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CURRENT TO MOVING SPHERICAL AND CYLINDRICAL

ELECTROSTATIC PROBES

ABSTRACT
The current collection characteristics of moving cylindrical
and spherical electrostatic probes are evaluated for velocitic ., en-
countered in earth satellites and planetary probes. Simple asymp-
totic current fermulas are developed for large values of the Mach
number and potential. For Mach numbers greater than 2.5, the or-
bital motion limited current is given within 1% by

d-1

2
i ~NeAw <l fET— +£\L>

mw2 I’T)W2

where d = 1, 2, 3 for a plane, cylinder, or sphere respectively. A
data reductiontechnique for determining ion densities from the ac-
celerated ion current is discussed. The current expressions are
given in terms of standard functions and recurrence relations,
therefore allowing straightforward computer programming of all

the probe current formulas.
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INTRODUCTION

Cylindrical and spherical electrostatic probes have been widely emploved
on rockets and satellites for charged particle temperature and density measure-
ments.! ? In the future these devices may be used on planetary missions. A
common feature of the planetary and earth electrostatic probes is the rapid
vehicle velocity relative to the plasma thermal velocity. This results in high

ion Mach numbers and non-negligible electron Mach nuimbers.

The formula for the current to a moving cylinder has been obtained by
Kanal®; however the series expansions derived in reference 4 are not valid for
high Mach numbers. A number of authors’ ’ have investigated the current to
a moving sphere, however only Kanal’ has obtained the current expression for

an arbitrary sized sheath,

We reexamine the expression for the current to a moving cylindrical probe
(eqs. 15 and 27 of reference 4) in order to derive expansions valid at high Mach
numbers. We include the expressions for the current to a moving sphere so
that the asymptotic current expressions may be compared with those of the

cylinder.

The key assumptions used in deriving the probe currents are that: 1) the
probes are surrounded by a sheath of ideal geometry (cylinder or sphere); 2)
no collisions take place within the sheath; and 3) the particle distribution out-
side the sheath is Maxwellian with a superimposed drift velocity. The sheath
symmetry becomes distorted at high Mach numbers; however most of the col-
lected current then originates in a small region about the velocity vector where
sheath symmetry is approximately maintained. The effects due to the finite
length of the cylinder probe will be neglected in the present treatment.
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BASIC CURRENT EQUATIONS

The derivation from first principles of the integral expression for the
current to a moving sphere or cylinder has been treated in the literature, Both
the sphere and cylinder probes may be treated by the method of Kanal.® We ex-

press the current formulas in normalized form,

(1)

l L]
random

where i is the actual carrent and i is the random current to an uncharged

random

probe of area A due to particles of mass m with number density N and at temp-

erature T,

1/2
irnndom B ( k¥ ) NAe. (2)

27m

The normalized accelerated particle current is given by the formula,

® d-1
E J sds (s? +V) 2 T(4) (s, M)
}'V! 2

(3)

1/2

arink L1
+ (?) J sds s4-! 1(d) (s, M),
0

where d = 2, 3 for cylinder and sphere respectively, and

12 (s, M) = o-(M 4s?) I,(2Ms), (4)
/2

e-(s-? _ L-(s+m)? (5)

I3 (s, M) = =
s




The symbols are defined by:

M- (mw? sin? ©2kT)' 2 - Mach number,

angle between probe axis and velocity
vector for cylinder; © = 772 for sphere,

w probe speed relative to the stationary plasma,
y 1(‘2‘.2_1)12'

a sheath radius,

r —probe radius,

\Y l_l:'i' | ratio of potential to thermal energy.

The normalized retarded particle current is:

® d-1
& j sds (s?2 -V) 2 1(d) (g M). (6)
72

In formula (4), I, is the modified Bessel function of order zero.® The in-
tegrals for the sphere may be readily performed, and yield exponentials and
error functions. The integrals for the cylinder can at best only be reduced to
the form of a power series whose coefficients are known functions. Kanal* ob-
tained a single power series in powers of M/V ! 2with coefficients depending on
Bessel functions and incomplete gamma functions for I = and modified Bessel

functions for I .



We derive a power series representation for the cylinder current in power
of M? and V from which asymptotic formulas valid for high M or V can be oh-
tained by summing over M or V. The summation yields series in confluent

hypergeometric functions.”

The evaluation of the cylinder current reduces to the problem of performing

the integral,
4 . 2 2
I(x,y) 12 f sds (s? +y)t/2 e~( + W) 1 (2Ms) (7)
1 12

The dependence of I (x, y) on M? is simplified by performing a lLapiace transform

in M?%:

CI(x,y) *® J d m? (""Mz I(x,y). (8)
0

Using the Laplace transform of the modified Bessel function”, we obtain the

result;

Ry

CT(x,y) s I ds (s + y)}/2 ePr/(1+p), (9)

A2 1 4p

X

This is in the form of an integral representation of the confluent hypergeometric

function®, (a, ¢; z). Therefore using the relation,

y(a,c;2z) =2 CyY(a-c+1, 2-c;2), (10)

e



we find:

32
PTxy) -2 L e-mniep) [(12P ik =
12 1aip \ P 2

To facilitate the separation of variables and taking the inverse Laplace

transform, we partition I into two parts,
Ix,y) I, (y) + I, (x,y)

CI(xy) = S1(y) + L1, (xy),

according to the relation between | and ; ,

v(a,c:2z) —li-l—-—i— v(a, ¢; ?)

l"(:“(_‘ﬂl)
=
+-'—[%)1—) 2" p(a=-c+1, 2-c; 2),

Y

(a), 2"
p(a,c; 2z) = Z ik

n=0

The result of this partition is:

3/2 -
I:Il(y):lip (l+p) ePy/(14p)

P

~ 1
LIz("'Y):'l+

(x +y)3/2 (,-py/(l+p)¢ (l. _;5)_: pP(x+y)

(11)

(12)

(13)

(14)

(15)

(16)



In performing the inverse Laplace transform cn Equations (15) and (16), the
path of integration reduces to a circle of radius greater than unity and centered
at p=-1. For 1, (y) a branch cut extends from p = -1 to p = 0. Both integrals,
I, and I, , are evaluated with the change of variable p= -1 + g, and an expansion

of the integrands in powers of q. Evaluating the residue at q = 0 we find:
2\n m{ < &=
I, (y) Z E : (-M )' n+im=172) | (17)
e v'm! T (m=-1"2)(n+1)
2\n m ro i § X
I (x,y) : _(x,y)l 2 7‘7 7 ;‘\ -M)" (-x) S(x +y) (n T 1)
r +e [ (Mm+r '
X

ne0 ms0 r+1)i (n+1)
(18a)
: 32 (=x)" (x+y)"d(n+m+1,1; -M2) 18b
I,(x,y) = =(x+y) E E : . (18b)
meO nst m! | (n —5

These basic formal power series will be rearranged later as series in
confluent hypergeometric functions (in the manner of Equation 18b) which can

either be programmed on a computer o: expressed in analytic, asymptotic form.

Finally we give the connection between the basic formulas, Equations 17

and 18, and the normalized cylinder currents.

. I, M+LAVY-21, (2 V 0) (19)
=
cylinder
- 20
Iret : Il =T (20)
cylinder

We note that for sufficiently small values of M and V, the power series
representation of Equations 17 and 18 are rapidly convergent and would there-

fore be appropriate for computer evaluation.



Two limiting forms of the accelervated current are commonly employved:
1) the sheath area limited case when the potential is small and the sheath collapses
to the probe, a/r 1 and » * *; and 2) t\». orbital motion limited case when the
sheath is much larger than the probe, a/r > 1, , * r/a. The normalized current

expressions for these two ideal cases are:

B =1, (0), 21)
cylinder ;

(22)
S I, (V) + I,(0, V).
cylinder

The expressions for the normalized current to a sphere are obtained by

integrating Equations 3 and 6:

1

s 8 J 41/ (Mz’?)
i r—) 3 = 2erf (M)

sphere

m’2 y 2

YTO2M

lerf M=-yV}'2) s erf M4+ V! 2y ] +-;—0'M

(23)

1
a? e (M2 'E-va) 12 1/5
it R . - i lerfM=-yV'2) s erf M+ V%))

4M 4M
172 (Mz : ;—— V) :
}.. = "2 = [erf M-V'/2) +erf (i+VI’D)]
sphere



12 .
BV ¥y

'

M
(24)
M-VI2 2y
aM '
Ior the two idealized cases the accelerated current reduces to:
=
o i 47 £ My ¢ LeW (25)
P » ol : J
x:);.n"rn r2 2 M (r ( ) | 2(
1
M =4 V
wl /3 B 1 2 PR
I , o erf M) + =e"™M | (26)
oml
sphere 2 M 2

Equation 23 has been given by Kanal 7 and Equation 25 by Sagalyn.®

SHEATH AREA LIMITED CURRENT
The sheath area limited current is determined by the condition that all
particles that enter the sheath are collected; it is obtained from the general

accelerated current by taking the limit as a/r - 1 and multiplying the result by

(a/r)(l -1 :
For the cylinder, the sheath area limited current is given in closed form:

I

cylinder

sal

-~ ( = -Mz) . (27)
r 2

Using the contiguous functions, the expression for the derivative of # and
the confluent b ypergeometric representation of the modified Bessel function,

one can demonstrate the equivalence of this result with Equation 22 of Reference

4.



a_-w,n % M? M?
Is;.l .;.v |.(l ¢ M?) I, (—2-> ¢ M2 I‘ <T

cylinder

A comparison of these two representations demonstrates the usefulness of
the confluent hypergeometric functions; only one function need be evaluated in-
stead of an cxponential and two Bessel functions and the asymptotic form for
large M is easily obtained from /. For small M, the Taylor series representa-

tion of / provides a convergent calculation of I_ .

For large M, the asymptotic series is derived from the following exact

series which is obtained from the integral representation of /:

- (a-c+1) ['(¢) ¥(a+n, 2)
t(a,c; =-2) E - (28a)

R - I = f
Sny ntl'(c=-a)(a)2**"

a-cC 7negative integer,

- l—( r—‘ : - g » : .?l
shi b Z (1-a) ! (c) y(c-a+n,z) e (28b)

B T EE I 43 ke na.

a s negative integer,
where the incomplete gamma function may be written as
y(a,x) =a-! x* ¢(a, a+1; -x)
For sufficiently large z, the following equation holds;

P e 7in8)~ 02" 0",

Therefore we have the asymptotic expansion:



P - - : l n
et M 5 - :
l%;ll r .1/2 n' <M2 > (29)

cylinder : n=0
(M large)

Writing out the first few terms we have,

= 183 B g i (30)
= r ,1/2 4m2 32M4

cylinder
(M large)

Retaining only the iirst term and multiplying by the random current, we
find that the actual current is equal to
aA |sin &/

New —

r Ui

which is the product of the number density, charge, relative velocity, and the

cylinder probe area projected normal to the velocity,

a | & =
—A |sin 6
r

7 | ® » 1
/m=2a4|sin 6.

The :phere sheath area limited current is given by Equation 25, the asymp-

totic form for large Mach number, M, is:

sal 2
sphere (M large)

1/2
1 - M<1+ 1 ), (31)

2
where we have neglected terms of order Y,

10



RETARDED CURRENT
The retarded current is independent of the sheath size and depends only on
the potential across the sheath. The cylinder retarded current is given by the

double series (Equation 20):

@ (=Y (=" <n~m-%>

et E : (32)
nasv m=0 n!m!r<m—;—>: (nvl)

cylinder
For small M and V this series provides a convergent means of calculating the
current,

For small M and arbitrary V, we sum the series in V giving:

x 1§ -

2\n
I . Z 2 ) M) t(n—%.—%; -v>. (33)

ret '
n n.

cylinder n=0

The coefficients of the powers of M? (the 7) are polynomials in V multiplied by

e V. Knowing the first two functions:

7 <— -1— —-1-, -V) =e~V
2 2

(34)
4 1 1 = )-V
¢ <5 —5. -V) = () + 2V ¢ ;
the general terms can be found from the recurrence relation:
/ /” : —'1-' -V} = <2n+-3--V ¢ <n+l —l'—V>
. 3 7 2 s o
(35)

11



This provides a useful computer scheme for evaluating Equation 33, Writing

out the first few terms, we have

2
E. " {1."22" M2~”*41‘;“4V)M4.~--}. (36)

cylinder
The series given by Equations 33 and 36 would adequately treat the retarded
electron current for earth or planetary probes.
For higher Mach numbers we perform the sum over M? to obtain:

o D)

cylinder ne 0

The first term in this sum is proportional to the sheath area limited current;

the general terms are determined from the first two ¢ and the recurrence

relation:
2 2
’ (-% 1 -M2) e™ /2 (1 ,M2) 1, (%.) PMR T ("; )]
1. 2 M2 /2 M?
b 3 y =M € I, 5 (38)

Using the asymptotic form of ¢ for large M, this series becomes,

(_v )m ( 1 )n-l/Z (m F: 1 ) (m : l)

& x N2 M2 2 : U] :

L B ] =
fal wud n!' m! l"(..z._m)

e

cylinder

12



The summation over the index m converges for M’ » V and gives a series in

1/M?%:

Il‘t" : Cl\

cylinder n=0

(40)

M e C
n+l 4\ M2

n4l n’

The first few terms of the asymptotic expansion are given as:

~ 2 E s ¥ i ) ¥ \ A4
e T 7. (7) ' ("7 3 D8
cylinder " M 2M M = M

M >y

The retarded current to a sphere is given by Equation 24; the asymptotic

form for large M is:

n /2
L, ¥T—M <1 = -_V_> | (42)
sphere M large 2M2 M2

ORBITAL MOTION LIMITED CURRENT

The orbital motion limited current is independent of the sheath size and
depends only on the potential across the sheath. The current to a cylinder

(Equation 22) is given by the double sum:

13



v v [ (n qm-l)
1 Z Z (-M3)" ym 2 = V321 tnims ) (43)
oml —
ey n! m! (m-%)[(nol) I (m~;>l(nol)

cylinder ma= 0

The formula suitable for low Mach numbers is obtained by summing over V:

2 1 12 : : -4
1 s 2n e et ¥ 44
e 172 Z ( n > i (n 2 2 ) e

cylinder ' n=0

From the recursion relations among the / and the fact that,

¥ (% %; V) : m/3 ¥ erfc V13, (45)

we can determine all the coefficients of M?*:
ol 73

/ (-l, = v) I __eVerfecV/2  y172, (46)
2 3 2

172
J (% -%; V) %—- eV (1 -2V)erfc V1’2 4 V172, (47)

Use of the recurrence relation (48) in Equation 44 provides a convenient
means of evaluating the orbital motion limited current to a cylinder for M < 4.
Writing out the first few terms we find:

= - 2 - .
I = 2_»V+everfc(\V)+M?[i\'V+(l-2V)eVerfc(vV):]

oml —
v v

Msmall (49)
4 — -
-%— [_3_7_. (V+%>zV+(-%-2V-2V2) everfc(‘V)] g

14

cylinder



Using the exact representation for ,:

— (lia-c¢) 2 e
i 6 8) 2 — .L_:_l_) +2'°¢ («2)"T(c=1-n,2)]|, (50)
n! [ '(a) ‘

(-Z)” 2"

we obtain an asymptotic expansion for . at large potentials:

s 2

-

p (n+1) (n-fl,-) (=)"
,<n--l—. -l;\’> Zyl/2=n Z — : O(V-R-1, (1)

e = 2\" p
2 5 5@ () ened)
o= €, - V/ m! Y n - 2 /.

cylinder me 0

R
= E 2 / 2 M2 0 v Cl
Imnl Cn' € = - VM, Cn +1 = <l 4 n 4 ) 2 v‘ (528)

cylinder ol

/ -172 .
s 51 (ldM_’)lﬂL A (I-M_’)“
c:Tinder v A 2V v 2V & =

ol ssssim bl



We obtain an expression useful for high Mach numbers by summing over M :

Z\ , =% 33 Y*I'msl) . 3
I(m,l n_|'— g (m-z‘ ]. -M >- [ ("\ 5) | (m | 1‘ l —M / (53)

cylinder mse 0

The second set of confluent hypergeometric functions, 7 (m + 1, 1; - M?),
consist of Lagierre polynomials in M? multiplied by e *™" | therefore we may

neglect them in the asymptotic expansion. Consequently the orbital motion

limited current for large M is identical with the asymptotic retarded cylinder

current with the substitution V - - V;

1

v 4 372 -l /2 —_—

I(ml : i_ (l ' -\— ) + __1._ <1 . l > = 2
cylinder Mlarge * 4 M2 2M2 N’2 ( ' vV \ 2

(54)

1 ( v>-32.3(1 v>-52 15(‘v>-72 .
am M2 M? 8 M?

It is interesting to note that up to the second term the expansion for I

oml ?

when M? - Vand M? > V, Equations 52 and 53, are identical.

Taking the lowest order terms we find that Equation 54 can be approximated

by the single square root expression:

1/2
o) = (-1- + M2 v) (55)
2 -1

cylinder MED>y VT

In Figure 1, there are displayed contours of the relative error between

approximation 55 and I | computed either from Equation 44 (for small M) or

16



Equation 54 (for large M). It is seen that the relative error is less than 17 for

M ~ 2.5 and all values of the potential,

From Equation 52, the asymptotic expansion for M oy V, we obw.in the

approximation:

_2_: (1 +V + M) (56)

v

I

cylinder

oml

In Figure 2, there are displayed contours of the percent relative difference

between approximation (56) and I~ as computed by Equations 44 and 54. For

nt
potentials V » 5.5 and any value of M, the relative error is less than 1%. We

sce from Figures 1 and 2 that approximation (55) is most approoriate for fixed
M when the potential is varied, and that approximation (56) is most appropriate
for fixed V when M is varied. It is pointed out that Equations 55 and 56 are the

generalizations to be taken for the Mott-Smith and Langmuir small cylinder

current expressions'’;

Inml = _2VI +V,
v

cylinder M=0 4 (57)

Mott-Smith and Langmuir

I = _2_vV M2

oml +

= : (58)
cylinder M>>1 V7

Mott-Smith and Langmuir

Where Equation 56 is the generalization of Equation (57) and Equation (55)
is the generalization of Equation (58). It is interesting that the thermal effects
are added to the Mott-Smith and Langmuir formula (58) by adding the term,

1/2, under the square root.

The orbital motion limited current to a sphere is given by Equation (26); the

asymptotic form is simply:

17



Imnl : iM <1 “'—l- '_V_> ' (59)
oy * 2M2 M2

vhere

neglecting terms of order e .

Thus we find that the approximation for large M’ for the actual orbital

motion limited current to a sphere and cylinder (and plane) are similar in form,

d -

-

P .
o> NewA (1 = LI L > | (60)
M1 mw?  mw?

Where A is the probe area projected perpendicular to the velocity vector and

d= 1, 2, 3 for a plane, cylinder, and sphere respectively.

ACCELERATED CURRENT

The accelerated cylinder current as given by Equation 19 is the sum of
three terms, one double sum and two triple sums. We will not write down the
formula as it is contained in Equations 17-19. For small values of V and M
this power series would be suitable for computer evaluation. For small M and

arbitrary V we may express the accelerated current as a power series in M?:

(s ¢

L. i E 0P 1 .5, (61)
cylinder &L fnz0 (n!)2

where the initial values of { and g and their recurrence relations are determined

most readily from the integral representation, Equation (3):

. " 2 i
fn¢2 (n t%’V) fn;l + V(n+1) f" R ((l,,2)V)3 Zt,-rV(),2v)n (62)

18



fo /(1 +5%) v"!v.'r eVerfe (/(l',")\’).

5 3

-

(6:3)

f, (% ¢ v 'z) /(1 ,"'-)_v"zv { (-:. V) ;-2;‘»"4-”‘«' (/(l | ,J)V). (64)

3 2 =

- (n.i) gn_%(,z\/)“”’v" i (65}
p N - o o 66

Bo -:-[—22(‘rf(/~V)°/~V(~"] (66)

This scheme is recommended for computer evaluation of I for smal' M,
since it involves only multiplication and addition after the initial terms f , { ,
g , have been evaluated. We write out explicitly the first two terms in the ex-

pansion:

ace

o'MJ {e‘vorfc (/(l +/2)V) +i0rf(/,2V)

: r
cylinder M«

(67)
o) e T e ]

For large M, Equation 18b) together with the asymptotic form Equation 28b),
show that I, - 0. Therefore the accelerated cylindrical curvent for large M is

I, (v) which is given by Equation (54) or (38) with V~ -V,

I =1, fer W >} (68)

acce
cylinder

The accelerated current for a sphere is given by Equation (23); ior large M we

have,
= 1 v
R - e M 1+—+—) M2 >> 1 :
s.p;wro sph(l-re 2 ( 2M2 Mz (69)

19



Therefore it is a property of probes with simple geometry that the accelerated

current is given by the orbital motion limited current at large Mach numbers.

ION DENSITY DETERMINATION

We consider a method of determining the ion densities from the volt-ampere
characteristics of a moving probe, We treat ¢aly the case when the ions are
accelerated and the electron current is negligible., Unless the probe is driven
to very high negative potentials with respect to the plasma, it will in practice
be difficult to obtain more than two averaged parameters from the experimental
accelerated ion current. However let us consider the general technique of fitting
the accelerated ion current to a polynomial in the potential regardless of the
information content of the data., One advantage of the polynomial method is that
the number of terms in the fit is determined only by the amount of information
contained in the data, independent of the number of ion species present. For
sufficiently high Mach number M? > V or /mw? sin? )/2> e/, the orbital motion

limited current is the polynomial:

D
-
ize2r4Aw|sin 8| E a L (70)

¥ / 0
. Z . e (“) SRR SRS
W2 {

m® = Y N/(m), (72)

20



where N is the number densily and m , the mass of species a. The coefficients
of the powers of V are themselves expansions in the weighted inverse powers of
the mass, m ‘*’, The highest power of V, V" depends on the potential range

over which the data is taken, and can be estimated by the requirement that

(1/2) (V/M?) " be not much less than unity. The termination of the series for
P
a_ in powers of 1/M ? is determined by the value of the smallest Mach number,

It is assumed that the area of the probe and w sin = are known, and that T can
be determined (possibly from the electron temperature). Then by determining
the coefficients, a_, from a least square polynomial fit to the data one obtains

a set of the weighted inverse powers of the mass, N, m‘'’, m‘?’

y, + « +» by solving
the set of equations, Equation 71, starting with a. If the ion species are known
and a sufficient number of the m‘®’ are evaluated, then the mass concentrations

can be found. If two known species are present, then only a knowledge of the

first two quantities a , and a, are necessary to determine the concentrations.

The orbital motion limited current to a sphere at sufficiently high Mach

number is:
i-enr?w (a, +a, V), (73)
é N2 gD \4)
¢ 2
=
a1*2kT m(1) (75)
i

Therefore the polynomial fit for the sphere is nearly the same as that for the

cylinder, however with truncation of the series in V and 1/M?,

21



An alternate method of fitting the accelerated ion current proceeds on the
assumption that the species as well as w sin “and T are 'nown. Then using the
asymptotic expansion for the orbital motion limited current, Equations 54 or 52,
the current is a linear function of the number densities, N“ , and may be statisti-

cally fitted to the data points,

i Z f, (V)N . (76)

where the coefficients f (V) depend on the species (mass), potential, temperature,
and relative velocity w. This technique works best when there are primarily

two species present. Although it is not unique, this technique can also be used

to guess the masses of two species by examining the sign of the number densities,
N computed for an assumed mass pair and then comparing the net density N =

N, + N, with the electron density. Additional information to aid in the ion density

determination is contained in the altitude variation of the ion species.
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Fligure 2, Contours of relative difference between the cylinder current

¢
approximation, ——(1 + V + M%) ?, for M? < V, and the orbital

motion limited current,
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