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A COMPARISON OF COWELL VS POWER SERIES NUMERICAL
INTEGRATION AS APPLIED TO ORBITAL CALCULATIONS

C. E. Velez
R. V. Borchers

Program Systems Branch
Mission & Trajectory Analysis Division

ABSTRACT

This paper presents the results of a comparison ci the classi-
cal Cowell numerical integration method with the power series inte-
gration method as applied to artificial satellite orbital calculations.
These integration methods are described in detail, the relative ad-
vantages and disadvantages of each are discussed, and numerical
examples are given. The conclusion derived from this study is that
if the orbital motion is governed by a simple, smcoth force model,
the power series method is most effective; however, for applications
involving complex or non-smooth inodels, such as those occurring
indefinitive near-Earthtrajectory calculations, the Cowell technique
is more efficient. For example, the power series method is shown
to be 10 to 15 times more expensive than the Cowell method when
used to integrate the motion of an Earth satellite suchas GEOS-B; yet
both methods achieve equivalent accuracies.
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A COMPARISON OF COWELL VS POWER SERIES NUMERICAL
INTEGRATION AS APPLIED TO ORBITAL CALCULATIONS

INTRODUCTION

The following is a report on a comparison study between two numerical integra-
tion methods used for the integration of the equations of motion of a satellite
and the concomitant variational equations. The first is the classical '"'second
sum'' Cowell method based on an integrated Newtonian interpolation polynomial
and the second method involves a recurrent power series time expansion of the
acceleration model itself. Both these methods are well known. The Cowell
method is used in many of our current orbit determination programs and is de-
rived in detail in Henrici [1]. The power series method, although not as widely
used, is also well known for its applications in celestial mechanics. For ex-
ample, Steffensen| 2] applies the method to the restricted three body problem.
A similar, more recent analysis is given by Fehlberg [3]. The purpose of this
study is to determine the relative effectiveness of the power series technique
as applied to the integration of the equations of motion of an artificial satellite
disturbed by a non-spherical primary and other effects, and also to the integra-
tion of the variational equations required to form the state transition matrix.

COMPARISON CRITERIA

Generally, the simplest comparison criterion for different interpolatory or
polynomial type numerical integration procedures is the number of function
evaluations required to achieve a demanded accuracy for a fixed integration
interval. This criterion is valid for all Runge-Kutta, Adams, Nordsieck, Cowell
etc. methods, in situations where the effort required to evaluate the derivative
dominates the computational effort of the method itself. For applications to the
accurate computation of satellite trajectories in the vicinity of a non-

spherical body, this is always the case. This criterion, as opposed to direct
measurement of computation time, enjoys the property that it does not depend
on computer anomalies such as core speed, compiler quality, programmer's
skill, etc. Unfortanately, this criterion is not valid for the power series
method since at each integration step, the function being integrated is evaluated
together with its derivatives which generally significantly increases the compu-
tational effort. Furthermore, in the case of orbital motion, these derivatives
can be computed recurrently, making the actual computational cost per step for
the method difficult to calculate in terms of function evaluations. For these
reasons, the basic criterion for comparison used in this report is the amount of



computer time required by each of the methods to achieve a specified orbital
accuracy in the position and position partials after a given period of integration.
In each case an effort is made to show that the most efficient mode of operation
available was used for each method.

Hence, unavoidably, our numerical comparison results will not only reflect the
relative merits of the integration methods, but also the computer programs used.
To try to minimize any bias, the programs used were those written by the
developers of the particular techniques as applied tothe problem (references (4]
and '5]),the problem parameters (orbit, force model, etc.) and integration
parameters (stepsize, order, tolerances, etc.) were varied to demonstrate the
performance of each method under different conditions, and the reference
solutions used to measure accuracy were obtained by running each respective
program in a high accuracy mode.

Other considerations which should be made when comparing integration methods
is the relative ease in which each method can be implemented and maintained

to solve a specific problem. For the case of orbital integration, the important
factors are ease of implementing the basic algorithm, core storage requirements,
procedures for startingthe process, interpolation, local error estimation and
control, and a variable stepsi:e process. Furthermore, varying the physical
model and using "non-smooth' effects (drag, solar radiation pressure, thrust,
etc.) in the disturbing function are frequently required in programs which
integrate orbits, so that the performance of the integration under these condi-
tions should also be considered.

INTEGRATION PROGRAMS AND METHODS

The programs used for the numerical comparisons were the stand-alone Cowell
orbit generator from the GEOSTAR system as documented in reference (4 | and
the stand-alone power series orbit generator from the NAP system as docu-
mented in reference [5]. Some of the basic characteristics of these programs
pertinent to the comparisons are:

GEOSTAR

(i) Second sum ordinate Adams-Cowell predict, partial correct integration
for the equations of motion;

(ii) Corrector-only integration for the variational equations;



(iii) Variable order, variable stepsize error control with indep-:ndent step
and order control for the cjuations of motion and variational equations
integrations;

(iv) Geopotential model includes full 15 x 15 field;

(v) Variational equations for position partials with respect to initial state,
geopotential coefficients, drag and radiation pressure parameters;

(vi) Third body lunar-solar gravitational effects with internally generated
moon-sun ephemeris.

NAP

(i) Power series integration of equations of motion and variational
equations.

(ii) Variable order, variable stepsize error control with independent order
control for the equations of motion and variational equations integrations.

(iii) Geopotential model includes full 15 x 15 field.

(iv) Variational equations for position partials with respect to initial state,
geopotential coefficients, drag, radiation pressure and mascon parameters.
(Only state par.ials available in current version.)

(v) N-body gravitational field with planetary ephemeris series initialized
using JPL ephemeris data.

Before presenting the numerical results obtained by using these programs, the
following relative advantages and disadvantages are immediate concerning the
two methods.

ADVANTAGES OF POWER SERIES INTEGRATION

(i) Assuming the order of the series can be made arbitrarily large, the
integration error can be made arbitrarily small within the radius of convergence
of the series, i.e., method enjoys the accuracy advantage of high order "multi-
step'' methods.

(ii) An integration step in the series method does not rely on a history of
ordinate values, as do multistep mathods. This implies that power series



integration enjoys the advantages of a "single-step' method in that it is self-
starting and can dynamically change stepsize during the process without any
significant effort.

(iii) The local error induced by the truncated power series can be readily
estimated, allowing a simple error control algorithm.

(iv) Interpolation within the radius of convergence can be effected by a
simple evaluation of the series.

DISADVANTAGES OF POWER SERIES INTEGRATION

(i) The mothod is not ""general purpose' in the sense that each new problem
to be solved requires either 2 new program or a significantly modified existing
one.

(ii) The method is frequently difficult or impossible to implement since
the function being integrated has to be expanded in a time series. Such a series
may not exist, and even if it does, it may not be possible to derive analytically.

(iii) A program using the power series method is frequently not amenable
to small changes in the function being integrated, making it expensive to main-
tain as a general tool for research and development.

(iv) The method requires that the function being integrated have high order
continuous derivatives and hence is sensitive to small '""non-smooth' anomalies.
ADVANTAGES OF COWELL INTEGRATION

(i) High order accuracy, limited only by numerical stability, can be
easily attained.

(ii) The method is "general purpose' in the sense that many problems
could be solved with essentially the same program.

(iii) The method is simple to implement, requiring only knowledge of the
function being integrated. Furthermore, since it is nearly independent of this
function, changes or modifications can be readily made.

(iv) The method is insensitive to small '""non-smooth' anomalies in the
function being integrated.

(v) The local error can be readily estimated.

4



DISADVANTAGES OF COWELL INTEGRATION

(i) The method is not self-starting, requiring an independent procedure
to start.

(ii) The method requires, at each step, a "history' of ordinate values
requiring an independent procedure to restart, after a step change.

(iii) Interpolation has to be done by an independent method.

(iv) The method is sensitive to high order numerical instabilities, effec-
tively restricting the order of the method.

An implication one can derive from these considerations is that if the function
to be integrated is fairly simple, analytic or very smooth, and not subject to
frequent modifications, then power series is probably the best technique to use,
if all the necessary derivatives can be easily computed. A non trivial applica-
tion which satisfies these conditions is the restricted three body problem, and
the power series me.hod has been used quite successfully for this case; see for
exampie references (6] and (3],

In contrast, the application of power series to the problem of the motion of an
artificial satellite governed by a non-spherical central body together with third
body effects, radiation pressure and atmospheric drag forces is not as clear.
The problem generally has a very complex formulation, is subject to discontinui-
ties and the model is constantly being modified or changed as our knowledge of
the nature of the physical forces increases or the need for more accurate model-
ing arises.

NUMERICAL RESULTS
To try to determine the relative effectiveness of the two methods for this prob-

lem, the NAP and GEOSTAR orbit generator programs were used to integrate
the equation for the force due to a nonspherical central body, i.e.,

%:-GM§+BU
= s 1 & (1)
where
15 n
R n
u-39M E E (——') (chcosmA +s?sinmA) P? (siny) |
r r "

n=?2 m=0



r = radius from center of earth to satellite,

R earth's semi-major axis,

G M = gravitational constant times mass of earth,

» = geocentric longitude (positive east),

/= geocentric latitude,

P" (sin ) associated Legendre polynomials.

Differences in the way these programs handle planetary ephemeris, solar radi-
ation, and drag did not allow the inclusion of these effects in the comparisons.
However, it is felt that the above problem is sufficiently representative « give

useful results.

The following remarks are made in reference to the numerical results:

(1) All integrations were made with both the GEOSTAR and NAP programs.
The integrations were performed with a full 15th order gravity model. An
explanation of the various columns in tables 1-6 appears as follows: In the case
of the NAP integrations the columns from leftto right have the following meanings:

P, /P,

Ah

AX(t)

CPU

Similarly, inthe

number of terms used in integration of equations of motion
and variational equations respectively; (P, = 0 indicates no
variational equations are integrated).

Truncation error expor~nt, with allowable truncation error
given by 0.5  10"N X R \see Equation (8));

range of integration step sizes used (power series integration
was found to be most efficicnt with a variable stepsize mode);

Maximum modulus of position error, in meters, from a refer-
ence solution;

Maximum modulus of velocity error, in meters per second;

number of digits in position partial —x(t)
X

the reference solution; 0

which agree with

Central processing unit time in minutes.

case of the GEOSTAR integrations the first two columns from
left to right are given by
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P, P, - represent ordaers in predictor corrector integration formulas
for equations of motion and variational equations respectively,
(P, =0 indicates no variational equations are integrated)
h - integration step in seconds.
The remaining columns have meanings as already denoted above.

(2) The three satellites ATS-1, GEOS-B, IMP-1V, plus a fictitious satellite were
selected for the integration with 2, 4, and 90 day arcs.

(3) The computations were performed on the IBM 360 model 75 and were run in a
""sequential processing'' mode so that the CPU times per run are representative
of the calculation time required by each process.

(4) The term "elliptic motion" indicates that the integration was performed with
a point mass 2-body acceleration only, i.e., U in Equation (1) was set to zero.

An immediate observation concerning these numerical results is that for the
integration of a near-earth circular satellite such as GEOS-B (Table 4), the
power series method was 10-15 times more expensive to use, and that for
satellites which are further away, such as ATS-A or the fictitious satellite
given in table 2, this ratio of power series time to Cowell time drops to 5 or 6.
Such results indicate the sensitivity of the power series to the non-smooth per-
turbative effects of the geopotential. This is again exemplified in tables 5 and
6, where for the highly elliptic IMP-F case, the two body runs show power ser-
ies superior to Cowell, but the addition of the perturbative potential increases
the power series/Cowell ratio from less than 1 to 2 or 3. To see why the power
series method is slower although it allows larger stepsizes, the following sec-
tions present an analysis of the two methods as applied to the two body problem.
Although this analysis does not reflect the actual computations performed using
the geopotential, it details how these methods are constructed and the work re-
quired to perform an integration step.

POWER SERIES SOLUTION FOR TWO BODY EQUATIONS OF MOTION

We wish to solve the two body problem

x=-9M5 (2)

with initial conditions X and X o, 8iven at time t .

0

The position of the satellite requires the following series with K terms

138



K
x (t) E R, (t = t,) (3)
120
where
x’o R0
X, Rl
|X0?—:R0
i"0‘l R,

o . = -1
X () Z PR (-t (4)

i=1

To determine the coefficients R. , two auxiliary functions are introduced:

14



—_
—
e

| =

K
)
w(t) E wo(t - t)

)=0

—
-
~

and using these functions, the coefficients for the required series are determined
vecursively as follows:

At each integration step there are 9K + 6 multiplications, 8K additions, aund 6
divisions to obtain the coefficients R, R, in the power series.

The number of operations involved in obtaining X(t) from its series representa-
tion as given above is 3K multiplications and 3K additions. The velocity vector
x(t) requires 3(2K - 1) multiplications and 3 (K - 1) additions.

Hence, approximately 32K + 6 operations are required for integrating the two

bod- equations of motion from time t to time t + h, The selection of K = 16 then
gives a total of 518 operations.

15



POWER SERIES SOLUTION FOR THE VARIATIONAL
EQUATIONS OF TWO BODY MOTION

The acceleration for unperturbed motion is given by the vector equation

The state transition matrix relating variations in position at time t to position
at time t is given by the first and second fundamental matrix solutions of the

variational system

V(T oxxD(t)y =A(t) y (5)

where
-GMr3,x =¢x, =3 GM r-s,
I = 3 »x 3 identity matrix.

The 6 X 6 state transition is

where U (t, t HYand V (t, t,) are 3 X 3 matrices satisfying (5) with initial

conditions

n
o

Uit vyl Wity 8)

"
—_

U(t,,ty) = 0, V(to, ty)

16



In addition to the auxiliary functions /' (t) and w(t), which were introduced
previously for the equations of motion, another auxiliary function ¢ (t) given by

[

5 (1) 3GM ‘"\‘: (t =ty
rS (t) | .

1=0

is used for the variational equations.

The required series are given by

K
X(t) = pX(t) Z fij (t - t,)
) =0

K

Ut ty) = Z U, (t -ty (6)

i=0

K
V(t, t,) Z v,,(t - tg)!
)=0

which are needed together with the sevies for x(t) given previously.

The coefficients in these series are obtained in a recursive manner as follows

K=1

b 5 ¢ g
K~ "% i Yk-1-; (series for ¢)

17



-~ |
RK 2 ~!‘, R“_l (serres for x column matrix

,.-ll;

" ~
Ay "KI Z R R: (series for A 3 Symmetric matrix)

) L") 3 x

[N
1 5
u.,, > AU
wra K+D K2y, !
)®0

k-; (series for U3:3)

K
1 b 4 " : ‘
Vl“2 KD K 2)2_‘ A, \K“; (series for V3.3)-

i®0
Hence we have
1 . "]
E U,(t-to\)’ § E V,(t_to)l

)=0 E 1=0

3.3 3x3
X(t, tO) i "'-".""ll-ll.---o-oi..----o--oo-noncoonoloo (7)
PO
K .

E U (t=tg)l=t 2 :jV,(t-tO)i-l

1=1 . a3
L 3Ix 3¢ 3« 3]

Each integration step is found to require approximately 67K + 68 multiplications,
49K + 4 additions, and 2 divisions or approximately 116K + 74 operations
for the U, : Vj coefficients in the above series.

18



The number of operations required to obtain the matrices U, ; and V, , is 18K
multiplications and 15K additions, The derivatives U and V require a total of
36K - 18 multip’ications and 36K - 18 additions., The sum of all the above
operations is approximately 224K + 38 operations, The selection of K= 12
yields approximately 2726 operations for obtaining the position and veloci.y
partials by the powe: series method,

Power Series Variable Stepsize Integration

Consider the power series for position

X (1) Z iz, (t - t).

120

Assume the modulus of the last term in the series is required to be equal to
some truncation parameter <, Then the appropriate step size may be computed
by solving

Rk.Rk (t - to)zx = €2,

1.0,

h=t-t <\
18t - = [ = . 8

In NAP, the truncation parameter ¢« is chosen to be 0.5 < 10™ x R, where
N is a given truncation error exponent,

R is the modulus of X (t).

COWELL INTEGRATION OF THE EQUATIONS OF MOTION

Predictor-Corrector Integration Formulas

The integration formulas used for integrating the equations of motion are given
by [4]:
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r- K, 1
- . ]
'x“,l h? I:'Sn " 2 ‘ x”_-j (Stormer predictor)

K,
- 2 ru E"‘
X,+1 = Dg L S, % _ S Cowell corrector)

: (9)
: 3—' o =1
;(IMI hv LlSn ' : 'l 3‘1\"]} (Al'.'lmS prwli(‘tor)

1=0 -

.
* -

0+ 1 . L °n t/ \ X“,l,'jl (Moulton corrector)

|
v

where
h the stepsize used for the integration of the equations .f motion,
K = p=2,where pis the order of the formulas,

s , 1S = the first and second sums of the accelerations,

a,, . L ‘: - the integration coefficients for the ordinate form,
114 = Y - i :“: .
n n
11 - -1 IQ =2
Sn y bn - A

Algorithm for Integrating the Equations of Motion

The procedure for integrating the equations of motion is as follows:

(i) Obtain a set of "'starting' values for the accelerations
% s1=1,2, .08

e

and sums 'S, , ''S, using an independent procedure;
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(ii) Obtain predicted values of x ") and x'f'.]) using the Stormer and

Adams predictor formulas withn= K ;

(iii) Compute the acceleration inq using the last predicted position and
velocity vector;

(iv) Obtain corrected values of §£:1‘ and 5(’(“”) using the Cowell and
Moulton corrector formulas;

(v) Compute the magnitude of the vector

x(¢) > (F)|
xn*l . xn’]i
and compare with a predictor-corrector tolerance. A predictor-
corrector cycle is completed when this vector magnitude is sufficiently
small. A maximum number of three iterations is allowed.

(vi) Compute new first and second sums by

Sn*l xn+1 ln (10)
1ng . =18 _ :+ *§g,

ntl ntl n
This completes one integration step and the integration is continued
by repeating steps (ii) through (vi) with n replaced by n + 1.

In the case in which the accelerations acting on the satellite do not depend on
the velocity, the velocity vector is not predicted, and it is computed only after
convergence of the position is obtained by the Cowell Corrector.

The number of mathematical operations required in a single step of Cowell inte-
gration of the equations of motion i. "~ rmined from Equations (9) and (11).
Each Cowell integration step requires approximately 24 K, *+ 26 operations. The
selection of K, = 9 corresponding to order 11 gives a total of 242 operations.

The ratio for the number of operations of power series to Cowell is approxi-
mately 518/242, or about 2/1. The introduction of perturbztive effects in the
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equations of motion will, of course, greatly increase the relative number of op-
erations in the power series method because of the additional higher order
derivatives which are required. These results explain, partially, the relative
inefficiency of the power series method even though it generally allows larger
stepsizes.

Variable Stepsize Integration

Stepsize modification is designed specifically for the integration of the equations
of motion and the concomitant variational equations associated with highly ec-
centric orbits and where fixed stepsize integration is extremely inefficient.

The variation in stepsize is based on the concept of local error control by

means of the following constraint equation

T, <R <T, , (11)

where T and T, are specified error bounds. If the local error satisflies R > T,
the stepsize is decreased, and if R > T,, the stcpsize is increased. The local
error is estimated by the formula

where ¢ is a constant and ?f’ » X¢ are the predicted and corrected values of the
position vectors. The stepsize is computed from the equation

T 1K
hm’*w - hold <_R% > ’ (12)

where T, is a specified value for the local error in the range T2 < T3 < T1 , and
where K is the number of backpoints used in the integration.

COWELL INTEGRATION OF THE VARIATIONAL EQUATIONS

The position and velccity partials as given in reference [ 4] for velocity free
accelerations can be expressed as
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(letting  [U(t . t), V(t . t)], .= (U V] ),

'
1

| | ‘ ] -1 w )
uv n4l I -H. '“nJJ-') (13)

:
* \
(U, V]

- e | | 4‘
+1 v 0 ""net” ‘nsl T ~%n3x6

where

. I E * T v
Y” = hv p” - i j [U. Vv J!Hl-—)

h = the step size used for integrating the variational equations,

K

I

p - 2, where p is the order of the integration formulas
used for the variational equations,

the first and second sums 3 X 6 matrices of the acceleration
partials,

‘]
o
1

a?, ' = the ordinate form of the integration coefficients corresponding
to K .

Il

The inversion of the matrix (I - H) when performed by Gaussian elimination
requires n®/3 + n? - n/3 multiplications and divisions, where n is the order of

the matrix [7]. For the case considered here, n = 3, and therefore about 17
operations are required for the inversion. The calculation of position and
velocity partials by Cowell integration requires approximately 72 K+ 342
operations. For K =5, corresponding to order 7, this gives a total of 702
operations. The ratio for operations of power series to Cowell for the variational
equations is approximately 2726/702 or about 4/1.
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SUMMARY AND CONCLUSIONS

The power series and Cowell methods of integration have been compared, and it
has been shown that although the power series is a highly stable, accurate tech-
nique for orbital integration, it is considerably more expensive to use and main-
tain compared to the Cowell method when applied to the problem of integrating
highly perturbed orbital motion. On the other hand, power series integration
affords a very accurate analytical tool which may offer significant advantages
for error analysis work or the integration of low perturbed orbital motion such
as transfer trajectories.
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