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ABSTRACT 

The steady state electromagnetic interaction of the solar wind with the planet 

Mercury is computed for a spectrum of electrical conductivity functions using the 

assumption that no atmosphere o r  magnetic field damps the direct interaction, 

The form of the induction is described by the unipolar effect and corresponds to 

the zero frequency limit of a transverse magnetic (TM) mode. Calculations a r e  

included to determine the effective surface temperature of the planet. These 

calculations include the apparent motion of the Sun in the Hermean sky. It i s  

shown that a significant interaction, detectable by a space probe, is plausible 

for  reasonable conductivity functions. The strength of the interaction is con- 

sidered in terms of the subsurface thermal gradient, and computations a r e  given 

relating the strength of the solar  wind interaction with the conductivity parameters 
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I.  Introduction 

The electromagnetic field in the solar wind a s  viewed from a planet is 

resolvable into two components, the transverse magnetic (TM) and the transverse 

electric (TE). The TM component is driven by the motional electric field, 

= v x B where v is the bulk vector velocity of the planet with respect to Zm - - - 

the solar wind and - B the interplanetary magnetic field, while the TE component 

is driven by - B, the time variation of the magnetic field [1,2]. The response of 

the planet to this electromagnetic field can similarly be decomposed into the T M  

and TE: components. The TM mode has a peak response at  zero frequency (the 

steady state) and can be responsible for  formation of a steady state magneto- 

hydrodynamic shock wave. The response of this mode decreases with frequency, 

asymptotically approaching zero with increasing frequency. The TE mode dis- 

plays a complementary response, rising from zero in the steady state to a value 

determined by the constitutive parameters of the combined system formed by 

the solar wind and the planet. 

In both cases the net electromagnetic forcing function driving the planetary 

response may be decreased because of magnetohydrodynamic effects that tend 

to deviate the flow to the limbs of the planet. In the limit of a strong interaction, 

a shock wave will form and then, except perhaps for singular geometries, only 

approfimakions to analytic solutions can be obtained. 

Extended discussions of the interaction phenomenon have been given in the 

literature; the case of the Earth is most exhaustive, the Moon has been treated 

to some extent [1,2,3,4], while planets such a s  Mars and Venus a r e  still under 

investigation [5]. Ness and Whang [6] have recently studied the case of Mercury, 
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Sonett and CoBburn [43 have suggested a division of the possible planetary 

interactions into three major categories. Those planets endowed with a strong 

internal dynamo-generated planetary magnetic field capable of standing off the 

solar wind a r e  of Type I, while those planets devoid of either such a magnetic 

field o r  atmosphere permitting direct surface contact by the solar wind fall into 

Type II. Type I11 planets a r e  those with only an atmospheric interaction. Alter- 

natively, these may be identified a s  magnetospheric (Earth and Jupiter), geo- 

spheric (Moon, Mercury, and perhaps the asteroids) and lastly anemospheric 

(Mars and Venus) where some evidence exists for an interaction of the solar 

wind with the atmosphere of the planet. 

In the case of the Moon no evidence has yet been found for a steady state 

interaction [7-111 suggesting that the TM mode response is very weak. On the 

other hand the response of the Moon to time dependent changes in the inter- 

planetary field is exceptionally strong, showing that the TE mode is important 

[l2-151. These conelusions for the Moon indicate that the crustal electrical con- 

d u c t i ~ t y ,  which dominates the T M  mode response is low, while the internal eon- 

ductivity, imports-nd in the TE mode response, is quite large. 

B the planetary interaction is weak, the TE and TM modes can be separated, 

In the strong ideraetion where a shock wave develops, the two modes a r e  linked 

ma~ed~hydrodynamicaIIy and the current systems a re  coupled through the fluid 

motion on the exterior. The flow field for the weak steady state lunar interaction 

has been treated by Spreiter et al. [16j, and is assumed separable from the 

interior problem that is solved using conventional electromagnetic theory. 
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The response of the Moon to the interp1aneta.r~ magnetic field in the TE mode 

suggests that a similar interaction may take place a t  Mercury, which appears to 

be devoid of either a dynamo field o r  detectable atmosphere. Since only the t o t d  

magnetic field, i.e., the sum of the forcing function and the response is deter- 

mined by a single spacecraft, i t  i s  difficult to separate effects due to the TE 

mode. On the other hand the detection of a steady state unipolar interaction (the 

low frequency limit of the T M  mode) can be made by a single space probe. 

Inferences can. then be drawn regarding the crustal conductivity. Ness and 

VCThang [6], employing a two-layer model of Mercury have concluded that the csn- 

ductivity of the outer layer is probably too low to produce a detectable solar wind 

deflection, although they do not rule out such an interaction. However, for the 

continuously varying conductivity profiles used here and for a large class of 

silicate m a t e ~ a l s ,  measurable solar  wind deflection is anticipated. 

The cdcdat ions  made in this paper a r e  aimed at  finding the combina~on of 

thermal profile and bulk electrical conductivity leading to a detectable steady bow 

shock wave on Mercury. Only the low frequency limit of the TIM mode is employed. 

The connection between this mode and the formation of a shock wave is knowmi to 

depend on the flow of a current system through the planet closing in the solar  

wind in the mzpnner of a linear unipolar generator, i.e., current loops a r e  forbid- 

den to close in the planetary interior [3,4]. 

We employ a s  a figure of me-rit for  the presence of a shock wave, a pure 

number k (0 < k < I), which defines the fraction of the incident solar  wind flow 

deflected to the limb of the planet. W l e  the interaction of the solar wind with a 

T M  planetary current system i s  exLremely complex and the details have not been 
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worked out, the k factor concept has been useful in previous analyses f3,4,11,11, 

181 to outline a necessary transition between two extremes: a weak i n t e r a c ~ o n  

in which the generated magnetic pressure is proportional to the motional electric 

field in the solar wind, and a very strong interaction in which the magnetic pres- 

sure cannot be expected to exceed that required to completely deflect the solar 

wind. For values of k below a certain bound it is assumed that a shock wave 

would be too weak for detection by the conventional means of magnetometer and 

plasma probe. The basic calculations follow the earl ier  one of Schwartz et al, 

(111 in the search for a weak lunar limb shock wave. The thermal models on 

which the calculations res t  a re  based on solutions to the heat conduction @usetion 

using a p p r o p ~ a t e  best estimates for radioactive heat sources with their outward 

movement caused by the differentiation of silicates. The models a re  restricted to 

solutions of the time history problem since no actual measurements a r e  available, 

The planetary composition, including the presumed high iron content, leads to 

concentrations of radionuclides substantially different from those of the Earth, 

In the subsequent sections we discuss f irst  the details of the thermal models 

and then the assumed surface temperature, which is a crucial factor in the 

assessment of the strengh;h of the interaction. The results of the model calcula- 

tion a re  then discussed and related to expressions for the dependence of the bulk 

eleetfical conductivity upon the temperature of some representative planetary 

matter, The a v ~ l a b l e  power in the solar wind is also discussed a s  a possible 

limitation to the interaction. 



2. Thermd models of Mercury 

Calcula~ons  of the solar wind planetary interaction a r e  based on two the rmd 

profiles obtained by Fricker and Reynolds [191 representative of the wide range 

sf unceeainty regarding the temperature of the deep interior. The numedcai 

methods employed follow the outline given by Fricker et  al [201. The internal 

s tmcture is based on the calculations by Reynolds and Summers [213. One i s  a 

"warm" model with core temperature of 1017" 6 ,  based on an initial t e m p e r a t ~ l ~ e  

of 400" C and ;an initially uniform distribution of radioactives. The other is a 

"hot" model with core temperature of 2070" C based on a higher initial tempera- 

ture and a concentration of radioactive heat sources near the surface. 

The surface temperature shown in these models is 175" C ,  obtained by the 

solution of the black body equation (next section). The surface temperature is 

not critical fo r  the generation of the thermal models, which depends largely on 

the solution of the thermal conduction equation. The Fricker and Reynolds 

mode have been mocgified here to obtain a different surface temperahre ,  The 

resrised models a r e  still considered representative of hot and u7arm models of 

Mercury since tbe revision does not substantially affect the deep internal temper- 

ahre ,  The two revised profiles a r e  given in fig. 1,  in which the temperabre  is Fig* I 

plotted vs. the radial distance from the center of the planet. 

Majeva 1221 Inas also calculated a thermal profile of Mercury based on 

thermal &story cdculations, An in i t id  temperature of 1000" K is assumed 

baaed on accretion. The present time profile has an interior temperature of 
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apprordmately 2100" K decreasing to about 700" M on the surface. Except for the 

surface temperature, this is similar to the Fricker and Reynolds hot model. 

Radioactive concentrations in this model a r e  those compatible with a high iron 

content, and consequently a r e  lower than those based on other materials. 

3. Surface temperature of Mercury 

The primary factors in determining the temperature of the sunlit side of 

Mercury a r e  the heat input from the Sun and the radiation loss into space, since 

the effects of conductivity and of thermal inertia a r e  less by orders of magnihde, 

Soter and Ulrichs [23] have calculated temperature vs. time plots for various 

points on the Hemean  equator that a r e  due to a rotation period 2/3 of the orbital 

period. The temperature of a point on the equator reaches a high of about 658" K 

at local noon, and a t  sunset plunges to a value of approximately 150" K that 

depends on assumptions about the thermal conductivity, density and heat capacity 

of the material. Because of the subsynchronous spin period and the elliptic orbit, 

different points on the equator reach different noontime temperatures, in the 

range of 570" to 700" K, and the shapes of the temperature-time profiles a r e  

difFferent becwse of the apparent retrograde periodic motion of the sun in the 

Memean sky. 

The surface temperature is calculated by balancing the heat received and the 

heat radiated per  unit area. The insolation is given by 
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where r i s  the instantaneous solar distance, re = 1 AU, 0 i s  the angle between 

2 the Sun line and the zenith and f = 1388 Joules/m sec,  the solar  constant. The 

thermal radiation loss is given by 

-8 2 4 
where T i s  the local surface temperature, a = 5.669 x 10 Joules/m deg 

see  is the Stefan-Boltzmann constant and E = 1. In eq. (2) the background 

temperature is considered low enough to be negligible. Solving for the tempera- 

ture, we obtain 

Using extreme values of 0.31 and 0.47 for r/re the respective temperatures are 

710' and 577" K, in agreement with Soter and Ulrichs. The function (cos 0 

is relatively flattopped, so  that temperatures tend to stay high during most of the 

day, 

During the night the surface heat balance is between radiated heat and heat 

conducted out to the surface from the subsurface layer. The conduction process 

occurs also during the day but a t  a negligible rate with respect to solar input o r  

a f l i rne  radiative loss. Calculation of the nighttime temperature involves the 

selection of values for density, conductivity, and heat capacity of the surface 

material. Instead we rely on the interpretation of recent microwave observations 

by Chase e t  al. 1241 implying an equatorial midnight temperature of 110" *15" K. - 
These workers also find a drop of 10" between midnight and dawn that we neglect 
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because i ts  effects would tend to average out when obtaining a mean temperature. 

Murdock and Ney [25]  using similar  methods have determined the average dark- 

side temperature at  111" k3" K. 

The surface temperature used in our calculations is based on a time average 

of the temperature-time profile plotted in fig. 2. In this profile the daytime Fig* 2 

temperature i s  obtained by use of eq. (3) and a circular orbit with r = (0.3829 re). 

The nighttime temperature is taken to be steady at  110" K. Since thermal con- 

duction is linear, the subsurface temperature is an average of the curve in fig. 2 

o r  

*2 
110 n  + 2  So 639.3 (cos 6 )1'4 dB 

The integral is evaluated by means of gamma functions giving Tav = 330" K (57" C) . 

The temperature of a black body a t  Mercury's orbit is more than 100" higher 

than the average temperature based on a time average of surface temperature. 

By using arguments based on expected thermal properties of the Hermean 

surface, we show in the next section that the thermal wave oscillation for the 

176-day period penetrates to a depth of a few tens of meters a t  most. A mean 

temperature of 75" C has been arbitrarily selected for calculations for the res t  

of this paper. Numerical calculations a r e  also made for  a lower bound tempera- 

ture of 50" C and an upper bound of 100" C!. Interpolation of the results can be 

made lo r  any temperature within the range 50" 5 T 5 100" C ,  which brackets 

the 57" C temperature estimated above, 



- 11 - 

For a more complete definition of surface thermal models of Mercury refer 

t o  Morrison and Klein [ 2 6 ]  who use microwave measurements and discuss the 

increase of temperature with depth and the temperature dependence of thermal 

conductivity. These and other parameters make the surface temperature estimate 

of 75" C preliminary but we adopt i t  to illustrate the electromagnetic interaction 

of Mercury with the solar wind. 

4. Thermal properties of the skin layer 

The electrical conductivity of the surface layer plays a dominant role in the 

electrical induction calculations to be shown later. In this section we obtain an 

estimate of the depth below which the temperature profile is unaffected by solar 

heating and radiative cooling during the synodic rotation period. This depth i s  

of the order of 10 m. 

Because the thickness of the layer in which time variations a r e  significant is 

a small frac.t;ion of the radius, a one-dimensional geometry is appropriate. The 

cyclic variation of the temperature a t  the surface can be Fourier analyzed. Be- 

cause the skin depth of the fundamental component is greater than those of the 

harmonics, however, only the fundamental will be retained in the following dis- 

cussion. The surface temperature then has a time dependence of the form 

where To is the difference between noon and midnight temperatures and 

w = 2x/176 days is the synodic rotation rate. The solution for the temperature 

wave in the i n d e ~ o r  can be shown to be of the form 



where x is the depth. The skin depth, a ,  i s  defined by a2 = 2cr/o, where a is 

the thermal diffusivity, i.e., the ratio of thermal conductivity to the product of 

density and specific heat. At n skin depths, the phase of the thermal wave is 

inverted and the amplitude decreases to only 0.043 of the surface value. For 

a = rn2/sec, a = 2.2 m. Thus even for the extremely slow orbital frequency 

of Mercury the bulk electrical conductivity oscillates significantly only in a layer 

of thickness less  than 1 0  m. On the day side this layer operates a s  an electrical 

short circuit of negligible thickness. On the night side the layer may present 

significant resistivity if  a pure extrapolation is made from the electrical con- 

ductivity functions described in the next section. We assume that local inhoma- 

geneities will allow the current to cross the extremely thin layer of temperature 

cycling so that the planet can be treated electrically a s  having a time stationary 

temperature profi1.e. 

5. Conductivity functions 

In model calcu.Iations of the planetary electromagnetic response, the elec- 

trical conductivity is analytically represented by a function of the form 

where a(T) is the electrical conductivity, T is the temperature, E the activation 

energy, 77 ~olkzmann 's  constant, and a the conductivity at  T = m, essentially 0 
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a mobility-like term that depends on the detailed quantum statistics of the 

material. Only the term for i = 1 i s  applied in calculating the steady electro- 

magnetic response of Mercury. The justification for omitting the other terms 

i s  that the low temperature outer layers of the planet a re  dominant in determining 

the response, and at these temperatures impurity semiconduction plays the 

primary role. For possible crustal compositions a. may vary widely a ~ . d  E 

tends to fall within the general range of 0.5 to 0.8 eV. To cover the range in the 

calculations we use E = 0.5 and 0.8 eV and in each case let uo vary over a wide 

range. As one approaches the deep interior of the planet the conductivity function 

might change. However, the change is not important in these calculations because 

generally the interior temperature is elevated sufficiently to cause the core to 

act like an electrical short circuit, making the exact form of the conductivity 

function unimportant. 

Table 1 shows values of a. and E for various candidate materials. The 

l ist  is a representative fraction of the determinations made by various groups, 

and for each material there a r e  a variety of estimates. The range of values is 

expected to encompass the parameter combination suitable for Mercury, and 

the materials in the table will be compared in the ensuing calculations. 



Table 1 

Electrical conductivity function parameters 

Symbol Material Name a0 E Reference 

Olivine 

Olivine 

Olivine 

Olivine 

Peridotite 

Peridotite 

Diabase 

Diabase 

Basalt Diabase 

Lunar Sample 10024.22 

6. Current density 

In the unipolar generator calculation the motional electric field 

driving the current system is the v x B field resulting from the solar  wind - - 

velocity and the interplanetary magnetic field whose average direction l ies 

along the Parker  spiral angle. The numerical value of the field is vB = wrB,, 4b 
where w is the solar  spin, r the solar  distance and B, the radial component 

of the interplanetary field. For  these calculations B, = 7 gamma a t  P AU from 

the Sun and is correspondingly greater  a t  the orbit of Mercury since it varies 



a s  r-2s The solar wind i s  assumed to have a velocity of 400 h / s e c  at  the Earth  

and at  Mercury; the number density of 10/cm3 is increased to 66.8/cm3 at the 

d 

nominal orbital distance of Mercury, 0.387 AU. 

A s  in our earl ier  calculations the temperature is assumed to have a weli- 

behaved dependence on only the planetary radius. It follows, therefore, that for  

a spherically stratified body the conductivity function depends solely up02 radius, 

We calculate f i rs t  the current densities in the planet to illustrate the effect of 

changing temperature. The fundamental equation determining the electric 

potential is given by 

which has the form of Poisson's equation and the term 

represents a charge density, a result of the gradient in the conductivity function, 

provided that Vo . Vcp f 0,  a s  expected for  reasonable cases. The current den- 

sity is found from 

and integrated to find the total current. Sample cdculations a r e  carried out for 

both warm and hot models of Mercury, using three values of the subsurface temper- 

ature T$ (the temperature a t  a point under the surface at  a distance sufficient to 

damp out the thermal insolation wave). For  both models the activation energy, 

E ,  i s  set  equal to 0.5 and 0.8 eV. The resultant current densities a r e  gven  in 
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table 2. There the quantity cr, is varied in two different but related ways. The 

column designated (as = 1) covers cases where the model is scaled so  that far 

convenience the subsurface conductivity is unity irrespective of T i .  The adjust- 

ment i s  made by changing the value of a. so  that the subsurface conductivity, 

csy attains the fixed value of 1 mho/m. Thus the temperature dependence of the 

conductivity function is retained, the effect showing in the small variation of cur- 

rent density with change in T i .  The columns labeled (crT5 = 1) show the current 

density for cases where the subsurface conductivity itself is permitted to vary 

with temperature; here the base value of 1 mho/m was set  arbitrarily for the 

temperature case where T i  = 75' C,  and the other two values thus changed 

accordingly. For actual cases, the total current, Ic, flowing through the equa- 

torial plane is obtained from the number in table 2 (column us = 1) by using 

the formula 

6 where a = 2.44 x 10 rn is the radius of Mercury, iAV is the value taken from 

- table 2 and us the actual value of the electrical conductivity a t  the surface. 

In table 2 the calculations for  crY5 = 1 show a large change in the curren2, 

density when the surface temperature increases o r  decreases by 25". The 

changes range from three to seven for a 25" change. This marked effect is 

caused by the sensitivity of the total electrical resistance of the surface layer 

to temperature changes in the temperature range of 75" C. In the columns for  

which the surface conductivity iis held fixed (us = 1) the internal. comducti~ty is 
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somewhat higher for the lower surface temperature cases since the conductivity 

increases with depth more rapidly for the surface temperature of 50" C than for 

the 75" case o r  the 100" case. The variations, however, a r e  much smaller, of 

the order of 0.8% per  degree. This increase is directly related to an increase 

in the slope of the conductivity function with depth. A much larger change occurs 

a s  the activation energy is changed from 0.5 to 0.8 eV. This too produces a 

change in the slope of the conductivity. The largest variation occurs between 

the w a r m  and hot models, a factor of 6. In this case it is the steepness of the 

temperature profile itself that causes the derivative of the conductivity f u n c ~ o n  

to change. 

Sonett and Colburn [3] have shown that for a strong interaxtion, a saturation 

takes place where the magnetic field from the induction is sufficient to deflect a 

substantial fraction of the incoming solar wind to the flanks of the planet. In 

that instance, the available motional electric field is reduced and the final value 

of induction is determined by the joint action of the induction and the deflection of 

the flow. The fraction of the flow field deviated is defined by a pure number k 

where 0 < k < 1. 

To obtain a meaningful result the k factor limitation must be applied to the 

currents obtained from table 2. The actual current, I,, flowing through the 

equatorial plane is obtained by the balance of magnetic pressure and the pressure 

sf that portion, k,  of the solar wind that is deflected by the current system, o r  

2 
PIa - -  - knmv 2 

2 2 871- a 
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where p is the permeability, m is the mass  of a proton, and mks units a r e  

used. While the effect of solar wind deflection on the current system is extremely 

complicated, i t  is assumed for the first order approximation that the actual cur- 

rent I, is related to the calculated current Ic by the relation 

since the current can be generated by the motional field of only that portion of 

the solar wind that is allowed to penetrate to the planetary surface. 

For the nominal solar  wind parameters a t  Mercury a maximum actual cur- 

rent may be obtained from eq. (10) by setting k = 1 ; 

so  that a t  Mercury 

Lax = 2.585 x lo6 amperes 

and the cdculated and actual currents a r e  related by 

We arbitrarily designate k = 0.1 a s  the threshold value below which the 

solar  wind deflection cannot be detected from a spacecraft. Using eq. (14) the 

current required for k = 0.1 i s  calculated and applied to the results of table 2 
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to obtain the surface conductivity required in each case to cause the threshold 

interaction. The results a r e  shown in table 3, where a value is given for logl0 us 

for  all of the cases. The conductivities a r e  inversely proportional to the currents 

of table 2, but the logarithmic tabulation indicates more clearly the relationships 

between the various cases. Table 3 shows that if a k factor of 0.1 is observed 

the surface conductivity must be approximately mho/m for a hot o r  warm 

planet o r  mho/m for the less  likely case of a uniform temperature planet. 

As surface temperature varies 25" logl0 cs varies 0.07. As activation energy 

varies 0.3 eV, loglO cs varies 0.24. As the model changes from the hot to the 

warm model, loglO us varies 0.79. 

Table 3 

Log10 us (mho/m) fo r  different models and values of E and Ts . cs 

is surface conducl;ivity in mho/m for which k = 0.1, i.e., the value for which 

there will be a perceptible interaction. Thus for the expected cases, a k factor 

8 of 0.1 implies a surface conductivity on the order of 10- . 

Loglo as 

T = 5 0 C  T = 7 5 C  T = 100 C 

E = 0.5 -8.26 -8.19 -8.12 

Rot model 

Warm model 

Uniform model 
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In fig. 3 the results of table 3 a r e  generalized to give as for  any k factor. Fig. 3 

The k factor is plotted against as for each case. All the curves have the s m e  

shape since as is proportional to ~ l / ~ / ( l  - k). The intersections of the curves 

with the k  = 0.1 line a re  the values of table 3. For values of k less than 0.1, 

a, drops essentially 0.5 order of magnitude for each order of magnitude of k,, 

7. Relation of surface conductivity to a0 

For each value of E in eq. (7) there is an associated value of ao, if a sur-  

face conductivity and a surface temperature have been determined. The possible 

og, E pairs can be related to conductivity estimates of known materials. The 

following discussion is limited to one surface temperature, T, = 75" C. In .fig. 4 Fig. 4 

o i s  plotted against q g  with E a s  a parameter. Possible go, E combinations 
0 

a re  also shorn in the figure. The three vertical bars  indicate the regions where 

one would expect a k factor of 0.1 and 0.4. The width and overlap a r e  

produced by variations in the thermal models. While the exact values of the con- 

ductivity func&ions and the rock types associated with them a re  subject to discus- 

sion, they a r e  representative of the range of conductivities expected. A k factor 

of 0.1 o r  larger is seen to be a distinct possibility because i t  corresponds to 

E pairs bracketed by known conductivity function estimates. In particular the 

conductivity function for a lunar sample labelled M on the figure, favors a 

strong reaction. 

8. Approdmate model for calculated current 

The modiification of calculated current by surface conductivity, activation 

energy, temperahre ,  and temperature gradient can be expressed by a simple 
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approximation based on the control of the current by a crustal resistance. In 

this case the crust is defined as  a region between the surface and a core of 

negligible resistivity. Neglecting curvature and approximating the temperature 

variation by 

where g, the gradient of reciprocal temperature at the surface, is evaluated by 

We then obtain the resistance R from 

At r,, the core radius, the bracketed quantity is taken to be zero because a has 

become large. Then R = q (CE~)- '  evaluated a t  the surface and consequently 

the calculated current should be proportional to 

The approximation can be compared to the calculated currents in table 2 .  

First ,  ewmine the variation with Te2. As the temperature is raised from 50" 

to 15" C ,  T - ~  increases by a factor of 1.161 and current by 1.177. As the 
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temperature is raised from 75" to 100" C the corresponding factors a r e  1.149 

and 1.164. This shows the calculated current to follow T - ~  to within a few 

percent. For variation with E ,  the average increase in current a s  E goes from 

0.5 to 0.8 is 1.740, slightly higher than the predicted 1.6. The variation with 

d ~ / d r  i s  shown by changing from the warm model, with a gradient of 1 . 6 0 ° / h  to 

the hot model with 8.07"/km. The increase in dT/dr by a factor of 5.04 causes 

an increase in calculated current by a factor of 6.12, about 20% larger than 

predicted by the simple model. 

9. Available solar wind power 

A s  as is increased over i ts  range, the power absorbed by the planet must 

go through a maximum. The power is low at very low conductivities where the elec- 

tr ic field i s  essentially constant but the current is cut off by the low conductivity. 

The power is also low at very high conductivities where current is limited by the 

k factor, approaching the asymptotic value Ima, a s  shown in eq. (10). For a 

constant current, an increase in conductivity decreases the power absorbed. 

The maximum power is of interest only to see  if i t  is larger than the available 

solar wind power, in which case the model can no longer represent the physical 

process. 

It f i rs t  can be demonstrated that the power dissipated is 2/3 of the product 

of the total current and the potential from pole to pole. This is shown by the 

boundary conditions at the surface. If J is the current density a t  the pole, the 
P 

current density a t  any point is Jp cos 8 ,  where 0 is the colatitude with 
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respect to the pole. The total current Itot is obtained by integrating the current 

density over the hemisphere so that 

The current associated with each element of area  2xa2 sin 8 dB dB goes 

through a potential drop + = 2 Emka COS 8 ,  where Emk = Em (1 - k) and 

Em = (v x B). Therefore, the power P is 

giving 

2 
P = 5 (2 Emka)'tot 

To determine the k factor for  maximum power, we write eq. (20) 

whereupon differentiation shows that maximum power occurs for k = 1/3, with 

the factor k1'2 (1 - k) -0.385. 

A power ratio Rmin can now be calculated that is the ratio of solar  wind 

power to the maximum power drawn by the body, occurring when k = 1/3. IT 
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Qin > 1 ,  the power available from the solar wind will always be sufficient, 

The solar  wind power i s  taken a s  the kinetic energy flux intercepted by the cross- 

sectional area  of the planet, o r  

2 3 Ps, = 0.5 ncr nmv (22) 

The maximum power in the planet, Pma,, i s  obtained from eqs. (12) and (21), 

giving 

and 

A separation of parameters occurs in eq. (24). %in is independent of the 

size, eonduc t i~ ty  function, and other planetary features. It depends only on the 

solar  wind parameters,  i .e., the number density, velocity, and motional electric 

field. The strongest dependence is on velocity, the weakest on number density, 

For  the solar  wind parameters used here,  %in = 2.87 s o  that a reduction in 

n1l2v2 by that factor may cause power limiting. Through hydromagnetic coupling 

the planetary cross section may be greater  than i ts  geometric cross section; in 

this sense the threshold is conservative. On the other hand, inefficiency of the 

coupling may lower the available power. The effect of power limiting will be 



- 26 - 

that the solar wind must be deflected from the planet a t  a value of current lower 

than the k factor limit value. 

If power limiting is known to be involved, i t  i s  important to determine over 

what range of k factor values i t  occurs. Using eqs. (12), (21), (22), and (24), we 

obtain an expression for the power ratio Rp a s  the quotient of bin and a 

relative ratio R, depending only on the k factor. Thus 

where 

Rr is plotted against k in fig. 5 and is shown to range from 0 a t  k = 0 and 

k = 1 to a m a ~ m u m  of 1 at  k = 1/3; Rr may also be defined as the relative 

power absorbed by the planet. This expression for the power ratio is uneqeoted, 

for it shows that the power ratio depends on all other planetary parameters only 

through their effect on the k factor. If the k factor were known no additional 

information such a s  the size o r  the conductivity distribution, would be needed, 

Figure 5 could then be used to compute planetary solar wind interactions. For 

a given model Gin is f i rs t  calculated using eq. (21). Then if > 1, there 

is no power limiting, and if sin < 1 ,  the model is only valid for R, < sin. 
Then, from fig. 5 (or eq. (26)), the range of pemlissible k factors is detemined. 



10.  Conclusion 

It has been shown that the unipolar generator mechanism i s  likely to 

operate a t  Mercury if the electrical conductivity of the subsurface material 

conforms to one of the more highly conducting cases. If a solar wind deflection 

i s  observed and a k factor i s  estimated, i t  will be possible to determine the 

range of the surface conductivities. By "surface" we mean a layer to a depth 

of a few tens of kilometers, beyond which the hotter interior acts like an ellee- 

trical short circuit. The response of a hot model is a factor of 6 greater than 

the response of a warm model, so that if other means were found to determine 

the surface conductivity within less  than an order of magnitude, some informa- 

tion might be obtained a s  to the planet's interior temperature. The solar wind 

power is expected to be generally sufficient to support the mechanism over any 

range of the k factor. 

It is clear that the TM mode requires that current carr iers  be supplied be- 

tween the solar wind and the planet. This can take several forms, the most 

plausible being based on a combination of photoionization and electron collection 

from the plasma, where emission takes place on the positive hemisphere and 

collection on the negative. Other models would include using ions as part  of the 

current system, but the electron model seems easiest to justify. Mthough cal- 

culations a r e  not included here it  seems likely that the supply of current c a r ~ e r s  

would not be a limiting factor in the flow of the currents associated with the TM 

mode. 

Lastly an additional reason is available in support of a hot model for Mercury, 

The low suborbital resonance suggests that if the planet had once been endowed 
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with greater spin many higher order resonances would have been bypassed as 

the spin rate decreased to i t s  present ultimate value. This in turn would imply 

a strong tidal degradation (which in itself might supply some internal heat). The 

presence of the existing resonance also suggests that the planet may be triaxial 

lending support to the idea that convection might be present [33,34,35]. 
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FIGURE CAPTIONS 

Fig. 1. Temperature profile for two models of Mercury. These are  adapted 

from models calculated by Fricker and Reynolds 1191 by reducing all 

temperatures by 100". 

Fig. 2. Temperature of a point on the equatorial surface of a model Mercury 

during the planetary diurnal cycle. Daytime temperature i s  obtained 

by balance of solar input and radiative loss. Nighttime temperature i s  

based on observation (adapted from Soter and Ulrichs [23]. 

Fig. 3. The k factor as  a function of surface conductivity for various surface 

temperatures, excitation potentials, and thermal models. Surface 

temperatures a r e  50°, 75" and 100" C. For a given surface conduct i~ty 

the k factor decreases a s  the temperature increases. Excitation 

energies a r e  0.5 and 0.8 eV, and the hot and warm models a r e  as  

described in the text. 

Fig. 4. Ranges of a and E for given surface conductivities. The surface 0 

temperature is taken to be 75" C. Some representative conductivities 

a r e  located on the plot. Points a r e  labeled with numbers correspon&ag 

to conductivity functions in table 1. For indicated values of the sahra- 

tion index k, the shaded areas indicate surface eonduetivities consistent 

with a range of thermal models. The indicated range for k = 0.1 

separates the detectable and relatively undetectable planetary solar 

wind interactions. It is seen that a strong reaction could be prohced  

by some of the materials, including the material from the lunar sample, 
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Fig. 5. Relative power absorbed by the unipolar generator current system as a 

function of k factor. The absolute power is obtained from the produet of 

this function and parameters that depend only on the solar wind. 












