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CURRENT TO MOVING SPI1ERICAL AND CYLINDRICAL

ELECTi STATIC Pitc)BES

ABSTRACT

The cu1 • rent collection characteristics of moving cylindrical

and spherical electrostatic probes are evaluated for velociti! , en-

countered in earth satellites and pl.metary probes. Simple asymp-

totic current fermidas are developed for large values of the Mach

number and potential. For Mach numbers greater than 2.5, the or-

bital motion limited current is given within 1% by

d - i

i	 N(- Aw	 1 + 
hr 

+ V
111%% l	 11111 2 )

where d _ 1, 2, 3 for a plane, cylinder, or sphere respectively. A

data reduction technique for determining ion densities from the ac-

celerated ion current is discussed. The current expressions are

given in terms of standard functions and recurrence relations,

therefore allowing straightforward computer programming of all

the probe current formulas.
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INTI tc DUCTIc )N

Cylindrical and spherical electrostatic probes have been \^ im- l .\ en ► ploYe(I

on rockets and satellites for charged particle temperature and densit y measure-

ments. 1 ' 3 In the future these devices may be used on planetary missions. A

common feature of the planetary and earth electrostatic probes is the rapid

vehicle velocity relative to the plasma thermal velocity. This results in high

ion Mach nun ► bers and non-negligible electron Mach nu:i ► bers.

The formula for the current to : ► moving cylinder has been obtained by

Kanal a ; however the series expansions derived in reference 4 are not valid for

high Mach numbers. A nu ► nber of authors  -' have investigated the current to

a moving sphere, however only Kanal 7 has obtained the current expre^;sion for

an arbitrary sized sheath.

We reexamine the expression for the current to a moving cylindrical probe

(eqs. 15 and 27 of reference 4) in order to derive expansions valid at high Mach

numbers. We include the expressions for the current to a moving sphere so

that the asymptotic current expressions may be compared with those of the

cylinder.

The key assumptions used in deriving the probe currents are that: 1) the

probes are surrounded by a sheath of ideal geometry (cylinder or sphere); 2)

no collisions take place within the sheath; and 3) the particle distribution out-

side the sheath is Maxwellian with a superimposed drift velocity. The sheath

symmetry becomes distorted at high Mach numbers; however most of the col-

lected current then originates in a small region about the velocity vector where

sheath symmetry is approximately maintained. The effects due to the finite

length of the cylinder probe will be neglected in the present treatment.

or
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BASIC CURRENTRENT EQUATIONS

The derivation from first principles of the integral expression fo ► - the

c • ► irrent to a moving sphere or cylinder has been treated in the literature. Both

the sphere and cylinder probes may he treated by the method of	 .11.4 We ex-

press the current formulas in normalized form,

I = i I l r : ,:„ioln ()

NN-liere i is the actual current and i random is the random current to an uncharged

probe of area A due to particles of mass in with number density N and at temp-

erature T,

k • 1•	 t 2
rnndom	 2 nl	

N A e .	 (2)

I'he normalized accelerated particle current is given by the formt ► la,

ao	 d - 1

sds ( s 2 + V) 2 I ( `1) (s, M)

fXV 1/2

C- ) (1-1 rv' is
sds s'i -1 I Id) (s. M)

fo

where d = 2, 3 for cylinder and sphere respectively, and

I (2) (s, M)	 4	 C - (M +s^ I o (2 Ms),	 (4)
771 ; 2

1(3)( S'M 	
e-(s-M)2 — e - (s+M) 2	 (5)

2 M s

2



The symbols are defined by:

\t	 (n)%c 2 sin g	 ? k"I')1 2 = Mich number,

d anvje hvtween probe axis and v(1oc • i t y
vector for cylinder; u = „ ? for sphere,

w , prohc - speed r4-lativv to the st , itioimry plasma,

7	 1(, 2 /r2 - 1 ) 1 2 •

a	 slwath radius,

r	 molt • radius ,

V
	 I c 

t I	 rritioof potenti,il to therm;il (•nergy.
k 'I^

4

The normalized retarded particle current is:

m	 d -1

I
ret
	 sds ( s 2 - V) 2 I (d ) (s, M)

fV ► 2

In formula (4), I 0 is the modified Bessel function of order zero. The in-

tegrals for the sphere may be readily performed, and yield exponentials and

error functions. The integrals for the cylinder can at best only be reduced to

the form of a power series whose coefficients are known functions. K. 111,114 ob-

tained a single power series in powers of M/V 1 2with coefficients depending on

Bessel functions and incomplete gamma functions for I	 and modified Bessel

Functions for I
ret

3



we derive a power series representation lot- the cylinder current in power

of M 2 and V from which asymptotic forniulas valid for high M or V can I)e ob-

tained 1;y suininingr over N1 or V. The summation yields series in confluent

h^j)ergeonietric Ilinctions."

'Cho evaluation of the cylinder current reduces to the prohlcm of performing

the integral,

I (x, y)	 4	 s(IS ( s 2 i y) 1 2	 ^

e-( ' + M s ) I o (2M s)	 (7)

	

77	 2	 i /2

The dependence of I (x, y) on M 2 is simplified by performing a Lapiace transform

in M2:

D	 4
,

i' I (x. y)	 (iW c. -pM" I (x, Y)	 (^)
u	 ^

Using the Laplace transform of the modified Bessel function", we obtain the
i

resu I t .
i}

"0

	

I (x Y)	
2	 1	 (is i s + Y)t

,2 e -p,,'(1 +p)	 (y)
W1 2 x

This is in the form of an integral representation of the confluent hypergeometric

function s , ^., (a,	 c;	 i). Therefore using the relation,

kP(a,c:z)	 z ► - c^(a-c +1, 2-c;z),	 (10)

la

4
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we find:

1 (x.	 )	 1I	 . ►	 + P) (1	 f^	
3 2	 1	 1	 WX	 Y)	

(11''	 )

To facilitate the separation of variables and taking; the inverse Laplace

transform, we partition I into two parts,

1 ( x , Y)	 I , (Y) + 1 2 ( x • Y)	 (12)

I (x, Y) =	 I  (Y) +	 1 2 (x, y),

according to the relation between I and ; ,

4(a . C. z) = r0 -r) ) d (a,

	

r (, ► 	 ^ I

(13)
I' c-1

^7-
n-0	 n

The result of this partition is:

	

r I	 I	 I' P 
3/2 e py '0 +P) , 	(15)

P	 t

L' I2 (X y)	 _ 1 I	 (X + Y)3%2 c• -Py / (1 +P) ,^ CI. S. P (1 +Y) I	 i( 5 I

	

P	 \	 4. P

5



Iii performing the inverse Laplace transform rn Equations (lei) and 06), tho

path of integration reduces to a circle of radius greater than unity and centered

at p = -1. For	 1 I (y) a I,r • anch cut extends from p = - 1 to p = l, . Both integ rals,

1 1 And 1 2 , are ev aluated with the change of variable 1 ► = -1 + q, and an expansion

of the integrands in powers of s1. F%,Lluating the residue at (1 = U we find:

(y)	 '	 (-M!)" y m F(n . m - 1 ?)	 (17)

	

n - U	 in U

I 2 ( x Y)	 (X Y), 2
	 L(-112)" (_x) R, (x Y) ` r (n	 r

„ _ 0	 inw0	 f	 n! m! i	 r +	 (m . r	 01	 1 ^

(18a)

Y	 7

I 1 (x. y) - - (x ^ Y) 3 ^	
T,
	
T.

(- x )"' (x 4 y)"	 (n +m . 1. 1: -MI )	 (18b)

	

11, 2 U	 11 it U	 m!	
11

'These basic foi-ni ll bower series will be rearranged later as series in

conlluent hypergeometr • ic functions (in the m.-mner of Equation 181)) which can

either he programmed on a computer o, expressed in analvtic, asymptotic form.

Finally « ve give the connectio n between the basic formulas, Equations 17

and 18, and the normalized cylinder cui•rents.

I,^^^	 Ir (V)	 I2	 2 V. V>	 I2 ( 2 N'. 0)
r

cyl ind, r

I ret	 - Ir (-V)	
(20)

cyIincur

We note that for sufficiently small values of M and V, the power series

representation of Equations 17 and 18 are rapidly convergent and would there-

fore be appropriate for coMputer evaluation.

(19)
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Two limiting forms of the accelerated cul-I''t ► l are commmi1v employed:

1) the sheath area limited case %%hen the potential is small and the sheath collapses

to the probe, a/r • 1 mid y..,
--; and 2) t' orbital motion limited case when the

slivath is much larger th:1n the probe. a/r " 1, 	 • r/a. The nm-malir.ed current

expressions for these two ideal cases are:

1 1.11	 ^
r̂ 

1 1 ( n ),	 (21)
vy1i 11der

(22)
I ,,...1	 ^, ^V) t I z (^ ► . V).

VI i nd ,

The expressions for the norm► l ized cu went to a sphere :1 re of ita ined hy

integrating F.'quations a .ind U:

2	 1 2 (M `	 , )

I.^^^	 \ r /	 >	 >M	
2 v r f (M)

phi• r

,
+ "

1 2

2	 M (r rf (M- rV l ^) + erf (M+XV I 2 )^ +^ ^, ^1'

(23)

.12 1^^
(M 2

' V) serf (M - yV1 2 ) t	 r  cM + ,V1
r 2	 2	 2M

rl 2	 ,	 ^	 1 2	 1	 2-

	

M , ,	 ^.

	

e- (M	
+ M - Y V - c M +yV	 )

	

i 4M	 4M

(M2 
1 1 V)

	

.,1	 2	 1)

	

l 2 	 2M	
(erf (M - V1;2) + e r f (.•; V1'2)]

re 
sphere

7



M,V1 2	 (M_V'4M	 ^.

(24)
M — V 1 1 V -(M. V'	 ,T

4M

For the two idealized cases the accelerated current reduces to:

	

2	 11M1t1

I ^: I	 n	 —	 c-r f (M)	 1 v 
-M	

(25)

%phorP	 1.1	 2	 M	 2

M2 1 2 t V	 1
I oM l	 2	 M	 c r f ( M) t 2 V- M2	 (26)
%phf- re

Equation 2,3 has been given by Kan,Il' and Equation 25 by Sagal,yn.'

,-^I IEATII X ltEA I.IMI'rED CUIMENT

The sheath area limited current is determined by the condition that ,Ill

particles that enter the sheath are collected; it is obtained from the general

accelerated currant by taking the limit as a/r • 1 and multiplying the result by

( a/r )`I -1

For the cS.inder, the sheath area limited currant is given in closed form:

	

I sa I	 a=	 :	 I . I; - M l  I	 (27)
cylinder	 (

Using- the contiguous functions, the expression for the derivative of t and

the confluent h-, pergeometric representation of the modified Bessel function,

one can demonstrate the equi\ • ,Ilence of this result with Equation 22 of Reference 	 I

4.

8



I	 '^ ^• '^	 ^ (1 ^ M^) j	
11•	

M1 
I	 ^1

i	 ► .	 o	 ,	 >

ti i i ncie r

A compm— ison of these two representations demonstrates the usefulness of

the confluent hyperg;eometric functions; only one function need be evaluated in-

stead of in cxl>onential :imd two Bessel fmictions and the asymptotic form for

large M is easily obtained from . For small M, the Taylor series representa-

tion of provides a convergent calculation of I ,,l ► ,

For large M, the asymptotic series is derived from the following exact

series which is obtained from the integral representation of t:

(a -- c 4 1)
1)
 f_, (c) . (a + n, Z)	

(28a)
o	 II' F(c -a) 71(a) z:'

a - c / negative integer,

0 (a, c; z )

	 V (1 a),, F ( c ) Y ( c - a +n, z) ez	 (281))
n' I'(1) F(c - a) z'-: ' +11

a negative integer,

where the inc(mmplete gamma function mad . be written as

y (a, x)	 a - t x" ^b (a, a + 1; -x)

For sufficiently large z, the following; equation holds;

r ( a ) - 1'( a z) "Z , -t C-Z,

I'herefore we have the asymptotic expansion:

9



^- a 2

cylinder	 r 77
1 	

n _ U

	 (29)

(%I Iarge )

Writing out the first few terms we have,

l	 ,^	 ?	 1	 M	 1	 (30)

cyI inder	
1*
 T1 '	 4M2	 32 M4

(M Iarwe)

Retaining only the first term and multiplying by the random current, we

find that the actual current is equal to

New a A ,sin 9^

r	 T

which is the product of the number density, charge, relative velocity, and the

cylinder probe area projected norm-A to the velocity,

—A 'i  sin 9 1/7T - 2 at j sin 8
r

The Sphere sheath area limited current is given by Equation 25, the asymp-

totic form for large Mach number, M, is:

T1 '2	 l	 ) ,

2	 M2
sphere (M Inrge )

(31)

where we have neglected terms of order e _",12

i
10



RETARDED CURRENT

The retarded current is independent of the sheath size and depends only on

the potential across the sheath. The cylinder retarded cu rrent is given by the

double series (Equation 20):

1 rec	 L 	T.)	 .	
(32)

cylinder 	„ v-	 ,,,_ p	 rr M. i 

(
n)	 i (n + 1 )

For sma l l M and V this series provides a convergent means of calculating the

current.

For small INI and arbitrary V, we sum the series in V giving:

3

I	
2 -M2)n	

rr - 1 - 1 -V	 (33)ret 2	 2
cylinder	 [1=0

The coefficients of the powers of M 2 (the¢) are polynomials in V nIultilrlied ,)y

e- v . Knowing the first two functions:

d	 - 1 - 1 - ^'^	 e -v

(1	 2V) e-V
2

the general terms can be found from the recurrence relation:

3 - 1 -V i -^'I	 In+ 1 - 1 -N" /2	 2	 \	 2	 /	 \	 2	 2

(34)

(35)

s.

_ ( n w 1)	 Crr _	 _ ^: _V)	 n

11



► i!	
3

m! [	 - rn 1
7	 /

( 3 9)

Phis provides a useful computer scheme for evaluating Equation 33. Writing;

out the first few terns, %%e have

7
Iret	 t'-v	 1 t 1 t2V !A2-- (1 +4V	 4V2) W i ...	 ( 3 6)

2	 16
cylinder

The series given hY Equations 33 and 36 would adequately treat the retarded

electron current for earth or planetary probes.

For higher Mach numbers we perform the sum over M 2 to obtain:

m
m

i -V)	 m - 1 , 1: - M''	 (37)
re It	 ^-+ m!	 \	 2

cylinder	 0

The first term in this sum is proportional to the sheath area limited current;

the general terms are determined from the first two ¢ and the recurrence

relation:

_ 	 z
-M21	 ^,-M 2	 (1	 M2) lr, 

(2
M2)
	 Mz 1 1	 2)

\	 s	 z

rn + ^. 1: -!11')	 (2m - M z )	 ^m t ". 1; _ M21

2	
111) 

'f ( 

M -	 1^

Using the asymptotic form of $ for large M, this series becomes,
-V "'1 )11-1/2 /	 1	 1

(	 )M z	 ^f. C	 2)(M 

Iret
C  l i n d e r	 n = 0	 m= 0

1b

(38)

12



I'he summation over the index m converges for AI2 > V and gives a series in

1 /Ml:

1 f f	 T ^II

(4n)

1	 ^ 	 jm2

, m2
Ct,

The first few terms of the asymptotic expansion are given as:

I	
2M11	

1-\ , 	 > 2 + 	 1	 1 -V	 - ► 2 - 1	 1-`,	 32

r e t	 771,2	 M2	 211'	 M2	 2	 M2
cyItmlvr

\I - 	v

1	 01	 ^'	 -32_3
	 1_^	 (

52 	
(41)

	

4 M 2	 M2	 M2

15 V1

R
M2

The retarded current to a sphere is given by Equation 24; the asymptotic

form for large M is:

2

Iret	

^^	
N1	 1 +	 1	 -	 (42)

sphere M large	 ?y12	 M 2

ORBITAL MOTION LIMITED CURRENT

The orbital motion limited current is independent cal' the sheath size and

depends only on the potential across the sheath. The current to a cylinder

(Equation 22) is given bY the double sum:

C., , I	 ► ^	 1	 , M2

13



Wyl

Il ^ 	 lily
U

( (n+m-1^
V3 2 l 01 r m. 1)	 (43)

f'	 m, 1	 (n+1)
IOMI
cy1in,14.r

L0

The formula suitable for low Mach numbers is obtained by summing over V:

r

I0m1	 =	
1 2	 M en,	 11 _ 1	 _ I .

n	 n1 2	 (	 2	
V\)
	

(44)

	

n	 2Cy l i

	

dcr 	 o

From the recursion relations among the ,^ and the fact that,

y( i, 
2: 

v 
1	

n1 2 (IV e r f c VI 2	 (45)

Nve can determine all the coefficients of M2:

12
V 
1

I 2	 c v erfc V I 2 + V I 2	 (4^')

I

2 - 2 : 	 2	 `' v ( 1 - 2V) erfc V I 2 f V1 2	 (47)

VI	 2n + 2 ^V^	 .1 f I-^. -2;
1

(48)
1	 1	 \	 1

	

VI	 n r- ^(n +2)

Use of the recurrence relit ion (48) in Equation 44 provides a convenient

means of evaluating; the orbital motion limited current to a cylinder for M < 4.

Wl'itinV, out the first few terms we find:

	

2	 _
I ninI	 = 2	 V + ev e r f c (^ V) M	 2	 V + (I -2V) e v e r f c (^V)
cylinder l 71	 2	 _ 7

	

M s m;^ I I	
(49)

4- M	 2 
(V , I . V + ( I - 2V - ?V2 ev erfc (v	 +

r

14



Using the exact represenuition for , :

T

n-u

we obtain an asymptotic expansion for . A large potentials:

P. 	 Ol^
Cpl - ^-	 `'^	 `'1	 n	 n (V- P. • 1^	 (' 1)

1	 1

m U	
m! V m

Therefore we obtain :1n expression valid for V >> 1:

K	 T

?	

1 2	 l

) r	 ` )lclml	 ( V) m!	 ^ V̂ 	Il
,	 ( n

1 m	 it -
\ 	 / r.cylinder	 1 77	

u.= U	 1i

When V M 2 the series in n converges and is given by:

^.	 2	 2	 _	 m2	 C^ 	n
1 ,1, i	

C•11, c o	 _	
n + 1	 1	

n 
j 1	 2	 V	 (52a)

cyli nde r 	 _ U	 \	 aM

	

1 2	 -1 2	 J 2]
2	 2	 • 2	 , 

1
1 om I	 ' —= V 1 12 (1 - M, 1	

+ 2 VV	
(1 V	 - V̂ (1 V I

cyl indvr V Tr	 \	 /

V > M2

l	 1	 M 2	 -3 2 - 9 M2	 1	 M 2	2	 (521))

4V 2	 \	 V /	 4V	 \	 V

	

Y15 MyM2

8V 2 	 V 

373:'

15



\1e obt.-lin in expression useful for high Mach nunikers by summing over ;N1

M

I ^rn,1	 V^^	
Cn,	 ^. 	 -- ` -

	
(m 51)	

lm	 1. 1; - 11' ,	 (5:3)
cyIindet	 r„aU

7

The second set of confluent hypergeometric functions, . (m + 1, 1; - W),

consist of Lag^ r.er.re polynomials in M 2 multiplied by e -M2 , therefore we may

neglect them in the asymptotic expansion. Consequently the orbital motion

limited current for large M is identical Nvith the asymptotic retarded cylinder

current with the substitution V • - V:

1

	

V	 1 2	 V )-1  2	 r—
I

	

	 —M 1 —	 +	 1 _	 _
MIT I

cylinr•r	 tit largv	 ^^^ 
	 M2	 M2rl  1 +—

(54)

I	 I, V	 .1 2- 3
	 1	

"5 '
	 15 (,,V 	

-

4 M 4	M2	 Ml 	 R	 M2

It is interesting to note that up to the second term the expansion for I r I ,

when M ,	 V and 1\1 2 > V, Equations 52 and 53, are identical.

Taking the lowest order terms we find that Equation 54 can be approximated

by the single square root expression:

I22	 1	 M2	 `	 (
1 1)IT I	 =	 _	 —^	 55)

cy I i nrie r	 Nt`	 v	 '

lu Figure 1, there are displayed contours of the relative error between

approximation 55 and 1 I computed either from Equation 44 (for small M) or

16



Equation 5.1 (for large AI). It is seen that the relative error is less than 1% for

N1 ' 2.5 and AlI values of the potential.

V rom Equation 52, the asymptotic expansion tar NI - V, we ob...in the

approximation:

I"m1	 _ 2 (1 t V +M " ) ► 1	
(5(;)

	

v  inder	 V 77

In Vigure 2, there are displayed contours of the percent relative difference

between :ipproxiniatio n (56) and I am ► as computed by Equations 44 and 54. For

potentials V 5.5 and any value of it1, the relative error is less 01;111 Ov. We

see from Figures 1 and 2 that :approximation (55) is most appropriate for fixed

M when the potenti + ► 1 is varied, and that approximation (56) is most appropriate

for fixed V when M is varied. It is pointed out that Equations 55 and 56 are the

generalizations to be taken for the Mutt-Smith and I-wigniuir s ► n.ill cylinder

current expressio)ns10.

	

ti	 2
Inml	 _ ► 1 tV,
cyI finder M= 0	 l!	 57

Mott-Smith and Langnmir

I 	 -	 _ V f
(r)8)

Cy l i nd, r N» 1 V 77 

Mott-Smith ;md Lanwmuir

Where Equation 56 is the generalization of Fquation (57) and Equation (55)

is the generalization of Equation (58). It is interesting;" that the thermal effects

are added to the ;Mott-Smith mid LanO;muir formula (58) by adding; the term,

1/2, under the square root.

The orbital motion limited current to a sphere is given by Equation (26); the

asymptotic form is simply:

17



I "MI	 N(-,A A	 1
M ^> 1

,1 - i

	

k ,r 	 2V

	

III W2	 m%^=

^n	 1	 V

I Wn 1	
%1	 1 1	 ( 5 9)

, , he re u • 1	 2	 211'	 %1 = )

neglecting terms of order a 
_ M 2

'thus we find that the approximation for I.11-ge M" for the actual orl ► ital

motion limited current to a sphere and cylinder (and plane) are similar in form,

Where A is the probe area projected perpendicular to the velocity vector and

d = 1, 2, :3 for a plane, cylinder, and sphere respectively.

\CCEI.F.mTl-:I) CURRENT

The accelerated cylinder current as g iven by Equation 19 is the sum ofell

three terms, one double sun g and two triple sums. We will not write down the

fornlu 1.1 as it is contained in Edu.ltions 17-19. For small values of V and M

this power series \Wuld be suitable for computer evaluation. For small M and

arbitrary V we may express the accelerated cm , rent as a lower series in M2:

2 
C' M

	 (61)

cylin,Ivr	 V^^	
n	 0

Miere the initial values of f , and g„ and their recurrence relations are determined

most readily frmnl the integral repl • csent.1tion, I (latio ► n (3):

1
t n+	 I1 t 2 - V I f'1i+1 + V('1 t 1^ t 	 r ^2	 t , 2 )`x ) 3 2 1,-Y 

2 

V (,,IV
)

n	 (62)
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f o	1	 1V t^	 V f'	 e^^ vrtc • ( /(-I	 ,')V	 .	 (1^ )2

} I	 3	 ^, 1	 4-1 . , )V c•-rev	 ^'	 v e•rh ( /(I  t ,`)V)	 (r; )
(2

	

3	 n	 2 V	 . 3 2 e• - ^^ v	 (65)

2)	 r

_yl y

r	 2

'Phis scheme is recommended for computer evaluation of I I I "or smal l lei,

since it Involves only multiplication and addition after Ow initial terms fog f l ,

g el have been evaluated. We write out explicitl% t1 ►e first two te:=rms in the ex-

pansion:

I	
e-aI'	 eV vrfc ^^1 + y^1V ^ 	 fr crf

ryl miler	 M << I

(r;7)

f M`	 3 - V L. ( , rfc (1 f y 2 )V } 3 .i erf. (/TV)
1(2	 )	 2 r

For large M, E(luitio^n 18b) together with the asYmMtotic form F.(Iuation 281)),

shoti , that 1 2 * U. Therefore the accelerated cylindrical current for large M is

I I (v) xchich is given by Equation (54) or (38) with V -V.

I CC	 II (V) = loml	 1 or !11 2 '> 1
	

(`8)

-ylinder

The accelerated current for a sphere is given by Equation (23); for large M we

leave,

,,	 1	 V
I :, ^•,•	 I ^,n l	 7 M	 1	

) tiil 1!11`	
;11-2 ,^ 1
	 (69)

spher ,	,pht•rC.
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Therefore it is a pro >pertY of probes with simple geometry that the accelerated

current is given hY the orbital motion limited current at large Mach numbers.

l()N DENSITY DETERMINATION

We consider a methwl of determining the ion densities from the volt-ampere

c h.- racteristics of a moving probe. We treat c ily the case when the ions are

accelerated and the electron current is negligible. Unless the probe is driven

to very high negative potentials with respect to the plasma, it will in practice

I)C difficult to obtain more than two averaged parameters from the experimental

accelerated ion current. However let us consider the general technique of fitting

the accelerated ion current to a polynomial in the potential regardless of the

information content of the data. One advantage of the polynomial method is that

the number of terms in the fit is determined only by the amount of information

contained in the data, independent of the number of ion specie p present. For

sufficiently high Mach number NI 2 V or (111W 2 sine - )/2 > e:, the orbital motion

limited current is the polynomial:

n1

	

► 	 c^ 2 r t W s in 9	 a V"	 (70)

=o

1	 _ 1
R	

II —	 Il	 1

	

kC	 \ n +.p	 12	 7 )	 1)/1

	

\	 )	

m(n+	 (71)

(W2 sin 2 d	
n	 :ter

=o

	

m( S -	 N, ' (m
a )S
	

(72)
u
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where N ,, is the number density and m ;, the mass of species a. The coefficients

of the powers of V are themselves expansions in the weighted inverse powers of

the mass, III ' S > . The highest power of V, V I) , depends on the potentia I range

over which the data is taken, and can be estimated by the requirement that

(1/21 (V/AI -) ► ' be not much less than unity. The terminntion of the series for
^ I' J

a , in (rowers of 1/M 2 is determined by the value of the smallest Mach number.

It is assunled that the area of* the probe and w sin are known, and Oat 'T c.- in

be determined (possibly from the electron temperature). Then by determining;

the coefficients, a n , from a least square polynomial lit to the data one ohutins

a set of the weighted inverse powers of the mass, N, m'' 	 111	 , . . , by solving

the set of equations, Equation 71, starting with a p . If the ion species are known

and a sufficient number of the m ( ' ) are evalu. ► ted, then the mass concentrations

can he found. If two known species are present, then only a knowledge of the

first two quantities a o and a ► are necessary to determine the concentrations.

Hie orbital motion limited current to a sphere at sufficiently high (Vlach

number is:

i - e 77 r 2 w ( a 0 . a ► V) ,
	 (73)

	

a n	
N . 1, f 

rn^t	
`74)

w2

2 k T	 ^ 1j	 (75)

	

Ft ► 	 Ill

W`

Therefore the polynornial fit for the sphere is nearly the same as that for the

cylinder, however with truncation of the series ir, V and 1/M2.
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An altc-rnate method of fitting the accelerated i0 ► n current proceeds on the

assumption that the species as well as w sin and T arc '.nown. 'Then using the

asymptotic expansion for the orbital motion limited current, Equations 54 or 52,

the current is a linear hinction of the nuffiber densities, N ,, , and may be statisti-

cally fitted to the data points,

I (V) N:1
	 (76)

\%-here the coefficients f (V) depend on the species (mass), potential, temperature,

and relative velocity w. This technique works best when there are primarily

two species present. Although it is not uni(tue, this technique can also be used

to guess the masses of two species by examining the sign of the Mllni,er densities,

N ,, computed for an assu ►ned mass pair and then comparing the net density N

N ► + N Z with the electron density. Additional information to aid in the ion density

determination is contained in the altitude variation of the ion species.
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LIST OF FIGURES

Figure 1. Conlo ►UI'S of relative difference between the cylinder current

approximation, 2 M (1 + 1/2 M^ + V/AI')^ = , for M 2 > V, and the

orbital notion limited current.

I i^;ure 2. Co11toU1'S ()f relative difference between the cylinder current

approximation, ? (1 + V + M = )' = , for 11' V, and the orbital

motion limited current.
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