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ABSTRACT

A study is made of the behavior of chemically generated waves in a simpli-

fied atmosphere. The atmosphere is assumed unbounded, isothermal, one-

space-dimensional and initially quiescent. At an initial time a dissociation re-

`I	 action, AB + J -+ A + B + J, commences and drives the subsequent wave motion.

The fraction of reactant in the atmosphere, X 01 is assumed to be small. The

system of governing equations is then expanded in terms of the small parameter,

X 0 , and an asymptotic integral solution as X 0 --* 0 is obtained.

The solution is integrated numeri pally for several natural impulsive heat

releases, including thunderstorms, hurricanes, chemical reactions, and

aurorae.

Strong thunderstorms and hurricanes are found to induce considerable ver-

tical motion and large temperature changes in the upper atmosphere. The same

is true for auroral heat releases. Conversely, upper atmosphere effects of

changes in the ozone layer appear to be small.
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Igor J. Eberstein

A LINEARIZED SOLUTION TO IMPULSIVE LATENT HEAT

RELEASE IN A DILUTE, ISOTHERMAL ATMOSPHERE

I.	 INTRODUCTION

Waves in a stratified fluid under the influence of gravity appear to have

been initially discussed by Bui • iiside (1889) and Love (1891). Both authors treated

an incompressible fluid. Gortler (1943) used schlierin photography to show

experimentally that disturbances in an incompressible stratified medium under

the influence of gravity propagate along characteristic rays. Lamb (1908)

treated a compressible, zidiabatic, ideal rgas whose dens ► ty is rstratified by gravity.

Since the original contributions by Burnside, Love and Lamb there have been many

F	
theoretical papers on various types of gravity waves. Reasonably up-to-date

treatments of the subject may be found in Eckart (1960) and Yih (1965). however,

gravity wave theory is currently undergoing an active phase of development

and contributions are being added to the literature at a rapid rate.

Recent experimental data from the earth's atmosphere and oceans have

greatly stimulated interest in gravity-acoustic waves. Gossard (1962) has ob-

served gravity waves in the troposphere. Hines (1960) has shown that internal

.I	
atmospheric gravity waves may account for many of the phenomena observed
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Igor J. Eberstein

in tho lower ionosphere, and gravity waves have been observed in the thermo-

sphere by Newton et. A., (1969) and Harris et al., (19w)).

It seems to be generally agreed that gravity waves are generated in the

troposphere, then propagate upwards. Thus Gossard (1962) has observed

gravity waves near the earth's surface and Eberstein (1970) has illustrated

the development of gravity waves between 30 km and 120 km.

The simpler forms of gravity wave theory treat propagation through an

inviscid, non-conducting gas, while more sophisticated theories include effects

of heat transfer, viscosity, and high altitude phenomena such as ion drag. How-

ever, the effect of chemical reactions does not seem to have been adequately

considered to date.

Between the troposphere and the thermosphere there are several regions

where important chemical reactions take place.

First, there is the ozonosphere between approximately 15 km and 45 km,

witheak ozone concentration at about 35 km Ozone mole fraction ' ip	 e act	 is n the

order of parts per million (Mitra, 1952) .

Between 60 km and 96 km there is Nitric Oxide (Pearce, 1969). The mixing

iW	 ratio for Nitric Oxide is also in ppm.

2



Igor J. Eberstein

Between 90 km and 120 km molecular oxygen dissociates into atomic oxygen.

The dissociation ratio, a being 3 x 10 - " at 90 km and 0. 998 at 120 km (Mitra,

1952). The oxygen is no longer a truly dilute reactant since its mixing ratio ie

20%. However, the high mixing ratio of oxygen beco ►nes a problem only where

the final fraction dissociated becomes large. Otherwise, one may use the math-

ematical expedient of considering only those oxygen molecules which ultimately

will dissociate.

The major chemical systems are tied to the absorption of ultraviolet radia-

tion from the sun, and thus have a dawn and dusk dependence. There is also a

dependence on solar activity. The latter dependence is more important for the

present study, since we are primarily concerned with impulsive heat release or

".	 absorption. Periodic thermal effects are in the realm of tidal theory which has

been extensively treated in the literature.

Large storms and such phenomena as aurorae may also be simulated by a

chemical type heat release.

In what follows, a study is made of the effects on the atmosphere of impul-

sive heat release in a limited altitude range in a dilute, isothermal atmosphere.

A chemical reaction is used as the heat release mechanism, and simplifying

assumptions are introduced to make the mathematics more tractable, and per-

mit an anlytical solution. Our objective is a relatively simple theory which may

be readily used to study the overall atmosphere effects of large classes of

3
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Igor.]. Eberstein

natural impulsive heat releases. It is recognized that comprehensive numeri-

cal techniques have been developed to study the atmospheric effects of impulsive

heat release from a point source. However, complicated computer programs

are neither generally accessible nor readily modified for general scientific use.

Thus we feel that a simple theory of the effects of impulsive heat release in the

atmosphere could be helpful in spite of limitations imposed by simplifying

assumptions.

II.	 GOVERNING EQUATIONS

The continuity and momentum equations (cf. Shere and Bowhill, 1969) are

not affected by the chemical reaction provided that the state variables are given

the extended definition:

I	 P(p, T, a)

where P, p , T and a denote pressure, density, temperature and degree of

advancement of the reaction, respectively. These equations are in tensor

notation:

Dpi,	 d u i	 (2.1)

and

	lh^ ^	 yap	 a il j i

	P Dt	 p9i	 ax i	+ axI	 (i	 1, 2)	 (2.2)

where

all	 2	 aUk+ ^ - 

4



Igor J. Eberstein

We denote time, space variable (x l vertical), velocity component, gravitation

vector component, viscous stress tensor, dynamic viscosity and the Kronecker

delta by t, x I , u , , g , , C7 1 i , µ and S , ) respectively. We also take g, = - g S 
i 

2

and we define D/Dt to be lie total or Eulerian derivative.

In order to develop the energy equation, it is necessary to consider the

thermodynamics of the system. The derivation of the equation of state parallels

the work of Liepmann and Roshko (1957, p. 29) and the derivation of the reaction

rate equation parallels the work of Ebe: stein (1966). The following discussion

applies to the reaction

I ,j 	 +	 Ali .	 A +B +.1

where J is an inert element. We assume that each component of the mixture is

a perfect gas. The mixture, however, is not a perfect gas. The partial pressure

of the ith constituent is

Pi	 m i p Ki T

where R i	 ,R/W , with 'R the universal gas constant, W  the molecular weight,

and mi the mass fraction of ith-component. Letting « be the fraction of AB

dissociated, n i the number of moles of ith component, and no the total number

of moles when a = 0,

^IAB	
11 0 Xo ( 1	 a)

I I A	 ri0 X o a

n 	 no X o (I
	 (2.4)

n1 _ (l	 Xo)no

5



Igor J. Eberstein

where X o is the mole fraction of AB when	 0. Summing yields

Fn i 	Ii () ( 1	 -	 XO).

P	 k(a)f)T
	

(2.5)

R ( 1)	 -R M

where -R is the universal gas constant, and M is the mean molecular %%,eight,

given as:

	

M	 CHI	 X  ( W".	 W1)1/t	 I1 + a X0l
L 	 L	 J

It follows that

R(,, )	 K(0) (1 + a X o )	 (2.6)

Hie reaction equation is as follows:

t ^A[3	 ["A	 tiH

D11 /Dt	 k F(T) -V	 k B (T) V V N	 (2.7)

where

N	 n 

anti k is a rate constant. In determining (2.7) it has been implieity assumed that

all molecules present may act as an inerL element with equal collision effective-

ness. Substituting (2.4) into (2.7) yields

D«
Dt	 ^pkF ( T ) MI 1	 a	 I K(T). /M)	

0(1 + X a]	
(2.8)

where

k ( T)
K(T) ^(T^

6



Igor J. Kherstein

and M is the mcan molecul:tr weight

1

For chemical equilibrium, the rate equation reduces to

1	 a	 l'	 X °

a2	
KI	 1	 X°

where use was made of the equality

K F,

K	 K(	 10'

In atmospheric problems the reactant fraction is generally sma:l, and it

will be assumed that X. < < 1. It follows that z X ° < < 1. The rate equation

may thus be simplified to give:

D I 7 	 F (T )/ M ] (I	 a)	 (2.9)
Dt

The energy equation is now developed in the usual manner (cf. Liepmann

and Roshko, 1957, p. 185+). Summing the rate of change of the internal, kinetic

and potential energy yields

i	 1
t	 + 2 u < <i ^ +	 x 2 ) dV

v

l ' e + 7 ii
i U

i + ,oi4x 2 l  	 n^ dA

A \

UPn u	 v	
dT	 (2.10)

f	 f
^ ^ dA	 ^ ^ dA 	 dx. n^ dA

A	 A	 A

7
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Igor J. F.berstein

where n
,
 is the ith component of the unit normal of the closed surface t, V is

the volume of <! and A the area; a Is the internal energy per unit mass and K is

the coefficient of thermal conductivity.

By applying Gauss' theorem and substituting the continuity and momentum

equations into (2.10), we obtain

	

De
	 OL J i

	

du
i
	 a	 K SI T

	

t ' Dt	
_r ax

i + 
a . 

.j :lx + ^ ( axi)	
(2.l])

We now use the first law of thermodyn.?mics, h = e + F/p, and the continuity

equation to obtain

	

Dh	 DP	 "Al i

x	

r)

	

p lit	 ?^t	 ^ i ax •	 a • ("	

T	 (2.12)
r3x

In a reacting gas mixture the enthalpy depends on the temperature and the

degree of reaction, i.e.

	

h	 - h (T, a)

The rate of change of enthalpy per unit mass is then given by:

Dh	 DT	 Da	 (2.13)
Dt	 Cp Dt + X o '3

where B is the enthalpy of reaction and C  is heat capacity. For an endothermic

(exothermic) reaction, B is positive (negative). Bosch the enthalpy of reaction

8
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and the heat capacity have a weak temperature dependence, and an even weaker

pressure dependence. For simplicity bath C P and 1t \vill I,e assumed constant

throughout this paper.

Eliminating h between (2.12) and (2.13) one obtains the enthalpy equation

in the for m:

^^	
e)11l	

0	 ;'T	 (2.14)P Dt + X ° p Dt
	 -DP 

+ ;, i k ax k + ^xA CK r3x^/

The independent variables in the system of equations described above

are t, x^. The quantities k F., K, c  and B are known parameters of the system,

Xo is a small (known) parameter. The dependent variables are P, P, T, u , , and a.

For the remainder of this paper we a,GSUme that the atmosphere is inviscid

and nonconducting. i. e. , K = A = 0

III.	 NONDIMENSIONA LIZ AT ION OF THE GOVERNING EQUATIONS

M

	

	 Since mathematical operations are performed on pure numbers it is proper

to non-diinensionalize the governing equations.

Some of the non-dimensionalization is almost trivial, as shown immediately

below:

R' - R/R(0)
	

M'	 M"'M*

C 	 CP R(o)
	 k F '	 k FP, /M*(. B

P0	 P/P0
	 K' = KP* "'W";s

9



Igor J. Eberstein

where R(0) is the gas constant for « = 0, and t he starred reference level is the

v.tlue at the bottom of the reaction zone. - B is a base freq uency, and If is

scale height

t'	 t'AB	 x.'	 -	 x	 !!

1' '	 R(0) 1' ,B 2 11'
	

K'	 g 1l B 2

B'	 B ,B 2 112
	

P/P. 
'13 2

 
112

It is ,eon that in the primed system we have

P'	 p' R' T'

In general, the non-dimensional system of governing equations looks very

similar to the dimensional system.

The quantity "B2 H 2 is proportional to the energy contained in a wave

oscillating with the base frequency, and having amplitude equal to a pressure

scale height. The quantity H ,.13 is a measure of the acceleration experienced

in such a wave. s ince such acceleration must be less than that due to gravity

we would expect g' > 1.

One may estimate the magnitudes of the non-dimensional parameters.

Taking a scale height of 6 km and a base period of 5 minutes, one obtains

( I B H) 2 ,, 1.6 x 108 cm 2 /sec 2 - 3.74 calories/gram

and

go — 3.5
^ B 2 ti 	 cm'sec 2 , giving	 ,

T	 3.S

10



Igor J. f'berstein

Further, taking B = 34.4 kcal/gmole, M = 48g/gmole, one obtains 13' - 200.

IV. ASYMPTOTIC DEVELOPMENT

The non-dimensionaliied system of equations will be expanded about the

parameter X o , i.e., we expand each dependent variable in a power series of

the form:

a)

f(t, x, z)	 L f (N (t, x, z) h„N	 (4.1)

N ^ 0

where higher order terms may be dropped as X. - 0. This expansion limits

the validity of our results to dilute fluids, such as the atmosphere. Other ex-

pansions [cf. Lax, 19571 can he obtained by inserting a small parameter into

the initial conditions. 'These exp .nsions may, for example, be used to study

the generation of gravity waves by tidal waves.

Assume that the atmosphere is initially stratified, quiescent, and bounded

below by the earth, i.e., we define an initial-bourn -y value pro hlem with init ial

conditions:

T(0, x, z)	 T0	 T^

u^(0, x, z)	 0	 (i = 1, 2)
(4.2)

P(0, x, z) -	 e-Z

1(0, x, z)	 0

and boundary condition:

11	 4



Igor J. Eberstein

tj 2 (t, x, 0)	 =	 0

Using the equation ul state to eliminate P from the governing equations and

substituting (4. 1) into the resultant system yields the zero-carder solution

a

	

f ( ° ) (t, x, z)	 To	 T.

	

u i ( ° ) (t, X, z)	 =	 0	
(4.3)

	

P ( ° ) (t, x, Z)	 _	 C'_

	

CL (0) (t, x, z)	 _	 1 -- vxp [-kF1-") t 

Defining T (1) = T ( ° ) T(1) 	 ( 1) = P( ° ) P(1) and a(l) = a ( ° ) a(1)

we get the first order system

^) i,i l )	 ,i, (1)	 dT(1)	 -
6t	

t To ^x	 T°	
x) x	 - 0
	

(4.4)

due( 1.)	 (),	 1 )	 a T4

t	 { T o	 ^Iz	 T( o ) ,(1)	 To a 

r^. (1)	 du l (1)	 du2(1 >

rlt	 +	 d 	 +	 o 	
y u2(1)

aa( °)
T°	

(4.5) 
-3 z 

+ T0,Z(° )

0 .	 (4.G)

aF^(1)	 1	 ^T(1)	 aa(°)
+	 (1)	 at

(4.7)

12



Igor J. Eberstein

a`'(1)	 i1 1(1)!

rat	 ^' ' a (1)	 at
f-(1) 

( P (0) • ' `0) )
	

(4.8)

where

UO

Equations (4.4) - (4.7) form a linear system of four partial differential

equations in four unknown functions. The system is inhomogeneous. The solu-

tion of (4.8) for a ( 1 ) is needed only for the calculation of second order terms.

Since we determine only the first order terms in this paper, we will neither

specify F M nor solve for a(1) .

Dropping the (1) subscript or superscript and eliminating we obtain the

equation

2(	 2I ;l	 _. C2 a	 _ C2 i,	 + C2 ,l	 Y - 1 Cq a	 r	 f (a. (0) ) (4.9)
at e L ,)t 2 	 aX2	 az2	 az	

y2	 aX 2

where

2	 22	

T 
a 2-

	

at 2 ^t2	 0 ax 2	 0 i)z-

	

3 3 a (0)	 ^)2,^(^)

	

B :it'az	 + 0 r 
1)To 2	

axe (4.10)

F

,.

I

13
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Igor J. Eberstein

and

C2 3	 • TO

After (4.9) is solved, the other dependent variables can be determined by

the equations

I
i 2	 d

i)t2 + TO az

1	 ^+ 2 T _ T ^O T	 ^ ,i.	 .i. , f;^`02 
a ( 

0) { T o u(o) (4.11)
y	 1 r0t2	 0 r%Z	 0	 r%t2

d il l 	 a2 P 	 1	 d2 T -	 1	 ,) T	 o 	 1 c 0 >	 (4.12)
ax	 at a z 	-y -- 1 at dz	 y	 1 ;it +dt 

(-L

	

;^z	 1 a

Now define

	

0(t, x, z)	 V-z/2 T(t, x, z)
	

(4.14)

The above definition allows the temperature perturbation to grow expo-

ne,itially with altitude without a corresponding growth in 6 .

Substituting the definition of d into (4.9) yields:

2	 a 2	 C2 ^	 C2 ( -y 1 ) a 2 1 ^,-Z /2	 )	 (4.15)
at 2 [at 2 r 

C 2 p 2 + 4 
J	 y2	 dx2	

f

f(a ( ° )) was defined in Equation (4.10).

14
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a

1'lie dispersion equation of (4.15) is:

k t4 - C l (	 + ^ t2 i-I-)
4 n t 2	[(y- 1) C4/,,, Xx2 ' 0	 (4.16)

where ki is the wave number of i.

For a discussion of dispersion relations and how these are obtained from

partial differential equations reference is made to Courant and Hilbert, es-

pecially p. 588.

V.	 SOLUTION OF THE FIRST-ORDER SYSTEM

From (4.4)-(4.6) and the initial conditions (4.2) we deduce that

0(0, x, z) - 0
	

(5.1a)

O t (0, x , z) ' - (y - 1) Bkf 
e-3:/2	 (5.1b)

Conditions for o f t and "t t t at t = 0 can be determined by differentiating (4.4)-

(4.8) appropriately and analyzing the resultant system or by integrating (4.15)

and applying the physical requirement that 0(t, x, z) must remain bounded as

t - ,r. The negativeness of `) t (0, x, z) means that the atmosphere initially

cools, which is in correspondence with the endothermic reaction indicated by

positive 8.

Since the inhomogeneous parts of (4.5)-(5. 1) do not depend upon the hori-

zontal space variable, neither does the solution. Thus (4. 15) reduces to

15
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where

M  . J,	 a2iat2 -c 2 a 2 /a7 2 + c 2 %4 .
	 (5.3)

It is worth noting that the initial conditions and the alpha dependence chosen

are such as to imply the relevance of only one space dimension. Other initial

or boundary conditions would require that the second space dimension be kept.

Unfortunately, exclusion of the lateral space dimension removes many interest-

ing physical phenomena from the realm of applicability of the theory. However,

it must also be realized that keeping the lateral space dimension is only mear.--

ingful if one also knows the horizontal behavior of the forcing function. Other-

wise, one can only calculate propagation of waves, but not their generation.

Integrating (5.2) with respect to time twice,

M ( 01 - w(t, z) - k F ( Y -- 1) k f	 + Bt 1 j E	 - 13t1 exp	 _T	 kFt^	 I ^.4)

subject ►o initial conditions (5. 1).	 J

The inilomogeneous part of (i.2) is the effect of the chemical reaction. For

a realistic approximation to the atmosphere, the inhomogeneous part must

be multiplied by a suitable weighting function, since the chemical contribution

only extends over a finite altitude regime. We also note that at each fixed

altitude the driving force must tend asymptotically to zero in the Poincare

sense as t . .

1 r,
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The solution of (5.1) - (5.4) is obtained by superposition. We choose a suitable

function , (t, z) which satisfies the initial conditions and is damped in time.

For example, set

(t. z)	 - ( y - 1) 2 k f t e 2 t  V -38 /2	 (5.5)

Observe that (5.1) is satisfied and

2.2C	 krC	 t,-3:/2

Since M [ ] is a linear operator, (5.1)-(5.4) may be reformult.ted as

0(t, Z) - ta I(t, Z) + 02(t' Z)	 (5.6)

where 0 2 (t, z) satisfies

	

MI 2 (t, Z)l - w(t, z) - 2v2 C( y - 1) Fk-f e-,2I 	 ^,-3t/2 	 (5.7n)

and

fl2(0, z) - 02 t (0, Z)	 0.	 (5.7b)

The solution of (5.7) for 02 (t, •r.) is known [ cf. Lamb, 19091 and is given by

t92 (t, z) --	 W(t, z; r) d-r	 (5.8)

n

where

tC - ?c	
/

W(t, Z:	 )	 Jo 1 2	 (t c - TC ) 2 - 'i 	 z. 71) d')(5.9)

U

17
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and

O(	 z, rj) ' [T(T, z • r,) + T(-r, z - PI)l /2c 2 	 (5.10)

with

^0(?, z)	 w( •, z; - 2 ^_' c(	 _ ]	 - kr C,-V-2 ec E,-38/2

11though (5.5) and (5.8) -(5.10) provide an exact solution of (^i.l) - (•"^.1), this solu-

tion is complicated and ,yields qunntitative information only through numerical

calculntions. The results of these calculations are given in the following sections.

A solution of (5.1)-(5.4) can also be obtained using series techniques. The

result is n somewhat rapidly conveeiK nt infinite series whose terms involve

products of powers (- k I t e - ' )" and Yowig's lunctions [Young, 19121 , a special

case of Lommel functions. Since the series was not used to obtain physical

results, it is not presentee here.

From (4.12)-(4.13) we deduce the first order terms:

T(t, z)	 _	 e"" 2 0(t, z)

d [ T
11 2 (t, z)	 1 + w., dz

Z
y-

S

where z is at the earth surface and

	

t	 ,9u2
P( t , z)	 .,2 - 

dz	 dt
n

LU
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Vi.	 COMPUTING

The care of the numerical problem is evaluation of the integral expressions

(5.8) and (5.9)

Evaluation of the above integrals was dome numerically using Euler's

method:

N

LW
, (t, Z, T,) A r	 (E ► • i)

1 a 1)

%\ , here /IT t/N and r+ % i 4T .

Similarly,

M	

I	

2

W I J 	 (t - 7 ) 2 -	 '	 Q(T•. Z, 77 ) G7]	 (s•')
LIMO L	 C	 '

where

AT1 = (t - T) c /M

77 j	71

i^
The Bessel function was eva..uated by numerical integration to at least five:

siimificant figures. Accuracy of the routine was checked against tables in the
IWO

hwidbook of Chemistry and Physics.

The size of the integration mesh was decreased until the results became

invariant to further decreases of mesh size.

jr
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The above procedure works quite well for short or medium times. If the

integration steps are kept small for longer tinkes, then computing becomes

excessive. Conversely, if the number of intervals is kept constant, then

accuracy suffers. Also, it is desirable to observe how the perturbation profile

develops with time. We thus break up the integral for 0 2 into a series of inte-

grals as follows:

K	 k

62 (t. z) 	 f W (t 
k' 

z, •r)dr
k = 1	 At(k -1 )

(6.3)

where K is chosen such that

t K A t

Since W is a function of final time, (6.3) cannot be solved unless an addi-

tional boundary condition i i imposed.

Let us examine (5. 9):

The quantity V (tc - r c) 2 - ,q 2 is familiar from the theory of wave propaga-

tion. (t - T )c is the distance that a wavelet has travelled in tirae (t - T ).

Thus the r, integration goes to c (t - -r), or to the limits of the physical region

being considered, provided that there is no reflection at the boundaries. Let

emax be the distance from the furthest point in the region considered to the

20
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furthest point in the reaction zone. If t e • emax, one has summed all the con-

tributions. Defining At > emax/c, it is thus permissible to write:

n,

	 2Ac	 .14c

f) 	 f A	 101 )At
W d7 +	 W &r ♦ ... 	 w (i	 (6. 4)

with

W	 Jo Q d	 (6.5)
,0

(k -1)At S?:st.At.

The quantity t - -r ranges from zero to At making the values of the Bessel

function independent of 1%. Since the range of -r) is thus tc, it becomes possible

to compute a matrix of Bessel functions

MJ 0 (I. J^

where the index 1 refers to (t - r) 0) and the index J refers to -r7 (J). Q, however,

depends on the actual time elapsed, and must thus be computed for eaca value of

k.

The integral for W is therefore approximated by:

J MAX

W(K , I) -	 M.Io(1 ,J) Q( K .J) o77(J)	 (6.6)

^	 J =1
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02 is approximated by:

IMAX

d r (I)	 (6.7)
r.l

;uui

KIM X

d I (I)	 W (K, I) AT (K)	 (6.8)

K-I

The rate of change of temperature, or 0, is needed to evaluate the velocity.

This is computed using; the forward difference approximation:

The derivatives of 01 and a are evaluated from exact analytical expressions.

The velocity is estimated by a simple numerical integration in z, taking; the

velocity at the earth's surface to be zero. Density deviation is estimated the

same way. It should be noted that the step sizes for z were between t). 1 H and

U.5 H. Thus, the velocity and density estimates are generally less reliable than

the temperature estimates.

VII. NUMERICAL RESULTS

At very short times a pulse is seen propagating up and down from the re-

action zone. The initial pulse has the appearance of a discontinuity. Eventually
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the pulse passes outside the range of the computation regime, and a pseudo-

study pattern is established in which the qualitative behavior of the parameters

does not ch;uige. However, the qunti :a. ,± Live values increase to .i maximum, and

then decay. The development and decay of the pseudo-steady patterns are illus-

trated in Figures 1 through 3.

The type of behavior observed may be partially explained by analogy with a

shock tube whose driven end is semi-infinite. Initially the shock passes, then

a pseudo-steady state is established and eventually decays. The above analogy

is incomplete, since the atmosphere also behaves like an elastic medium result-

ing in the establishment of something like a standing wave pattern. However, an

acoustic treatment would be incorrect because the gravity restoring force is

important, and because the reaction generates pulses all of one sign, either

compression or rarefaction. Perhaps another analogy is a spring with weights

at the end. When weights are suddenly added or removed, wave patterns are

set up in the spring. Now, consider that a series of weights are added or re-

moved in succe s sion. Also, let the spring be very stiff near the bottom, becom-

ing progressively more elastic toward the top.

Figure 1 shows a series of 6 profiles. The length of the reaction zone is

0.5 H, the reaction is exothermic, and the nondimensional rate constant is 0. 01.

Figure 1 shows buildup of the 6 profile. The reaction zone was chosen to be

0.5 H deep, the reaction was exothermic, and the nondimensional rate constant

23
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w •is 0.01. The reference value, K , 
equals 10 - 2 sec-' ; thus time is given in units

of 100 seconds. The characteristic time of the reaction is defined as the point

%% here k Ft	 1. Strictly speaking, one needs k F p ( ° ) t = 1, but p(0) = 1 at the

bottom of the reaction zone. Since p (0) drops off exponentially with altitude,

while k. remains constant, it follows that the characteristic time increases ex-

ponentially witli altitude until she end of the reaction zone is reached. It may be

shown that

k  t = kF t'

where the starred quantities are dimensional. For kF = 10 -2 sec'' the charac-

teristic time is 10 2 in non-dimensional units, or 10 4 sec =- 2.8 firs. At z = 0.5 H,

the characteristic time becomes 4.6 hrs.

The absolute maximum value of h occurs at z = 0 and grows with time. A

relative maximum is found at z = 10, this secondary maximum al-() grows with

time. Essentially, n follows a Bessel function type of altitude pattern as might

be expected. The growth of ,' at z = 0 and at z = 10 is presented in Figures

2 and 3. Figuee 4 shows development of the temperature profiles.

Outside the reaction zone the velocity equation becomes:

aU _	 - 1	 a 
az	 y - 1 at

During the buildup of temperature we have

aT
at > 0
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everywhere except in a small region near six scale heights. one may conclude

that velocity is generally negative during the buildup phase, especially above

8 scale heights. This conclusion is indeed correct.

Physically we know that subsidence in an isothermal atmosphere results in

heating. Conversely, an upward motion gives rise to cooling. This is precisely

the kind of behavior observed, so we may conclude that the result is physically

conpistent. Similarly, convergency of velocity results in compression while

divergence gives rarefaction. These combined effects are illustrated in Figure

5 which, incidentally is for an endothermic reaction, five scale heights deep.

fI
If we had an adiabatic lapse rate, then physical argument would lead us to

expect disappearance of the most pronounced part of the temperature wave.

However, the velocity wave would not disappear; consequently, a temperature

effect would become visible at an altitude where the lapse rate became less than
^I

adiabatic. If the atmosphere ;.as an inversion, then the temperature wave would

be especially pronounced.

Several special cases are discussed below.

The first case to be considered is a severe rain storm. Condense saturated

air at 5 km altitude (270 degrees Kelvin) tultil 25% of it is ice, using a reaction

characteristic time of 3 hours and a reaction depth of half of a scale height.

The mixing ratio, X o is 0.002, and the non-dimensional enthalpy, B, is just un-

der 200. The reaction is of course exothermic. Since the extent of a rainstorm,

t
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or even a hurricane, is not large enough to really warrant a one-dimensional

approximation, the storm was assunied to be approximated by a line source

centered at G If below ground level. The above approximation results in a R
amplitude fall -uff relative to the pure one dimensional case. It is realized that

the two-dimensionality correction employed is quite arbitrary, and that a genuine

two-dimensional solution of the atmospheric equations of motion is needed.

However, the results, shown in Figure 4, seem to agree reasonably well with

experimental observations, as shown by Eberstein and Theon (1971).

Our calculations were taken to ten scale heights above the bottom of the

reaction zone. Whereas the ten scale height limit was chosen quite arbitrarily,

there are nonetheless compelling reasons for aimiting the vertical extent to

which computations are carried out. Firstly, the one-dimensional assumption

becomes ever less meaningful as the vertical extent of space is increased.

Secondly, the temperature perturbation involves an exponential in altitude, i. e. ,

T -- 6) e1/2

with the consequence that small errors in 0 can give rise to large temperature

errors as z becomes large. Also., the non-dissipation and isothermal atmos-

phere assumptions lose validity as one considers effects propagating over large

distances. A more detailed and comprehensive theory is needed to study the

effect of severe thunderstorms or hurricanes on regions in the ionosphere and

above. However, the present c-ulalyses illustrates that such effects would

1
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definitely be expected. This conclusion is borne out by experimental observa-

tions. Thus Bauer (1958) has shown a correlation between hurricane passage

and electron concentration in the F 2 layer of the ionosphere. More recently,

Davies and .Jones (1071) have reported association between ionospheric distur-

bances in the F 2 region and severe thunderstorms. Davies and Jones believe

that the ionosphere is perturbed by infrasonic disturbances generated by mechani-

cal ►notions of the thunderstorms, but are not due to buoyancy oscillations. We

would suggest that heat released by the storm induces vertical motion, thus

influencing the electron concentration and transmission properties of the F2

layer.

While the ionosphere is outside our qua.ntative reach, the ozonosphere is

relatively accessible. Reed (1950) suggests qualitative explanations in terms of

vertical and horizontal motions for correlations between ozone concentration

and weather phenomena. The existence of an ozone-weather relationship is

described as well known. Reed specifically considers subsidence at high alti-

tudes as one of the means by which ozone concentration is increased. Our model

predicts that a severe storm will cause considerable subsidence at ozone alti-

tudes, in agreement with Reed's suggestion.

±1 At the time of computation the velocity and density information were con-

sidered to be of secondary importance. A rather crude z mesh was thus used

to save computer time, with the result that the quantative velocity profiles must
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be considered approximate. Nonetheless, we are confident that a severe storm

causes large :aid sustained subsidence at ozone altitudes. It would be very in-

teresting to use a fine vertical mesh computation or a more sophisticated mathe-

matical technique to obtain a quantitative estimate of the ozone concentration

change.

One might also consider the effect of changes in the ozone layer on the

upper atmosphere. A reaction having the thermal properties of ozone dissocia-

ting to molecular oxygen was considered. The reaction characteristic time was

taken to be 20 minutes. This results in a maximum perturbation at approxi-

mately 4 hours. The type of perturbation profile attained is shown in Figure 5.

A 2 degree Kelvin cooling at the first maximum seems quite reasonable (Krueger,

197 1) . At the second maximum (9 H above the bottom of the reaction zone) the

temperature change is 15 degrees. The associated density perturbation is 6 91b,

and vertical velocity is 40 em/sec at 10 minutes, going to 5cm/sec at 4 hours.

Since the second maximum is above 90 km where large atmosphere variations

are frequently found, one must conclude that upper atmosphere effects of ozone

variations are not very important.

A very different conclusion is reached regarding the effects of aurorae on

the upper atmosphere. Insofar as a rather large amount of heat is rapidly re-

leased in a small altitude regime, the thermodynamic effect of aurorae is very

similar to that of a severe thunderstorm or hurricane. The expected behavior
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is thus generally similar to that sho %qi in Figure 4. If one takes an initial heat-

ing rate of 25 ergs /cm 2 -sec an(l a reaction characteristic time of 20 minutes,

with heating concentrated in half a scale 11 eight, then the quantitative deviations

are approximately the same as those snown in Figure 4. If the mean heating

rate is 25 ergs/em 2 -sec, then the deviations become twice as large. According

to D. Heath (1971) auroral heating rates vary between 10 ergs/cm 2 -sec and 100

ergs/cm 2 -sec with heating concentrated in less than one scale height. Corre-

sponding characteristic times vary between 10 minuteR and 100 minutes. Since

f

our solution is linear, it becomes possible to estimate upper atmosphere effects

any% here in this range. The maximum temperature deviation predicted is then

in the order of 500 degrees at some 200 km for the case of a mean heating rate

of 100 ergs/cm 2 -sec. The actual value of 500 degrees must, of course, not be

taken too seriously, especially since large heat releases, and associated large

accelerations violate some of the assumptions on which our solution is based.

Nonetheless, the theory does predict a large temperature increase well above

the main auroral display altitude.

VIII. CONCLUSIONS

A one-dimensional model for impulsive heat release in the atmosphere has

been developed. The theory described is intended as a simple tool to study the

effects of impulsive heat release. Such heating, or cooling, is found to cause

large disturbances at higher altitudes.
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I'he inclusion of a second space variable and additional rnathematical model-

ing; of heat sources is needed. Among; existing volutions including more than one

space dimension are acoustic waves, internal gravity waves, and tidal waves.

However, all three above mentioned waves are special restricted solutions to

the atmospheric equations. specifically, acoustic and gravi ty waves have sinus-

oidal space and time behavior. Tidal waves have a sinusoidal time behavior

.Lnd a spatial behavior described in terms of p lough functions. The above theories

are quite good for evaluating; the long distance propagation of periodic distur-

bances. however, these theories may not readily be employed to study the short

distance effects of impulsive heat releases in the atmosphere. Our one-

dimensional theory has been an initial step toward an analytical solution to the

problem of impulsive heat releases in the atmosphere. Thunderstorms, hurri-

canes, chemical reactions, and aurorae have been discussed v., important natural

sources of impulsive heat release.

t

a
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