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ABSTRACT

The generation and the propagation of three fundamental tidal modes -
the symmetric diurnal mode. the symmetric semidiurnal mode and the
antisymmetric diurnal mode - have been studied based on a theory outlined in
a foregoing paper. The equivalent depths of these modes and the eigenfunctions
which describe the latitudinal structure in the pressure field are shown to change
with altitude. While within the lower atmosphere the eigenfunctions are the Hough-
function they transfer into the ordinary spherical functions at thermospheric
heights. The transition occurs between 100 and 200 km. Horizontal winds

and pressure amplitudes of the three modes which depend on altitude and lati-

tude are determined and compared with available wind and density data.
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i. INTRODUCTION

In the first part of this paper (Volland and Mayr, 1971a; referred to as
paper I) we developed a theory of thermospheric dynamics in terms of the
eigenfunctions of the dissipative atmosphere. We found approximate general
analytic solutions for the generation and propagation of tidal and planetary
waves excited by the solar heat input due to XUV-radiation and corpuscular
heating. That solar heat input has also been developed in terms of eigen-
functions and contains tidal components (depending on local time) and planetary
components (depending on seasonal time). For a quantitative evaluation of
the propagation characistics of the various atmospheric wave modes the eigen-
values of the waves must be known. These eigenvalues depend on the equivalent
depths which in turn are responsible for the latitudinal structure of the corre-
sponcing eigenfrinctions. It is the purpose of this paper to calculate the equiv-
alent depths of some of the important tidal modes on an approximate analytic
basis and to discuss their height dependence. Planetary waves will be considered
in the third part of this paper. A numberical calculation taking account of a more
sophisticated thermospheric model will be presented in an additional paper

(Volland and Mayr, 1971b; referred to as paper II).

2. APPROXIMATE ANALYTIC EVALUATION OF THE EQUIVALENT DEPTHS
In section 4 of this paper I we determined an analytic solution (Equ. (I/32)

for the wave amplitudes of the mode with eigenfunction

Eg"f o™ 1 (9,2) exp [j (s + 200t + sﬂat)] 1)




where

‘9,29 = T 1@ P2 (cos). )
n'

Here, P;n are the associated Legendre polynomials in Schmidt's
normalization, (r, #, A ) are the spherical co-ordinates, z=r-R0 is the
height above the ground, f = w /2 @ is the Coriolis parameter,  is the
angular frequency of the wave mode, 2 is the frequency of the sidereal day,
Q a is the frequency of the sidereail year and t is the universal time.

The solution (I/32) can be evaluated provided the eigenvalue and the
corresponding equivalent depth of the wave mode are known. The equivalent
depth h:ln’f was defined in the usual way (Chapman and Lindzen, 1970) as the
solution of the eigenvalue problem of the following set of equations: (see

Equs. (1/16) and (1/19) ):
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are the relative wave amplitudes of pressure, northerly wind and westerly

wind, and
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are series of sperical harmonics to be determined below. P, is the mean

pressure of the steady state thermosphere, c, is the velocity of sound?¥~1.5 the

ratio between the specific heats,
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ZVis and Zcol are the disspiation factors of molecular viscosity and ion-neutral
drag (see Equs. (I/3) and (I/4), and g is the earth's acceleration constant.

The latitude dependent part of the eigenfunction in (1), :ln,f’ degenerates
to the well known Hough-function within the nondissipative atmosphere (Chap-

man and Lindzen, 1970). It degenerates to the spherical surface PI: if the

Coriolis force can be neglected (see Equ. (I/23). That is,




surface function P:] if the Coriolis force can be neglected (see Equ. (I/23)).

That is,
m,f m
9n —_— Pn

' =

Gm’f 1 ) n' n

n.n' -—> or n'#n
’ 0

(6)

Because of Equ. (6), we shall adopt the following definition for the
numbering and the normalization of the eigenfunction B;n’f : the wave
domain numbers (n, m) of the eigenfuncticmGnm’f shall pass over into the

wave domain numbers (n, m) of the corresponding spherical function Prrfl

m,f _

1.
n,n

if Iful , lfvl > 1. The normalization ofelrln’f is such that &
Then, in the case of a highly dissipative atmosphere, the function e;n,f
approaches the form (6). It should be mentioned that our numbering and
normalization differs from other definitions of the tidal Hough-function

(e. g., Chapman and Lindzen, 1970; Tarpley, 1970).

An exact numerical determination of the equivalent depth hlrln,f can be
found from Equs. (3) applying the usual expansion procedure (Chapman and
Lindzen, 1970) though our system is mathematically somewhat more diffucult
due to the dissipation factots Z. Within the thermosphere the dissipation
factors Z increase with altitude and ultimately dominate the Coriolis force
if | Z| > 1. That is generally the case above 200 km altitude where the eigen-

function eg"f in fact approaches rather well the associated Legendre poly-

nomial Pgl (see Fig. 1). Therefore, we shall adopt in this paper an approximate
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method to find from the system(3) analytic solutions of the equivalent depths
which sufficiently well converge to the corresponding values for the non-
dissipative atmosphere or to the formulae of the equivalent depths of Equ.
(I/26) in the case of a highly dissipative atmosphere. We do this in the
following manner: We apply the agsumption for the eigenfunctions of Equ.
(1) with the normalization from Equ. (6). We retain the two first equations

of (3), but replace the third equation of (3) by

. m,f
1 6 { . m,f jme n ix m
’ e —n_ 7
sing 00 81V ‘Pn } sind 2fEy Pn @

Since the Hough-~functions are tabulated, we can compare those exact
data with our approximate calculations in the case of zero dissipation. It will
turn out that the Hough-functions are sufficiently well represented in our
procedure while the equivalent depths differ by not more than 20% when
compared with the exact values. Moreover, our wind fields, though very
similar in the latitudinal structure, differ somewhat from the exact structure.
In view of the advantages of simple analytic solutions which allow to discuss
carefully the dependence of the eigenfunctions on heights, frequency and
dissipation we shall, however, tolerate these differences. The exact treat-
ment will certainly modify our approximated results, however, it will not
change their substance. We should add that this approach is valid only for
the lowest zonal wave domain numbers n.

In the next section we shall calculate explicitly the eigenfunctions and the

equivalent depths for some of the important tidal modes. There we shall restrict
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ourselves to those tidal modes which appear to be generated most
intensively at thermospheric heights (see Eq. (I/9) ) and which form the
predominant terms in the series of spherical functions for the observed

temperature distribution (see Eq. (I/14) ). These tidal waves are (in our

1,1/2
1

and the symmetric semidiurnal modeeg’

notation) the symmetric diurnal mode 6
ol, 1/2
2

, the antisymmetric diurnal mode

1 which degenerate at

1 2

thermospheric heights into the spherical functions P1 P2 and P2 . We

1 ?
shall study the change of their latitudinal structure with height and their

propagation characteristics,

1,1/2

3. SYMMETRIC DIURNAL TIDAL MODE © 1

3a Eigenfunction and quivalent depth

The methoA to solve the eigenvalue problem of Equ. (3) has been described
in some detail for the fundamential diurnal mode called the (1, -1) mode by
Kato (1966) or the (1, ~2) mode by Lindzen (Chapman and Lindzen, 1970),
That mode has been discovered independently by Kato (1966) and Lindzen
(1966). It is a trapped mode within the lower atmosphere and the main
generator for the geomagnetic Sq current (Stening, 1969; Tarpley, 1970). It

plays a dominant role within the thermosphere (Volland and Mayr, 1970).

1,1/2

We shall see in the following that in our notation this mode is the © 1

-mode.
From the tables of the Hough-functions (Chapman and 1..udzen, 1970) we

find an expension into spherical functions of the diurnal (1, -2) mode of

i+0.582 pl + 0. 0751 p;+. . (8)

0(1,-2) =0.777 P 3

= ‘?ﬂ@cr ‘M‘;mﬂm DR
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where the neglected terms are of the order of 5% and smaller, In order

to approuximate this Hough-function we start from an expension,

1,f 1,f l
07’ - pl +613 3 ©)

where we already used our numbering and normalization cheme from Eq. (6).

Forf=1/2 (solar diurnal comnonent) and Z =0 (nondissipative atmosphere), our

eigenfunction (9) should converge sufficiently well to Eq. (8). We futher-

more assume for the series of the horizontal winds in (4)

¢1f 1

JLi_ 12 o
1 )% E/ sind
(10)
1,f 1 1,f 1, 1,f _1
P10 = 7% Eysind ("’1,1 Py +9s P3> '
Finally, we set for convenience
f ~fo~Ey (11)

in (3). This restriction will be abandoned in the numerical treatment of
paper 1I.
Substituting Eqs. (9) and (10) into the first two Eqs. (3), we find after

some calculation the exact solution

W5 =t (T *+ 1/9) /(VIA)—=- s

I (S ) 7/15) /A——e= - 1/9
R R S Y
6}:2 - ig/A- —=8/6/27

with A = fzk -2, /3 - 1/15 ———= - 3/20

P L .



Here the numbers on the r.h.s. of (12) have been determined for fk=f=1/2
Introducing the velocity components of Equ. (12) into Equ. (7) we notice

that the r.h.s. of (7) is fulfilled and that the equivalent depth is

1, 20%% A
1" g (g - 1/9)

h (13)

In order to compare our result with the corresponding Hough~function

O (1-7; of (8), we set f, =f =1/2. Then we obtain from (12)

k
1,1/2 _ 8 V6 _
61,3 =5y = 0.725

which must be compared with the corresponding number from (8) of

0.582
0.777

= 0,749 .

Both numbers differ by not more than 3%. The latitudinal structure of
both representations of the Hough-function (1, -2) are plotted on the bottom of
Fig. 1a as solid and as dash-dotted lines indicating the excellent approximation
of our function.

The exact numerical value of the equivalent depth of the(l, -2) mode is

h(1,-2) = - 12,27 km (Chapman and Lindzen, 1970).

We compare that number with our value from (13)

1,1/2 _ _ 90%2

h1 20g

= -9.9km forr=Roandfk=f=l/2

which is about 20% smaller than the exact value. That difference could be

compensated in principle by a virtual earth's radius R0> Ro’
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The bottom curves in Figs. 1b and 1lc show the horizontal wind fields

1,1/2 and ® 1,1/2

and of the exact treatment (dash-dotted lines) thus indicating rather similar

Wy for our approximation in the case f, =1f = 1/2 (solid lines)
latitudinal structures. However, the differences are more pronounced than
in the case of the Hough-functions of Fig. 1la.

Within the dissipative thermosphere it is Ifkl >> 1. Thus,

and the wave amplitudes of pressure and horizontal winds indeed approach the

formulae of (I/20) to (1/26) where the eigenfunctions degenerate to the ordinary

spherical functions.

3b Wind and pressure fields
In order to study the behavior of the eigenfunction within a dissipative

atmosphere, we considered a model of the steady state thermosphere of
Jacchia (1964) with an exospheric temperature of T _ = 1000° K, and we
assumed plausible data of the ion-neutral collision number from a paper of
Dalgarno (1964) and dissipation factors Zvis and th from fuli wave calcula-
tions of thermospheric dynamics by Volland and Mayr (1970). Th+ tem-
perature profile and the dissipation factors used are plotted in Fig. 2 versus
altitude. Here it must be mentioned that due to our approximations in con- \
nection with molecular viscosity, our dissipation factor Zkin = Zcol + Zv’

is
becomes ill defined above about 300 km altitude.
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Below that height, it is generally Zcol > Zv However, the term zcol

is’
decreases with height above 300 km due to the decrease of the electron
density. Between 300 and 400 km, the term Zcol may therefore fall below
the viscosity term Zvis‘ On the other hand, due to this decrease of Zkin’
the horizontal velocity may increase which in turn should lead to an increase
of the viscosity term Zvi g For convenience, we therefore assume that Zkin

remains constant above 300 km altitude. Moreover, we consider an isothermal

atmosphere below 100 km.

1,1/2
1

the four different heights z = 100 km, 150 km, 200 km and 300 km in amplitude

In Fig. 1a we plotted the eigenfunction 6 versus co-latitude 9 for

(solid lines) and phase (dashed lines). The phase is given in terms of the delay

’ro with respect to pi’l/ 2 (in hours) according to
-jm TO
6m,f em,f e (14)
n n

We observe in Fig. la a transition from the Hough-function at 100 km to
the spherical function Pi at 300 km altitude. That transition occurs mainly

between 100 and 200 km. The sperical function Pi is an excellent approxima-

1
tion of Oi’ /2 at 300 km with an accuracy of better than 2%. Similary, in
Figs. 1lc we note a transition in the longitudinal wind function d%' 1/2 from a

wind changing sign at J = 65° co-latitude at 100 km to a nearly constant

wind velocity at 300 km which agrees with the assymptotic value of

@i’l/z o Pi /sing = 1

10




1,1/2
1
unchanged with height in our approach and is proportional to

in £q, (I/10). The latitudinal wind function ¥ in Fig. 1b remains

¢1,1/2

o 1 —
1 dPl/dO-coso

However, the amplitudes and phases (here in terms of the time delay

1/

with respect to the pressure pl’ 2 ) change drastically with height due to the
1

increasing influence of the dissipation factor Zk

The equivalent depth h}’ 1/2 of Equ. (13) is a measure of the propagation

in’

characteristics of the wave mode. Since the equivalent depth has no direct
physical meaning we better describe this behavior by the eigenvalue q from
Eq. (I/87), the real and the imaginary term of which are responsible for
vertical phase velocity and attenuation. The height dependence of an up going
wave is given by (see Eq. (I/33))

exp -40&-»3-1)z/2HO}.

~

The vertical phase velocity can be represented by a vertical wave

length of

z =@ o (15)

In Fig. 3 we plotted the attenuation factor (8 - 1) and the propagation

1,12

factor ¢ of the 91’ - mede versus altitude. The upper scale in Fig. 3b

gives the normalized vertical wavelength lz / H_ according to Eq. (15). From

1,1/2
1

100 km (@ = 0), changes into a quasi - evanescent mode within the thermosphere.

Fig. 3 we notice that the © - mode, while purely evanescent helow

Here, wave attenuation reaches a maximum near 140 km and then diminishes

below the 100 km-value within the upper part of the thermosphere.

11




The vertical wavelength is infinite below 100 km. It remains very large
(of the order of 1000 km) at thermospheric heights.

From Figs. 1 to 3 we conclude that the thermosphere above about 200
km height as well as the lower atmosphere below 100 km behave nearly like
isothermal atmospheres with constant parameters. Therefore our solutions
derived in (I/41) and (I/50) can be applied to a sufficient degree of approxima-
tion, while the transition region between 100 and 200 km must be treated by
full wave theory to be discussed in paper II.

We calculated from (I/48) the generation and propagation of the 61’ 1/2

-mode within an isothermal nondissipative lower atmosphere assuming a

heat input between the ground and 100 km proportional to the mean pressure:

1,1/2 ~0. 01 for £ z 100 km
KQ
fh1/2 71 _ (16)
1 {p, 0 for > z 100 km

with the maximum heat input during local noon. We plotted the relative ampli-
tudes of vertical wind w/ ¢, pressure p/ P, and temperature T/ T versus alti-

1/2 _ ode is evanescent (8-1 = 0.25) in that

tude in Figure 4. Though the ei’
height range, the integrated sum of the up- and downgoing waves coherently
generated at any height interval below 10C 'm add together to a net amplitude
assymptotically approaching constant values for vertical wind and pressure

(see Eq. (I/52b). On the other hand, the temperature decreases, except in the

vicinity of 100 km which is the upper boundary of the heat input.

12
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Above 100 km the wave amplitudes decrease like free internal wave
according to Eq. (I/50c¢). This indicates the small penetration depth of

evanescent waves which are only significant within the altitude range of

2H

- °_ . (17)
AZ (ﬁ _ 1) 50 km

in the case of upgoing free internal waves within the nondissipative lower
atmosphere.

The discontinuity of the temperature amplitude at 100 km in Fig. 4a is
the result of the abrupt termination of the heat input at this height level in
our model. Below 100 km, the temperature amplitude is generated by the heat
input and by adiabatic expansion and heat advection due to winds which act like
heat sinks (see Eq. (I/31)). Above 100 km, the heat input becomes zero, however
the heat sink due to the advection flow remains. Therefore the temperature
amplitude has a discontinuity there and its phase changes by 180°. This phe-
nomenon is of course not to be expected in reality since the heat input distribution
is actually continuous.

Vertical velocity and temperature have a constant time delay with respect
to the solar heat input of Oh and 6h, respectively. The pressure changes
sign at an altitude of Zis0p ~ 1.8 km in our model where Z;isob is the height
of a true isobaric layer. Above that height, the pressure peaks at 18h L. T.
like the temperature, below that height it peaks at 6h L. T.

The horizontal velocity components are proportional to the pressure

(see Eq. (4) and therefore have the same vertical distribution.

13




The latitudinal wind is shifted by 6 h with respect to the pressure 2nd peaks at

Oh L. T. above %y The longitudinal wind has the same phase as the pressure.

sob’
A noon-midnight meridional cross-section of the global wind system of

the 91’1/2

-mode within the lower atmosphere has been drawn in Fig. 5. The
wind rises at the zone of maximum heating on the day time hemisphere, crosses
the poles and falls on the night time hemisphere. This wind system is com-
pletely equivalent to the circulation cell of a thermally driven wind. The
longitudinal winds (with maximum values at 18h L. T. on the day time hemis-
phere and at 6h L. T. on the night time hemisphere) are indicated in Fig. 7
within the various sections of the celi by the symboles E = easterly (blowing
from the east) and W = westerly (blowing from the west).

In Fig. 6 we repeated these calculations for thermospheric conditions

(using Eq (I/41)). Here we assumed a solar heat input of

1,1/2

0
1 (18)

-0.01 for zZ 22z
J

0 for Z <32

‘and adopted the temperature and dissipation data at 300 km altitude (see Fig. 2).
The range z,<z<z  + 200 km in Fig. 4 represents the height region

between about 200 and 400 km. As we already mentioned, the general behavior

1,1/2
1

within the lower atmosphere as shown in Fig. 4. However, there exist some

of the 6 - mode at thermospheric heights is similar to the situation
remarkable differences. First, the penetration depth of the quasi-evanescent
mode is much greater than the corresponding value of Eq. (17) and of the order
of

Az ~1200 km .

14
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Therefore, the assymptotic values of pressure and vertical wind indicated
by the vertical dashed lines in Fig. 6 are still twice the values at z-z = 200 km.
Second, the pressure field has a mini;num but final value near 4 km above the
lower boundary of the heat input. Therefore, a true isobaric layer is not to
be expected within the dissipative thermosphere. Moreover, the phase
difference between the pressure below and above the quasi-isobaric layer is
not greater than 10 h (Fig. 6b) as compared with exactly 12 h within the
nondissipative lower atmosphere (Fig. 4).

Within the first 200 km above z, the phases of pressure, temperature and
vertical wind decrease slowly with altitude (Fig. 6b). Below the height z,
which is the lower bour dary of the heat input only downgoing free internal
waves exist which decay rapidly. This indicates the smull influence the ther-
mospheric region exerts on the lower atmosphere.

The horizontal winds are proportional to the pressure and therefore have
the same height distribution. The upper scale in Fig. 6a gives the magnitude of
the latitutdinal wind at the poles determined from Egs. (4) and (10). The phase
of the winds at the poles which can be derived from Figs. 1b and 1c are plotted
in Fig. 6b and give phase delays with respect to the pressure of 11.5 h and
5.5 h, respectively. Above 200 km the northerly wind peaks at about 2 h L. T.
The westerly wind, shifted by 6 h, peaks at about 20 h L. T.

The circulation cell due to the heat input above z, ™~ 200 km is similar

to the cell in Fig. 5. However, the change in sign of the longitudinal wind
along one meridian, as indicated in Fig. 5 by the vertical lines at ¢ = 60°, dis-

appears. Moreover, above the quasi-isobaric layer the maximum northerly

15
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wind flows at 2 h I.. T. as compared with 0 h L. T. in Fig. 5. The total wind

1,1/2
1

generated by the heat inputs within the various height regions including the

circulation of the © -mode is the sum of the individual circulation cells
regions between 100 and 200 km and above 400 km. If the heat input decreases
nearly exponentially with height, we except only one fundamental circulation
cell with the isobaric layer near the ground. Any individual cell above the
fundamental cell can form only within a height range where *‘%c heat input has
a relative maximum. This may happen within the Ozon layer or above the
mesopause.

The results of Figs. 6a and 6b justify our assumption about the height
structure of the horizontal winds which was needed for the determination of the

dissipation factors Zvis in (1/3).

3b Comparison with experimental data
The numerical results shown in Figs. 1 to 6 are compared with
available experimental data. From the work of Kato (1966), Stening (1969),

Tarpley (1970) and Volland (1971) it appears to be well established that the

ei’ 1/2 -mode is the main generator of the geomagnetic Sq current. Its
horizoutal wind field has the right latitudinal structure to drive the Sq current.

1,1/2
1

so that the induced electric current densities produce an optimally large

The phase of the wind of the © -mode changes slowly enough with altitude

magnetic field on the ground. From our result we may conclude furthermore

that, provided the solar heat input peaks at local noon, the phase of the

1,1/2

latitudinal wind of the 91

-mode varies from 0 h L. T. below 100 km to

16




about 2 h L. T. above 300 km (see Figs. 4 and 6). This is just the phase value
necessary in a consistent dynamo theory. Volland (1971) used a phase of

uof 0 h L. T. which is the expected phase in the nondissipative atmosphere.
Tarpley (1970) assumed a phase of u of 1.3 h L. T. which is a value to be
expected above 100 km. We morgover can estimate from the magnitude of the
wind velocity necessary to explain the observed geomagnetic Sq variation (which

isu .~ 120 m/sec) and from our result in Fig. 4 the normalized heat input of

L1722 _o.05 (19)

9y

which is one order of magnitude greater than the corresponding values estimated
for the Ozon-layer (Chapman and Lindzen, 1970). Finally it can be shown that
the structure of the Sq current changes only slightly if the wind field of the

9}’ 1/2 -mode changes with height according to Fig. 1b and lc.

We now compare our results of Figs. 1 to 6 with available satellite drag
data. As it is obvious from Eqs. (I/9) and (I/13), the predominant diurnal
component of density and temperature variations within the thermosphere
correspond to the fundamental heat input component Pi.
heat input during local noon, the component of the density ajild temperature

Assuming a2 maximum

variation peaks with a time delay of about 3 h at 15 h L. T. Both latitudinal
structure and time delay of the diurnal component are completely consistent
with our result given in Figs. 1 and 6.

The experimental facts, namely the tendency of an increasing relative
pressure amplitude with height approaching an assymptotic value and the

nearly isothermal behavior of the thermosphere are also indicated in Fig. 6.

17

TR




T v

Here, we should mention again that our temperature values appear to be
underestimated. Especially, the slow decrease of the temperature amplitude
with height is not realistic. . This results from the neglect of heat conduction
waves which play an increasingly significant role at thermospheric heights
(see the results of full wave calculation in paper II and the paper by Volland
and Mayer (1970)).

For a comparison between the relative pressure amplitude in Fig. 6 and
corresponding abservational data (e.g., Jacchia 1965) we have to take into
account that a pressure component generated by a heat input below z, ~ 200 km
height must be added to the pressure amplitude in Fig. 6 to obtain the total
observed pressure variation (Volland and Mayr, 1970). The total pressure
amplitude at 400 km height may therefore have reached nearly the assymptotic
value indicated by the vertical dashed line. Taking a total pressure amplitude
at 400 km of about 2/3 of the assymtotic value in Fig. 6 and comparing it with
the observed relative pressure amplitude of about 0.5 at 400 km we find a

normalized heat input of

Ji’1/2~— 0.1 20)

which is not inconsistent with the result of Eq. (19).
The average height integrated heat input per area necessary to generate
the observed density amplitude at the thermospheric heights can be estimated

from Eqgs. (I/9) and (I/27). It is for the diurnal component

Qp
o J1,1/2 .

O
2Quuv~""% %1

18




Thus it is

v Qp H, 1172

e Q - ——— ~
= Q H ~ > x 1 1 erg/cm sec
4nr

above 120 km height with pp~2. 6 x 1072 erg/cm3 at 120 km altitude, Ho~40 km

and J }’ 1/2 from Eq. (20). This is a plausible number for the effective solar
XUV heat input within a column above 120 km height (Hinteregger et al., 1965).

Finally, it can be shown that the horizonial wind structure of the Gi’ 1/2

-mode at 300 km altitude is essentially identical with the wind fields derived
from Jacchia's pressure fields (Jacchia and Slowey 1967) by Geisler (1967) and

Kohl and King (1967).

1,1/2

4. THE ANTISYMMETRIC DIURNAL TIDAL MODEG2

4a Eigenvalue and equivalent depth

1,1/2
2

at thermospheric heights is according to Eqs. (1/9)

The antisymmetric diurnal tidal mode © which degenerates to the

spherical function P;
and (I/13) the most important antisymmetric diurnal mode and describes
the annual modulation of the diurnal variation of the solar heat input and

its corresponding density variation which is proportional to

1,1/2
(3} 5 cosT cos{? ot

It will be shown in this section that within the lower nondissipative
atmosphere that mode also degenerates to the spherical function P;.

It is known from the work of Hough (1898) ;hat the spherical function P;
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must be added to the set of Hough functions to make the system complete.
Therefore, P; indeed is itself a Hough function within the nondissipative
atmosphere. In order to study its dependence on altitude, we proceed in a
manner outlined in section 3a and start from the expressions

e1,f 1 + 61 f 1

2 =Pyt % 4Py
Lf_ 4 16 o1, 1.f 1

Vo' = 2fu§ysin0 <¢2,1 Py *+¥503 P3> (21)
1,f_ 1 (1.0 1 1

P = -3 &‘}’smﬁé’o 2.2 P2 +<p 4> .

This set of equations fulfilles again exactly the two first equations of

(3) and leads to the relationship (with again fu = fV = fk)

v fl = - 33 £ <fi—f12{/12-fk+1/12> / 6b) — -V3

1
2,
1.f 2 .

g = 42 £, (fkin+1/4> (fk +fk/2 - 1/2) / (58) 0
w;’fz = £, <f13{ + 3f12{/28 - 4t /7 + 9/28) /A —> -1 (22)

=12 3o fk<k +f /2 - 1/2) / (354)—0

1,f _ 2 1 .
62’4——34_1:_3_E<fk+fk/2 1/2.)/(3515) 0

with

43 .
A=f +£3/a-21 tf{/zs - 31, /28 +3/28 3/32

where again the r.h.s. of (22) is determined for fk =f=1/2. From (22) and

(7) we find an equivalent depth of

S 2022 A

= & oo (23)
? g g -1/
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which becomes infinite for the diurnal component (fkin = f = 1/2) within the
nondissipative atmosphere.
As it ig clear from Eqs. (3), (7) and (22), our solution for the Hough

function is exact within the nondissipative atmosphere and gives

9;’ 1/2 — P;. Within the dissipative atmosphere it is for l fk] >1
1L _ o2 1,6
055 = /4 ©5.2 1
and (24)
1,f 1.f 1,f
w1/ T cm— . R —
05y =1/ ¢b2’l 3 V3/5: qb2’3 4 V2/5
approaching the formulae (I/20) and (I/26) (Note that
1
dpP
1
2 . (1\/6— pl _ 9 Pl\
dd 5 V3 sind 3 1/

4b Wind and pressure fields

1,172

In order to study the behavior o: the 92 -mode within the atmosphere

we did the same calculations as in section 3b and plotted in Fig. 7a the

eigenfunction 9;’ 1/2 versus co-latitude for four different heights in amplitude
and phase. Here we note a significant deviation from the structure of P; only

within the height range between 100 and 200 km. Figs. 7b and 7c give the

wind function \I/;’ 1/2 and q,;. 1/2

considered. Here too a transition region exists between 100 and 200 km. Above

versus co-latitude for the four heights

and below this region the structure of the longitudinal wind is the same and

proportional to

P; / sin® = V/3 cosd
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However the structure of the latitudinal wind changes from

Pi / sin® = 1

within the lower atmosphere to a structure proportional to

ﬂ': V3 (2 coszﬂ - 1)
dd

within the upper part of the thermosphere.

The propogation factor ¢ and the attenuation factor 8 - 1 of the eflg’ 172
-mode are plotted in Fig. 3. We observe a strong increase of the attenuation
factor between 100 and 200 km and then a slow decrease with height.

The attenuation factor 8 - 1 is greater by a factor of about 3 than the

i,1/2
1

We also did calculations of the generation and propogation of the ©

corresponding valve of the © -mode.

1.1/2
2

~-mode within the lower atmpsphere (Fig. 8) and within the thermosphere
(Fig. 9) adopting the same assumptions as in section 3b. We assumed a solar
heat input of

1,1/2 _

JZ =-0.01

below 100 km in Fig. 8 and above z0~200 km in Fig 9 which is equivalent
to maximum heating at local noon during northern summer (June-solstice).
In the case of the nondissipative atmosphere our solution of the eigenvalue q

(I/37) degenerates to

b /%= -ja 5)
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1,1/2

because of h —+ o . Thus, we find from (I/50)

2
‘a =- 2jA
F, = 2jA( - 1)
G =3 (26)
a A(€-1)
Gb =0

which means, no downgoing wave is generated. For the upgoing wave we find

with € = 1:

lim a(z) = koJ 7
€—1
and

w/c0 =k J z

p/po = ~2jAk J z @7)

i T/To

I

-JJ

-

Within the lower atmosphere, this mode behaves like a degenerated
- evanescent mode with constant phase. however with the relative amplitude

of the pressure linearily increasing with height (see Fig. 8).

.‘ Within the termosphere (Fig. 9) the @;’ 1/2 ~-mode behaves like a quasi-
evanescent mode and is similar to the ei' 1/2 -mode in Fig. 6. However,

there exists one striking difference. As we note from Fig. 3, the attenuation
1.1/2

factor B - 1 of the 62 ~-mode is much greater than the corresponding value
of the ei‘ 1/2 -mode Therefore the penetration depth Az (see Equ. (17)) is
. much smaller. and the assymptotic values of vertical wind and pressure
t

(indicated by vertical bars in Fig. 9a) are reached at a lower height than
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in the case of Fig. 6a. On the other hand, the magnitudes of the assymptotic
values are not affected by the attenuation factors (see Eq. (I/47) and the
vertical dashed lines).

The circulation cells corresponding to the heat inputs within the lower
atmosphere (Fig. 8) and within the thermosphere (Fig. 9) are shown in
Figs. 10a and 10b. Both cells differ significantly from each other. Within
the lower atmosphere the isobaric layer is the ground. Thus, only one cell
extended over the entire globe is formed, no return wind exists and the lati-
tudinal wind blows from south to north during northern summer and noon. A
westerly wind (directed toward the east) blows on the northern day time hemi-
sphere at 18 h L. T. Within the thermosphere (Fig. 10b), two cells on each
hemisphere are formed separated from each other at latitudes + 45°. These

winds change their direction during northern winter.

4c Comparison with experimental data
We now want to comparethe results of the forgoing sections with available
data. From an analysis of the geomagnetic Sq variations, Volland (1971)

derived an antisymmetric wind field at E-layer heights which has the exact

1,1/2
2

km. The wind velocity at the poles was determined to be

form of the wind of the tidal © -mode given in Figs. 7b and 7c at z = 100

lul,l/z

2 | = 20 m/sec

The phase of the latitudinal wind during northern summer was 0 h L. T.

1,1/2

9 plotted in Figs. 8 and 10a if the heat

which agrees with the phase of u
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input peaks at local noon. The ratio between the antisymmetric and the

symmetric diurnal winds derived from the Sq current was

ne 1/zJ ol 1/2

2 _Ps _ 20 _ ..
1| T L% T 5 105 0.11 28)
P
1 1
9=0

From the Jacchia model (Jacchia and Slowey 1964) we find a (2,1)~

component of the exospheric temperature (Eq. (I/14)) of

ol
2 P2 _o0.008 _ .. 29)
1 -1 012

T, py

1
and a phase value for T2 (that is: of the pressure component p;) of 15h L. T.*

This phase agrees sufficiently well with the value of 14 h L. T. in our
theory (see Fig. 9b). We compare the amplitude ratio of (29) with the

corresponding value in our theory which gives

1,1/2 1,1/2 1,1/2

To Py 1% 15vF 5o (30) ,
1,1/2 1,1/2 3 .1,1/2 3 2x8 ©°

Tl P1 Jl

*Note that Jacchia's exospheric temperature represents merely the density

amplitude above about 200 km. A relative temperature amplitude in the

Jacchia-mode of T:I/ T, = 0.1 corresponds to a relative density amplitude

of P;n/ p,~ 0.4. Moreover, the density amplitude is proportional to the

pressure amplitude, and it is P;n/ Py~ 0.85 p;n /p o, Within thermospheric \

heights above 200 km (see also Equ. (I/45)).
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Here, for the heat input components we use the XUV-values in (I/9),
(I/27) and (I/47). This number is greater by a factor of two than the experi-
mental value in (29) but it appears to be sonsistent with the number of (28)

Considering this discrepancy, we should take into account that the
Jacchia-model is based on a plausible but arbitrary temperature and there-
fore pressure profile which is fixed for all possible frequencies of the
disturbance, which is our notation means, fixed for all wave domain numbers
(n, m, f). As we may notice from Figs. 6a and 9a, this is certainly not the
case. The temperature and pressure profiles strongly depend on the wave
domain numbers. Moreover, the exospheric temperature distribution of the
Jacchia-model is described by an arbitrary analytic function which appears
to fit well the main ¢ ;mponents like the symmetric diurnal (1, 1)-~component,
but which may more or less deviate from second order components like
the antisymmetric diurnal (2, 1)-component.

On the other hand, the heat input distribution in Eq. (I/9) based on rather
crude assumptions as well as our simplified theory can of course give only
first order approximations. In view of these uncertainties, the numbers given
in (28), (29) and (30) appear to be quite consistent with each other agreeing
completely in phase and leading to an amplitude ratio between the anti-

symmetric and the symmetric diurnal component of the order of 0. 1.
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5. SYMMETRIC SEMIDIURNAL TIDAL MODE@ g’l

5a Eigenfunction and equivalent depth

The symmetric semidiurnal tidal mode eg’ 1 degenerates within the

thermosphere to the spherical function P2 and behaves like a quasi-evanescent

2
mode there. It is responsible for the observed semidiurnal component of the
density in Eq. (I/14). Within the lower atmosphere, this mode is a propaga-
tion mode called the (2, 2) tidal mode in the literature (e.g., Chapman and

Lindzen, 1970). It has been tabulated by Chapman and Lindzen and has the

following form: 5 5 5
6(2.2) = 1.08 P, - 0.368 P, +0.044 P + . . . (31)

where the neglected terms are smaller than 3% of the first term. In order to
study its height dependence within the nondissipative atmosphere we start

in the usual way with the expressions

2,f _ 2. :2,f .2
92 —-P2+62’4 P4
2,f _ ' 2,f .2 39
Yy = zqu)'sin& ¢z,3 Py 62)
2,f _ 2 (,.2,f 2 2,f .2
Y2 T T2 Eysmo W22 P2 T P24 P4>

and obtain from the first two equations in (3) the exact relationship (again

with fu = fV fk)
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Co h

=21, (fk + 1/2)/ (VED) e /5

o N

S
to

= £, (fk ~5/14) /& — 3/2 (33)

=2V15 f, /(358)— 2/ V15

AS]
[\ )
W

On
NN
B Hh

= - V15/(358) = -1/ /15
with

A=f -1 /2-1/14 — 3/7

From (32) and (7) we obtain the equivalent depth of

2.6 260%2 A 12 0%2

) 12 Q7% 34

In (32) and (33), the r. h.s. numbers are valid for f, =f = 1.

k

We can compare the exact numerical value of the (2, 2)-mode which is
7.85 km (Chapman and Lindzen, 1970) with our approximate value in (33) and
find an agreement within about 5%. The bottom curves in Fig. 11la show the
exact latitudinal structure of the (2.2)-mode (dash-~dotted line) and our

approximated function (31) with the parameters of the r. h.s. of (32) (solid line)

and again reveal satisfactory agreement. The bottom curves in Figs. 11b and

2,1
2

according to our approximation (solid lines) and according to exact theory for

11c give the latitudinal and the longitudinal winds functions tb;’ land &

the eg’ 1 -mode (dash-dotted lines) within the nondissipative atmosphere. Here

too the agreement is sufficient, although not as good as for the eigenfunction

2,1

S,

itself.
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Within the dissipative atmosphere it is for 'fkl >1

2,f _
%, 4 1/f12<

: \/—_5_.¢2’f
P 2 ¥a2,3

—_—1,

2,f
2,2

—_—

2,f _
0y = Vi

and the wave amplitudes of pressure and winds again approach the forms of
Eqs. (I/20) and (I/26) degenerating to the ordinary spherical functions.

(Note that

5b. Wind and pressure fields
After repeating the calculations done in sections 3b and 4b we plotted in

Fig. 11a the eigenfunction eg’ 1 versus co-latitude for the four different

heights considered. Above 200 km and below 100 km, the eg’ 1

nearly the same structure with constant phase independent of 4. At 150 km,

-mode has

however, we notice a significant phase transition with co-latitude.

In Figs 11b and 1lc the wind function ‘/’3’ ! and d>g’ 1are plotted versus
co-latitude for the four different heights. Here the structure of the latitudinal
wind (Fig. 11b) does not change with height in our approximation and remains
propqrtional to

15

Py
50 - V21 sind cosd
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However, the structure of the longitudinal wind changes significantly with

height approaching the ¥-dependence of

p2 .
—2 - J 3 sinyg
sind 4

The propagation factor ¢ and the attenuation factor B-1 of the o2 1

2
are plotted ir. Fig 3. Here, the propagation factor is different from zero at

-mode

and below 100 km indicating a behavior for this mode resembling a propagation
mode. Likewise, the attenuation factor B - 1 is negative below 165 km (the
dashed part of the curve in Fig. 3a), corresponding to a net exponential
increase with height of the relative wave amplitudes. However, above 165 km
the eg’ 1 -mode has changed into a quasi-evanescent mode and behaves
essentially like the other modes considered.

Simulating lower atmospheric (Fig. 12) and thermospheric (Fig. 13)
conditions we calculated the wave amplitudes versus heights due to a heat
input of

2,1

J2 =0.01

which peaks at local noon and at local midnight. Since within the lower
atmosphere of scale height Ho = 6 km (the value used in Figs. 4 and 8),

the eg’ 1 -mode is already a trapped mode, and since we want for illustration
to discuss a real propagation mode, we applied a pressure scale height of

H0 = 7.8 km in Fig. 12 corresponding to a mean temperature of T0 = 260°
The result of Fig. 12a clearly reveals the characteristics of a propagation

mode, namely the exponential increase of the relative wave amplitudes with

height apart from the pressure amplitude near the ground where reflection
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properties have to be taken into account. Moreover, the phase in Fig. 12b
decreases with altitude as we expect from an upward propagating gravity wave.
The free internal propagation shove 100 km—the termination of the heat input
in our model—does not alter that propagation behavior.

The relative amplitudes in Fig. 12a can not increase indefinitely with
height in reality. If the relative wave amplitudes approach the value one,
our perturbation theory breaks down, and the wave mode will transfer into
a shock wave with wave energy dissipation at the shock front. Moreover,
higher harmonics of the semidiurnal wave may be generated. On the other

hand, within the critical height above 100 km where such transfer may happen,

2,1
2

which prevents furthermore an unlimited increase of the wave amplitude.

the propagation properties of the © -mode change drastically (see Fig. 3)
This transition from a propagation mode into a quasi-evanescent mode must
be treated by numerical full wave calculations and will be done in paper II.
Within the thermosphere (Fig. 13), our wave mode behaves quite normally

like a quasi-evanescent mode.

2,1
2

to the assumed heat input within the thermosphere is given in Fig. 14. Two

The meridional cross-section of the wind system of the © -mode due
circulation cells are built up. Maximum latitudinal winds directed to the
poles blow at about 7.5 and 19.5 h L. T. above the quasi-isobaric layer Zisob
The longitudinal winds, shifted by 2.5 to 3 hours with respect to the latitudinal

winds, are westerly at 5 and 17 h L. T. at the equator and above Z; cob and have

the same direction over the entire day time hemisphere.
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The v'ind structure within the lower atmosphere is similar to that of
Fig. 14 except for the phase. Here (Fig. 12b), the phase changes continuously
with height reaching a phase transition of 180° after about 100 km. Contrary to
that behavior, within the thermosphere such transition occurs within a height

range of about 20 km (Fig. 13b).

5¢ Comparison with experimental data

In comparing the result of the forgoing sections with experimental data,
we have to take into account that the primary source of the semi-diurnal tidal
component is absorption of Ozon in the stratosphere and mesosphere (Bulter
and Small, 1963) which means a more complicated vertical structure of the heat

input than assumed in Fig. 12. Second, due to the nearly equal values of

’

2

the lower atmosphere, the real mean temperature profile is important for the

the pressure scale height and of the equivalent depth of the © -mode within
generation and propagation of that mode. E.g., within the mesosphere this
mode is evanescent. Therefore, the results in Fig. 12 which were based on an
isothermal atmosphere and a constant relative heat input Jg’ 1 served mercly for
illustration and cannot be used for a quantitative comparison. More realistic
model calculations of the fundamental semidiurnal mode may be found in the
book of Chapman and Lindzen (1970).

Since the eg’ 1 -mode is partly trapped within the lower atmosphere, the

2,1

(2,4)-mode (in our notation: the © 4

mode throughout the lower atmpsphere may significantly contribute at

-mode) which is a pure propagation

thermospheric heights. The wind data obtained between 80 and 100 km from
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Meteor trail measurements (Elford, 1959 ; Greenhow and Neufield, 1961) which

give velocities of the order of 20 m/sec for the semidiurnal component there-

fore may be related to the @i’ 1-mode rather than to the @3 1-mode (Hines,

1963). Similarly, the evaluation of a sequence of wind measurements at
intervals throughout a single night above about 120 km (Murphy and Bull, 1968)
leading to vertical wave lengths of 50 ~ 60 km give further support for the

predominance of the ei’ 1 -mode at those heights.

On the other hand, within the upper part of the thermosphere theei’ 1

-mode should be suppressed due to its quasi~evanescent behavior like (see

Eq. 1/47)
'pi’l l~ 1 lJi’l ,<i

and should become insignificant there. This idea is consistent with the
density daia deduced from satellite drag measurements (see Wq. (I/14)).
However, the semidiurnal @3’ 1 -mode should be related to the fundamental

1,1/2
diurnal © /—mode by

2.1 2,1
Pa L% ~ L 5VI2_ g

1,12~ 3 |1 3 2x16 (36)
Py |1

if we adopt the numbers given in Eqs. (1/9), (I/27) and (I/47), and the time of
maximum of the pressure component of the e;’ 1 -mode is about 13 - 13.5 h.

L.T. according to Fig. 13b.
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We compare these numbers with the experimental result of Eq. (I/1)

which gives

2 9
T p

2 2 _0.035 _ ¢ 99 37)
L 1~ 70.12

1 P

and a phase Tg of 13.2h.L.T..
While the observed phase value excellently agrees with the theory, the
observed amplitude ratio in (37) is greater by about 50% than the calculated
number in (36). This difference can be interpreted as resulting from a
relatively strong influence of the wave generated below 200 km where the
eg’ 1 -mode transfers from a propagation mode into a quasi-evanescent
mode. Indeed, Lindzen (1970) calculated that the semidiurnal component
from below should be sigrificant at thermospheric heights although according
to our theory his result appears to be over-estimated. A final answer to that
problem can be given only in a numerical full wave treatment (to be done in
paper II) where the transition range between 100 and 200 km must properly be
taken into account. Here also the question may be solved why the phase of the
¢ semidiurnal component of the neutral temperature derived from Thompson
backscatter measurements at 250 km (Mahajan, 1969; Waldteufel and McClure,

1969) is phase shifted by about 2 hours with respect to the corresponding

maximum of the density (Volland, 1970).

6. CONCLUSION

Based upon a theoretical treatment of a threedimensional spherical

thermospheric model outlined in a previous paper (Volland and Mayr, 1971a)
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we determined the eigenfunctions and the equivalent depths of three fundamental
tidal modes —the symmetric diurnal mode, the antisymmetric diurnal mode and
the symmetric semidiurnal mode—and calculated their dependence on height
and latitude within the dissipative thermosphere. The corresponding pressure
and horizontal wind fields of these modes have been calculated and meridional
cross-sections of the circulation cells due to these modes have been determined.
The theoretical magnitude and phase of the wave amplitudes of pressure and
horizontal winds of the various tidal wave modes have been compared with
corresponding available experimental data and show satisfying agreement. We
conclude from this results that a spatial solar XUV heat input distribution
within the thermosphere proportional to the solar zenith angle is the main
generator of the three tidal waves considered and that the Jacchia-model of

the thermospheric density distribution (Jacchia and Slowey, 1967) can readily

be interpreted as the thermospheric density response to that energy input.
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Figure 1.

Figure 2,

Figure 4.

FIGURE CAPTIONS

Dependence on co-latitude ¢ of the eigenfunction of the symmetric

diurnal tidal 9}’ 1/2 -mode for four different heights
Fig. la: Pressure function 91’ 1/2
1
Fig. 1b: Latitudinal wind function tl/i’ 1/2
1, 1/2

Fig. lc: Longitudinal wind function %,
Solid lines: magnitudes

Dashed lines: time delay (in hours)

Dash-dotted lines: exact values within the nondissipative
atmosphere

Vertical profiles of mean temperature T0 and dissipation factors
due to heat conduction (th), and due to viscosity and ion drag
(ka) used in our model calculations.

Fig. 3a: Attenuation factors g-1 (8 is the imaginary part of
the eigenvalue). ﬁg’ 1 -1 is negative below 165 km (the dash~d
line in Fig. 3a).

Fig. 3b: Propagation factors a ( a is the real part of the

eigenvalue).

Relative wave amplitudes of pressure p, temperature T and

1, 1/2
1

-mode within the lower nondissipative atmosphere. The latitudinal

vertical wind w versus altitude of the symmetric diurnal 6
velocity u is proportional to the pressure. Its pole values are

given in the upper right scale. The time delay To gives the time

of maximum amplitude in locai time. The heat peaks at local
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Figure 5.

Figure 6.

Figure 7.

noon and is terminated at 100 km. Therefore above 100 km only
upward propagating free internal wave exist. The pressure
amplitude is zero at the height of the isobaric layer Zi{:;ob =1,8 km
and shifts in phase by 12 hours there (see the box on the 1.h.s.)
Noon-midnight meridional cross-section of the wind system of the
tidal ei’ 1/2 -mode within the lower atmosphere. The
longitudinal winds are phase shifted by 6 hours with respect to

the latitudinal winds, Maximum westerly winds (winds blowing
from the west) are indicated by the syribol "W, easterly winds

(winds blowing from the east) are indicated by '"E'',

Relative wave amplitudes of pressure p, temperature T and

1, 1/2
1

the dissipative thermosphere (zo~ 200 km). The generating heat

vertical wind w versus altitude of the tidal © ~-mode within

input peaks at local noon and is terminated at the height Z Below
that height only downgoing free internal waves exist,

Fig. 6a: magnitudes (the vertical dashed lines give the maximum
asymptotic values of pressure and vertical wind).

Fig. 6b: times of maximum (in hours local time).

Dependence on co-latitude & of the eigenfunction of the

1, 1/2

9 -mode for four different

antisymmetric diurnal tidal ©

heights.

1, 1/2
2

Fig. 7b: Latitudinal wind function ¥

Fig. 7a: Pressure functior. @

1, 1/2
2

Fig. 7c: Longitudinal wind function 4)%’ 1/2
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Solid lines: magnitude
Dashed lines: time delay (in hours)

Figure 8. Relative wave amplitudes of pressure p, temperature T and

vertical wind w versus altitude of the antisymmetric diurnal tidal

© ;’ 1/2 ~-mode within the lower nondissipative atmosphere and
during June-solstice, The generating heat input peaks at local
noon and is terminated at 100 km, The time delay r o gives the
time of maximum amplitude in local time.

Figure 9. Relative wave amplitudes of pressure p, temperature T and
vertical wind w versus altitude of the tidal e;’ 1/2 -mode within
the dissipative thermosphere during June-solstice, The generating
heat input peaks at local noon and is terminated at Z ~ 200 km,

Fig., 9a: magnitudes (the vertical dashed lines give the maximum

assymptotic values of pressure and vertical wind),

' Fig. 9b: times of maximum (in hours local time).
Figure 10, Meridional cross~section of the wind system of the tidal e;’ 1/2
o ~mode during June-solstice withia the lower atmosphere and within
: the thermosphere. Maximum longitudinal winds phase shifted by
} about 6 h with respect to the meridional winds are indicated by

Y "Wt (westerly winds) and by ''E'' (easterly winds).

Figure 11. Dependence on ce-latitude ¢ of the eigenfunction of the symmetric

S 2,1

semidiurnal tidal 92’ ~-mode for four different heights.

‘i‘ : Fig. 11a: Pressure function eg’ 1

Fig. 11b: Latitudinal wind function \pg’ 1
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Figure 12,

Figure 13.

Figure 14,

Fig. 11c: Longitudinal wind function tbg’ 1

Solid lines: magnitudes

Dashed lines: time delay (in hours)

Dash-dotted lines: exact values within the nondissipative lower
atmosphere.

Relative wave amplitude in magnitude (Fig. 12a) and time of
maximum in hours L, T, (Fig. 12b) of pressure p, temperature
T and vertical wind w versus altitude of the symmetric
semidiurnal tidal eg’ 1 -mode within the lower nondissipative
atmosphere. The longitudinal wind v is proportional to the
pressure, Its equator values are given in the upper right scale.
The generating solar heat input peaks at local noon and midnight
and is terminated at 100 km,

Relative wave amplitudes in magnitude (Fig. 13a) and time of

maximum in hours local time (Fig. 13b) of pressure p, temperature

2,1
2

within the dissipative thermosphere. The generating solar heat

T and vertical wind w versus altitude of the tidal @ -mode

input peaks at local noon and midnight and is terminated at

Z0~ 200 km.

Meridional cross-section of the wind system of the tidal 6;’ 1
-mode within the thermosphere. Maximum longitudinal winds phase
shifted by about 3 hours with respect to the latitudinal winds are

indicated by '""W'' (westerly winds) and by ""E'' (easterly winds).
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WAVES AMPLITUDES OF 8}'/2-MODE
10%x w/c,

0 ] 2
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W12 o1
u
H, =6 km (Oh LT)
Z =0
w
, P
= | (18h L)
-
-
O
w
T 50
T
(8hLT)
0 -
0 01 02

p/ p, and T/ T,
Figure 8. Relative wave amplitudes of pressure p, temperature T and vertical vsind w versus altitude
of the antisymmetric diurnal tidal @;'” 2 _mode within the lower nondissipativi »tmos-

phere and during June-soistice. The generating heat input peaks at local noon and is

terminated at 100 km. The time delay 7, gives the time of maximi:m amplitude in local
time.
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