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A SOLUTION TO THE PROBLEM 
OF EVACUATING A SPACECRAR CANISTER 

This discussion analyzes the effect of material  o ~ l g a s s ~ r r g  o11 t11c li i  cL  - 
s u r e  of a canis ter  being evacuated through an aperture.  That ,s a c ' c k  i i n l -  

nalion of the t ime required to reach a lniilimum pressure  in thc c a(-i  312 r ~ ~ i r c 1  

the ra te  of outgassing necessary to lieel2 the canister at  this p.~*cssrr:~r: is 3. 

The canis ter  i s  assumed to be immersed in the vacuum ei~viro~rllrle rt )' s ! ~ ~ ~ ~ ~ > ~  
and is initially a t  atmospheric pressure  Pi a t  time t eq~la l  to zi:r.c . 

Consider a canister (F ig .  i)  of volume V which is venlcci i l l  - o ~ r ; i ~  :I 17 

aper ture  of a r ea  A ,  and assume that a l l  of the follo~ving equatloi~s r c f ~ r  I ~Ili 

aperture that is small  compared with the s ize  of lhe vessel  and a;'ilp" !(\ c 7 l h L l -  

viscous o r  molecular flow. P3 i s  the pressure  of the vacuum C l l ~ i ~ ~ : ~ ' ? M e ' "  

space where P1 > %. Then, for  the PI side, a pumping speed S IS a s s o ? ~ x c d  

with the aperture because gas i s  disappearing into the aper ture .  

It has  been shown in vacuum technology ( s e e  b i ' o l i o g r a , ~ ~ ~ ~ )  L ~ L I C  r k e  
~ u m p i n g  speed S (measured in l i ter /sec)  of an aperture at  pressrire 3 ecp:):. 
the volume of gas  removed from the system per  unit of time measure6 ac the 
pres su re  P; hence, 

Then, the throughput o r  flow ra te  Q (measured ill micron-literjsecr) is 

Q = PV' ( 2 )  



Figure i . Schematic of canister. 

Therelore, lrom equations ( i)  and (2)  , we arrive at equation ( 3 ) .  

S = V' 

where lhe pressure P is measured in microns of mercury. From this, the 
Lhroughput of the gas out of the canister is expressed as  



TMEORET I CAL ANALYS I S  

The outgassing r a t e  is simulated by assuming a leak Q mto the 
0 

canis te r ;  thus ,  the net removal of gas  is 

a.nd, as a resu l t ,  the p r e s su re  drops a t  a r a t e  - Therefore ,  
dt  . 

,I- Sdp - - - 
S 

- dt 
SP - Qo 

p2 

Since the initial t ime t = 0, then 
0 



-?c : #ig out S -Torn the brackets.  

Pi = the initial p ressure  in the canis ter  (measured in microns of 
Hg, at time t = 0) . 

F 2  = the pressure  in the canis ter  (measured in microns oS Hg 
a t  time t )  . 

i]E = the simulated outgassing ra te  in the canis ter  (measured  in 
0 

microns-liter/sec) . 

'ii = the volume of the canister (measured  in  l i ters) .  

S and S = the pumping speeds of the aperture for  molecular and 
liz V 

viscous flow, respectively ( measured in li ter/see) . 

Q o = the gas load of the system. - 
S 



STARTING COND l"ih0NS 

The representative values assumed for the canister are 

diameter = 288.28 a m  (82 in_ ) 
ra&us = 104.14 em (41 la, 1 
1e~ t t . b  -= 330.88 em ( 138 in. 1 
volume = 6111,24454 x 11 0' am3 = 611, 24454 s f O% lilcrs - -r2h 
area = 2.840578 s $0%am2 = 2 wrh -k 2 mr2 

Q 1) 4 inch d i m e t e r  ( mea of aperture = 8 k 6 3  ern2) 

(2) 3 inch diameter (mea of a ~ r d u r e  = 4%. 58 em2) 

(4) 1 i m h  d i m e t e r  (a rea  d a p r t u r e  = 5.864 em2)  

PROCEDURE 

To determine the eBectt of the outgassing rate on tl~ese cala;.uialinns, a 
value of silicone raabbr was hken from the literahrel: 

70 x pHg 
liter 
See em2 . 

i, Donald J. Smteler, Wnald W. Jones, David H. Rolkeboer, and Frank Pagino, 
"Vaeum Technolhow and Spee  Simulation, " p p r e d  under contract NASw-690 
by Aero Vat Coqoration, 1966. 



l?o iind the simulated outgassing rate in the canis ter ,  the a r ea  of the 
can islei. was multiplied through the above value giving 

Using  his number a s  a median, larger  and smaller  outgassing ra tes  were used 
in !,he equations to ensure representative resul ts  covering a band of possible 
parametric values. 

The pumping speeds S of the different s ize apertures  for molecular 
and viscous flow were taken for  a i r  at  20°C f rom the l i terature l isted in the 
bibbiogrzphy . 

Viscous Flow 

iissurning the aperture of a r ea  A i s  srnall compared to the vessel ,  the 
pumlpii~g, speed is expressed by 

Then for viscous flow the time t fo r  the canister a t  a pressure  Pi to reach 
a value P2 is given by 

where Pi = 7.60 x l o 5  pHg. 

Molecular  Flow 

.Assuming the aperture of a r ea  A is smal l  compared to the vessel  and 
the mean free path of the gas,  the pumping speed, a s  developed in Appendix A, 
:s cxcressed by: 



For  molecular flow the corresponding time interval to equation (9) is c , x ] ~ c s S -  

ed by: 

where PI = 1.0 fig. 

The equation for viscous flow (Eq.  9)  was used in the ca l c~~ ia t rons  
down Co the pressure  of I. 0 x t o r r  . Below this pressure  equalion I f 1 )  
for  molecular flow was used. 

IN IT IAL  CONDITIONS 

The representative individual values of Q chosen were: 
0 



P2 values substituted into 
formda,  ( pHg) 

CON CLU S I ON 

The final presswe obltained in lthe eaniskr will be an equilibrium eon- 
dition detern~d by3 excepthg mhor  parameters, the flow of gas from 
the walls of the cmister a d  the pumping s p e d  d the a p r b r e .  It is reeophed  
that the pumping s p e d  of the apr tu re  will not remah cona.st%int over the entire 
range of calkeulations but will c h m p  ~ t h  the p s s u r e  on the inside of the 
cmiskr, However, in these ealcdations it was a s s w e d  that the paunping speed 
was eonsimt over the pressure range, this s p e d  behg separate values for the 
viscow and molecular flow. 



pumping speed the syslenl 's  outg:~ssing r:lLe L Y ~ P  I ( le t~t 'ni i i l~ '  lhe 

pressure  nehicv3l1be by the c:zi~istcl.. As long 2 s  the  r:lte oI o t i i ~ : ~ s ,  I , -2 7 - 
conslant at  some value Ihe canis ter  will slay nt this pressure ,  

Thc aciditioi~ of physical obstructions, temperature g r a d i ~ l i  s I I r t  

varying outgassing ra tes  01 Lhe mater ials  will affect the overall l ~ b c ~ * ~  1 1  

environment of the canis ter .  The rdore ,  the data and results o'~l;i_:ic(l _ L  

intended to present only representative cases  for  a ealiisler of F :I?,;! * ,,c o ~ c l  





APPENDIX A 

GAS KINETICS 

The total nuinber of collisions with the walls,  per  unit area pcr ur116 
t ime ,  including molecules coming in  f rom all  directions and with all speeds is 

where 

- 
v = mean molecular speed; 

n = number of molecules per  cubic cent imeter .  

The gas  flowing a c r o s s  any plane per  unit of t ime t ,  - dV is 
dB: 

Then the flow of g a s  is 

Since the mean molecular speed is 



L\ ilC2l-, 

'i = the Boltzmann constant = 9.38% x 10-16 dyne em/deg 

T = the absolute temperature 

M = the mass  of the molecule. 

Substituting equation (A-5)  into equation (A-4)  gives 

Equation (A-6)  was derived by using kinetic theory. This equation 
indicates the amount of gas  flowing through an aperture of a r e a  A, which is 
smal i  compared to  the vessel  and to  the mean f ree  path of the gas. 

Now to determine the pumping speed of the aperture from the PI s ide,  
we usle the relationship 

Substituting equation (A-6) into equation (A-7) we a r r i v e  a t  

Thus, molecular flow fo r  a i r  a t  20aC is 



APPENDIX B 

TABULAR DATA 

Q the simulated outgassing ra te  in  the canis ter  measure:: 111 
o 

microns -liter/sec 

PON the base pressure  reached for  molecular flow i n  l,he canister 
for  the prescribed value of Q . 

0 

POV the base pressure  reached for  viscous flow in canister 
for  the prescribed value of Q . 

0 

P2 the pressure  in the canis ter  for time tN o r  tV measured in 
t o r r  and in microns of mercury.  

tV the t ime,  in seconds, for  viscous Elow to reach a pressure PZ. 

tN the t ime,  in seconds, for molecular flow to reach a prcssure 

P2- 

NOTE: tV was calculated for pressures  down to 1 x t o r r .  
t N  was calculated for pressures  below 1 x to r r .  



TABLE B-I. ONE-INCH ORIFICE 

P,? (IS'?? 8 PZ ( :*l-M5 TPI ( SEC 1 T V  ( SEC 1 



TABLE B-i . ( Continued) 

00 = O e1P'ICRON.S HG-LITFRISEC 
PON = 0 a 1 7 0 E - 0 2  bI-HG OR POY = 0m170E-05 TORRa 
PC?V = 0 e 9 8 7 E - 0 3  bA-YG 9 R  POV = 0 e 9 3 7 E - 0 6  TOR9e 

9 o 7 6 E  0 3  
0.10E 0 3  
0e5OE 0 2  
0w10E 0 2  
Oe50F C 1  
O e l ? E  0 1  
0 e 5 0 E  3 9  
OolOE 0 0  
0 e 5 0 E - 0 1  
0.13E-01 
9 e 5 0 F - 0 2  
Oel(7E-02 
Oo5C)F-03 
O w  10E-03 
0.50E-04 
0o10E-04  
Oe50E-05 

3 r 7 6 E  56 OoOCjddbdLJE " 3  
OelOE '36 O a 2 2 5 2 6 4 2 7 E  31 
OeSOE 9 5  0 * 3 0 3 6 1 $ 9 4 F  3 3 
OolOE 9 5  0 1 4 8 3 1 6 7 9 5 E  3 3  
0 0 5 0 E  0 4  3 0 5 6 C 5 2 3 r ~ E  3 3  
OelOE 0 4  C e 7 4 0 3 9 i 7 9 E  ,, 
8 e 5 0 E  33 O s E 1 7 4 2 7 4 l E  U S  
OolOE 03 0 1 9 9 0 9 3 6 5 5 E  0? 
0 e 5 0 E  0 2  0 o 1 0 7 4 3 3 5 4 E  3 4  
0 e 1 0 E  0 2  Oa1253910BE 0 4  
0 e 5 0 E  0 1  O m 1 3 3 1 2 5 7 3 E  3 4  
OelOE 3 1  Ow15109130E 0 4  
0 o 5 0 E  0 0  C e 1 6 4 4 5 9 L 2 E  C 4  
0w10E 0 0  Ow19568439E 0 4  
0e53E-01  0 m 2 0 9 3 5 4 7 8 F  0 4  
0.10E-?1 Ow24323974E 0 4  
0s50E-02  3m26099140E 0 4  



TABLE 73-1. ( Continued) 

23 = D e 2 h l I C a O K . 5  H G - L I T E R / S E C  
SC" 008&3F--02 V-MG CR  PO^ = 08340E-05  TO '??@ 
P C \ /  C o ' , 9 7 E - - r 3 2  FJ=-=HG OR P O V  = 0e997E-05  T C Q 9 .  



TABLE B-f . ( Continued) 

C;O - 0 B : 3 h . ! I C 5 0 N S  t i C - L I T E ? / S E C  
POP.: - O e 5 1 0 E - C 2  h I - k t G  Oi7 POX = Ga51CE-C5 T \? i - ?2 r  
POV = 0 e 2 9 6 E - 0 2  V - H G  09 P O V  = 0 e 2 9 6 E - 3 5  T O R ? .  



TABLE B-I . ( Continued) 

QO = 0 .4tdICRONS H G - L  I T E R I S E C  
PORi 0,68;1E-02 M-HG OR PON = 0 e 6 8 0 E - 0 5  TORRe 
FOV = 9 . 3 9 4 % - 0 2  hf-HG OR POV = 0 . 3 5 4 E - 0 5  TCRRe 

22  ( T O R P I  PZ (M-HG TPJ(SEC)  TV ( S E C  1 



TABLE B -i . ( Continued) 



TABLE B -1 . ( Continued) 

o;? l~ ) P2 I I \ . ' -YCl T N ( 5 E C )  T V  6 SEC 1 



TABLE B-l . C Continued) 

P2 ( T O R R  1 P2  OT--HG 1 T 1%: ( S E  C 1 -r I ,x '(SECI 

Oo76E 0 6  
Ce lOE 06 
3e5CE 0 5  
0.10E 3 5  
0 e 5 0 E  04 
0110E 0 4  
Ce5QE 03 
Oe10E 03  
Oo50E 02 
Ce lOE 0 2  
C o 5 0 E  01. 
O c l 3 E  0 1  
Oe50E 0 3  
OelOE 30  
0.5QF-31 

CO = 9 c95? lC20hS HG-L I TEF? /SEC 
POR = 0 0 1 5 3 E - 0 1  Y-HG OR PON = 00 1 5 3 E - 0 4  TOR?,. 
P O V  = OeOS8E*02 *P!-HG OR POV = 0 ,888E-05 T O R ? @  

P2  ( T O R R  1 P2 I I"'-HG 1 T " K ( S E & )  T b ' f b E :  1 

0 e 7 6 E  03  
C)elOE 03 
3 a 5 0 E  02 
OelOE 0 2  
0.501 0 1  
O.1OE 0 1  
0 e 5 0 E  C O  
0 e 1 0 E  00  
0e50E-CP 
0 s 1 0 E - 0 1  
0050E-02 
0. l o € - 0 2  
0.53E-03 
Os lOF-03 
00 5 O F - 0 4  



TABLE B-I . ( Continued) 

30 = 10eOVICRONS HG-L ITERISEC 
P O \  = Cei72F 3'. " - F G  SF? PCY = 3 e 1 7 3 E - 0 3  TORRm 
D S V  = G1937E-Cb ' \?-t-iG DR P C V  = 0 e 9 E 7 E ~ C 4  T 9 P 2 e  



TABLE B -1 . ( Continued) 

QO = 100e0vICRONS HG-LITERISEC 
P O N  = Ce170E 01 Y-HG 09 PON = 0e170Eo02 TC9Re 
POV = 0 e 9 8 7 E  0 0  Y-HG 3R P 3 V  = 0e987E003 TORRm 

QO = 1000r0hlICRONS HG-LITERISEC 
PO31 = 0,170E 02 '4-HG OR PO& = CIm170E-01 TCRRI  
P O V  = 0.987E 0 1  M-HG OR P O V  = 0.9276-02 T O R R c  

P2  ( T O R R  1 P 2  (1.";-HG TI\I ( SEC 1 T V ( S E C I  



TABLE B-1. ( Concluded) 

70 = 130Ci0Qa1?b1%CRCBNS .HGmLHTERJSEC 
PCJ'% = 36i73E 04 V-PG 3 R  PON = 0.170E OP T O R P ,  
PCs /  = 0 . 9 8 7 E  0 3  N-FG OR POV a Qe987E 00 TCR?. 



TABLE B-2, TWO-INCH3 ORIFICE 

d o u L # L . u ~ * v \ , \ d t  . " W  

3.55";:.>7,: \",L 
,,.. -. ... 

G e 7 5 : y / 7 d L  - L L  

J , L 2 3  ? ~ , 2 ~ 5 F  -: 
? . * - .  - 7 ,  

v s  , S u . L i  1 L i b  .. 3 
* .- G *  a k : ; > . , 4 L b G E  u.3 

;* 2 ,  ',. ; ' 5 > 7 w E  * ,> 
-. , C.24 , j ; ,L'47 : 1. L,j 

2 it:; r" ,- t , "  -2 :/ ., 3 2 k- -1 2! 
, -. , 

;, a 2 1 2 & L "? c, ,-"- \"+ 3 
; j ; 2 / -,; li - - 

-d c 3- d 2 

Oe377i6345E $ 3  
0 .4 i ' S994!?7F_  133 
O a 4 2 8 3 i j i ! 1 5 E  ..\? 
2 . 5 2 1 7 1 3 7 2 E  3 3  
0.594i1251E G 3  
C ~ C 3 2 4 G 4 4 5 E  0 3  
~ d e 7 C 9 8 3 7 6 4 E  0 3  
0 1 7 4 3 1 6 9 1 9 E  0 3  
O e 8 2 5 5 6 2 5 3 E  0 3  



TABLE B-2. ( Continued) 



TABLE B-2. ( Continued) 

QO = O . Z M I C R O U S  H G - L I T E R / S E C  
PON = O e b 5 l E - 0 3  PI-HG 09 PON = Oa65fE-C6 T 3 H R e  

POV = 0.493E-03 R-WG 3 9  POV = Ce433E-C6 T O f ? K *  

P2 ( T O R Y  1 P 2  ( " - 3 G  1 T r \ l ( S E C )  T V  S E C  1 



TABLE B-2. (Continued) 



TABLE B-2. ( Continued) 



TABLE B-2. (C~n t inued )  



TABLE B-2. ( Continued) 



TABLE B-2. (Contin:?ed) 





D;, [ T p r ?  , <  \ 
. I ~1.2 ( \ . - P C  * i f',, ( S t :C  T ' J  ( SEC I 

i .7 t .F  31 
C.!L".F (36 
: ) . 53E  05 
" * i O E  
L e 5 U E  04  
c.11): c 4  
3 r 5 i ~ E  G3 
C ; . l O E  6 3  
.1.42F 2 2  
C e i G E  9 2  
!I . 5 O ::I i 
:: * 1 c, 1 
::!,5SE ZC, 
, 1 n - ,.. 
l...Lil: J', ;, * 5 3 - 7  1 
[: . 1 : :;: - 2 
.. @ 5  U . .  - 6- -,.,,? ,.L 



TABLE B-2. ( Continued) 

C ?  ( T ~-,? r? 1 1'2 ( "-I-JG 1 Ti, ( S E C )  T iJ (SEC 1 





TABLE B-2. (Concluded) 



TABLE B-3. THREE-~NCH ORIFICE 



TABLE B-3. ( Continued) 





TABLE I3-3. ( Cont,nued) 



TABLE B -3. ( Continued) 



TABLE B-3. ( Continued) 



TABLE B-3. ( Continued) 

ID2 [ ;"3? 2 )  [ 2 2  ( v 4 - ~ ( <  T:%J i S E C )  T ' d  ( StC 



TABLE B -3.  ( Continued) 



TABLE B -3 .  ( Continued) 

?. -, 
- ' L  ( ? ? ? ' ? )  22 ( ' . 1 - 3 G )  T ' .  ( S C C )  T V ( 5 E C )  



TABLE B-3. ( Continued) 



- - 
I* L: : ~~1 T ) 22 ( : : - " r  t T ,,\i ( 5 i-: C 1 T ' J  ( S E C  1 IIJ) 
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TABLE B -3. ( C,ancluded) 



TABLE B -4. FOUR-INCH ORIFICE 

(3s = 3 rC\ ' ICRONS HG-L ITER/SEC 
POV = 0 e U 0 3 E  59 V-HG OR PON = 3 0 3 3 0 E  UO TO;&<. 
P O V  = 0 0 0 ~ 2 3 E  0; V - d G  0 9  POV = U e 0 d O E  0 0  T C P I ~ .  

Oe76E C3 
OmlDE 0 3  
0m50E 02  
O a l O E  C Z  
Oe50E 0 1  
O.lOF 01 
C e 5 0 E  00 
OmlOE 0 0  
O e  5 3 E - 0 1  
O a  l O E - 0 1  
0 ~ 5 0 E - 0 2  
(1s l O E - 0 2  
Oe5C)E-03 
0 .10E-03 
0 0 5 3 E - 9 4  
0 0  1 0 E - 0 4  
Oo50E-C5 
0 Q 1 0 F - i ) 5  
Oe53F-06  
0 0 9 9 E - 0 7  

Oo76E 06 
3 e l Q E  0 0  
Or5CE (15 
0 e 1 0 E  0 5  
0 a 5 0 E  04  
O a l O E  (34 
Oo50E 0 3  
0.10E 3 3  
0 r 5 0 E  Q 2  
O r l C E  0 2  
0 0 5 0 E  0 1  
0 e 1 0 E  0 1  
Oo53F  03 
O a l O E  CO 
j a 5 0 F - l l l  
i )e15E-r  1 
Ge5CE-02 
O e l C E - 0 2  
0 a 5 0 E - 3 3  
C) r lOE-93 



TABLE B -4. ( Continued) 

Y'. 

3 2 
92 
0 2 
1j2 

3 2 
3 2  
ii L 

u 2  
0 2  
C Z  



TABLE B -4. ( Continued) 

dC = 3 r 2 , V t 1 C ? 3 N S  HG-iITEX/SEC 
? O h  = 0 .212E-33  ! I - Y G  3 R  POY = b a 2 1 2 E - b 6  T 3 R R r  

= 3 * 1 ? 3 E - 0 3  Pt-HG OR POV = 0 .123E-06 T 9 K 1 3 e  



TABLE B-4. ( Continued) 

02 (Tcr?f i  1 P2 ( '"-HG T N (  S E C )  T L ' (  S E C  



TABLE B -4. ( Continued) 

P2 [ T 0 3 P  1 P 2  ( i '? -HG) T ' I I S E C )  TL ! S E C  1 



'~'AGLI.: G -4. (Continued) 



TABLE B 4. (. Continued) 



TABLE B -4. ( Continued) 



TABLE B-4. ( Continued) 



TABLE B -4. ( Continued) 
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TABLE B -4. ( Continued) 

(30 = 1 0 . 3 M I C R G N S  HG-LITEH/SkC 
= O m i O G E - O l  M-HG OR PON = 0.106E-04 TOKK.  

P O V  = 8.617E-02 kl-HG OK POV = Ce61?E-05 TOK3, 

P2 6 T 3 R R  1 P2 ( K - k t G )  T:? ( S E C I  T \ /  ( SEC 1 

QO = 100 e O M I C R 3 N S  HG-LITEK~SEC 
P9N = 3 c I G b E  00 M-WG OK PON = O e 1 0 6 E - 0 3  TOHR. 
POV = O r 6 1 7 E - 0 1  M-HG Dl? POV = 0 e 6 1 7 E - 0 4  TOt i?m 

P 2  ( T 0 1 7 K )  P2  (M-HG TPd ( S E C  1 TV(SEC1 



TABLE B -4. ( Continued) 

?ON 
POV 

00 = 1000~3~'1CH31~3 HG-LI T E t ? / S E C  
= O 1 1 0 6 E  01  kt-HG OH = Ue1-6E-32 T o K ~ < ~  
= 0 s 6 1 7 E  00 M-HG 313 POV = am517E-0': T O r < i ? *  

00 = 1 0 0 0 0  . O ~ , I C I ? O N S  HG-LITER/SEC 
PON = 0 * 1 0 6 E  02  M-HG OK PON = ~ m 1 0 6 E - 0 1  TOKKm 
POV = 0 s 6 1 7 E  0 1  Y-HG OR POV = S e h L 7 E - 3 2  T O R E *  



TABLE B -4. ( Concluded) 
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