwritten page. If it
reports that the next letter is "Q" it is desirable to
know the probability that such a report is incorrect,
i.e., the machine is really observing another letter.
The probability of such an event is called error proba-~
bility of the first kind, ag- On the other hand, the
reading machine may be positioned over a known letter,
"B"., The probability'that the machine will correctly
identify a letfer is the probabllity of detection, Q-
If there is a misclassification then there has been an

error of the second typé. Its probability is Bg and
Bg = Pg - vp (1.22)

An algorithm may classify & givén test pattern into

an incorrect class.

ay- = Prob{D; is incorrect}

e P (1.23)
j;i 374

This is the probability of false declaration.

JPI, Teechnical Memorandum 33-482



The {a4} are defined for all i = 0,1,2,...,M. -There
are M classes and i = 0 corresponds to the null pattern
or the reject option. That is ay is the probability of
a reject occuring.

Another type of error is the probability of .a miss.
That is, there is the probability that Hjy is true and

an incorrect decision Dj, where Jj#i, is made.

B4 = Py ] €4 (1.24)
LTS

The {B;} are meaningfully defined for all i = 1,2,...,M
but B = O.

It seems reasonable‘to characterize a pattern recog-
nition system in terms of {a;} and {y;}. It is useful
to be able to find an algorithm at a specified level of

fag} and {yyl}.

JP1L, Technical Memorandum 33-482
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CHAPTER II

SURVEY

A survey of the mathematical tools often used in
pattern recognition and a few experiments in pattern
recognition are presented in this chapter. The purpose
is to put this dissertation in perspecti%e. For other
examples in this field the reader is directed t§ Nagy

[Ref. 1] and to Pattern Recognition tRef. 2].

A. MATHEMATICAL TOOLS

1. Linguistlc Approach
In the linguistic approach, the input features are
the strokes and the stroke locations. Without becoming

too involved, an example will be given.

/N -

a b e d

Filg. 2-1. Basic Elements of a Two Di-
mensional Field

JPI, Technical Memorandum 33-482



The set of all basic elements is called the alphabet.
Suppose the alphabet 1s as displayed in Figure 2-1. A

few of the possible inputs are:

a) ¢ d ¢ which represents H (2l1)
b} a d b which represents A (2.2)
¢c) ¢ b ac which represents M (2.3)
d) c¢ b ¢ which represents N (2.4)

The action of the declsion algorithm is much like
" a compiler. It checks to see if the combination of the
input elements forms a pattern in a dictionary. To
perform this chore efficiently one uses-all the mathe-
matics of context free language, graph theory, and

compiier theory [Ref. 3 and 43.

2. Linear Operations
Many mé;bpds look upon the input x as a matrix or
a vector. Nilsson [Ref. 5, p. 79] discusses partitioning
of the observation space into classes. Andrews {Ref. 6]
on @he‘éther hand uses transform methods on the lnput.
The input is sometimes looked upon as -a maﬁrix

X = [Xij] and transformations upon X are performed.
i =P XQ (2.5)

Functions of Z are used in the decision algorithm.
. Andrews [Ref. 6] uses cross-correlation of a letter

prototype against a fleld of letters to find the mateching

JPL Technical Memorandum 33-482
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letters., To optimize on Speéd of computation the fourier
transform of £Xij] is used. The transform of the input
and the transform of the reference are multiplied to-
gether, thus giving a matched filter operation. This
method requires huge amounts of computation and is sen-
sitive to rotation as well as to‘scaié variations.

Often a class is defined by several prototypes
Gl(i), Gg(i?,... The superscript (i) says that the
prototype belongs to class 1. A prétotype is described

by a vector of measurements or features
Gl(l) = (gll(i)sglg(i)s"‘agln(l)) l (2.6)

Therefore the prototypes are points in the n-space of
features.

One method of recognizing an observed sampie
X = (xl,xz;TTu,xn).is to classify it into the ciass of
the “"closest™ prototype.

Many functiéns hafé'beeﬁ used to measure the close-
ness of two points in fﬁe n-space. The Fuelidean

distance
a?(64,%) = (G3-X) * (G5-X) (2.7)

rample.
The shortcomings of stch a method are threc-fold.

First when there are many prototypes a large number of

JPL Technical Memorandum 33-482



computations are required. Also the error rates are

difficult to predict or control. Furthermore dE(Gj,X)

depends upon the units chosen for the individual features:

X = (5 dollars, 4 inches, 6 volts) versus X = (500 cents,
10 cm, 6000 mv).
One approach often used to "normalize" the n-space

of features is to find weight vectors
w(i) = (wl(i),wa(i),...,wn(i)) (2.8)
constrained by the product

wj(i) =1 | (2.9)

lquj(i) =1 (2.10)

so that the intra-class distances dz(Gm(i),Gk(i)) are
minimized and-the inter-class distances dz(Gm(i),Gk(j))
are maximized. The reason for doing this is that -the
prototypes of one class ought to be "close" whereas
prototypes from different classes ought to be "distant"™.

Some Investigators have‘attempted to measure the
distance betweén classes [Réﬁ. 7). One distance is
callied the divefgence and another the Bhatlacharyya.
They are defined, respectively, for the two-class

problem as

JPL Technical Memorandum 33-482
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A recursive method of choosing w(i) so that lincarly

J(Hy,Hp) = gl in dggcx) -~ gz in 55;?;? (2.11)
and
B(Hj,Hy) = -1n |[ [dFy(x)dF,(x)]1*/ 2dx (2.12)

where the probability distribution of a sample X over
the ith hypothesis is ﬁi(x)l These distances are not
metrie since the triangular inequality doe§ not hold.

A tremendous amount of computation is involved in
the determination of w, the weight vectors. And yet,
such a method still leaves open tﬁe question of pre-
dicting the performance of the classifier in terms of
error probabilifties.

Nilsson uses hyperplanes to separate the classeé
in the n-space of measurements. A linear discriminant
function for the ith class is formed by taking a dot
product of the Input and a welight vector for each class.

This glves the discriminant functiocn

d; = X - w(i) (2.13)

where the weight vector for the ith class is
wli) = (1) ual(1) L w3 )) o (2.1h)
The 1 for which d4i 1s the largest is chosen as the class.

s
¢
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separable patterns can be partitioned 1s given in
Nilsson [Ref. 5, p. 791}, under trainable linear classi-
fiers. A theorem given by Nilsson assures a partition
of the trainigg set 1f the patterns are linearly sepa-
rable.

The drawback to this approach i1s that often classes
are not linearly separable. Also error rates are ex-

. tremely difficuit to compute.

3. Potential Functions

Another approach to the assignment of points of a
finite-dimensional vector space to one of a famlily of
classes on the basis of protctypes of those classes is
called the method of potential functions [Ref. 8]. This

method reduces to the construction of functions q;(X),

one for each class, so that. if

a;(X) > q3(X) for all i#] (2.15)

then X = (xy,Xp,...,%X,) is classified as a member of
class j, and where these functions are constructed as

superpositions of potential functions £{X,G8)

éi =

g+

m - .
) r(x,a; (1)) (2.16)
J=1

The sum is over the prototybes of class 1.

A reasonable set of restrictions on the potential

JPL Technical Memorandum 33-482 17
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functions can be phrased in intuitive {terms as:

a) f(X,Y) should be maximum for X = Y.

p) £(X,Y) should go to zero for X "distant" from Y.

¢) f(X,¥) should be smooth for easy analytic mani~
pulations and decrease monotonically with the
"distance" between X and Y.

ay £x,6(1)) = £(x,6(J)) should imply that X is
equally "similar" to the prototypes of class
iand J.

A function often used for f£(X,Y) is

1
1 + Ad9(X,Y)

£{X,Y) = (2.17)
where A is some constant and d2(X,Y) is some distance
function. A form also used for the potential funetion 1is

~Flx-x|]?

f(X,Y) = A exp 562 (2.18)

where A and o are constants and !IX—Y||? is the norm
squére of the difference vector,.

]

Clearly this function determines the way the space

is partitioned. For instance if o approaches 0, only

the prototypes will be defined to'belong to the classes,
whereas when ¢ approaches «, increasing portions of the

feature space will be deflilned.

JPL Technical Memorandum 15:3-4:'82.



It is not clear how the error probabilities arc
computed. Also the amount of computation one must carry

out for each classification is very large.

h. Statistical Methods

The observations are often looked upon as random
variables. This allows statistical methods to be ap-
plied to the classification problem., Usually some form
of @ Bayes test is used, as in the maximum likelihood
classification technigue. Sucp tests are optimum with
respect to certain loss functions. However, some authors
modify well known methods for computational or experi-
mental expediency. In so doing they lose the optimality
‘of the test, Reed's work described below beling an example.

Both fixed-length sample tésts and sequential tech-
niques havé been used in pattern recognition. in this
section many metheds -are discussed in detail with comments
as -to the speclal needs of each technidue. Where appro-
priate, comments are made as to the inadeqdﬁcy of the

method,

a&. Definition of Bayes Decision Rule
Bayes rule minimizes the average cost of making

decisions [Ref. ¢, p. 24], The average cost r is com-

puted as

JPI, Technical Memorandum 33-482
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M M _

where the decision rules are

§(Dy|v) = Prob {deciding D;j when observing v} (2.20)

and v € I'. Clearly this integrai is minimized if

§(Dj|v) = 1 for the i which gives. the minimum

M . M .
¥ Lis@F:(v)}P: < min| ] L;;dF;(v)P; (2.21)
1 - 1J
P J J 1 |y Y J
and
§(Dyv) = 0 for k # i (2.22)

This formulation is general enough to include many

useful tests. The difficulty arises in choosing mean-

ingful values for the loss functions. In pattern recog-

nition applications a further difficulty is due %to the
complexity of computling the error rates for various loss
fuﬁctions. In Chapter II1 a methcd of choosing one
meaningful form of the loss function that allows easy

estimates of the errors is giver.

b, Maximum Likelihood Decision
A special form of the Bayes test is the maximum

likelihood decision rule. The criterion for decisionsd

PI, Techhical Memorandum 33-482



is that the probability of tThe observation coming from
the class be maximized. This is not necessarily the
best thing to do, as an example will illustrate. How-~

ever, under this c¢riterlon one chooses Dy such that

Pidﬁi(x) _ max P1dFq (x)

-

(2.23)

k. koL
ZledFj(x) zlpdej(x)

J J

Clearly the dencminator is constant for a given x. The

rule is equivalent to choosing D;y such that

PydFy(x) = max{PjdaF;(x)} (2.24)
J

It can be shown that this is the Bayes rule with L34=0,
Lij=1: i#j. This rule classifies the observation without
regard to the type of error.that it is making. Con-
sequently there is liétle control over the opératiﬁg
characteristic of the algorithm.

As én example consider three hypotheses Hy, Hp and

Hy with dF;, dF; and dF3 as illustrated in Figure 2-2.

3F4 -dF;

-1 o 1

Fig. 2-2. Three Probability Densities
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It is obvious that D3 will never be chosen with this
algorithm, even when x has come from Hj.

c. Tradeoff of Recognition Probability against

Reject Rate

This section studies a method proposed by Chow
[Ref. 10]. It concludes that both the definition of
optimum and the proposed optimum rule are deficient.
The total error probability and the reject rate are often
used to characterize the performance of a pattern recog-
nition system. Chow describes a classification and
rejection rule based on these parameters.

Chow [Ref. 10 and 11] modifies the maximum likelihood
clagsification technicue. Optimum here means that a rule
minimizes the reject probability for a given level of
total misclassification. The rule rejects the pattern
if the maximum of the likelinood function is less than

a threshold. The rule is defined as

s

1 it poaF(x) > P;afs(x) for all j=1,2,...,k
) and
6(D;y |x) =< - n
P;dFy (%) > (1-t) | PydR;(x)
121
| 0 otherwise (2.25)

lThere is ambiguity when P;dFi(x) = PjaF(x),
1#5. When this happens a declision can be made %anaomly.
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1 1if 6(Dy|x)

il

0 for all i=1,2,...,k

§(Dglx) = § , (2.26)
0 if 8(Dy|x) = 1 for any i=1,2,...,k

it

b

The parameters £ ¢ [0,1] and controls the reject region,
The error rate, reject rate and the probability of

correct recognition are defined, respectively, as

k k .

E(¢) = )} 6(Djlx)PidFi(x) (2.27)
Ry 1=1 j=1

R(t) = [ 8(Dnlx) § P:dF;(x) (2.28)
én 0 izl i+ i

C(t) = 1 - E(t) - R(t) (2.29)

Now two useful functions can be defined as

max[PidFi(xﬂ
m(x) = 21 _ (2.30)
dP(x)
and
k .
dP(x) = ] PydFy(x) (2.31)
i=l
The decision rule can be restated in terms of these
functions:
1) accept a pattern whenever m(x) > 1-t (2.32)
2) reject the'pattern whenever m{x) < 1-t (2.33)

The reglon of acceptance #%;,; and 'the region of rejection
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24

YR can be defined in terms of these definhitions:

1

Yy = {x: m(x) > 1-%} (2.34)

Iy

b = {x: m(x) < 1-%} (2.35)

Clearly the rejection and acceptance probabilities are

R(t) = [ aP(x) (2.36)
YR -

ACt) = [ aP(x) (2.37)
Ya

A Tew simple properties of the rejection threshold t are:
1) Both the error and reject rates are monotonic in
t, one decreasing and the other increasing.
2) The reject threshold t is an upper bound on the
error rate E{(t). Let x be in ¥ps the regilon

where 6(DOJXJ = 0. Thav is, m(x) > (1-t) and

E(t) = A(t) - C(t) = [ [l-m(x)IdP(x)
vy
< tf dP(x) < tA(t) < t (2.38)
‘I’A

3) The reject threshold t 1s a differential ratio
of error rate and reject rate when R(t) can be

differentiated.

b . g (2.39)
aRr
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4) ‘'The probability of acceptance A(t) has the
property 0 < A(t) < 1 for t € [0,1]. A(0) > 0,
A(1) = 1.
There is a guestion concerning optimallty. This
method says, in effect, to raise a threshold (1-t) from
zero to an appropriate valué so that the total proba-

bility of error,

k
E(t) = [} 1 (D,|x)PiaF;(x)
i=1 j#i J
53 (2.40)
= es: P 2.40
151 g% MY

equals a design criterion. One guestion that is un-
answered is whether there are many decision rules that
wlll give the same "optimality“.' This ques?ion arises
since the total error rate in the definition relies only
on the total of the probabilities. There are many sets
{eij} which give the same sum. Clearly not all such
tests are optimal, from the user's point of wiew. This
may mean thal wrong costs were :'chosen. Here is an ex-
ample that will point out the weakness of the above
method. Consider the three hypotheses as illustrated

in Figure 2-3. Assume that each c¢lass ié equally likely.
According to the definitien 3dP = dF; + dF, + dF3. This

is BEguation 2.31, illustrated by Figure 2-4.
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Since max PydFy(x)

i

dFy dFs

dF2

-1 0

1 X

Fig. 2-3. Example for Chow's Method

darp

-1

X
1

Fig. 2-4., TIllustration of Eg. 2.31

=1, for -1 < x < 1, then m(x) = _ 1 .

dr{x)

(1-t) = —=|= —|-~——-—- S

1

Fig. 2-5. Chow's Rejection Region

Figure 2-5 illustrates m(x), and (1-t) corresponds to

some value of the total probabllity of error. The reject

region is the interval in Ry for which m(x) < (1L-t).

The reject region is the whole of the region over which

class 2 is defined.

Frem the Bayes point of view this is

a result of minimizing the average cost with respect to
!

some cost.

In particular it is

like assigning & cost of
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zero for misclassifying class 2. The unfortunate con-
clusion is that class 2 will never be detected.

Thus there are two flaws to Chow's method. First
Hoptimum" is amﬁiguously defined in terms of total proba-
bilities. Second the "optimum" rule may never detect
certaln classes, even when requested to do so. Conse-
guently it is important to ask whether it is possible. to
devise a test which is defined in terms of the natural
parameters of the pattern recognition problem, proba-
bility of false declarations {di} and probability of
detection {y;}. Are there tests tﬁat give results which
approximate the design criteria? In the next chapter

this guesticn is answered in precise terms.

d. Wald's Sequential Probability Ratio Test
Many applications use Wéld's sequential proba-
bility ratio test. This test assumes the samples are
from one of two classes. Samples from class 1 have a
distribution ﬁi and samples from class k have a dis-
tribution ﬁk-

Samples are taken one after the other. It is not
necessary to assume that they are independent samples.
However, such an assumption clearly reduqes the require-
ments for computation. After n samples are taken,

X = (Xl,xzd...,xn). A rejection takes place if

JPL Technical Memorandum 33-482
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< PidFi(X)

= < Ay (2.41)
Py dF) (%)

Ay

where Ay and A; are limits which will be defined.
PydF;(x) > AjPydFL(x) (2.42)

then it is decided that the sample must have come from
the class whose distribution is Ei(x). The gquantity Aj
must satisfy Equation 2.42. Integrating over P4 the
region of Ry, which gives the decision Dj, glves
[ P1aF;(x) > Ayf PpaFy(x) (2.43)
vy ‘ V1
The left side is vy, the probablility of correctly decidin
class i, whereas the right integrazl is a4, the probability
of deciding i when decision k 1s correct. |
This .1s the traditional presentation. It was pointed
out to the author that a more careful study must be taken.

In Chapter III ¥3 is defined more specifically.

vy > Ajay (2.4%)
By neglecting the excess over the thresholds,

Yi * Ajoy (2.45)
or an approximation to the threshold A&y is

. "
Ai = Yi/ai (2.46?
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Hence the quantities A; are chosen as the functlons of
a's and y's.

For a discussion on termination of Wald's method
see [Ref. 12}, Wilks [Ref. 13, pp. 482-497], and Selin
[Relf. 14, »p. 90-957]. In tne avbove references and in
Appendix 3 the average sample number at termination is
computed.

Most techniques using this test take the data in
a fixed manner. For geometrical data, quite often, the
measurements are taken using scan-by-predetermined-lines
or scan-by-matrix-digitization or edge followers.

Unfortunately in many cases the inputs to the algo-
rizhm do not take the assumed statistical form. Oféen
the Gaussian assumptions are made for analytical con-

venience when little is really known about the inputs.

e. Extension of Wald'!'s Sequential Probability
Ratio Test

Wald and Sobel [Ref. 15] extended.the hypothesis
test to the three-class problem. However, as the title
of their paper, "A Sequential Decision Procedure for
Choosing One of Three Hypotheses- concerning the Unknown
Mean of a Normal Distribution," suggests, the problem
they solved is related to the normal distribution,

Barnard [Ref. 16] and Armitapge [Ref. 17] have ex-

tended Wald's sequential probability ratio test beyond

JPL Technical Memorandum 33-482
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the two class problem in a more gencral way. Armitage
is more concise, his work being an outline of Barnard's
studies.

‘In their studies there are k hypotheses Hjy,Ho,...,Hk.
Applying Wald's test to each palr of hypotheses, there

are (1/2)k(k-1) likelihcod ratios.

= P19F1 (%) pon a1 iy (2.47)
deﬁj(x)

Rij

And there are k ratios of the form
Rex = 1 (2.48)

The observations are taken seguentially until all the
inegualities in one of the k sets are simultaneously
satisfied. Accept hypothesis i 1if Rij > Ajy for each
J=1,2,...,k, where As;4 is made less than one. Two
hypotheses cannot be accepted simultaneousiy when Aj 5
are chosen meaningfully.

This test terminates with probabllity one if the
variance of the distribution of Rjj; is finive. The
proof of this is in Barnard and Armitage.

Rewriting the condition for acceptiﬁg the ith hy-

pothesis and neglecting the excess over the boundary

Padis (%) (2.49)

Pia¥;(x) = AjyPja¥;
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Integrating over the correct decision region of the ith

hypothesis gives
A;5Pseqj = Piejy < Py (2.50)

where €1 j is the provability of deciding 1 given H and.

J':
where the right ineguality is noted for convenient over

bounding of Aij- Similar caution as in Equation 2.43

applies here. Hence

P

PJEij

is a rule for c¢hoosing the boundaries.
Recalling that Hy 1s accepted when each Ryj > Aj5,

it is clear that if the ith hypothesis 1s accepted then

ej; > e'yy for all j#i (2.52)

where e‘ij is the true error rate and eij is the desired

error rate.

The desired false alarm rate ag is

Os = Pises. (2.53)
* J;i 471

An estimate of the actual false zlarm rate is

2 Pjeri:} = Q0 « < O . (2-5;4)
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where o' is used to mean the probability of this test
result being false. \

There are two difficulties with this procedure. The
First kas to do with computational reguirements and the
second concerns & priori knowledge of {ejj}.

After each sample is taken, (1/2)}k(k-1) ratios are
formed. Each ratlo is compared to a level. Again, there
are (1/2)k(k-1) tests. This algorithm requires an amount
of computation which grows as the square of the.number of
classes grows. For 10 classes, 45 steps are required.
For 64 classes, 2016 steps ére needed for each sample!
Such requirements proscribe real-time computation.

The secénd difficulty with this method is that often
not all {ejj} are known. Sometimes it is of no concern
what the individual €jj, error rate, is. An example
illustrates—this point. In character recognition, it
really does not matter what the probability of misclas-
sifying "Q" into "é" is. What matters is, that once
"BY is announced, that it be true with high probability.
Next, when "Q" is given to a machine it is desired that

the probability of it announcing "Q" be high. How the

misprobabllity is distributed is immazieorial. Again, o4

and vy are the fundamental quantitie of pattern recog-

nlticn.
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f. .Reed's Generalized Sequential Probability
Ratio Test

Reed [Ref. 18] proposed a ratio test for multi-
class problems. But Fu [Ref. 19, p. 176] points out
%hat, for more than two classes, it has not been shown
that the procedure is Justified. The only grace of the
method is that i1f the number of classes is two, then the
method coincides with\Wald's method, ‘

In Reed's method a ratio,

PydF4 (%)

U (x) = (2.55)

k -
T PydFy(x) 1/k
=1 1=1,2, ...k

K
J

is formed at each stage of a sample. The notation

X = (XI,XQ,...,Xn} is used. The stopping boundaries

are Aj,

Uy is compared to Ay for every i, and H: is rejected
if Uy < Ay for .any such 1. The number k is reduced by
an appropriste amount and the Ui recomputed.

Analysis of this test behavior is not available

except in the two-class problem.
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5. Geometric Probability .

Geometric probability [Ref. 20] has to do with the
probabilities of certain basic geometric events such as
a line intersecting a convex figure. PFirst an appro-
priate measure is given to the basic elements. The
basic element of measure for a random line s(P,08) is
assigned in Appendix 4. A uniform random line s(P,6)
is described by P and 6 and the probability of such a
line is proportional to déde. Then the probability of
these events can be described as the integrals of the
measure over the event. HMany results relate only to
convex figures. Of course in the real world, figures
are more often noncoinvex. However when the Tigures are
convex many such probabilities are related in a simple
manner to the basic features of the figure. If C repre-
sents the set of all random lines intersecting a convex
figure with total perimeter L and if déde I1s the element

1

of measure for a random line then

[faPds = L(meters) (2.57)
&

In order for thils to be a probability it must be normal-
ized, usually by the perimeter of the retina. Vhen one
assigns zero or one to N, a random variable is formed
which indicates whether there is an interscction. This

[
equation becomes just

JPL Technical Memorandum 33-482



£ = L{meters) é2.53)

1 if s(P,8) intersects C
N = (2.59)

0 if s(P,8) does not intersect C

For a complete proof of this see Kendall and Moran
[Ref. 20, pp. 58-59].

Another interesting result is that if the basic
element is taken as a point in the plane, and its measure
is dxdy then

flaxdy = A(meters?) (2.60)
C
where A 1s the area. Again this must be normalized by
the retina ared or by some other constant. Let B, a
random variable, equal. zero when the point is outside
of C. It is equal to one when it is inside the figure.

The above integral becomes
¢P = A(meters?) (2.61)

Ball [Ref. 21] uses the moments of such random
variables to perform classification. Scale invariance
is obtained by raising such moments to appropriate

powers, then taking ratios. For instance the feature,

JPL Technical Memorandum 33-482
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[é[deB]z(meter§)2

[faxdy (meters?)
5 ,

(2.62)

1s dimensionless. Cor 7 this feature is size
invariant. It is also suggested that moments of functions
of such basic random events be used as an input to a

recognition machine. Integrals like

[£(s(P,8))aPde, (P,8) e Q (2.63)
{

are considered, where s(P,8) is a random line and dpd®

its measure.

1

The moments— are estimated with the aid of the weak

law of large numbers. That is,
C lim Prob—“%?(integrand) - 5(integrandﬂ >é]=0 (2.64)
n+e
where € > 0. This convergence may be slow causing errors
in the estimate of the moment. When these numbers are
raised to powers, so that the dimensions will cancel,

2

uncertainties become greater®. The conclusion is that

1Ball does not use the random variables di-
rectly. He uses the term integral geometry. Moments
are lntegrals.

The relative maximum absolute error of a
product is the sum of the relative maximum absolute
ervors of each factor. Hence the powers of uncertain
numners become more uncertain,
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obtaining the moments by random samples 1s unsatisfac-
tory. Other methecds similar to guadrature in numeric

integration are proposed.

B. EXPERIKENTS IN PATTERN RECOGNITION
These experiments are presented here to illustrate
the measuring and classifying techniques that are often

used,

1. Random Features
One of the earliest suggestions for the use of ran-
dom lines in pattern recognition was made by Rubinstein

[Ref. 22]. He used the average number of intersectilons

I

[

hat a random line makes with open angular figures to
atfemptuthe recognition of the type of intersection.

Ball [Ref. 21] introduces geometric probability
to give the above method a firm foundation. Yet he too
uses only the estimate of The various means as-the input
cléssification. On the other hand Wong uses the dis-
tribution of the random varizbles.

Wong [Ref. 23, pp. 535-5&6] uses random lines thrown
agalnst geomelric shapes such as sguares, circles and
polygons to find the total length of intersection. This
feature is used in Wald's sequential probability ratio
test. He considers shapes that are similar in convex

area. A set of fiftecn simple basic figures are uscd.
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Results of five pair-wise tests are reported.

The filrst experiment reported in Chapier V is an
extension of this work. The figures considered were
complex—--block letters H and U.

The second experiment in Chapfter V is a problem in
multiclass classification. Pair-wise tests are avoided.
All classes are considered at once using the algorithm
of Chapter I1Il1. Furthermore the feature used in the
experiment 1s the number of intersections a line makes
with a pattern. The complete distribufion of this fea-

ture is used.

2. Handwritten Character Classification

Demonstrations have shown that even humans perform
rather poorly in recognizing handwritten characters out
of context. The general problem is very difficult. Work
has been dg;; by Brain and Hart [Ref. 24] on special
types of handwritten characters--printing in confined
squares as on FORTRAN coding sheets [Fig. 2-6]. Their
feature extraction.is in two steps. First each character
is quantized into a 24 x 24 matrix. The matrix is com-
pared with 84 edges in 9 translated positions.. The re-
sults of this edge detection are fed into a trainable

linear classifiert. The training set consisted of 8000

]Trainable linear classifiers are discussed

Jin Nilsson [Ref. 5, p. 79].

L
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Fig. 2~-6. Edge Detection of Geometric Figures
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Fig. 2-7. Elementary Segments of Letters
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characters from 10 writers. The reported error rate on
material oétained from writers not included in the train-
ing set was about 20%. This is a rather poor result
considering the number ol computations—-84 x 9 = 756

edge detections!

Segment analysis has been guite successful in pat-
tern recognition of handwritten letters. Mori, et al.
[Ref. 25)] as well as Sheinberg [Ref. 26] have used ele-
mentary strokes as input to a linguistic pattern recog-
nizer. Some of the elements used are pictured in Figure
2-7. Both groups of investigators have been successful
and have machines on the market. Thelr operating char-
acteristics are net queted nere due to the uniknown ex-—
perimental standards. These characteristics are sen-
sitive to the source of the experimental data.

Fu [Ref. 19, p. 36] reports a handwritten character
classification system that makés‘T% error. The number

of computations that it needs 1is far less than required

above.
< -
X'““// e x SNx
e 3 8
:‘1%
— .!.'3?_??:-‘5' »,
4 SR N

Fig. 2-8. Preselected Line Intersection
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The feature which 1s extracted is the.length that
thg predetermined lines 1,2,...,8 make with fhe figure
[Fig. 2-8]. Therefore the measurement is Xj,Xp,....Xg.
To get the test it 1s assumed that X;,X5,...,Xg are
Gaussian, with a2 mean and variance depending on the
figure. The sequential probability ratio test [Ref. 12]
is employed. On a set of two characters, A and B, de-
cisions are made on the average after six measurements.
On a set of four cﬁaracters, abed, a similar'experiu
ment shows that the a&erage-number of measurgments needed
to maké decisions with 7% error rates is 1ess‘than ten.

[Ref. 19, p. 39].

It shalil be noted that this system is sensitive to
alignment and the algorithm falls apart if the centering
of the figure exceeds a tolerance. The foundation for
the Gausgién'assumption is weak and the prediction of

the probability of error depends on this important

assumption,

3. Machine Produced Impact Printing

A method widely used for feature extraction of
machine produced iﬁpact printing is To scan the page in
a zig~zag pattern [Fig. 2-9] or by a group of parallel

lines [Fig, 2-107.
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| /\\\ N
FPig, 2-9. Zig-Zag Scan Fig. 2-10,. garallel Line
can

[

\:d

The continuous data stream is matched-filtered
(usually digitally) with patterns already stored in a
machine. The most sophisticated machine on the market
is the IBM 1975 Optical Page Reader [Ref. 27], which
operates in the one-error-per-million region. This
performance is attained by checking for context when it
is "uncertain" about a character's classificatjoni Also
it has a set of stored ﬁatterns for each font,

The IBM 1975 Optilcal Page Reader is operational and
is used by the Social Security'Administration to digitize

quarterly employers'reports. It checks context by

looking through a dictionary of names. The IBM 1975

is a specialized machine which 1s prohititively expensive
for most applications.

Other similar experiments have used matrix digi-
tization or edge followers to quantize the visual datva.
The matrix scan or the scan-by-predetermined-lines tech-

]
niques are subject to alignment constraints. Character
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regiétration also plays an important part in the machine's
performance. 3Skewed or smudged characters play a critical
rele. It would be desirable if one could find a feature

extractlion that is invarlant to displacement, rotation,

and size.
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CHAPTER ITIT

PROPOSED SEQUENTIAL MULTICLASS HYPOTHESIS TEST

In this chapter a sequential hypothesis test is

proposed.

It is one sclution to the multiclass classi-

fication problem. Its attributes are:

a)

b)

¢)
da)

e)

Its performance (in terms of the error rate

of the first kind and the probability of de-
tection) can be controlled.

At each step it is a Bayes test with a specisal
structure for the loss function.

it verminates aimost sureiy.

For the two-class problem it is g Wald's test.
Thé average sample number required for-a test

can—be estimated.

The notation used throughout this chapter is defined

in Chapter I, Section C. In the subsequent sections each

of the properties listed above 1s derived or proven.

The proposed sequential multiclass test will have

two forms well suited for rapid computation. But before

the algorithm is presented a few words concerning the

motivations for forming such a test will be given. Also

some interpretations of the algorithm will be given,
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It was pointed out earlier that in pattern recog-
nitlon the important parameters are the erfor rates of
the first and second kinds, aj and Bj, respectively.

That is, if a machine announces a decision, for instaﬁce
. that a letter on a-page is Q, the user wishes to have an
estimate on the probability of that declaration being
incorrect. In many applications it matters not what
letter is really there, if indeed an error has been made.
Hence, it may be reasconable to formulate the decision
algorithm on the basis of the likelihood of an observation
compared to some acceptable threshold., If there are M
classes, M successive gémparisons may be made. In other
_ words, for each posslble declsion one can 4sk whether
the 1likelihood of the observation coming from a class
is sufficliently greater than the average likeiihood of
the observation coming from any other class. More pre-
cisely, decide Dy if ‘

J;indﬁj(vl,VQ,...,vn)

- < Cy (3.1)
PiaP3(Vy,Vo, e Vy)

otherwise take more samples.

It turns out that this test is in a very convenient
form for the computation of ay and B4 as will be shown
in subsequent sections.

Clearly Equatlon 3.1 louoks famililar. It 1ls shown
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that this equation collapses inte Wald's te§t for the
two~class problem, Also, this form of the test looks
like the generalized M-hypothesis test in Van Trees

[Ref. 9, p. 48]. But unlike the M-hypothesis test for
which the error rates are difficult o compute, as stated
by Van Trees, the error rates for the proposed test are
simple to compute.

The proposed sequential multiclass hypothesis test
will have two forms. The observations vq,Vp,...;Vp.]
have been observed and the test has not yet terminated.
That is, the declsion so far 1s Dg. The proposed algo-
rithm, first form, is as follows:

1) Take the nth sample v, and let v = (vl,vg,...,vn)

2) Take another observation (declare Dy, n <« n+l,

go to Step 1), if for every i = 1,2,..:,M

j;ipjdéj(v) > CyPy{aFy (v) (3.2)

3) The test terminates {(go to Step 4) if for

any 1 = 1,2,...,M

j;iPJdﬁj(v) < C4P4dF; (v) (3.3)

4} Choose to verify Hj which minimizes

_;ijdﬁ'j(V) - CiPidI“%i(V‘) (3.4)
L7
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5) Declare Dy. Terminate. _

Step 4 above is intuitively appealing. It will be
shown that the ratio of the false alarm rate oy and the
probabillity of detection y5; is less than the thresholdé
used in the test.

c; > %
Ty (3.5)

Some manipulation will show that Step 4 directs the
algorithm to chéose a class in the gquickest way while
not overstepping that requirement.

In Appendix 1 an equivalent form of the test is
derived. The second form is more convenient for com-
putation. The proposed algorithm, second form, is as
follows:

1) Take the nth observation v, and let v

(Vi.Vo,een,vp),

2) 1Ir

=

z de (v) > max{(C;+1)P;dF;(v)} (3.6)
= i

take another sample (declare Dg, n + n+l, go
to Step 1).

3) Otherwise choeose to verify H; so that

(Cy+1)P;dF;(v) = max{(C;+L)P; gF 3(v)} (3.7}
J
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A. DETERMINATION OF {ai} AND {y4J} FOR A TEST WITH

CONSTANTS {Cy} -

Here it is supposed that a test as described in
Equations 3.2 to 3.7 has the constants {Ci} fixed at
some known numbers.

When a test terminates at the nth stage with Dy,
I PjaFj(v) < C3PydF;(v) (3.8)
J#i
Neglecting the excess over the boundary allows Inequality

3.8 to be written as an approximation,

; deﬁj(v) = CyP1aF; (v) (3.9)

" Now integrating over the regioﬁ of v,,wi(n); such that

the test terminates at stage n with Dy, gives

[,y T PidFi(v) = [ CiPidF4(v) (3.10)
wi(n) j# = wi(n) i
which is the same as
} Pyf dFy(v) = C3P;f dﬁi(vj (3.11)
JFL wi(n) wi(n) .

But by Equation 1.15, the definition of eij(n), the

above becomes

J;ipjeij(n) = CiPyeys (P) (3.12)

JPL Technical Memofandum 33-482


http:CiPie-(3.12

Using the error probabilities when the test stops at the

nth stage, eij(nl the total error probakilities are

) Pyes; ™) = ] CiPiess ™ - (3.13)
n j#i n

Interchange of summations on the leftv gives

Pj

jaf e

kn) . (n)
By = C4P €33 (3.14)
5;1 et 1P1 g R

Using the definition of the error probabilities €13

Equation 1.17, this can be rewritten as

): Pjeij = CyPieji (3.15)

Making use of the definitions of the error of the first
kind a3 and the detection probability y4 Equation 3.15

can be written as

oy = Ci‘\{i (3-16)

The reasoning ﬁsed so far gives an approximation of C4.

o . '
¢; = L (3.17)
Yy -
One further condition is made to obtain still a simpler
estiﬁate of the threshold Ci‘ I the detection rate is
high, it is approximately equal to the a priori proba-

viliity of tThat cleass.
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Yi = Pi (3.16)

This suggests the following important point. If
one desires a recognition system with false declaration

probabilities {a;} then one chooses

c; = (3.19)

In Appendix 2 the Chernoff Bound.is used to show that
Y3 * Py as n + . This will establish more firmly the
value of this approximation method.

This is a flexible algorithm. Output error rates
are under the control of the user.

Extensive experimental results reported in Chapfer V

verify the usefulness of Approximation 3.19.

B. RELATION-TO THE RBAYES TEST

This section shows how the_proposeg test relates to
the Bayes test for any fixed number of samples n. It is
shown first that the reject region is the same as a Bayes
test with particular loss functions. Next it is shown.
that the decision regions are the same. In fact, the
proposed test is a Bayes test with a gpecial cost strue-
ture which permits rapid computation of the error rates.
Tnis last computation is not generally feasible for the

Bayes test. But-as shown in Section A of Shis chapter,
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the érror rates for the proposed test can bc readily
computed and controlled.

The Bayes rule minimizes the average risk. In
Chapter II, Section A it was shown that Dy is chosen .

to minimize
M -
J;lLijPJdFJ(V} (3-20)

over all i = 0,1,...,M
Suppose that the Bayes rule rejects all hypotheses
after taking n samples. Then for every k = 1,2,...,M,

M . M - '
z LO'iP‘idF'i(v) < z ijdeFj(V) (3.21)

which can be rewritten as (for a particular k=1)

J;i(Lij*LOj )deﬁj (x?} > (LOi—Lii)Pidﬁi(v) (3.22)
For the proposed test a rejection occurs at the nth stage

whenever, for every i = 1,2,...,M,

M ~ -~
) PjaF;(v) > CyP3dFy(v) {3.23)
J#1
Clearly the proposed test and the Bayes rule have

the same rejection criteria if, for a1l L =1,2,...,M

9
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Los = Lss
Cy = 231 I3 g (3.24)
Lix = Lok

.The. division implies that (Lik - LOk} # 0.

A solution to these eguations can be obtained by

observation. They are, for i#j#0,

Loy = 0
Lij = 1
Lii = —Ci (3.25)

Gy = = = — = ¢, (3.26)

and
(Lig = Lgg) = 1 for all k#i (3.27)

These assignments also-sqtisfy one's Intuition. If there
is a reject at the nth stage there is ﬁo loss because
another sample 1s taken and the test is continued. How-
ever, if there is-a mis&lassification, then a penalty of
one is assigned. On the other hand, when the correct
decision is made, a rewa;d is given. 1If the permitted

error type of the firsv kind g4 is large, so is Cy.
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Thus, when a correct answer is given under conditions
allowing more errors, the reward 1is also larger.
Now suppose .that a Bayes rule makes decislon Dy,
i#0, after n observations. Then,
M - M 5
} LygPsaF;(v) < ] LyyPsdFy(v) (3.28)
j=1 Jj=1
for every k = 1,2,...,M.
Substitution for the loss functions yilelds,

J¥FL

<

J P3aF;(v) ~ CyPydFy(v) (3.29)
37k v )

Eliminating the common terms from both sides gives
~(C4+1)P1dF4 (V) < —(Cpt+1)PdFy (v) (3.30)
Hence the Bayes rule is

max{(Cy+1)P;aF;(v)} (3.31)
1#0

It can be seen that the proposed test, Equation 3.7,

is indeed a special form of a Bayes rule.

C. TERMINATION
It will be shown that the proposed test terminates

almost surely. Doob [Raf. 28, p. 349] shows the
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convergence of the probability ratio

aFy (v)

dﬁi(;; — 0 a.s. (3.32)

given Hy. This fact will be used below.
Now suppose that some hypothesis Hy is given. Recall
from Equation 3.3 that the test terminates whenever
) PjdF;(v)

Ci > -j#i _ (3-33)
PidFi(V)

That is whenever the ratio is less than C4 the test ends.
It will be shown that the ratio in Equation 3.33 will
approach zero with probability one. The right side of

Equation 3.33 can be written as

o P dﬁ-(v) P
—14:i——f = - 2p(1,J) (3.34)
j#1 PidFy(v)  J#i Py

where by Definition 1.6

- OF . (Vy, Vo, ie.,vy)
z,(1,5) = —*

dﬁi(vl,vz,:..,vn)
But by Eguation 3.3é

2,(1,3) » 0 a.s. for all j#1i

Hence the test Terminates almost surely.
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In any practical application of a sequentiél test,
one must consider a large number such that when the sample
number reaches this number the test is arbitrarily termi-
nated. Because the error rates go to zero as n becomcs
large, this safepuard should not affect the performance
significantly. 1In the tests reported in Chapter V the
arbitrary termination point is placed at about ten times
the average sample number. In more than five thousand
cases which are run, not one test has a sample number

this large.

<

D, RELATION TO WALD'S TEST
The proposed test for the two-class problem is clearly

Wald's test. The proposed test takes another sample if

Pgdﬁg(v) > ClPldﬁl(V) (3.36)

and

PaFy (v) > CyPpdF,(v) (3237)
But rewriting these equations we get

PodFa(v) 1

— = < (3.38)
PldFl(V) Cg

This shows that the proposed test takes another sample

if the ratio of probabllity has not crossed either of

the two Loundaries.
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Equation 3.38 i1s the same as Equation 2.41 with the

lower boundary

Ap = Cy (3.39)

and the upper boundary

Ay = Co™} (3.40)

E. APPROXIMATION OF THE AVERAGE SAMPLE NUMBER |

In Section C the fermination of the proposed test
with probability one was shown. This section addresses
the problem of computing an approximation of the average
number of samples at termination under Hj. -

Two assumptions will be made to assist in this

approximation. First, assume that some one probablilify

- distribution F) causes the delayvof a decision or the

incorrect classification. Second, assume that when any
decision is made m = 1,2,...,M,
} PjaFy(v) = C PpdF (v) (3.41)
Jj#i
This is sometimes known as neglecting the excess over
the threshold. It is similar to assuming that each step

toward a goal 1s small and that the goal is far. Hence,

when the goal is crossed, the position is near the goal.
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With these assumptions, Eguation 3.3 pecomes

J;indFj(v) = C3PydF4 (V) (3.42)

'when the correct decision is made, and

j;kpdej(v) = CpP aF, (v) (3.43)

when an incorrect decision is made.
By invoking the first assumption that Fi causes

the delay, the sum is approximated by one term. Hence,

afy (v) Py
= 0y —
aFi(v) Py (3.44)

when the correct decision is made, and

dﬁk(V) P
dﬁi(v) CxPi

(3.45)

when an incorrect decision is made.

N is the sample number at termination. Taking the
logarithm of the ratlo of probabilities at termination
and denoting it EN(i,k) gives

aFy (v) CyPy

Zi(i,k) = 1n — = 1n
N afy (v) Py

(3.46)

when the correct decision is made, and
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aF, (v) Py
——— = 1n
aFi(v) CyPk

Zy(i,k) = 1In

(3.47)

when the incorrect decision is made.

Under the ith hypothesis, decision D; is made with

probability
Prob{D4 |H; true} = €54 (3.48)
The probability of an error is
Prob{Dy|{Hj true}l = 1 - eyy - (3.49)

Hence, the conditional expectation of the logarithm of

the ratio of the probabilities at termination & (Zyfi,k))

Hy
can be computed,
¢ 3 . CyPy Py
(Zny(1,k)) = eqq 1n + (l-ey{)1in (3.50)
Hy ii Py ii Cy Pk
But from Appendix 3,
£ (Zy(i,k)) = € (Z(4,k))E (W) (3.51)
Hy Hy Hy

Therefore, the average sample number given Hy is approxi-

mately,
CiPy Py
€4y 1In P + (lweii)ln Cup .
ﬁ (N) = X Kk (3.52)
1 £ (2(1,k))
Hi
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In some applications a portion of the_observations
is not used. In particular, when the number of Inter-
seetions that a random line makes with-a pattern 1s used
as a feature, neglecting those observations with zero
intersections and using the conditional probabllity
distributions provide for size invariance. This 1is
more carefully presented in the following chapters.

The estimate of the average sample number, Equation
3.52, is an approximation of.the average nuﬁber of sam-
ples used per test. To obtain the average number of
samples observed one must'modify Equation 3.52 to reflect
the fraction of the observations which are neglected. |

Extensive experiments reported in Chapter V show

that this estimate 1s a good one.
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CHAPTER IV

INVARIANT FEATURE EXTRACTION

A. HEURISTIC DISCUSSION
In Chapter II some methods of taking data were
mentioned. Many of these methods are sensitive to the

location and orientation of the object under study. In

this chapter methods which are not dependent on these
factors are developed. The cost of aligning the patterns
to the transducer motivates such a development.

In hand-printed material, the reasons for variation
in location and orientation are clear. There are simi-
lar reasons why impact printed characters also have
alignment 1rregularities. For example in high speed
computer printouts the characters may be misplaced hori-
zontally or vertically. This 1s due to variations in
the way the hammer strikes the moving letter form. In
aerial photographic reconnaissance, the significance of
The data may be unrelated to either the precise locatiocon
or the orientation of the object being sought. If one
is scanning a picture for airfields, its recognition

should not be affected by its whereabouts.

There is a need for an observation scheme which is
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invariant to cerfain features. Precise location and
orientation are two aspects of geometric subjects which
do not contribute to their classification. A-square and
a rectangle cught to be different no matter wheve they -
are in the field of view. Another feature whicnh is often
unimportant from one class to another 1s size.

This is not to say that location, orientation,-and
size are unimportant. Often these features give dif-
ferent meanings to the same symbol. Arrows are.good
examples, "«" and "+" having opposite meanings. Also

observe how these samel

shapes, b d p q, are used to
represent quite different thingé. The search for an
invariant feature extraction method which will classify
these letters in the same class is still frultful. There

are other methods which can subclassify them.

B. INVARIANCE

 Invariance of decision rules is discussed in detail
in PFerguson [Ref. 30, p. 1447, It is defined for a group2
of measurable3 transformations over the space upon which

decisicn theory 1s founded.- Here the concern is over

lohese shapes are.rotational and mirror-image
transformations of one another,
) 2For_tbe exaget definition of group see Birkoff
[Rer. 31, p. 117]. )

3It must be measurable to assure that a random
variable X is transformed into a2 random variable g(x).
See Breiman [Ref. 29, p. 106].
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the invariance of the observations when the trans-
formations are applied to the batterns in the retina.
The decision algorithm is constant.

What feztures are insensitive to particular trans-
formations? How can observations be taken so that they

are independent of the transformations? It is shown in

‘Section D of this chapter that randomizing answers these

guestions.

C. FEATURES

Any aspect or quantity derived from a pattern is a
feature. The word feature is used to mean a scalar,
vector or matrix quantity. The area, the perimeter, the
convex hull perimeter and the "convexity" of a geometric
shape are four examples of features. The gray level of
a matrix scan is an example of a widely used feature.

It is tempting to try to measure the usefulness of

a feature., However it 1s quite difficult fo-assign a
numerical guantity to the usefulness of a feature. In-
vestigators have used the entrOpyl of features as a
measure. Others nhave used variance. It is unclear how
eilther of these guantities relate to the fundamental
quantities of pattern recognition (error and reject

rates). Since the object of patfern recognition is to

lFor a definition see Ash [Ref. 32, p. 247,
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give the best eclassification as quickly as possible, a
feature is best if a decision algorlithm requires the
least amount of such features.

A gocd feature is one which reguires z nminimum num-
ber of samples for a gi%en decision algoritnm operating
at certain error and reject rates, and which can be ex-

tracted with a minimum of effort.

D. RANDOM EXTRACTION

One way to take data is by cross-correlating the
pattern with certain reference elements. These reference
elements may be the most primary elements of geometry
or they may be as complex as the prototypes of the pat-
. terns. Here the basic elements of geometry are chosen
as the reference elements due to the ease with which
they can be generated. They are taken to be appropri-
ately distributed within the retina. The reference
elements are taken at random. This is doné so that the
features will no longeg be dependent upon the location
and orientation.

As an illustration of feature extraction (see Figure 4-1) let the
reference set be the points in the retina. The elements are chosen
one by one, at random and uniformly. These are correlated with

the pattern. The resultis a random variable,

TPL Technical Memorandum 33-482

63



64

1 if (x,y) € {Pattern Interior}
X(x,y) = (4.1)
0 if (x,y) e {Pattern Exterior}
Clearly ¥ is a feature of the patfern. It is independent
of where the pattern . is in the retina. Also functions of
X are features of the pattern.

Observe that the mean of X is proportional to the

area of the pattern.

Area Pattern -
Area Retina

(x) (4.2)

Unfortunately in most geometric pattern recognition
problems this data is insufficicent for classification

because many different shapes may have the same area.

Fig. #-1. Random Pointsg Used as a
Feature Extraction
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Next consider the set of all lines intersecting
the retina. These lines may be parameterized by the
polar coordinates (P,0) of the point closest to the
origin. Random lines uniformly distributed over the
retina may be obtained by choosing P and 8 uniformly in
0 <P <R, 0 <0 < a2n, respectively, where R is the
retina radius. (See Appendix 4.)

Features of the patterﬁ may be obtained by observ-
ing the cross-correlation of such lines with the pattern.
Let X be equal to the total length of the intersection
of the line with the pattern. It 1s clear that X is
independent of where the pattern is situated. X is a
random variable which depends only on the pattern itself.
The properties’'of this random variable and other random
variables derived from random lines that intersect the
pattern are discussed fully in tﬁe néxt section.

Other geometric elements can be used as the reference set
(Figure 4-2), However, when the elements become complex,
the process of making their measure not dependent on
orientation and leocation also becomes complex. Random
ellipses can be useé as a basis for feature extraction.
Random variables can be defined in terms of the length
of intersection, number of intersections, ete. Circles,
lines, and points are degenerate forms of ellipses. It

is questionable whether these random variables can be
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Fig.

-2,

Intersection of Ellipses with a Pattern
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Ry
W
0
Ry
Yy
w
_Ry

Fig. Y-4., Detail of a Line Intersecting a Pattern
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made independent of the locatlon and orientation of the
figures. Also the computational disadvantages of using
higher order c¢lements limit the scope of this dissertation

fo the use of random lines.

E. PATTERNS AND RANDOM LINES

Random lines have been defined earlier. (Also see
Appendix 4.) Figure 4-3 shows a f{ield of random lines.
Patterns have not been given a formal definition and it
will be defined only implicitly by examples. In Figure
4-4 a pattern is represented by n rectangles Rj,Rp,...,R,.
These n rectangles jointly form a pattern. They are
disjointed so that the bonGEpt of a line intersecting
a pattern can be clearly illustrgted. The two segments,
Wg and wp.1s are dependent upon the position and orien-
tation of the pattern. The wi represents the intersection
of the line with the ith region of the pattern. There
are mény functions that can be f&fmed from-the wi. A few
of them are: -

a)} a multivariate random variable
W= (wy,Wp,...,u) (4.3)
b) the largest intersection segment

U = max(wy,wp,...,Wp)" (h.h)
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¢) the smallest non-zero segment
V = min(wy,Wo,...,W,) (4.5)

d) the number of intersections
n
N = 7 sgn(w;) (h.6)
where sgn(-) is the sign function, +1 when the

argument is positive, -1 when negative

e) the total length of intersection

Wi
1 “(h.7)

>
]
13

i
f) the joint random variable
7 = (N,X) (4.8)

The multivariate random variable W has all the
information éontained in the other ranéom variables.
But the computational reguirements to estimate, store,
and use multivariate-random variables ére éevere. Hence
for these reasons and not- on the basis of theoretics, the
multivariate random variables are no lconger considered.

The randoﬁ variable U swamps the‘smali contributions
of the lesser wy. Yet it may be these small gquantities

which make the pattern different. V is formed by the
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smallest Wi, and 1t 1s susceptible to nolse. These two
random variables will no longer be considered.

The number of intersections N has interesting
properties. ;t was pointed out that its average was
related to the perimeter if the pattern is convex. (See

Chapter II.)
¢N = Perimeter (4.9)

For nonconvex figures N can be used as an indicator of

its convexityl.

Perimeter of convex hull = | dpdase
Pattern
< Perimeter = [ NdPd® = &N (".10)
‘ Pattern

The probability density function of N is more interesting.

Clearly‘the probability of inftersection is determined
by the coﬁvex hull of the pattern. For a convex pattern
there is one intersection. But an afbitrary shape has a
probability density function which depends on the figure.
As will be illustrated in Chapter V, this feature is
useful when'the figure is narrow or when the width of =a

figure is of no consequence.

Figure 4-5 displays the probability density function

lsee Bail [Rer. 21, p. 387.
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Probability

Fig. 4-5.

1 2. 3

Number of Interseqtions

Probability of Number of Intersections of
Random Lines against Block H and U
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Fig. U-6. Detail View of Random Lines Intersecting
the Letter H
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Fig. B4-7.

LN
\p "\
b
Y

T

Detall View of Random Lines Intersecting
the Letter U

s
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of N. Random lines are thrown against block letters.

The total length of intersection, random variable X,
is also a useful quantity because this scalar number is
easy to extract. A mpvable spot scanner can be useé, for
instance. Figure 4-6 shows how random lines may inter-
sect a block H and Figure U-7 illustrates random lines
intersecting a bloek U. The outlines of the block letters
were omitted to stress the point that not many lines are
needed for a person to decide what the pattern is. X
seems to be promising as an input to the decision algo-
rithm of Chapter III. It will be shown in the next chap-
ter that indeed quick decisions can be obtained by using
X a3 an input.

Z is the joint random variable. Its two components
are X and N. One may need to use Z when either N or X
alone prodaggé unsatisfactory results due to noise, font,

or style changes.

F.‘ NOISE, SIZE, FONT, AND STYLE

A few factors which affeét the random variables N
and X are noise; size, font, and style. Noise refers
to smudges; distortions., or.breaks in the pattern due to
the printing, the paper, or the photographic process.
Also the texture of the background 1s considered noise.
Font refers to the varilous printing faces. There are so

many fonts that even the best reading machines available

JPIL, Technical Memorandum 33-482 75



today can handle only a small percentage of them. The
problems involved in reading handwritten material are
obvigus.

Noise affects N more than X. This is due to the
fact that X is an "integral" of.the overlap. A small
extraneous blob affects X only slightly. On the other
hand, whenever a random line intersects such a blob, N
is made to differ by one, which is a significant change.
In mqst character patterns N 1s most likely to be less
fhan four.

Size does not affect the conditional probability
density function of N, for N not equal to zero. Size
changes X proportiocnally. However changes in size éan
be dealt with if those changes occur '"slowly" or "in-
frequently” by putting X through an automatic gain
control. . .

How font changes affect X and N is a question that
can be answered experimentally. The variations in the
fonts are subtle and cannot be handled analytically.

All the guestlions assoéiated with font and style
are complex. Further experiments are needed to find

cross-font invariant features. X and N seem to be good

random features.
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CHAFTER V

EXPERIMENTAL RESULTS

In Chapter III a multiclass hypothesis test which
performs at the desired error rates i1s developed. It
allows rejects to occur. Upon a reject, the test con-
tinues by adjoining an additional sample to the obser-
vation. It is.shown that this test is Bayes. In the
case where there are only two classes this test is the
séme as Wald's sequential probability ratio test.

Feature eitraction 1s discussed in Chapter 1IV. Two
random variable features X and N which are invariant to
translation and rotation are found. They meet with the
needs of the multiclass hypothesis test. {X;} are in-
dependent and may be obtained quickly. The same comments
hold true for {N;}. TFor a gilven figure in a retina, the
‘sequence of {N;} or {Xi} is virtually limitless.

Two experiments are described in this chapter. The
first experiment has to do with block letters, and the
randem variable X, the fotal length of a random line
intersection. 1In the second experiment, handwritten
numerals are classified using N, the number of inter-

"sections a random variable makes with the numerals.
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_A. CLASSIFICATION OF BLOCK LETTERS

Biock letters .are used iIn this experiment. Their
shapes are illustrated in Figures U4-6 and 4-7. Two
simllar letters were chosen. These two letters have

equal areas and the sam2 convex hull areas. They differ

An 22% of the area. Certainly if such letters can be

classified, there is hope for more differing letters.

Random observations X are made. - X 1s the totgl
length of intersection that a uniformly distribﬁted
random line makes with a block letter. ‘The random lines
are taken one at a time lndependent  of each other. Ap-
pendix. 4 describes the theory of choosing uniform inde-
pendent random lines. Hence, {X3} are.clearly indepen-
dent.

In the proposed test the. probability distribution
functions of X, given each letter, are prerequisites,
Hence the first step is to learn these distributions.
This is done empirically because the mathematics avail-
able tqday (such as geometric probability) éllow the
direct computation of only a few of the simple moments
of the random variables.

Experimentally it is noticed that the p.d.f. changes
hardly at all after 5,000 samples are tabulated. The
p.d.f.'s used in this experiment are estimated by 50,000

samplies of X.
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Figure 5-1 i1llustrates the empirical p.d.f. The
peaks at 50, 100, 150, and 200 units correspond to the
dimensions of the block letter H. The peak at 1540 for
the letter U is due to the horizontal area. For the
letter U it is on the bottom and for the letter H 1t is
in the middle of the letter. The p.d.f.'s at zero are
omitted from the diagram because they are the same for
all convex hulls of the same perimeter. 1In fact, the
p.d.f.'s are prgportional to the ratio of tﬁe convex
hull perimeter and the perimeter of the retina. See
Kendall and Moran [Ref. 20, p. 58].

The difference between the two conditional raﬁéom
variablies is more apparen£ in Plgure 5-2 where the
cumulative distribution functions are displayed.

The average number of samples needed to come to a

declsion is a funection of the error probability which
one desires (Chaﬁter III). Figure 5-3 displays the aver-
age sample number as a function of the significance of

the test. Figure 5-% shows four decades of this relation-

ship. The errors,

€12 = €21 (5.1)

are held constant with respect to each other.

The samples X = (%3,X2,...,X,) are independent.

This makes the computation of Pidﬁi(x) extremely simple.
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When n samples are used,

n
Pidﬁi(X) = Pi HldFi(xj) (5.2)
J-._-.

The evaluation of this function after another observation

becomes

- ntl
PidFi(J{) = Py HldFi(xj) (5.3)
j:
n
= dF3(Xp41)P1 0 dF3(xj) (5.4)
j=1

The probability ratios are tested against thresholds
as indicated by Equations 3.38 to 3.40.
Ppdfy(x) 1
Ao = Cop <« ™ < T = A (5.5)
¢ PodFo(x) €y
If the boundariles are exceeded a decision 'is made,
whereas if neither boundary is crossed, further samples'
are taken.
In the follewing tests the classes are equally

l1ikely.

1l

Py = 1/2 (5.6)

'P2 = 1/2 (5-7)

In these experiments, no rejects are allowed after
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200 samples. They are then classified using the maximum
likelihood test. This 1is done to limit the computing
time.

, Two runs of experiﬁents are made. In the first run
the algoritnm is requgsted to.make a 1% test, epy = ejp
= 0.01. Point A of Figure 5-4 is obtained from 7600
tests. The average number of samples used for a test

is 76. The point is shirfted to the right from the
predicted position. This is due, in part, to the arbi-
trary truncation of the test at 200 samples.

In the second run the algorithm is requested to
make a 10% test. 1Its actual performance is Point B_of
Pigure SQU. t regquires 38 samples on the average. It
uses more samples than predicted, but the decision is

better.

It 1s interesting to observe the behavior of the

likelihood ratio. It 1is a random walk biased upwards by

Pldﬁl

F (5.8)
Pngg

The logarithm of the ratio is displasyed in Figure 5-5
along ﬁith the logarithm of the limits Ay and A,. Four
tests are detailed, step by step. Tests 1 and 2 termi-
nate'well‘beloﬁ the expected average sample number and

Tests 3 and 4 terminate abeve it.
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Figure 5-6 displays the actual lines which are.used
in Test 2 of Figure 5-5. Lines 1 and 2 of Figure 5-6,
Parts a and b are different for each letter, whereas
Line 3 1s the same for each figure. Lines 1 and 2 give

information abeout H and U but Line 3 does not.

B. HANDWRITTEN NUMERALS

Four digits illustrated in Filgure 5-7 are used to
learn the probability density functions of N, the number
of times a—random line intersects a gilven figure. These
p.d.f.'s are learned by using many random lines. Figure
5-8 illustrates their nature. Figure 5-9 shows the
cumulative distribution functions for the numbers 2, 3,
4, and 5. They are superimposed on one drawing so that
the differences will be apparent. For these experiments
20,000 lines are used to estimate each p.d.f.

The Prob{N=0} is used to normalize the p.d.f. This
is the same as normalizing by size since the probability
of intersection is directly proportional to the convex
hull of the character.

Using the formulas which are developed in Chapter
III the average number of samples needed can be computed
for any given error rate. Fiéure 5~9 displays such a
relationship for a4 = oy .

Tests are run for Points A and B of Figure 5-10.

Point A is due to 782 tesls for the class. The {oj!
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are specified at .025. Point B is due to 637 tests for
that class with {o;} specified at .0125. The four
hjﬁotheses are assumed equally likely. The fesults of
the test are listed in Tables 5-3 to 5-6. |

Recall from Equation 1.23 that

ay = J;iPJeiJ (5.9)
The error rates can be easily computed for each experi-
ment as shown in Tables 5-]1 and 65-2. These tables zhow
that the performance of the proposed test can be con-
rolled by the experimenter.

Tables 5-7 and 5-8 show the average number of samples
taken for the various results, Dy given Hy. These numbers
include the samples for which there is zero intersection.
An estimate of the average sample number can be computed
using Equation 3.52. The plot in Figure 5-10 reflects
these estimates. The curve should be below the experi-
mental points‘ag a result of the estimates made in
Equations 3.41 to 3.52.

The experimental results tabulated in Tables 5-3
and 5-5 show that-2 and 5 are similar. The majority of
the errors made when 5 1s true is the decision 2. This
can be antlicipated by observing the probability dis-
tribution function of - N for these two letters, Figure 5-7,

or by simply noting that 2 is quite like the upside-down
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@; = 0.017 < ,025
ap = 0.001 < .025
ag = 0.016 < .025
oy = 0.027 = 025

Table 5-1. Error Rates for the First Experiment
oy = 0.0114% - < L0125
| e, = 0.0016 < .0125
ag = 0.0095 < 0125
oy = 0.0142 LS .0125
Error Rates for the_Second Experiment

Table 5-2.
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Given

Decilde il f2 i3 iy
Dy 654 14 4 30
Dy | 20 758 5 4
Dy - 28 9 766 18
Dy 80 1 7 730

Table 5-3. Confusion Matrix [eg3;]; Experimentsal Data
from 782 Tests for Each Class o Set Equal
to .025 for All i=1,2,3,4 .

Given
Hy Ho Hz Hy
Decide
D1 834 18 5 38
Do 26 970 6 5
D3 37 11 980 23
Dy 103 1 9 934 -

Table 5-4. Confusion Matrix [ejj]; Experimental Data

Normalized to 1000
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Hy Haq Hy
Decide
Dy 585 10 1 16
D, 3 623 1 0
D3 12 b 637 9
Dy - 37 0 0 612

Table 5-5. Confusion Matrix {e4j]; Experimental Data
from 637 Tests a3y Set Equal to .0125 for
All 1=1,2,3,4 .

Decide - ] ]
Dy 928 16 2 25 .
Do 5 978 2. 0
Dy 19 6 996 .15
Dy 58 0 . o 960

Table 5-6. Confusion Matrix [eij]; Experimental Data
Normalized .tc 1000
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Given

Hy Ho H3 Hy
Decide
Dy - 232 161 241 2;u
D» 30 §8 16 15
D3 gl by 72 54
Dy 187 80 114 156

Table 5-7. Conditional Average Sample Number ay = 0.025
Including the Samples with Zero Intersection

.Given
Hy Hs Ha Hn
Decide
n, 318 | 192 233 T 323
D2 55 67 21 0
D3 88 42 88 99
Dy 290 0 0 214

Table 5-8. Conditional Average Sample Number a; = 0.0125
Including the Samples with Zero Intersection
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image of 5. The resull is the large average sample
number at termination.

There are other pairs of numbers, such as 6 and 9,
which this algorithm will have difficulty classifying.
it 1is sugéested that these simllar shapes be classed
into common families and other algorithms which are not
invariant to rotation and mirror-imaging be used to sub-
classify within each family. Application of the author's
algorithm first may simplify the subclassification

process.
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CHAPTER VI

CONCLUSION

A. RESULTS

The fundamental characteristics of a classification
algorithm are identified as the false declaration rate
and the probability of detection. A sequential multi-
class hypothesis test is proposed -in Chaptef 111, - A
detailed study of the test shows that it terminates
almost surely, and -its performance can be readily con-
trolled.

The- sequential machine beccomes a threshold ftester
of certain functions of probability densities. The
thresnold levels which determine the operating éharacu
teristics "of the pattern recognition machine are under
the contrel of the experimenter.

The input to this machine must necessarily be random
quantities. In Chapter V invariant feature extraction
is developed. A few features extracted by random lines
are presented. ‘They are used in Chapter V in experiments
that simulate pattern recognition machines. Results of
recognizing block letters and handwritten numerals are

presented.
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B. APPLICATIONS AND FURTLER RESEARCH-

It is anticipated that the new ideas and results
presented here will be the forerunner of broader re-
search and development in applications of multiclass
hypothesis testing to pattern recognition using random-
ized features.

In particular the results of the experiment with
handwritten numerals indicate that inexpensive and fast
sorters can be bullt. Also the preliminary findings
indicate that the features used. in the experiments may
te insensitive to changes in style. The applications
of such a system in the postal service or in business
may relieve nmuch c¢f the burden of hand sorting.

This method could be fruiltfully applied in under-
standing and solving the problems of machlne reading
multifont and handuritten (script) matter.

Multiclass sequential tests that use random features
may it well with techniques which use context infor-
mation. A reader that correlates at -the word level,
for instance, does not. need-complete accuracy on each
individual letter. If a word like "California™ is an-
ticipated, even a ten per cent error rate on =ach indi-

vidual letter can give highly accurate results.
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GLOSSARY

Ai threshold used in Wald's sequential proba- -
bility ratio -test; also used by Armitage

04 false alarm probagbility

Bs -probability of imcorrectly deciding Dy
(Py-v3)

Cs thresholds used in the proposed test

§(Dj | v} probability of verifying H;y when the ob-
servation is v ;

Dg declision to reject

Dy decision 1

di discriminant function for the ith class

' expectation

€13 probability of deciding Dj given Hj is true;
entries to the confusion matrix

F; probability distribution function of vy
given H,

= |

F; probability distribution function of
v = (vl,v2,...,vn) given Hy

dﬁi probability density functicn, if it exists,
of the observation v given Hy

T observation space v g T

Yi probability of correctly deciding Dy
(detection probability)

Hy hypothesis that the observation v is from
the probability distribution Fy

1,5,k often used as dummy index

JPL Technical Memorandum 33-482 101



Lis loss incurred by deciding Dj when Hy is true

M number of hypotheses possible Hj ,Hp,...,Hy

Py probability of Hy belng true

¥ space of observation v ¢ ¢

1] space of v in which decision Dy is made
‘v e ¢ = Dy

Rij probability ratic used by Armitage

r average loss, risk

s(P,6) random line specifled by P and ©

t t € [0,1], parameter used by Chow to control
the rejection rate

Uy ratio used in Reed's test

\' observation, sample v = (v1,Vo,...,Vy)

wl1) a vector used to Qeigh v o= (V1,Vo,e-.5V,)
for the 1th class

X ) X = (x9,X5,...,%,) an observation

Z,(1,3) product of probabilify ratios

g zmi,J)

m=1

Z.(1,3). logarithm of Z,(i,J)

z2p(i,5) ratio of probabilities dFj(vm)/dFi(vm)

Z.(i,1) logarithm of z(i,j) ' '
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APPENDIX 1

THE EQUIVALENCE OF THE TWO FORHMS OF THE PROPOSED TEST

The two forms of the test in Chapter III are really

~

the same test. PFor any i = 1,2,...,M

} PjaF;(v) > CyP3dFi(v) (1)
J#1
if and only if
M - -~
! PyaF;(v) > (Cy+1)P;dF;(v) (2)
J=1 .
Tne statement of kguaticn 1 is the same &s
M . : ' ..
ZledFj(V) > m?x{(ci+l)PidFi(v)} (3)

because {Cy}, {P;}, {dFi(v)} are all pdsitive numbers.

Now consider

min[ ) deﬁj(V) - CiPidFi(v)} (4)
1A

under the condition of Eguation 1. Then for any

kK = 1,2,...,K
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I PjdFy(v) - CyPydFy(v)
J#i

< 1 PyaFj(v) - CyPdFr(v) (5)
j#k

Now cancelling equal terms and rearranging the terms gives

~(C3+1)P3dF 3 (v) < —(Cptl)PydFy(v) (6)
or
(Ci+l)Pidﬁi(v) = max{(Cj+1)de§j(v)} ) (7
J

Hence, the two forms of the test differ only in the

computations which are performed.
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APPENDIX 2

THE CHERNOFF BOUND

The Chernoff bound uses the fact that an exponential

curve bounds a step function.

exp{-A(x-a)}

m
b

Fig. A~1. Chernoff Bound

‘1L - sign(x-a) < exp{-A(x-a)}, X > O (1)
5 _
Prob{x<a} = J1 - sign{x-a)gp(x) (2)
2
< fexp{-(x-a)}dF(x) (3)
= E{exp(-A(x-a))} (4)

An errcr occurs if decision Dy is made when Hji is

true, i#Zk. Then
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j;kdeﬁJ(v) < CyPRAF, (v), k#1 (5)

ana in particular

P;dFs (v) < CyPBLdF(v), k#i (6)
or

aF;(v)  CyPy
afy (v) < Py (7)

Hence the probabllity of error is bounded by

Prob{Dy [H; true} = Prob| | PydF; < CyPydFy(v) (8)
JFk
< Prob{PydFi{v) < CxPydFy{v)} (9)
= Prob [4Fi (V) Ckka (10)
aF(v) Py
= prob [1n 9F1lV) gy CkPx (11)
dFk(V) Pi

£ (exp[—A in EFi(V) + l.ln CkPk]

Hj afy (v) Py 1] (12)
- 1n(CkPk\£ ( dFy (V)
_Pi }Hi dfi(v) (13)
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or where a is some constant,

Prob{Dy [l true} < a & ( ng(V) (1h)
Hi\ aFy(v)
But by the arguments of Chapter III, Section C,
df‘k(V) "
— —> a.s. 1
dary (v) (5]

H; true

The conclusion is that as n becomes large, errors

of the type ey, k#i, when Hy is true, approach 0.

Prob{Dy |H; true} =+ 0 (16)
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APPENDIX 3

AVERAGE SAMPLE NUMBER

The computation of the expected number of samples
before a test ends, for a two-class test, is well known,
The theorem given here is after Theorem 9.1 of Selin
[Ref. 41.

Two computational devices are used. The first is

w i ® e
Lolo= 1 1] (1)
i=1 j=1 j=1 1i=j
The second 1is i

I P(N > 1) = £(N) (2)

i=1

where N is a positive valued integer random variable.

This can easily be seen by writing out a few terms of

the expectation,

g(N) = P(N=0) - O + P(N=1) - 1 + P(N=2) + 2 ... (3)

‘tt

P(N=1) + P(N=2) + P(N=3) +
+ P(N=2) + P(N=3) + ...

+ P(N=3) + ... ()
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Summing the terms row by row,

v

P(N > 1) + P(N>2) + ...

L

£(N)

]

PI(N > 1)
RCE

)

1

(6)

Theorem: If the test ends at the Nth observation

and £(N) < =, then

£(N) = i(ﬁn(i,J))
2(z2(1,3))

where

- N

=l gp(vy) B

[ e b=t

Zy(i,3) =

Proof: Since N is itself a random variable,

] P(N=k)€(Zg(1,]) |N=Xk)
k=1

If

£(Z(1,3))

0 k :
) P(N=k) § E£(Z,;(i,3)|N=k)

k=1 n=1
= ) ) P(N=k)E(Z (1i,])|N=k)
-m=1 k=m

T PN > m)E(E,(1,5) [N > m)
m=1

It
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<o
L

(9)

(10}

(11}

(12)



The event N > m can occur only if the test has not ended

by the (m-1)th observation, and hence this event is in-

dependent of Z,(1,]).

£(Zy(1,3))

JPL Technical Memorandum 33-482
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Therefore,

L PN > m)E(E(L,]))
m=1

o

£(2(1,3)) I ) P(N=k)

m=1 k=m

© K
E(E(1,3)) } ) P(N=k)
k=1 m=1

€(2(1,3)) ] kP(N=k)
k=1

£(Z(4,5))E(N)

(13)

(14)

(15)

(16)

(17)
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APPENDIX &4
UNIFORM RANDOM LINES
A line can be named uniguely [Ref. 20, p. 14] by
u and v and the equation,
ux + vy + 1 =0 . (1)

This representation excludes lines which pass through
the origin. This is of 1little concern since the measure

of all such lines 1is zero.

Fig. A~2. Definition of a Random Line
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Another representation of a line may use the polar
coordinates of the point on the line nearest the origin.

The equation of the line is

cOs ¢ vy sin ¢
-P -P

x + 1 =0 (2)

A rotation and translation (a,b) in the two di-

mensional plane can be represented by

X

n

a+ xcos 6~y sin 8

<
n

b+ xsin 6 + y cos 6 (3)

where 0 < g < 21,

The parameters change and the new line 1s

sin ¢'

= h
pr+1=0 (1)

where

M
]

P -cos ¢ - b sin ¢

It

¢' = ¢ ~ 8 (5)

This can be shown by substituting Equation 3 into Equation
2 and collecting terms to obtain Equation 1.

Let a set of random lines be denoted by E. A trans-
formation places these lines in E'. Random lines are

. - cr e X 1 o
uniformly distributed when P{(E} = P(E ). It is shown

JPI Technical Memorandum 33-482 115



in Kendall and Moran [Ref. 20] that uniform random lines
are possible if P and ¢ are each uniform.

A uniformly distributed random line may be generated
by choosing P and ¢ uniformly. The line so chosen is
Equation 2. These lines will intersect a circular retiﬁa
of radius R. The circular retina is the area in which

all observations are confined if 0 < P < R and 0 < ¢ < 2mw.
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