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EFFECT OF VELOCITY PROFILE DISTORTION IN LONG
dc ELECTROMAGNETIC FLOWMETERS
by Shee-Ming Chen*

Lewis Research Center

SUMMARY

To make precision liquid-metal flow rate measurements using a dc electromagnetic
flowmeter it is necessary to consider such effects as the distortion of the velocity profile
by the magnetic field and the entry and exit processes at the edges of the magnetic field,
In this study, the distorted velocity profile and corresponding electric potential distribu-
tion are determined using a two-dimensional model in simulation of a long electromag-
netic flowmeter. The method of finite differences is used in solving the magnetohydro-
dynamic equations for a circular pipe with either a nonconducting or conducting wall.
Calibration curves, as well as numerical solutions for the velocity and potential distribu-
tions over the pipe cross section, are obtained for various combinations of fluid and wall
conductivity, thickness of the pipe wall, and Hartmann number.

INTRODUCTION

Electromagnetic flowmeters use the principle that material moving in a magnetic
field experiences an electric field in a direction perpendicular to both the magnetic field
and the motion. The voltage resulting from the electric field gives a direct indication of
the velocity (or flow rate) of the moving material.

For several decades, devices based on this principle have found applications in a
variety of fields, such as oceanography and medicine. More recently, electromagnetic
flowmeters have become important in nuclear technology as devices for measuring the
flow of radioactive fluids and, especially, the flow of liquid-metal coolants (such as Na,

*The work described herein was done at the Lewis Research Center as part of the
NASA Summer Faculty Fellowship Program and at the Department of Electrical Engi-
neering, City College of New York, under NASA Grant NGR-33-013-025 with Norman C.
Wenger, Lewis Research Center, as Technical Monitor.




K, NaK, etc.) in the more advanced reactors and energy conversion devices. Satisfac-
tory operation of these devices depends on the accurate measurement and control of the
liguid-metal flow rates.

In addition to the stringent reliability requirements, many new problems arise in us-
ing electromagnetic flowmeters for measuring the flow rates of liguid metals because of
their high temperatures and high electrical conductivities. As a result, interest in the
design of electromagnetic flowmeters for liquid-metal applications has been renewed and
their accurate calibration becomes important. Since many of the flowmeters used in the
advanced reactors are quite large, it is preferable to compute a calibration curve for the
flowmeters based on measured parameters of the flowmeter and the liquid metal rather
than to perform an expensive and time-consuming experimental calibration of each flow-
meter, The purpose of this study is to determine the relationship between the flowmeter
output voltage and the parameters of the flowmeter and liquid metal so that these calibra-
tion curves can be computed.

The study will be restricted to the most common type of flowmeter used in liquid-
metal applications. Figure 1 shows a cross-sectional view. The circular nonmagnetic
pipe, situated in a uniform static magnetic field (between a pair of de or permanent mag-
netic poles), is usually made of conducting materials (stainless steel, etc., for reasons
of strength at high temperature and resistance to corrosion). Electrodes for detecting
the output voltage are located at the two ends of a diameter, perpendicular to both the
pipe axis and the magnetic field.

The motion of the liquid metal in the magnetic field causes a current to be induced in
the liguid metal. This induced current reacts with the static magnetic field and produces
2 body force in the liquid metal which increases the pressure drop across the meter and
distorts the velocity profile. In addition, the conducting pipe has a shunting effect on the
output voltage.

Figure 2 shows a side view of the same electromagnetic flowmeter. The distortion
of the applied magnetic field due to the end current loops, known as the magnetic edge
effect, and the entrance length over which the full distortion of velocity profile by the
magnetic field takes place can have an appreciable effect on the measured voltage. In
this study, however, it will be assumed that the electromagnetic flowmeter is "'long'' so
that the magnetic edges are far away from the electrodes and the velocity profile of the
fluid has fully developed before passing through the electrodes.

Previous analytical and experimental studies of various types of electromagnetic
flowmeters may be dated all the way back to Faraday's time. Williams (ref. 1) as early
as 1930 analyzed the long circular dc electromagnetic flowmeter with nonconducting pipe
walls., He showed that for some particular velocity distributions that are axially sym-
metric the potential difference at the outside edge of the stream is directly proportional
to the average flow velocity and is independent of the electrical conductivity of the fluid.
He verified his result in experiments with a copper sulfate solution and with mercury.
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The general proof of this result for all axially symmetric velocity distributions was given
by Kolin (ref. 2) in 1945. An exact mathematical solution of the circular flowmeter with
nonconducting pipe walls has been obtained by Uflyand (ref. 3), Uhlenbusch and Figscher
(ref. 4), and Gold (ref. 5) in the form of an infinite series involving modified Bessel
functions of the first kind. These series converge very slowly, however, unless the
Hartmann number M is small. Singh and Nariboli (ref. 6) obtained an asymptotic solu-
tion for large Hartmann numbers which converges rapidly for M > 10. All these re-
sults, however, are only valid for a flowmeter with nonconducting pipe walls.

Elrod and Fouse (ref. 7) in 1952 obtained an analytical result for a long circular de
electromagnetic flowmeter with conducting walls by assuming that the velocity profile is
axially symmetric. Since then, their analytical result has been referenced in many theo-
retical discussions as well as forming the basis for comparison with much experimental
data. Their result is not useful in making precision flow measurements in liquid metals,
however, because they did not consider the distortion of the flow profile by the static
magnetic field.

The most extensive studies, both theoretical and experimental, of the electromag-
netic flowmeter have been made by Shercliff (refs. 8 to 10). His analytical solutions for
long circular dc electromagnetic flowmeters with both nonconducting and conducting walls
are also expressed in series form. These series converge very slowly except for values
of M that are small (M < 2.5). He also obtained an approximate solution for the case
where M is very large (M > 100) and the pipe walls are very thin. Unfortunately, this
range of M does not cover most of the range encountered in practice and frequently the
pipe walls are sufficiently thick so that the thin wall approximation is not valid.

The purpose of this study is to obtain solutions which are valid for all values of
Hartmann number, fluid and wall conductivity, and pipe wall thickness. The approach to
be used is to find the complete velocity and potential distributions in the fluid and in the
pipe wall. From these distributions, the calibrations in terms of the ratio of the poten-
tial difference between the two electrodes to the mean velocity can be obtained. Since it
is extremely difficult, if not impossible, to obtain the exact velocity and potential at
every point inside the flowmeter in closed form, a numerical solution becomes a possible
alternative. With the aid of high-speed computers, many two-dimensional problems have
been solved successfully using numerical methods. For this reason, the long dc electro-
magnetic flowmeter which can be described by a two-dimensional model is being investi-
gated initially. It is expected that the same numerical techniques developed from this
study may be adopted successfully to study the case of dc electromagnetic flowmeters of
finite length for which a more complicated three-dimensional model must be used.
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THE MODEL

The model chosen for this study is a two-dimensional one, which applies to dc elec-
tromagnetic flowmeters of infinite length or long flowmeters in which the distorted veloc-
ity profile of the fluid has been fully developed into its ultimate shape before passing the
electrodes. For convenience, as shown in figure 1, the applied magnetic field is as-
sumed to be in the x-direction and the pipe axis coincides with the z-axis. The elec-
trodes are located exactly at points B, C and A, D for the nonconducting and conducting
pipe wall cases, respectively.

In this analysis, the following assumptions are made:

(1) Steady state, incompressible, viscous fluid flow

{2) Uniform static magnetic field

(3) Magnetic permeability of fluid and pipe wall equal to that of free space

{4) Homogeneous isotropic fluid and pipe wall conductivities

(5) Fluid velocity in z-direction only (ref. 11), zero velocity at fluid and pipe

wall interface
(6) No electrical contact resistance at fluid and pipe wall interface
(1) Negligible electric currents due to convection of charges by the fluid motion

BASIC EQUATIONS AND BOUNDARY CONDITIONS

The basic governing equations are derived from the following classic relations:

Modified Navier-Stokes equation for an incompressible fluid:

pd(V' V)VznVZV+TX§ - Vp (1)

where p4, 1, D, V, :f, and B are the fluid density, viscosity, pressure, velocity, elec-
tric current density, and magnetic flux density, respectively. (Symbols are also defined

in the appendix.)

Maxwell's equations:

VXE=0 (2)

1}

vxH=J (3)

where E and H are electric and magnetic field intensity, respectively.



OChm's law:

E:O'f(-ﬁ+-\';><§) 43
where g is the electrical conductivity of the fluid. From equation (2), the electric
potential U is defined by

E= -VU (5)
From equation (3)
v-J=0 (6)
The flow velocity V andthe magnetic flux density B can be expressed in compo-
nent form as (see fig. 1)
V=10+30 +kv, =kv, (7)
B=1B_ +]0 +kB_ =1iB_ +kB, (8)

where B o is the applied magnetic flux density and Bi is the magnetic flux density due
to the induced current.
Substituting J, V, and B from equations (4), (7), and (8) into equation (1) gives
pq@V, + VKV, = kV2V, + op [-VU + KV, X (iB + kB;)]x (iB, + KB,) -vp

The left-hand side of this equation reduces to zero. Thus

P
=)
N

2 oU op
77V V + O B —_— - V B -— = O
z 7o <ay zZ O 7
becomes the first governing equation.
The second governing equation is obtained by combining equations (4) to (8), giving

e\
ViU =B, 2 (10)
oy

For a two-dimensional model of a circular flowmeter, equations (9) and (10) are best
written in cylindrical coordinates
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Equations (11) and (12) can be made dimensionless by letting

p =L, dimensionless radius

a
V2
V = —, dimensionless velocity
0
W=_Y__ dimensionless potential
B,av,
az 0
k== _.I_)., dimensionless pressure gradient
nVO 0Z

o 1/2
M=Ba <_.f.) , Hartmann number
TOAT

is a characteristic velocity of the fluid. The final forms of the two governing

where ‘VO
equations used in this study then become
2V 1oV, 132V . 2 3W _ cos g oW
— .~ ——+M%|sin g =+ —-Vi+k=0 (13)
8p2 p op p2 20 op p 08
°W 10w, 1 a°W oV _cos g oV
— e e -ging—-22 Y2 = (14)
ap?. o op p2 892 o) p 30

Equations (13) and (14) form two coupled linear elliptic differential equations in the mutu-
ally dependent variables V and W. The solutions for V and W are directly propor-
tional to the dimensionless pressure gradient k and implicitly related to the Hartmann



number M. Hence, the ratio of the potential difference between the electrodes to the
mean velocity is independent of k but a function of M.

Equations (13) and (14) apply only in the fluid region. If the pipe wall is conductive,
an additional equation must be introduced to describe the potential in the wall. This
equation can be obtained from equation (14) by setting V = 0, giving

-

The boundary conditions at the fluid surface for the nonconducting wall case are

v ’rza’ =0 (16)
and

oW =0 (17)

% |y=a-

For the conducting wall case, the boundary conditions at the fluid and wall interface
are

V], ,-=0 (16)
(z\_v) _ (.@W) (18)
90 Jlr=a- \%0 /|p=a+
o (@57) -0 (@YZ) (19)
% /ly=a- % /|r=a*

where Oy is the electrical conductivity of the wall. At the outer surface of the conduc-

ting wall,

r=b~

=3




PREVIOUS RESULTS

Since the results by Elrod, Fouse, and Shercliff are widely known and have been used
for comparison with many studies, theoretical as well as experimental, they are summa-
rized here.

In obtaining their result for circular dc electromagnetic flowmeters, Elrod and
Fouse (ref. T) assumed that the velocity distribution is arbitrary but axially symmetric.
Using the usual boundary conditions at the radii r=a and r=b (egs. (18) to (20)), they
solved equations (14) and (15) exactly. Their result expressed in terms of the flowmeter
sengitivity is given by equation (21). (Flowmeter sensitivity is the ratio of the electric
potential difference between points A and D, U AD’ to the product of the average flow
velocity Va’ the pipe inner diameter 2a, and the applied magnetic field strength B o')

U

AD _WaD_ 2R (21)
By2av, 2V, (1-9)+(1+ 'y)R‘?’

where R=Db/a, y = ow/ oy Vi = Va/Vo (the dimensionless mean fluid velocity), and
Wap = U AD/B 0a).V o (the dimensionless potential difference). For the nonconducting wall
case (UW = 0).

U W.
B,2av, 2V

Shercliff has solved the governing equations without assuming an axially symmetric
velocity profile. His results for small Hartmann number M are

Circular nonconducting wall case:

2 4
Vp-kfioal ot ) £
8 48 9216
U W 2 4
BC _ BC=<1_M_+47M -> . (24)
B 2aV, 2V_ 576 921600



Circular conducting wall case:

2
Vm=5<1_7-eer+199-336r+144r M4__'_> (25)
8 48 9216
where I = (1 + Rz)/[(l -y)+ (1 + y)Rz].
U W
AD _ “AD _ C1<1 -cM?acMt - ) (26)
BOZaVa ZVm
where
c, - 9R 2
1-»)+1+yR
C. - R2 (1 --'y)+(1+'y)R2
576 (1 _9) + (1 + »)R®
RZ  (1-9)+(1+y)R2 50 (1 + RS) 2(1-9) +(1+9)R®
Cq = - ¥ 14 185 - + 6R Y 4
921600 51(1 _ ) + (1 + )R (1-%) +(1+RE (1-9) +(1+yRO

In equations (25) and (26) Shercliff computed only the terms up to M2, The author

has extended the solution up to terms of M4. These series solutions converge very rap-
idly for small M and give results that are probably accurate to within 1 percent for
M < 2. '

_ Shercliff also obtained the following approximate solutions for high values of M;:

Circular nonconducting wall case:

U
_BC _-0.92 (27)
B 02aVa
Circular thin conducting wall case:
U
_AD -¢ (28)
B OzaVa




where C is the dimensionless calibration or sensitivity which is a function of
{GW/ op) (o - a)M/a as shown in figure 3 According to Shercliff, equations (27) and (28)
are accurate to within 1 percent for M > 100.

NUMERICAL METHOD

Of the numerical methods available for solving differential equations, the method of
finite differences is more universally applicable and more frequently used than any other.
When applying it to a two-dimensional problem, the area of interest is divided into fine
meshes. The intersections of the mesh lines are called mesh points or nodes. The dif-
ferential equation is replaced by a difference equation, where all derivatives are approx-
imated by difference quotients over the mesh distances. By using the difference equation
the value of the solution at a given mesh point can be related to the values of the solution
at neighboring points and at boundary points. This technique generates n algebraic
equations involving a total of n unknowns, where n is the number of mesh points. The
final solution of the difference equation is obtained by solving for the n unknowns. This

b

is normally done by using an iterative process.

In this study, the solutions for V and W are obtained by the so-called ''five-point"’
average formula, which is obtained by considering equations (13) to (15) in the general
form of

V2 ¢(p, 6) + F(p,6) = 0 (29)

Refer to figure 4, the derivatives in Vz ¢(p, 6) may be approximated in cylindrical coor-
dinates at the point p,, 6, by the following (ref. 12):

9 ™

¢ 2 [O{%-(l+a)¢i+¢a]

1
2 2 ala + 1)

190 - 1 2 2 }
log. 1 -(1- .- > 30
pdp pyofa+ 1h [¢ (1-o V4 - @ (30)

ok
o]



where h and ah are adjacent radial mesh distances, and § is the constant angular
mesh distance. Substituting equation (30) into equation (29) gives

2
2 h ah h
2 i+ 1400 b
o(a + 1) < ’ 2pi>¢a ’ a( } 2pi>% +<pia> (0 + ¢

2
Ry L P T ELI

To obtain the solution of this equation at each of the n mesh points, an iterative
process known as the Gauss-Seidel method (ref. 13) is used. In this method the new
value of 0N at the mesh point i is obtained by solving equation (31) using the previous
values of ¢ at the points a, b, r, and [, and the value of #(p,0) at the point i. The
computed values of V and W have an error approaching zero as fast as h2 or h, de-
pending on whether a uniform radial mesh distance (@ = 1) or a variable radial mesh dis -
tance (a # 1) is used.

In the nonconducting pipe wall case, the boundary conditions are satisfied at r = a
or p; = 1(see fig. 4) by letting V,=0 (eq. (16)) and W, =W, (eq. (17)). Similarly, in
the conducting wall case, the boundary conditions are satisfiedat r =a or p; = 1 by
letting V. =0 (eq. (16)) andat r=b or p; = R by letting W, = W, (eq. (20)). Bound-
ary condition (18) is automatically satisfied since W, is single valued on the boundary.
The remaining boundary condition (eq. (19)) is usually handled hy replacing equation (19)
with a difference equation in the form of

where hf and hW are the mesh distances inside the fluid and pipe wall, respectively.
However, the Wi obtained from this expression has an error approaching zero only as
fast as hf or hW (ref. 12). To improve the accuracy at the boundary, an equivalent
boundary condition given by equation (6) expressed in difference equation form is used
instead of equation (19). The mesh size at the boundary is also reduced by a factor of 4
in computing W along the interface.

The exact procedure used in applying the method of finite differences to this problem
is outlined as follows:

(1) Taking advantage of the fact that the velocity and potential distributions are sym-
metric about both x and y axes, solutions covering one quadrant of the pipe cross section
only are computed. Mesh sizes of 20 to 26 radial points in the fluid plus eight radial
points in the wall (if it is conductive) by 18 angular points were used in the computations.
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(2) Initial values of velocity and potential are assigned to each mesh point according
to some reasonable distribution function. For example, a parabolic velocity distribution
is used for low M, or a distribution known to resemble the final solution is chosen for
other values of M to save computer time.

(3) Since the calibration is independent of k, it is arbitrarily set equal to 1.

(4) The difference equation representing the first governing equation (eq. (13)) is
solved first. The velocity at each mesh point in the fluid region is computed in a sys-
tematic order by using the latest values of the velocity and potential (from assumed ini-
tial value or step 5) at each mesh point as soon as they become available.

(5) Similarly, the difference equation representing the second governing equation
(eq. (14)) is then solved for the potential at each mesh point in the fluid using the latest
values of the potential and velocity (from step 4) available. Equation (15) is also solved
in this step at each mesh point in the wall if the wall is conductive.

(6) Completion of procedures 4 and 5 once is called one iteration. This iteration
process is repeated until the fractional difference between two successive iterated results
falls below a certain cutoff value. In obtaining the final results, a cutoff value of 1075 is
used for V_, Wpe (or W,p), and WBC/ZVm (or WAD/ZVm).

The main concerns in using the numerical method are the attainable accuracy and the
computation time required. Usually the accuracy can be improved by dividing the area of
interest into finer meshes, thus increasing the number of mesh points. However, this
will also increase the number of equations to be solved, and the computation time re-
guired will increase in an even greater proportion. For the low Hartmann number cases
(M < 2), uniformly spaced (@ = 1) radial mesh points were used (20 radial by 18 angular
for the nonconductive wall and (20 + 8) radial by 18 angular for the conductive wall).
These mesh sizes correspond to 362 simultaneous equations for velocity and 360 or 504
simultanecus equations for potential in the nonconducting or conducting pipe wall cases,
respectively,

For higher Hartmann numbers, the velocity profile consists of a core of almost uni-
form velocity and a thin boundary layer where the velocity drops rapidly from its core
value to zero at the wall (ref. 10). In order to describe the velocity gradient near the
pipe wall more accurately, gradually reduced radial mesh distances (a < 1) are used.
The best values of these radial mesh sizes are determined by "'trial and error'' using the
nonconducting wall case as a check, since the center velocity for different Hartmann
numbers in this case can be calculated exactly (refs. 3 to 5). For M > 5, variable mesh
sizes up to 26 radial points by 18 angular points for the nonconducting wall case and
(26 + 8) radial points by 18 angular points for the conducting wall case were used and
found to be satisfactory.

To decrease the required computer time the successive overrelaxation method
(8 OR) was used. This method is valid in this case because the coefficient matrix of the
algebraic equations to be solved possesses the so-called property ""A'" (ref. 14). In this
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method, the value obtained from equation (31) for the qlCh iteration ¢§q) is modified with

a larger anticipated change by the relation
sk

where qbgqo* is the new value for mesh point i resulting from qth iteration and w is
called the accelerating factor. The rate of convergence in using the S O R method de-
pends on the value of w chosen. Since there is no formula for calculating the best value
of w in eylindrical geometry, its value must be obtained by testing and estimation. It
was found that the best value of w is independent of Hartmann number M and varies
only slightly when the mesh size is changed. The values of w chosen for the noncon-
ducting and conducting wall cases are 1.91 and 1. 93, respectively. To avoid any ''over-
shoot, " the S O R method is dropped by letting w = 1 (Gauss-Seidel) when the velocity
and potential distributions are approaching their final shape near the end of each com-
puter run.

RESULTS

Numerical solutions for the velocity and potential distributions inside a circular
electromagnetic flowmeter were obtained for both the nonconducting and conducting wall
cases over the range of Hartmann number, M = 1to M = 200. Inthe conducting wall
case, the conductivity and radius ratios used were ow/of =0.1, 0.5, 1.0, 1.5, 2.0,
and b/a = 1.05, 1.15, 1.25, 1.35. These values cover the usual materials and pipe
sizes commonly used in the liquid-metal flow rate measurements. Typical resulis are
presented in graphical form.

Figures 5 to 9 show velocity profiles at ¢ = OO, 300, 600, and 90° (§ is measured
with respect to the applied magnetic field BO or x-axis, see fig. 1) inside the flowmeter
for different values of Hartmann number M. Five cases are shown: (1) nonconducting
pipe wall; (2) crw/of =0.1, b/a = 1.05; (3) ow/of =0.1, b/a=1.35; (4) ow/crf =2.0,
b/a = 1.05; and (5) O"W/O'f = 2.0, b/a = 1.35. The velocity profiles are normalized with
respect to the dimensionless mean velocity Vm'

Velocity contour diagrams for the same cases are also shown in figures 10 to 14.
The velocity contours are normalized with respect to the dimensionless center velocity
V.. The figures are arranged in increasing order of the quantity [(b/a) - 1] GW/ op to
observe the effect of thicker and more highly conductive pipe walls on the velocity
profiles.

It is quite obvious for the nonconducting wall case that the velocity profile is more
flattened along the x-axis (¢ = 0°) than along the y-axis (g = 90°) due to the body force
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created by the induced current. Therefore the assumption of axially symmetry in the
velocity profile is not valid, especially when the Hartmann number M is large.

The effect of the conducting wall on the velocity profile may be observed by compar -
ing these figures. In the case of ow/cf =0.1and b/a = 1.05 (fig. 6), the effect is small
at least for M values up to 100 since the wall conductivity and thickness are small. The
resulting velocity profiles for this case resemble more those in the nonconducting wall
case (fig. 5). As the quantity [(b/a) - 1] oW/of increases (figs. 6 to 9), the effect of the
wall becomes quite pronounced. For the thickest, most highly conductive, wall case con-
sidered (fig. 9) the maximum velocity is only 5 percent higher than the average velocity
when M is 100. The velocity profile for this case is essentially that of slug flow when
M is large.

Figures 15 to 17 show the potential distribution along the y-axis for the nonconducting
wall case and two conducting wall cases (o, /op = 0.1, b/a =1.05 and o /op = 2.0,

b/a = 1.35). Since the electrodes at B, C and A, D are located along the y-axis, these
distributions determine the total potential difference between the electrodes. It is quite
clear that the potential distributions in a poorly conducting wall case (crw/ g, b/a = 1.05,
fig. 18) resemble those in the nonconducting wall case (fig. 15) and are less affected by
the Hartmann number at least for M < 100 than those in the highly conducting wall case
{fig. 17). However, in both conducting cases, the maximum potential occurs inside the
fluid rather than on the fluid and wall interface or inside the pipe wall. This is in full
agreement with the boundary condition (eq. (19)). Since there is no source for the in-
duced potential inside the conducting pipe wall, the potential gradient across the boundary
ig negative,

Cazlibration curves giving the ratio of the dimensionless potential difference to the
dimensionless mean flow velocity (WBC/ 2V, and W AD/ 2V ) as functions of Hartmann
number M for all cases studied are presented in figures 18 to 22. The same results
also appear in tabular form in table I.

For small M the calibration curves agree with the results of Elrod and Fouse
(eqg. (21)) and Shercliff (eq. (26)) for the conducting wall cases, and with the result of
Gold (ref. 5) over a much larger range of M for the nonconducting wall case. As M
increases the calibration curves initially decrease; and if the pipe wall is nonconductive,
the curve becomes asymptotic to about 0.93 as M becomes infinite (fig. 18). However,
if the pipe wall is conductive, the curves reach a minimum in the M range of 10 to 50
and then increase with increasing M and become asymptotic to their initial value at
M =0 as M becomes infinite.

The reason for this behavior can be seen by examining the velocity profiles. First,
consider the velocity profile for a thick highly conductive pipe wall which is shown in fig-
ure 9. The velocity profile is axially symmetric in the limit of both very high and very
low M. For very low M the profile is parabolic, and for very high M the profile



approximates that of slug flow. Thus, the solution of Elrod and Fouse, which holds only
for symmetric profiles, can be used for the limit of high and low M and the same re-
sult will be obtained.

It is known from the general theory of magnetohydrodynamic channel flow (ref. 15)
that the velocity profile also approximates that of slug flow in the limit as M becomes
infinite even if the pipe walls are thin and less conductive. However, it takes a much
larger value of M to achieve this condition if the walls are thin or of low conductivity
than if they are thick and highly conductive. This effect can be observed by comparing
figures 5to 9. Even at M = 100 the velocity profile for the thinnest, least conductive
wall case considered (fig. 6) resembles that of the nonconductive pipe wall. Neverthe-
less, as M is increased, this velocity profile will eventually approach that of slug flow.
Thus, for all conductive pipe wall cases, each calibration curve in the limit as M be-
comes infinite will approach its value at M = 0.

The results for the nonconductive pipe wall are quite different. The velocity profile
for this case, shown in figure 5, does not approach that of slug flow as M becomes infi-
nite. This is also born out by the general theory of magnetohydrodynamic channel flow
(ref. 15). Consequently, the calibration curve does not recover to its value at M =0
but continually decreases as M becomes large and becomes asymptotic to about .93 as
M becomes infinite. This is in agreement with the value computed by Gold (ref. 5) and
Shercliff (refs. 8 to 10) of 0.925.

A rather difficult task in this study is to estimate the accuracy of the calibration re-
sults. First, the accuracy is limited by the accuracy of the model and the governing
equations. Secondly, it depends on the cumulative accuracies of the computed velocity
and potential values at all mesh points. Commonly, the error of a value obtained at each
mesh point may be divided into two parts, such as,

Error = (S -N)=(S-8) +(s - N) (33)

where S is the exact solution of the partial differential equation and s and W are the
exact and computed solutions of the difference equation, respectively. The quantity

(S - s) is the discretization error and (s - N) is the stability error. The discretization
error, in general, can be reduced by increasing the number of mesh points. It ig limited
only by such factors as computer time and storage. However, the exact expression for
the discretization error is given in terms of unknown derivatives for which no upper and
lower bounds can be found (ref. 14). To find its approximate effect on the final results,
calculations were carried out for various mesh sizes with all other conditions the same.
Using the nonconducting wall case at M = 100 and 10"5
are as follows:

cutoff as an example, the results




Mesh size WBC/2VIn

Number of Number of
radial points | angular points

15 18 0.93122
26 18 .93206
30 36 .93261

Changes of the same order of magnitude were also found for a few selected conducting
wall cases. To save computer time, maximum mesh sizes of 26 radial points by 18 angu~-
lar points and (26 + 8) radial points by 18 angular points were selected to obtain final re-
sults for the nonconducting and conducting wall cases, respectively.

The stability error (s - N) may be divided into the ''roundoff'' and the ''cutoff'’
errors. The roundoff error arises from the finite number of significant figures used to
perform the arithmetic operations. This error can cause instability if it is allowed to
accumulate in an iterative process. The cutoff error depends on the cutoff level at which
the iteration process is terminated.

The stability error is a computational error and usually it is not possible to deter-
mine its magnitude. However, for the results obtained from this study, the stability
error should be quite small for two reasons. First, the roundoff error should be small
since all computer runs were carried out in double precision (15 significant figures) and
the total number of iterations never exceeded 4000. Secondly, the cutoff value, which
terminates the calculation if the fractional difference between two successive iterations
falls below it, was set at 10'5 for all results. Tests have shown that the improvement in
accuracy by lowering the cutoff value usually is not worth the extra computer time. As
an illustration, for the case of o /o; = 0.5, b/a = 1.05, and M = 100, the ratios of
W AD/ QVm obtained for various cutoff values are as follows:

Cutoff value Number of w AD/ 2V m
iterations
107° 1217 0.92881
1075 2863 92821
1077 4512 .92812

16



It is obvious in this case, that it is not worthwhile to use cutoff value less than 1@'5.

CONCLUDING REMARKS

The numerical method of finite differences has been used to determine the complete
velocity and potential distributions inside a long dc electromagnetic flowmeter for both
nonconducting and conducting pipe wall cases. Inthe measurement of liquid-metal flow
rates, the velocity profile is distorted due to the body force created by the induced cur-
rent and the applied magnetic field. The assumption of an axially symmetric velocity
profile was shown to be not valid for many cases especially when the Hartmann number is
large. The calibration results obtained from this study may be used to correct flow
measurements for the effect of velocity profile distortion. The results are based on the
assumption that the electromagnetic flowmeter is sufficiently long so that the velocity
profile is fully developed. For short electromagnetic flowmeters, in which the entrance
and magnetic edge effects must be included, a more complicated three-dimensional study
will be required.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Chio, May 18, 1971,
128-31
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APPENDIX - SYMBOLS

inner radius of flowmeter pipe

magnetic flux density

induced and applied magnetic flux density, respectively
outer radius of flowmeter pipe

calibration or sensitivity used in fig. 3, U AD/B 02aV,
parameters in eq. (26)

electric field intensity

magnetic field intensity

radial mesh distance

radial mesh distances inside fluid and pipe wall, respectively
unit vectors along x, y, z coordinate axes

electric current density

a2 0
dimensionless pressure gradient, - —— %

Hartmann number, B Oa(c/n) 1/2 o o
computed solution of difference equation

total number of mesh points

pressure inside fluid

ratio of outer-to-inner pipe radii, b/a

radial distance

exact solution of differential equation

exact solution of difference equation

electric potential

electric potential difference between electrodes A and D
electric potential difference between electrodes B and C
dimensionless fluid velocity in z-direction, V,/V

fluid velocity vector

mean fluid velocity

dimensionless fluid velocity at center of pipe



[N

> 3

dimensionless mean fluid velocity, Va/Vo

characteristic velocity of fluid

fluid velocity in z-direction

dimensionless electric potential, U/BOaVO

dimensionless potential difference between electrodes A and D, U AD/BOQJV o
dimensionless potential difference between electrodes B and C, UBC /E\Oa‘v o
Cartesian coordinates

ratio of adjacent radial mesh distances

parameter used in eq. (25), (1 + RZ)/[(I -+ (1+ )’)Rz]

ratio of wall-to-fluid conductivity, ow/ op

angular mesh distance

viscosity of fluid

angular variable

dimensionless radial distance, r/a

fluid density

electric conductivity of fluid and pipe wall, respectively

arbitrary function of p and ¢

accelerating factor used in S O R method
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TABLE 1. - CALIBRATION FOR d¢ ELECTROMAGNETIC FLOWMETER

Hartmann Dimensionless mean | Dimensionless potential, Ratio, Hartmann Dimensionless mean | Dimensionless potential, Ratic,
number, fluid velocity, Wap WAD/ZVm number, fluid velocity, WAD WAD/ZVm
M v, M Vi
Nonconducting pipe wail?, Oyl op = 0 b/a =115, oy /0; = 0.1
1 0.123 0.244 0.997 1 0.122 0.239 0.976
2 118 . 230 .992 2 115 L2024 .72
5 . 892x1071 .14 975 5 .865x1071 . 165 955
10 .603 L 115 .956 10 .556 104 939
20 .352 _662x10~1 .940 20 294 .546x10™1 927
50 . 154 .288 .934 50 .101 .187 925
100 .799x10°2 .19 932 100 .371x10"2 6981072 925
200 409 1681072 982 200 125 .231 926
b/a=1.05, ¢, /0;=0.1 b/a =115, o /0;= 0.5
1 0.122 0.243 0.993 1 0.122 0.225 0.925
2 . 116 .228 .988 2 112 207 922
5 .882x10~! 1M1 .970 5 77gx1071 . 141 .08
10 .585 1 .951 10 .431 max1ot 896
20 .329 .817x1071 .937 20 .183 .325 .891
50 .130 .242 .929 50 .441x102 191x1072 .89
100 .573x10™2 . 106 .928 100 .130 .235 904
200 .212 .395%10~2 .929 200 .347x10™2 .631x10™° .609
b/a =105, o /0;=0.5 b/a=1.15, o,/0; = 1.0
1 0.122 0.238 0.973 1 0.121 0.210 0.869
2 114 .222 .969 2 .110 150 866
5 . 846x10™1 .165 .952 5 T01x1071 .120 854
10 524 .981x10"1 .936 10 .346 .585%1071 846
20 .261 .483 .925 20 .129 217 845
50 .816x10~2 .151 .925 50 .210x1072 .461x16™ 852
100 . 280 .520x10~2 .929 100 1451078 .128 . 859
200 . 835%1073 . 156 .934 200 .196 .338%1070 862
b/a=1.05, o,/0; = 1.0 b/a=1.15, o, /0; = 1.5
1 0.122 0.231 0.951 1 0.120 0.196 0.819
2 L113 .215 . 947 2 107 L1T5 . 817
5 . 806x10"} .150 .931 5 . saax10-1 104 . 807
10 470 .862 918 10 . 294 Larox107t 800
20 .212 .386 .911 20 .102 .163 800
50 _556%1072 L 102x10™1 .916 50 .201x1072 . 326%1072 808
100 171 .315x10™2 .919 100 .540x107° . 878x1073 .813
200 .483x1073 .896x10™3 927 200 142 .232 L8135
b/a=1.05, o, /o= 1.5 b/a=1.15, o /op = 2.0
1 0.121 0.226 0.930 1 0. 118 0.185 0.773
2 112 . 208 .925 2 . 105 .163 172
5 1rox1et . 140 .909 5 .600x1071 o1mx1o7t 764
10 425 .16ax10"1 .899 10 . 259 L3294 759
20 179 .30 . 895 20 . 860x1072 .181 .60
50 .427x1072 T1x1072 .902 50 . 164 2521072 6T
100 125 .228 909 100 .433x10~3 .668x10™3 171
200 - 334107 .611x1073 .913 200 .11 172 773
b/a=1.05, o,/0;=2.0 b/a=1.25, ¢,/0;=0.1
0.121 0.220 0.910 1 0.122 0.233 0.954
2 .1 202 .906 2 115 .218 950
5 .1a5x1071 133 .893 5 .851x1071 L1595 .936
10 .391 .690x10"1 . 882 10 .532 .98ax107} .922
20 . 156 .23 .879 20 . 269 492 913
50 .350%1072 L621x1072 .886 50 . 845x1072 154 813
100 .995x1073 178 .893 100 .293 .537x1072 917
200 267 .479x1073 .898 200 .906x1073 167 .920
AValues shown for potential and ratio are Wge and WBC/ZV respectively.

m?
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TABLE 1. - Concluded. CALIBRATION FOR dc ELECTROMAGNETIC FLOWMETER

Hartmoann Dimensionless mean | Dimensionless potential, Ratio, Hartmann Dimensionless mean | Dimensionless potential, Ratio,
number, fluid velocity, Wap WAD/2Vm number, fluid velocity, Wap WAD/ZVm
M Vo M v,
b/a = 1,25, ow/0f=0.5 b/a = 1,35, cw/orf: 1.0
1 0.121 0.213 0.878 1 0. 119 0. 171 0,741
2 JESE) L1904 876 2 . 105 155 139
5 730%107 1 .126 . 864 5 .593x10~1 .868x10~1 732
10 376 .643x107} .856 10 . 254 .370 128
20 . 146 249 .853 20 . 837x1072 122 728
50 .320%1072 .551x10~2 .861 50 .159 2331072 .35
100 .900x10~3 . 156 . 867 100 .419x1073 .619x10” .39
200 236 .a10x107° .870 200 . 107 159 741
b/a=1.25, o /o= 1.0 b/a=1.35, o, /0;= 1.5
1 0. 120 0.192 0.800 1 0.118 0.157 0.666
2 107 .170 197 2 . 102 135 664
5 _636x10" 1 .100 789 5 _531x107 _670x1071 659
10 . 287 .450x101 .783 10 212 .278 656
20 _ogex10~2 155 .183 20 .662x1072 . 810x10~2 657
50 194 . 307x1072 .190 50 121 .160 662
160 .51gx1073 . 824x1073 .95 100 _314x10™3 ~a18x107 665
200 134 214 188 200 .sowxio™ - 107 .667
b/a =125, aw/oft 1.5 b/a = 1,35, UW/Of:Z.O
1 0.119 0.174 0.734 1 0. 117 0.142 0.605
2 104 . 152 132 2 _989x107% .19 603
5 _574x1071 .83ax1071 .25 5 .489 .586x107* .599
10 240 .346 121 10 .186 .222 597
20 T79%1072 .12 122 20 . 565x1072 L 676x1072 508
50 146 .212x1072 128 50 .101 .122 .602
100 . 382x1073 .560X10” 132 100 .261x10™° 316x10™ 605
200 _980x107% .144 134 200 .663x10~ .goax10™ .606
b/a = 1.25, ow/of =2.0
1 0.118 0.160 0.678
2 .101 137 .676
5 530x10" 1 7tox10-1 .670
10 211 .281 667
20 L 650%1072 .881x1072 .668
50 . 120 .162 674
190 .313x107 .423x107° 677
200 795x107% .108 678
b/a = 1.35, Uw/of =0.1
1 0.122 0.221 0.929
2 14 .212 .926
5 .839x10™1 .153 014
10 514 L927x1071 .902
20 .251 449 .895
50 136x1072 .132 897
100 244 .440x1072 .901
200 128x1673 .132 904
b/a = 1.35, ow/of =0.5
1 0.121 0.201 0.835
2 . 109 .182 .832
5 L §95%10™1 114 .823
10 L339 .554x10” 1 817
0 .125 .204 .816
50 2611072 .429x107% .822
100 716x10™3 119 .828
200 187 .311x1073 .831
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~—Induced currents

Figure 1. - Cross-sectional view of circular dc electromagnetic flowmeter.

i
Eddy currents ~

= Magnet pole face

Figure 2. - Side view of circular dc electromagnetic flowmeter.
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Figure 3. - Effect of wall conductivity on sensitivity at high Hartmann number M. (From
refs. 8 and 10, Shercliff.)

Figure 4. - Typical lattice used in '*five-point' average method.
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Figure 5. - Normalized velocity profiles for nonconducting wall.

25



26

Normalized radius, vla

Hartmann

number,
M
gl 10
> 2
{}
g
e

(b) 8 = 300,

ot

0 4 .8 12 16 2.0 0 .4 .8 12 16 2.0
Normalized velocity, VIVm

{c) 8 = 600, (d) 8 = 900,

Figure 6. - Normalized velocity profiles for conductingwail with wall-to-fluid electrical conductivity ratio owlof of 0. 1and
flowmeter pipe outer-to-inner radius ratio bfa of 105.
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Figure 7. - Normalized velocity profiles for conducting wall with wall-to-fiuid electrical conductivity ratio owlﬂg of 0. Tand

flowmeter pipe outer-to-inner radius ratio bfa of 1,35,
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Figure 8. - Normalized velocity profiles for conducting wali with wall-to-fiuid electrical conductivity ratio o, /¢ of 2.0 and
flowmeter pipe outer-to-inner radius ratio bla of 105.
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Figure 9. - Normalized velocity profiles for conducting walf with wall-to-fluid electrical conductivity ratio o, /a; of 2.0 and
flowmeter pipe outer-to-inner radius ratio bfa of L.35.
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Figure 11. - Normalized velocity contours for conducting wall with wall-to-fluid electrical conductivity ratio owlcg of 0. 1 and flowmeter
pipe outer-to-inner radius ratio bfa of 1.05.
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Figure 12. - Normalized velocity contours for conducting wall with wall-to-fluid electrical conductivity ratio owlof of 0. 1 and flowmeter
pipe outer-to-inner radius ratio bfa of 1.35.
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Figure 13. - Normalized velocity contours for conducting wall with wali-to-fluid electrical conductivity ratio 0,/0¢ of 2.0 and flowmeter

pipe outer-to-inner radius ratio bfa of 1.05.
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Figure 14. - Normalized velocity contours for conducting wall with wall-to-fluid electrical conductivity ratio cwlof of 2.0 and flowmeter
pipe outer-to-inner radius ratio bfa of 1.35.
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Figure 15. - Normalized potential distribution along y-axis of flow-
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Figure 16. - Normalized potential distribution along y-axis of flow-
meter for conducting wall with wall-to-fluid electrical conductivity
ratio owlof of 0.  and flowmeter pipe outer-to-inner radius ratio
bla of 1.05.
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Figure 17. -Normalized potential distribution along y-axis of flow-
meter for conducting wall with wall-to-fluid electrical conductivity
ratio o, /o¢ of 2.0 and flowmeter pipe outer-to-inner radius ratio
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Figure 18. - Calibration curve for electromagnetic flowmeter - nonconducting
wall.
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Figure 19. - Calibration curve for electromagnetic flowmeter - conducting
wall with flowmeter pipe outer-to-inner radius ratio bla of 1.05.
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Figure 20. - Calibration curve for electromagnetic flowmeter - conducting

wall with flowmeter pipe outer-to-inner radius ratio bfa of 1.15.

L4

=



38

Ratio Wy p/2V,,

Ratio Wy p/2V,,

O Computed point
Curve fitted to computed points

B
: electrical
conductivity
e e ez ratio,
.95 O o, Jo;
\O\O\O\——O’EI’O/_O
90—
H S
85—
-1} e @ e ¥ W e’ 1
LI5— L5
—_-O_MO._N"W
10—
2.0
b O O T
P I Y R R I B I N T
5 1 2 4 6 810 2 4 60 80100 200
Hartmann number, M
Figure 21. - Calibration curve for electromagnetic flowmeter - conducting
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Figure 22. - Calibration curve for electromagnetic flowmeter - flowmeter
pipe outer-to-inner radius ratio bla of 1. 35.

NASA-Langley, 1971 —— 14

E-6259



NATIONAI

AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D. C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

If Undeliverable ( Section 158

POSTMASTER:  pical Manual) Do Not Return

“The aeronautical and space activities of the United States shall be

conducted so as to comtribute . .

. 10 the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include conference proceedings,
monographs, data compilations, handbooks,
sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and

Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546





