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TURBULENCE OF ELECTROSTATIC FLECT RON CYCLOTRON

HARMONIC WAVES OBSERVED fiY ALOUETTE-II AND OGO-V

Hirosh- '*.,vs

ABSTRACT

VLF emissions which have been observed near 3/21 H , 5/21'. and 7/2f H by

OGO-5 in the magnetosphere, where f  is the electron cyclotron frequency, co-

incide with the most favorable point for long duration diffuse plasma resonances

fv„ observed by Alouette-2 and ISIS-1. The f D ^, are enhanced bein,; ass ociated

with nonlinear wave particle interaction of the electrostatic electron cyclotron

harmonic wave, including the instability in the turbulence. The difference be-

tween the two observations is only in the excitation mechanism of the turbulence;

the turbulence in the plasma trough detected by OGO-5 is due to natural origins

while the ionospheric topside sounder makes the plasma wave turbulence arti-

ficially by submitting strong stimulation pulses. An electron density profile in

the plasma trougil is ob*ained by applying the f Dr, -fN /f H relationship obtained

from the Alouette 2 experiment; the values reveal a good coincidence with high

sensitive mass-spectrometer observations which give values of' I x 10''

5 x 10- ' cm" 3
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TURBULENCE OF F..LECTHOSTA'I'IC ELECT HON CYCL47TRON

HARMONIC WA IVES OBSERVED BY ALOUETTE-II AND C) O-!1

1. INTRODUCT.ON
;1

By observations of plasma resonances of Alouette-2 and VLF emissions of

OGO-5, whose apparent features seem to be widely different from each other, a

similar phenomenon was observed. In the Alouette-2 observation the sequence

of diffuse plasma resonance 
f 
Dn was discovered (0y.-A, 1970). This is a hind of

plasma resonance which is represented by a prolonged signal in a cert .a period	 ,_

while the transmitter has been turned off following the transmission of the reta-

tively high power RF pulse. The center frequency, or the frequency of the

longest duration portion (for the asymmetrical resonances), f Dn for these reso-

nances is plotted in the f/f H - fN /f,, diagram (see Fig. 1) where f H is the electron

cyclotron frequency, f  is the plasma frequency, and f  is the upper hybrid reso-

nance frequency. The electrostatic wave resonances f Q, (Warren and Hagg,

1968) are also plotted in Fig. 1.

In the VLF electric field observation in the magnetosphere a new emission

with frequency slightly above 1.5 f H , which is expressed here as f ;' 1.5f H1 has

been observed b Kennel et al. 1970. This is a relatively stro p emission withY	 (	 )	 Y	 g

a field intensity of tens of m y/m, observed for several L values, within a few

degrees of the geomagnetic equator. Furthermore it was found that this new

type of magnetospheric emission is an electric field emission, and shows a se-

quence nature with a frequency separation of approximately f H . For simplicity

of expression these emissions will be designated	 , (.XP ^ated as3/2( ) f F{ 52/ ) f,, and 7 /2( ) f

The August 15 events of OGO-5 V LF emissions (Kennel et al., 197 0) are repro-

duced in Fig. 3.
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The purpose of this report is to clarify that the above described VLF

emissions are caused by a wave-particle nonlinear interaction in a turbulence

of electrostatic electron cyclotron harmonic waves as it has been established

for the case of the fDr, resonances (Oya, 1971) that are observed by Alouette-2

and ISIS-1.

REVIEW ON f Dn FORMATION MECHANISM

The applied power of the Alouette-2 satellite experiment is 300 Watt in a

{ p ulse form with 100 .sec width. The energy absorbed by the plasma depends on

the frequency; the calculated energy (Oya, 1971) is from 6 to 260 times greater

than the thermal energy of the plasma. This strong trigger pulse starts plasma

turbulence in which a nonlinear interaction and a temperature anisotropy are

involved. The observ. tions (see Fig. 1) indicates that the f Dn, f Q,,+2 and 2fH

frequencies; and also the f D ri 1 , f Q „+ 1 anti fH frcquencies are related as.

	

f D1	 fQ3 - 2 f 11	 (1)

	

f D 2	 fQ4 - 2f 	 (2)

	

t D11	 f Q2 - f H	 (3)

and

	

fD21	 fQ3 - f  .
	 (4)

where f ell and f D21 are weaker branches of the diffuse plasma resonances which

occur in the upper frequency side of the main branch f D1 and f D2 , respectively

(see Fig. 1). The main subject of the present paper is restricted to the occur-

rence of f D1 and f D2 given by Eqs. (1) and (2).



Using computed dispersion curves obtained for the electrostatic electror,

cyclotron harmonic wave starting from Stix's Eq. (18) of Chapt. 9 (1962), the

validity of the three-wave nonlinear interaction condition.

f Dn	 f Qn + 2 — 2 f l l	 (5)

and
--1

k (f DO k (f Qn+2 ) - k ( 2f H)	 (6)

where k ( f Qa ) , k (fD r ) and k (2 f  ) are the propagation vectors of the waves, is

checked. 'These relations indicate also that

27 - { 2f H - ( f Qr,+2 - f D„ ) }	 - {k ( f Q„+2) - k (fDn)}	 V,	 (7)

where fDn is a resonant frequency that is in the band width of fDn resonance,

since k (2 fr ,) is very close to zero. This equation corresponds to a wave-particle

coupling near the 2 f H resonance. The resonant particles with velocity v which

satisfy Eq. (7) effectively absorb energy from the waves anti the temperature

anisotropy, T I, /T I < 1. is established.

The temperature anisotropy produced by the high power supply of the

Alouette-2 sowider, as mentioned above, causes the electrostatic electron

cyclotron harmonic wave instability which was initially predicted by Harris

(1959) for the extreme temperature anisotropy T i. /T; = 0, where T and T 1 are

the temperature of the particle motions parallel and perpendicular to the mag-

netic field, respectively. The work was later extended by Hall et al. (1.965),

Terashima (1967) and Tataronis et al. (1969). These works were mainly con-

cerned with the frequency range close to the cyclotron harmonic waves. A cri-

terion for the instability condition was expanded to cover the whole frequency

3



range by Shima quid Hall (1965) using an analytical method, they predicted that the

instability occurs in a range n+ 0.5 < f/f 
H 

< n+ (1 - T 11 /T l ). A more exten-

sive numerical calculation to give the growth rate and the domain of the insta-

bility was carried out by Oya (1971). An example of the calculated instability is

reproduced in Fig. 3, for the condition T ai /1' 1 = 0.2 and T ii /T 1 - 0.1, respec-

tively. The observation in the above paper also indicates that the most favorable

condition for the instability clearly coincides with the longest time duration

portion of the fu,

The nonlinear process given by Eq. (7) can continue until the intensity of

the initial disturbance reduces to the threshold level for the linear case. The

nonlinear interaction can also exist independent of the instability. From Fig. 3

it is clear that the phenomena in the frequency range below 1.5f H for f D 1 are

simply the result ol' nonlinear wave-wave interaction, because there is no in-

stability region in the frequency range f/f H < 1.5. In this case the duration time

becomes shorter for the f D 1 resonance than the case in which f D 1 is in the region

of the cyclotron harmonic wave instability. The whole mechanism described

1.	 here will be published more in detail with substantial experimental evidence

(Oya, 1971).

3. COMPARISON OF THE VLF EMISSIONS AND f Dn RESONANCES

The observation of OGO-5 VLF emissions and of Alouette-2 diffuse plasma

resonance f Dn shows the following characteristics:

1. The main portion, which is defined as the longest portion or the most intense

signal portion, reveals the sequence of appearance in the frequency range f 	
I

according to
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(n + 0. 5)	 f 	
, f < (n + n)	 f ► f	 (^t)

where	 7	 varies due to the plasma condition in a range 0.6	 a < 1.

2. The first member of this series of phenomena (n - 1 for the f Dn reson:ulce,

and the (3/2) fH wave for the VLF emission) shows the strongest signal in-

tensity or the longest duration time of all members of the series.

3. Both phenomena sometimes occur in a frequency range below 1.5f,,. This

lower side expansion occurs, for the f D 1 resonance, in a strict relationship

with the plasma parameter (see Fig. 1). The lower side extension for the

(3/2) f,,-wave emission, which occurs systematically in time, is suggesting

the dependency on variation of local plasma parameters at the satellite

location.

There are, however, remarkable differences between the two experiments:

the Alouette-2 signal is excited by the transmission of an RF pulse vld the

phenomenon stops in 2 to 20 m sec after the transmission of the triggering pulse

In contrast, VLF emissions last up to tens of minutes, there is no sounding trans-

mitten on board.

The band width of the VLF emission in the dynamic spectrum of the emission

,riven in Fig. 2 is scaled being sampled every second (see Fig. 3) with the com-

puted domain of the cyclotron harmonic wave instability fo-c the temperature

anisotropy of T, /T 11 - 5 and Tl /T ii = 10. Between 0727 :30 -0728 :00 UT, the

instability region and the VLF emission band indicates complete coincidence in

a temperature anisotropy 5 < T L /T ii < 10. To maintain this relatively- high

temperature anisotropy the 2 f  wave-particle nonlinear interaction has an im-

portant role in the hypothesis that the V LF emission and f Dn are caused by the
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same mechanism. The nonlinear wave particle interaction ca be confirmed by

the record given in Fig.:3, i.e., there is an interval of no signal for the first

sequence of the emission, i.e., (3/2) t ' ,,-waves, between approximately 0727:54

to 0727:58 LI T, though the second and the third sequence of the emissions exist.

Mis is only possible when the nonlinear coupling to satisfy Eq. (7) is considered

for the plasma parameter 4.0	 fN/f H	 4.5 as indicated by computation ((-)ya,

1971). if nonlinear coupling does not exist there is no strong dependency on

fN 	for appearance of the signal due to the instability. The second evidence

is that as indicated in the record after 0728:00 UT the center frequency of the

(3/2) f H wave decreases continuously toward the outside region of the cyclotron

harmonic wave instability. This is possible when the plasma parameter de-

creases continuously from f N /f H = 2.5 to fN /f 11 2 (see Fig. 1). In this region

after 0728:04 no cyclotron harmonic wave instability is apparent. This is pre-

sumably a tail area of the event where only the wave propagates after the emis-

sion from tha instability region located in a remote area from the observation

points.

4. °)ISCUSSION AND CONCLUSION

The point to defeat the self consistency of the theory of 2 f  wave particle

nonlinear interaction including instability of the electrostatic elects on cyclotron

harmonic wave for the OGO-5 observations is that there is no simultaneous ob-

servation of the 2 f  wave and that the counter part of the f 03 wave is not con-

stantly observed. The'vlack of observation of 2 f H waves can be attributed to the

short length of the dipole antenna c;o mpared with the wavelengths (0.5 m for

antenna length (lticnnel et al., 1970), and hundreds of meter for the electrostatic
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electro n cyclotroncyclotron harmonic waves). The reception: efficiency of the wave with

short antenna is inversely proportional to the wave length of the emissions. The

wave length of ').f^,-wave is expwided 10 times or more longer than the f on wave

(Oya. 1970), which correspond to, in this case, the (3/2) f ry w aves to meet the

nonlinear coupling condition given in E(is. (5) to (7). The energy of 2 f t ► wave

that can be picked jp by the antenna is possibly reduced by 20 db compared with

the energy of the sequence of (3/2) f 1j , (5/2) f ly . . . emissions. if the same share

of the wave energy is assumed at the three wave decay process. 1t'hen the value

1-10 mV/m (kennel et al., 1970) is used for the (3/2) I' H wave, the field intensity

E of the 2 f H wave is 100 µV/m	 E < 1 mV/m. This is quite the same with the

threshold value of OGO-5 receiver (kennel et al., 1970).

Between 0727:30 and 0727:32 UT in the record given in Fig. 3, the wave

which becomes the counter part of f Q3 (observed as the case of Alouette-2) is

recognized, but usually this wave disappears for the other interval as is the case

of 2 f H waves; apparently the time duration of f Q3 resonance is much less than time

durations of these two reson ances. Sometimes the f Q3 resonance in the Alouette-2

experiment cannot be observed even when I' D  r and 2 f il is clearly revealed. The

absence of f Q , resonances directly depend on the parameters other than the

natural plasma parameters, and depend on the attitude of the antenna and the

satellite velocity vector with respect to the magnetic field, while no such sig-

nificant dependency is seen for the case of the f D 1 resonance. All these phe-

nomena are the reflection of the evidence that the f Q wave is very weak corn-

pared with the f n r wave. The attitude change of the antenna and satellite velocity

vector from the optimum condition causes the absence of f Q3 resonance. In the

observation of OGO-5 VLF emission, this situation can be also considered.
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I

Iii Fig. 4, the plasma parameter is indicated using the result given in

V ig. ^j as a final check of the hypothesis that the sequence of (3 /2) I fi , (5/2) f l, . . .

emissions is caused by the same physical m!^chanism as the case of sequence of

diffuse plasma resonance f,),, except for the initial cause of the plasma turbulence.

1'he range 'if temperature anisotropy is given to satisfy the limits of the cyclo-

tron harmonic wave instability .9ndition observed from the VLF emission. The

plasm" parameter fN /f,, is obtained using the empirical function (see Fi g. 1) be-

tween fa„ /f }I and f./f,,. The error limits given in the diagram corresponds to

the width c;f fnf , /f 'i value for a give n f, /f ii . The electron density has been ob-

tained using the obtained fN/f11 values with the measured f„ frequency which is

provided by Ifoppner's magnetometer (see Fig. 2). The result indicates that

UGC)-5 encountered a turbulent cloud whose density increases from a value

2 x 10- ' /cc to 5 , 10 - '/cc and drops to about 10 -1 /cc again. The position in

the magnetosphere is given in the figure caption of Fig. 2. The above large

density fluctuation was observed in a time interval of about 30 sec which ^or-

responds to a distance of about 100 km along the tiatellite path. This approach

to electron density determination from the sequence of emission of -the electro-

static electron cyclotron harmonic waves indicates the same order of density

and fluctuation as the ion (listribution %^ hich are frequently observed in the re-

gion 6 < L	 8 by direct measurements using ion mass spectrometers (llarris

et al., 1970. and Chappel et al., 1970).

Cunsidering the established physical mechanism for the f Dn resonance ob-

served on the Alouette-2 and the coincidence of the characteristic points of the

frequency range appearance as well as the difference in the expr-rimental setup,

we can conclude that the VLF emission detected by Kennel et al. on the OGO-5
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;atellite data is enused by a turbulence of the hlasina in which the electrostatic

electron cyclotron harmonic waves are included, as is the case for the fp„ reso-

nances. The only difference between the two experiments is that the turbulenc-e

is caused by natural conditions for the VLF emission observed on OGO-5 while

the f p „ resonance in Alouette-2 is caused by a stimulating pulse transmission.
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FI( A%' CAPTIONS

Figure 1. f/f 11 - f" /f ,, diagram of the resonances f pfi , i Dti P f D 12' 
fQ111 f % I f T and

n f H ; the cut-off frequencies at the satellite of the x and z propagations are

plotted as f ), S rued f ,S, respectively; on the f Dn resonances, dots indicate the

main branch, and open circles and x's indicate the weaker secondary brann.hes

at f
Dn 

1 and f D,,2' respectively; the open circles with small dots show new

data which are added to the originally published data of f Dn and f Qn . (After

Oya, 1971.)

Figure 2. The 3/2 f H , 5/2 I' H and 7/2 fH observed by OGO-5 satellite near L = 7.5,

k = 1.8" and 0053 LT. f  /4,5 f c /4 . . . (f,. _ f i{ ) are provided by Heppner's

magnetometer (after Kennel et al., 1970) .

Figure 3. Normalized frequency band of (3/2) f H , (5/2) f H and (7/2) f H waves

using the Kennel's data. Hatched region with dots is a calculated instability

domain for T L / T, i = 5 and the plain hatched regions are calculated for

.j,I 
/T ii	 10.

Figure 4. Obtained plasmn parameters, electron density and temperature

anisotropy in a range near L = 7.5, X = 1.8 0 and 0053 LT.
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