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ABSTRACT

The generation and the propagation of atmospheric waves of planetary

scale with zonal wave domain numbers n = 1, 2 , 3 and 4 is calculated within the

dissipative thermosphere. These waves are generated by solar XUV-heat

input and by corpuscular heating of the thermosphere. They contain time

independent zonal components, annual and semiannual components. The

latitudinal structure of their eigenfunctions and the height variation of this

structure is determined. It is shown that the relative pressure amplitudes of

the wave modes approach asymptotic values at high altitudes which are

proportional to 1/n(n+l). Therefore, the thermosphere behaves like a filter

suppressing the waves with great wave domain Numbers n.

The corresponding wind systems of the various wave modes are deter-

mined and compared with observed wind data at mesospheric heights as well as

with density data derived from satellite drag observations. It is shown that

the predominant annual component with wave number n = 1 is generated by the

solar radiative heat input which peaks in the summer hemisphere and that the

semiannual component containing in the mesosphere mainly the wave mode of

number n = 4 is generated by corpuscular heat input within the auroral ovals.
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1. INTRODUCTION

In the first part of this paper, we developed a three dimensional spherical

model of the thermospherec dynamics (Volland and Mayr, 1371a; referred to as

paper I). In the second part of this paper (referred to as paper II) we calculated

the generation and the propagation of three important tidal waves within this

model thermosphere and ^on,pared the results with available experimental

data. In this third part we want to determine the wave modes of planetary scale

generated by the corresponding energy modes of solar XUV and corpuscular

Beat inputs. These planetary waves are distinguished by their independence on

local time (wave domain number m = 0). They can be divided into symmetrical

terms (zonal wave domain number n is even) which describe the semiannual

variations and the time independent zonal variations and into antisymmetric

terms (wave domain number n is odd) which describe the annual variations.

Terannual and higher order terms appear to be very weak as it follows from

experimental data and theoretical considerations, therefore, we shall not

treat them in this paper.

We shall calculate the equivalent depths and the eigenfunctions of the four

most important planetary waves with zonal wave domain numbers n = 1, 2,3

and 4. We shall determine `.he altitude variations in the latitudinal structure of

these modes and their generation and propagation at thermospheric heights.

Finally, we shall compare our theoretical result with available experimental

data.

The even more important planetary wave mode of wave domain

number 0, corresponding to an eigenfunction P O = 11 will be bypassed

because this mode does not generate horizontal winds and pressure

ft
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gradients. This mode has in fact been treated in a one dimensional

quasistatic model for f = 0 (Jacchia, 1965). The same wave mode with basic

frequency	 has also been considered in the Harris -Pries ter -model

(Harris and Priester, 1962) and for various frequencies by Volland (1969)

and by Thomas and Ching (1969).

t

2. EQUIVALENT DEPTHS AND EIGENFUNCTIONS

The determination of the equivalent depth and of the eigenfunction of the

planetary wave modes follows essentially the same line as given in papers I

and II. The eigenfunction describing the latitudinal structure of the relative

pressure amplitude is (see (II/1) )

p - pn-- f (z) + &I
Po - Po (z) ®

n (d, z) a xp J (4
%
 s at,

(1)

with

f 
d	

f
® n ( ,z) =	 bn,n, Pn,(cose^),

n'

Using the same notation as in (II/1). Here for convenience we

omitted in (1) the superscript m which is zero for the planetary waves. P 

are the zonal Legendre polynominals. The planetary waves which we shall

consider and which are generated by solar XUV-heating and by the average

corpuscular heat input into the thermosphere have the angular frequency

w = 0 (see (I/9) and (I/12)). However, in the case of auroral heating during

an individual geomagnetic storm, waves of planetary type can be generated with

frequencies of the order of w--fl, where f3 is the frequency of one solar day
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(Volland and Mayr, 1971 b). "Therefore, in order to generalize the results

given below, we shall consider a frequency of

	

2ffl	 w + s0	 (2)
t

Apparently, it is

f f 
tv 

because of	 /^ =a	 1/365,

where f is the Coriolis parameter introduced in (I/17).

Contrary to the general behavior of the horizontal winds of the tidal

waves, the horizontal velocity of the planetary waves must be zero at the

poles because the horizontal pressure gradient is zero here. Therefore,

we start from the expressions for the latitudinal and the longitudinal winds

of (see (II/4))

f
u	 f p

r	 = ^^ n	 n exp (2 jfrl t)
o	 po

;y  fv	 f p_ 	 = exp 2 • fG t(J	 )co	n po	
(3)

with

	

fi j sint9fv	 f

	

0	 1 _ P 1 -n	 2y	 n	 n,n I n 1

	f_ sins9	 9 f Pn 
ti 

21--/ n	 n, n' n'

Since the dependence on longitude of the planetary waves is zero
F

(8/8 = 0) , the relationship between the coefficients of u and V follows

from the third equation in (I/16)

f_ n'	 f	 + n'+1	 f
O n,n'	 (2n— '-1j O n,n'-1	 (2n'+3) O n,nt +l'	 (4)
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Eq. (3) together with (4) indicate that for planetary wave modes with small

frequency Wsignificant wind velocities can only be expected if the dissipation

factors in fv have significant magnitudes.	 That is certainly the case at F2-layer
t^

heights where due to ion-neutral collisions it isI fv I s 3.	 However, from wind

observations at mesospheric heights we have to conclude that even at those

heights a dissipation mechanism must be effective (see Fig. 1).

We approximated the wind observation of fig. 1 at Adelaide (latitude:

350 S) and in Jodrell Bank (latitude: 530 N) by the following series of spherical

functions

u= sin8(u1) P	 + 
(u3	

P	 + 
(uOPo+u2P2)    costa t + (u l P +u P , cos 2a t0 1 	 0 3  	 1	 3 3a	 a

t

v= sin8 I(VO)oP0 +(v2) op2 +`V4/ op4 + (v 1P1 +v3P3) costlat	 (5)
`	 `

+(vOP0+v2P2+v4P4)cos 20at

Where the coefficients of u and v are related with each other by Eq. (4).

Using he numbs	 n	 ong numbers (wind components in m/sec)

(ul) 07.5	 (V0)0 = 6.2

(u3)  o = -10.	 (v2) o = 1.8

u0 	- -17.	 (v4^ o = -14.2

ul	 = 10.	 v0	 = 8.3

u2	 = 22.	 V1	 = -20.5	 (6)

u3	 = 25.	 v2	 = 43.5

v3	 = 33.

=0.4j	 v4	 =35.7V
i

i

e	
ti
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t. we plotted our theoretical winds from (5) versus universal time t in fig. 1

as dashed lines and find satisfying agreement with the observed values

appart from a prevailing wind component of the order of 10 m/sec in the wind

data of Adelaine. 	 Note that only the six coefficients u  are available to fit the

data and that (U 4
0

and (u3 ^ are responsible only for a shift of the vertical
b

scale which is not very well accomplished. 	 Considering the numbers in (6) the

positive value of the imaginary part of fv is remarkable.	 It can be explained

* readily by eddy viscosity within an atmosphere with a convex vertical profile

or the longitudinal wind field. 	 (Haurwitz, 1961).	 Then,

-	 az n a ~ 2Zvis	 ^lp ov	 with Zvis 	 - 0.4	 (?)

in that height range (see (I/3)).	 Eddy viscosity of that order and for those

periods appears to be rather plausible (Kellogg, 1964).	 Moreover, the mean

temperature profile is in fact convex between about 85 and 120 km thus sug-

gesting a similar characteristic for the wind profile there.

This negative dissipation factor can be effective only below the turbopause

at about 110 km. Above that height, ion-neutral collisions be 	 todominate,g	 ,	 ign 	 thus

leading to positive dissipation factors (see fig. 2)in paper II). 	 Therefore,

we may expect an effective dissipation mechanism within the lower ther-

mosphere with a negative value below 110 km, zero at the turbopause and

7

3

positive above that height.

'-	 Having tested the importance of the dissipation factors for the planetary

waves, we proceed in the determination of their eigenfunctions and equivalent

depths. We do this in the same manner as outlined in Paper II and look for

solutions which fulfil exactly the second and third equation in (1/16) and
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Eq. (II/7). Substituting Eqs. (1), (3) and (4) in the second equation of (I/16),

we obtain the following relationship between the coefficients 4,f	 and 6 n, n''

n'(n'_-1	 f	 2n'2 +- 2n' -1	 _ f f	 ,f
(2n -3)(2nT 1) ^n,n' -2 + (2n' -1) (2n' +:3)	 u v	 n, n'

..	 (8)

	

n' +1 n' +2	 f	 f

	

+ (^ ' +3)(2n +5	 n,n' +2 - 
(2n + 1) v-0 bn,n' +1 +2v = 0

From (II/7) we obtain

f	 f

' ( ' +1 ) fin' 
n' -1 - fin' 

n
^ +1 +	 x	 b f	 ( )n n	 2n̂"-	 (2n.^ +3)	 n, n' n, n' = 0	 9

with

1	 n = n'
X n, n , -	 0	 for	 n n"

An exact treatment of the eigenfunctions of planetary waves would neces-

sitate the solution of the infinite set of the equations (8) and (9) provided

Xn, n' = 1 for all n' in (9). We shall do this at another place justifying

there the approximate approach adopted in this paper.

The coefficients of pressure and horizontal winds in Eqs. (1) and (3)

have been determined from Eqs. (8), (9) and (4) for the planetary waves with

wave domain numbers n =1, 2, 3 and 4. These coefficients can be written as

bn,n' - (cl
)
n ^/ ^n^ n,ri'_l Cc2

)
n^ /fin. ^n ► n' 1c3; /An

where the numbers Hn', (cjn"
n {c31n' and d► n are given in table 1. The

equivalent depths become

h f =-4f 02 r2n n(— n+l) v-v
(10)
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According to our definition for the normalization of the eigenfunctions

8 of in (II/6), it is d n, n 
1. Moreover. for large dissipation factors

I fu	 I fv >> 1 it is

b n , n ,	 1 /fufv 	for	 n	 n'

Thus, the eigenfunctions 8nf indeed approach the spherical functions Pn
^.

within the thermosphere:

4 and the wind functions approach

f	 dPn
n 	 2y	 do

u

dPn	
(12)

f ---^ _ cos 0
n	 2y fufv	 d 0 .

above about 200 km altitude. 	 Eq. (12) shows the rredominance of the
'a

latitudinal winds when compared with the longitudinal winds at therriospheric

heights above 200 km where; Z en I >	 1 which is due to the dissipation

mechanisms like viscosity and ion drag.

Within the nondissipative atmosphere (u = fv = f), the equivalent depths

in (10) are negative for f < 0.45 to 0. 7, that is, for periods exceeding

ti about one day.	 The planetary waves are of the evanescent type, there.

The latitudinal wind is nearly zero for small Coriolis parameters f.

Vithin the dissipative thermosphere, the waves behave like quasievanescent

^s

ti

waves.
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In the next sections we shall discuss the characteristics 7f the various

{

planetary wave modes in detail.

2. PRESSURE - AND WIND FUNCTIONS

2a. Antisymmetric planetary wave modes

From the XUV-heat inpu` distribution in (I/9) as well as from the exospheric

temperature distribution in (I/14) follows the existence of the antisymmetric

planetary wave mode 8 1f I (f1 Aa/2 0 = 1/730) which at thermospheric

heights has already degenerated to the zonal spherical function P 1 . This

mode describes solar XUV heat input which peaks in the summer hemisphere and

it is responsible for the annual shift of the pressure bulge twoard the summer

hemisphere. From fig. 1 and the numbers in Eq. (6) we have to conclude

that at least within the lower thermosphere a wave mode 93f ' exists too.

Since the frequency parameter f 1 is very small, we can set in the follow-

ing f = 0 without significant error. Then, the wind components are exactly

either in phase or in antiphase with respect to the pressure amplitude. ThR

phase errors due to our approximation f = 0 are of the order of 0.5°.

Fig. 2 gives the pressure function 8 1 0 versus co-latitude 9 for the five

different heights z = 100, 110, 150, 200 and 300 km. Here, we used the

data of fig. 2 in paper II as the thermospheric parameters and approximated

f U = f  = - JZkin	 (Zkin > 0).

However, we assumed a dissipation factor Zkin _ - 0.4 at 100 in order

to be consistent with the findings in fig. 1, and we took fu = f  = 0 at 110 km

in order to simulate the situation near the turbopause. Fig. 2 indicates
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the usual behavior of the eigenfunctions at thermospheric heights which we

already observed in the case of the tidal waves in paper II. The eigenfunction

changes from the Hough -function 8 1 0 at 110 km to the spherical function P1

above 200 km Altitude.

In fig. 39 we plotted the wind functions X10 and X10 versus co-latitude

for the height z = 150 km. According to table I, both wind functions do

not change their latitudinal structure with altitude. Therefore we plotted in

fig. 3 b the maximum amplitudes of X10 and X10 versus altitude. The

longitudinal wind function db i 0 is always negative that is, in antiphase to the

pressure amplitude. However, the latitudinal wind function X10 is negative

below the turbupause and positive (that is, in phase with the pressure) above

the turbopause. At 110 km, the assumed height of the turbopause, the

latitudinal wind is zero. (If we had taken into account the finite value

f = fl = 1/730; the latitudinal wind function in fig. 3b would have reached

a finite minimum value of 3.4 x 10
-3

 there. ) On the other hand, the

longitudinal wind function is not affected by the turbopause and reaches a

maximum near 130 km altitude. Above 160 km, the latitudinal wind exceedq

the longitudinal wind in magnitude.

Fig. 4a to 4c give the corresponding pressure and wind functions of the

83 0 - wave i. ude and show essentially the same features as discussed in

figs. 2 and 3. The wind functions reach maximum values Year 150 km. The

latitudinal wind function * 30 is zero at 110 km. It is in antiphase with the

longitudinal wind above that height and in phase below that height.

It should be mentioned that our treatment of the turbulent region below

the tur^Opause is subject to some ambiguity. We have set in the numerical
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calculations of this section fu = f  = 0.4j at 100 km altitude. However, it is by no

means certain that the curvature of the height profile of the latitudinal wind is

the same as that of the longitudinal wind. If the sign of u would be opposite to

the sign cr fv , we had to expect according to table I a change of the numerical

value of A n toward smaller or even toward negative values. Such change can

influence the amplitudes and phases of pressure and winds. This question

can be resolved only by a full wave calculation eddy viscosity is inforously

considered.

2b. Symmetric planetary wave modes

From the XUV -heat distribution derived in (I/9), from the distribution of

corpuscular heating (I/12) and from the distribution of the exospheric tem-

perature (1/14) we expect the existence of the symmetric planetary wave modes

820 and 92f 2 where f2 - (I a/0 = 1/365. Both waves degenerate at thermo-

spheric heights in'o the spherical function P2 . The wave mode 8 2 0 describes the

time independent zonal heating due to the XUV-energy input which peaks at low

latitudes and due to corpuscular heating at high latitudes during equinox. The

wave mode 62f is responsible for the semiannual variation of these heat inputs

and their corresponding density amplitudes. From (I/12) as well as from the

findings in fig. 1 we expect also the wave modes 
84f (f = 0 and f2 ) at thermo-

spheric heights.

In figs. 5 and 6 we plotted %i the usual way the pressure functions 8n0

and the wind functions *n0 and 4)
n0 of the two symmetric wave modes

adopting again the approximation of f2 M 0. We observe the usual behavior

in amplitudes and phases of pressure and winds as discussed in section 2a.
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tt;
As it is apparent from (I/9), (1/12) and (I/13), the most important sym-

metric planetary wave mode according to our definition is the mode with wave

domain number n = 0. This mode has no latitudinal structure:
y

900 =P0=1,

and its horizontal winds disappear:
y	

^r00 = SOU = 0 .

htj	 It can be treated by an one dirlensiona -: vertical model as has been done by
b:

Harris and Priester (1962), Jacchia (1965) and others.

w.

3. WAVE GENERATION AND PROPAGATION WITHIN THE THERMOSPHERE

Tn order to determine the generation and propagation characteristics of the

planetary wave modes at thermospheric heights, we calculated the normalized

eigenvalues from Eq. (1/37) and plotted in fig. 7 the attenuation factors

Pn0 -1 versus height. They increase with increasing wave domain number n.

In the case of zero frequency (f-0), all planetary waves behave like pure
0

evanescant waves with zero propagation factor a n . In the case of the annual

and semiannual wave modes (f - f 1 or f2), they become quasi-evanescent with

propagation factors of the order «n0 0. 01 which is however of no relevanc, 	 <<

for their propagation characteristics.
i;

In fig. 8 we calculated from (1/41) and (1/42) the relative amplitudes of

pressure and vertical wind of the four wave modes generated at thermospheric

i
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heights. Here, we adopted the thermospheric parameters at 300 km altitude

from fig. 2 in paper II and assumed a heat input of

-0.01	 z a zo
-t	 Jn0 -	 for	 (13)

0	 z<zo

As in paper 11 we want to study the influence of the heat input at ther-

mospheric heights for the generation of waves. Therefore, the lower boundary
;r

of the heat input in our model is at zo — 200 km, and the height range z a zo

shall simulate the situation within the thermosphere above about 200 km. 	 The

vertical dashed lines in fig. 8 give the asymptotic values of pressure and

vertical winds according to Eq. (I/45). 	 They have already been reached after

200 km in the case of wave mode 8 40 due to its large attenuation factor X40

(see fig. 7).	 In the case of wave mode 8 1 0 , the asymptotic values are still

twice as great as the amplitudes at z - z0 = 200 km.	 True isobaric layers

exist for the various wave modes between z-z0 = 8 km (for n = 4) and

z - z0 = 15 km (for n = 1) where pressure and horizontal winds are zero and

' change their phase by 1800 .	 (In the case of finite frequency parameters

f = f1 or f2 , •a finite minimum value would form there instead, and the phase

transition would occur within a finite height region.) Above that isobaric

layer, the pressure amplitude is greater for smaller wave domain numbers n.

On the other hand, the amplitudes of vertical velocity are greater for greater n.

In the case of the vertical winds, the asymptotic value is the same for all

numbers n as it follows from Eqs. (I/45) and (I/47).	 The reason for such

behavior is the following: With increasing wave domain number n, the

horizontal scale length of the modes decreases. 	 Thus, an increasing amount

3`;
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of wave energy is dissipated by viscosity and ion drag which reduces the

pressure amplitude. On the other hand, the number of the circulation cells

increase with n (see figs. 9 and 10). In order to drive this wind circulation,

the vertical velocity must be maintained. Below z o , the height of the lower

boundary of the heat input, only downgoing waves exist which decay exponent-

	

'	 ially like
a `

exp - 1 + # 0 (zo - z / 2Ho 	(z<zo )
n

In fig. 9, we plotted the meridional cross-sections of the circulation cells of

the antisymmetric planetary wave modes 81 0 and 8^ 0 corresponding to the

heat input of (13) which means heat surplus on the southern hemisphere.

Longitudinal winds are indicated by the symboles "W" = westerly winds

(blowing from the west) and "E" = easterly winds (blowing from the east).

In fig. 10 the same is plotted for the symmetric wave modes 8 20 and 840.

Here, the heat surplus is at the equator for 8 2 0 and at middle latitudes for

0
84 .

	

'	 If we relate the wind circulations in figs. 9 and 10 to the annual and
rr {

semiannual winds (f = fl or f2) , fig. 9 is valid during the December-solstice

and corresponds to the heat input

IJ2n+1) cosOat

Fig. 10 which gives the semiannual variation is valid during the equinox

and corresponds to the heat input

J2n i 008 20 at

Thus, the winds in figs. 9 and 10 change direction after one half period, that is

after 6 months in fig. 9 and after 3 months in fig. 10.

,
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These circulation cells which are identical with thermally driven winds,

known e. g. from the land-sea-breeze, with rising winds above the maximum

heat input blowing towards the heat sink above the isobaric layer and returning

below that layer should be expected throughout the thermosphere because

according to figs. 3 and 6 the latitudinal winds of the various wave modes

although changing their amplitudes with height do not change significantly the

latitude of their phase transition. The height of the isobaric (or quasi-

isobaric) layer depends on the real heat input and should lie slightly above

the maximum heat input which is to be expected generally within the lower
a

atmosphere. However, there might be an exception, namely the corpuscular

heat input which terminates at the base of the thermosphere. If this heat source

is able to generate a significant wave mode we would expect the isobaric layer

of the corresponding wind cell near 100 km altitude. This w ould happen if the

normalized heat input J 0 of the corpuscular heat source exceeds all othern

sources of the same wave domain number n within thermospheric heights.

It remains to discuss the implications due to the turbopause layer where

a transitions occurs from eddy viscosity with negative dissipation factors into i

ion drag with positive dissipation factors. In order to maintain the circulation

cell, we expect a wind field shown schematically in fig. 11. The latitudinal

wind goes through zero at the turbopause layer without changing its phase.

On the other hand, pressure and longitudinal wind change their phase abruptly 	 `.
J

although their amplitudes are not affected. In a real atmosphere such transition

will of course occur within a finite height range. This behavior is quite dif-

ferent from the situation at the isobaric layer where pressure and both wind

components become zero and change their phases as indicated in fig. 11.
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4. COMPARISON BETWEEN THEORY AND EXPERIMENTAL DATA

In this section we want to compare the result of the forgoing sections

with available experimental data. First, we consider the mesospheric wind

1	
data of fig. 1 and the corresponding coefficients in the series of spherical

harmonics in Eq. (6). From table I and from Eq. (3), we related the observed

wind components in (3) to the equivalent relative pressure amplitudes of the

various wave modes. These numbers are given in table II. Considering these

numbers, we have to remember our remarks in section 2a about the ambiguity

concerning the vertical profile of the latitudinal wind. Therefore, the numbers

In table II should be taken merely as upper limits. Especially, the annual

component 91f ' may be overestimated due to the sensitive influence of the

uncertain number D 1 = 0.2 - fu f  < 0.36 on the pressure amplitude.

Nevertheless, the numbers in table II indicate some interesting features.

In the prevailing wind field (f = 0) the 820 - component predominates. The

heat surplus to generate the wind cell of this mode occurs at low latitudes if

we assume that the height of the mesospheric winds in fig. 1 (92 km) is below

the isobaric layer of that wave mode. Then, the wind cell of this mode is that

of fig. 10a. Above the isobaric layer within thermospheric heights the phase

of the pressure component of this mode is consistent with the corresponding

T20 - term in the exospheric temperature distribution of (1/14). However

the amplitude of T20 in (I/14) seems to be underestimated when compared with

the value suggested from table H. We can at least qualitatively explain this

discrepancy by assuming that the auroral heat input terminates at about 90 to

100 km while the solar radiation reaches down to the earth 's surface. There-

fore the wind system due to auroral heating has its isobaric layer above 92 km

7

i^
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while the wind system due to XUV heat input has its isobaric layer far below

that height. Thus in the height range around 90 km both contributions to the

horizontal wind and pressure fields add together, whereas at thermospheric

heigate they compensate each other due to the reversed signs in the corres-

ponding heating terms in (I/9) and (1/12).

The wind direction of the longitudinal wind component at thermospheric

heights of the 020 -mode is consistent with the westerly prevailing winds

discovered by King-Hale (e. g. , King-Hele and Allan, 1966). However the

amplitude of this wind component estimated from the number in (1/14) and

from figs. 5c and 8 is

(v)2 
01", 5 m/sec

at 200 km altitude and is one order of magnitude smaller than King-Hele's

wind. Moreover, the longitudinal wind of the 0 20 - mode disappears at

the equator which seems to be inconsistent with the findings of King-Hole.

Therefore, King -Hele's prevailing winds can not be explained by the

zonal 020 -mode.

Even if we assume that Jacchia's (1965) temperature component

T20 = - 70 K in (I/14) is an underestimate and that the full contribution of

the XUV - heat input in (I/9) is effective (neglecting the corresponding

component of the corpuscular heat input in (1/12)) we arrive at an upper

limit of the temperature amplitude of the zonal (2, 0) mode of

fT
20 I < 130 K

as compared with I T 1,1/2 	 1200 K of the fundamental diurnal mode.

;

i^

f

t
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That relatively small component of the zonal (2, 0) mode is the result of

the filtering effect of the thermospheric dynamic system which suppresses

higher order components of pressure and temperature Illie 1/n(n+l) (see (1/47)

and (1/49)).	 This is the explanation for the small observed zonal temperature

amplitude in (1/14).

The 840 -wave mode can be explained as generated by the corresponding

corpuscular heat input term in (1/12) if the isobaric layer of the wind cell is

above 92 km, the height of the observed winds in fig. 1. 	 Then, the wind cell

of this mode has the form of fig. 10b however with reversed wind directions

r with westerly winds at low latitudes above the isobaric layer. 	 These

longitudinal winds may be added to the winds of the 8 20 -mode.	 However,

at high latitudes the winds of this mode are easterly.	 The maximum westerly

wind of the 840 -mode at 200 km altitude is estimated from (I/12) and figs. 6c

and 8 as

r 1 (v)4
0

^ s	 1 m/sec

which again is too small to explain the King-Hole-wind. 	 The relative pressure

amplitude of this mode at thermospheric heights is expected from the cor-

puscular heat input in (1/12) and already transformed into Jacschia's (1965)

exospheric temperature amplitude is
J

(T40 s 20 K	 (To = 10000 K)

which appears to be not very significant.

We now turn to the annual components in table U. Here, the Sif 1 - com-

ponent predominates although the number in table II may be overestimated as

I

4

ft
is

l
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already mentioned. This component is consistent with the corresponding
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xuv-heat input term in (I/9) and with the exospheric temperature term in

(I/14) if the isobaric layer of this mode is well below 92 km, the height of

the wind in fig. 1. Then, the heat surplus occurs on the summer hemisphere

and can readily be explained as resulting from the solar radiative heat input

which peaks in the summer hemisphere during solstice.

From (I/9) and from the result of section 3 we estimate a pressure

component related to the pressure of the fundamental symmetric diurnal

mode 8 i ,1/2 (see paper II, section 3) of

f 1 	f^
P1	J1	

= 0.4
1,1/2	 1,1 2

p l 	 J1

which agrees completely in amplitude and phase with the corresponding number

of the exospheric temperature distribution of (1/14):*)

f
T 	 0.048 = 0.4
T1,1/2	 0.12

1

*) Note that Jacchia's exospheric temperature (Jacchia 1965) represents

merely the density amplitude above about 200 km. A ratio of Tnm/To = 0.1

corresponds to a relative density amplitude of p nm/po 0.4 for To = 10000 K

and above 200 kin. Moreover, the density amplitude is proportional to the

pressure amplitude, and it is p nm/po 0.85pnm/p0 within thermospheric

heights above about 200 km.
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The wind cell of fig. 9a is jus& the wind circulation proposed by Kellog

(1961) and by Johnson (1964) to explain the F2-layer winter anomaly and the

winter helium bulge. Moreover, from our result in section 2, from fig. 11

and from (I/42,) it follows that within the turbulent region with convex wind

and temperature profiles the pressure and temperature are out of phase with

the latitudinal wind. Therefore, in the height region near 90 km we expect a

cold summer pole and a warm winter pole which is consistent with experimental

data (Cole and Kantor, 1963). The amplitude of this observed temperature

wave is of the order of TIf ' /To 0.25 at 90 km altitude which is quite con-

sistent with the number given in table II.

We estimate the maxima latitudinal wind at 200 km from the number in

(I/9) and from figs. 3b and 8 as

(u) a f '	 25 m/sec
r

which is a reasonable value to explain the F2-winter anomaly.

	

} ''	 The 6 f ' component in table II has the opposite sign of the 6 f' -component.

Therefore provided the heat input maximum occurs below 90 km, its corres-

ponding wind cell has the form of fig. 9b, however, with opposite wind direc-

tion. That is equivalent to a heat surplus on the winter pole. The corres -

	

^d	 ponding XUV-heat input term is very small din our approximation in (I/9) it is

exactly zero). The origin of this component seems to be obscure, therefore.

It may perhaps be related to the real heat distribution within the lower

atmosphere where such term would damp the pure cosh - dependence of the
	 ti

	

w .	 annual heat variation as the result of some horizontal heat transfer from the

summer to the winter hemisphere.
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Next, we consider the semiannual components in table 11. The latitudinaly

depending part of the semiannual effect at thermospheric heights is according

to table II predominantly included in the 0 4f -mode. Its phase in table II is

consistent with the correspcnding corpuscular heating term in (I/12) if we

assume that the isobaric laver of that mode is above 92 km, the heights of the

winds fig. 1. This behavior, therefore, can be considered as typical for

wind systems driven by the corpuscular heat input. The wind system of this

mode is that of fig. 10b, however, with reversed wind direction.

We estimate from the number in (I/12) and from the results of the
.t

foregoing sections a pressure amplitude of this mode above 200- km already

transformed into the exospheric temperature amplitude of

T f2
To s 0.0005

which is completely insignificant at thermospheric heights.

The small 02f z component at 92 km (see table II) does not fit into the

general picture outlined above because it should be relatively large as

compared with the O4f component due to the additive effects of solar radiation

and auroral heating at this height range (see the remarks in connection with

the zonal 020 component). However at thermospheric heights we expect rather:f

small amplitudes of the 9212 component with an upper limit of the temperature

amplitude according to (I/9) of

`T2f s 3° K	 (To = 10000 K)f1

which is not inconsistant with Jacchia's analysis in (I/9).
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Finally, we want to estimate the amplitudes of the zonal and the semi-

annual (0, 0) modes generated by solar XUV and auroral heating. We do this

by adopting the half empirical formula (1/49) which is valid for n = 0 and

which gives rather good approximated values at thermospheric heights as has

been tested by full wave calculations. Since the fundamental diurnal mode

01,1/2 has the well established temperature amplitude of I Ti' 1/2) 	 1200 K

during moderate solar activity (To = 10000 K) we shall use this value as a

normalizing factor. A second normalizing factor will be adopted from the

upper limit of the corpuscular heat input in (1/15). 	 Then we determine from

(I/9), (1/12), (I/15) and (I/49) a zero component of the exospheric temperature

Of
0	 2.4x1.17x120 =°K 	 (14)T	 5	 4600	 0.4x1.83

as the mean temperature at thermospheric heights due to the contributions of so-

lar XUV and auroral heating. This temperature amplitude is smaller by a factor

of about two when compared with the observed mean exospheric temperature

of T° = 10000 K in (1/14).	 The number in (14) is qu:*e consistent with the

finding of Jacchia (1965) that the observed mean exospheric temperature

x extra - polated to zero solar activity is about 500 0 K.

` We therefore need an additional heat source to generate the residual 5000 K

temperature. Several heat sources have been proposed. Hines (1965) assumed

heating due to wave dissipation of the whole spectrum of gravity waves within

thermospheric heights. Volland (1969) assumed wave dissipation of the funda-

mental diurnal mode. Lindzen and Blake (1970) proposed wave dissipation of

the semidiurnal modes. Since the semidiurnal waves are propagation modes

t
within the lower atmosphere with relatively large amplitudes near 100 km

height, Lindzen and Blake's (1970) assumption is probably the most likely one.
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The mean heat input due to that dissipated energy in (I/13) has the

amplitude

	

Qdis Z 1 ' 4 QXUV
	 (15)

during moderate solar activity (To = 10000 K).

Turning to the semiannually varrying (0, 0) component in (I/12) we arrive

at an amplitude of the corpuscular heat input of

	

TD 2 1 s 130 K.	 (16)

From Jacchia's analysis (1/14) we find an amplitude of

	

^T0 = 400 .	 (17)
I

Therefore an additional heat source must be effective to generate the tem-

1

p^1

1	 `.

s'

y	 4

^y

'k
i

perature difference which is again most likely due to wave energy dissipation of

tidal waves (Volland, 1969). We estimate its energy amplitude from the

numbers in (14) to (17) using the already mentioned assumptions as

1
Q

0f I	 -0-05Q0  ►
diss	 is

which is just the value proposed in (1/13).

5. CONCLUSION r

1'.

We considered in this paper planetary waves at thermospherics heights

generated by solar. XUV-heat input and by corpuscular heating. We determined

the eigenfunctions of the four most important planetary waves with zonal wave

domain numbers n = 1, 2 , 3 and 4 and showed the height dependence of the

latitudinal structure of these eigenfunctions. Due to dissipation forces like
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viscosity anol ion drag, the eigenfunctions of the wave modes become

essencially identical with the zonal spherical harmonics Pn (coo 0 )

above about 200 km.

We calculated the generation and the propagation of the various wave
Is	 modes within the dissipative thermosphere. It has been shown that the

si

relative pressure amplitudes and the horizontal winds of the wave modes

approach asymptotic values at high altitudes which are proportional to

(1/n(n+l). Therefore, the thermosphere behaves like a filter for the pres-

sure amplitudes and the horizontal winds suppressing waves with large zonal

wave domain numbers n. However, the amplitudes of the vertical winds have

the same asymptotic value for all wave modes.

The corresponding wind systems of the various wave modes have been

determined and compared with observed wind data at mesospheric heights

as well as with density data derived from satellite drag observations. The

following conclusions have been drawn:

1. The prevailing winds (zero period) containing the components

n = 2 and 4 are rather strong at mesospheric heights, however small at

thermospheric heights. The 0 20 -component has its origin in solar radiation

and in auroral heating. Both heating components which are in antiphase

contribute additionally to the winds and pressure fields near 90 km because

the auroral heat input which terminates near 100 km altitude generates a

wind cell with an isobaric layer above 90 km. On the other hand, the solar

radiation generates a wind cell with an isobaric layer below that height. At

thermospheric heights, however, the winds and pressure fields'of both heat
IL .

a
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sources compensate each other. The 9 40 -component can be explained as

generated mainly by auroral heating.

2. The annual winds with components n = 1 and *3 are strong at

mesospheric heights. The 81f -component is also significant at thermo-

spheric heights and can be explained by the solar radiative heat input which

peaks in the summer hemisphere during solstice. Due to eddy heat conduc-

'J 	tivity at mesospheric heights below the turbopause, a cold summer pole near

90 km altitude is expected from our theory which is consistent with observa-

tions (Cole and Kantor, 1963). The 83f ' -component is strong at 90 km, how-

ever supressed already at thermospheric heights due to the filtering effect of

the thermosphere. Its origin is obscure.

3. The semiannual wind component 82f 2 is insignificant at 90 km as well

as at thermospheric heights. This is explained by the compensating effect in

the corresponding components of XL'V and corpuscular heating. The 84f 7 -cam

ponent predominates the latitudinal structure of the mesospheric winds near 90

km. It is explained as originating from the corresponding heating term in the

auroral heat input.

4. The mean exospheric temperature can be considered as the tempera-

ture amplitude of the zonal wave mode with wave domain number n = 0 and

zero frequency (f = 0). It is generated by solar XUV heat input and to a

significant amount by the dissipated wave energy due to tidal waves from the

lower atmosphere. The semiannually varrying zonal wave mode 90 Z has

its origin mainly within the lower atmosphere and results from wave dis-

sipation of planetary waves from below.
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Table II

Relative pressure amplitudes p n f /po of the various planetary wave

modes On  deduced from the mesospheric winds observed at 92 km

altitude. (f=0 : prevailing component ; f = fl annual component	 .

f = f2 : semiannual component)

n f
	 0	 fl	 f2

1	 0	 0.272	 0

2	 -0.082	 0	 0.005

3	 0	 -0.098	 0

4	 0.032	 0	 -0.081

r

"r

Ef

{I
F.
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~	 't

i
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w

y FIGURE LIST

Figure 1. Mesospheric winds at 92 km height observed at Adelaide (35 0 S) and

Jodrell Bank (530 N) versus time of year (solid lines) after

Kochanski (1963) and theoretical winds (dashed lines).

Figure la. Meridional wind (N'ly : winds blowing from the north).

' Figure lb. Longitudinal winds (W'ly = winds blowing from the west).

Figure 2. Pressure function of the antisymmetric planetary wave mode 810

versus co-latitude J for five different heights within the

thermosphere.

Figure 3a. Latitudinal wind function *1 0	 Xand longitudinal wind function	 10

versus co-latitude d at 150 km altitude.

Figure 3b. Maximum wind amplitudes of the 8 1 0 -mode versus altitude.	 (Solid

line: positive; dashed lines: negative).

Figure 4. Pressure and wind functions of the antisymmetric planetary wave

mode 93 0 versus co-latitude.
f

Figure 5. Pressure and wind functions of the symmetric planetary wave mode

8 0 versus co-latitude.2

Figure 6. Pressure and wind functions -of the symmetric planetary wave

mode 840 versus co-latitude.

Figure 7. Attenuation factors 0 0 -1 "n0 is the imaginary part of the

-	 t

eigenvalue of wave modes with wave domain number n.)

I
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Figure 9. Relative wave amplitudes of pressure p and vertical wind w of

the planetary wave modes versus altitude within the dissipative

thermosphere (zo ,200 km). The generating heat input is in phase

with the pressure above the isobaric layer (solid lines) and is in

antiphase with the pressure below that height (dashed lines). It
y.	

terminates at zo . Below that height, only downgoing free internal

waves exist.

Figure 9. Meridional cross-section of the wind cell of the antisymmetric
>r

planetary wave modes with annual period f 1 during Lecember-

solstice. (Fig. 9a: 8 1f' -mode; fig. 9b: 83f' -mode. )

Longitudinal winds are indicated by W = westerly and E = easterly.

Figure 10. Meridional cross-section of the wind cell of the symmetric

planetary wave modes with semiannual period f2 during equinox

conditions. (Fig. 10a: 8 2f 2 -mode, fig. 10b: 84f2 -mode.

Longitudinal winds are indicated by W = westerly and E = easterly.

Figure 11. Schematic picture indicating amplitude and phase relationship

between the wind components near the turbopause and near the

isobaric layer. Equator is on the left, poles are on the right.

Longitudinal winds (E = winds from the east, W = winds from

the west) in braclats yield for the southern hemisphere.
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Figure 2. Pressure function of the anti symmetric planetary wave mode 0, ° versus
co-latitude d for five d1iferent heights within the thermosphere.
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Figure 3a. Latitmimal wind function 41 1 0 and longitudinal wind function i) j ° versus
co-latib,de 6 at 150 km altitude.

Figure 3b. Maximum wind amplitudes of the © 1 0 -mode versus altitude. (Solid
line. positive, dashed lines: negative).
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