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Abstract

A method is presented to remedy the defects of the projection operator

technique for calculating electron resonances in scattering from many electron

.	 targets. Specifically it is shown that if the projection operator (i. e. idempoteut)

Q is replaced by a quasi-projection operator Q such that lim Q4' = 0 as any

r , ­m , then the spectrum of Q H Q is discrete, and can be made to be in essen-

tially a unique correspondence with resonance energies. Relaxation of the idem-

potency requirement allows us to define two forms of Q operator. The simpler

of the two forms is tested on e-H and e-lie + systems; the two lowest resonant

energies differ by less than 0.01 eV from ri gorous Q H Q results. For many-

electron targets it is further argued that replacement of the exact target eigen-
ti

function (¢o ) by reasonable approximations (,^ o) in constructing Q will affect

neither the discreteness of the spectrum Q 11 Q nor the proximity of its eigen-

values to the resonant energies. Calculations of He - using two different (open

and closed shell) to's and an angle independent total wave function (4') are

found to differ by 0.01 eV. The open shell ground state has been used with a

configuration interaction IP with up to 40 configurations; it gives E res ( 2S) =
19.386 eV and a width V =	 . No other resonances are found below the

first excited (2 3 S) target threshold.

r
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I. INTRODUCTION

The most clean cut technique for calculating resonances in electron collisions

,with atomic systems arises from the projection-operator formalism of Feshbach.l

The effectiveness of the method stems from the fact that "Feshbach" resonance

energies E ,, , which are part of a continuous spectrum of the Schrodinger equation,

are in a unique correspondence with eigenvalues of a projected Schrodinger-like

equation whose spectrum is discrete and which can be solved as an ordinary bound

state problem. Specifically this means that resonant energies come out auto-

matically and do not have to be hunted for (and perhaps missed) as in a scattering

calculation.

The projected problem, QHQ q),, = F n (D ,, , depends on an operator Q whose

complement

is such that it does not change the asymptotic form of the exact (scattering)

solution

L, P Y, =: y
Y ^, coo	 (1.2a)

so that

i	 °O	
LL

	 (1.2b)

To these Feshbach 1 has added the requirement of idempotency:

f	 — 1	 g	 7^	 (1.3)
which is equivalent to the statement that Q and P are projection operators.

r

X
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Rigorous calculations using this formalism are restricted to one-body tar-

gets, because only in that case can explicit and rigorous P and Q operators be

given. 2 In the case of many-electron targets, Feshbach 1 has given a formal ex-

pression for these operators which is not really practical, because: (a) it requires

knowledge of the exact target wave function ^o (1,2, ... , N), (b) it requires the

eigen-solutions of a homogeneous integral equation to take care of the antisym-

metric identity of scattered and orbital electrons. Problem (a) is common to any

scattering problem; in practice it can be handled by using a suitable approxima-

tion of ¢. o . However, problem (b) makes it impractical to use Feshbach's Q for

anything but a separable approximation of ¢'u .

II. QUASI-PROJECTION OPERATORS

This has led us to reexamine the idempotency requirement. Some considera-

tion shows that the asymptotic conditions (1.2) can be satisfied by P and Q which

are not projection operators. Furthermore one can show (cf. Appendix I) that

the counterpart of condition (1.2b):

^L VK1 9 4 =	 2.1

leads to a discrete spectrum associated with the Rayleigh-Ritz variational

principle

^ J ^4

In fact the restriction of a trial set of functions to be quadratically integrable

is implicitly equivalent to using a quasi-projection operator on a totality of wave

functions which might otherwise include non-vanishing scattering wave functions.

In accord with our general theorem, this implicit restriction of quadratically
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integrable function leads to the well known and obvious result that diagonalizing

the Hamiltonian yields a discrete spectrum of energies. Such a naive procedure

yields mostly nonautoionizing states, and methods of picking out the autoionization

states from among them have been developed by Hol6ien, Lipsky and Russek,4

Taylor et al. ,5 and Perkins. 6 These methods generally go under the name

stabilization of roots; unfortunately with the exception of Perkins works (which

rigorously applies only to one-electron targets) they do not correspond to an

exact prescription nor do they distinguish between Feshbach resonances (i. e.,

compound atom or core excited) and shape resonances. Furthermore, aside

from the work of Hazi et al., 5,7 one does not get a prescription for the width

from this formalism. And finally all these methods implicitly assume the use

of a configuration interaction type wave function.

These difficulties derive basically from the fact that Q in these methods is

not only implicit but uncontrolled and therefore not necessarily fixed from one

calculation to the next. The idea that we shall project puts forward explicit

forms for Q. Once a form of Q is given, all the difficulties mentioned above can

be readily overcome. Two forms of Q readily present themselves 

Nei	
ll

(2.3)
-i

and	 N^

In both cases we define
A

P(2.5)
CL/ 

0	
i
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and the projectors P. are given by

^ 	 x '	x 	 ^x " x. X.	
2.6

VfJ
ML^ M5

Note that the subscript labelling P i refers to the particle coordinates which are

absent from the ¢ o . Thus i labels the scattered particles. The x refers to

both spatial and spin (one-half) coordinates of each particle. The explicit in-

clusion of spin in these operators makes them in principle applicable to many

body targets where Feshbach's forml in addition to the difficulties mentioned

above, appears to depend only on spatial coordinates. Notwithstanding this, Q 

is more complicated to use, particularly if one contemplates increasing the

accuracy of t o as well as 'P.

In using Q, we shall see directly below that in the discrete set of states

associated with Q bHQ h there may be states which do not correspond to auto-

ionization states. However there are only a finite number of such spurious states

and they can be ide ntified in advanc e.

III. ONE-ELECTRON TARGETS

To see this consider the one electron target case in which the total wave

function can be written

^

X (./ 2)

 s

where 
;^S 

is the total singlet (S = 0) or triplet (S = 1) spin function. In calculating

the variational principle (2.2), one will be led to calculate matrix elements of Qb

(called Q hereinafter) between two different functions, < qJ I Q 4'2) where W 1 and Y
2
 are

of the form of (3.1). 1 
Y2> 

can be considered to be H Q'1 J > of Eq. (2.2) for

(3.1)

i



N

7

example 1. Let us expand the spatial functions (D i associated with W i in terms

of a complete set of product target eigenstates 0 ,, (r)

=	 C	 ti4 (r^) ^r2 a f	 C	 La fir, ti4 f ^^^/V1 	 So l

^- ^ f r2^ t^^ (rr^ J (3.2)

where 6 SO explicitly indicates that the diagonal terms only arise in singlet

states.

Straightforward substitution of (6) and (8) into <TIQ T2> leads to

t9 dP	 (3.3)

where from (2.4) Q is here explicitly

7	 (2.5a)

In (3.3) the subscripts on the kets indicates the integrated coordinate in the

integral symbolized by the bra- ket. Now substituting (3.2) into (3.3) we obtain

after some manipulation,

A	
- C'(,)

	 (-I.)	

--

C 4;

	
t

This says that arbitrary matrix elements of Q contain only one term referring

to the ground state in the singlet case ( S = 0) and no terms in the triplet case

(S= 1). Thus in the singlet eigenvector spectrum there will be one eigenvector

with that coefficient large; for all other eigenvectors that coefficient will be

small. All other coefficients referring to the ground state in the expansion

i
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do not even arise in the calculation (i. e., are zero). The corresponding eigen-

value spectrum will therefore reflect that fact by having one low eigenvalue

corresponding to ordinary elastic scattering (or a true bound state of the com-

pound system, as the case may be). All remaining eigenvalues refer to doubly

excited (i. e. autoionization) states. In the triplet case there are no spurious

states, and in fact the operator Q then becomes identical to the idempotent Q

of Hahn et al.2

The general statement is that the number of terms in <y I Q 1P2> with indices

referring to the ground state of the target is the number of spurious autoionizati n

states in Q H Q, and they are the lowest ones that arise. VA'e shall reexamine what

this number is in the a-He system below. In Table I we give results for I S auto-

ionization states of the e-He + and a-h systems using a Hylleraas form for $:

(!^^rL ^ = e
Or

 _	 (Y rl ^r ry Jr1	 (3.5)

The second and third eigen\ alues then correspond to the first two resonant

energies. Note both the convergence as function of the number of terms It and

the proximity of the essentially converged 50 term values to precision, rigorous

Q-operator res-ilts. (E O is the ground state energy of He + and H respectively.)

IV. TWO-ELECTRON TARGETS

We now turn to the electron-helium system which is of chief interest here,

because it is the simplest example of a more than one-electron target. We

consider in particular the doublet states which are the only ones that can nonrela-

tivistically autoionize below the first excited state (2 3 S) of helium. The doublet

functions can be written

h

N
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CA; L t^^	 C

where Xo and X1,2 are the spin zero function (of particles i and j) and spin

1/2 function of particle k respectively. The sum goes over cyclic permutations,

and the spatial function is again labelled by 0, but here it is a function of three

vectors, r i , r, , r k . It can be constructed to be an eigenfunction of whatever
iA 

angular momentum L one chooses to make it, so that the quantum states it de-

scribes are appropriately labelled 2L. Finally in order to be completely anti-

symmetric, (D must be symmetric in its first two arguments:

+(r '^	 j 1')	 (4.2)y

We now want to determine <Y,Q412> where in the present case:

^^	 1	 P3	 (2.5 b)

Again straightforward reduction including spin inner products leads to

3	 i Q t^	 ^^ 2-) 3) ẑ ^^ 2j 3 )> — <^^ (/'Z^3) (23^^)^

l

	

2-) 3) 50 2-) X (74r (/ 2-)	 (/,Z 3)>>

1	 J	 o	 70	 17./ 3) >>

f <<	 (23) ^< (P U2) 5k(z3^ I^^> 4.3)
o

To analyze this further we expand 4) in terms of a complete set of helium eigen-

states ^. n and associated one-particle functions 6m:
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(
/ 

c ^ /	

Cp 
( ", I ^') _1^ (n)l (4.4a)

which in an obvious notation we rewrite

. (/2j3)
	 Z5^
	 ^ (r' )	

(4.4b)

We now make a basic assertion which is motivated by the fact that 4, o is Largely

(IS)2 in character, so that by the exclusion principle no O m in (4.4a) will contribute

to any process if it too is (Is) (i.e. nodeless) in character. Under these cir-

cumstances the u m being used in (4.4) can always be selected such that (for all m)

dK'

According to our basic criterion we must examine (4.3) for terms connecting

to the ground state: i.e. when (D1 ,IDZ are replaced by C om ,)om and C(14

respectively. Again straightforward substitution yields:

(f)	 4)
 Cam.	

CO/4.4- C	 4.6

	

 
1-1 11 - 30 C (11 C 

(A)	 (4.7)

On^1 °r•- ir„ µ

.	 i All other terms in (4.4) give zero when (4.5) is used. Thus

A	
kj)	 0_)) i-

^l	 ► 	 4.8Z Z	 —U C(CC^ ~ ^o ^x G 4 ^irr,t^	 C . ( )

In other words Q (- Q b ) contains no spurious states in the helium case!

N n
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In Appendix. II we have shown that if a closed shell target function is repre-

sented by a single Slater determinant, then Q^= Q,, , and for both Q 2 - Q which

implies p2 = p .10 
Thus there are never any spurious eigenvalues for closed

shell targets. Although we have not shown it except in the case of helium, we be-

lieve that this absence of spurious eigenvalues holds even if one represents the

closed shell by a more elaborate wave function than a single Slater determinant.

Finally we believe that if one uses the quasi-projection operator Q it will

eliminate all spurious autoionization states below the first excited state of any

target atom or ion.

ti
What about the necessity of using an approximate ground state ^ o ? We first

point out that if one replaces the eigenfunctions 1 „ of Eq. (15) by approximate
ti

orthonormal eigenfunctions fit, that all the steps go through as before and quasi-
ti

projection operators constructed from 	 will therefore eliminate all but a finite
ti

number of states containing (to. The question arises, however, whether the true

ground state (to  which may be present in the approximate excited states, may

not effectively reenter the spectrum or even worse convert it from a discrete

to a continuous one.

Our answer to these questions is first to point out that the mere pre; ence
^i

of some ground state in a function does not imply anything about the energ3

associated with that function. Consider for example the N-electron target sys-

tem. If ,ve take a linear combination of the approximate ground and first ex-

cited state
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thenthe Hylleraas-Undheim theorem 11 says that the diagonalization of the N-electron

Hamiltonian Nvill yield eigenvalues E o and E
l
 which are greater than true energies

E o and E 1 , respectively. Nevertheless if one expands the corresponding eigenfunction
ti
41 of the first excited state, it will in general contain a non-zero amount of the

true ground state 4 0 . What the Hylleraas-Undheim theorem in effect guarantees
ti

is that the amount of ^t o in ^b
1 

is sufficiently small so as not to ruin the bound.

The above example is not rigorously applicable to the case at hand, because

it requires the diagonalization for both eigenvalues be done simultaneously 12 and

it is confined to the N-electron problem, whereas here we go from the N to the

N + 1 electron system.

This question has been further studied by Hahn. 12 By explicit calculation he

has shown in the 1 S e-H system that simple orthogonalization to an approximate

ground state can produce an excited target state energy below the true excited

state energy. In those cases the H autoionization state energies can also appear

below the true excited state energy, even though with his crude total wave func-

tion there should be no such autoionization states. However even in those cases	 I
the ordering is never reversed, i.e. the autoionization state energies always

appear above the lowest excited state energy associated with a function orthogonal

to the approximate ground state.

It is clear therefore that the intelligent thing to do in judging the reality of

an autoionization state is to compare its energy with the lowest energy one can

achieve with an ansatz orthogonal to the approximate ground state being used.

Hahn 
19 

has further argued that simple orthogonalization will prevent the excited

state from descending too far below the true excited state.
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Before turning to the calculations we make one final point to make more

credible the fact that (2.2) can give rise to a discrete spectrum even when 40

used in Q is not exact. The calculational problem defined by (2.2) is a com-

pletely different one from the variational principle for H itself. Even if one

used an exact solution of H'1' = E4' there is no reason to expect that it would have

any special minimal or stationary properties with respect to (2.2). To be sure

there will be extra energy shifts associated with the use of Q (in place of Q)

and with the use of to (in place of Io ), however one has every right to believe

these shifts will be small providing the approximations are reasonable. A

minimum condition for a reasonable t o is that its energy E o is such that

E0 ` E 	 I=f	 (4.9)

V. CALCULATED RESULTS, e-He SYSTEM

We have done two independent sets of calculations for the autoionization

states of He below the first excited state (2 3 S) of He. The first is strictly for

2 S states using a spatial function

( /j t ri) t 1 r3 ,1 	 "

1 ,I.,VL

and two forms of the He ( 1 S) ground state, a closed shell

da-" 4C)
(5.2)

i

6

and an open shell 13

_(;z 3	 4, /.fieri^

10 (5.3)
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The purpose of this first set of calculations was to confirm that the lowest

eigenvalue was convergent to a value well in the continuum of the e-He spectrum

and to ascertain that the results were reasonabl y insensitive of the form of the

ground state. For it is to be emphasized that in spite of its simplicity the open
ti

shell +o of Eq. (5.3) is truly non-separable, and cannot even be expressed as a

single Slater determinant. Furthermore the ground state energies coming from

these two functions are quite different from each other:

E ^C^r ^^ _ 77.It76 FV
	 b(&i nk_	 3-^^. z 3 4c V.

^	 ^	 o

Nevertheless the actual results, given in Table II, relative to the "exact" ground

state energy E0 =-79.0016 eV 14 reveal amazing insensitivity to these differences.

The results are also significant, because, to our knowledge, they are the first

completely free variational calculations [it is emphasized that no restrictions

whatsoever are put on the parameters in (5.1)] for a more than one electron

target which conv erge to a non zero value in the continuous spectrum! (This

statement is intended to apple only to Rayleigh-Ritz type methods applied to

non-complex energy calculations.)

We have also calculated the width of this resonance using the general

formula 15

P	 9 ^)>	 (5.4)
In this formula QT is the resonant function associated with (5.1) and (2.5b).

The non-resonant scattering function V is taken to be of the exchange approxi-

mate form: i.e. 4) in (4.1) is replaced by V
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The scattered orbital a (r 3 ) is determined from the exchange approximation

integro-differential equation 16 
and the normalization assumed in (5.4) is 15

(Rydberg units are used throughout.)

r
k 2 is the scattering energy at resonance:

E	 (5.7)
ti

Finally the form of ^O used in deriving the scattering equation is the same one

for which each resonance calculation_ is done.

ti
The width is expected to be more sensitive to the approximate form of 0

since (5.4) is not a stationary expression. The last columns are expected to

bear this out, yet they are expected to be close enough to each other as well as

to the experimental value (cf. Table III) to give confidence that we are indeed

describing the famous 19.3 eV ( 2 S) resonance first discovered by Schulz. 17

It is to be emphasized in this connection that the energy of these initial

calculations would not allow us to predict such a resonance, because it is above

the first excited (2 3 S) state l4 of He (E 1 = 19.8202 eV). (Note that since the first

excited (2 3 S) state of He has opposite symmetry from the ground state (1 1 S) that

any portion of the excited state in (5.1) must correspond to an energy equal to or

greater than the true excited state. Concerning the first excited singlet (2 1 S) state,

IoGe

X

cf. the last paragraph of the paper, p. 19.) Since our purpose has been to construct

a variationally sound, interpretatively unambiguous, and hence predictive method
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of computing resonances, we have therefore undertaken a second set of calcula-

tions based on a much more general wave function than (5.1), which we now

describe.

The wave function is a general configuration interaction wave function which

can be written

^^^	 =	 ^t	 R lr► ) R l rL) R i ro X`YL _ ^	 f,^	 rn ^ 	 ^j	 rnj

S - ^^	 &m}

5.8)

Z c ^^^ ^

Here (I is the anti symmetrize r; 'j are the orbital angular eigenfunctions

describing particles 1 and 2 coupled to give L 1 which in turn is coupled to the

P 3 of the third electron to give the total orbital angular of the state L. Similarly

with the spins — except here there are only two possible values of the intermedi-

ate spin S 1 = 0, 1. For S 1 = 0 (5.8) is of the general form of (4.1) and the spatial

function must be symmetric in its first two arguments (4.2). If S 1 = 1, however,

the spatial function is antisymmetric in its first two arguments. The radial

orbitals have the Slater form

 
r

(5.9)

rrt

In general there are as many linear parameters as there are sets 1 n I where

I hL } _	 'n 'yL L ^vL3 J `^(^ 12. 1 Ll ^ 4 3 J J^ ^ L j	 (5.10)

I

N

For each (unanti sym met ri zed) term there are in principle three non-linear

parameters, however this choice is somewhat restricted by the requirement that
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the term not vanish when antisymmetrized (for example we know trivially that

all the nA and u of the orbital in (5.8) cannot be the same). In practice the

number of nonlinear parameters used is very much smaller than the maximum,

•	 but nevertheless of sufficient number to give accurate results.

The program for diagonalizing QHQ automatically searches in the non-

linear parameter space chosen for the minimum of a specified root. It is of

interest to note that the modification of the original program (to minimize H)

consisted of adding about one hundred IBM cards to the original program. This

is indeed a significant fact for other workers with an energy minimization pro-

gram available, if they want to calculate autoionization states.

All calculations in this set were done using the open shell ground state (5.3).

An example of results of an intermediate calculation based on a twelve configura-

tion expansion is given in Table III. This Table shows that the expansion con-

tained seven nonlinear parameters (Is, 2s, 3s, 2p, 3p, 4s, 4p) of which three

(3s, 4s, 4p) were varied in this calculation. The program automatically varies

the particular nonlinear parameters in order to minimize a specific eigenvalue

in this case the first. One can see that the eigenvalue has been lowered decisively

below the 2 3 S threshold and is already within 0.1 eV of the experimental value 18

'- S)4=19, 33 t .03 e V	 (5.11)

We are presently completing a 40 configuration calculation with the result

( 2 -S ) — E  =J / 3 16  	 (5.12)

i
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which should be within 0.01 eV of the converged value based on the variational

principle (2.2) and the open shell ground state (5.3). The difference between our

value and experiment is gratifying. Nevertheless it indicates that the major part

of the shift comes from the inexact ground state.

The intrinsic shift is expected to be of the same order of magnitude as (but

generally smaller than) the width. The latter has been estimated by Cooper19

from an analysis of various experiments to be r = 0.004 eV, which is surprisingly

the same as our angle-independent calculation (Table II). Gibson and Dolder20

have measured a width r = 0.008 eV. The width calculation based on our con-

figuration interaction wave function has not as yet been completed, but it would be

very surprising if it turns out to be the same as that in Table II. We believe that

the larger experimental value is the more likely one.

Other resonances below the first excited (2 3S) threshold have been reported19,20,21

In an effort to confirm these, we have minimized the second eigenvalue of QHQ

with our 40 term configuration interaction wave function. We find a lowest second

eigenvalue to be F' 2 = 19.843 eV, which is 0.023 eV above the 2 3S state and thus
I

it does not correspond to a resonance. We also intend to calculate 2P states,

however it is extremely unlikely that any will occur below the first threshold.

This is because the 4p state (which is truly a bound state in the nonrelativistic

limit) is barely bound 
22 

[E( 4p) = 19.741 eV] and since 2p states generally lie

higher than 4 p states by more than the difference between E( 4p) and E(23 S).

i-	 Thus the prognosis for the existence of other resonances beyond the single 2S

resonance below the first excited state is bleak.
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In order to complete the argument that our lowest 1 ( 2 S) eigenvalue does

indeed correspond to a resonance, we must show that the lowest 2'S threshold

obtainable from a function orthogonal to the approximate ^ O is above F1 (2S).

If this weren't so, the state might correspond to elastic scattering from such an

approximate 2 1 S stated We have done a reasonably definitive calculation of this

energy. In fact such a calculation can be done in terms of an idempotent projec-

tion operator q(12), where

by minimizing

Note that this is strictly an N = 2 particle problem [ as opposed to (2.2)l. Using

the Hylleraas form, (3.5) for Y we obtain a minimum for Q = 50 terms at y ti 1.2

corresponding to

1 - LC -2C,&C/zS 
This is indeed above the 2 3 S threshold, which completes our demonstration,

(but it is slightly below the exact 2 1 S threshold).
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Appendix I

Discreteness of Spectrum of Q HQ

Let us rewrite equation (4)

'W r = E r	 (A 1. ,,
In this form the considerations of this appendix will be seen to apply to the

Schrodinger equation itself (Ji' = H) as well as 1f = Q H Q and = Q H Q. The last

case is the one we are primarily interested in. The solutions of the above equa-

tion are assumed to be quadratically integrable (which is a somewhat stronger

condition than assuming Ii n f = 0). This is sufficient to guarantee that solu-
r.m

tions belonging to two different energies are orthonormal

<	 y I/	 '	 (A 1.2 )
C^

Because the functions are quadratically integrable, the rhs of (A 1.2) is strictly

a Kronecker delta. This means that no matter how close F is to F" the inner

product is zero unless F is precisely equal to

Now, contrary to what we want to demonstrate, let us assume that solutions

exist for a continuous range of F, so that T is a continuous function of F. Let

us further assume that Y can be expanded in a Taylor series

YY C
1^C)	 Z	 (A1.3)

where L^ t = c' - F. Substituting (A1.3) into (A1.2) yields

f" C. ' (d E ) — L	 (A 1.4)

r

i
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Finally taking the limit LF . 0, we have the desired contradiction 1 = 0.

This implies then that the values of F cannot form a continuum. (It does

not say that the discrete values Fn cannot cluster arbitrarily close to each

other as in fact they do in the hydrogenic bound state problem.) This demon-

stration only applies for a Q operator constructed from exact target eigen-

functions.

I
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Appendix II

Equivalence of Q ,, and Q ,, for Closed Shell Targets

It can be seen from (2.4) and (2.3) that the difference between Q „ and Qb

involves products of two, or more than two, distinct P , . We shall show that

0

when the target state from which the P, are constructed is a closed shell Slater

determinant. Specifically the target state is

i t	A/

N

z ^

l	
A	 (A2.2)

The total «, ave function q' is arbitrary but completely antisymmetric, there-

fore insofar as its projection on fi"(j - 1 ) goes, it is completely equivalent to

write Y in the form

-t

Rf	 1I y^
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From (A2.3) however it is clear since \,Y(j) is either a(i ) or B(j ) and

since all radial orbitals in q)N are occupied, that we can choose:

A/ 	 2.4)

(The nonorthogonal parts of F can only be such as to make various rows of the

determinant on the rhs (A2.3) identical to each other, thus they make no

contribution.)

	

Now by	 VC}rµinl^*f ..^^•^ a valuation

	

J	 ^tj 1l41 V1 YV GLrU e valuationw•....^v••

so that

(A2.5)

(A2.6)

Expan Wthe fi 's by minors:

(A 2.7 a)

	

M
'M	 "YO

(A 2.7 b)
(,	 M

4 =4 Z

Use the orthonormality

l	 ( ''^''^	 c )> —	 C	
(A2.8)
	 k

t^
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9 + Pn,.

(which implies (-1) m"4
	 8µy = 6 m bµv in (A2.6) to obtain

^.^^ 1 ; ^	 ^^)	 <	 Pr	 >

J	 Y^n

And now using (A2.4), we have our desired result

(A2.10)

This proves (A2.1); since

^^	 ..

and the number of distinct projectors P i in each product starts with (c , = 2),

it follows from (A2.10) that any larger number of distinct projectors acting on W

is zero. Hence

C^

A	

ll

a	 G }4- /	 ^ _	 (A2.11b)

From (A2.10) one can alsc

A Z.

and
A z

P-a ,

trivially show

A

_	 (A2.12a)

= r^	 (A2.12b)
Q .^

i

x

t



25

References and Footnotes

1. H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).

2. Y. Hahn, T. F. O'Malley, and L. Spruch, Phys Rev. 128, 932 (1962)

3. E. Holoien and J. Midtal, J. Chem. Phys. 45, 2209 (1966) and references

contained therein.

4. L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966)

5. I. Eliezer, H. S. Taylor, and J. K. Williams, J. Chem. Phys. 47, 2165 (1965).

A. H. Hazi and H. S. Taylor, Phys. Rev. Al, 1109 k1970).

6. J. F. Perkins, Phys. Rev. 178, 89 (1969).

7. A. Hazi and M. F. Fels, Phys. Rev. (to be published).

8. We are indebted to Dr. R. J. Drachman for helping us construct Q  and for

pointing out its formal nonidempotency.

9. A. K. Bhatia, A. Temkin, and J. F. Perkins, Phys. Rev. 153, 177 (1967).
i

10. This fact is implicit in Y. Hahn, Ann. Phys. (N.Y.) 58, (1970); Phys. Rev. 187,

51(1969).

11. E. Hylleraas and B. Undheim, Z. Physik 65, 759 (1930).

12. We thank Pr. Y. Hahn for helpful correspondence on this point. Cf.

Y. Hahn (unpublished).



26

13. H. Shull and P. Lowdin, J. Chem. Phys. 25, 1035 (1965).

14. C. L. Pekeris, Phys. Rev. 112, 1649 (1958).

15. T. F. O'Malley and S. Geltman, Phys. Rev. 137, A1344 (1965).

16. P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).

17. G. J. Schulz, Phys. Rev. Letters 10, 104 (1963).

18. C. Kuyatt, J. A. Simpson, S. Mielczarek, Phys. Rev. 138, A385 (1965).

19. Cf. footnote 35 of P. G. Burke, J. W. Cooper, and S. Ormonde, Phys. Rev.

183, 249 (1969).

20. J. R. Gibson and K. T. Dolder, J. Phys. B 2, 741 (1969).

21. D. E. Golden and A. Zecca, Phys. Rev. Al, 241 (1970)

22. B. Brehm, M. A. Gusenow, and J. L. Hall, Phys. Rev. Letters 19, 737

(1967).

,

r



27

Table I. 'S Eigenvalues (in eV) of Q H Q for One Electron Targets 

System	 e - He+ e - H

en
2 -Eo F3 -Eo F2 -Eo

13 33.2415 37.506 9.5607

22 33.2290 37.4825 9.5431

34 33.2281 37.4785 9.5410

50 33.2278 37.478 9.5406

Precisionb Q H Q	 33.2267 37.471 9.5387

a. E o is the ground state energy of the target system

b. Based on a 50 term Hylleraas calculation of Bhatia, Temkin,

and Perkins, Ref. 9.



Table II: 2 S Autoionization State of He Using

Angle-Independent Wave Function (5.1)a

^1 - E o	^1 - Eo r	 r
ti
o	 closed	 open closed	 open

10 20.55	 20.66 0.0087

22 20.14	 20.14 0.0029

34 20.06	 20.05 0.0044

50 20.02	 20.01 0.0039

70 19.99	 19.98 0.0044

a. Results in eV; nonlinear parameters optimized only for thet = 70

term results.
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Table III: 2 S Autoionization State of He Using

Twelve Configuration Interaction Wave Function (5.3)a

a 3s	 ?''1 _ E o	 ass	 ^1 — E o	 0-	 ^1 _ Eo

	

.3378	 19.4232	 .9743	 19.4206	 .4973	 19.42033

	

.3412	 19.4227	 .9837	 19.4205	 .5023	 19.42023

	

.3446	 19.4223	 .9930	 19.4204

	

.3480	 19.4219	 1.0024	 19.4203

	

.3514	 19.4217

	

.3548	 19.4215

	

.3582	 19.4214

	

.3617	 19.4214

a. Results (in eV) based on a twelve configuration expansion ls(2s)2

ls(2s3s) ls(2p) 2 (ls 2p) 3p (ls2s)4s ls(2s4s) (ls2s)3s

ls(3s) 2 (1s2p )4p ^ ls(2p4p) ls(3p) 2 is (2p3p).

This table gives results with respect to the variations of the

nonlinear parameters specified. The remaining nonlinear param-

eters were approximately optimized from previous calculations

and had the value a ls = 1.995, a 25 = .5508, a lp = .6008,

alp = .4455.
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