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SUMMARY

This paper presents a discussion of the concept of modal density
or density of eigenvalues of various structural elements of engineering
importance. Expressions and graphs are presented that can be used to
estimate the average modal densities of these elements and are valid
for elements having any prescribed boundary conditions. The expres—
sions for modal density and thelr graphical representation were pre-
pared from the information available in the literature, but supplemen-
tary data were generated where required.

Cases are considered for rods, beams, solid rectangular and
circular plates, thin cylindrical, spherical and conical shells, composite
structures, shallow sandwich shells, orthrotropic plates, pretwisted
plates, plates subject to in-plane forces and shells on an elastic
foundation. For each of the elements up to a composite structure, graphs
are plotted using dimensionless parameters to generallze the applications
of the results; however, for the rest of the elements, graphs are plotted
by choosing some arbitrary dimensions to illustrate the effect on modal

density.
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1. INTRODUCTION

Any continuous structure possesses an infinite number of natural
modes of vibration and to obtain the information concerning the response
of such a structure, it is necessary to express the normal modes in
a series form. However during the past few years, there has been an
effort to develop a new approach to these multimodal vibration problems
that avoids the problem of expanding the response in terms of the mode
shapes. 1In this approach, sometimes referred to as "statistical energy
analysis", average response levels in various frequency intervals are
estimated without the apparent knowledge of the mode shapes and
resonance frequencies. Instead, what is required is a knowledge of the
type and number of structural vibration modes occurring in a given
frequency interval. This quantity, the number of modes per unit
frequency, is called the ‘modal density' of the structure. Thus the
modal density of a structure is essentially the density of the modes of
vibration with respect to frequency. It is an indication of the spac-
ing of the natural modes in the frequency domain.

When dealing with the structures excited in a very complex, or
random fashion it is often not only useful but necessary to resort to
statistical energy analysis to determine the response of the structure
to such loading. 1In order to apply this type of analysis it is found
that the modal denmsity of the structure in question must be known.
Moreover statistical energy analysis shows promise of becoming a useful
tool for estimating average response levels of multimodal structural

vibrations as the modal density of a structure is relatively independent



of the boundary conditions. Hence in order to apply a statistical type
of analysis to a structural response problem, it is necessary to know
the modal density of the basic structural elements such as rods, beams,
and shells. It is therefore the purpose of this paper to discuss in a
systematic manner the problem of the modal density in vibration prob-
lems of some basic structural elements like rods, beams, plates and
thin cylindrical, spherical and conical shells, composite structures
and certain shallow structural elements and present the expressions and
graphs that can be used to estimate the average modal densities of
these elements.

The determination of the modal density is essentially a mathe-
matical problem. It involves the determination of the frequency equa-
tion for the structure under consideration from the appropriate
equation of motion and then the summation of the resonant frequencies
over all possible modes of vibration. This yields an expression for
the number of resonant modes in terms of frequency. Differentiation of
this expression with respect to frequency will then yield the expres.
sion for the modal density in terms of the frequency. The k-space
integration technique introduced by Courant and Hilbert (1953) is
utilized to evaluate the number of resonant frequencies.

In Chapter 3, the modal density for longitudinal and torsional
vibrations of circular rods having uniform cross section is discussed
and results are compared.

Chapter 4 deals with the beams having constant geometry and

properties. The expression for modal density for transverse vibrations




of beams is presented. The graph of normalized modal density versus
dimensionless frequency is plotted.

For Chapter 5, modal demsity expressions are presented in flat
rectangular and circular plates and the results are discussed.

In Chapter 6, thin cylindrical shell is considered. The modal
density expressions are developed for cylindrical shells following
three different approaches. These integral expressions are then
evaluated and plotted in dimensionless form.

Chapter 7 deals with spherical shells. The modal density expres-
sion is developed as a function of dimensionless frequency and a graph
is plotted to illustrate the variation of modal density above and below
the ring frequency.

In Chapter 8, expressions for modal density of thin conical shells
are obtained based on two separate frequency equations and are normal-
ized with respect to comne geometry and presented for the frequency
range below the lower ring frequency and above the upper ring
frequency of the cone.

In Chapter 9, the additive property of modal density for composite
structures is verified analytically by considering an L-shaped frame
consisting of two beams joined at right angles and the graph is plotted
to illustrate the variation of modal density of the composite structure

with respect to frequency.

1Hart, F. D. and V. D, Desai. 1967. Additive properties of modal
density for composite structures. Presented at the 74th Meeting of the
Acoustical Society of America, Miami, Florida, Paper No. DD l1.
Department of Mechanical and Aerospace Engineering, North Carolina
State University at Raleigh, N. C.



In Chapter 10, modal density expressions are presented for shallow
sandwich shells, orthrotropic plates, pretwisted plates, plates subject
to in-plane forces, and shells on an elastic foundation. Graphs are
plotted to illustrate the effect on modal density. Results obtained

are discussed in detail and compared with some of the basic elements.

Chapter 11 presents a summary of results and conclusions.
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2. REVIEW OF LITERATURE

The problem of determining the modal density of any given struc-
ture is equivalent to ascertaining the distribution of eigenvalues of
large order corresponding to high mode numbers. A general discussion
of the asymptotic distribution of eigenvalues for various classes of
differential equations is given by Courant and Hilbert (1953).
Expressions for the number of eigenvalues up to a given bound are given
for differential equations with one, two and three independent space
variables. Although the treatment of the subject by Courant and
Hilbert is approached from a basic mathematical point of view, the
results have direct physical interpretation. It is indicated that
boundary conditions have no effect on the asymptotic distribution of
the eigenvalues.

Bolotin (1962) has also given considerable attention to the
asymptotic method in his studies of eigenvalue determination. In
1962 Bolotin presented a discussion of the asymptotic behavior of the
eigenvalues for a generalized rectangular region of arbitrary dimen-
sions. He applied this technique to the problem of plates and shells,
where the number of eigenvalues correspond to the number of natural
frequencies of vibration. Correction factors were also introduced to
extend the work of Courant and Hilbert (1953) to low mode numbers where
boundary conditions must sometimes be considered. Bolotin (1960)
presented a detailed discussion of the effect of edge conditions on the

vibrational modes of elastic shells.



In 1963 Bolotin presented a general treatment of the eigenvalue
density problem for a general thin elastic shell of revolution with
constant thickness in orthogonal curvilinear co-ordinates coinciding
with the curvature lines. Bolotin again used the asymptotic method
discussed by Courant and Hilbert (1953) in his work and obtained
expressions for the number of natural frequencies and the modal density
of a general elastic shell of revolution through elliptic integrals.
The results of this work were also extended to the specific cases of
the spherical shell and the circular cylindrical shell. Bolotin (1965)
presented a discussion which was essentially an extension of his
previous work in which he discussed the concentration points of natural
modes, as well as the effects of shear and rotary inertia.

Without apparent knowledge of Bolotin's work, Heckl (1962)
developed an expression for the natural frequencies of a cylindrical
shell using impedance methods. He then represented the number of
natural modes by a finite sum over all possible modes of vibration
possible up to some upper frequency. He then replaced the summation by
an integral and obtained an approximate expression for the modal
density of thin cylindrical shells. Heckl also presented some experi-
mental findings in his report.

In 1965 Smith and Lyon introduced the concept of modal density and
discussed its application with regard to structural vibration. The
cases of simply supported beams, clamped beams, simply supported
rectangular plates and clamped circular plates were considered in

particular.
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Ungar (1966) discussed the concept of modal density and its
application to composite systems. He also presented a list of expres-
sions for the modal density of some simple elastic systems of engineer-
ing value,

In 1967 Hart and Desai presented a discussion of the additive
property of modal density for composite structures and verified
analytically the validity of the additive property by considering the
composite structure consisting of two beams joined at right angles to
form an L-shaped frame,

Miller and Hart (1967) made a combined analytical and experimental
study about the modal densities of a thin cylindrical shell. Expres-
sions for modal density were presented in integral form using three
different methods and the validity of the results was discussed in
detail.

In 1968 Wilkinson presented the expressions for the modal densi-
ties for transverse vibrations of two dimensional structural elements
which included shallow sandwich shells, orthrotropic plates, shells on
elastic foundation, pretwisted plates and plates subject to in-plane
forces. The effect on the modal densities of these elements was
illustrated graphically.

In 1969 Miller presented the expressions for modal densities of
conical shells based on the two separate frequency equations and
applicable to a wide range of cone geometries and valid over a fre-
quency range sufficiently wide to be of engineering value. Miller
also presented the findings for the modal densities of conical shells

obtained by experimental study.



Erickson (1969) presents expressions to estimate the average modal
densities of sandwich beams and flat or cylindrically curved sandwich
panels. The effect of transverse shear flexibility, orthrotropic
shear moduli of the core, face bending stiffness, rotary inertia and
panel curvature on modal density is illustrated graphically over the
wide-frequency range. Modal densities of flat rectangular sandwich

panels having orthrotropic cores are determined experimentally.



3. MODAL DENSITY OF RODS

3.1 1Introduction
In this chapter a circular rod having the uniform cross section
with both the ends fixed 'is considered. A rod can execute longi-
tudinal, torsional or transverse vibrations either individually or in
combination. The expressions for modal density are derived considering

longitudinal and torsional vibrations individually.

3.2 Longitudinal Vibration

The governing equation of motion for longitudinal vibrations of a

rod is given by

azw(x,t) _ Egc Bzw(x,t)

ot Pl <0
where

E = Young's modulus

p = density of material

8. = gravitational constant

w = longitudinal displacement of a section.

This equation is based on the following assumptions:
1. The rod has a uniform cross section.
2. During the vibratory motion, the cross section normal to the axes
of the bar remain plane and normal to the axis.

3. The particle in a normal cross section moves in the axial direction

of the bar.



Eg
Letting —52 = Ci , equation (3.1) reduces to

22w (x, ) _ 2 2%u(x, t) (3.2)
, .
822 L sz

where CL is the longitudinal velocity of wave propagation along the

length of the rod.

Assuming that the solution of equation (3.2) is
w(x,t) = X(x) sinwt , (3.3)

and substituting (3.3) into (3.2) and simplifying, gives

2

XD 4 Wk = 0 (3.4)
dx

where

2 w

A = (6—9

L
w = frequency of vibration

X(x) = the shape of normal mode of vibration.

The solution fo (3.4) is given as

X(x) = Acos Ax + Bsin x . (3.5)

For a rod fixed at both the ends, the boundary conditions are

(3.6)

t
o

w(0,t) = w(4,t)

(3.7

"
o

or X(0) X(L)

10



Imposing the boundary conditions in (3.7), the frequency equation

for this case can be written as

R m=1, 2, 3,

’//
—
(a)
I R [ [ g k
I 1 L ¥ i ] hal 1
- 7
(b)

Figure 3.1 Rod with fixed ends and k-space

The wave number kl may be defined as

_ mfr
A Bl

(3.8)

(3.9

Hence the change in the wave number from one mode to the next is

given by

=
o3

11

(3.10)



Since the waves in the case of a rod are propagated only along the
length of the rod, the k-space is one dimensional and the equation for

the number of resonant frequency becomes

k
1 b
N = J di, . (3.11)
1 0
This gives
£
N(w) == ki, (3.12)

but equations (3.8) and (3.9) give

k., = 2 | (3.13)

1 CL

Therefore the expression for the number of resonant frequencies is

2
N =2 (D - (3.14)
L

Defining a dimensionless frequency v as

v = C% (3.15)
L
equation (3.14) reduces to

v

N(w) = = (3.16)

Differentiating (3.16) with respect to v gives

n(v) =2 (3.17)

—_ .

This is an expression for modal density for the longitudinal
vibration of a rod fixed at both ends and it can be shown to be appli-

cable for arbitrary end conditions.

12



3.3 Torsional Vibrations

The governing differential equation of motion for torsional

vibrations of a rod is given as

2% (x, £) - Gﬁ 2% (x, ) (3.18)
at? P ox

where
G = modulus of rigidity
p = density of material

gravitational constant

0Q
1

-
1]

angular displacement of the section.

This equation is also based on the assumption of equation (3.1).

Defining
Gg
c 2
_— = 3.19
== (3.19)

where Cop is the torsional wave velocity, equation (3.18) becomes

Bzﬁ(x,t) _ C2 32¢(x,t)
T

(3.20)
Z
Btz [>
Assuming the solution of equation (3.19) is
$(x,t) = 0(x) sinwt , (3.201)

substitution of (3.21) into (3.20) and further simplification gives

2
g.éﬁ;l + Aze(x) =0 (3.22)

dx

13



where

2 2
o= (D
T
0} = frequency of vibration
B8(x) = the shape of normal modes of vibration.

Again for the fixed rod, the boundary conditions are

8(0) = 8(L) =0 . (3.

Applying the boundary conditions to (3.22) gives the following

frequency equation:

w = m=1, 2, 3. ... (3.

Hence as in the previous section, the number of resonant

frequencies obtained by k-space integration is given as

1w
N(w) = E'(279 (3.
T
where
CZ - ch - gC [ E :l (3
T p P "2(1+y) )
or
C
_ L
CT = —_— . (3

[2(1+) 17
Substitution of equation (3.27) into (3.25) gives

i
_ (1)'{«[2'(1+p,)]2 . 3

L

N(w)

14

23)

24)

25)

26)

.27)

.28)



Now introducing the dimensionless frequency, equation (3.28)

reduces to

N(V) p (3.29)
Differentiating (3.29) with respect to v gives
[2(1]*
n(v) = LEATTHIS . (3. 30)

i

This gives an expression for modal density for the torsional

vibrations of a rod fixed at both the ends.

3.4 Discussion

The expressions developed for modal density of rods for both
longitudinal and torsional vibrations show that modal density of a rod
is constant and is independent of geometry of cross sections in
dimensionless form.

Moreover, the modal density of the rod for torsional vibrations is
about 1.5 times that for longitudinal vibrations.

Expressions generated by considering different boundary conditions
give the same answer and hence it is independent of boundary conditions

also.

15



4. MODAL DENSITY OF BEAMS

4.1 TIntroduction

In this chapter, the modal density for transverse vibration of
beams having constant geometry and constant properties are discussed,
The simply supported beam is considered fer deriving the expression.

The problem of simply supported beams was discussed in the
literature. It is reproduced here to illustrate an exact way for
developing the expression. Modal density is expressed as a function of
dimensionless frequency and the graph is plotted in terms of dimension-

less parameters.

4.2 Simply Supported Beams

The governing equation of motion for transverse vibrations of a

beam is given by the differential equation

BT 94_Z(_XLE)_ + .gé ____.._az‘z’(x’t) =0 (4.1
ox c 9t
where
E = Young's modulus of elasticity
I = moment of inertia of cross section
p = density of the material
g = gravitational constant
A = area of the cross section
V(x,t) = deflection of the beam at any section.

The equation (4.1) is based on the following assumptions:
1. The effect of rotary inertia is neglected.

2. Shear displacement due to a vibratory force is negligible,

16



3. Cross sections are plane before strain and remain plane after
strain.

4., Beam is slender.

Assuming that the solution of equation (4.1) is

V(x,t) = X(x) sinwt , (4.2)

substitution of equation (4.2) into (4.1) and further simplification

gives
4
d X(x) 4 _
—-—I—~ }\X(X) —O (4.3)
dx
where
4 _ psz
A
&c
w = frequency of vibration
X(x) = the shape of the normal modes of wvibration.

The general scolution fo the differential equation (4.3) is given

as
X(x) = Asin )x +Bcos Ax +C sinh Ax + D cosh Ax (4.4)

where A, B, C and D are arbitrary constants.

For the beam under consideration, the boundary conditions are

H
o

(4.5)

v(0, t) v"(0,t)

(4.6)

1
o

[

V(4L,t) vV'(L,t)

17



The above conditions can be written as

4.7

Il
(@]

i

X(0) X" (0)

(4.8)

i
(@]

X = X"

Applying the boundary conditions (4.7) and (4.8) to equation (4.4),

the frequency equation for the beam can be expressed as (Smith and

Lyon, 1965),

w = KC (4.9)

where

CL = the longitudinal velocity of wave propagation in the
beam material along the length of beam

{ = length of beam

K = radius of gyration of the cross section.

Let the wave number kl be defined as

K, = o (4.10)

Therefore the change in the wave number from one mode to the

next is given as

i)
ey = (4.11)

Again in case of a beam, waves are propagated only along the

length, hence the k-space is one dimensional and the equation for the

18



number of resonant frequencies is

Kk
1 1
N = 5— [ dk
By Y, 1
This gives
Lk
1
N(®) = =

Combining equations (4.9) and (4.10) gives

= Ve

1 KCL

Therefore the number of resonant frequencies is given as

2 J
OREN
L

| . |
|

A A

(a)

Y
~

i

(b)

amp——

[
¥

Figure 4.1 Simply supported beam and k-space

19
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Let the dimensionless frequency v be defined as

o =9t (4.16)

\/":’9 . (4.17)

Differentiating the above expression with respect to v gives

N(v) = %

n(v) = Zl—n \/Kl“: ) (4.18)

This is the expression for the modal density for the transverse

vibration of beams in terms of dimensionless frequency.

4.3 Graphical Results and Discussion

The result of the analytical development in the preceding section
is represented graphically in Figure (4.2). From the graph it is seen
that modal density for a beam decreases as the dimensionless frequency
v increases and asymptotically approaches zero value as v becomes

large.

20



10.0

P

2.0 |~

1.0

o0

n(v) F

.1
.01} l Ll | |
0.01 0.02 0.1 0.2 1.0 2.0
\):E)i
CL

Figure 4.2 Normalized modal density versus dimensionless frequency for
beams
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5. MODAL DENSITY OF PLATES

5.1 1Introduction

In this chapter, modal density expressions are developed for the
free vibrations of rectangular and circular plates. To simplify the
derivation, a rectangular plate with simply supported edges and a
circular plate with clamped edge are considered. The expressions
obtained also hold good for other boundary conditions (Bolotin, 1960).

Both the cases discussed in this chapter were readily available in
the literature and the information was gathered for systematic repre-
sentation. The differential equations governing free vibrations of
plates are obtained by modifying the equations describing the static

equilibrium to account for the inertia forces introduced.

5.2 Rectangular Plates

The governing equation of motion for free vibration of a

rectangular plate is given as

4 2 4 2
D[a_z.+za_.‘;__2_+a_°4i]+ﬁha_;’=o (5.1)
3x 3% dy dy 8 3t
where
Eh3
D =— = the flexural rigidity
12(1-u™)
o = density of the material
8. = gravitational constant
w(x,y,t) = displacement normal to the x-y plane
E = Young's modulus

22



Poisson's ratio

r
]

=
I

the plate thickness.

Equation (5.1) is based on the following assumptions:
1. Rotary inertia is neglected.
2. Cross sections are plane before strain and remain plane after
strain.
3. The thickness of the plate is small as compared to the other
dimensions.
4., No strain is suffered by the middle surface.

5. Deflections are small in relation to the plate thickness.

In general, when a plate vibrates, there are an infinite number of
natural frequencies, and each of them has a specific mode or shape of
vibration associated with it. These modes are called normal modes or
principal modes.

Let the solution of equation (5.1) be assumed as

t

w(x,y,t) =W(x,y) el(D (5.2)
Substituting equation (5.2) into (5.1) and simplifying gives
4 4
DY W(x,y) - k W(x,y) =0 (5.3)
where
& _ pho’
= 5g .

c

Considering the rectangular plate of dimensions Ll and LZ as shown

in Figure 5.1, the boundary conditions for the plate under consideration

23



are

BZW(X t)
w(x,y,t) = ——E——LZL—— =0 at y =0 and x = 4 (5.4)

ox

Bzw(x,y,t)

wx,y,t) = oy = 0 at y =0 and y = {2 . (5.5)
oy
These boundary conditions can also be written as
WO, ) = W0, ¥) =Wk, ¥) = W', ¥) =0 (5-6)
W(x, 0) = W' (x, 0) = W(x, &2) = W'(x, Lz) =0 . (5.7)
y k2
A 2.2
A k1+k2 =C
8.8 //
S.S 5.8 A \Qu£>
N
N 2
TT
s.s T
o — — k]_

Figure 5.1 Simply supported rectangular plate and k-space
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Let
W(x,y) = sin (mnx) sin (nny) (5.8)
’ k2% E

where m and n are integers.

This function satisfies the boundary conditions for a simply

supported rectangular plate.

Substitution of equation (5.8) into (5.3) gives

2 mmé4 mr, 2 ,nm 2 o, 4
kmn = (ZI + 2(219 (z; + (I; . (5.9)

Equation (5.9) can also be expressed as

2 . mm2 nm, 2.2
kn = [(q) + (Z;) 1 (5.10)

Hence the frequency equation for the simply supported rectangular

plate is given as [Smith and Lyon, 1965]

2 2 2 2
m 17 o

wmn = (.._.2_+-_—-2__) KCL m=n= 1) 2) 3, “ e (5‘11)
Ll LZ

where

Ll and LZ are the length and width of the plate

K = (J———AL-——O h w~ 0.289h = radius of gyration for the

12(1-49)
plate
Egc
CL = —B— = longitudinal wave velocity .
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Defining the wave numbers kl and k2 as

k, = +— and k, = >~ (5-12)

the changes in the two wave numbers from one mode to the next is given

as

- _ T
By = ZI and Bk, I; . (5.13)

Since the waves in the case of a rectangular plate are propagated
along the length and width of the plate, the k-space is two dimensional.
The expression for the number of resonant frequencies can be

expressed as

1

N(w) = m; H dk, " dk, . (5.14)

s

Cylindrical coordinates can be utilized to integrate over the

surface of the k-space.

Letting
kl = rcos §
k2 = rsin®

equation (5.14) takes the form

L1£2 r /2
N(w) =—= [ [ rdedr . (5.15)
i 0 0

Writing the equation (5.15) as

1.4 /2 2
N(w) = .% [ [ =dr ] de (5.16)
0
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and carrying out the integration with respect to r first, and then with

respect to 6, gives

)
N(w) = llmz 2 . 5.17)

Combining (5.11) and (5.12) gives

2w (5.18)

&1£2 w
L
wd
Define v = - then equation (5.19) reduces to
L
&zv
V) = — .20
NW) 4mMK (5.20)
where v is a dimensionless frequency parameter.
Differentiating (5.20) with respect to v gives
4
_ dN(v) _ 2
n(v) = 5 TR . (5.21)

This is an expression for the modal density of a rectangular
plate.
If the plate thickness is h, the radius of gyratiom is h/V1§

and the expression is given as

T Zm . (5.22)
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5.3 Circular Plates

The differential equation for the free transverse vibrations of a

circular plate is given as

D[i2_+_i_g_r+iza_27]zw +;’_h§%‘21;0 (5.23)
or r 96 ¢ ot
where
Eh3 .. .

D = = flexural rigidity of the material
12(1-u%)

o = mass density of the material

E = Young's modulus

W = Poisson's ratio

gc = gravitational constant

h = plate thickness

w(r,8,t) = displacement of a point on the middle surface of
the plate.

Equation (5.23) is based generally on the assumption of equation

(5.2).
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2
/— (kl+k2) =C

Nz
a

(a) (b)
Figure 5.2 Clamped circular plate and k-space
The method of separation of variables can be used to solve
equation (5.23).
Assuming that the solution of equation (5.23) is
w(r,8,t) =W(r,8 e °f (5.24)
and substituting equation (5.24) into (5.23), yields
2 2.2
1 1
[a_"zl+;%‘ri+_2§_w] ==\ (5.25)
or r 0b
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where

X4 _ wz
T 7
B
2
@w = a constant
2
2 Eh gc
=
12(1-p)p

Again applying the separation of variables method for solving

equation (5.25) gives

W(r,8 = R(r) #(6) . (5.26)

Substituting equation (5.26) into (5.25) gives

2 2

d R 1 dr 2 n _

S - (A PR =0 (5.27)
dr r

2

d ; + n2¢ =0 (5.28)
de

where n2 is a constant. Solving the equations (5.27) and (5.28)

and substituting into (5.26) yields
W(r,8) = [A J (Ar) +B J (iAr) +C ¥ (Ar) +D Y (iAr)]
[En cos nB-%Fn sin n#) n=1 2, 3, ... (5.29)

where An’ B C. Dn’ En and F_ are the arbitrary constants and depend

n)
on the boundary conditions of the plate.

Jn and Yn are the Bessel functions of the first kind of order n

and the Bessel functions of second kind of order n respectively.
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Since the functions Yn(r) become infinite for r = 0, the constants C,

and Dn must be zero in the case of a solid plate. Hence equation

(5.29) becomes
W(r,8) = [Aan(Ar)-+Ban(iAr)][EncosnG-+Fnsinn9] . (5.30)

For the plate under consideration, the boundary conditions are

_ JW(r,0)

W(r,9) = ST =0 at r = a . (5.31)

By applying the boundary conditions to equation (5.30), the frequency

equation for a circular plate can be expressed as

A= \/_9_ (5.32)

m,n B
where w 1is a natural frequency corresponding to the mode charac-

terized by the eigenvalue A and B is a constant defined as
m, n

el

12(1-p)op

Thus, the exact angular frequency is given as

gc

— rad/sec . (5.33)
12(1.uMp

Now, for large values of A,

T 2
Am,n = E;—(m-+2n) (5.34)
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Therefore, for high frequencies, the frequency equation for a

plate with free edge or clamped edge conditions is given as

2 2
® :Lz(m+2n)2\/——§h—-zg£— (5.135)
4a 12(1-uy)p

2
m—n—ZKCL(m+2n)2 mn =1, 2, 3, ... (5.36)
4a
where
a = radius of the plate
2
K = radius of gyration = h 5=~ h
12(1-u") iz
CL = longitudinal velocity of wave propagation.

The frequency equation can also be written as

mtT | 0t 2
= _— M
7a a) KCL . (5.37)
Defining the wave numbers kl and kz as
_mm _om
kl =5 and kz == (5.38)

the change in the wave numbers from one mode of vibration to the next

is given as

By = _2“3 and Ak, =

]

(5.39)

The wave propagation, in the case of a circular plate, takes place

in the two directions so that the k-space is also two dimensional. The
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equation for the number of resonant frequencies is given as

1
N(w) = iy J’sj dk dk, . (5.40)

In this case, cylindrical co-ordinates can be utilized to inte-
grate over the surface of k-space. Letting kl = r cos B and k2 = rsinb
and substituting the values for the change in wave numbers and convert-

ing to cylindrical co-ordinates, equation (5.40) becomes
Nw - 25 246 (5.41)
5 . .

The frequency cquation (5.37) can be written as

y 2w ,
(k1 1 kz) _EC—L— . (5.42)

Changing equation (5 42) tc cylindrical co.ordinates and solving for

2.
r gives

2 w 1
r = X

5 (5.43)
L (sin § +cos 0)

Substituting the value of r2 incto equation (5.41) and carrying out
integration over values of 6 in the quadrant 0 < 6 _<_g for which the

integrand is real, gives

2

N = Dy x 2o . (5.44)
i L
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Defining v = %i‘, equation (5.44) reduces to
L
N(v) = - (5.45)
mK

where Vv 1is a dimensionless frequency.

Differentiating equation (5.45) with respect to v gives

n(v) = (5.46)

a
™K

In case of a circular plate, there are two modes of vibration
for each frequency, hence the modal density of a circular plate is

doubled for any frequency and expression (5.46) reduces to

n(v = 2. (5.47)
T K
This is an expression for the modal density of circular plates,

If the plate thickness is h, radius of gyration is h/VlZ,then

expression is given as

n(v) = 4a¥§ . (5.48)

m™h

5.4 Discussion
From the expressions developed for the modal density of flat
rectangular and circular plates, it can be concluded that the modal
density of a flat plate is a constant for a given plate and thus is

independent of frequency.
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Now for a rectangular plate for each frequency, there is just one
mode of vibration, whereas for the circular plate, there are two modes
of vibration for each frequency. Therefore for two plates of equal
area, thickness and of the same material, one circular and the other

rectangular, the ratio of modal densities is found to be

= 8 ~ l
m hCL TEHCL ;2-

n(w) -2 iz ('naz) 4’1{'2 V3
n(u)ir 3

Thus for a given frequency (high frequency due to an assumption in
the circular plate derivation), the modal density of the rectangular

plate will be approximately equal to that of the circular plate.
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6. MODAL DENSITY OF THIN CIRCULAR CYLINDERS

6.1 Introduction

In this chapter, thin walled circular cylinders are considered and
the expressions for the modal density developed in three different ways
are discussed in detail. The first presentation is that of Heckl
(1962) in which the expressions are found for the cylindrical shell
alone. The second representation is that of Bolotin (1963) in which
the general shell of evolution is discussed and then applied to the
case of the thin cylindrical shell. The third representation is
essentially a modification of Bolotin's work for the specific case of
the cylindrical shell.

Shells simply supported at their edges are considered for
developing the expressions. However the effects of boundary conditions
on the vibrational modes are limited, and hence the edge conditions
are of little significance in the modal density expressions except
for the first few modes.

All the three representations are discussed in the literature
(Miller and Hart, 1967) and they are reproduced here and expressed as
a function of dimensionless frequency. The graphs of normalized model

density versus frequency are plotted,

6,2 First Representation \

For a thin infinitely long cylindrical shell, the equations are

given as

. 2
v+ nV, o+ pkaV = iv Pogc/wph (6.1)
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where

n C-+[n§ +v2 +%(1_u)k2a]Vt-+%(1+u)n0kava =0 (6.2)

0
ukaV-+L(l+u)n kaV +[k a +%5(1- p)no..v ]V = (6.3)
V, V_ and Va are all radial, tangential and axial components

of velocity amplitude

the half number of modes in the circumferential
direction

wave number in the axial direction

Poisson's ratio

shell thickness

gravitational constant

frequency of vibration

amplitude of excitation

cylinder radius

%3 = dimension frequency of vibration
L
velocity of wave propagation in the shell material
2 2 2 2.2 2 - -1,.2 2
1-wv +[(no +k"a%) ~%[no(4--u) 22 2wl (lep) iR /12a

Equations (6.1), (6.2) and (6.3) can be solved for the impedance

of the cylindrical shell and letting the impedance go to zero, the

following frequency equation can be obtained:

- (l_uZ)(mza)a L(mza 2 +n§]'2 [r(mﬂa 2 ng]z
2 -1, h®
- Hlng(4-w) -2 - p](l-w) "7} 7 - (6.4)
12a
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The approximate frequency equation obtained by neglecting some of
the terms is given as

2 2

N [oz(nng)‘l + B(néﬂrz)z] (6.5)

where

mra

2

h

2V§a

The terms neglected have little effect on the frequency expression
for frequencies above the ring frequency (v = 1). However, below the
ring frequency the effect may be as much as forty percent of the actual
value.

Now solving for ¢ and then summing over all possible values of n,
the equations as obtained by Heckl for the number of resonant frequen-

cies and the modal density are given as

had :(.\i) 2
N = & P (6.6)
n,=0,1
and
(%)1/2
n(w) = % j g% dv 6.7)
0,1

where the lower limit is 1 for v < 1, and 0 for v > 1.
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Simplifying further results into the followings:

For v >1

N(w) = %@—?—) (6.8)
L

n(w) = Ig_ci% (6.9)
L

For v<1
N(w) = (%(2v-1)[%im +arc sin (2v-1) +(v.-\)2)1/2] Zg% (6.10)
) z
n(w) = (ym+arcsin (2v-1)] = (6.11)

These are the final expressions obtained by Heckl for the number
of resonant modes and the modal density of a thin cylindrical shell.

These expressions as functions of dimensionless frequency are

given as:
For v > 1
N(V) = V-_:;Ff;)’_ (6.12)
n(v) = ygT{ (6.13)
For v<l1
N 3403/2 _ 33 232 6. 16
8map 4mah
aw = B2
8mah
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6.3 Second Representation

The diff. equation of motion for thin shell of revolution is

given as
2 2 2
1 h
DAA'w_(-R—l——;+-R-—§-%-pw=O (6.15)
2 ox 1 ox ¢

1 2

2 2
LAA¢+_1_ w , 1 9w = 0 (6.16)
Eh R2 BXZ Rl a2

1 *2
where
Xy and x2 are the general curvilinear co-ordinates
Rl and R2 are the principal radii of curvature
3 3
D = ___EE_E_.z %E— = the plate stiffness
12(1-p )

p = density of the material
h = thickness of the shell
w = normal deflection
¢ = stress function for the middle surface
E = Young's modulus of elasticity
w = frequency of vibration
g = gravitational constant.

The solution of the equations (6.15) and (6.16) gives the follow-

ing frequency equation:

20 .2
D
R I N T LY
o= gp [l ¥R+ —5 e
. P DR] (kj * k)

(6.17)
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where

,m=1, 2,3, ... (6.18)

where ay and a, are the principal dimensions of the shell surface.

Now the number of resonant modes in the shell is given as

1
N(Ww) = W, j;j dk,dk, . (6.19)

The change in the wave numbers Akl and Akz from one mode of

vibrations to the next is given by

Mo, = & and Mk, = - (6.20)
1 a 2 a
1 2
where ay and a, are the principal dimensions of the shell surface.

Substituting the values for the change in wave numbers and con-

verting to cylindrical co-ordinates, equation (6.19) reduces to

)
N(w) = > f f rdrd®
TT s
a.a 8
172 2 2
= —5 [ % xfae . (6.21)
21 3]

1
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Pl R I
//,
§;§§ o
1 Ay
ay
a1 4/// — kl
(a) (b)

Figure 6.1 Generalized rectangular region and k-space

Converting the frequency equation (6.17) to cylindrical co-

ordinates and solving for rz, gives

" £
= [wz..Qé(Xcosze—Fsinz6)2j2 (Eh 4% (6.22)
DgC
where
o, - 1 (Egc)%
Rl o]

Thus the expression for the number of resonant modes becomes

6, ()

1°2 oh % 2 2 2, 2.2 %

N(w) = (5= [ ~-Q (Xcos“8+sin"0)“] 2 do .
2 'Dg Iel(w) %

(6.23)
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Equation (6.23) is an integral expression for the number of
resonant frequencies up to a boundary frequency for a thin shell of
revolution. The integration is taken over the values of € in the
quadrant 0 € 6 < ; for which the integrand is real and positive.

Differentiating equation (6.23) with respect to frequency w under

the integral sign using Leibnitz's rule gives
6, (w)
_ %2 P_h_%fz de

n{w) .
2 Dgc Gl(u)) [(.o2 - Q;(X cos;2 8 +sin2 6)2] %

2m
(6.24)

This is an expression for the modal density of thin shells of

revolution.

These equations as written by Bolotin can be represented in the

form as shown:

a_a

1% oh oy 1
N((D) = .—ETT_ (D—g—c-) wH (; ; X) (6v25>
a.a
_ 172 ph 0% 1
aw = = (—Dgc H (S 0 (6.26)
where
Lo%R_G
v w wT!l'
6, (w) .
H(%, X) :%j [1__17(xcosze+sinze)2]2de
el(uD v
. 8, (w
2 de
Hi(z, X ==
Ly m Iel(w) [1-—12- (Xcosze +sin29)2]%

Y
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Now for cylindrical shell in particular

X = 0

aq and a, are the dimensions of the shell surface
hence a; = 2 - length of cylinder

a, = ma - one-half the circumference of the cylinder.

The reason for taking only half of the cylinder into account is
that the cylinder is a closed surface and that the vibrational modes
are limited to one-half by that fact,

Hence equations (6.25) and (6.26) take the form

%
N =5 EDTeng, 0 (6.27)
[o4
%
aw = F EDF G, 0 (6.28)

Now rewriting the expression (6.27) as a function of dimension-

less frequency v gives

N(v) = yg%?v H(%—, 0) (6.29)

and

n(v) (6.30)

Il
:\!‘
jani
—
—~
<=
Y-
o
p—

The expressions (6.28) and (6.30) are expressions for the modal

density of a cylindrical shell of length £ and radius a.
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The expressions for H

as follows:

For v > 1

1
H G

For v< 1

» 0)

1

2
mi/v

may be used in the elliptical integral form

2/v
k (V T_:;T7§ ) (6.31)

o 2 v (6.32)

€
v

where ke represents the complete integral of the first kind.

6.4 Third Representation

As stated in Section (6.4), the number of natural frequencies for

a thin shell of revolution is expressed as

N(w)

However

ai?y

2
27

0
2
5 %
(EE—OZ I [wz-Qi(Xcosz B~+sin29)2]2 d® . (6.33)
Dgc 61

for a thin cylindrical shell in particular

]

£

anm

length of cylinder

half the circumference of cylinder

)% [ ro? -l sin® 617 a0 (6.34)
0



where the upper and lower limits of the integral are taken in the first
quadrant (0 < 6 _<_-g) in such a way so as to keep the integrand real and

positive.

Rewriting equation (6.34) as a function of dimensionless frequency,

it reduces to

sin_1VU

L
N(V) = %_VE [ (v - sin*61% do . (6.35)
The upper limit on the integration holds for v < 1. For v greater than

RPN |
or equal to one, the upper limit 5 is used.

Differentiating equation (6.35) with respect to v gives

-1
- sin Vv
V3 2 d
(W) = 2\{1_ 2 L (6.36)
0 [1-7 sin 9]2
v

. L. L .
Again the upper limit must be E-when v is equal to or greater than

one,

Equation (6.36) is the expression for modal density of thin
walled circular cylinders and is referred to as the modified Bolotin's
result. It can be evaluated numerically by means of Simpson's rule

using a digital computer,

6.5 Graphical Results and Discussion

Figure 6.2 shows the variation of the modal density for the
number of natural frequencies for three different representations.
Above the ring frequency (v > 1), all three representations give the

identical results as v becomes very large. However below the ring
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Figure 6.2 Nommalized modal density versus dimensionless frequency for
thin cylindrical shells
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frequency

the differences are quite noticeable. The results of Bolotin

and the modified Bolotin analysis are slightly different for the modal

density.

curves 1is
the modal
below the

was shown

The reason for this slight difference in the modal density
due to an approximation made by Bolotin in order to express
density in elliptical integral form. The results of Heckl
ring frequency are lower than other results, but since it

earlier that Heckl's results would be on the conservative

side, it is reasonable to assume that this is the reason for the

difference. Comparison of expressions for modal densities with that

of a plate shows that modal density of a thin cylindrical shell above

the ring frequency (v > 1) is equal to one-half the modal density of a

flat plate with the same surface area.
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7. MODAL DENSITY OF THIN SPHERICAL SHELLS

7.1 1Introduction

In this chapter, the thin walled spherical shell is discussed and
the expression for modal density is developed in two different ways
following the second and third representation used in deriving the
expression for model density of thin circular cylinders. In the first
representation, the general shell of revolution is considered and then
applied to the case of the thin spherical shell, whereas in the second
representation the spherical shell is considered in particular.

The frequency equation derived for the thin shell of revolution is
in general for the shell with simply supported edges; however, the
expressions for the number of modes and modal density hold good for
all the boundary conditions, since it is examined in detail that for a
spherical shell, edge effects never dominate the mode shapes (Bolotin,
1960) .

The expression for modal density is obtained in terms of dimension.-
less frequency and a graph of dimensionless mcdal density versus

frequency is plotted.

7.2 First Representation

As stated in the previous chapter, the expression for the number
of resonant modes for free transverse vibrations of a thin shell of

revolution is given as:

a.a 92(uD 2 1
12 ph % 2 2, .. 2,.2.%

N(w) = GF— [w” - Qo (Xcos"8+sin"6)" 1 d8 (7.1)
on? DB Jqel(w)

49



where

ay and a, are the general curvilinear co-ordinates

R1 and R, are the principal radii of curvature
Ry
X =—R-———
2
p = density of material

h = thickness of the shell

E = Young's modulus
g, = gravitational constant
w = natural frequency of vibration
L
Q == (—Egc)z
R Rl p

Differentiating expression (7.l1) with respect to frequency w under

the integral sign using Leibnitz's rule gives

a.a e2
_ 172 (ph % de (7.2)
= _I £ (K T . .
2-|-|'2 Dgc 91 [wz.‘Qé(Xc0529-+sin2€)2]2

n{w)

This is an expression for the modal density of a thin shell of
revolution. These expressions (7.1) and (7.2) as written by Bolotin

can be represented in the form:

a.a

1°2 oh 3 1
N(w) = —= (g—gc—) WHES %) (7.3)
a8 F 1
n(w) = o= <g—*g‘:>2 Hy (G %) (7.4)
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where

8, (v)

HG, %) =2 _j'e [1 - 5 (Xcos?s+sin”8) %1% ae
1 (W) v
6

2 ae

8, [1 - = (Xcos”8+sin’6)*]?
v

1 2
0G0 =5/

a; =a, =ma-= half the circumference of sphere .

The reason for taking only half of a sphere into account is that
the sphere is a closed surface and that the vibrational modes are
limited to one-half by that fact.

Hence equations (7.3) and (7.4) take the form

2
N = B T eug, D (7.5)
4
and
2
h (%
N = G G HG, D . (7.6)

Again, rewriting the expressions as a function of the dimension-

less frequency v gives
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3
P
—

N(W) v HGG, D

and

3 1
(Y = S H G, D

Now

do

2
H, (= X) = =
1y ™ Iel ri-

>
—5-( Xcos26'+sin26)2]2
v

(7.7)

(7.8)

(7.9

The integration with respect to © is carried out over that part of

the quadrant 0 < © S_E in which the integrand is positive and real.

2

For a spherical shell X = 1 and the integral (7.9) can be expressed

o

1
Hl(; ) 1) -

A

vz_l

1
hE, b=

Hence equation (7.8) is written

Bra v
2h
Uvz_l

n(v)

[
o

n(v)

(v <1

(v>1

as

(v>1

(v<l

(7.

(7.

(7.

(7.

Equations (7.12) and (7.13) represent the modal density for a thin

walled spherical shell,
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7.3 Second Representation

The expression for modal density can also be obtained by finding
the number of resonant frequencies for a spherical shell and then
differentiating with respect to frequency, in the same way as the
modified Bolotin results for cylindrical shells. From equation (7.1),

the number of resonant frequencies for a thin shell of revolution is

a.a ez(w)
s
N = 22 % [wz-Qi(Xcosze+sin29)2]% de .
2 “Dg
2mn c 8, (w)
(7.14)
Now for the thin walled spherical shell
a; =a, =m = half the circumference
R
X = R_l =1
2
Hence expression (7.14) reduces to
G
2 2
_a ph. % 2 2-%
N = 5 (5= Ie [w™ -0 1% o . (7.15)
1

Converting equation (7.15) in terms of the dimensionless frequency

gives

6

2
N(V) = a_hVEI V[l - -EZ]% de . (7.16)
61 v

Here again the limits on the integral are taken in the quadrant

m

5 such that integrans is real and positive.

0g£6<
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Hence the following integral expression for the number of resonant

frequencies is obtained:
sin_lvs
ES
N(V) = i?f (v2_17% d6 . (7.17)
0

The upper limit on the integrations holds for v < 1l. For v >1

the upper limit ; is used.

Differentiating with respect to v

-1
sin VG
n(v) = 31\[—3_ fo -[vz—"”.g ae . (7.18)

Now for v < 1 the integrand is negative, hence

n(v) =0 (v <1l (7.19)

and for v > 1, using the upper limit g , Lt gives

3mMa v

LR (v>1) . (7.20)
(vi-1)*

n(v) =

Equations (7.19) and (7.20) represent the modal density for a

spherical shell.

7.4 Graphical Results and Discussion

Expressions obtained for modal density following two different
approaches gives identical results. In plotting the graph, the expres-
sion is normalized so as to make it independent of geometry.

Figure 7.1 shows that mocdal density has a singularity at v =1,
below which the modal density is zero. For v > 1, (above the ring
frequency) the modal density of the shell decreases monotonically and

asymptotically approaches that of the flat plate as v becomes very large.
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8. MODAL DENSITY OF THIN CONICAL SHELLS

8.1 1Introduction

In this chapter, the thin walled conical shell is discussed and
the expressions are developed for the number of resonant modes and
modal density. These expressions are applicable to a wide range of
geometry and are valid over a frequency range sufficiently wide to be
of engineering value.

The expressions for the number of resonant modes are developed
from two separate frequency equations for thin conical shells using the
k-space integration technique for frequencies below the lower ring
frequency and a different approach for frequencies above the upper
ring frequency. The expressions obtained for modal density for two
cases are normalized and plotted versus the dimensionless frequency.

The problem of conical shells was readily available in the
literature and is reproduced for graphical representation (Miller,

1969).

8.2 Frequency Equation One

The frequency equation for a thin conical shell is given as

4
a 2 a
D n 5 2m n 3 1
, B 12 (o (-0 *a (L +——=) [zl +0]) 5= (Lo ] +
_rc EL™h sin”§ n
w = [—2] A i
PL [an (1.6 +a (14 am® | %n Lol 1 .
0 4% T, g A+ - 5= (-]
sin ¢ n
4 2 a4 8-
4 1 1
P Iy La)) - (L (el - 25 amd)))?
sin § sin § tan 8an
1
# (e 2y 2(ea))? (g (1-0)) - Ly (1eed) +22 (Leap)
sin ¢ sin"y§ Zan 4an
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where

tions are made:

C1low

natural frequency of vibration
modulus of elasticity

gravitational constant

density of shell material

Eh°
stiffness of shell material = —
12(1-u7)
Poisson's ratio

the thickness of shell wall

one-half cone angle at apex

L
. . T
truncation ratio = T

length of cone truncation, apex to top slant length
length of cone, apex to base slant length
number of circumferential waves

number of one-half longitudinal waves

nir

1

In deriving the above frequency equation, the following assump-

(1) The circumferential modes are independent of the longitudinal modes.

(2) The modes in the circumferential direction are sinusoidal and

uniform over the length of the cone.

Equation (8.1) may be written in dimensionless form by defining a

dimensionless frequency ratio and longitudinal and circumferential wave

numbers in the following manner:

2 .2

Wl o -, . Kk = 0 (8.2)

gCE ’ 1 n ? 2 siny
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-

Substituting equations (8.2) into equation (8.2) and rearranging

terms results in the following expression for the dimensionless

frequency:
5 3
2 l-o lool l1l-w 1.« 2
h 4. & 1 2, .2 1 1 4 2 1
k. (k + (L+2k0) (kY ——- ) + (k) - 4k ——) +
2 2
v2 ) 12L2(1_v2) 1"1 10 221 6 2 2
- 5 3
l.o l.ol l-w loo
4 1 2,,.2 1 1 4 2 1
[kl o + (1 +2k2) (kl - )y + (k2 - 4k2) 5 } X
4 2
low 3(l-e)) 2
+ cotzw[k4 1 2 ]
1 8 1 8
- . (8.3)
1.7 1.0 3(1-%)
[k4 1 _ k2 1 + 1 ]
¥ T "1 T2 A

Now the number of resonant modes for a thin conical shkell is given

by the double integral
1
N(V) = T, I dk_ dk, (8.4)

where the integral is to be taken over that portion of the first
quadrant where the k-space exists.

The integration of the equation (8.4) to obtain an expression for
the cumulative number of eigenvalues or the resonants modes in the
usual way is a somewhat impractical approach to the problem and hence
the number of eigenvalues above some selected frequency is obtained
utilizing a different approach.

It will be of some value to first define upper and lower ring
frequencies. The upper ring frequency is defined as the frequency at

which the longitudinal wave length is equal to the circumference of the
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small end of the come. 1In dimensionless form the upper ring frequency

would be given by

1

v (upper ring) = EEEIEW (8.5)

This is equivalent to w times the small radius of the cone divided by
the longitudinal wave velocity equal to unity.

Similarly the lower ring frequency is defined as the frequency
at which the longitudinal wave length is equal to the circumference

of the large end of the cone. In dimensionless form it is

v (lower ring) = sfﬁw . (8.6)

This is equivalent to w times the large radius of the cone divided by
the longitudinal wave velocity equal to unity.

The frequency equation (8.3) shows that dimensionless frequency is
affected by these geometric parameters assuming that Poisson's ratio
is constant and equal to 0.3. These are the cone angle ({), the
thickness over length ratio (g& and truncation ratio (al).

Using frequency equation (8.3), the eigenvalues may be computed
for different values of m and n, the circumferential and longitudinal
wave numbers respectively. 1In this manner for different cone
geometries, the number of eigenvalues occurring above certain specified
dimensionless frequencies may be obtained using digital computer and
results can be plotted in a graphical form.

Now the results obtained by normalizing with respect to cone

geometry in the frequency range above the upper ring frequency (Miller,
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1969) can be expressed in the form

T h 1/5
N(V) EIE$TT:51T [f (1-o9) 1 =F(M . (8.7)

The graphs of F(v) versus dimensionless frequency can be plotted
varying various geometry parameters and it can be found that the value
of F(v) is independent of the cone geometry above the upper ring

frequency (Miller, 1969) and is given as

1

F(\)) = 2.0v for v > m (8.8)
The number of resonant modes is given by
Lsin § (1‘“1)4/5
N(v) = 2.0 [ - 1 v . (8.9)
Differentiating equation (8.9) with respect to Vv gives
Lsin y (1_c1/1)4/5
n(v) = 2.0 7 1 . (8.10)

mh

This is the expression for modal density for thin conical shells

above the upper ring frequency.

8.3 Frequency Equation Two

The second frequency equation for a thin conical shell is given as

4 loa, 2 a4 l_aﬁ 3(l-x )2 2
D m 1 n 1 1
7 ) o - 7]
2 ch EL"h sin ¢ tan { 8an
w=[—‘2‘][ 5 3 ]
pL 4 lea, l-of l.o 3(1l-a.)
( m 1)( 1 _ 1 . 1 )
sin ' § 2 10 232 4a4
n n

(8.11)
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The notations used in the above equation are the same as those for
equation (8.1). 1In deriving the frequency equation (8.1) it is
assumed that:
1. Mode shapes are axially symmetric, and
2. Longitudinal bending is small when compared with circumferential

bending.

Defining the dimensionless frequency parameter, the circumferen-

tial wave number and the longitudinal wave number in exactly the same
way as in Section 8.2, equation (8.11l), in the dimensionless form can be

written as

loo. 2 1.o*  3(1-03) 2
D4 2 4 Y P
—5— (k2 5 ) +cot \pkl[ T - > 1
, E’h gk
N i (8.12)
leo, 1-00 1.5 3(l.o)
4% 1 1 1
k(g5 - —=* )
2k; e

Now the number of resonant modes or eigenvalues for thin conical
shells is expressed in the double integral form as

1
N(V) = WL [ f dic, dk, (8.13)

where the integral is to be taken over that portion of the first
quadrant where the k-space exists.

The region over which the integral (8.13) is to be evaluated is
bounded by an upper and lower value of Kl’ referred to as E and a
respectively. The region is also bounded by upper and lower curves
which will be referred to as [kz]u and [k2]£ respectively. Equation

(8.13) therefore can be written in the following form:
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b
1 -
N(V) =Zk_1'51§ J‘a Tk, 1, - [k,],) di, (8.14)

where a and b are functions of v and the cone geometry parameters and

[k and [kZJL are functions of v, kl and cone geometry parameters.

2]u
In equation (8.14) Akl and Akz are the changes in the longitudinal

and circumferential wave numbers respectively from one mode to the next

and are given as

—_ Tr . = —'—-l
Bk, = oo | by = STy - (8.15)

Substituting equation (8.15) into (8.14) and rearranging the

terms gives

b
N(V) [?1~a1ﬂ5Sln¢] = ‘J“a ([kz:lu =

[k, ]

2 ) dk, . (8.16)

1 1

The upper and the lower bounds of the space [kz]u and [ksz may
be obtained from the solution of the equation derived from frequency

equation (8.12) and may be expressed in the following form:

(8.17)

and

(8.18)
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where

A= 80k‘1’
EhL
2 4 2 4 2 2
B = v [-16k; (1 +a +of +oz:1‘ +a) +8kT (1 +oy +of) - 120]
_ 2 4 2 3 2 2
C = 5cot ¢[k1(1+a1 +of +a1) - 3k1(1 +o:1)]

Therefore equation (8.16) may be expressed in the following form:

N(W) [ b ] ~ IP 4 —B-+VB2-4AC dk
(l-alisinw - a 25 1
b
_J‘ 4 dky (8.19)

The upper and lower limits of the space, b and a, can be obtained
by equating the upper and lower bounds of the space given by equation
(8.17) and (8.18). The expression resulting from this process is given

as follows:

Ko+ Sk‘l* + 1+ U (8.20)

1l
(o)
>

where

[-3(1-ai)/(1_ai)] - [Av(l-czi)L 311D / 5hcot ¢(1_of{)]

S =
T = zw(chi) L\V3(1-u?) / hcot ¢(1-a‘1‘)
U= -6v(l-a) L V3-ud / bcot ¢(1-a‘{)
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For the truncated cone, three real roots are obtained; the largest
root is denoted as E and the second largest root is denoted by a. For
the closed cone, one real and two imaginary roots are obtained. The
real root is denoted as b and the real part of either of the imaginary
roots is denoted as a.

The evaluation of the equation (8.19) for the number of eigen-
values and also upper and lower limits of the k-space is handled by
numerical procedures on an IBM 360 model 75 digital computer and graphs
are plotted.

Now from the graphical results (Miller, 1969) it can be concluded

1 »
Sin¢(1_a1)) varies wi changes in cone

L
angle directly as (tan{)?, with changes in thickness inversely as T

that the number of modes (N

and with changes in truncation inversely as (1-01)1/4. Hence the

number of modes may be normalized in the following manner:

h(l_o'.l)l/4

]
L(tamq,r)]72

i
N(V) STRY(1-9) [

= G(v) . (8.21)

In deriving frequency equation two, it was assumed that the
contribution to the differential equation due to longitudinal bending
is small in comparison with the contribution due to circumferential
bending which limits equation two to the lower frequencies. Hence,
the results of the analysis based on frequency equation two are valid
below the lower ring frequency.

The graphical representation reported by Miller (1969) indicates
that G(v) is independent of the geometry of the conical shell except the

variations in the vicinity of values associated with N(v) = 1 and is a
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function of only the dimensionless frequency v. Moreover, the
normalized number of eigenvalue curves are straight lines on log-log
paper except near the values associated with the first few resonant
frequencies. Hence equation (8.21) may be approximated as

h(l_o'l) 1/4

N(v) 1= O,.876\)3/2 . (8.22)

T [
sin¢(lmal) L(tanw)l/

This equation is valid for the frequencies below the lower ring
frequency only.
Hence the number of resonant modes for a conical shell below the

lower ring frequency is given as

N(v) = 0.876 - v (8.23)
siny L(tanw)l/z
Differentiating equation (8.23) with respect to v gives
) . { n h(l 0’1) / ] / 4)
n(v) = 1.3 - X (8.2
siny (tanw) 172

This is an expression for modal density of thin conical shells below

the lower ring frequency.

8.4 Graphical Results and Discussion

Expressions (8.10) and (8.24) represent the modal density for a
thin conical shell and variation in modal density is shown in Figure
8.1.

In plotting the graphs the expressions are normalized so as to

make them independent of geometry. For the variations below the lower
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ring frequency cone angle appears as a parameter as the lower ring
frequency depends on the cone angle. The upper ring frequency has not
been indicated in the figure since it is a function of the truncation
ratio of the cone and may vary anywhere from the lower ring frequency
for a completely truncated cone to infinity for a closed cone.

The graph and expressions are invalid for cones with large cone
angles as well as with little or no truncation at all as the shell in
these goes into a so called plate mode (above upper ring frequency
solution). However it can be concluded that expressions are valid over
a wide range of cone geometries and frequency ranges of practical

interest.
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9. MODAL DENSITY OF COMPOSITE STRUCTURES

9.1 1Introduction

In this chapter the additive property of modal density for
composite structures is discussed. Modal density of certain basic
structures such as rods, beams, plates, cylinders and spheres have been
already discussed in the previous chapters. However these basic
structures rarely occur in a real application in engineering as
separate elements. Therefore the modal density of composite structures
must be considered.

The composite structure analyzed consists of two beams joined at
right angles to form an L-shaped frame. The case of composite struc-

ture was readily available in literature (Hart and Desai, 1967).

9.2 Composite Structures

A composite structure is composed of a number of substructures
which may be taken as the sum of the basic structural elements.
Assuming that the modal density of each substructure is known, it is
postulated that the modal density of a composite structure is equal to
the sum of the modal densities of its components,

.th . o

If the j component of the composite structure exhibits Nj modes

within the frequency interval Aw, then its modal density at the center

of the band Aw is defined as

N,

n, (@) =ﬁ . (9.1)

Thus. the modal density of the composite at w would be given

by
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m
n(w) =-— I N 9.2)

where the summation extends over the total number of elements, m, that
give rise to the composite structure.

To demonstrate analytically, a composite structure consisting of two
beams joined at right angles to form an L.shape is considered (Hart and

Desai, 1967). The subsystems may then be supposed to be two beams as

illustrated in Figure 9.2.

Iy

S\
I
[

INCANNAN

el ————————
S—

Figure 9.1 Composite structure

1
B c T
7, L ——’-I 42
7 - | B
; ), (R

9 a4
Figure 9.2 Two substructures
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It is assumed that L1 = L2 = £ and that both members are of the

same material.
If the additive postulate for modal density holds good, then the

total numbers of resonant modes for the composite structure are given

as follows:
NA(K£) = NB(AL) + NC(Ai) . (9.3)

By considering the frequency equation for the cowmposite structure,
a graph of NA(AL) against A can be plotted. The relationship derived

from this graph (Hart and Desai, 1867) can be expressed as follows:
N, (M) = 28 (9.4)
A - E - .

Now the resonant frequency for a composite structure derived from

the frequency equation is given by the expression

2
AL
w = £——%— CLK (9.5)
1
where
CL = longitudinal wave velocity
K = radius of gyration.

Equation (9.5) gives

[ 7
(M) = ‘g—&- . (9.6)

LK

Defining dimensionless frequency v

v=—= . 9.7
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Equation (9.6) can be written as

M = \/Yﬁ— . (9.8)

K

Substituting (9.8) into (9.4) gives

16 ,, vl
NA(V) = E ? . (9.9)

Differentiating equation (9.9) with respect to dimensionless
frequency v gives

nA(v) = Eg V — . (9.10)

Kv

Equation (9.10) gives the expression for modal density of a
composite structure.

The modal density for a beam, irrespective of the boundary condi-
tions, can be written as

n(v) = % \/ R (9.11)

Kv

Since the composite structure is constructed of two identical

beams, the sum of the modal densities of the substructures is

(V) + n.(v) = % V z . (9.12)

Kv

Comparison of equations (9.11) and (9.12) proves that additive
property of modal density holds good for this particular composite

system.
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9.3 Graphical Results and Discussion

The additive property of modal densities for composite structures
holds for the composite structure composed of two identical beams
welded at right angles as verified analytically.

Figure 9.3 shows that modal density of a composite structure
varies along a straight line on a log-log scale and variation with
respect to frequency is proportional to the beam except that the

magnitude of modal density is doubled.
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10. MODAL DENSITY OF SHALLOW STRUCTURAL ELEMENTS

10.1 1Introduction

In this chapter the expressions for the modal densities of some
shallow sandwich shells, orthrotropic plates, pretwisted plates,
plates subjected to in-plane forces and shells on an elastic foundation
are presented.

The expressions are developed on the basis of shallow-shell theory
and neglecting the effect of longitudinal inertia and hence only the
frequencies of transverse vibrations are considered. The coupled
longitudinal modes cannot be obtained from these expressions. However

the effect of the longitudinal modes on the modal density of a shallow

element is negligible as these modes occur only at widely spaced
intervals over the frequency spectrum. All the expressions are
strictly valid only for simply supported structural elements, however
for large values of w it is reasonable to suppose that asymptotic
relations for modal density are relatively independent of the boundary
conditions (Courant, 1953).

All the structural elements considered are discussed in detail
(Wilkinson, 1967) and they are reproduced here for the graphical
representation, The graphs for modal density versus frequency are

plotted for various elements for specified dimensions and properties.

10.2 Sandwich Shells

The governing equation of motion of the shallow sandwich element

of constant curvature is given as follows:
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hl{Va hivl[{ 2
L + -0 lw=0 (10.1)
h2g? 4
2 1V v
1y - —
where
] ] Gh1
Eh2
2 2.2
+
Qz _ 4t (plh1 pzhz)w hl
Eh2
2 2
Vz :_a_7+_a__2_.
dx dy
S O S
R ) ox B dy
hl = half thickness of core
h2 = thickness of facing sheets

Rl’RZ = radii of curvature

G = shear modulus of core
E = Young's modulus
Py = density of core

Py = density of facing sheets .

Equation (10.1) is based on the following assumptions:
(1) The facing layers have the same material properties, are of equal
thickness, and are much thinner than the core. They carry only

direct stress and have no flexural rigidity about their own middle

surfaces.
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(2) The core layer contributes negligibly to the moment resultants and
membrane stress resultants of the composite shell. However

resistance of the core to the transverse shear is quite consider-

able.

Now the frequency equation for a sandwich element in terms of the

wave numbers is given as

%
Eh, % 02 (k2 +k2)? (xk2 +kBH2 3
" =_1_( 2 ) x[ 1V 2 + 1 2 ]
mn 27 “p,h.+p.h 2 2,2 2 2,2 2.2
1717272 1.y +h1(k1+k2)/s Ry (k] +Kk3)
(10.2)
where
X:-R._l
Ry
Using the transformation kl = rcos B and k2 = rsin & and solving
(16.2) for r, it gives
2 L
£ (0,0) = —=_ (£, + [£2 + 4(1-u>ys%E 17 (10. 3)
max 2 1 1 1
2Sh
1
where
2
£,(0,0) =0 _hi(xcosze +sin29)2/Ri :
Here it is assumed that |x| <1 .
Now the number of resonant modes is given as
1.4, 8, (@ )
N =—5 [ r (w,0)de (10.4)
max
217 Sl(w)
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where the integration is to be carried out for values of © over that
part of the quadrant 0 < 8 53; in which the integrand is real and

positive.

Hence from equation (10.4) the number of resonant modes is given

by
0. (w)
1.2 2
N ~ g2 [ (5 4 [£ +auD)sE 1% a8 . (10.5)
TS e

Differentiating equation (10.5) with respect to w gives

L. 2 2 @ e ou?s?
172 Q Q 1
W) = —g=5 [ 5 (88 +- [ 2 7 7.5 4°
217 Sh 8, (w) [f +4(l-p)sS £ 17
1 1 1 1
de de
2. 2 2 2 1
+ Shl[rmax(w’ 92) m‘ - I’max(w, e].) m——]} . (10.6)
Utilizing the transformation
y = xc0529 + sinze (10.7)
equation (10.6) can be written as follows
2
w 2 c
y (" + ) dy
&1&2 QZ QZ 2 Yg 2_y2
n(w) = —55 (= (8,-8) +— [
2.2 " w 21 w 2
21 Sh1 Y1 w.2 2 w0y 2)%
[(y-X)(l-y)((-(B—) -y ) (=591
8 w
s
(10.8)
de de

2.2 2 2 1
* S0 I (98 G - T (08 5T )
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where

W2 - Eh,
s 2 2
[4m (pyhy +p,0)R)]
wZ _ w2 + wZCZ
0 s
SZRZ
2 2 1
¢’ = 4(1-p7) —
h
1
.2
vy =%t (1-X)sin 91
and vy, =X + (1_X)sin29 .
2 2

Equation (10.8) cannot be expressed immediately in a simpler form
as it contains hyperelliptical integral. However it can be used to
obtain the expressions for special cases.

For a spherical cap

1 92 x =1

and for a flat sandwich plate

Hence the expressions for modal density for a spheriéal cap and

flat sandwich plate are given by

n(w) =0 w < ws
2L, o2
a@ ~ (—5 1 +1p, +20-4H 52102 +41uD) 76,178
lmshl
for w > ws . (10.9)
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Figure 10.1 Modal density versus frequency for a sandwich spherical
cap and flat sandwich plate

79



The variation of modal density versus frequency for spherical cap
and a flat sandwich plate is illustrated in Figure 4.1 by considering

the plate and spherical cap having the following material and geometric

6

properties: 4, = 60 in., 4, = 36 in., E = 10 x 10~ PSI, p = 0.3,

2

1
h, =0.5 in., hy = 0.02 in., p; = 5.5 lb/cu ft, p, = 170 lb/cu ft.

10.3 Orthrotropic Plates

An orthrotropic plate is characterized by five elastic constants

d ' Lo
Ey’ ny, pxy’ qu where Ex an Ey are Young's moduli in the x and y

direction, G __ is the shear modulus and p__ and represent
x Xy yX

Ex’

Poisson's ratio.

The bending stiffnesses of plate in x and y directions are given

by
Exh2
Dx = Tiﬁa (10.10)
Eyh2
D =. 10.11
y lZp.O ( )
and
3 p'xyExh3
= h + (=) . .
H (ny /6) + ( T8 ) (10.12)

The natural frequencies of free vibrations of a simply supported

rectangular orthrotropic plate are given by

%

2
4m° ph 4 2.2 4 %
) [k)D, + 2Hiky + kD ] (10.13)

%on T (
c

where kl and k2 are the wave numbers.
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Setting

1
Dz.k = rcos 9 (10.14)
x 1 :
and
1
DZ k, = rsin @ (10.15)
y Ky = r si .

then the number of resonant modes are given by

6, (w) T
&14’,2 2

N(w) =~ [ rdrdg . (10. 16)
ﬂz(DXDy)I;4 jgl(u» 0

max

where &l and {2 are the dimensions of the orthrotropic plate in x and
y directions respectively.

The integration of equation (10.6) is carried out over the values
of & in the quadrant 0 £ 6 £ ; for which the integrand is real and
positive.

Combining equations (10.13), (10.14) and (10.15) and solving for
r gives

- ph, % 2 .2 -%
L ZH(EZ w(l - Y, sin 26) (10.17)

where

%
2y§ =1 - H(DD)H™* .

For most of the materials

0<y1<-;—.
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Therefore equation (10.16) reduces to
1 1 m l

L 2 D & 7T 9 o 2

) (D wof (1-yjsin20) de . (10.18)

Dg D 1

x°c y 0

L L
N(w) z_lni (

Expressing equation (10.18) in terms of the complete integral of

the first kind, it becomes

1 1
) = D =
%2 poh (T k(& m
N(w) = p- (Dg) ™ F(; s Y (10.19)
X C y
where
ks
el 2 2 2 %

Fiz , k) = [ (1-k"sin"9)7? d8 .

0

Differentiating expression (10.19) with respect to w gives

1 1
2.2 D
172 oh .27 "x & _ 7
G G TG (10.20)

n(w) =

Equation (10.20) gives the expression for modal density of the

orthrotropic plate,

10.4 Pretwisted Plates

A pretwisted plate has a middle surface Z defined by
Z = ¢xy
where ¢ is a pretwist constant and x and y are the Cartesian plate co-
ordinates. The plate may be considered as hyperbolic paraboloidal

shell. The plate is shallow if ¢Ll and ¢L2 are small in comparison

with unity.
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Figure 10.2 Pretwisted plate

The natural frequencies of a simply supported shallow pretwisted

rectangular plate are given by

2 2.2 2.2
Eg, % hz(kl k) 4o k]

1
- = )
Yan 2m ( ) 0 *

where

kl and kz are the wave numbers

¢ 1is a pretwist constant, and

h 1is a plate thickness.
Using the transformation

kl = rcos B and k2 = rsin®

it can be found that

83

P 12(1-p?) (ki+k2)

(10.21)

(10.22)



~7

_ 25w, p .k 2 . 2. %
T = 4m3(1-p°) B (Egz) (1-p)sin”20) (10.23)

where

2
B2 _ i’ Egc
1 4ﬂzpw2

Hence, as described in the previous section, the number of

resonant modes is given as

e

N(w) =

2.5 4. 4w
2\3(1-p5H % "1™ Pk 2 . 2. % 2
= o (Egc, f (1-pysin“26) de g <1 .

(10.24)

Changing equation (10.24) to the standard form of an elliptical

integral as

251

L
231 .
N ~ 2L 2w (e, py (10.25)
c

where E(g , k) is a complete elliptical integral of second kind and
/2
.
is expressed as E(; , k) = I (1..kzsin229) 2 de .
0

Differentiating (10.15) with respect to w,

2
2% 2.4 ¢ Eg
L2BawH* " o B o 2 c
n(w) = = o (E) F(E 5 Bl) w > 4ﬂ2p (10. 26)
2
2 ¢ Egc
n(w) =0 w” < . (10.27)
4m P
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Figure 10.3 Modal density versus frequency for pretwisted plate with
pretwist constant as parameter
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The expressions (10.26) and (10.27) represent the modal density
for the pretwisted plate.

The effect of pretwist on modal density is illustrated in Figure
10.4 by considering a plate of area 2160 sq in., having the following

properties:

£ = 10x 10° PST, h =0.25in., W =0.3, p =170 lb/ft3.

10.5 Monocoque Plates under In-Plane Forces

The natural frequencies of monocoque plates under the action of the
in~plane forces Tx and Ty (defined as positive in the outward direc-

tion) are given as follows:

1 Ee [hz(ki+k§)2 T, o 5
w = — ( + ('Tk +k )] (10‘,28)
mn 27 P lZ(l-uz) Eh 1 2
where
T
T =_}{_
—
y
It is assumed that |T | > |T | .
y! = 17x
Substituting the transformation kl = rcos ® and kz = rsin® in

equation (10.18) and solving for r, it gives

2 2%, p . % w 2 2 2.2.%
£ = 4m\3(1-p )2(%)2 b % (L+B,(Tcos” 8 +sin”6)7)*
6(1-uHT g
Y€ (7cos® 8 +sinZg) (10.29)

Eh3
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Figure 10.4

Modal density versus frequency for a rectangular plate

under in-plane forces with in-plane forces as parameter
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where

2.2
Bz 3(1-p )Tygc
2 4n2wszh

Again the number of resonant modes can be found as described in

Section 10.2 and the expression is given as

13

2.5 4.4 2
2\3(1-pH% ™M™, p % 2 2 L 2,2.0%
- T (E—g:) wjo[l +|32('1'cos 6 +sin"8)7]° do

N(w) =~

3&142

3 3 [A-pByT (t+1)7 . (10. 30)
4TER Y

Differentiating (10.30) with respect to w,

m

3
\EaudhE Ut o
™

. 2
e 2 2 . 2..2.-%
n(w) = - (Egc) J;[l +BZ( Tcos ® +sin“g) ]2 de.

(10.31)

Introducing the transformation
y = ‘Tcosze-+sin29

the integral can be expressed in terms of the complete elliptic

integral of the first kind, and consequently the modal density expres-

sion reduces to the form as shown:

2. % ™
2\3(1-p5) 1.4, L Flz, )

(<2 (10.32)
mh EgC (Bg +l)1/4(B§T2 +1)1/Z+

n(w) ~
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where

L -

, Ba-n’or@r+nTo il P
ko= 2. % 22
42+ D% (g2

+1)15

The effects of the in-plane forces on the modal density of a
rectangular plate is illustrated in Figure 10.3 by considering a plate
of area 2160 sq in. and having the same material properties as the

pretwisted plate of the previous section.

10.6 Monocoque Shells on an Elastic Foundation

When a rectangular isotropic monocoque shell lies on an elastic

foundation of modulus K, its natural frequencies are approximately

given by
. Eh3(k? +k§)2 Eh(xki+k§)2 %
w = [ : + + K ] (10.33)
mo ey 12 (L-p2) R (k2 +k2) 2
g, 181 7%y
where
‘x = .R_l.
)

It is assumed that lRll < IR2| or |x| <1.

Expression (10.33) is similar to the expression obtained by

Bolotin for the unsupported shell except the term K.
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Hence the expression can be written as follows:

0, (w)
L
w ~ 23 a-h® b (F’\%{w ? dé
Zve . )
TT (wz-wz)2 b CEg 6, (W £5(9
de de
2 2 2 1. } 2 2
+ (00D [£5(8)) 3= - £5(8) 3 o® > (10.34)
n(w) =0 w2 < wi (10.35)
where
L
£,(0) = [1_p§(xcoszs +sin2)2]?
w2 _ Kgc
s 4nzph
2 2
477 pR
2 _ 1,2 2..-1
33 = E[_—Ei:—_ (w” - ws)] .

Depending on relative magnitudes of 33, x and w, the integral in
equation (10.34) has different values:

Considering only positive Gaussian curvature, there are then
three subcases, each of which gives different modal densities within a
certain frequency band. These expressions, derived by following the

steps of Bolotin, are given as:

*
For w < ws

n(w) =0 . (10.36)
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* *
For ws <w<w

T
v W80 M oy 0 TG
R R
*
For w < w

1
2. 4.4 FG o, @

2\3(1- b s
a(w) ~ Vi(i ) ﬁlz (Eg ¥ & W 2’ K

e oD [y g0 17
where

K = (B, + 1) (1- B0 [28,(1-077"

2 .2
4 pRT -1

% 3
o = ER—D  +l1*

S g S

c

" 4n2pRi -1 9 %

w = [E(———g )+ o]

(o4

The graph of modal density versus frequency is plotted with
different elastic foundations for a cylindrical panel of area 2160
6
sq in. having the following properties: E = 10x10 PSI, w = 0.3,

h =0.25 in., p = 170 1b/cu ft, R, =75 in., R, = =

2

10.7 Graphical Results and Discussion

Figure 10.1 shows that the modal density of a sandwich plate or
spherical cap has a singularity at the frequency W, Moreover when the
shear modulus G of the core is large, the modal density of a plate

approaches constant, which is the modal density of a monocoque plate
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of bending stiffness [ZEhihz/ (1_u2)], The modal density of the
spherical cap approaches asymptotically that of the plate as the
frequency increases (w >> ws). It can also be concluded that as w
becomes large, the modal density of any shallow shell approaches
asymptotically that of the corresponding plate and above a certain
frequency, the modal densities of all sandwich elements increase
linearly with frequency.

As seen from expression (10.20) modal density for an orthrotropic
plate is independent of the frequency w, however it does depend on the
geometry and material properties of the plate. For a plate having the
same elastic properties in x and y co-ordinate direction expression for
modal density is the same as that of the monocoque rectangular plate.

Figure 10.3 shows the effect of pretwist on the modal density of

the plate. The pretwist introduces a singularity at the frequency

Eg_ %
w = ;ﬁ 0755 below which the modal density is zero. Above the

frequency, the modal density asymptotically approaches that of an
untwisted plate, which is constant,

The effect of in-plane forces on a modal density of a plate is
illustrated in Figure 10.4. It shows that the introduction of in-plane
forces produces a singularity in the modal density at zero frequency.
Moreover the modal density of a monocoque plate with in-plane forces is
greater than the modal density of the unloaded plate, regardless of the
sign of forces, but the amount of increase is not simply related to the
relative magnitude or sign of the forces. As seen from the graph, if
both forces Tx and Ty in x and y co-.ordinate directions are equal and

of opposite sign, the modal density is higher than if they were of the
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same sign. In spite of loading the plate, as the frequency increases,
the modal density of the loaded plate approaches asymptotically that
of the unloaded plate.

For the monocoque shells of positive Gaussian curvature, placed
on an elastic foundation, variation of the modal density is illustrated
in Figure 10.5. It shows that the modal density is zero below the
frequency w: at which it has a singularity. The modal density has
second singularity at the frequency w*. However above w*, the modal
density of the shell decreases monotonically and asymptotically
approaches that of the corresponding plate as w becomes very large.

The foundation modulus k modifies the position of the singularities

* *
according to relative magnitudes of w and W
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Figure 10.5 Modal density versus frequency for a cylindrical panel
on an elastic foundation with modulus of elastic
foundation as parameter
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11. SUMMARY AND CONCLUSIONS

The modal density of a structural element is defined as the number
of resonant modes within a unit frequency interval. 1In this thesis,
the expressions and graphs are presented which can be used to estimate
the average modal densities of structural elements like rods, beams,
plates, thin cylindrical, spherical and conical shells, composite
structures, shallow sandwich shells, orthrotropic plates, pretwisted
plates, plates subject to in-plane forces and shells resting on elastic
foundation. The expressions and graphs are valid for elements of
arbitrary shape and having any prescribed boundary conditions.

In case of circular rods having uniform cross sections, modal
density is independent of geometry of rod and frequency of vibrations
for both longitudinal as well as torsional vibrations. However, modal
density for torsional vibrations is about 1.5 times that of longi-
tudinal vibrations.

The modal density of beams undergoing transverse vibrations
depends both on geometry of beam and frequency of vibration. It
decreases with the frequency and reaching asymptotically to zero value
for large frequencies.

In case of solid flat rectangular and circular plates the modal
density is constant for a given plate. Thus it is independent of
frequency of vibration but not the geometry of the plate. For a given
frequency, modal density of rectangular plate is approximately equal to
that of the circular plate, both the plates having equal area, and

thickness and of the same material.
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Modal density of thin cylindrical shells decreases above the ring
frequency, reaching a constant value asymptotically. However, below
ring frequency there is a variation that is linear on a log-log plot.

The modal density for thin spherical shells has a singularity at
the ring frequency, below which the modal density is zero. However,
above ring frequency it decreases monotonically, approaching that of a
plate asymptotically as frequency becomes large.

The thin conical shell shows that expressions presented for modal
density are applicable over a wide range of the cone geometries and
frequency ranges of practical interest.

The modal density of a composite structure, as derived analytical-
ly, is additive over its components.

For the shallow sandwich elements like the spherical cap modal
density increases with increasing frequency, and for very large values
of frequency modal density of the sandwich shells approaches asymp-
totically that of sandwich plates.

In case of the orthrotropic plates, modal density is frequency
independent but it does depend on the geometry and material properties.
The modal density of pretwisted plate decreases monotonically
after some value of frequenty and asymptotically approaches that of

the untwisted plate as frequency becomes large. By increasing the
pretwist constant the value of frequency at which singularity occurs
also increases,

The modal density of a monocoque plate with in-plane forces is

greater than the modal density of an unloaded plate, regardless of the
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sign of forces and as the frequency increases, the modal density of
the loaded plate approaches asymptotically that of the unloaded plate.

The modal density of shells on an elastic foundation decreases
monotonically and asymptotically approaches that of the corresponding
plate as frequency becomes large.

Thus in general modal density of all elements except plates and
rods are frequency dependent. The modal density of the shells
approaches asymptotically that of the corresponding plate. For the
sandwich elements the modal density increases with increasing
frequency, whereas the modal density of monocoque elements approaches
a constant value.

The concept of modal density is very useful in solving the multi-
modal vibration problems and is of great value when the input force
or excitation is random. In this type of analysis without the apparent
knowledge of mode shapes and frequencies it is possible to give some
insight into the response of the structures to the given excitation and
some insight into the amount of energy which will be absorbed. More-
over modal density of structures is relatively independent of the
boundary condition; it is a useful tool in estimating average response

levels of multimodal vibration,
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13. APPENDIX. LIST OF SYMBOLS

radius of cylinder or circular plate, in.
principal dimensions of shell surface, in.

o/ 1-oy

longitudinal wave velocity =

Gg
torsional wave velocity = J —ES

stiffness modulus = Eh3/ (12(1_u2)

stiffness moduli in x and y co-ordinate direction
Young's modulus of elasticity

Young's moduli in x and y co-ordinate direction
shear modulus of elasticity

gravitational constant

thickness of shell wall or plate

half thickness of core in sandwich element
thickness of facing sheets in sandwich element
moment of inertia of a section

Bessel function of first kind of order n
modulus of elastic foundation

constant

wave number

length of cylinder or beam

surface dimensions of the plate

length of cone, apex to base slant length
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N(w)
N(V)
n(w)

n(v)

length of cone truncation, apex to top slant length

integer value or number of circumferential waves

number of resonant modes

number of resonant modes in terms of dimensionless frequency
modal density

modal density in terms of dimensionless frequency

integer value or number of one~-half longitudinal waves
one-half circumferential modes

amplitude of excitation

radius of shell curvature

cylindrical co-ordinate

time

in-plane forces in x and y co-ordinate direction
radial velocity amplitude

axial velocity amplitude

tangential velocity amplitude

displacement normal to surface

generalized co-ordinates

normal mode function

rectangular co-ordinates

Bessel function of second kind of order n

stress coefficient

truncation ratio = L./L
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NASA-Langley, 1971 —— 32

Ak

Ak

F(z , k)

23

E(

e
-
~
~

CR-177%

h/2\3a

change in longitudinal wave number
change in circumferential wave number
cylindrical co-ordinate

radius of gyration

Poisson's ratio

dimensionless frequency - %E =
L R

3.14

density of material

density of core and facing sheets
mma/4

Tx

T
y

stress function or angular displacement
R,/R,
one-half cone angle at apex

angular frequency

complete elliptic integral of first kind

complete elliptic integral of second kind
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