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ABSTRACT

The variation of resonant time duration with latitude, altitude, and f,/f  has
been determined for the plasma resonances observed by Alouette I and Alouette
II at the electron plasma frequency f, the electron cyclotron frequency f,, tue
upper hybrid frequency f;, and the harmonics nf, where n=1,2,3,+ "+ The
duration of the f, resonance was found to be critically dependent on the trans-
mitted power; long duration f, resonances (which are required in order to make
electron temperature measurements based on the oblique e¢cho theory for this
resonance) can be excited with a transmitted sounder power as low as approxi-

mately 0.5 w. The [ resonance has great potential as a diagnostic tool in a
very rare plasma since under these conditions it has the longest time
duration of any of the nf,, resonances; in a dense plasma, on the other hand,
it is one of the weakest resonances observed. The 2f, resonance is the

only nf, resonance that does not show a definite dependence of duration on

latitude and the only one that shows a strong dependence on fN/f s the other nf
resonances show a definite dependence on altitude (as well as latitude). The
resonances at 3f, and 4f, are observed strongest at high altitudes whereas the
high order harmonics are consistently observed only at low altitudes. The nf

observations with n > 5 indicate a stationary resonant region, extending only

about 2 meters from the antenna, that is observed during its full time decay
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period (up to a few msec) in low latitudes; the observations are limited in high
latitudes by the motion of the satellite., The results show that neither the theory
based on longitudinal plasma waves of low group velocity excited by an infini-
tesimal dipole (which predicts much longer time durations) nor the theory based
on magnetic field nonuniformity limitations of non-longitudinal plasma waves
(which requires the wave length of the oscillations to be much greater than the
excitation volume), gives a proper interpretation of the high order nf, resonance
observations. It is suggested that the high order nf, responses may be the re-
sult of the decay of an instability in the turbulent plasma caused by the high

power sounder pulse.
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1. INTRODUCTION

The most prominent feature of the plasma resonances observed in the top-
side ionosphere by the Alouette I, Alouette II, and ISIS-I satellites is their long
time duration. In many cases these resonances are the most dominant feature
of the topside ionogram, and they often provide the only means of obtaining iono-
spheric information from complex ionograms - such as those observed in high
latitude regions (Hagg, Hewens, and Nelms, 1969 ). There has been a consid-
erable amount of theoretical work put forward to explain the various resonant
phenomena observed on the topside ionograms. For some of the resonances,
the theory agrees very well with the observations (see Graff (1971) and Benson
[1971a ], and references therein, for the resonance observed near the plasma
frequency fy and Graff [1870], and references therein, for the resonance ob-
served near the upper hybrid frequency f,); for other resonances, different
theoretical approaches have yielded incompatible conclusions and further ob-
servations are required to clarify the picture (see Shkarofsky (1968 ], and ref-
erences therein, for the resonances at the harmonics of the electron cyclotron
frequency f,). Since the resonant time duration is one of the major observable
features of t;xese resonances, it must be properly treated in any complete
theoretical interpretation. It is the purpose of this paper to present Alouette I
and II observations that describe the variations of the resonant time durations,
for the principal resonances, resulting from variations in plasma conditions
and to compare the observations with existing theories. Here the principal

resonances are considered to be the resonances observed near f N fr' f u and

1




an wheren= 2,3, -+, See Calvert (1969] and Calvert and McAfee [ 1969 for

comprehensive reviews of these resonances.

The first investigation of the resonant time durations was made by Fejer
and Calvert (1964 |, They measured the durations on several hundred Alouette
I ionograms aud expressed the results in terms of the plasma parameter {, /f o
they considered the observed variations to be in rough agreement with their
theoretical predictions. Lockwood (1965 ! found that the number of nf y resonances
observed on a given ionogram is a maximum when the radiating antenna is paral-
lel to the earth's magnetic field vector B, and that the duration of the resonances
corresponding to low n values decreases when the radiating antenna is perpen-
dicular to B. Benson (1970] measured the resonant time duration on ionograms
corresponding to Alouette I data from five small spatial regions between the
dip pole and the dip equaior and found that the time duration of the nf, resonances
with n > 3 increased as the angle ;> between the satellite velocity vector \7,‘” and
B decreased. Shkarofsky (1968 ] interpreted this variation in the observed res-
onant time duration as a magnetic latitude effect. It will be shown here, however,
that his theoretical predictions do not agree with the observations; in addition,

the dependence of the observed resonant time durations on altitude and the plasma

parameter fy/f, will be presented.

2. INSTRUMENTAL EFFECTS

There are several properties of the Alouette I and II sounder systems

that must be considered in an investigation of the time durations of plasma
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resonances. These instrumental effects will be discussed separately below

(for references, see Franklin (1970 and Franklin and Maclean (1969 '

1. Antenna Systems. The Alouette I and Alouette II satellites each have

a system of crossed dipoles of differ2nt length to cover the sounder frequency
range (0.5 to 12 MHz on Alouette I and 0.2 to 14.5 MHz on Alouette II). The
crossover frequency from the long dipole (tip-to-tip length of 45.7m on Alouette
I and 73.2m on Alouette II) to the short dipole (tip-to-tip length of 22.9m on
both satellites) is 4.7 MHz on Alouette I and 4.6 MHz on Alouette II. These
parameters are required to determine the travel time corresponding to a satel-
lite motion equivalent to the tip-to-tip antenna length which is of particular
importance when resonances attributed to plasma waves of zero group velocity
are investigated. The antenna systems on both satellites are characterized by
a mismatch loss that increases steadily with decreasing frequency below a low
frequency cutoff (1.5 MHz on Alouet:e I and 2.0 MHz on Alouette II); the rate of

decrease is much slower on Alouette II than on Alouette I,

2. Output power vs. frequency. The Alouette I transmitter output power

decreazre drastically below 1,0 MHz; it is down from 100 w by about 20 db at 0.9
MHz and by about 80 db at frequencies below 0.85 MHz (C. Franklin, private com-
munication 1971). The Alouette II low frequency output is nearly constant down to
0.2 MHz for the high power (300 w) transmitter (which was in operation nearly
100% of the sounder operating time up until its failure on 11 May 1969). The low
frequency output of the low power (100 w) Alouette II transmitter is identical to
that of the Alouette I transmitter (C. Franklin, private communication 1971). (The

low power Alouette I transmitter has been in operation since 12 May 1969.) These
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transmitter power output characteristics in addition to the antenna system mismatch
loss characteristics discussed in (1) above, must be considered when the durations

of resonances observed at different frequencies are being compared,

3. Automatic gain control (AGC). The AGC time constants are different for

Alouette I and Alouette II and are different for the high and low frequency portions
of the Alouette II frequency sweep range (12 msec on attack and 46 msec on de-
cay for Alouette I; 520 msec on attack and 120 msec on decay below 2.0 MHz,

and 60 msec on attack and 12 msec on decay above 2.0 MHz for Alouette II).
These differences must be considered when comparing the time durations of
resonances observed on Alouette I with those observed on Alouette II, and when
comparing Alouette II resonances observed helow 2.0 MHz with those observed

above 2.0 MHz,

4. Frequency resolution., The frequency resolution, i. e., the frequency

spacing between sounder pulses, is determined by the frequency sweep rate
divided by the pulse repetition frequency. The resolution for Alouette I varies
from 15 to 20 kHz over the frequency range of the sounder. The resolution for
Alouette II varies from 3.2 to 5.4 kHz i the frequency range below 2.0 MHz, and
is about 31 kHz in the frequency range above 2.0 MHz. (The above Alouette 1

and low frequency Alouette II values are based on measurements using the
expanded sounder-receiver amplitude vs. time format with a 3rd degree inter-
polation between frequency markers.) These differences in frequency resolu-
tion must also be considered when comparing resonant durations observed on
Alouette I and Alouette II. The decrease in frequency resolution by approximately

a factor of 8 and the decrease in the AGC time constant by approximately a



factor of 10 as the Alouette II sounder frequency crosses 2.0 MHz, combine to
produce a dramatic effective decrease in the receiver gain for plasma resonance

studies in the frequency range above 2.0 MHz on Alouette 11 ionograms.,

5. Maximum observation time. The maximum observation time from the

ionogram format is 10.2 msec for Alouette I and 30.0 msec for Alouette 11,

6. Frequency markers. When the frequency of a plasma resonance coincides

with an ionogram frequency marker, a reliable time duration measurement

cannot be made from the ionogram format.

3. DEPENDENCE OF RESONANT TIME DURATION ON LATITUDE

The Alouette I satellite is best suited for latitude studies of plasma reso-
nances since it is in a nearly circular orbit (perigee of 996 km and apogee of
1031 km). Ten northbound Alouette I satellite passes over the same longitude
region were selected for investigation. The main selection criterion was that

V.., be nearly parallel to B at the dip equator; this condition is satisfied
(within a few degrees) on some of the passes over the Quito telemetry station.

All the available data from the same passes, as recorded by the stations to the
north of Quito, were analyzed in an attempt to observe the latitudinal variations

in the resonant time duration for each of the principal resonances; the frequencies
and durations of thesec resonances were measured on every ionogram between

the dip equator and the dip pole (more than 500 ionograms were scaled).
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The ionogram time was used to calculate the angle between V'“' and B from the

available orbital information.

The scaled values from the above investigation are presented in Figures
la and 1b in the form of the resonant time duration vs. the plasma parameter
fy/fy, cos , and cos (dipole latitude) . The plasma parameter £ /f is of im-
portance because it influences the shape of the dispersion curves of the plasma
waves that are considered to be the cause of the resonances. The angle - is of
importance to all resonance models that include the motion of the satellite, and
the dipole latitude is of importance because the only resonance model to consider
the variations of duration with latitude is based on a magnetic-latitude effect.
The vertical scatter of the data points is attributed to the satellite spin-thus
only the envelope of the maximum points (corresponding to optimum antenna
orientation for the resonance under consideration) is of interest. The main

features of Figures la and 1b are summarized below for each resonance:

f, resonance. Strong resonances are observed only in the low latitude

regions; this observation is consistent with the earlier ol;servations of Benson
11970/ but it can be interpreted in terms of the theoretical predictions of
McAfee (1970 ], with supporting observations of Benson (1971a ], that long dura-
tion f, resonances are only observed when f, > f, since this condition is only
satisfied in low latitudes for the present data.

f; resonance. Strong resonances are observed when f; < 2f,, i. e., fy/f,

<+ 3, and weak resonances are observed when f; > 2f,; this observation is con-

sistent with the earlier observations of Fejer and Calvert [1964|. No significant
latitude effect is observed.
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2f; resonance. Resonances are observed only when the strong form of the

f; resonance is observed, i.e., only when f; < 2f,; this observation is consistent

with the earlier observations of Fejer and Calvert (1964,

f,, resonance. The observed decrease in durition with decreasing latitnde

is an instrumental effect (as the frequency of f, decreases from approximately
1.0 MHz in the high latitude region to anproximately 0.5 MHz in the low latitude
region the Alouette I antenna system missmatch loss increases by approximately
25db (estimate based on free space measurements), and the output of the

transmitter decreases by approximately 80 db).

2f, resonance. No significant change in duration is observed when the

value of f,/f, crosses: 3 (corresponding to 2f = f.); no significant latitude

changes are observed.

3f,, 4f,, and 5f, resonances. These resonances are observed at all mag-

netic latitudes (but less frequently at high latitudes for 5f,). There is a strong

peaking in the resonant duration as cos />~ 1 (Vu, and B tend toward a parallel |
configuration); the peaking is even sharper as | cos (dipole latitude) | "1 (ob- |
servation points tend toward the dipole equator). The duration peak near fy /f,

= 2,3 is simply a dipole latitude effect since it can be seen from the figure that

strong resonances were no. observed away from the low latitude region.

6f, to 9f, resonances. These resonances are observed only in low m..2netic

latitudes, they are observed more frequently near the dipole equator, and they

are the strongest (especially for n= 6, 7 and 8) near the dipole equator.
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10f,. to 14f, resonances. These resonances are observed only in low mag-

netic latitudes. The number of observations in each case and the preference of
occurrence at the dipole equator is indicated in Table 1. Cyclotron harmonic

resonances with n ~ 14 were not observed in the present data sample.

Low latitude duration peak. The most striking feature on the nf  data pre-

sented in Figures la and 1b is the strong peaking of the resonant duration as
cos,°— 1forn= 3,4, and 5 (and to a lesser extent for n= 6, 7, and 8), and the
even stronger peaking as cos (dipole latitude) -1, while no significant latitude
effect is obsecved for n = 2, These observations are consistent with an earlier
study based on cos ;- [Benson, 1970 |. The sharper peaking effect with the dipole
latitude than with - is to he expected since the former angle is always less than
or equal to the latter angle. At first glance, the above observations appear to
support the theoretical work of Shkarofsky [1968] that attributes the latitude
variations of the durations of the nf, resonances, with n 2 3, to the nonuniformity
of the magnetic field along a field line. His theory predicts that long duration
resonances should only be observed in the immediate vicinity (i. e., a few tenths
of a degree) of the magnetic equator. Figure 2 presents the theoretical predic-
tion of Shkarofsky, the maximum duration values from a nrevious study [Benson,
19701, and the dat: points from the present study on a log-log presentation of
resonant duration vs. | cos (dipole colatitude) | (as was used by Shkarofsky) for
the nf, resonances with n= 3 to n = 8, (Note that the dipole colatitude is used

in Figure 2 whereas the dipole latitude was used in Figure 1). The dashed lines
in the figure represent the envelope of the maximum values observed for each
resonance in the present study; the vertical scatter of the points is due to an

antenna orientation effect and is not of interest here. The variation of the

il st st o Bt




maximum duration time with dipole latitude is much flatter in the low latitude
region ( cosine (dipole colatitude) < 0.2) than is predicted by Shkarofsky. The
maximum values from a previous investigation, as represented by the blocks in
Figure 2, aie consistent with the above statement (the one apparent exception is
the high value for the point near the dipole equator at 6f,; this value, however,
appears to be an anomalously high value [ see the QUI data of Figure 6 of Benson,
1970)).

Resonant duration vs. n. A second point of disagreement between Shkarofsky's
theory and the observations is found between the predicted and observed varia-
tion of resonant duration with harmonic number n at a fixed latitude. His theory
predicts that the resonant duration is proportional to n-! 2; the observed de-
pendence (see Figure 3) is very nearly proportional to n-2, The duration values
presented in Figure 3 represent maximum values from a large number of ob-
servations corresponding to the same absolute value of dipole latitude (12°).

(Note: the dependence of duration on n cannot be obtained from a single iono-
gram because of satellite spin). The curves in Figure 3 represent least squares
fits of the data points to D = An~? where D is the maximum resonant duration

and A is a constant.

Plasma wave group velocity. In attempting to explain the observed latitu-

dinal dependence of the nf, resonant time durations (for n > 2) it is important to
consider the ability to match the group velocities of the plasma waves attributed
to these resonances to the satellite velocity. These waves have been considered
to be longitudinal waves by Crawford, Kino, and Weiss (1964 ], Fejer and Calvert

(1964], and Sturrock (1965] with the propagation vector k directed perpendicular
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to B. In this case the plasma wave group velocity V’v is also directed perpen-
dicular to B and the quantity of interest is the ratio (Vo) par 7V, ), Where

(V )L is the component of \;’M perpendicular to ﬁ; when this ratio is greater

sut
than unity it is possible to obtain a matched condition that could account for the
long time durations observed for the topside resonances. Shkarofsky and
Johnston (1965 and Shkarofsky (1968 stressed this matching concept but
erroneously conclud«d that a matched condition could not be obtained for longi-
tudinal waves with n > 4 in the topside ionosphere. In support of this statement,

consider the dispersion equation for longitudinal waves propagating perpendicular

to B as given by Stix [ Chapter 9, equation 105, 1962] :

P , Ve E : i) : (1)
2 %3
2 _N_ m=1 : _l
("H) (m“'">

differentiation with respect to k yields:

f
© oA Im‘l(A)J,""‘A‘ I (Me™” T

i )‘ ’
T @ )
kR 4 m.LH ,H

* (&) o T T

v, = 3./ 3k is the plasma wave group velocity

T

where

V, = Ruy = («T, /m)?/2 is the electron thermal velocity (« is Boltzmann's

constant, T, is the electron temperature, and m_ is

the electron mass)
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R is the electron cyclotron radius
=K R?
yoyrand =271, 27, and 27 f, respectively

I, () is the modified Bessel function.

The ratio V, /(V,,, ), was calculated for the nf, resonances with n> 4
from (2) using T values from the Alouette I electrostatic probe experiment

and . values as determined from the orbital information corresponding

)
to the data used in this study; the results for the maximum value of this ratio
are presented in Figur: 4. There are two main points to note in Figure 4:

first, it is not difficult to obtain a matching between Va and (th )l in the top-
side ionosphere for the nf, resonances with n > 4 (e. g., matching is possible
for n= 7 when cos © > 0.8) and second, it is difficult to explain the observed
latitudinal variations in resonant duration strictly in terms of a matching con-
cept (e. g., the durations of the 4f, and 5f, resonances begin to increase when
cos . exceeds about 0.6 (see Figure 1b), whereas matching for these resonances
is obtained when cos - exceeds 0.36 and 0.54, respeciively; also, the n= 7
through n = 11 resonances are observed when cos : exceeds about 0.6, (see

Figure 1b), whereas matching is only obtained when cos ;- exceeds 0.805, 0.865,

0.902, 0,932, and 0.956 for n= 7, 8, 9, 10, and 11, respectively).

Instrumental effects. There are two features of the latitudinal variations

of the nf, resonant durations in Figure 1b that can be attributed to instrumental
effects. First, the lack of observations of the nf, resonances with n > 6 in the
high latitude region is due to the change over from the long antenna (in low
latitudes) to the short antenna (in high latitudes) as can be seen from Figure 5

where the effective domains of the two antennas are shown as a function of cos =~

11




for the present data. (Note that the 5f, resonance is very close to the transi-
tion region between the two antenna domains in the high latitude regions, and
that 5, resonances are only occasionally observed in high latitudes). Second,
the occurrence of very high harmonic resonances (n = 12 of Figure 1band n=
14 of table 1) are more sensitive to antenna orientation than to the condition
cos =1 or cos (dipole latitude) = 1. This statement is based on the results

of Lockwood (1965) and the present observations.

4. DEPENDENCE OF RESONANT TIME DURATION ON ALTITUDE

An inspection of Alouette II ionograms corresponding to apogee (near 500 km)
and perigee (near 3000 km), with the same value of cos 7, indicate a definite
dependence of the resonant time duration on altitude for some of the principal !
resonances. This altitude dependence is very apparent for the f, resonances on

the apogee and perigee ionograms shown in Figures 6a and 6b, respectively; the

..

duration is much longer at apogee than perigee even though the antenna missmatch

loss is greater in the fcemer case because f y is at a lower frequency. An in-

vestigation of Aloucite II ionograms was conducted to determine which of the

principal resonance durations depend on altitude and whether this dependence is

the result of the variation of the plasma parameter f_ /fH or strictly an altitude £
effect. In order to eliminate the strong latitude effect discussed in the previous

section, only those ionograms corresponding to the condition cos = 1 (where

strong resonances are observed - see Figures la and 1b) were considered. The

resonant durations were scaled un ionograms between perigee and apogee in
12
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steps of 500 km. The results are presented in Figures 7a and 7b in the form of
resonant duration vs. f /f H and height for the resonances observed at f, fT, f",
and nf, with n = 2 through 12; the vertical scatter of the points is partly the
result of satellite spin and partly the result of variations in height (on the f,/f
presentations) and f,/f, (on the height presentations). For the present moment,

neglect the points enclosed by solid lines.

Consider first the resonances shown in Figure 7a. The low duration ob-
served fov the fy resonance at 500 km (f,/f, > 7.2) is an instrumental effect.
(The resonances at 500 km were recorded at frequencies above 2.0 MHz while
the resonances corresponding to higher altitudes were recorded at frequencies
below 2.0 MHz; the effective gain of the receiver is much less in the former case
than it is in the latter case). The f r resonance shows no apparent altitude de-
pendence. The lack of observations at 500 km is the result of the masking of
the f; resonance by the f, resonance. The f, resonance definitely shows a
stronger dependence of resonant duration on altitude than on fy/f , (note that no
resonance persisted longer than 7 msec at 500 km and that many resonances of
short duration were observed when fN / f“ - 4), whereas the ZfH resonance definitely
shows a stronger dependence of resonant duration on [N/f" than on altitude (note
that several resonances persisted longer than 8 msec at 500 km and that these
resonances all corresponded to relatively low values of fN/f w 1 €. fN/f u <8
also, no resonances of short duration were observed when f,/f, < 4). As in the
case of Alouette I, the envelope of the maximum is of main interest (the vertical
scatter of the data points is mainly due to antenna spin). For the 2f, resonance,
this envelope is well described by the curve on the duration vs. f,/f  plot which

corresponds to a least squares fit of 4 representative maximum values of the

13
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500 km data points to D = A (f, /1) ! where A is a constant., Only the 500 km
points were considered in the curve fit because they correspond to the largest
variation in f,/f, (3.7 to 16.1) while maintaining a nearly constant value for f

and hence a nearly constant sounder frequency response,

Next, consider the resonances shown in Figure 7b. The resonances at 3f,
and 4f,; show a definite dependence of resonant duration on altitude (duration
increases with increasing altitude), higher order harmonics are consistently
observed only at 500 km, and there is an abrupt cut-off of resonances with
n> 7 at 3000 km. 'This cut-off is an instrumental effect as can be seen by an
irspection of Figure 8 where representative frequencies of the various nf
resonances are presented as a function of altitude. The domains of the short
and long antennas are indicated on the figure together with a dotted line at 2.0
MHz corresponding to the transition frequency between high and low frequency
resolution (see 'Instrumental Effecis' parts 3 and 4). At 3000 km the resonances
with n £ 7 are observed in the frequency region below 2.0 MHz while the reso-
nances with n > 7 are observed in the frequency region above 2.0 MHz; the lower
effective receiver gain in the latter case explains the sudden drop in the frequency
of occurrence of the resonances withn > 7. At 2500 km the n = 6 resonance
represents a transition between the situation of high effective receiver gain and
low effective receiver gain in that 43% of the ionograms in this region correspond
to the condition 6f, > 2.0 MHz and they did not contain 6f, resonances. Similarly,
at 2000 km resonances with n > 5 were not observed because they appeared in
the frequency region above 2.0 MHz. For lower altitudes, on the other hand,
the lower effective receiver gain in the frequency region above 2.0 MHz did not

always prevent the detection of high order harmonic resonances. For example,

14
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at 1500 km the 5f;, resonance was observed even though 5f, > 2.0 MHz for all of
the ionograms sampled in this height range, at 1000 km resonances withn > 4
were observed even though 50% of the n = 4 resonances (including 2 of the 5
with durations of 6 msec or more) and all of the resonances with n > 4 corre-
sponded to nf, > 2.0 MHz, and at 500 km all of the resonances with n > 4 were

ohserved with nf, ~ 2,0 MHz,

The increase in the maximum duration of the 3f, resonance with increasing
altitude is not an instrumental effect since all the observations (except for one
of the 500 km points) correspond to a high effective scunder gain, i.e., f < 2.0
MHz, and the antenna mismatch loss is greater at the high altitudes than at the
lower altitudes; thus the true increase may be slightly greater than indicated
by the figure. Similar comments hold for the 4f, resonances from 1500 to
3000 km; the maximum durations of 500 and 1000 km were limited by the reduced
gain of the sounder system (see Figure 8). (Note: the 30 msec values at 3000 km
for n = 3 and the 12 msec value at 500 km for n = 4 are anomalously high due to
proton gyro effects observed when the exit frequency f, S for the z wave is
near nf - this enhancement will be discussed in a separate paper). The 5f,
resonance shows a definite enhancement in duration at 500 km, as compared
with 1000 and 1500 km, and a definite enhancement at 3000 km, as comparcd
with 2000 and 2500 km; these comparisons are chosen because the effective
gain of the sounder system is greater at 2000, 2500, and 3000 km than at 500,
1000, and 1500 km (see Figure 8). This enhancement at 506 km is even more

apparent on the 6f resonance where, in spite of the reduced gain, the maximum

duration at 500 km is observed to be a factor of two greater than the maximum

duration at 3000 km. Similar comments hold for the n = 7 resonance where

15
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resonances are still consistently observed at 3000 km. The maximum dura-
tions for the higher order harmonics are greater at 500 km than at any other

altitude where these resonances are observed.

Absorption of the f y Wave. The observed dependence of resonant duration on

altitude when cos 8 ~ 1 suggests a dependence on the local plasma conditions. The
electron density, electron temperature T _, and electron-ion collision frequency . .

corresponding to the Alouette II data of Figures 7a and 7b are presented in
Table 2. The electron neutral collision frequency »__ is not shown because it

is several orders of magnitude smaller than .  (e.g., » =1 sec-! at 500 km),
The values given in the table are representative values for each data set. When
inspecting these values, one must keep in mind that the low altitudes (500 and
1000 km) correspond to daytime conditions whereas the higher altitudes corre-
spond to nighttime conditions. The quantities N and » . decrease by more than
an order of magnitude between 500 and 1000 km and by more than a factor of

2 between 1000 and 1500 km; they are relatively constant between 1500 and

3000 km,

The above variations of N and :, appear to be more closely related to !
the observed variation of the f, resonant duration with height than to any of
the other resonances (see Figures 7a and 7b). Thus, long duration f,
resonances are only observed in a very rare plasma. This observation

supports the conclusion of Oya [1971], based on an analysis of the sequence

|}
mm\m-dk-nw_o—w s

of diffuse resonances observed on topside ionograms [Oya, 1970], that the f,
wave is quickly absorbed by the medium. It also indicater the importance of
the f, resonance in the determination of N in a rare plasma using the beat

frequency method introduced by Hagg [1967] , providing that the dispersion
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effects associated with the f" and lT waves (the two beating waves in the Hagg
method) can be determined | Benson, 1971b |, and in the determination of the

ambient value of B when the higher order harmonice are not present.

Resonances observed under conditions of reduced sounder transmitter

power. The points enclosed by solid lines in Figures 7a and 7b correspond to
four consecutive ionograms from a single satellite pass when the low power
transmitter was in operation (all other points correspond to the hign power
transmitter). Figure 9 presents a comparison between one of these four iono-
grams and an ionogram from the same data set recorded under normal high
power operation. Below 1.0 MHz the resonances recorded during low power
operatiou (top) are severely reduced in time duration compared to those recorded
during high powver operation ("~ m); above 1.0 MHz there is very little difference
between the two records. The frequency 1.0 MHz is significant because the low
power transmitter has a sudden drop in output power below 1.0 MHz (see the
discussion in the section entitled "Instrumental Effects'). Thus, the resonances
of Figure 7a (which were recorded at frequencies below 1.0 MHz) a.e greatly
reduced while the resonances of Figure 7b (which were recorded at frequencies
above 1.0 MHz) are not affected (e. g., the strongest 3f, resonance was obtained
from one of the four ''low power' ionograms). The main feature of interest in
the above comparison is the f, resonance. This resonance has been attributed

to two oblique plasma wave echoes that produce a strong resonance with a beat
pattern when fN > f W and to one oblique echo that produces a weak resonance
when f_ < f (McAfee, 1970]. The typical strong pattern is revealed in the

lower part of Figure 9; the top part of the figure reveals a typical weak pattern

(Benson, 1971a) even though the weak pattern condition f, < f, is not satisfied.
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Thus the excitation of the strong pattern is dependent on the output power in
addition to the plasma parameter {,/f,, and a low power transmitter is capable
of producing only one of the two waves necessary to obtain a beat pattern which
is required for electron temperature measurements using the procedure intro-
duced by Warnock, McAfee, and Thompson 1970/, An investigation of the

sequence of ionograms that contained the top ionogram of Figure 9, revealed

that the strong f, pattern was not produced until an effective power output (into

a 400 ' load) of approximately 0.5 w was attained.

5. TEMPORAL AND SPATIAL VARIATIONS AND RESONANT VOLUME
FOR THE HIGHER nf, RESONANCES

One of the problems in the interpretation of the observed resonant time $
durations is to distinguish between the decay of the signal in time and the decay
due to the motion of the satellite from the region of original excitation. Sturrock
[1965! suggested that the nf" resonant time durations were limited by the above ;
spatial effect. Benson [1970] emphasized that this concept is consistent with
the Alouette I observations for the resonances with n » 4 and that there is no

need to invoke the concept of matching V“ to Vm | Shkarofsky and Johnston,

t

1965 | for these resonances. Shkarofsky (1968] predicted the time durations s

P
.
3
3
i
i
x

for the resonances with n > 3, based on the matching concept, but the resulting
variation of duration time with latitude and with n does not agree with the

observations (see Section 3).
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Temporal variations., Observational evidence pertaining to the above

problem can be obtained by coraparing the Alouette 1 and Alouette 11 results
sioce different antenna lengths were employed on the two satellites; this dif-
ference should effect the resonant time duration if this duration is determined
by the motion of the satellite through an initial excitation region. .The observa-
tions of interest are the Alouette I data with cos - - 1 and the Alouette II data
with cos * 1 at 1000 km (since the Alouette 1 data corresponds to a 100¢ km
altitude). These observations are summarized in Table 3 for the nf, resonances
from n = 3 to n = 8 together with the effective radiated sounder power; the res-
onances at n=1, n= 2 and n - 8 were omitted because of the difficulties in
making a meaningful comparison between the two data sets for these resonances
(the Alouette I n = 1 resonance is not observed when cos * = 1 due to instrumental
limitations, the Alouette II n = 2 resonances of longest duration at 1000 km were
equal to the observational upper limit, and only one ionogram from the Alouette
I1 1000 km data sample contained resonances with n * 8). The following state-
ments can be made concerning the data comparison presented in Table 3:

1. The resonant durations are greater on Alouette II only in the frequency
range below 2,0 MHz where the Alouette 11 receiving system has a much higher
effective gain than the Alouette 1 system; thus the Alouette I power is sufficient
to excite high order nf, resonances and the increased Alouette Il power does
not produce resonances of longer time duration.

2. The slightly greater duration values observed on Alouette I in the fre-
quency region above 2,0 MHz may be attributed to receiver characteristics
(see comn.ents under * in Table 3) and/or to the larger Alouette I data sample

which increases the probability of favorable conditions for the detection of
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strong high order nf“ resonances, i.e., the condition where the radiating antenna

is nearly parallel to B | Lockwood, 1965) .

Statement number 2 is of special interest to the present discussion because
the resonant durations would be expected to be 50% grezter on Alouette II than

on Alouette I if they are determined by the motion of the satellite with respect

to a stationary resonant volume. This expectation follows from the manner in

which the data were sampled, i. e., V_ restricted to a direction within 10° of

B (cos .- > 0,985) which requires the antenna to be nearly parallel to v for

sat
the detection of the higher order nf, resonances. The time required for the
satellite to move a distance equal to the tip-to-tip length of the long antenna
corresponding to the present data samples was 6.2(5) msec on Alouette I and
9.5 msec on Alouette 1I. For each satellite, however, the maximum obse¢rved
duration for the resonances with n > 4 were less than the corresponding antenna
length transit time (which supports the eavlier conclusions [ Benson, 1970 that
the matching concept is not required for these resonances). Since the average
durations are considerably smaller than this time (approximately by an order
of magnitude), and no dependence on the antenna length is evident, it appears
that the motion of the satellite is not a major factor in limiting the observation

of high order harmonic resonances in low latitudes; thus, the duration of these

resonances is determined by a time decay.

Spatial Variations. The presence of high order nf, resonances in high

latitudes when the observing frequency corresponds to the domain of the long
antenna, and the absence of these resonances when the observing frequency

corresponds to the domain of the short antenna (see Figures 1b and 5) supports
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the conclusion of Benson (1970 that these resonances are not observed in high
latitudes because of the motion of the satellite from a small regicn of resonant
excitation, i, e., the region is smaller for the short antenna than for the long
antenna. Since the antenna is aligned nearly parallel to B for optimum resonance

excitation, the resonant volume (assumed to be elongated along the antenna

element) projects a decreasing distance along the satellite path as the satellite
approaches the dip pole (cos,: = 0). When this distance becomes shorter than

the satellite motion corresponding to a travel time less than the lower limit of
observation, no resonances will be observed. The possibility that the high order
harmonic resonances are simply not excited by the short antenna in high latitudes
appear s very unlikely in view of the remarkable observation cutoff for the res-
onances with n > 5 when cos - < 0.65 (see Figure 1b); these resonances are
excited by the short antenna when cos /= 0.65 (see Iigures 1b and 5). Thus,

in high latitudes it is the motion of the satellite that prevents the detection of

high order harmonic resonances.

Resonant volume. An estimate of the radial extent of the resonant volume

from the antenna element can be obtained from the above observational cut-off
of cus 5 = 0.65 and by assuming that the antenna element is nearly parallel to
B for the detection of the higher order harmonics (so that - can be considered
as the angle between the antenna axis and V,“ ). Since the minimum observa-
tion time for a resonance is 0.4 msec and Vut = 7.3 m/msec for Alouette I,
the upper limit for the resonant region associated with the short antenna and
n> 5 must by approximately 3m in the direction of \7,“ or approximately 2m
in the radial direction from the antenna (corresponding to an angle of approxi-

mately 50° between the antenna and ¥, i. e., cos /* = 0.65). The excitation
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volume associated with the long antenna is larger than the observational limit
imposed by the satellite motion and thus the high order nf resonances excited

by this antenna are observed in high latitudes.

The above estimate for the resonant volume is consistent with the com-

pletely independent observations of frequency shifts associated with the

Alouette I and II high order nf y resonances, The large frequency shifts observed
on Alouette I have been attributed to the magnetic contamination of the spring
steel antenna elements since similar shifts were not observed on Alouette 11
where non-magnetic Be-Cu antennas were used 'Benson, 1969, 1970, and 1971b |,
Magnetic measurements made on a section of the material from the same stock
as was used in Alouette I indicated that the contaminant field was very strong

ne2* (15 cm) the antenna but was fairly insignificant beyond about 2m in the

radial direction from the element Benson, 1970 . The lack of extreme frequency

shifts on Alouette I indicated that the resonant voiume was not confined to the
sheath region around the antenna. The Alouette II observations 'Benson, 1971b |
indicate that the Alouette I shifts (for n » 4) are difinitely due to magnetic con-
tamination and not plasma wave dispersion effects; thus the resonant volume

must not extend much beyond 2m from the antenna.

6. DEPENDENCE OF THE nf, RESONANT TIME DURATION ON f /f

The data of Sections 3 and 4 were chosen primarily to investigate the de-

pendence of resonant time duration on latitude and altitude; in order to investi-
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gate the variation of resonant duration as a function of f /f" for the nf" resonances,
consecutive ionograms were scaled from Alouette Il satellite passes recorded
under conditions of rapidly varyving f, and slowly varying f". This situation is

desirable because the pattern of nf" resonances remains nearly constant in

frequency from one ionogram to the next which reduces the effect of the variation

in sounder response with frequency. The results of the duration scaling are
presented in Figure 10 for the f, 2f,, and 3f, resonances from four Alouette II
passes, The scaled values correspond to resonant observations in the high
resolutior portion of the ionogram, i. e., below 2.0 MHz. The antenna system
mismatch loss increases steadily with decreasing frequency in this region

(see Section 2): the observed variation in f is given for each pass in the bottom
row and it must be considered when investigating the variations in resonant
duration of the resonances given in the same column, i. e., corresponding to
the same pass. Also given in the bottom row are the variations of cos .- and H
since these parameters can influence the resonant duration (see Sections 3 and
4); for further information on the orbital and plasma conditions pertaining to
these satellite passes, see Figures 1 and 2 of Benson [1971b/. The main features
of Figure 10 will be discussed below for each resonance separately:

f, resonance (top row): There is no detectable change in the f, resonant

duration as the plasma conditions change from f/f, < 1to fy/f, > 1 (see pass
1927 of Figure 10), whereas there is a dramatic change in the f resonant dura-
tion (see Figure 1 of Benson (1971a!). The f, resonant duration is extremely
long in the rarefied plasma encountered during pass 1927, e. g., D 20 msec
when N 580 cm * corresponding to fN/f = 0.3, even though cos -~ 0 (the an

resonances with n * 2 are not observed with long durations when cos /* * 0, see
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Figure 1b). The decrease of duration with increasing IN/f y can be attributed to
the increasing mismatch loss as the f" frequency decreases and to the decreasing
height of the satellite. The effect of the increase in cos - is more difficult to
interpret because the cos 5 dependence could not be determined for the { y res-

onance from the Alouette I data (see Section 3). The data from passes 1785,

1844 and (to a lesser extent) 4086 provide some evidence that the f resonant
duration increases with increasing cos -, i.e., the effect of the decreasing f
and H curves on the duration may be offset to some extent by the effect of the
increasing cos ‘ curve to produce the nearly flat distribution of data points on
these passes. In any event, it is difficult to establish a definite dependence of
the f, duration on fN/fH' e. g., above about fN/fH = 3 on pass 1785 the effect of
increasing f,, and decreasing H are opposing one another and it is difficult to
interpret the variations in duration.

2f, resonance (2nd row in Figure 10): There is no detectable change in the

2f, resonant duration as the plasma conditions change from f < 2f , i. e., fN/

<v3, to f, > 2f, (see all four passes of Figure 10); this observation is in agree-

ment with the Alouette 1 observations of Section 3 (see Figure 1a). The 2f , res-
onant duration decreases fairly continuously on pass 1927 as f,/f, ~ 0 in spite

of a relatively low antenna mismatch loss (10 db for 2f, ~ 1.5 MHz) and favorable
height conditions (see Figure 7a with H between 1500 and 2000 km). Since the
duration for this resonance is not sensitive to cos © (see Figure 1a), it appears

that it decreases with decreasing f,. This conclusion is supported by an inspection
of ionograms recorded under conditions of lower f _than the conditions corresponding
to pass 1927 of Figure 10 (where (fN)min 2~ 0.2 MHz). When fN < 0.1 MHz the fr

and the fn resonances nearly overlap one another and a beat frequency signal is
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often observed on the ionogram structure that appears as a single resonance

| Hagg, 1967]. On these ionograms corresponding to low electron density (the
exact values are uncertain due to plasma wave dispersion effects, but they 1nay
be as low as, or lower than, 100 cm~* [Benson, 1971b]) the 2[H resonance is

always observed to have a short time duration [e. g., Hagg, 1967, Figures 2 and

3; Hagg, Hewens, and Nelms, 1969, Figure 12; Timleck and Nelms, 1969, Figure
1!, Since the data of Figure 7a indicate a decrease in duration with increasing

f N/f“ when IN/f y - 4, there must be a peak duration value corresponding to £/
<4, The exact location of the peak is difficult to determine from the present data
because of the dependence of the duration on the observirg frequency and on H.
The data from Figure 10 indicate that the peak occurs in the region f N/fu > 2 if
the variations in antenna mismatch loss are considered, e. g., on pass 1785 the
mismatch loss is 19 db (for 2f, = .91 MHz) when f /f, = 2.5 compared with a
loss of only 15 db (for 2f, = 1,15 MHz) when f,/f, = 1.0.

3f , resonance (3rd row in Figure 10): There is no detectable change in the

3f,, resonant duration as the plasma conditions change from f; < 3f,, i. e., fy/f,

< v8, to f, > 3fy. The duration decreuses as f,/f, decreases even though the
increasing f, and H curves produce effects that favor long resonance durations
(see Section 2 and Figure 7b). This decrease is attributed to a decrease in f
rather than to a decrease in cos 5 since the 3f; resonant duration is fairly
constant (and short) when cos 2 < 0.5 (see Figure 1b). This conclusion is also
supported by an inspection of high latitude ionograms recorded under conditions
of very low N. On such ionograms, where the Hagg beat phenomenon is observed,
the 3fH resonance is seldom, if ever, observed [e. g., Hagg, Hewens, and Nelms,

1969, Figure 12]. In fact, the 3f resonance will often appear to flicker in and
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out as a series of ionograms, some of which contain the Hagg beat phenomenon,
are viewed rapidly, i. e., the 3f  resonance can often be detected on those iono-
grams where N is not low enough to produce the ‘lagg beat, but cannot be detected
when the beat is ohserved. The data presented in Figure 7b indicate that a very

rarefied plasma is required to produce long duration 3f, resonances near the

dipole equator, but the high latitude data indicates that there must be a sufficient
number of electrons to produce a detectable resonant signal; thus the increase
in duration with increasing altitude over the vicinity of the dipole equator, as
indicated in Figure 7b, must terminate at some altitude above the 3000 km

apogee of Alouette II.

7. COMPARISON OF OBSERVATIONS WITH EXISTING THEORIES

Ir Se~tion 3 it was shown that the latitude variation of duration, and the
varia iun of duration with n, for the an resonances with n 2 3 did not agree with
the theory of Shkarofsky (1968 ] which is based on matching of \7‘ to (V__, ), for
non-longitudinal plasma waves and which includes the effect of the nonuniformity
of B. The conclusion of Section 5 that the resonant volume extends only about
2m from the antenna ior the nf, resonances with n > 5 also opposes this theory
which assumes that the wavelength of the resonant oscillation corresponds to
the electromagnetic mode rather than to the electrostatic (longitudinal) mcde;
this assumption requires the wavelength to be more than an order of magnitude

greater than the dimension of the resonant region from the antenna. The justi-

fication for the above choice of wavelength was that a matching of ‘7‘ to (V'n )
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was possible only for the electromagnetic modes when n > 4; the present results
(Section 3), however, indicate that such a matching is also possible for the elec-

trostatic modes,

The conclusion of Section 5 that the duration of the nf resonances withn > 4
is limited by a natural time decay, of approximately 2 msec or less, does not
agree with the theoretical work of Sturrock [(1965) and Deering and Fejer (1965 ],
which is based on longitudinal waves of low group velocity and the infinitesimal
dipole approximation, since the predicted time decays are several orders of

magnitude too large.

The 2f, resonant time duration peak observed when fN/fH is between 2 and

4 (Section 6) supports the conclusion of Oya (1971, and H. Oya, personal com-

munication, 1971/ that the 2f, resonance, the diffuse resonance f,, (Oya, 1970 (orig-
inally designated as f,, by Nelms and Lockwood (1967]), and the electrostatic wave
resonance fQ ; (Warren and Hagg, 1968 are coupled in a three wave decay process
since the f;, resonance has a strong duration peak when f,/f, is in the range from
2.25 to 3.25 (corresponding to f  /f, in the range from 1.5 to 1.63 [Oya, 1971].

Some of the discrepancies between the observations and the theoretical
work as discussed in the first two paragraphs of this section, may be eliminated
by including the effect of the antenna length in the theory. The conclusion based
on the present observations that the resonant region is only about 1/10 of the
antenna length for the higher an resonances certainly indicates that such an
approach is required. Another possibility is that the responses observed near
nf,, for the higher harmonics (say n > 5) are due almost entirely to the decay of

an instability in the turbulent plasma initiated by the high power sounder palse.
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The observed durations of approximately 2 msec or less for these resonances
is of the same order as the 1.5 msec duration of the instability associated with

the diffuse resonance [Oya, 1971],

8. SUMMARY

The main conclusions from the present study are summarized below:

fN resonance: An effective power of approximately 0.5w is required in

order to produce the strong form of the f, resonance which is required for
electron temperature determinations based on the oblique echo theory for this
resonance.

f, resonance: The f resonance is stronger than any of the other nf, res-

onances at high altitudes in high latitudes. The low latitude altitude study shows
that it is quickly absorbed in the relatively dense plasma of 500 km but that it is
long lasting in the rare plasma above about 1500 km. Thus, this resonance has

great potential as a diagnostic tool for determining N and ‘B! in a rare plasma.
There is no detectable change in duration as the plasma conditions change from
L/t St /A > ),

2f, resonance: The 2f, resonance is the only nfy, resonance where the dur-

ation does not show a significant latitude dependence. The duration is observed
to have a maximum between fN/fH = 2 and 4 in agreement with a recent theory

proposed for the interpretation of the sequence of diffuse resonances in terms
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of the nonlinear interaction of plasma waves (including the 2{, wave). No signifi-
cant change in the 21'" resonant duration is detected as the plasma conditions
change from fT < 2f" to IT > 2f".

nf, resonances with n 2 3: The observed latitude dependence of resonant

duration for the nl'" resonances with n > 3 appears to be caused by a combination

of geometrical, instrumental, and satellite motion effects closely related to the
size of the resonant region rather than by magnetic field nonuniformity limita-
tions of nonlongitudinal plasma waves, with \—l.g matched to (C"“ ) » 88 has been
proposed. Other disagreements with this theory are the following: the observed
decrease of duration with increasing n very nearly follows a 1/n? dependence
rather than the predicted 1/ n dependence, and the inferred resonant region for
the resonances with n > 5 is too small (a few meters from the antenna) to allow
oscillations with wavelengths corresponding to the electromagnetic mode. It is
not necessary to restrict the above matching concept to the electromagnetic
modes since it is shown that a matched conditior can be obtained for high order
longitudinal nf , waves in low latitudes. The resonances with n > 4 are observed
for their full natural time decay of a few milliseconds. This short duration is
several orders of magnitude less than is predicted by theories based on longi-
tudinal waves with -\'7‘ ~ 0 that are excited by an infinitesimal dipole. In view of
the small extent of the resonant oscillations from the antenna, for the higher
order nf, resonances, it appears that the infinitesimal dipole approximation is
not suited for a proper interpretation of the Alouette observations pertaining to
these resonances. One of the most striking differences between the high order
harmonic resonances (say n2 6) and the low order harmonic resonances (say

n= 3 and 4) is that the high order resonances are observed with the longest
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time durations in the relatively dense plasma at the lowest altitude sampled
(500 km). The possibility that these signals may be due to a plasma instability

initiated by the high power sounder pulse is suggested.
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Table 1
Number of Observations and Preference of Occurrence at
the Dipole Equator for the Higher order nf, resonaiices

& Number of Resonances Preference of Occurrence at
Observed the Dipole Equator Indicated
; 10 8 slight
j 11 7 slight
: 12 3 no
| 13% 0
; 14% 1 no (Cos /= .7, | cos(dipole
! lat) | = .89)

“Not shown in Figure 1
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Table 2
Electron Density N, Electron Temperature T., and Electron-Ion
Collision Frequency v, Corresponding to the Alouette II Data of
Figures 7a and 7b

Height

(km) N(cm-s)-r Te(°K)""“ Vi (sec“)"*
500 3.6 x 105 2000 210

1000 3.4 x 104 2200 19
1500 1.3 x 104 2100 -

2000 8.3(5) x 103 1900 6

2500 6.6 x 103 1800 5

3000 7.2 x 103 1700 6

.

*Determined from N = f§/8l where fy(kH,) is obtained from the ionogram f\,
resonant frequency.

“*Obtained from the Alouette || probe experiment.
"**Determined from eq. (408) of Rishbeth and Garriott [1969 ] .
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Table 3
Comparison of Alouette I and Alouette II nfy Resonant Time
Durations when cos 5= 1 at 1000 km

Duration (msec)** Effective Power

n Alouette 1 Alouette II Radiated(w)***
maximum average maximum average Alouettel Alouette Il

3* 10.4 5.7 19.3 8.9 20 60
4* 7.5 2.7 8.0 3.9 12 150
5 3.6 1.6 2.7 1.3 16 150
6 1.8 0.9 1.0 0.7 16 150
7 1.2 0.7 0.8 0.5 40 150
8 1.3 0.6(5) 0.7 0.6 25 150

*

* ok

* ko

Resonances observed in the frequency range below 2.0 MHz where the effective gain of
the sounder receiving system is much higher on Alouette || than it is cn Alouvette |; above
2.0 MHz (recording condition for resonances not marked by an *) the frequency resolution
is greater on Alouette | and the difference between the AGC time constants on the two
satellites is reduced ~ the Alouette || AGC system, however, is still more favorable for
resonance detection (see Section 2).

The Alouette | values correspond to the data points in Figure 1b that satisfy the condition
cos 3 2 0.985 (66 ionograms) and the Alouette || values ~orrespond to the 1000 Km data
points in Figure 7b (18 ionograms); the Alouette | 4f, data points in Figure 1b correspond-
ing to a resonance overlap condition were not considered in the derivation of the values
given in the table.

The effective power radiated is based on an assumed 400() load and the antenna system
mismatch loss (Figures 3 and 8 of Franklin and Maclean [ 1969 ]) corresponding to the
observed resonant frequency.
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Figure 1la.

Figure 1b,

Figure 2.

Figure 3.

FIGURE CAPTIONS

Resonant time duration vs. f/f,, vos *, and |cos (dipole latitude)'
for the Alouette I plasma resonances observed at fy, f,, 2f,, f,, and
2f,,. The open circles are used to indicate that the resonance under
consideration was observed to overlap another resonant feature on
the ionogram (e.g., see the fy entries corresponding to long dura-
tion times with fy/f, *~ 1, cos /2 < 0.4, and |cos (dipole latitude) |

< 0.7); the solid points correspond to observations free from such

overlap effects and should be given more weight.

Same as Figure la except for the Alouette I plasina resonances
observed at nf, with n= 3 to 12, In this figure the only points cor-
responding to the overlap condition are the 4f, entries near fy/f, ~ 4

(corresponding to the condition 4f, ™ f,).

Resonant time duration vs. | cos (dipole colatitude)| for the

Alouette I plasma resonances observed at nf, withn= 3 to 8, The
data from the present study (solid points with dashed lines indi-
cating the envelope of the rnaximum) are compared with the maxi-
mum values obtained from a previous investigation [Benson, 19701,

and the theoretical predictions of Shkarofsky [1968].

Maximum observed values of the Alouette I nf, resonant time dura-
tion D vs. n for n = 3 to 12 when |dipole latitude |= 12°, The re-
sults presented from a previous investigation correspond to a small
region near -12° dipole latitude; the results from the present in-

vestigation correspond to the maximum values expected at +12°

4RI e il 1t o L

S0i1 Mubadac it b coiaitcid
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Figure 4.

Figure 5.

Figure 6a.

Figure 6b.

Figure 7a.

dinole latitude based on the trend of the low latitude data points
presented in Figure 1b. The curves in each case represent a least

squares fit of the points to D= An-? where A is a constant,

The ratio (V) AV . ), vs.cos 7 corresponding to the Alouette I

data of the present investigation,

The frequency domains of the long and short antennas co: respond-

ing to the Alouette I data of the present investigation.

An Alouette II ionogram recorded near apogee illustrating a long
duration f,; resonance; f,, is the first member of the sequence of
diffuse resonances [Oya, 1970], f .S is the exit frequency of the

z wave, and f_S is fhe exit frequency of the x wave, (QUI pass
7710, 10 September 1967, 09:42:25 UT; -14° latitude, 84° west

longitude, 2922 km.

An Alouette II ionogram recorded near perigee illustrating a short
duration f, resonance; f;, is the second member of the sequence
of diffuse resonances [Oya, 1970] (SNT pass 2316, 12 June 1966,

14:38:47 UT,; -16° latitude, 71° west longitude, and 580 km).

Resonant time duration vs. fy/f, and the height H for the Alouette II
plasma resonances observed at f, f, f,, and 2f, when cos £ 2 0,985,
i.e., £ £10°, The curve on the 2f; duration vs. fy/f; plot repre-
sents a least squares fit of the maximum duration D observed at

500 km to D = A(f,/f,)-!, where A is a constant, using the follow-

ing values: D = 23.8, 10.8, 6.8, and 5.5 msec corresponding to



Figure 7b.

Figure 8.

Figure 9.

Figure 10.

fy/f, = 3.73, 6.83, 9,77, and 15.90 respectively. The points enclosed
by solid lines correspond to four ionograms recorded when the low

power transmitter was in operation (see text and Figure 9).

Same as Figure 7a except for the Alouette II plasma resonances

observed at nf, with n = 3 to 12,

Representative frequency variation of the nf, resonances with
height corresponding to the Alouette II data of the present

investigation.

Comparison between an Alouette II ionogram recorded when the
low power transmitter was in operation (top) and one recorded
when the high power transmitter was in operation (bottom); f,,

and fos are the electrostatic wave resonances [Warren and Hagg,
1968 ]. The top ionogram is one of the four ionograms correspond-
ing to the data points enclosed by sold lines in Figs. 7a and 7b;
both ionograms are from the 2000 km data sample (top: QUI pass
6110, 28 April 1967, 12:28:04 UT, -5° latitude, 62° west longitude,
1960 km; bottom: LIM pass 8194, 21 October 1967, 04:36:57 UT,

-8° latitude, 79° west longitude, 2019 km).

Resonant duration vs. fy/fy for the f,, 2f,, and 3f, resonances as
observed on 4 Alouette II satellite passes. The variation of fy, H,

and cos [ corresponding to each pass is presented in the bottom
row. The cut-off of the 3f; data points near f,/f, = 1 is an instru-

mental effect since only resonances observed in the frequency range
below 2.0 MHz are plotted.
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