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A COMPARISON OF COWE:LI. VIS POWER SERIES NUMERICAL
INTEGRATION AS APPLIED TO ORBITAL CALCULATIONS

C. E. Velez
R. V. Borchers

Program Systems Branch
Mission & Trajectory Analysis Division

A13STIIACT

This paper presents the results of a comparison c the classi-
cal Cowell numerical integration method with the power series inte-
gration method as applied to artificial satellite orbital calculations.
These integration methods are described in detail, the relative ad-
vantages and disadvantages of each are discussed, and numerical
examples are given. The conclusion derived from this study is that
if the orbital motion is governed by a simple, smooth force model,
the power series method is most effective; however, for applications
involving complex or non-smooth models, such as those occurring
in definitive near- Earth trajectory calculations, the Cowell technique
is more efficient. For example, the power series method is shown
to be 10 to 15 times more expensive than the Cowell method when
used to integrate the motion of an Earth satellite such as GEOS-B; yet
both methods achieve equivalent accuracies.
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A C'ONIPARISON OF COWEA 1, VS POWER SERIES NUMERICAL
IN'T'E'GRAT'ION AS APPLIED TO ORBITAL CALCULATIONS

INTRODUCTION

The following is a report on a comparison study between two numerical integra-
tion methods used for the integration of ;:he equations of motion of a satellite
and the concomitant variational equations. The first is the classical "second
sum" Cowell method based on an integrated Newtonian interpolation polynomial
and the second method involves a recurrent Dower series time expansion of the
acceleration model itself. Both these methods are well known. The Cowell
method is used in many of our current orbit determination programs and is de-
rived in detail in Henrici 1] . The power series method, although not as widely
used, is also well known for its applications in celestial mechanics. For ex-
ample, Steffensen 2' applies the method to the restricted three body problem.
A similar, more recent analysis is given by Fehlberg ! 31 . The purpose of this
study is to determine the relative effectiveness of the power series technique
as applied to the integration of the equations of motion of an artificial satellite
disturbed by a non-spherical primary and other effects, and also to the integra-
tion of the variational equations required to form the state transition matrix.

COMPARISON CRITERIA

Generally, the simplest comparison criterion for different interpola.tory or
polynomial type numerical integration procedures is the number of function
evaluations required to achieve a demanded accuracy for a fixed integration
interval. This criterion is valid for all Runge-Kutta, Adams, Nordsieck, Cowell
etc. methods, in situations where the effort required to evaluate the derivative
dominates the computational effort of the method itself. For applications to the
accurate computation of satellite trajectories in the vicinity of a non-
spherical body, this is always the case. This criterion, as opposed to direct
measurement of computation time, enjoys the property that it does not depend
on computer anomalies such as core speed, compiler quality, programmer's
skill, etc. Unforunately, this criterion is not valid for the power series
method since at each integration step, the function being integrated is evaluated
together with its derivatives which generally significantly increases the compu-
tational effort. Furthermore, in the case of orbital motion, these derivatives
can be computed recurrently, making the actual computational cost per step for
the method difficult to calculate in terms of function evaluations. For these
reasons, the basic criterion for comparison used in this report is the amount of

1



colllputel • tillle 1 • e(i(ii 1 •ed 1) ,	 eacil of the ► Iletho ds to achie ve a specified ol'bital
accuracy in the lx)sition ;(rul Ix)sition partials alter a given period of inte^;ratiun.
Ill each case all cfkwt is ;llade to show that file most efficient I11ode of operation
available v. , as used I'm . each Inctl)(0.

Hence, un; ► void;lbly, our nu1lle1 • i( • ;11 ('oml);11 • ison 1 •esults will not only reflect the
relative merits o)ithe integration ► Methods, but also the compute ► • programs used.
To try to minimize any bias, the p rog rams used were those w ► • it! un by the
developers of the particular techniques as appli_-d to thc:I)roblenl(references(41
and '5 i), the problem parameters (orbit, force nl(x lel, etc.) and integration
parameters (stepsire, order, tolerances, etc.) were varied to demonstrate the
performance of each method under different conditions, and the reference
solutions used to measure accuracy were obtained by running each respective
program in a high accuracy mode.

Other considerations which should he made when comparing integration methods
is the relative ease in which each method can be i ► nplelllented and maintained
to solve a specific problem. For the case of orbital integration, the important
factors are ease of implementing the basic algorithm, core storage requirements,
procedures for startingthe process, interpolation, local error estimation and
control, and a variable stepsi: e process. Furthermore, varying the physical
model and using "non-smooth" effects (drag, solar radiation pressure, thrust,
etc.) in the disturbing function are frequently required in programs which
integrate orbits, so that the performance of the integration under these condi-
tions should also be considered.

INTEGRATION PROGRAMS AND MEITHODS

The programs used for the numerical comparisons were the stand-alone Cowell
orbit generator from the GE;OSTAR system as documented in reference 14 land
the stand-alone power series orbit generator from the NAP system as docu-
mented in reference 15 I. Some of the basic characteristics of these programs
pertinent to the comparisons are:

GEOSTAR

(i) Second sum ordinate Adams-Cowell predict, partial correct integration
for the equations of !notion;

(ii) Corrector-only integration for the variational equations;

2
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(iii) Variable order, variable stepsize error control with indep-)ndent step	 •
and order control for the L 111ations of motion and variational equations
integrations;

(iv) Geopotential model includes full 15 x 15 field;

(v) Variational equations for position partials with respect to initial state,
geopotential coefficients, drag and radiation pressure parameters;

(vi) 'Third body lunar-solar gravitational effects with internally generated
moon-sun ephemeris.

NAP

(i) Power ;aeries integration of equations of motion and variational
equations.

(ii) Variable order, variable stepsize error control with independent order
control for the equations of motion and variational equations integrations.

(iii) Geopotential model includes full 15 x 15 field.

(iv) Variational equations for position partials with respect to initial state,
geopotential coefficients, drag, radiation pressure and mascon parameters.
(Only state partials available in current version.)

(v) N-body gravitational field with planetary ephemeris series initialized
using JPL ephemeris data.

Before presenting the numerical results obtained by using these programs, the
following relative advantages and disadvantages are immediate concerning the
two methods.

ADVANTAGES OF POWER SERIES INTEGRATION

(i) Assuming the order of the series can be made arbitrarily large, the
integration error can be made arbitrarily small within the radius of convergence
of the series, i.e., method enjoys the accuracy advantage of high order "multi-
step" methods.

(ii) An integration step in the series method does not rely on a history of
ordinate values, as do multistep methods. This implies that power series

3



integration enjoys the advantages of .a "single-stel," method in that it is sell'-
starting alit can dynamically c limige stepsir.e during the process without any
sigmif'icaltt effort.

(iii) '11h(; local ci • i • oa • induced by the truncated power series : • an be readily,
estimated, allowiaag a simple error control algorithm.

(iv) Interix)lation within the radius of convergence can he effected by a
simple evaluation of' the series.

DISAUVANTAGE,S OF 1'OW1 •:It	 INTEGRATION

(i) The method is not "r;eneral purpose" in the sense that each new problem
to be solved requires citilor a 	 program or a significantly modified existing
one.

(ii) Tile method is frequently (liflic • ult or inII)OSSible to impkCnaent since
the function being integrated has to I,e expanded in a time series. Such a series
may not exist, and even it' it does, it may not be possible to derive ;analytically.

(iii) A program using the bower series n,ethcxf is frequently not a ►nenahle
to small changes ill the function being integrated, making it expensive to main-
tain as a general tool f'o r research and development.

(iv) The method requires that the function being integrated have high order
continuous derivatives and hence is sensitive to small "non-smooth" anomalies.

ADVANTAGES OF C'OW1:LL INTEGRATION

(i) High order accuracy, limited only by numerical stability, can be
easily attained.

(ii) The method is "general purpose" in the sense that many problems
could 1;e solved with essentially the sauce program.

(iii) The method is simple to implement, requiring only knowledge of the
function being integrated. Furthermore, since it is nearly independent of this
function, changes or modifications can be readily made.

(iv) 'I'll(- method is insensitive to small "non-smooth" anomalies in the
function being integrated.

(v) The local error can he readily estimated.

l



DISADVANTAGES OF COWELL INTEGRATION

(i) The method is not self-starting, requiring; an independent procedure
to s to rt .

(ii) The method requires, at each step, a "history" of ordinate values
requiring an independent procedure to restart, after a step change.

(iii) Interpolation has to he clone by "r. independent method.

(iv) The method is sensitive to high order numerical instabilities, effec-
tively restricting the order of the method.

An implication one can derive from these considerations is that if the function
to be integrated is fairly simple, analytic or very smooth, and not subject to
frequent modifications, then power series is probably the best technique to use,
if all the necessary derivatives can be easily computed. A non trivial applica-
tion which satisfies these conditions is the restricted three body problem, and
the power series me..hod has been used quite successfully for this case; see for
exampie references 61 and '31,

in contrast, the application of power series to the problem of the motion of an
artificial satellite governed by a non-spherical central body together with third
body effects, radiation pressure and atmospheric drag forces is not as clear.
The problem generally has a very complex formulation, is subject to discontinui-
ties and the model is constantly being modified or changed as our knowledge of
the nature of the physical forces increases or the need for more accurate model-
ing arises.

NUMERICAL RESULTS

To try to determine the relative effectiveness of the two methods for this prob-
lem, the NAP and GEOSTAR orbit generator programs were used to integrate
the equation for the force due to a nonspherical central body, i.e.,

^M _ ^)U
X = —	 X + —,

r 3 	 C^ X

where
IS	 n	 n

U - GM	
R 

r (c`° cos m k + s"' sin m &) P I (sin ^)n	 n	 n
n = ? m=0

(1)
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- ...w _	 0 AW	 ..'W

	

r	 radius from center of earth to satellite,

K	 earth's semi-major :Lxis,

G %I gravitational constant times mass of earth,

geocentric longitude (positive east),

tP = geocentric latitude,

	

P', ( -, i n -)	 associated Legend re FxAynomials.

Differences in the way these programs handle planetary ephemeris, solar radi-
ation, and drag did not allow the inclusion of these effects in the comparisons.
However, it is felt that the above problem is sufficiently representative , give
useful results.

The following remarks are made in reference to the numerical results:

(1) All integrations were made with both the GEOSTAR and NAP programs.
The integrations were performed with :r full 15th carder gravity model. An
explanation of the various columns in tables 1-6 appears as follows: In the case
of the NAP integrations the columns from leftto right have the following meanings;

P r 'P2 - number of terms used in integration of equations of motion
and variational equations respectively; (1 1 2 - 0 indicates no
variational equations are integrated).

N - 'Truncation error expo"^nt, with allowable truncation error
given b ti• U.:, x 1U - " x It ksee Equation (ts));

n h - range of integration step sizes used (power series integration
was found to he most efficicnt with a variable stepsize mode);

L^ x - Maximum modulus of position error, in meters, from a refer-
ence solution;

^\ x - Maximum modulus of velocity error, in meters per second;

^'.X(t) - number of digits in position partial 
)x (t 

which agree with
the reference solution;	 `'xo

C P U - Central processing unit time in minutes.

Similarly, inthe case of the GE'OSTAR integrations the first two columns from
left to right are given by

6
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represent otcit rs in predictor corrector integrationformulas
for equations of motion and variational equations respectively,
( 1) 2 i ► indicates no variational equations are integrated)

11 - integration step in sucends.
The remaining columns have nicanings as already denoted above.

(2) The three satellites ATS- 1, GI':OS-B, IMP -IV, plus a fictitious satellite %%crc
scicctOl l'or the integration with 2, 4, and JU day arcs.

(3) The computations were performed on the IBM 360 model 75 and were run in a
"sequential processing" mode so that the CPU times per run are representative
Of the calculation time required by each process.

(4) The terin "elliptic motion" indicates that the integration was performed with
a point mass 2-body acceleration only, i.e., 11 in Equation (1) was set to zero.

An immediate observation concerning these numerical results is that for the
integration of a near-earth circular satellite such as GEOS-B ('fable -1), the
power series method was 10-15 times more expensive to use, and that for
satellites which are further away, such as ATS-A or the fictitious satellite
given in Lable 2, this ratio of power series time to Cowell time drops to 5 or 6.
Such results indicate the sensitivity of the power series to the non-smooth per-
turbative effects of the geopotential. This is again exemplified in tables 5 and
6, where for the highly elliptic IMP-F case, the two body runs show power ser-
ies superior to Cowell, but the addition of the perturbative potential increases
the lower series/Cowell ratio from less than 1 to 2 or 3. To see why the power
series method is slower although it allows larger stepsizes, the following sec-
tions present an analysis of the two methods as applied to the two body problem.
Although this analysis does not reflect the actual computations performed using
the geopotential, it details how these methods are constilie lted and the work re-
quired to perform an integration step.

POWI;Il SERIFS SOLUTION FOR TWO BODY EQUATIONS OF MOTION	 a

We wish to solve the two body problem

G M _
X	 X

r3

with initial conditions X__()  and —x ()  given at time too

The position of the satellite requires the following series with h terms

(2)

13



K

	

r (t)	 Rl (t

K

	

z (t)	 R1 (t - t0)i

J10

where

x0 R 0

	

x 0	 R,

	

^ X 0^	 Ro

x 0 	 R 1

and series required for the determination of velocity are given by

K
i

(t — t0)'-

K

X ( t )	 1 
tZ^ 

(t — t0)

=i

'I'o determine the coefficients R . , two auxiliary I'unctions are introduced:

K

	

(t)	 G M

(t)
	 t0),L

(4)
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w

A

11 (1)	
► 	 t	 _	

W	
( t - 1 o) 1

r (r)	 1

and using these (unctions, the eoell'ic • iciits for the required series are deter ►ni fie cl
-ecursively as tol loNN s:

K- 1

	

, 1	 ^2 Ph RK	 (Rr PK_ - R Rh _ )^.
I	 1	 1	 1

L	 ,=1

K-1

1
[F;R

K _^N ct

	

K- 1	 R	 I	 1	 h- ► - 1
n

K- 1

	K 	 K	 I	 k-1-^

K

_	 1

	

RK+2	 (K + 2) (K + 1)	 9j RK-1
i=o

At each integration step there are 9K + 6 multiplications, 8K additions, and 6
divisions to obtain the coefficients RK, A  in the power series.

The number of operations involved in obtaining x(t) from its series representa-
tion as given above is 3K multiplications and 3K additions. The velocity vector
x(t) requires 3(2K - 1) multiplications and 3 (K - 1) additions.

Hence, approximately 32K + 6 operations are required for integrating the two
bod- equations of motion from time t to time t + h. The selection of K = 16 then
gives a total of 518 operations.
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1'O\V E R SERIES  SM YTION F( M T111-' VA R L1 T I( A 1.
EQUATIONS ()F TWO 13)1 Y \1( )"I'ION

The acceleration for ii nl,er-tu ► • I,ed m„ti„n is given by t1IV ve, • to ► r • eyuatic,n

(; 11
x	 -	 X.

0

The state transition rr ► : ► trix relating vari ations in position at time t to Imsition
-it time t„ is given by the first and ,c •c and fundamental matrix solutions of the
variational system

y	 ( I	 ^ xT )( t )Y	 A(t)Y
	

(5)

whe re

"_ - GM ► -3 ,X 	 :3 (;tit

I - :3 x :1 identity matrix.
	 i

1 he 6 x 6 state transition is

IT	 V

X(t. t0)	
U	 V	 .

where U ( t . t 0and V (t, t o ) are 3 x :1 matrices satisfying (5) with initial
conditions

U(tO, t o )	 I. V(t o , t 0 ) = 0

tI(t (I ,I " )	 0. V ( t u ,	 t o ) = I.

16



1

In addition to the auxiliary (unctions (t) and w (t), which were introduced
[,reviousl .%' tot- the crImitions of motion, ,another tuxili,it-Y function c (t) given by

t	 .i	 41	 K-1
(	 1	 (t - t

t	

0
r5()	 i

-v

is used for the varicttiona l equations.

ThC rccfuired series arc' given by

K

x (t >	 cp x (t)	 R  (t - t 0)'

=n

K

U(t, t 0)	 U^ (t --t0)^	 (6)
1=n

K

V(t, t 0 ) -	 Vi(t - t0)i

^-n

which are needed together with the series for z(t) given previously.

The coefficients in these series are obtained in a recursive manner as follows

K — 1

`l'K -- - K T 4 ' i wK _ j (serf v s for ^)

)=o

17



K

^K 
=	 ) RK _ i 	 (,^ rte ,	 I^► r x	 cc^l^^n^ ► ►n;it rig

K

	

AK	 K 1	 R^ R F _ ) (sc•rios	 for A 3, r sym III I t ric • Inat rix)

) n a

K

1	 ^

	

UK„	 (K	 1) (K f 2)	
A1 11K-i (;^ri^ s	 fc ► r 03x3)

•O

K

	

VKcz	 (K	 1)1 (K	 2) ^ A^ VK..i (series for V;};).

Hence we have

`K

	 K

	

^U1 (
t —t p ) i 	V^ 	 (t —to))1

L^
► -'^	 ► _ ►

	

3 . 3:	 3 3

x(t, t o )	 .....

	

•	 K
K

LJ U ) (t —t^^) ) 	) V) (t —t( ► ) ) —i

	

3 . 3;	 3.3

Each integration step is found to require approximately 67K + 68 multiplications,
49K + 4 additions, and 2 divisions or approximately ll(;K + 74 operations
for the U , V coefficients in the above series.

(7)
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The nun ► I,er o'' oper;,tions re(plired to ol)tain the n ► ; ► trices U 3 , ; and V 1,3 is I -K
multil ► lication:-^ ;inn 1sK additions. The derivatives U and V require a total of
36*K - Ps multil ► 'ic • ; ► tions ;in ► i :364: - In ,idditio ns. The suns of all the aixn•e
operations is 1ppr„xim;Itcly 22lK + :38 ()I ►eratio ns. The selection of K = 12
Melds approximAely 2726 opel"ItImis for obtaining the position ;Intl velot.—Y

partials b\- the I,owe, series nwLit(d.

Poyver .Series Variable _Stehsize Integration

Consider the power series for position

h

x (t) LR ► (t - ta)i

I:

Assume the modulus o1 the last term in the series is required to be equal to
sonic truncation parameter 	 'Then the appropriate stup size may he corr ► puted
by solving

^• ti

Kv - Rk ( t - to)2K	 ' 2

i.e.,
K

I,	 t _ t o _	 II	 ( 8)

In NAP, the truncation parameter is chosen to be 0.5 x 10 -" x R, where

N is a given truncation error exponent,

It is the modulus of -X-(t).

COWE•:LL INTEGRATION OF THE EQUATIONS OF MOTION

Predictor-Corrector Integration Formulas

The integration formulas used for integrating the equations of motion are given
by 14 1:

19



K.

11:	 ttti 11
 +A
L

 
(I Xn	 (Stnrmc•r I)rodic•tor)

,=u

K^

2	 I t	 ..

xn+1	 lt ,. I	 Sr, 
+Ln+

,' X
t-	

c^(!'rr%%1 I 	c^^rrrr t()rl
a

K,•

X 11

	 J	 fi X	 (^ I:^m^ pro-di •tor)
n + 1	 n L i n-1

L 

F

K ,•

xrr+t	
11,•	

isn	 i x„ ♦1 	 (Moul ton c•orrcc•tc,r)

-n

where

II	 the stepsize used for the integration of the equations -f motion,

K p - 2, where 1^ is the older of • the formulas,

IS , 11
5 _ the fi rst and second sums of' the accelerations,

n	 n

the integration coefficients for the ordinate form,

IS 	 v-1 X
n	 n'

	

Its = 0-1 IS	 Q-2 x
n	 n	 n

Algorithm for Integrating; the Equa tions of Motion

;'he procedure for integrating the equations of motion is as follows:

(i) ObUtin a set of "starting" values tar the accelerations

xK	 i	 1. 2 ,	 Kr

r-i

and sums I SK , 
11S K  using an independent procedure;

20



(ii) Obtain predicted values of x (" and x «') using the SC)rmer an d
r, +I 	n+I

Adams predictor formulas with n = K,;

(iii) Compute the acceleration i , , i using the last predicted position and
velocity vector;

(iv) Obtain corrected values of x^^^' and x (^^ using; the Cowell and
Moulton corrector formulas;

(v) Compute the magnitude of the vector

^ x (r) — X(F)^n+1	 n+1

and compare with a predictor-corrector tolerance. A predictor-
corrector cycle is completed whet: this vector magnitude is sufficiently
small. A maximum number of three iterations is allowed.

(vi) Compute new first and second sums by

	

ISn + I 	 Xrr+ I 
+ I S n	

(1 O)

IIS I S	 IIS

	

n+I	 n+I	 n

This completes one integration step and the integration is continued
by repeating steps (ii) through (vi) with n replaced by n 4- 1.

In the case in which the accelerations acting on the satellite do not depend on
the velocity, the velocity vector is not predicted, and it is computed only after
convergence of the position is obtained by the Cowell Corrector.

The number of mathematical operations required in a single step of Cowell inte-
gration of the equations of motion i 	 I-mined from Equations (9) and (11).
Each Cov,• ell integration step requires approximately 24 K (I + 26 operations. The
selection of K e = 9 corresponding to order 11 gives a total of 242 operations.

The ratio for the number of operations of power series to Cowell is approxi-
mately 518/242, or about 2/1. The introduction of perturbative effects in the

21



equations of illotio,n will, of' coo rse, 1, reatl y increase the relative nu n1be ► , of op-
crations ill 	 power • series ► nethod because of the additional hi;;her orde ► •
derivatives which are re(juired. 'These results explain, partiall y , the relative
inefficiency of the power series Method even thou^h it generally allows larger
stepsizes.

Variable Stepsize Integration

Stepsi"z.e im)(I fication is designied specificall y for the integration of' the equations
of ►► p otion and the concomitant variational equations associated with highly ec-

centric orbits and where fixed stepsize integration is extremely inefficient.

The variation in ^;tepsize is hased on the concept of local error control by
means of the fallowing constraint equation

7' _R ="l ►

where -1, and "1'2 are specified error bounds. If the local error satisfies R" > TV
the stepsize is decreased, and if R,1 	 1'2 , the stc ,)size is increased. The local
error is estimated by the formula

it	 C ! x P - xcl
n	 n

where c is a constant and x r , x ,C are the predicted and corrected values of the
position vectors. The stepsize is computed from the equation

T•3	 i x
h ^,^u - I'^, ► a	 R

where T ; is a specified value for the local error in the range T 2 < T; <- T  , and
where K is the number of backpoints used in the integration.

COWELL INTEGRATION OF THE VARIATIONAL EQUATIONS

The position and velocity partials as given in reference. [ 4 for velocity free
accelerations can be expressed as

(12)
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(} r ttltlk	 .0 (t 	 t 11	 ^(tn, t 0) .1.6	 [U. V] n

[U, V)n+1 -[I - HI;-'  [wn^3.h
	

(1:3)

(U.V ^n,l	 ^. Fp A,,	 [U. V n,l	
f 
Yn^3•h

where

11 = h 2	 A,,+ 1

'	 R

W	 11 	 1 IP	
a' [U. Vin	 n	 j	 n+l-i

1=1

I:
v

Y 1	 II 	 1Pri	 ^^ ^U, V 1n +1-j
-1

h t, = the step sire used for integrating the variational equations,

	

K	 p - 2, where p is the order of the integration formulas
used for the variational equations,

	

'P 1 I	 the first and second sums 3 x 6 matrices of the acceleration
n	 I;

partials,

a	 = the ordinate form of the integration coefficients corresponding
to K .

The inversion of the matrix (I - H) when performed by Gaussian elimination
requires n'/3 + n2 - n/3 multiplications and divisions, where n is the order of
the matrix [71. For the case considered here, n = 3, and therefore about 17
operations are required for the inversion. The calculation of position and
velocity partials by Cowell integration requires approximately 72 K

v 
+ 342

operations. For K V = 5, corresponding to order 7, this gives a total of 702
operations. Th.e ratio for operations of power series to Cowell for the variational
equations is approximately 2726/702 or about 4/1.
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SUMMARY AND CONCLUSIONS

The power series and Cowell methods of integration have been compared, and it
has been shown that although the Dower series is a highly stable, accurate tech-
nique for orbital integration, it is considerably more expensive to use and main-
tain compared to the Cowell method when applied to the problem of integrating
highly perturbed orbital motion. On the other hand, power series integration
affords a very accurate analytical tool which may offer significant advantages
for error analysis, work or the integration of' low perturbed orbital motion such
as transfer trajectories.
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