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STRUCTURAL DAMPING IN SATURN VEHICLES AND SCALE MODELS
I. INTRODUCTION

Through the years, there has been a continued need for an analytical
method of obtaining the damping characteristics of lightly damped struc-
tures, Chang [1] was able to derive an empirical equation which success-
fully described the Saturn I Dynamic Test Vehicle (SAD-6) damping
characteristics for lateral bending. He did this by equating the energy

dissipated per cycle as a function of the maximum kinetic energy in the
structure of the vehicle,

This report is aimed at applying the method of Chang to different
space vehicle configurations, and attempts to extend the method to the
longitudinal and torsional vibration modes, Since this report involves
compilation of previously published test data, no details of the
particular test equipment, procedures, data reduction methods, etc,,

are given, The interested reader can find this information in the
referenced material.

IT. DAMPING CHARACTERISTICS FOR LATERAL VIBRATIONS
Chang's equation is given as
= 0.8
DC = 0,313 To , ¢h)

where Dy represents the energy dissipated per cycle and T, the maximum
kinetic energy of the structure, The coefficient of T, in equation (1)
is based on the units of newton-meters for the energy. (Note that the
units and coefficient of Ty are different from those used by Chang.)

Chang's results of the SAD-6 test are shown in figure 1, The number
of test points has been reduced by averaging the data for each mode given
in figure 1, It is seen that 83 percent of the total data lie within a
* 2 db band. This spread in the dissipated energy seems moderate con-
sidering the many parameters which enter into the calculation of T, and
Dp; and the associated measurement errors of these parameters. Since the
publication of reference 1, data for a large number of Saturn type vehicles
and stages have become available., In figure 2, the empirical equation (1)



was used to fit the damping data for all the vehicle configurations
tested. Along with the line representing equation (1), the %2 db lines
are drawn. It is seen that equation (1) yields a surprisingly good fit
over all the vehicle configurations, especially when considering that
the energy levels range over seven orders of magnitude, the vehicle
masses vary from 33,600 to 721,000 kg, and the frequencies vary from
0.5 to 14.0 Hz. One should also notice that the véhicle configurations
tested include not only single but multiple tank structures as well,
Therefore, it is believed that equation (1) can be used as a good first
approximation for predicting damping characteristics of similar space
vehicle configurations for the lateral bending modes.

In stability and response analyses, the damping ratio { is the most
convenient damping characteristic of a structure, It can be readily
obtained from equation (1) as

C =T - )

Substituting from equation (1) into equation (2) yields

(= —=313 3)

4ty TO°Z
o]

Assuming that equation (1) is a valid representation of the damping
characteristics of the investigated structures, it follows from equation
(3) that the damping ratio { is slightly decreasing with increasing ampli-
tudes of the lateral bending vibration, This is certainly an unusual
result, since the damping ratio is usually considered to be independent
of the amplitude of the vibration, It is seen from equation (3) that an
increase of the amplitude by a factor of twc decreases the damping ratio
{ by 32 percent, This fact should be taken into consideration in response
analyses in which the amplitudes exceed those of the dynamic test programs,
We believe, however, that further research in this area is necessary to
obtain a better understanding of the damping mechanism of complex structures,

IIT. DAMPING CHARACTERISTICS FOR TORSIONAL VIBRATIONS

The damping characteristics for torsional vibration tests are shown
in figure 3 for four Saturn V configurations, It was found that the test
data can be better fitted by a relationship which is slightly different



from equation (1), which was used for the lateral vibration data. This
relationship is given by

D, = 0.34 Tg'so. (%)

This equation indicates that the energy dissipation in the torsional.mode
is a little higher than that of the bending mode for the same test ampli-
tudes, However, the data show a greater scatter, because only €7 percent
of the data (rather than 83 percent for the lateral vibration) fall
between the *2 db bounds., This greater scatter is likely to be caused

by the high concentration of potential energy in the Service Module/
Command Module connecting structure, In addition, the energy levels

for the torsional modes were generally smaller than those for the

lateral modes, The smaller energy levels tend to increase the scatter.
Unfortunately, only a limited range of data is available. Because of
this high scatter, it is felt that the difference between equation (1)
and equation (4) is not statistically significant, and that equation (1)
can be used for both the lateral and torsional vibration.

IV, DAMPING CHARACTERISTICS FOR LONGITUDINAL VIBRATIONS

The damping characteristics for the longitudinal vibration tests
are shown in figure 4 for two Saturn V configurations, It is seen that
the slopes for the energy dissipation vs the energy level of the longi-
tudinal vibration is significantly different for the two configurations
tested, Therefore, no unique equation for predicting the damping
characteristics of the longitudinal vibration of a structure can be
established, However, further research in this area might unveil a
missing parameter which could explain the difference in the damping
behavior of these configurations,

There is one important difference which should be noticed. The
straight lines which were fitted to the longitudinal test data have a
slope which is greater than unity. As a consequence, the damping ratio
for the longitudinal vibration mode is increasing for increasing ampli-
tude. This result is opposite to the damping behavior of the structure
vibrating in its lateral or torsional mode, where it was found that the
damping ratio was decreasing with increasing amplitude, At the present
time, no conclusive physical explanation can be given for this different
behavior,



V. DAMPING CHARACTERISTICS FOR SCALE MODELS

Several attempts have been made in recent years to predict the damp-
ing characteristics of a structure from dynamic tests on scale models.
Figure 5 is included to show that the Chang equation could not be used for
the test data obtained from a 1/5 scale model Saturn I and a 1/10 scale
model Saturn V. This would indicate that the damping characteristics
cannot be predicted from scale model tests or that the Saturn scale
models were deficient in modeling some still unknown parameter,

VI. CONCLUSIONS

1. The structural damping equation established by Chang can be
applied to the bending and torsiomal vibrations of Saturn-type vehicles
and similar configurations.

2. The Chang equation or any similar equation cannot be applied to
the longitudinal vibrations or to the scale models of the Saturn-type
vehicles,

3. The damping ratio { depends on the amplitude of the vibration,
For the lateral and torsional modes, it decreases with increasing
amplitudes.

4, The damping ratio [ increases with increasing amplitude for the
longitudinal modes of Saturn-type vehicles.
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Figure 3, Damping in Torsional Vibrations of Saturn Vehicles
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