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PREFACE
 

The work described in this report was performed by the Astrionics 

Division of the Jet Propulsion Laboratory. 

The research reported in this Technical Memorandum is a disserta­

tion presented to and accepted by the Faculty of the Graduate School, 

University of Southern California, in partial fulfillment of the require­

ments for the Degree Doctor of Philosophy (Electrical Engineering). 

The examples in this report pertain to pattern recognition of char­

acters. However, the theory of multiclass sequential hypothesis test can 

be applied in other disciplines. The theory is useful in signal detection as 

well as in detection of objects by a robot, for instance. 
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ABSTRACT
 

In recent years there has been a sharp rise in the
 

need and interest for pattern recognition. In particular
 

much work has been done on the problems of: machine read­

ing. There are algorithms which partially solve the
 

problem of reading.impact printed material. This dis­

sertation presents an algorithm which can be used to
 

build a reading machine that will read impact printed
 

characters and handwritten letters.
 

Invariant features.are extracted by random lines.
 

The number of intersections and also the total length
 

of intersection that-these lines-produce are the random
 

variable observations used as inputs to a hypothesis
 

test. This method allows the pattern to.be anywhere in
 

the retina. It eliminates the cost of finealignmeht of
 

the pattern before.taking samples. --Many-previous users
 

of these features utilized only the mean of the random
 

variable. Here the whole probability distribution of
 

the random variable is used. This allows the intro­

duction of size invariant methods.
 

The sequential multJclass hypothesis test presented
 

in this dissertation is in such a form as to allow rapid
 

computation of the errors of the first and second kinds
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for each possible decision. .This is useful because in
 

any practical system the user desires to have easy access
 

to the parameters which control the performance of the
 

machine.
 

One interpretation of this test is that it computes
 

the ratio of the likelihood of an observation coming from
 

a class to the likelihood of an observation coming from
 

any other class. When this ratio exceeds a threshold
 

a decision in favor of the class is made. For each sam­

ple, there are as many such comparisons as there are
 

classes.
 

The sequential multiclass hypothesis test proposed
 

in this dissertation is a Bayes test at each step. The
 

proposed test is Wald's sequential probability ratio test
 

for the two-class problem. It is not like the general­

ized Wald's test which tests all combinations of two
 

hypotheses, nor is it like the M-hypothesis test which
 

also tests the same number of combinations.. The number
 

of comparisons these tests make is (!/2)M(M-l), where M
 

is the number of classes. They require far more com­

putations than the proposed test.
 

Extensive experiments with block letters and hand­

written numerals are reported. These experiments verify
 

the usefulness of the proposed multiclass hypothesis test.
 

These experiments show that the error rates are under the
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control of the user and that the average length of the
 

test can be predicted.
 

A survey of the methods in pattern recognition is
 

presented to put the author's contribution in perspective.
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CHAPTER I
 

INTRODUCTION
 

A. 	THE PROBLEM
 

There are two aspects to pattern recognition. In
 

one form of the problem a field of data is given to a
 

recognition machine and it is asked to state whether
 

there are patterns. In the second form, the algorithm
 

is required to decide under certain criteria which of
 

the known patterns the data represent. (Often the null
 

pattern or the reject option is included as a possible
 

dec.son.) In this work the emphasis shall be on the
 

solution of the second problem.
 

Pattern recognition is a two step process. First,
 

observations are made, then an algorithm uses these
 

observations to arrive at a conclusion. Observations
 

include all forms of measurement, filtering, and digi­

tizing. The decision algorithms may be linear, non­

linear, or statistical functions of the observations.
 

There are abundant examples of such processes in nature.
 

One first hears sounds of speech, then understands their
 

properties. One must see the printed page before one
 

can read the words.
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It is not the object here to study how these pro­

cesses operate in nature. But these examples clearly
 

point out the important interrelationship between the
 

pbservation and the algorithm. Hence to obtain a good
 

pattern recognition machine, it is required that the
 

observation and the decision algorithm be studied to­

gether.
 

Often investigators in pattern recognition have
 

taken the observatlon phase of the process -in an ex­

pedient manner. -By arbitrarily limiting the type of
 

,observation, one severely narrows the possible class of
 

compatible or feasible' decision algorithms. As an ex­

ample consider the early investigators who used-the time
 

signal from a televisdon-like scanner. The two di­

mensional region-of interest is. divided in a checker­

board manner-and each square is assigned -agray level
 

according to the image. The-choice of such a set of
 

n by, m samples as the observation features is unfortu­

nate. Computational requirements on the large set of
 

numbers-limit the types of algorithms.
 

. The requirements of the problem often suggest a
 

class of decision algorithms. Then one must know how
 

to choose the best features: For.instance, when the
 

requirements of the problem are stated in terms of 

minimizing the average risk or in terms of the probability 
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of the recognition, certain statistical tests come to
 

mind. What remains is to find the feature extraction
 

scheme which will meet the needs of the statistical
 

methods consistent with computational and other require­

ments.
 

An example of a practical problem in.pattern recog­

nition with some of its requirements would be the design
 

of a machine which could read the address of a letter
 

and sort it according to the postman'sroute, with as­

signable probability of the correctness of the sort.
 

It would reject as few as possible and sort at the high­

est possible speed. So far the only "machine",that
 

comes close to meeting these requirements is man.
 

Exactly what features man extracts from.the address
 

label is not known nor is it known what aigorithm-he
 

uses to read written material. The motivation behind
 

developing a machine which will perform reading is that
 

the machine may be faster for- a subset nf "easy" prob­

lems. It seems that the speed of the algorithm can be
 

enhanced if the algorithm is based on some random san­

pling of the data rather than on some fixed e-xtraction
 

such as contour tracing which takes more effort.
 

The pattern recognition system presented,in this
 

thesis will use a statistical hypothesis test.., The­

method used in the observation phase is ciarefully chosen 
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to assure the stochastic nature of the input.
 

B. THE DISSERTATION
 

This dissertation explores a solution to the pattern
 

recognition problem which attains a requested performance
 

level and which optimizes speed (amount of computation)
 

and storage requirements. One may observe that a proba­

bilistic decision machine is most natural to the require­

ments of certain problems. Then suitable features are
 

chosen as the input to the algorithm.
 

This dissertation relies heavily on the problems
 

of character recognition for examples and illustrations.
 

Let it be noted that the ideas of randomized feature
 

extraction may be used for other types of problems.
 

For instance they may be used for feature extraction
 

of phonemes in audio signals.
 

Chapter II contains a survey of pattern recognition.
 

A few of the important tools used in pattern recognition
 

ire presented to put this dissertation in perspective.
 

The works of certain investigators are discussed so that
 

the two steps in pattern recognition can be illustrated.
 

Multiclass hypothesis testing is discussed in Chapter II.
 

Maximum likelihood and Bayes procedures are reviewed.
 

In general it is difficult to compute the signi­

ficance of a test. That is, it is difficult to compute
 

how many samples are needed for a Jevol of performance
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because n-fold integrals are involved. Chapter III­

describes a method of approximating the significance of
 

a test when the test is of a special form. Since the
 

significance of the test can be monitored easily for
 

each sample as it is observed, a sequential multiclas
 

hypothesis test results.
 

The requirements of the problem demand a stochastic
 

decision algorithm. Line intersection length and the
 

number of intersections of a random line with the figure
 

are presented as two invariant feature extraction tech­

niques. The properties of these features relevant to
 

font, size, and noise are discussed in Chapter IV.
 

Chapter V presents experimental results using the
 

features of Chapter IV and the algorithms of Chapter III.
 

Chapter V also includes the results of a recognition
 

experiment of hand printed digits.
 

C. NOTATIONS AND DEFINITIONS
 

The notations and definitions used in this disser­

tation are consistent throughout. A glossary is included
 

at the beginning of this dissertation.
 

In the problems considered in this work it is assumed
 

that there are M = 2,3,... hypotheses. Only one hypothe­

sis is actually true. The ith hypothesis, denoted Hi,
 

shall be the proposition that the observations v.=
 

(vl,v 2,...,v n ) are taken from the'ith class of
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distribution Fi. The symbol above the function name
 

allows the same name Fi to be given to a family of
 

functions associated with a hypothesis. Strictly, the
 

functions Fi(vl,...,vl0 ) and %i(vl,...,v 55 ) are not the
 

same thing. Fi will be used to denote the distribution­

function of one variable Fi(v 4 ).
 

It is assumed that the distributions Fi are distinct.
 

That is, FiXFj if i/j. If the densities exist, then dFi
 

is the probability density function.
 

The a priori probability that Hi is true is
 

Pi = ProbfHi is really true) (1.1) 

Clearly
 

PidFi(v) = Prob{H i is true and (1.2) 

v = (vl,v2,.. .,vn) is observed) 

Or'
 

dFi(v) = Prcbv = (Vlv 2 ,...v ) is observedn
 

given H, is true) (1.3)
 

The algorithms considered here will be allowed to
 

verify one of the hypotheses or none at all. This last
 

decision is often called a reject. 

Do = reject (1.4) 

Di = accept 1H, = 1,2,...,M (1.5) 
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The ratio of two probability densities will be named
 

zn(ij)
 

Zn(i,J) = dFj(v l v2,...,vn ) (1.6)
 
d~i(vl,V2,...,v n )
 

When the samples are independent,
 

n dF (Vm)
Zn(i,j) 31 L (1.7)

m=l dFi(vm)
 

n 
. I zm(ij) (1.8) 
m=i 

where
 

= dFj(Vm)Zm(ij) 

dFi(vm) 

Often the logarithm of Ratios 1.6 and 1.9 are useful. 

Zn(i,j:) .i Zn(i,j) -(i.i0) 

and 

=nim(i,j) (1.11)zm(i,j) 


Because the logarithm of a product is a sum the logarithm,
 

n 
-
Zn(!,J) = . ZmCi,J) (1.12) 

m=i
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Any statistical decision algorithm is subject to
 

errors. The probabilities of the errors are given the
 

names eij.
 

eij. = Prob(accepting Hi when Hj is truel­

= Prob{DiIHj truel (1.13)
 

More precisely, let *i(n) be the region in v,= (Vl,V2,...)
 

such that a decisionD i is made at the nth stage.
 

{V e i(n)=:>(decision Di is made exactly when
 

n components of v are observedl (1.11)
 

Also let ei(n) be the probabilities of error for de­

cisions made with n samples. Then
 

,,,(n) = ( dFj(v 1 ,v2 ,...,vn) (1.15) 

The superscript is used to stress that there are n com­

ponents in the vector v. This is necessary to compute
 

the error probabilities for the sequential tests.
 

Let p(n) be the probability that the test ends at
 

the nth stage.
 

p(n) = Prob(sequential test ends
 

at the nth stagel (1.16)
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The total error rates are 

(n )
eij ej (1.17)
n 

= f (n)dFJCv) (1.18) 
n 'Pi 

where the last equality is by Definition 1.15.
 

A table of [eij] is called a confusion matrix. The
 

prpbability of correctly accepting the ith-hypothesis
 

given that Hi is true is
 

e = Prob{DiIH i true} (1.19) 

Of course this is not an error, but the letter "e" is
 

used for consistency with the other entries of this
 

table. The probability that a decision algorithm will
 

correctly choose a hypothesis is
 

Pieii = Prob(D1 and Hi } (1.20)
 

This term appears frequently in subsequent chapters. It
 

will be called the probability of detection and given the
 

notation
 

yi = Pieii (1.21) 

Two types of errors are of particular importance in
 

pattern recognition. The first is the probability that
 

the result of a classification is incorrect. The second
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is the probability that, given a known pattern, the algo­

rithm will not correctly detect it.
 

An example of an application of a pattern recog­

nition algorithm will clarify this point. Suppose a
 

reading machine is scanning a typewritten page. If it
 

reports that the next letter is "Q" it is desirable to
 

know the probability that such a report is incorrect,
 

i.e., the machine is really observing another letter.
 

The probability of such an event is called error proba­

bility of the first kind, cQ. On the other hand, the
 

reading machine may be positioned over a known letter,
 

"B". The probability that the machine will correctly
 

Identify a letter is the probability of detection, YB-


If there is a misclassification then there has been an
 

error of the second type. Its probability is $B and
 

B= - YB (1.22) 

An algorithm may classify a given test pattern into
 

an incorrect class.
 

ai.= Prob{Di is incorrect}
 

= I eijP j (1.23)
 

This is the probability of false declaration.
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The {ai } are defined for all i = 0,1,,2,. ..,M. *There 

are M classes and i = 0 corresponds to the null pattern
 

or the reject option. That is a0 is the probability of
 

,areject occuring.
 

Another type of error is the probability ofa miss.
 

That is, there is the probability that Hi is true and
 

an incorrect decision Dj, where J/i, is made.
 

= i j (1.24) 
j741 

The {8i } are meaningfully defined for all i =1I,2,...,M 

but 80 = 0. 

It seems reasonable to characterize a pattern recog­

nition system in terms-of (ai and fyi). It is useful
 

to be able to find an algorithm at a specified level of
 

{fai} and {yi}.
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CHAPTER II
 

SURVEY
 

A survey of the mathematical tools often used in
 

pattern recognition and a few experiments in pattern
 

recognition are presented in this chapter. The purpose
 

is to put this dissertation in perspective. For other
 

examples in this field the reader is directed to Nagy
 

[Ref. 1] and to Pattern Recognition [Ref. 2].
 

A. MATHEMATICAL TOOLS
 

1. Linguistic Approach
 

In the linguistic approach, the input features are
 

the strokes and the stroke locations. Without becoming
 

too involved, an example will be given.
 

a b c d 

Fig. 2-1. Basic Elements of a Two Di­
mensional Field 
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The set of all basic elements is called the alphabet.
 

Suppose the alphabet is as displayed in Figure 2-1. A
 

few of the possible inputs are:
 

a) c d c which represents H (2.1)
 

b) a d b which represents A (2.2)
 

c) c b a c which represents M (2.3)
 

d) c b c which represents N (2.4)
 

The action of the decision algorithm is much like
 

a compiler. It checks to see if the combination of the
 

input elements forms a pattern in a dictionary. To
 

perform this chore efficiently one uses-all the mathe­

matics of context free language, graph theory, and
 

compiler theory [Ref. 3 and 4].
 

2. Linear Operations
 

Many methods look upon the input x as a matrix or
 

a vector. Nilsson [Ref. 5, p. 79] discusses partitioning
 

of the observation space into classes. Andrews [Ref. 6]
 

on the other hand uses transform methods on the input.
 

The input is sometimes looked upon as-a matrix
 

X = [Xij] and transformations upon X are performed.
 

Z = P X Q (2.5)
 

Functions of Z are used in the decision algorithm.
 

-Andrews [Ref. 6] uses cross-correlation of a letter
 

prototype against a field of letters to find the matching
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letters. To optimize on speed of computation the fourier
 

transform of [Xij] is used. The transform of the input
 

and the transform of the reference are multiplied to­

gether, thus giving a matched filter operation. This
 

method requires huge amounts of computation and is sen­

sitive to rotation as well as to scale variations.
 

Often a class is defined by several prototypes
 

Gl(i), G2(i), ... The superscript (i) says that the
 

prototype belongs to class i. A prototype is described
 

by a vector of measurements or features
 

Gl(i) (gll(i),g 1 2 (i),...,gln i)) (2.6)
 

Therefore the prototypes are points in the n-space of
 

features.
 

One method of recognizing an observed sample
 

X = (xl,X 2 ,..,x n ) is to classify it into the class of
 

the "closest" prototype.
 

Many functions hivebeen used to measure the close­

ness of two points in the n-space. The _uclidean
 

distance
 

d2 (G ,X) = (Gj-X) (j-X) (2.7) 

,ample.
 

The shortcomings of such a method are three-fold.
 

First when there are many prototypes a large number of
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computations are required. Also the error rates are
 

difficult to predict or control. Furthermore d2 (Gj,X)
 

depends upon the units chosen for the individual features:
 

X= (5 dollars, 4 inches, 6 volts) versus X = (500 cents,
 

10 cm, 6000 my).
 

One approach often used to "normalize" the n-space
 

of features is to find weight vectors
 

w(i) = (wl(i) ,w2 (i),...,Wn(1)) (2.8)
 

constrained by the product
 

n w ( )
 = 1 (2.9)
 
J=1
 

or by the sum
 

Iwj(i) = 1 (2.10) 
J=1 

so that the intra-class distances d2(Gm(i),Gk(i)) are
 

minimized and-the inter-class distances d2(Gm(i),Gk(3))
 

are maximized. The reason for doing this is that -the
 

prototypes of one class ought to be "close" whereas
 

prototypes from different classes ought to be "distant".
 

Some investigators have attempted to measure the
 

distance between classes [Ref. 73. One distance is
 

called the divergence and another the Bhatlacharyya.
 

They are defined, respectively, for the two-class
 

problem as
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[ dFCx)]~ -1(2.11)J(H1,H2) L dF2Cx [in F2 x)
H IL P() H2L
 

and
 

B(H,I 2 ) = -in [dFl(x)dF2 (x)]/'dx (2.12) 

where the probability distribution of a sample X over
 

the ith hypothesis is Fi(X). These distances are not
 

metric since the triangular inequality does not hold.
 

A tremendous amount of computation is involved in
 

the determination of w, the weight vectors. And yet,
 

such a method still leaves open the question of pre­

dicting the performance of the classifier in terms of
 

error probabilities.
 

Nilsson uses hyperplanes to separate the classes
 

in the n-space of measurements. A linear discriminant
 

function for the ith class is formed by taking a dot.
 

product of the input and a weight vector for each class.
 

This gives the discriminant function
 

di = X w(i) (2.13) 

where the weight vector for the ith class is 

W( i) = (w(i),wi),...,wW) (2.14) 

The i for which di is the largest is chosen as the class.
 

(i )
,A recursive method of choosing w so that linearly
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separable patterns can be partitioned is given in
 

Nilsson [Ref. 5, P. 79], under trainable linear classi­

fiers. A theorem given by Nilsson assures a partition
 

pf the training set if the patterns are linearly sepa­

rable.
 

The drawback to this approach is that often classes
 

are not linearly separable. Also error rates are ex­

tremely difficult to compute.
 

3. Potential Functions
 

Another approach to the assignment of points of a
 

finite-dimensional vector space to one of a family of
 

c:lasses on the basis of prototypes of those classes is
 

called the method of potential functions [Ref. 8]. This
 

method reduces to the construction of functions qi(X),
 

one for each class, so that if
 

qj(X) > qi(X) for all i/j (2.15)
 

then X = (xl,x 2 ,...,xn) is classified as a member of 

class J, and where these functions are cohstructed as 

superpositions of potential functions f(X,G) 

= . f(X,GW(i)) (2.16) 

Mn j=l
 

The sum is over the prototypes of class i.
 

A reasonable set of restrictions on the potential
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functions can be phrased in intuitive terms as:
 

a) f(X,Y) should be maximum for X = Y.
 

b) f(X,Y) should go to zero for X "distant" from Y.
 

c) f(X,Y) should be smooth for easy analytic mani­

pulations and decrease monotonically with the
 

"distance" between X and Y.
 

=
d) 	f(X,G (i )) f(X,G(J)) should imply that X is
 

equally "similar" to the prototypes of class
 

i and J.
 

A function often used for f(X,Y) is
 

NY 1 (2.17) 
1 + Ad2 (X,Y) 

where A is some constant and d2 (X,Y) is some distance
 

function. A form also used for the potential function is
 

-[x-yI 12
 
f(X,Y) = A exp 2a 2 	 (2.18)
 

where A and a are constants and IIX-YI2 is the norm
 

square of the difference vector.
 

Clearly this function determines the way the space
 

is partitioned. For instance if a approaches 0, only
 

the prototypes will be defined to belong to the classes,
 

whereas when a approaches -, increasing portions of the
 

feature space will be defined.
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It is not clear how the error probabilities are
 

computed. Also the amount of computation one must carry
 

out for each classification is very large.
 

4. Statistical Methods
 

The observations are often looked upon as random
 

variables. This allows statistical methods to be ap­

plied to the classification problem. Usually some form
 

of a Bayes test is used, as in the maximum likelihood
 

classification technique. Such tests are optimum with
 

respect to certain loss functions. However, some authors
 

modify well known methods for computational or experi­

mental expediency. In so doing they lose the optimality
 

of the test, Reed's work described below being an example.
 

Both fixed-length sample tests and sequential tech­

niques have been used in pattern recognition. In this
 

section many methods -are discussed in detail with comments
 

as.to the speciaf needs of each techniqtue. Where appro­

priate, comments arexmade as to the inadeqdacy of the
 

method.
 

a. Definition of Bayes Decision Rule
 

Bayes rule minimizes the average cost of making
 

decisions [Ref. 9- p. 24]. The'average cost r is com­

puted as
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M M 
r f 6(Dilv) [YILjdj(v)Pj dv (2.19) 

r i=0 j=l
 

where the decision rules are
 

6(Dilv) = Prob (deciding Di when observing v} (2.20)
 

and v s F. Clearly this integral is minimized if
 

6(Dilv) = 1 for the i which gives. the minimum
 

M FM
 

I LijdFj(v)P j < min I Lijd~j(v)P] (2.21) 
j=l i 1i­

and
 

6(Dklv) = 0 for k # i (2.22)
 

This formulation is general enough to include many
 

useful tests. The difficulty arises in choosing mean­

ingful values for the loss functions. In pattern recog­

nition applications a further difficulty is due to the
 

complexity of computing the error rates for various loss
 

functions. In Chapter III a method of choosing one
 

meaningful form of the loss function that allows easy
 

estimates of the errors is given.
 

b. Maximum Likelihood Decision
 

A special form of the Bayes test is the maximum
 

likelihood decision rule. The criterion for decisioni
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is that the probability of the observation coming from 

the class be maximized. This is not necessarily the 

best thing to do, as an example will illustrate. How­

ever, under this criterion one chooses Di such that 

PidFi(x) _ max PldFl(x) 

k 1 k (2.23) 
X Pjd%(x) 

J=1 
I P dFj(x)

j =l 

Clearly the denominator is constant for a given x. The
 

rule is equivalent to choosing Di such that
 

PidFi(x) = max{PjdFj(x)} (2.24)
 

It can be shown that this is the Bayes rule with Ljj=O,
 

Lij=l, idj. This rule classifies the observation without
 

regard to the type of error.that it is making. Con­

sequently there is little control over the operating
 

characteristic of the algorithm.
 

As an example consider three hypotheses Hf, H2 and
 

H3 with dF1 , dF2 and dF3 as illustrated in Figure 2-2.
 

IF 1 -dF2 

-I 0 1
 

Fig. 2-2. Three Probability Densities
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It is obvious that D3 will never be chosen with this
 

algorithm, even when x has come from H3 .
 

c. 	Tradeoff of Recognition Probability against
 

Reject Rate
 

This section studies a method proposed by Chow
 

[Ref. 10. It concludes that both the definition of
 

optimum and the proposed optimum rule are deficient.
 

The total error probability and the reject rate are often
 

used to characterize the performance of a pattern recog-­

nition system. Chow describes a classification and
 

rejection rule based on these parameters.
 

Chow [Ref. 10 and i1 modifies the maximum likelihood
 

classification technique. Otimum here means that a rule
 

minimizes the reject probability for a given level of
 

total misclassification. The rule rejects the pattern
 

if the maximum of the likelihood function is leas than
 

a threshold. The rule is defined as
 

1 if1 PidFi(x) > P jdij(x) for all j=l,2,...,k 

and 

6(Dix) =. 
idFi (x ) 

n 
> (1-t) PidFi(x)
 

1=1
 

0 otherwise 	 (2.25)
 

There is ambiguity when P1dFi(x) = PdFJ.x),
 
i-j. When this happens a decision can be made 4 anaom].y.
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i if 6(Diix) = 0 for all i=1,2,...,k
 

6(D0fx) =( 22.26 )

0 if 6(Dilx) = 1 for any =1,2),...,k
 

The parameters t e [0,1] and controls the reject region.
 

The error rate, reject rate and the probability of
 

correct recognition are defined, respectively, as
 

k k 
E(t) = I I 6(DjIx)PidFi(x) (2.27) 

Rn i=1 j= 

R(t) = f 6(DOIx) I ?idFi(x) (2.28) 
Rn i=l 

C(t) = 1 - E(t) - R(t) (2.29) 

Now two useful functions can be defined as 

max [PidFi(x] 
m(x) = ± (2.30) 

dP(x) 

and 
k 

dP(x) PidFi(x)
i=l 

(2.31) 

The decision rule can be restated in terms of these
 

functions:
 

1) accept a pattern whenever m(x) > l-t (2.32)
 

2) reject the pattern whenever m(x) < l-t (2.33)
 

The region of acceptance 1,iA and the region of rejection
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VR can be defined in terms of these defihitions: 

A= {x: m(x) > 1-t) (2.34) 

R= {x: m(x) < 1-ti (2.35) 

Clearly the rejection and acceptance probabilities are 

R(t) = J dP(x) (2.36) 

A(t) = J dP(x) (2.37) 
A
 

A few simple properties of the rejection threshold t are: 

1) Both the errorand reject rates are monotonic in 

t, one decreasing and the other increasing. 

2) The reject threshold t is an upper bound on the 

error rate E(t). Let x be in WA, the region 

where 6(D0,Ix) = 0. Thau is, m(x) > (l-t) and 

E(t) = A(t) - C(t) = f [l-m(x)]dP(x) 
A
 

< t dP(x) < tA(t) < t (2.38) 

3) The reject threshold t is a differential ratio
 

of error rate and reject rate when R(t) can be
 

differentiated. 
E = -t (2.39) 

dR 
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4) The probability of acceptance A(t) has the
 

property 0 < A(t) < 1 for t c [0,11. A(O) > 0, 

A(l) = 1. 

There is a question concerning optimality. This
 

method says, in effect, to raise a threshold (1-t) from
 

zero to an appropriate value so that the-total proba­

bility of error,
 

k k 
E(t) = f X I (D.Ix)PidFi(x)


ji=1 J/i 


k k 
= X eiJPj (2.40)
 

i=l j3i
 

equals a design criterion. One question that is un­

answered is whether there are many decision rules that
 

will give the same "optimality". This question arises
 

since the total error rate in the definition relies only
 

on the total of the probabilities. There'are many sets
 

{eij} which give the same sum. Clearly riot all such
 

tests are optimal, from the user's point of view. This
 

may mean that wrong costs were-chosen. Here is an ex­

ample that will point out the weakness of the above
 

method. Consider the three hypotheses as illustrated
 

in Figure 2-3. Assume that each class is equally likely.
 

According to the definition 3dP = dF1 + dF 2 + dF 3.. This
 

is Equation 2.31, illustrated by Figure 2-4. 
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- - -- 

dFI dF3
 

dF2 

0 1 x-1 


Fig. 2-3. Example for Chow's Method
 

dP'
 

x-l 1 

Fig. 2-4. Illustration of Eq. 2.31
 

Since max PidFj(x) = 1, for -1 < x < 1, then m(x) = 1 
ixdP(x) 

( ) -- ­

-1
 

Fig. 2-5. Chow's Rejection Region
 

Figure 2-5 illustrates m(x), and (l-t) corresponds to
 

some value of the total probability of error. The reject
 

region is the interval in R1 for which m(x) < (l-t).
 

The reject region is the whole of the region over which
 

class 2 is defined. From the Bayes point of view this is
 

a result of minimizing the average cost with respect to
 

some cost. In particular it is like assigning a cost of 
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zero for misclassifying class 2. The unfortunate con­

elusion is that class 2 will never be detected.
 

Thus there are two flaws to Chow's method. First
 

!'optimum" is ambiguously defined in terms of total proba­

bilities. Second the "optimum" rule may never detect
 

certain classes, even when requested to do so. Conse­

quently it is important to ask whether it is possible.to
 

devise a test which is defined in terms of the natural
 

parameters of the pattern recognition problem, proba­

bility of false declarations {di) and probability of
 

detection {yi. Are'there tests that give results which
 

approximate the design criteria? In the next chapter
 

this question is answered in precise terms.
 

d. Wald's Sequential Probability Ratio Test
 

Many applications use Wald's sequential proba­

bility ratio test. This test assumes the samples are
 

from one of two classes. Samples from class i have a
 

distribution Pi and samples from class k have a dis­

tribution Fk-


Samples are taken one after the other. It is not
 

necessary to assume that they are independent samples.
 

However, such an assumption clearly reduces the require­

ments for computation. After n samples are taken,
 

x = (XlX2.,.*.,Xn)-. A rejection takes place if
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Ak < PidFi(x) < Ai (2.41)
 

PkdFk(k)
 

where Ak and Ai are limits which will be defined.
 

PidFi(x) I AirkdFk(x) (2.42)
 

then it is decided that the sample must have come from
 

the class whose distribution is Fi(x). The quantity Ai
 

must satisfy Equation 2.42. Integrating over ji the
 

region of R., which gives the decision Di, gives
 

f PidFi(x) I Aif PkdFk(x) (2.43)
 

The left side is yi, the probability of correctly deciding
 

class i, whereas the right integral is a1 , the probability
 

of deciding i when decision k is correct.
 

This is-the traditional presentation. It was pointed
 

out to the author that a more careful study must be taken.
 

In Chapter III Ji is defined more specifically.
 

yi I Ai (2.44)
 

By neglecting the excess over the thresholds,
 

yi , Alai (2.45)
 

or an approximation to the threshold Ai is
 

" yi/ai (2.46)
Ai 
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Hence the quantities A1 are chosen as the functions of
 

a's and y<s.
 

For a discussion on termination of Wald's method
 

,ee [Ref. 12], Wilks [Ref. 13, pp. 482-1197], and Selin
 

[Ref. 14, pp. 90-95]. In the above references and in
 

Appendix 3 the average sample number at termination is
 

computed.
 

Most techniques using this test take the data in
 

a fixed manner. For geometrical data, quite often, the
 

measurements are taken using scan-by-predetermined-lines
 

or scan-by-matrix-digitization or edge followers.
 

Unfortunately in many cases the inputs to the algo­

r rn do not take the assue statistical form. n
 

the Gaussian assumptions are made for analytical con­

venience when little is really known about the inputs.
 

e. 	 Extension of Wald's Sequential Probability
 

Ratio Test
 

Wald and Sobel [Ref. 15] extended the hypothesis
 

test to the three.class problem. However, as the title
 

of their paper, "A Sequential Decision Procedure for
 

Choosing One of Three Hypotheses-concerning the Unknown
 

Mean of a Normal Distribution," suggests, the problem
 

they solved is related to the normal distribution.
 

Barnard [Ref. 16] and Armitage [Ref. 17] have ex­

tended Wald's seauenti a] probability ratio test beyond 
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the two class problem in a more general way. Armitage
 

is more concise, his work being an outline of Barnard's
 

studies,
 

In their studies there are k hypotheses Hi1H2 ,...1 k .
 

Applying Wald's test to each pair of hypotheses, there
 

are (l/2)k(k-l) likelihood ratios.
 

Rij = 	Pd(x) for all i/j (2.47) 

PjdFj (x) 

And there are k ratios of the form
 

Rii = 	 2. (2.48) 

The observations are taken sequentially until all the
 

inequalities in one of the k sets are simultaneously
 

satisfied. Accept hypothesis i if Rij > Aij for each
 

J=l,2,...,k, where Aii is made less than one. Two
 

hypotheses cannot be accepted simultaneously when Aij
 

are chosen meaningfully.
 

This test terminates with probability one if the
 

variance of the distribution 6f Rij is finite. The
 

proof of this is in Barnard and Armitage.
 

Rewriting the condition for accepting the ith hy­

pothesis and neglecting the excess over the boundary
 

PidFi(x) = AijPjdFj (x) 	 (2.419) 
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Integrating over the correct decision region of the ith
 

hypothesis gives
 

AijPjcij = Pieii < Pi (2.50)
 

where eij is the probability of deciding i given Hi, and,
 

where the right inequality is noted for convenient over
 

bounding of Aij. Similar caution as in Equation 2.43
 

applies here. Hence
 

Aij = i (2.51) 
Pjeij 

is a rule for choosinrz the boundaries.
 

Recalling that Hi is accepted when each Rij > Aij,
 

it is clear that if the ith hypothesis is accepted then
 

eij > e'ij for all j/i C2.52)
 

where e'ij is the true error rate and eij is the desired
 

error rate.
 

The desired false alarm rate ai is
 

ai P (2.53)
ijeij 


j#1i
 

An estimate of the actual false alarm rate is
 

SPie ij = 'i < ai. (2.54) 
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where a' is used to mean the probability of this test
 

result being false.
 

There are two difficulties with this procedure. The
 

first has to do with computational requirements and the
 

second concerns a priori knowledge of {eij}.
 

After each sample is taken, (l/2)k(k-l) ratios are
 

formed. Each ratio is compared to a level. Again, there
 

are (l/2)k(k-1) tests. This algorithm requires an amount
 

of computation which grows as the square of the number of
 

classes grows. For 10 classes, 45 steps are required.
 

For 64 classes, 2016 steps are needed for each sample!
 

Such requirements proscribe real-time computation.
 

The second difficulty with this method is that often
 

not all {eijl are known. Sometimes it is of no concern
 

what the individual eij, error rate, is. An example
 

illustrates this point. In character recognition, it
 

really does not matter what the probability of misclas­

sifying "Q" into "B" is. What matters is, that once
 

"B" is announced, that it be true with high probability.
 

Next, when "Q" is given to a machine it is desired that
 

the probability of it announcing "Q" be high. How the
 

misprobability is distributed is immaerial. Again, ai
 

and yi are the fundamental quantitie of'pattern recog­

nition.
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f. 	Reed's Generalized Sequential Probability
 

Ratio Test
 

Reed [Ref. 18] proposed a ratio test for multi­

class problems. But Fu [Ref. 19, p. 176] points out
 

that, for more than two classes, it has not been shown
 

that the procedure is justified. The only grace of the
 

method is that if the number of classes is two, then the
 

method coincides withWald's method.
 

In Reed's method a ratio,
 

PidFi(x) 
Ui(x) = (2.55) 

1 Pjdj(x I/k 
=iI i=1,2 .... k 

is formed at each stage of a sample. The notation
 

x = 	 (xl,x 2 ,...,Xn) is used. The stopping boundaries 

are 	Ai,
 

- Pi(l-eii'1

Ai = 	 (2.56)
 

1/k
[j P1J(l-ei] 


Ui is compared to Ai for every i, and Hi is rejected
 

if Ui < Ai for-any such i. The number k is reduced by
 

an appropriate amount and the Ui recomputed.
 

Analysis of this test behavior is not available
 

except in the two-class problem.
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5. Geometric Probability.
 

Geometric probability [Ref. 20] has to do with the
 

probabilities of certain basic geometric events such as
 

a line intersecting a convex figure. First an appro-­

priate measure is given to the basic elements. The
 

basic element of measure for a random line s(P,6) is
 

assigned in Appendix 4. A uniform random line s(P,O)
 

is described by P and C and the probability of such a
 

line is proportional to dPdO. Then the probability of
 

these events can be described as the integrals of the
 

measure over the event. Many results relate only to
 

convex figures. Of course in the real world, figures
 

are more often nonconvex. However when the figures are
 

convex many such probabilities are related in a simple
 

manner to the basic features of the figure. If C repre­

sents the set of all random lines intersecting a convex
 

figure with total perimeter L and if dPdO is the element
 

of measure for a random line theh
 

ffdPde = L(meters) (2.57)
 
C
 

In order for this to be a probability it must be normal­

ized, usually by the perimeter of the retina. When one
 

assigns zero or one to N, a random variable is formed
 

which indicates whether there is an intersection. This
 

equation becomes just
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6N = L(meters) (2.58)
 

fi if s(P,6) intersects C
N (2.59)


No if s(P,6) does not intersect C 

For a complete proof of this see Kendall and Moran
 

[Ref. 20, pp. 58-59].
 

Another interesting result is that if the basic
 

element is taken as a point in the plane, and its measure,
 

is dxdy then
 

ffdxdy = A(meters2 ) (2.60)
 
C 

where A is the area. Again this must be normalized by
 

the retina area or by some other constant. Let P, a
 

random variable, equal zero when the point is outside
 

of C. It is equal to one when it is inside the figure.
 

The above integral becomes
 

SP = A(meters 2 ) (2.61)
 

Ball [Ref. 21] uses the moments of such random
 

variables to perform classification. Scale invariance
 

is obtained by raising such moments to appropriate
 

powers, then taking ratios. For instance the feature,
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2
 
[1fdPde]2(meters)
 
C (2.62)
 

ffdxdy (meters
2 )
 

C
 

is dimensionless. Cor 7 this feature is size.
 

invariant. It is also suggested that moments of functions
 

of such basic random events be used as an input to a
 

recognition machine. Integrals like
 

ff(s(P,e))dPde, (P,e) c Q (2.63)
 

are considered, where s(P,O) is a random line and dpdO
 

its measure.
 

The moments I are estimated with the aid of the weak
 

law of large numbers. That is,
 
n
 

lir rob- [l (integrand) - e(integrand) >el =0 (2.64) 

where e > 0. This convergence may be slow causing errors
 

in the estimate of the moment. When these numbers are
 

raised to powers, so that the dimensions will cancel,
 

uncertainties become greater 2 . The conclusion is that
 

'Ball does not use the random variables di­
rectly. He uses the terra integral geometry. Moments
 
are integrals.
2 The rel.atJve maximum absolute error of a 
product is the sum of the relative maximum absolute . 
errors of each factor. Hence the powers of uncertain 
numbers become more uncertain. 
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obtaining the moments by random samples is unsatisfac­

tory. Other methods similar to quadrature in numeric
 

integration are proposed.
 

B. EXPERIMENTS IN PATTERN RECOGNITION
 

These experiments are presented here to illustrate
 

the measuring and classifying techniques that are often
 

used.
 

1. Random Features
 

One of the earliest suggestions for the use of ran­

dom lines in pattern recognition was made by Rubinstein
 

[Ref. 22]. Ile used the average number of intersections
 

that a random line makes with open angular figures to
 

attempt the recognition of the type of intersection.
 

Ball [Ref. 21] introduces geometric probability
 

to give the above method a firm foundation. Yet he too
 

uses only the estimate of the various means as-the input
 

classification. On the other hand Wong uses the dis­

tribution of the random variables.
 

Wong [Ref. 23, pp. 535-546] uses random lines thrown 

against geometric shapes such as squares, circles and 

polygons to find the total length of intersection. This 

feature is used in Wald's sequential probability ratio 

test. lie considers shapes that are similar in convex 

area. A set of fifteen simple basic figures are used. 
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Results of five pair-wise tests are reported.
 

The first experiment reported in Chapter V is an
 

extension of this work. The figures considered were
 

complex--block letters H and U.
 

The second experiment in Chapter V is a problem in
 

multiclass classification. Pair-wise tests are avoided.
 

All classes are considered at once using the algorithm
 

of Chapter III. Furthermore the feature used in the
 

experiment is the number of intersections a line makes
 

with a pattern. The complete distribution of this fea­

ture is used.
 

2. Handwritten Character Classification
 

Demonstrations have shown that even humans perform
 

rather poorly in recognizing handwritten characters out
 

of context. The general problem is very difficult. Work
 

has been done by Brain and Hart [Ref. 24] on special
 

types of handwritten characters--printing in confined
 

squares as on FORTRAN coding sheets [Fig. 2-6]. Their
 

feature extraction is in two steps. First each character
 

is quantized into a 24 x 24 matrix. The matrix is com­

pared with 8,4 edges in 9 translated positions.. The re­

sults of this edge detection are fed into a trainable
 

linear classifier'. The training set consisted of 8000
 

2 Trainable linear classifiers are discussed
 
.in Nilsson [Ref. 5, P. 79].
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Edges 

_____Character
 

Fig. 2-6. Edge Detection of Geometric Figures
 

Fig. 2-7. Elementarly Segments of Letters
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characters from 10 writers. The reported error rate on
 

material obtained from writers not included in the train­

ing set was about 20%. This is a rather poor result
 

considering the number of computations--84 x 9 = 756
 

edge detections!
 

Segment analysis has been quite successful in pat­

tern recognition of handwritten letters. Mori, et al.
 

[Ref. 25] as well as Sheinberg [Ref. 26] have used ele­

mentary strokes as input to a linguistic pattern recog­

nizer. Some of the elements used are pictured in Figure
 

2-7. Both groups of investigators have been successful
 

and have machines on the market. Their operating char­

acteristics are not quoted here due to the unknown ex­

perimental standards. These characteristics are sen­

sitive to the source of the experimental data.
 

Fu [Ref. 19, p. 36] reports a handwritten character
 

classification system that makes 7% error. The number
 

of computations that it needs is far less than required
 

above.
 

x2 8
 

Fig. 2-8. Preselected Line Intersection
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The feature which Is extracted is the length that
 

the predetermined lines 1,2,...,8 make with the figure
 

[Fig. 2-8]. Therefore the measurement is XI,X 2 ,...,X 8 .
 

To get the test it is assumed that X13 X2 ,...,X 8 are
 

Gaussian, with a mean and variance depending on the
 

figure. The sequential probability ratio test [Ref. 12]
 

is employed. On a set of two characters, A and B, de­

cisions are made on the average after six measurements.
 

On a set of four characters, a b c d, a similar experi­

ment shows that the average number of measurements needed
 

to make decisions with 7% error rates is less than ten.
 

[Ref. 19, p. 39].
 

it shall be noted that this system is sensitive to
 

alignment and the algorithm falls apart if the centering
 

of the figure exceeds a tolerance. The foundation for
 

the Gaussian assumption is weak and the prediction of
 

the probability of error depends on this important
 

assumption.
 

3. 	Machine Produced Impact Printing
 

A method widely used for feature extraction of
 

machine produced impact printing is to scan the page in
 

a zig-zag pattern [Fig. 2-91 ot by a group of parallel
 

lines [Fig. 2-10].
 

JPL 	Technical Memorandum 33-48Z 
 41 



Fig. 2-9. Zig-Zag Scan Fig. 2-10. 	 Parallel Line
 
Scan
 

The continuous data stream is matched-filtered
 

(usually digitally) with patterns already stored in a
 

machine. The most sophisticated machine on the market
 

is the IBM 1975 Optical Page Reader [Ref. 271, which
 

operates in the one-error-per-million region. This
 

performance is attained by checking for context when it
 

is "uncertain" about a character's classification. Also
 

it has a set of stored patterns for each font.
 

The IBM 1975 Optical Page Reader is operational and
 

is used by the Social Security Administration to digitize
 

quarterly employers'reports. It checks context by
 

looking through a dictionary of names. The IBM 1975
 

is a specialized machine which is prohibitively expensive
 

for most applications.
 

Other similar experiments have used matrix digi­

tization or edge followers to quantize the visual data.
 

The matrix scan or the scan-by-predetermined-lines tech­

niques are subject to alignment constraints. Character
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registration also plays an important part in the machine's
 

performance. Skewed or smudged characters play a critical
 

role. It would be desirable if one could find a feature
 

extraction that is invariant to displacement, rotation,
 

and size.
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CHAPTER III
 

PROPOSED SEQUENTIAL MULTICLASS HYPOTHESIS TEST
 

In this chapter a sequential hypothesis test is
 

proposed. It is one solution to the multiclass classi­

fication problem. Its attributes are:
 

a) Its performance (in terms of the error rate
 

of the first kind and the probability of de­

tection) can be controlled.
 

b) At each step it is a Bayes test with a special
 

structure for the loss function.
 

c) It terminates almost surely.
 

d) For the two-class problem it is a Wald's test.
 

e) The average sample number required for a test
 

can-be estimated.
 

The notation used throughout this chapter is defined
 

in Chapter I, Section C. In the subsequent sections each
 

of the properties listed above is derived or proven.
 

The proposed sequential multiclass test will have
 

two forms well suited for rapid computation. But before
 

the algorithm is presented a few words concerning the
 

motivations for forming such a test will be given. Also
 

some interpretations of the algorithm will be given.
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,It was pointed out earlier that in pattern recog­

nition the important parameters are the error rates of
 

the first and second kinds, ai and i, respectively.
 

That is, if a machine announces a decision, for instance
 

that a letter on a-page is Q, the user wishes to have an
 

estimate on the probability of that declaration being
 

incorrect. In many applications it matters not what
 

letter is really there, if indeed an error has been made.
 

Hence, it may be reasonable to formulate the decision
 

algorithm on the basis of the likelihood of an observation
 

compared to some acceptable threshold. If there are M 

classes, M successive comparisons may be made. In other 

words, for each possible decision one can ask whether 

the likelihood of the observation coming from a class 

is sufficiently greater than the-average likelihood of 

the observation coming from any-other class. More pre­

cisely, decide Di if 

) P dFj(vl,v 2 , .. ,v 
is< 
 Ci (3.1)
 

PidFi(vl,v2 ,...,vn)
 

otherwise take more samples.
 

It turns out that this test is in a very convenient
 

form for the computation of a1 and Oi as will be shown
 

in subsequent sections.
 

Clearly Equation 3.1 looks familiar. It is shown
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that this equation collapses into Wald's test for the
 

two-class problem. Also, this form of the test looks
 

like the generalized M-hypothesis test in Van Trees
 

[Ref. 9, p. l8. But unlike the M-hypothesis test for
 

which the error rates are difficult to compute, as stated
 

by Van Trees, the error rates for the proposed test are
 

simple to compute.
 

The proposed sequential multiclass hypothesis test
 

will have two forms. The observations Vl,v2,...,Vn_1
 

have been observed and the test has not yet terminated.
 

That is, the decision so far is Do . The proposed algo­

rithm, first form, is as follows:
 

1) 	Take the nth sample v and let v = (vl,v 2 ,...,vn) 

2) 	 Take another observation (declare Do, n + n+l,
 

go to Step 1), if for every i = 1,2,..;,M
 

P dF.(v) > CiPidFi(v) 	 (3.2) 

3) 	The test terminates (go to Step 4) if for
 

any i =1,2,...,M
 

PjdFj(v) < CiPidFi(v) 	 (3.3) 
j#1i 

4) 	 Choose to verify Hi which minimizes
 

(3.4)
 
- CiPidFi(v)
J P 	d~j(v) 
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5) Declare Di . Terminate.
 

Step 4 above is intuitively appealing. It will be
 

shown that the ratio of the false alarm rate ai and the
 

probability of detection '1i Is less than the thresholds
 

used in the test.
 

Ci > fi 
Yji (3.5)
 

Some manipulation will show that Step 4 directs the
 

algorithm to choose a class in the quickest way while
 

not overstepping that requirement.
 

In Appehdix I an equivalent form of the test is
 

derived. The second form is more convenient for com­

putation. The proposed algorithm, second form, is as
 

follows:
 

1) Take the nth observation vn and let v 

= (vl,v2,...,Vn). 

2) If 

M 
I PjdFj(v) > max{(Ci+l)Pidi(v)} (3.6) 

j=1 i 

take another sample (declare Do, n A-n+l, go
 

to Step 1).
 

3) Otherwise choose to verify Hi so that
 

(Ci+l)PidFi(v) = max{(Cj+l)PjdF;(v)} (3.7)
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A. 	 DETERMINATION OF {a} AND {yi ] FOR A TEST WITH
 

CONSTANTS {Ci )
 

Here it is supposed that a test as described in
 

Equations 3.2 to 3.7 has the constants {Ci } fixed at
 

some known numbers. 

When a test terminates at the nth stage with Di
 

PjdFj(v) < CiPidFi(v) 	 (3.8)
 
j sdi 

Neglecting the excess over the boundary allows Inequality
 

3.8 	to be written as an approximation,
 

PjdFj(v) = CiPidFi(v) 	 (3.9)
 

Now integrating over the region of v,- i(n), such that
 

the test terminates at stage n with Di, gives
 

P d(v) f CiPidFijv) (3.10)
i(n) joi j-	 n )
 

which is the same as
 

IPjf (n)dFi(VJ CiPif (n dFi(v) (3.11)
 

.But ty Equation 1.15, the definition of eij the 

above becomes 

(n )
Pjeij(n) = CiPie- (3.12) 
J4na 
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Using the error probabilities when the test stops at the 

nth stage, eij(nr ) the total error Probabilities are 

Pjeij = Ci~Peji(n) (3.13) 

n J/i n 

Interchange of summations on the left gives
 

ipj ec(n) . CiPi eli(n) (3.14)
 
j 	 i n n 

Using the definition of the error probabilities eij,
 

Equation 1.17, this can be rewritten as
 

=
X Pjeij CiPieii (3.15)
 
jFi
 

Making use of the definitions of the, error of the first
 

kind a, and the detection probability Yi Equation 3.15
 

can be written as
 

ai =Ciyi 	 (3.16)
 

The reasoning used so far gives an approximation of Ci
 .
 

= 	ai (3.17)
 
Yj
 

One further condition is made to obtain still a simpler
 

estimate of the threshold Ci . If the detection rate is
 

high, it is approximately equal to the a priori proba­

bility of that class.
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i=P(3.18) 

This suggests the following important point. If
 

one desires a recognition system with false declaration
 

probabilities {ci} then one chooses
 

i a_(3.19)
Pi
 

In Appendix 2 the Chernoff Bound is used to show that 

yi + Pi as n - . This will establish more firmly the 

value of this approximation method. 

This is a flexible algorithm. Output error rates 

are under the control of the user. 

Extensive experimental results reported in Chapter V 

verify the usefulness of Approximation 3.19. 

B. RELATION-TO THE BAYES TEST
 

This section shows how the proposed test relates to
 

the Bayes test for any fixed number of samples n. It is
 

shown first that the reject region is the same as a Bayes
 

test with particular loss functions. Next it is shown
 

that the decision regions are the same. In fact, the
 

proposed test is a Bayes test with a special cost struc­

ture which permits rapid computation of the error rates.
 

This last computation is not generally feasible for the
 

Bayes test. But-as shown in Section A of this chapter,
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the error rates for the proposed test can be readily
 

computed and controlled.
 

The Bayes rule minimizes the average risk. In
 

,ChapterII, Section A it was shown that Di is chosen
 

to minimize
 

M
 

j =1 
SLijPidFj(v) (3.20) 

over all i = 0,1,...,M
 

Suppose that the Bayes rule rejects all hypotheses
 

after taking n samples. Then for every k = l,2,...^
 

Ml M 
L0jPjdFi(v) < ) LkjPjdFj(v) (3.21)
j j=l
U 

which can be rewritten as (for a particular k=i)
 

M
 
S(Lij-Loj)Pjd~j(x) > (Loi-Lii)Pid~i(v) (3.22)
 

ji' 

For the proposed test a rejection occurs at the nth stage
 

whenever, for every i = 1,2,...,M,
 

M
 
I PjdFj(v) > CiPidF1 (v) (3.23)
 

Clearly the proposed test and-the Bayes rule have
 

the same rejection criteria if, for all k ='1,2,...,M,
 

JPL Technical Memorandum 33-482 51 



Ci = L0 i - Lii k$i (3.24)
 
Lik - LOk
 

.The.division implies that (Lik - LOk) $ 0.
 

A solution to these equations can be obtained by
 

observation. They are, for iij$O,
 

Loi = 0
 

Lij = 1
 

Lii = -C i (3.25)
 

Clearly these loss functions satisfy
 

Loi - Lii Ci
 

LikL 1 - Ci  (3.26)
 

and
 

(Lik LOk) = 1 for all k4i (3.27)
 

These assignments also satisfy one's intuition. If there
 

is a reject at the nth stage there is no loss because
 

another sample is taken and the test is continued. How­

ever, if there is a misclassification, then a penalty of
 

one is assigned. On the other band, when the correct
 

decision is made, a reward is given. If the permitted
 

error type of the first kind ai is large, so is Ci .
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Thus, when a correct answer is given under conditions
 

allowing more errors, the reward is also larger.
 

Now suppose,that a Bayes rule makes decision Di,
 

ij0, after n observations. Then,
 

M M 
}iLijPjdPj(v) < XiLkjPjdgj(v) (3.28) 

J=l J=
 

for every k = 1,2,...,M.
 

Substitution for the loss functions yields,
 

YPjd~j(v) - CiPidFi(v) 

< kPdF4 (v)"- CkPkdFk(V) (3.29)

J 4 

Eliminating the common terms from both sides gives
 

-(Ci+l)PidFi(v) < -(Ck+l)PkdPk(v) (3.30) 

Hence the Bayes rule is
 

maxf(Ci+l)PidFi(v)} (3.31)
i740
 

It can be seen that the proposed test, Equation 3.7,
 

is indeed a special form of a Bayes rule.
 

C. TERMINATION
 

It will be shown that the proposed test terminates
 

almost surely. Doob [Ref. 28, p. 3493 shows the
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convergence of the probability ratio
 

d6k(v)
 
-*0 a.s. (3.32)
 

d ji(v)
 

given Hi . This fact will be used below.
 

Now suppose that some hypothesis Hi is given. Recall
 

from Equation 3.3 that the test terminates whenever
 

PjdFj (v) 
Ci > J3i (3.33) 

PidFi(v) 

That is whenever the ratio is less than Ci the test ends.
 

It will be shown that the ratio in Equation 3.33 will
 

approach zero with probability one. The right side of
 

Equation 3.33 can be written as
 

PjdqFj(v) PjSid ~viZn(i,j) (3.34)
 
j~di PidF1 (v) j~i Pi 

where by Definition 1.6
 

- dFj(v],v 2 5 ;. ., n 
Zn(i,J) = __________--vn- (3.35) 

dFi(vl,v 2 ,...,v n ) 

But by Equation 3.32
 

Zn(i,J) + 0 a.s. for all j/i 

Hence the test terminates almost surely. 
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In any practical application of a sequential Lest,
 

one must consider a large number such that when the sample
 

number reaches this number the test is arbitrarily terini­

nated. Because the error rates go to zero as n becomes
 

large, this safeguard should not affect the performance
 

significantly. In the tests reported in Chapter V the
 

arbitrary termination point is placed at about ten times
 

the average sample number. In more than five thousand
 

cases which are run, not one test has a sample number
 

this large.
 

D. RELATION TO WALD'S TEST
 

The proposed test for the two-class problem is clearly
 

Wald's test. The proposed test takes another sample if
 

P2dF 2 (v) > CPldFj(v) (3.36)
 

and
 

PldFI(v) > C2P2dF2(v) (3.37)
 

But rewriting these equations we get
 

C1 < < (3.38)
PldFl(v) C2
 

This shows that the proposed test takes another sample
 

if the ratio of probability has not crossed either of
 

the two boundaries.
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Equation 3.38 is the same as Equation 2.41 with the
 

lower boundary
 

Ak = C1 	 (3.39)
 

and the upper boundary
 

Ai = C2-	 (3.40)
 

E. APPROXIMATION OF THE AVERAGE SAMPLE NUMBER
 

In Section C the termination of the proposed test
 

with probability one was shown. This section addresses
 

the problem of computing an approximation of the average
 

number of samples at termination under Hi .
 

Two assumptions will be made to assist in this
 

approximation. First, assume that some one probability
 

.distribution 	Fk causes the delay of a decision or the
 

incorrect classification. Second, assume that when any
 

decision is made m = 1,2,...,M,
 

SP jdFj(v) = CmPmdFm(V) (3.41) 
J1$i 

This is sometimes known as neglecting the excess over
 

the threshold. It is similar to assuming that each step
 

toward a goal is small and that the goalis far. Hence,
 

when the goal is crossed, the position is near the goal.
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With these assumptions, Equation 3.3 becomes
 

P dF(v) = CiPidF5 (v) (3.42
jy/i
 

when the correct decision is made, and
 

P dFj(v) = CkPkdFk(V) (3.43)
j~ik i 

when an incorrect decision is made.
 

By invoking the first assumption that Fk causes
 

the delay, the sum is approximated by one term. Hence,
 

dPk(V) Pi
 

dFi(v) Pk
 

when the correct decision is made, and
 

dFk(v) (3.45)
 

dFi(v) CkPk
 

when an incorrect decision is made.
 

N is the sample number at termination. Taking the
 

logarithm of the ratio of probabilities at termination
 

and denoting it ZN(i,k) gives
 

dgk(v) CiP i
 

ZN(i,k) =in d1(v) = n Pk (3.46)
 

when the correct decision is made, and
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dpk(V) 
 Pi" 
ZN(i,k) = in dPi(v) CIn (3.47)d~j~v)CICPk
 

when the incorrect decision is made. 

Under the ith hypothesis, decision Di is made with 

probability 

Prob{DiIHi true) = eii (3.48) 

The probability of an error is 

Prob{DkIHi true) = 1 - eli (3.49)
 

Hence, the conditional expectation of the logarithm of
 

the ratio of the probabilities at termination & (ZN(i~k))

Hi
 

can be computed,
 

(ZN(i,k)) = e1i in -
CiPi Pi
+ (l-eii)in ­ (3.50)
 

Hi Pk + CkPk
 

But from Appendix 3,
 

E (ZN(i,k)) = E (£(i,k))E (N) (3.51) 
Hi Hi Hi 

Therefore, the average sample number given Hi is approxi­

mately, 
CiPi Pi 

S(N)F_()P eii in - + (l-eii)ln CkPk (352)
 

Hi F ( (ik))
 

H
 
i
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In some applications a portion of the observations
 

is not used. In particular, when the number of inter­

sections that a random line makes with a pattern is used
 

as a feature, neglecting those observations with zero
 

intersections and using the conditional probability
 

distributions provide for size invariance. This is
 

more carefully presented in the following chapters.
 

The estimate of the average sample number, Equation
 

3.52, is an approximation of.the average number of sam­

ples used per test, To obtain the average number of
 

samples observed one must'modify Equation 3.52 to reflect
 

the fraction of the observations which,are neglected.
 

Extensive experiments reported in Chapter V show 

that this estimate is a good one.. 
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CHAPTER IV
 

INVARIANT FEATURE EXTRACTION
 

A. HEURISTIC DISCUSSION
 

In Chapter II some methods of taking data were
 

mentioned. Many of these methods are sensitive to the
 

location and orientation of the object under study. In
 

this chapter methods which are not dependent on these
 

factors are developed. The cost of aligning the patterns
 

to the transducer motivates such a development.
 

In hand-printed material, the reasons for variation
 

in location and orientation are clear. There are slmi­

lar reasons why impact printed characters also have
 

alignment irregularities. For example in high speed
 

computer printouts the characters may be misplaced hori­

zontally or vertically. This is due to variations in
 

the way the hammer strikes the moving letter form. In
 

aerial photographic reconnaissance, the significance of
 

uhe data may be unrelated to either the precise location
 

or the orientation of the object being sought. If one
 

is scanning a picture for airfields, its recognition
 

should not be affected by its whereabouts.
 

There is a need for an observation scheme which is
 

JPL Technical Memorandurn 33-482 60 



invariant to certain features. Precise location and
 

orientation are two aspects of geometric subjects which
 

do not contribute to their classification. A square and
 

a rectangle ought to be different no matter where they
 

are in the field of view. Another feature which is often
 

unimportant from one class to another is size.
 

This is not to say that location, orientation, and
 

size are unimportant. Often these features give dif­

ferent meanings to the same symbol. Arrows are good
 

examples, 11" and "+" having opposite meanings. Also
 

observe how these same1 shapes, b d p q, are used to
 

represent quite different things. The search for an
 

invariant feature extraction method which will classify
 

these letters in the same class is still fruitful. There
 

are other methods which can subclassify them.
 

B. INVARIANCE
 

Invariance 	of decision rules is discussed in detail
 

2
in Ferguson [Ref. 30, p. 144]. It is defined for a group


of measurable 3 transformations over the space upon which
 

decision theory is founded.- Here the concern is over
 

IThese shapes are.rotational and.mirror-image
 
transformations of one another.
 

2For the exact defi-nition of group see Birkoff
 
[Ref. 31, p. 117].


31t must be measurable to assure that a random
 
variable X is transformed into a random variablc g(x).
 
See Breiman [Ref. 29, p. 106].
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the invariance of the observations when the trans­

formations are applied to the patterns in the retina.
 

The decision algqrithm is constant.
 

What features are insensitive to particular trans­

formations? How can observations be taken so that they
 

are independent of the transformations? It is shown in
 

Section D of this chapter that randomizing answers these
 

questions.
 

C. 	FEATURES
 

Any aspect or quantity derived from a pattern is a
 

feature. The word feature is used to mean a scalar,
 

vector or matrix quantity. The area, the perimeter, the
 

convex hull perimeter and the "convexity" of a geometric
 

shape are four examples of features. The gray level of
 

a matrix scan is an example of a widely used feature.
 

It is tempting to try to measure the usefulness of
 

a feature. However it is quite difficult to-assign a
 

numerical quantity to the usefulness of a feature. in­

vestigators have used the entropy1 of features as a
 

measure. Others have used variance. It is unclear how
 

either of these quantities relate to the fundamental
 

quantities of pattern recognition (error and reject
 

rates). Since the object of pattern recognition is to
 

iFor a definition see Ash [Rcf. 32, p. 2111.
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give the best classification as quickly as possible, a
 

feature is best if a decision algorithm requires the
 

least amount of such features.
 

A good feature is one which requires a minimum num­

ber of samples for a given decision algorithm operating
 

at certain error and reject rates, and which can be ex­

tracted with a minimum of effort.
 

D. RANDOM EXTRACTION
 

One way to take data is by cross-correlating the
 

pattern with certain reference elements. These reference
 

elements may be the most primary elements of geometry
 

or they may be as complex as the prototypes of the bat­

terns. Here the basic elements of geometry are chosen
 

as the reference elements due to the ease with which
 

they can be-generated. They are taken to be appropri­

ately distributed within the retina. The reference
 

elements are taken at random. This is done so that the
 

features will no longer be dependent upon the location
 

and orientation.
 

As an illustration of feature extraction (see Figure 4-i) let the 

reference set be the points in the retina. The elements are chosen 

one by one, at random and uniformly. These are correlated with 

the pattern. The result is a random variable, 
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{ l if '(x,y) e {Pattern Interior)X~x~y) 	 =('.1)
 
0 if (x,y) c {Pattern Exterior)
 

Clearly X is a feature of the pattern. It is independent 

of where the pattern.is in the retina. Also functions of 

X are features of the -pattern. 

Observe that the mean of X is proportional to the
 

area of the pattern.
 

Area Pattern
 
(4.2)
W
Area Retina 


Unfortunately in most geometric pattern recognition 

problems this data ns ansufficicnt for classification 

because many different shapes may have the same area. 

Fig. 4-1. 	 Random Points Used as a
 
Feature Extraction
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Next consider the set of all lines intersecting
 

the retina. These lines may be parameterized by the
 

polar coordinates (P,O) of the point closest to the
 

origin. Random lines uniformly distributed over the
 

retina may be obtained by choosing P and S uniformly in
 

0 < P < R, 0 < Q < 2f, respectively, where'R is the
 

retina radius. (See Appendix 4.)
 

Features of the pattern may be obtained by observ­

ing the cross-correlation of such lines with the pattern.
 

Let X be equal to the total length of the intersection
 

of the line with the pattern. It is clear that X is
 

independent of where the pattern is situated. X is a
 

randon variable wIeh depends only on the pattern itself.
 

The properties of this random variable and other random
 

variables derived from random lines that intersect the
 

pattern are discussed fully in the next section.
 

Other geometric elements can be used as the reference set 

(Figure 4-2). However, when the elements become complex, 

the process of making their measure not dependent on
 

orientation and location also becomes complex. Random
 

ellipses can be used as a basis for feature extraction.
 

Random variables can be defined in terms of the length
 

of intersection, number of intersections, etc. Circles,
 

lines, and points are degenerate forms of ellipses. It
 

is questionable wh4ther these random variables can be 
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Fig. 4-2. Intersection of Ellipses with a Pattern
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Fig. 4-3. Uniform Random Lines in a Retina
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wo 1 

nl
 

R2
 

FIg. 4-4. Detail of a Line Intersecting a Pattern
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made independent of the location and orientation of the
 

figures. Also the computational disadvantages of using
 

higher order elements limit the scope of this dissertation
 

to the use of random lines.
 

E. PATTERNS AND RANDOM LINES
 

Random lines have been defined earlier. (Also see
 

Appendix 4.) Figure 1-3 shows a field of random lines.
 

Patterns have not been given a formal definition and it
 

will be defined only implicitly by examples. In Figure
 

4-4 a pattern is represented by n rectangles RI,R 2 ,...,Rn.
 

These n rectangles jointly form a pattern. They are
 

disjointed so that the concept of a line intersecting
 

a pattern can be clearly illustrated. The two segments,
 

w0 and Wn+l, are dependent upon the position and orien­

tation of the pattern. The wi represents the intersection
 

of the line with the ith region of the pattern. There
 

are many functions that can be formed from-the wj. A few
 

of them are:
 

a) a multivariate random variable
 

W = (WlW2,...)wn) (4.3) 

b) the largest intersection segment
 

U = max(wl,w 2 ,...,wn) (4.4) 
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c) the smallest non-zero segment
 

V = min(wl,w2 ,...,wn) (4.5)
 

d) the number of intersections
 

n 
N = X sgn(wi) (4.6)

i=l
 

where sgn(.) is the sign function, +1 when the
 

argument is positive, -1 when negative
 

e) the total length of intersection
 

n
X = wj 

f) the joint random variable
 

Z = (N,x-) (1.8) 

The multivariate random variable W has all the
 

information contained in the other random variables.
 

But the computational requirements to estimate, store,
 

and use multivariate random variables are severe. Hence
 

for these reasons and not-on the basis of theoretics, the
 

multivariate random variables are no longer considered.
 

The random variable U swamps the small contributions
 

of the lesser wi . Yet it may be these small quantities
 

which make the pattern different. V is formed by the
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smallest wi, and it is susceptible to noise. These.two
 

random variables will no longer be considered.
 

The number of intersections N has interesting
 

properties. It was pointed out that its average was
 

related to the perimeter if the pattern is convex. (See
 

Chapter II.)
 

EN = Perimeter 	 (4.9)
 

For nonconvex figures 6N can be used as an indicator of
 

its convexity'.
 

Perimeter of convex hull = 	 f dPd0
 
Pattern
 

< Perimeter = f NdPdO 	= SN (1.10)
Pattern
 

The probability density function of N is more interesting.
 

Clearly the probability of intersection is determined
 

by the convex hull of the pattern. For a convex pattern
 

there is one intersection. But an arbitrary shape has a
 

probability density function which depends on the figure.
 

As will be illustrated in Chapter V, this feature is
 

useful when the figure is narrow or when the width of a
 

figure is of no consequence.
 

Figure 4-5 displays the probability density function
 

iSee Bal [Ref. 21, p. 38]. 
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1 23
 

Number of Intersections
 

Fig. 4-5. 	 Probability of Number of Intersections of
 

Random Lines against Block 11 and U
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Fig. P-6. Detail View of Random Lines Intersecting 

the Letter H 
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Fig. 4-7. Detail View of Random Lines Intersecting
 

the Letter U
 

JPL Technical Memorandum 33-482
 74 



of N. Random lines are thrown against block letters.
 

The total length of intersection, random variable X,
 

is also a useful quantity because this scalar number is
 

easy to extract. A movable spot scanner can be used, for
 

instance. Figure 11-6 shows how random lines may inter­

sect a block H and Figure 4-7 illustrates random lines
 

intersecting a block U. The outlines of the block letters
 

were omitted to stress the point that not many lines are
 

needed for a person to decide what the pattern is. X
 

seems to be promising as an input to the decision algo­

rithm of Chapter III. It will be shown in the next chap­

ter that indeed quick decisions can be obtained by using
 

X as an input.
 

Z is the joint random variable. Its two components
 

are X and N. One may need to use Z when either N or X
 

alone produces unsatisfactory results due to noise, font,
 

or style changes.
 

F. NOISE, SIZE, FONT, AND STYLE
 

A few factors which affect the random variables N
 

and X are noise, size, font, and style. Noise refers
 

to smudges, distortions,, or-breaks in the pattern due to
 

the printing, the paper, or the photographic process.
 

Also the texture of the background is considered noise.
 

Font refers to the various printing faces. There are so
 

many fonts that even the best reading machines available
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today can handle only a small percentage of them. The
 

problems involved in reading handwritten material are
 

obvious.
 

Noise affects N more than X. This is due to the
 

fact that X is an "integral" of.the overlap. A small
 

extraneous blob affects X only slightly. On the other
 

hand, whenever a random line intersects such a blob, N
 

is made to differ by one, which is a significant change.
 

In most character patterns N is most likely to be less
 

than four.
 

Size does not affect the conditional probability
 

density function of N, for N not equal to zero. Size
 

changes X proportionally. However changes in size can
 

be dealt with if those changes occur "slowly" or"in­

frequently by putting X through an automatic gain
 

control.
 

How font changes affect X and N is a question that
 

can be answered experimentally. The variations in the
 

fonts are subtle and cannot be handled analytically.
 

All the questions associated with font and style
 

are complex. Further experiments are needed to find
 

cross-font invariant features. X and N seem to be good
 

random features.
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CHAPTER V
 

EXPERIMENTAL RESULTS
 

In Chapter III a multiclass hypothesis test which
 

performs at the desired error rates is developed. It
 

allows rejects to occur. Upon a reject, the test con­

tinues by adjoining an additional sample to the obser­

vation. It is.shown that this test is Bayes. In the
 

case where there are only two classes this test is the
 

same as Wald's sequential probability ratio test.
 

Feature extraction is discussed in Chapter IV. Two 

random variable featurcs X and IN which are inva-riant to 

translation and rotation are found. They meet with the 

needs of the multiclass hypothesis test. {Xi l are in­

dependent and may be obtained quickly. The same comments 

hold true for [Ni}. For a given figure in a retina, the 

sequence of {Ni l or {Xi } is virtually limitless. 

Two experiments are described in this chapter. The
 

first experiment has to do with block letters, and the
 

random variable X, the total length of a random line
 

intersection. In the second experiment, handwritten
 

numerals arc classified using N, the number of inter­

sections a random variable makes with the numerals.
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.A. CLASSIFICATION OF BLOCK LETTERS
 

Block letters -are used in this experiment. Their
 

shapes are illustrated in Figures 4-6 and 4-7. Two
 

similar letters were chosen. These two letters have
 

equal areas and the same convex hull areas. They differ
 

in 22% of the area. Certainly if such letters can be
 

classified, there is hQpe for more differing letters.
 

Random observations X are made. -X is the total
 

length of intersection that a uniformly distributed
 

random line makes with a block letter. The random lines
 

are taken one at a time independent-of each other. Ap­

pendix.4 describes the.theory of-choosing uniform inde­

pendent random lines. Hence, {X- areclearly indepen­

dent.
 

In the proposed test the- probability distribution
 

functions of-X, given each letter, are prerequisites.
 

Hence the first step is to learn these distributions.
 

This is done empirically because the mathematics avail­

able today (such as geometric probability) allow the
 

direct computation of only a few of the simple moments
 

of the random variables.
 

Experimentally it is noticed that the p.d.f. changes
 

hardly at.all after 5,000 samples are tabulated, The
 

p.d.f.'s used in this experiment are estimated by 50,000
 

samples of X.
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Figure 5-1 illustrates the empirical p.d.f. The
 

peaks at 50, 100, 150, and 200 units correspond to the
 

dimensions of the block letter H. The peak at 140 for
 

the letter U is due to the horizontal area. For the
 

letter U it is on the bottom and for the letter H it is
 

in the middle of the letter. The p.d.f.'s at zero are
 

omitted from the diagram because they are the same for
 

all convex hulls of the same perimeter. In fact, the
 

p.d.f.'s are proportional to the ratio of the convex
 

hull perimeter and the perimeter of the retina. See
 

Kendall and Moran [Ref. 20, p. 58].
 

The difference between the two conditional random
 

variables is more apparent in Figure 5-2 where the
 

cumulative distribution functions are displayed.
 

The average number of samples needed to come to a
 

decision is a function of the error'probability which
 

one desires (Chapter III). Figure 5-3 displays the aver­

age sample number as a function of the significance of
 

the test. Figure 5-4- shows four decades of this relation­

ship. The errors,
 

e12 = e2 1 (5.1) 

are held constant with respect to each other.
 

The samples X = (Xl,X2,...,xn) are independent.
 

This makes the computation of PidF1(x) extremely simple.
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When n samples are used,
 

n 
PidFi (x) = Pi N dFi(xj) (5.2)


J=l
 

The evaluation of this function after another observation
 

becomes
 

n+l
 
PidFi(x) = Pi dFi(xj) (5.3)
 

j=l
 

n 
= dFicin+l)Pi R dFi(xj) (5.4) 

J=l 

The probability ratios are tested against thresholds
 

as indicated by Equations 3.38 to 3.40.
 

PldPl(X) 1
<
A2 =C2 < - - = A1 (5.5) 
A2 0 <P 2dF2(x) Ci 

If the boundaries are exceeded a decision is made,
 

whereas if neither boundary is crossed, further samples
 

are taken.
 

In the following tests the classes are equally
 

likely.
 

P1. = 1/2 (5.6)
 

P2 = 1/2 (5.7)
 

In these experiments, no rejects are allowed after
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200 samples. They are then classified using the maximum
 

likelihood test. This is done to limit the computing
 

time.
 

Two runs of experiments are made. In the first run 

the algorithm is requested to make a 1% test, e21 = e12 

= 0.01. Point A of Figure 5-4 is obtained from 7600 

tests. The average number of samples used for a test 

is 76. The point is shifted to the right from the 

predicted position. This is due, in part, to the arbi­

trary truncation of the test at 200 samples. 

In the second run the algorithm is requested to
 

make a 10% test.' Its actual performance is Point B of
 

Figure 5-h. It requires 34 samples on the average. It
 

uses more samples than predicted, but the decision is
 

better.
 

It is interesting to observe the behavior of the
 

likelihood ratio. It is a random walk biased upwards by
 

PldFi (5.8)
 

P2dF2
 

The logarithm of the ratio is displayed in Figure 5-5
 

along with the logarithm of the limits A1 and A2 . Four
 

tests are detailed, step by step. Tests 1 and 2 termi­

nate well below the expected average sample number and
 

Tests 3 and 4 terminate above it.
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Figure 5-6 displays the actual lines which are.used
 

in Test 2 of Figure 5-5. Lines 1 and 2 of Figure 5-6,
 

Parts a and b are different for each letter, whereas
 

Line 3 is the same for each figure. Lines 1 and 2 give
 

information about 11and U but Line 3 does not.
 

B. HANDWRITTEN NUMERALS
 

Four digits illustrated in Figure 5-7 are used to
 

learn the probability density functions of N, the number
 

of times a random line intersects a given figure. These
 

p.d.f.'s are learned by using many random lines. Figure
 

5-8 illustrates their nature. Figure 5-9 shows the
 

cumulative distribution functions for the numbers 2. 3:
 

4, and 5. They are superimposed on one drawing so that
 

the differences will be apparent. For these experiments
 

20,000 lines are used to estimate each p.d.f.
 

The Prob{N=01 is used to normalize the p.d.f. This
 

is the same as normalizing by size since the probability
 

of intersection is directly proportional to the convex
 

hull of the character.
 

Using the formulas which are developed in Chapter
 

III the'average number of samples needed can be computed
 

for any given error rate. Figure 5-9 displays such a
 

relationship for ai = aj.
 

Tests are run for Points A and B of Figure 5-10.
 

Point A is due to 782 tests for the class. The {ajl
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Fig. 5-7. Handwritten Numerals 
Used
 

in the Experiment
 

?norandum 33-48
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are specified at .025. Point B is due to 637 tests for
 

that class with {i} specified at .0125. The four
 

hypotheses are assumed equally likely. The results of
 

the test are listed in Tables 5-3 to 5-6.
 

Recall from Equation 1.23 that
 

ai = iPJej (5.9)
jJi
 

The error rates can be easily computed for each experi­

ment as shown in Tables 5-1 and 5-2. These tables show
 

that the performance of the proposed test can be con­

rolled by the experimenter.
 

Tables 5-7 and 5-8 show the average number of samples
 

taken for the various results, Di given Hj. These numbers
 

include the samples for which there is zero intersection.
 

An estimate of the average sample number can be computed
 

using Equation 3.52. The plot in Figure 5-10 reflects
 

these estimates. The curve should be below the experi­

mental points as a result of the estimates made in
 

Equations 3.41 to 3.52.
 

The experimental results tabulated in Tables 5-3
 

and 5-5 show that-2 and 5 are similar. The majority of
 

the errors made when 5 is true is the decision 2. This
 

can be anticipated by observing the probability dis­

tribution function of-N for these two letters, Figure 5-7,
 

or by simply noting that 2 is quite like the upside-down
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a, 0.017 < .025 

a2 0.001 < .025 

0.016 < .025
a3 


0.027 .025
a4 


Table 5-1. Error Rates for the First Experiment
 

ai - 0.0114 < .0125 

c 2 0.0016 < .0125 

a 3 = 0.0095 < .0125 

a14 0.0142 = .0125 

Table 5-2. Error Rates for the Second Experiment
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Given
 

H3 H4
Decide HI H2 


D, 654 14 4 30
 

D2 20 758 5 4 

D3 28 9 766 18
 

D4 8O 1 7 730
 

Table 5-3. 	Confusion Matrix [eij]; Experimental Data
 
from 782 Tests for Each Class ai Set Equal
 
to .025 for 	All i=1,2,3,4
 

Given
 

Hl H2 Hl H 4
 
Decide
 

Dl 834 18 5 38
 

D2 26 970 6 5
 

D3 37 11 980 23
 

D4 103 1 9 934
 

Table 5-4. 	 Confusion Matrix [eij]; Experimental Data
 
Normalized to 1000
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Given 

Deie 
Decide 

Hl H2 HI H4 

Dl 585 10 1 16 

D2 3 623 1 0 

D3 12 4 637 9 

D4 37 0 0 612 

Table 5-5. 	 Confusion Matrix [ejj]; Experimental Data 
from 637 Tests aj Se Equal to .0125 for 
All i=1,2,3,4 

Dcd, Hl H2 H3 H4
 
Decide
 

Dl 928 16 2 25-


D2 5 978 2. 0
 

D3 19 6 996 15
 

D4 58 0 0 960
 

.Table 5-6. 	 Confusion Matrix LeijI; Experimental Data
 
Normalizedto 1000
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Given
 

Decde H2 H4
Hl 	 H3
Decide
 

DI .232 161 241 214
 

D2 30 48 16 15
 

D3 94 44 72 54
 

D4 187 80 114 156
 

Table 5-7. 	 Conditional Average Sample Number ai = 0.025
 
Including the Samples with Zero Intersection
 

Given
 

HI H2 H3 14
 
Decide
 

D1 314 192 233 323
 

D2 55 67 21 0
 

D3 88 42 88 99
 

D4 290 0 0 214
 

Table 5-8. 	 Conditional Average Sample Number ai = 0.0125
 
Including the Samples with Zero Intersection
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image of 5. The result is the large averagc sample
 

number at termination.
 

There are other pairs of numbers, such as 6 and 9,
 

wThich this algorithm will have difficu.ty classifying.
 

It is suggested that these similar shapes be classed
 

into common families and other algorithms which are not
 

invariant to rotation and mirror-imaging be used to sub­

classify within each family. Application of the author's
 

algorithm first may simplify the subclassification
 

process.
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CHAPTER VI
 

CONCLUSION
 

A. RESULTS
 

The fundamental characteristics of a classification
 

algorithm are identified as the false declaration rate
 

and the probability of detection. A sequential multi­

class hypothesis test is proposed-in Chapter III. A
 

detailed study of the test shows that it terminates
 

almost surely, and-its performance can be readily con­

trolled.
 

The-sequential machine becomes a threshold tcstcr
 

of certain functions of probability densities. The
 

threshold levels which determine the operating charac­

teristics-f-the pattern recognition machine are under
 

the control of the experimenter.
 

The input to this machine must necessarily be random
 

quantities. In Chapter V invariant feature extraction
 

is developed. A few features extracted by random lines
 

are presented. They are used in Chapter V in experiments
 

that simulate pattern recognition machines. Results of
 

recognizing block letters and handwritten numerals are
 

presented.
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B. APPLICATIONS AND FURTHER RESEARCIL.
 

It is anticipated that the new ideas and results
 

presented here will be the forerunner of broader re­

0earch and development in applications of multiclass
 

hypothesis testing to pattern recognition using random­

ized features.
 

In particular the results of the experiment with
 

handwritten numerals indicate that inexpensive and fast
 

sorters can be built. Also the preliminary findings
 

indicate that the features used,in the experiments may
 

be insensitive to changes in style. The applications 

of such a system in the postal service or in business 

may relieve much of the burden of hand sorting. 

This method could be fruitfully applied in under­

standing and solving the problems of machine reading
 

multifont and handritten (script) matter.
 

Multiclass sequential tests that use random features
 

may fit well with techniques which use context infor­

mation. A reader that correlates at-the word level,
 

for instance,, does not-need.complete accuracy on each
 

individual letter. If a word like "California" is an­

ticipated, even a ten per cent error rate on each indi­

vidual letter can give highly accurate results.
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GLOSSARY 

A1 threshold used in Wald's sequential proba­
bility ratio-test; also used by Armitage 

ai false alarm probability 

probability of incorrectly deciding Di 
(Pi-yi) 

Ci thresholds used in the proposed test 

6(Dilv) probability of verifying Hi 

servation is v 
when the ob-

Do " decision to reject 

Di decision i 

di discriminant function for the ith class 

eij 

expectation 

probability of deciding D. given Hj 
entries to the confusion matrix 

is true; 

Fi probability distribution function of v1 
given H. 

Fi probability distribution function of 
v = (vlV 2,...,vn ) given Hi 

dF i probability density function, if it exists, 
of the observation v given Hi 

F observation space v e F 

Yi probability of correctly deciding Di 
(detection probability) 

Hi hypothesis that the observation v is from 
the probability distribution Fi 

i,j,k 6ften used as dummy index 
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Lij loss incurred by deeding Di when Hj is true
 

M number of hypotheses possible HI,H 2 ,...,HM
 

P1 probability of Hi being true
 

space of observation v e tP 

space of v in which decision Di is made 
V e -> Disi 


Rij probability ratio used by Armitage
 

r average loss, risk
 

s(P,8) 	 random line specified by P and 6
 

t; 	 t c [0,11, parameter used by Chow to control
 
the rejection rate
 

ratio used in Reed's test
Ui 


v observation, sample v = (vl,v 2 ,...,vn)
 

w, a vector used to weigh v = (vv 2 ,...,n,
 
for the ith class 

x - = (Xl,X2 ,..,Xn ) an observation 

Zn(i~j) product of probability ratios 
n 
T1 Zm(i,j) 

m=l
 

zn(i,j). logarithm of Zn(ij)
 

Zm(i~j) ratio of probabilities dFj(vm)/dFi(vm)
 

2m(i,j) logarithm of Zm(ij)
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APPENDIX 1
 

THE EQUIVALENCE OF TUE TWO FORMS OF THE PROPOSED TEST
 

The two forms of the test in Chapter III are really 

the same test. For any i = 1,2,...,M 

X PjdFj(v) > CiPidFi(v) (1)
 
j 31 

if and only if 

M
 
I PjdFj(v) > (Ci+l)PidFi(v) (2)
 

j =a 

The statement of' tquatiin ! is the same as 

M 

I PjdF4(v) > max{(Ci+1)Pidi(v)} (3)
J=l. i
 

because {Ci}, {Pi), {dFi(v)} are all positive numbers.
 

Now consider
 

min jJPjd~j(v) - CiPidF±(v)] (4)
 

under the condition of Equation 1. Then for any
 

k = 1,2,...,M
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PjdFj(v) - CiPjdj(v)
 

< YPjdFj(v) - CIPkdFk(v) (5) 
j k 

Now cancelling equal terms and rearranging the terms gives 

-(Ci+l)PidFi (v) < -(Ck+l)PkdFk(v) (6) 

or
 

(Ci+l)PidFi(v) = max{(Cj+l)Pjd~j(v)) (7)
 

Hence, the two forms of the test differ only in the
 

computations which are performed.
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APPENDIX 2
 

THE CHERNOFF BOUND
 

The Chernoff bound uses the fact that an exponential
 

curve bounds a step function.
 

exp{-X(x-a)}
 

a x 

Fig. A-i. Chernoff Bound 

L - sign(x-a) < exp{-X(x-a)I, X > 0 (1) 
2 

Prob{x<aI = fl -_sign(x-a)dF(x) (2) 

2 

< fexp{-A(x-a)IdF(x) (3) 

= £{exp(-A(x-a))} (4)
 

An error occurs if decision Dk is made when Hi is
 

true, i/k. Then
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P dFJ(v) < CkPkdFk(V), kA± (5) 

j k 

Ana in particular
 

Pi dFi(v) < Cklkd~k(v), k7i (6)
 

or 

dFi(v) CkP k
 

(7)
dk(v) Pi 

Hence the probability of error is bounded by 

Prob{DkIH i true) = Prob X Fjd"j < CkPkdFk(v) (8) 

< Prob{ PidFi(v) < CkPkd-'kiVfi (9) 

= Prob dF1 (v) G1Pk
 

\d~k(v)I
 

= Prob fn dFi(v) in CkP) (ii)
 
dFk(v) Pi
 

= x A l d~jjv) + X'ln Cj__ 

Hix[A FC) j1 (12) 

dP(v) 
m dF3 V1
P T n MCkPkd 
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or where a is some constant, 

Prob{Dk[Uli truei < a 4 ck(v)) (14)Hi dF.i_(v) il
 

But by the arguments of Chapter III, Section 0, 

Uk(v) - 0 a.s. (15) 

dFi(v) truei 


The conclusion is that as n becomes large, 
errors
 

of the type ek , k~i, when li is true, approach 0.
 

Prob{DklH i true} + 0 (16) 
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APPENDIX 3
 

AVERAGE SAMPLE NUMBER 

The computation of the expected number of samples 

before a test ends, for a two-class test, is well known.
 

The theorem given here is after Theorem 9.1 of Selin
 

[Ref. 4]. 

Two computational devices are used. The first is
 

7O i (1)C 

1=1 j=l J=l i=j
 

The second is
 

[ P(N > 1) = (N) (2)
 

where N is-a positive valued integer random variable.
 

This can easily be seen by writing out a few terms of
 

the expectation.
 

e(N) F(N=O) 0 + P(N=1) 11 + P(N=2) 2 ... (3) 

= P(N=l) + P(N=2) + P(N=3) + 

+ P(N=2) + P(N=3) + ... 

+ P(N=3) + ... (4)
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Summing the terms row by row,
 

6(N) =P(N > 1) + P(N> 2) + .. (5)
 

= ) P(N > 1) (6)
i=1
 

Theorem: If the test ends at the Nth observation
 

and 6(N) < -, then.
 

6(N) = gZ 1,(i'J)) (7)
 

((i,j)) 

where
 

N 
___ _ 

N 
X Z(ij) (8) 

n 1 dFi(Vn) n=1
 

Proof: Since N is itself a random variable,
 

9(ZN(iJ)) I P(N=k)l(ZN(i,j)IN=k) (9)
 
k=l
 

k
 
= P(N=k) I E(%m(i,j)IN=k) (10) 

k=1 m=l 

= I P(N=k)6(2m(ij)jN=k) (11)
 

m=1 k=m
 

= ' P(N > m)>(m(t,j)IN > m) (12) 
m=l
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The event N > m can occur only if the test has not ended 

by the (m-1)th observation, and hence this event is in­

dependent of Em(ij). Therefore, 

9(ZN(i,j)) P(N > 

M=1 

~(~~) (13) 

= E( (i,j)) y X P(N=k) 
m=l k=m 

(14) 

= 
w k 

t(E(i,j)) I I P(N=k) 
k=l m=l 

(15) 

= £(k(ij)) Pk(N=k) 
k=l 

(16) 

= C (ij))t(N) (17) 
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APPENDIX 4
 

UNIFORM RANDOM LINES
 

A line can be named uniquely [Ref. 20, p. i] by
 

u and v and the equation,
 

ux + vy + 1 = 0 (1) 

This representation excludes lines which pass through
 

the origin. This is of little concern since the measure
 

of all such lines is zero.
 

2_P/
 

Fig. A-2. Definition of a Random Line
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Another representation of a line may use the polar
 

coordinates of the point on the line nearest the origin.
 

The equation of the line is
 

x cos 0 + sin 0 + 1 0 (2)
 
-p -P
 

A rotation and translation (a,b) in the two di­

mensional plane can be represented by
 

X = a + x cos 0 - y sin 8 

Y = b + x sin 0 + y cos e (3) 

where 0 < 0 < 2-ft. 

The parameters change and the new line is 

Cos ' sin 4' 

x pp 1= 0 () 

where 

P' =P -0cos -b sin 

4' 4,-8 (5)
 

This can be shown by substituting Equation 3 into Equation
 

2 and collecting terms to obtain Equation 4.
 

Let a set of random lines be denoted by E. A trans­

formation places these lines in E'. Random lines are
 

uniformly distributed when P(E) = P(E'). it is shown
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in Kendall and Moran [Ref. 20] that uniform random lines 

are possible if P and 4 are each uniform. 

A uniformly distributed random line may be generated 

by choosing P and 4 uniformly. The line so chosen is 

Equation 2. These lines will intersect a circular retina 

of radius R. The circular retina is the area in which 

all observations are confined if 0 < P < R and 0 < ¢ < 2w. 
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