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A13STRAcr

The model neutral exosphere with a uniformly rotating exobase is gener-

alized by allowing variations in exobase density and temperature which charac-

terize the thermosphere just below the base. The corresponding velocity

distribution function, satisfying the collisionless Boltzm-inn equation, is con-

s'ructed and used to form a general expression for the velocity moments.

Resulting density profiles of rotating exospheres with nonuniform densities and

temperatures on the exobase are compared with corresponding nonrotating exo-

spheres. Density enhancements due to rotation are found to be greatest above

regions of exobase density or temperature minima. Equatorial density enhance-

ments of terrestrial hydrogen, resulting from rotation, are estimated to be 15 	
i

to 17 percent at altitudes of 10 to 2"0 earth radii. Corresponding increases in

terrestrial helium are 30 to 50 percent on the equator at altitudes of 0.7 to 1

earth radii even when there is a polar density bulge in the barosphere.
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I. ItiTRODUCTION

The neutral planetary exosphere model of 6pik and Singer s, 2 consists of a

spherical base, or exobase, of radius 11, through which all particles populating

the collisionless exosphere emerge with a Ma.xwellian velocity distribution,

characterized by uniform density and temperature and no rotation (no azimuthal

bulk motion). On this model, Opik and Singer obtained an integral expression for

the density profile which was sub3equently confirmed by others, 3.4 through inde-

pendent means, and placed in closed form. In a recent paper,' hereafter re-

ferred to as I, Hagenbuch and Hartle extended the model by permitting the exo-

base to rotate uniformly with angular velocity ±. It was found in I that important

enhancements in exospheric density and escape flux on the equator (plane normal

to rotation axis) can be affected by the inclusion of rotation. Burke6 also noted

increasing escape flux with rotation and discussed the possible astrophysical

consequences. In addition to the rotational effects, important exospheric changes

result when density and temperature variations are included on the exobase. The

importance of such variations h;ls long been recognized in the study of lateral 	
If

flow in the terrestrial exosphere 7- 10  (flow from regions of high to regions of low

exobase densities and/or temperatures).

The purpose of this paper is to generalize the rotating exosphere model of I

by allowing variations in exobase density, temperature, and bulk flow which

characterize the thermosphere (barosphere) ju:,t below the exobase. We begin,

in Sec. II, by constructing an explicit solution of the collisionless Boltzmann

equation from «Bich we form a general expression for the velocity moments;

e.g., density, flux, temperature, etc. The moments are in quadrature form and
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must be treated numericall y . In section III we present density profiles for

selected condition: intended to brings out the principal effects r. esultir,g; from a

rotating; exobase with density and temperature variations. Ap ,irt from that re-

quired for rotation, we ignore exobase bulk flow as done; in all models to present.

However, we discuss the possible importance of such flow in the final section

along; with other results of the present model.

i
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!l.	 )RAP	 )y uF MODEL

The exobasc surface is defined 2 by those points in the atmosphere where

the lateral mean free path equals twice they density scale 11; i.e., 11 no, = 1/2, in

terms of the density n and gas-ldnetic collision cross section . 'Chen, due to

the assumed variations in density and temperature, the exobase is a nonspherical

surface with maximum and minimum radii. However, in this treatment we as-

sume that the exobase is a sphere of radius It lying somewhere between these

extremes. We also assume that the variations in base density and temperature

are weak in the sense that the resulting difference between the maximum and

minimum radii is small relative to it.

We construct the velocity distribution function f in the inertial frame with a

spherical coordinate system whose origin is at the center of the planet. In this

case, the spatial coordinates are r, 0, and ^, the radial, colatitude, and azi-

muthal coordinates, respectively, and the corresponding Cartesian velocities

are v„ vp, and v .,. At the exobase, r	 It, the velocity distribution f (r', V) of

particles emerging into the exosphere is taken to correspond to local thermo-

dynamic equilibrium to give the boundary condition

3/2	 m

	

-	 m	 (v _ U(n, y^,)2

f ^ h. v) - h (	 ^)	 -'., k T	
exp ^-	

2) k T	 for v	 R	 0	 (1)

in terns of the particle mass m and Boltzmann's constant k. The functional

dependences of the particle density N (- , ; ), temperature 'C (', ,`), and bulk

velocity U ( , :) characterizing the emergent distribution can be obtained from

theoretical models or experimental data. Only simple fo g ms for these functions

are chosen in this wort: to illustrate the main features of this model.

•
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l/

he exospheric distribution function f we seek satisfies the collisionless

BOILZmann equation (in inertial frame)

f	 V d	 , i	 V, J6 	 i	 ^ 	 `;
2 	

'IV 	 i
r	 r	 r	 r	 iii ;	 d

y r yd 	 V! f	 yr y r 	 V© V1 ' 	 3 f

r	 + cot	 + -	 - cot A	 r	 0. (2)
O

in Mich the gravitational lwtential

V	 - MG r

where M LL, the plancLary mass and G the gravitational constant. The most

general solution of Eq. (2) consists of an arbitrary function of the five constants

of particle motion obtained by solving the corresponding characteristic equations

to give

m (V r2 4 V© + V 2 + m V	 (3a)

	

1	 nn2 r I ( v. + v ,r	 (3b)

J Z	 m r sin	 V a ,	 (3c)

K	 Cos- i	 cos .
	

- cos - 1 71 ( r) ,	 (3d)
(1 _ 

J z2 J I Y"

	

L	 11112 -,),
	 (3e)

I

\\,here
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I - J2 n,?M(ix

(1 + 2ET2 m3M2G2)''

( I + j  1 J 2) x - 2J, ^ J 2
1	 _^

r,(x)	 cos	 -2 
(1 - J 2 

,
J 2 ) x

The first three constants are the total energy, total angular momentum squared,

and the z component of the angular momentum, respectively, while the remaining

two constants relate the antrular coordinates of a particle trajectory.

In order to form the distribution function for the exosphere it is necessary

to relate the point of observation (r, 0, ; ) of a particle of given velocity (v, ,

v., v.) with the corresponding point on the exobase surface (R, H, (1)) where the

particle emerged; i.e., the source point. Such a relationship can be represented

by the expressions

cos 0 - ( 1 - J 2 / J 2 ) cos [ K + cos' I Y? (R) I ,	 (4a)

cos (P = cos [ L + Y ( 1 - cos 2 n ) ] ,	 (4b)

in term . of the constants of motion (since n and (l) are functions of the constants

of motion, they are constant along a particle trajectory). For a point (v, r) in

phase space we note that ..cis. (4) lead to four (E ? 0) or eight (E < 0) points

(n, (P). A more specific representation, required in this work, is obtained by

using Eqs. (3) and (4) and following the principles of elementary orbital me-

chanies to give

cos n.^ _ Cos Y  + E  P sin 9 Z I	 (5a)

i

CoS4)i ik = {cos ;- sit) a Y i - [ E P Cos - Cos ---E k (1- P2 )"sint] Zd/sine ii , (5b)
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where ;,	 (-1) A ' I for '	 1,2 and the four (eight) rots (H, +) • (o l j ,4t) , j k ) are

identified by the indices (i, j, k) through	 sgn v r , I	 sgn v., and	 Sgn V.

Ac renuu ning functions are }liven by

	

1'	 1v.2 + v?)' .

,;(r),

	

z ,	 7!(r) \(R) - 	^,(R) X(r).

where

r)	 (1 - -2(r)J'''.

In addition to satisfying the Ix-)undary condition of Eq. (1), the distribution

function we seek only admits particles which have emerged from the exobase and

exc:udes those particles exceeding the escape speech with negative radial veloci-

ties (i.e., no source of particles at infinity). The distribution function we pro-

pose is

rn	
s 2	 _ m ( Y - lJ ( o ' (p))2f	 N(i:).4>) (;.kT((P.'h)^
	

^xp	
2kT(0,fi)

S ( E - J 2 2m R 2 - mVK ) 11 - S (E) S(-"'d'	 (6)

in %% n ich the unit step function

•

If

1 0

S ^ -	 )

0
!1n
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J

V  is the potential at r It and the radial, latitudinal, and azimuthal components

of the velocity V are given by

Cn (E - 1 2 ImK 2 - mV  ] .

[ .12 - j 2
MR	 z J

I, 'mil sill(-) .

respect ► vely, :uid "'here the f sign corresponds to sgi , v at the exobn.	 For

simplicity, the subscripts (i, j, k) on (H, j ,(h ick ) have been suppressed. The step

function terms are analogous to these used by Aamodt and C; , se 4 and in I, in

which case the step function multiplying the square bracket term admits only

those trajectories having contact with the exobase while the terin in square brackets

removes all those particles exceeding the escape speed with negative radial veloc-

ities. Altogether then, the distribution funct i on of Eq. (6) admits only those trajec-

tories allowed on the model and satisfies the boundary dondition of Eq. (1).
iIll 	 it is clear that the kinetic equation (2) is satisfied since the distri-

bution is a function of the constants of the motion except for the term involving

S (v , ). It c.ui he shown, by direct substitution into Eq. (2), that this term is an

admissible solution (as shown similarly by Aamodt and Case).

The velocity moments of the distribution are formed by multiplying f of

Eq. (G) by the appropriate velocities and integrating over all velocity space. We

simplify the analysis by normalizing the exobase density and temperature (U s-

tributions through

0, (P)	 nov (Cl, 4)) , T(0. (P) = To -r (n, (h) ,
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where n. anu ; o ,ire values of density and temperature at sl leetcd poiltts on the

exobase. As mentioned above, we mnst ,ler a corotating exobast , of angular

velocity _. directed along the polar axis and ignore the effects ni other P:,Ksible

bulk flows gust below the exobase by setting

(U '' lia	 l', `i	 (U, U,	 R sill (4) .

.t is wort., mentioning at this point that differential rotation could Ue included

here by letting	 (+:), (r), In addition, we make the spatirtl or)rdinate trans-

formation

.tad the velocity coordinate transformation

► +	 of the constant

m ! k T, .

'Then, the general velocity moment of order (p, y, s), normal+zed to Oe baSe

density n o , is given by

n_
11 0 	r v64v^ 	 ,'P 4a \	 } t

'P4a (~+ ^ }	 (7)

where the terms

z
P 1P t	 t'2	 +	 E,6	

Ps	
' `

Pit+	 --P_ q__	 /)u	
fu

d 	 ci `^dy	
fl,	

dy+, f S 	
J--2-1. 1,k i 	 n	 0	 3	 fo	 1

A 1 r )4 k F  1 k ( X, Y , Y, F, A, ^6,
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1	 ^	 (.(^^	 1'6I	 ^'s	 ^',	 . ^'	 rz	 I'.

a 
fo	 I'Jr	 •1r	 o). K	 1	 +	 !	 s

f 

TI

' 1	 I' I
cjx	 cti)I 	 clrf

o

cly	 ^`^ Fk F I Ik (x, y, z^ y^ 8^
I' 6 fo1 

correspond to contributions from the bounu and escaping trajectories, respec-

tively. The limits of integration are given in terms of

0	 mMG'kTOP	 2)VK

a measure of the gravitational energy relative to the thermal energy at the base,

and

a = a/f,	 1) =	 1 ( -' - 1),	 d	 Fl (" , 1),

by

P(PZ - z 2 ) '1 , P 2 = (bx 2 +

	

1'3	 ^a(1 - 1/s )] %, 1'a	 (PS - z2P

PS = (a - x 2 ) '4 , P6 = a%.

The integra.nd function

F.	 L `Ik	 exp I-	 1 [ X 2  + y2 + Z 2 + all
i "	 )3/2	 . T i kllk )	 1

6

sina E  z + ,2s in 2 (-) I 1 1,
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where

(m z R 2 2k To 	R

is a measure of the rotational kinetic energy relative to the thermal energy at

the base, and L, : ^^	 V((-)^^,4Ui^k), and '^ik	 -1("iIA1j,k).

For corrdleteness, it is worth mentioning at this point that the moments of

Eqs. (7) reduLo to these obtained in I when the base temperaturo is tak4sn to he

uniform and the base density is taken to correspond to a rotatii,g Isothermal

thermosphere (see Eq_ (3) below). In addition, for the case of a nonr-Otating exo-

sphere,	 0, it can be shown through application of Uouville's theorem and

appropriate coordinate trarisformations that Eqs. (7) r. educe to the density' and

radial flux' at the base, r -= It, as derived by AlcAffee And finally, taking ? = 0

and Ti j  = v ; i k . = 1, we obtain the density distribution of O pik and Singer. 1- a

The model considered here and in I is the usual ird nimum density model 1-5

in the sense that we ignore the possibility- of bound orbiting particles (satellite

particles) which do not intersect the base (see refs. 2, 11-13 for discussion

of possible importance). The problem of determining the distribution of such

particles is beyond the scope of this work (solution of kinetic equation which

properly accounts for the production and loss of satellite particles through rare

collision events and photoionization in the exosphere). One may include the con-

tribution of satellite particles in an approximate way by simply adding a Alax-

wellian distribution f,.,, truncated by ( 1 - S(E - J 2/2mI1 2 - mVR )) S(-F.), to

Eq. (G). The temperature and density characterizing f,, could be taken as, say,

those corresponding to the average values at the exobase.

6
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III. NUMERICAI. EXAIMPLES

A. Model I

For purposes of brief review and comparison below, consider the model of

I corresponding to a corotating, isothermal thermosphere where the exobase

density distribution was given by

N	 110 c.xp (ma2R2 Sin20- ii '2k TO ) ,	 (8)

exhibiting; a density bulge at the equator. We note that this (tensity, given in

terms of the present model, leans to an exospheric distribution fwict5n f which

is independent of (Oi ) , (h, k ). Consequently, the analysis in I was greatly simpli-

fied since detailed accounting of trajectories through such equations as (4) and

(5) was unnecessary. In this case, the resulting profiles for density n and

radial flux n v , -, simplify to a single quadrature over v O while n <. ve > and

n v0 ? vanish (i.e., no lateral f low in exosphere) .

To illustrate some of the main features of the model in I, consider the

dashed lines of Fig. 1 where the normalized density n/n o , at given colatitudes a,

is plotted versus for the case 7 = 10 and 3 = 1 (these values have been selected

primarily for clarity of illustration and are used throughout this section). As

shown in I, the density distribution along the polar axis ( A = 0) is identical to the

corresponding distribution of a nonrotating exosphere. We note, for a fixed

radius, that the density increases from pole to equator. In other words, there is

a density enhancement at all points in the exosphere for colatitudes 0 < 0 < T.

As noted in I, this variation results since particles are ejected with increasing

azimutha: velocities for increasing colatitude so that the average altitude a

particle attains in the equatorial region is greater than in the polar region,
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leading to a higher density at the equator than the pole. In what follows, we

designate this phenomena as the "centrifugal effect."

A. Uniform Density and Temperature

The conceptually simpler case of a corotating exobase with uniform density

and temperature (i , j k , i j k = 1) is computationally more difficult since f is a

function of Hi , and Eq. (7) is required for the moments. Stich an example of the

density profile for Q 10 and ' = 1 is shown by the solid lines in hig. 1. The

Gashed line, designated by - 0` (the same -is model I), is the corresponding

density profile for the nonrotating case, valid for all latitudes. As in the model

of I with rotation, the density increases from pole to equator for a given radius.

Again, we note a density enhancement in the equatorial regio:i which is primarily

due to the centrifugal effect. On the other hand, the values of density along the

polar axis are lower than corresponding values of the nonrotating case. In fact

the density is lower for a range of colatitudes about the poles.

This density reduction is consistent with the fact that there are now lateral

winds in the exosphere flowing from the polar regions to thep	 g	 p	 g'	 equatorial regions.

Such lateral flow is expected in this case when a comps-ison is made with the

isothermal model of I where no lateral flow occurs. In the latter model, the exo-

base density, given by Eq. (8), increases from pole to equator in a manner which

is consistent with no lateral flow. Then, in the former case, there exists an

"effective" density depletion in the equatorial region of the base, relative to the

isothermal case of I, leading to flow from the polar region of effectively higher

base density to the equatorial region of effectively lower base density.
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C. Nonuniform Density

aking the simple uniform model of subsection 13 as a point of departure,

consider a rotating exosphere characterized by an exobase with uniform tem-

perature (-r i j k	 1) and variable density. 1 or simplicity, we choose an exobase

density distribution which is rotationally symmetric about the x-,Lxis (,b = 0,

_ /2) with a sinusoidal density variation given by v i ) k = N /n o = [ 1 - (1 - , N)

• (1 + '. N ) - ' sin (-) I j cos (1% jk1 , which results in a density minimum on the equator

at .h --- 0 and a density maximum at t = n. The ratio , N = Nm,,x /N mI „ , in terms

of the maximum and minimum exobase densities.

Density profiles for a model exosphere of this kind, with E N = 1/3 (chosen

for clarity), are shown in Figs. 2 and 3 for b _ and ^ = 0, respectively. In

these figures a = 10 and the solid lines are for a rotating planet with .^ 	 1 while,

for comparison. the dashed lines are for the corre sponding nonrotatir g planet.

In Fig. 2, note that the equatorial density is greater than the corresponding

polar density at all altitudes above the exobase for both rotating and nonrotating

models. This equatorial enhancement is in part a reflection of the exobase

density maximum lying on the equator at this longitude. The ratio of equatorial

to polar density is more pronounced in the rotating exosphere due to a com-

bination of the centrifugal effect and lateral flow from regions of high to low

exobase densities (actual and effective).

For the nonrotating case of Fig. 3, we note that the polar density is greater

than the corresponding equatorial density at all altitudes, reflecting the base

density minimum on the equator at this longitude. In contrast, the opposite re-

lationship obtains fer the rotating exosphere. That is, the equatorial density is

4
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greater than thv polar density at all altitudes above a crossover point -' k 	1.1.

In addition to the centrifugal effect, this density increase on the equator is due

to the "rotationally enhanced" lateral transport of particles from exobase regions

of higher densities. In fact, such a "mixing" of particles tends to equalize the

density profiles around the planet on a given latitude as one can note in com-

paring the equatorial distributions of Figs. 2 and 3.

To further elucidate this rotationally enhanced mixing, consider Fig. 4,

where a sketch of flux field lines n . v' - are shown in the equatorial plane. For

clarity, the relative number of field lines is not to scale since the flu: decreases

very rapidly N%ith increasing =. We note the strong connection of field lines from

one hemisphere to the uther where a portion of the field lines from the high den-

sity lase region feed bath: into regions of lower density while the remaining

portion, corresponding; to the esc aping flux, form spirals which become radial

as	 • r . The dashed lines shown indicate the approximate locus of points of

maximum tuid minimum values of both flux and density for a given radial posi-

tion. In this connection, we note that at about = = 3, the density (and flu.:c) maxi-

mum is closer to the exobase density minimum than the maximum. This implies

that the density at ,4^ = 3 should be greater above the base density minimum than

the maximum; this is borne out by comparison of Figs. 2 and 3.

D. Nonuniform Temperature

\Ve consider here the contrasting case of uniform base density (v i i k =

E N = 1) and a rotationally symmetric base temperature distribution • r j k =

T/T 0 = 11 + 0 - T ) (1 + 
T)- ' 

 • sin (-) cos fi	 ' in terms of E1)	 t)k"	 T = T ' trt /Trr:t,c •

the ratio of the minimum to maximum base temperatures. Then, for the non-

rotating model shown in Fig. 5 (6), with . T = 1/2, the equatorial density is

6
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greater (less) than the corresponding polar density at all points above the base,

this time reflecting the base temperature maximum (minimum) on the equator

at this longitude. The same (opposite) relationship obtains in the rotating exo-

sphere of Fig.:; (6). In these cases, the temperature maximum and minimum

play similar roles to the density maximum and minimum of the previous ex-

amples and the basic reasons for the differences between the rotating and non-

rotating models are analogous.

•
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IV. DISCUSSION AND CONCLUSIONS

i he exobase distributions in density and temperature chosen for the numeri-

cal examples of section III correspond to the common idealization in which a

density minimum and temperature maximum occur on the equator = -"/2 at

the subsolar point . 	 0 (approximate region of maximum solar extreme ultrav:ol^;t

photoionization and heating) while a density maximum and temperature minimum

occur at the anti-solar point (approximate region of maximum recombination and

cooling). 'Then, to maximize the effects of rotation, the angular velocity	 ,vas

directed along the polar ..xis. For purposes of illustration, the effects of vari-

Ltions in exobase density and temperature were considered separately but, Of

course, occur together in nature.

In the preceding examples we only considered the values , = 10 and ,3 = 1,

since , the general effects of variation of these parameters, as examined in I, still

hold for the present nonuniform models. For example, a primary result

noted in I is that the ratio of the equatorial density to the polar density, at a

given altitude and longitude, increases when a,	 and are increased separately	 i
or together. In addition, this ratio is greater than one for = greater than the

crossover point -* X .  In this connection, we point out that it can he shown that

• 1 as and/or , become large.

On comparing Figs. 2, 3, 5, and 6, one can note that the region of greatest

exospheric density increase from the nonrotating to the rotating model occurs

above points of base density or temperature minima. Further comparison with

the uniform model of Fig. 1 shows that the corresponding rotational density

enhancement is less than that of the nonuniform models (above base density anu
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:L 1111)k r,tLLA1 t- 4 11,;ninia ) . Altogether then, the effects of rotation appear to be more

important in nonuniform exospheres.

With the model developed here we can now , estimate the equatorial density

enhancement (region where most prominent) of terrestrial hydrogen and helium

due to rotatioa,. For this purp► )se we choose the distributions • I) = 1 + 0.28

•cos 2 - s ( 7 1Jk /2) and viik= 1 - (1/3) cosL ,,k (here cos 7., jk =sin 0- 	 Cos q)tjk)

used by Wallace, et al."' to fit the observed hydrogen density from Lyman ,j

data. in adclition, we assume that the exobase is corotating with „ 	 1.02 x 10-4

sec' 1 , the observed atmospheric (super) rotation rate' s near the exobase for the

.range 30 0	d ,`,150"; i.e., 1.4 times the rotation rate of Earth. In this case,

with It = 68P0 km and To = 805°K, we obtain a 15 to 17 percent increase in hy-

drogen density above that of the nonrotating model for the range of 10 to 20 earth

► •:idii.

The corresponding density enhancement in terrestrial helium is •10 to 80

percent over the range 1.7 to t planete entric radii, the region where helium

becomes a minor constituent. however, recent observations indicate that there

is a helium density bulge over the winter pole. 16 In this case, distributions of

the form vi i = 1 + .82 cos (-), , and 7 ; i 
= 1 may be more realistic. On this

basis, taking T O = 1000'x, we still obtain a rather large density enhancement

of 30 to 50 percent on the equator for .- of 1.7 to 2.

The numerical examples considered in this paper assume that appropriate

sources and sinks exist in the thermosphere to allow the resulting flow of par-

ticles across the exobase. The flow is limited by the maximum rate at which

the species in question can diffuse in the thermosphere. No quantitative

•
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limitations can be determined for the examples of Sec. III until a planet and

species are specificd. However. for the terrestrial hydrogen and helium ex-

ampler of this section, the maximum allowable diffusive fluxes, as estimated by

McAfee,' are about 8.9 * 10' em - 2 sec -1 and 5.1	 10" C111 - -,4CC ' , respectively.

In these cases, we obtain m.ixlnium allowable exobase densities of 5 x 10 4 cm3

(someWhat lower than the expected value	 10 5 em-1 ) and 5 x 10' cm- 1 (expected

value	 10' cm-3 ) for hydrogen and helium.

Exosphere models of the kind presented here assume a INUL %ellian velocity

distribution at the exobase. This assumption is self-consistent with respect to

the distribution of bot-nd particles, E	 0, when the exobase IS uniform. On the

other hand, as is well known, the distribution has a "hole" corresponding; to the

absence of these particles with V	 0 and v ,	0, leading; to a flux (.Lnd density)

discontinuity across the exobase, the leans escape flux. With a nonuniform cKo-

base, even the distribution of bound returning; particles, F 	 0 and v 	 0, is not

Mitxwellian in form, leading to furthor discontinuity in density and flux across

the exobase. But, Mien variations in density and temperature occur just bVlow

the exobase, flow is expected in the thcrmosphere and should be reflected in the

exobase distribution. The possibility for such flow was included in the general

distribution of Eq. (6).

In the context of this model, one cannot expect to remove the density and

flux discontinuity corresponding to Ciose particles in the r.uige E > 0 due to the

complete absence of such particles With v r ' 0. However, since bound returning;

particles (E , 0, y r	0) are present, it is logical to expect that It should be

possible to remove or reduce the discontinuities in Hux and density of the class

6
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of particles with E	 0 by balwicing the fiux just helow the base (hound particles

only) with they flux n,, too r + Aoto 11- Aoo 1 ^) jest alxw c (conservation of

flux). For exan ► ple, when thr density and temperature are given at the base,

the balancing can 1 )e accomplished through successive approximations to

U (H, d ► ). To test this procedure and get an indication of the effects of including

bulk velocity U, we performed approximate hand calculations to balance the flux

across the base (10 percent accuracy) for the exanipIcs of Fig. 2. Wu found that

the density discontinuity was reduced wid the density profiles were essentially

u ►► changed for v > 10' 13 (over the range considered 1 < , 10). When y was

redo ced to 10 - 14, we found both increases and decreases ill the density by about

10 percent at	 10; such changes being smaller for	 10 and vanish as 	 • 1.

In addition, the nlaaimum outward radial bulk velocities U, were 5 x 10 4 cm/sec

1 n41 1 x 105 r.m/see when r was 10 -1 -3 and 10- 14 , respectively. Also note that,

When U r > 0 on this model, the modified Jeans escape flux no-,100  is gr,3ater

than the corresponding value when Ur =. 	 which may result In important in

creases in estimates of planetary loss rates.

'I'll(, degree to which the base can he nonuniform on this model and still lead

to meaningful solutions is unknown. As done previously foi- the uniform

model,''- 1(1 this problem can he resolved by a full kinetic treatment )f the exo-

base region, taking proper accowit of the transition from the collision dominated

thernlospliere to the collisionless exosphere. It is clear, of course, that the

accuracy of the model improves in the limit of a uniform exobase, in which case
J
U 0 (distribution of bound p,irti^.Ies becomes Alax«eilian at base).

6
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FIGURE. CAPTIONS

Fib;. 1. '1 he normalized density n/n o at colatitudes 14 = 0°, 45°, 90 0 versus the

normalized radius 6 = r/1: for values a = mMG/kT f)li = 10 and ,

(m,, l it 2 /2kTo )', = 1.0. The dashed lines are the isothermal model of I and

the solid lines are for the model with uniform base density and temperature.

Fig. 2. The normalized density n/n o at colatitudes ' =- 0°, 90°, longitude ^ = 180°

versus the normalized radius = = r/lt for values -i -- mA;1G/kT O R = ]n,

a = (m, 2 R 2 /2kTo )' h = 0 (dashed lines) , 1.0 (solid limes), and ,^ 	 NM i n /

max = 1/3.

Fig.:3. The normalized density n/n o at colatitudes	 - 0', 90°, longitude 6 = 00

versus the normalized radius 17 = r/R for values t = mA1G/kT O R = 109

13 = (m(. 2 11 2 /2kT o )'"i = 0 (dashed lines) , 1.0 (solid lines) , and c N = Nm , ,, /

Nmax ' 1/3.

Fig. 4. Sketch of field lines n < v > in the equatorial plane for counterclockwise

rotation. The maximum exobase density is indicated by If and the minimum

by L. The dashed lines to the right (left) are the approximate lccus of both

density and flux maxima (minima) for a triven altitude.

Fig. 5. The normalized density n/n o at colatitudes " = 0°, 90 0 , longitude 4 = 00

versus the normalized rac:ius ^ = r/R for values i = mA1G/kT o II = 10,

= (m„ 2 1I /2kT o )", = 0 (dashed lines), 1.0 (solid lines), and .-T = T,,in /

T:nax = 1/2.

N
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Fig. f,. The normalized density n /n O at colatitudes	 = 0°, 90', longitude .	 1800

versus the normalized radius c =	 r/It for values ,	 mINIG/kT O R -	 10,

/3	 (m, 2 lt 2 /2kT j -	 -	 0 (dashed lines), 1.0 (solid lincs), and	 r = iit /

1, m,iz = 1/2.



1

n
rl0

10

10 -3

10 -4

10 -1

1	 1.5	 2	 2.5	 3	 3.5
E

Figure 1



1

10-

10-2

10-3

10-4

n

n^

1	 1.5	 2	 2.5	 3	 3.5

Figure 2



1

l o- I

•

.l () -.4

1	 1.5	 2	 2.5	 3	 3.5

Figure 3

it
	

^r

Cl ^
	 f

i^
I

,r,_ZI

90	 It

0

0°

90°



i

1

X
Q

ZI
G

t

Figure 4



1

n
1 ^

l

1 ')-2

(-)--.3

t^

^,	 yG

9 G
.^`	

**%-4. G

^%4-^
G°

1 n-4
1	 1.5	 2	 ? ..?	 3

	
3.5

c

Figure 5



10-1

n
no

10-2

10-3

^i
1

\ t

90°

90°
0°

10-4
1	 1.5	 2	 2.5	 3	 3.5

c

Figure 6


	GeneralDisclaimer.pdf
	0001A01.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf

