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STRAIN-RATE EQUATIONS FOR CALCULATION OF SECONDARY CREEP 

DEFORMATION OF THICK-WALLED TUBES WITH 

INTERNAL OR EXTERNAL PRESSURE 

by R icha rd  E. M o r r i s  

Lewis Research Center  

SUMMARY 

The design of tubular components of nuclear propulsion systems for long service 
life at high temperature and pressure requires that the secondary creep deformation be 
controlled or limited. Examples of such structures include heat exchangers and 
nuclear-reactor fuel-pin cladding. 

Heat exchangers must operate with internal pressure at high temperature for long 
lifetimes. An important requirement is the limitation of the creep expansion of the 
thick-walled heat-exchanger tubing. 

In the case of nuclear -reactor fuel- pin cladding, both external coolant pressure 
and the development of internal fission gas pressure cause creep deformations that 
must be limited. 

Strain-rate equations a r e  presented for use in these design problems. The s t ress  
and strain-rate relations apply to thick-walled tubes for both internal and external 
pressure. Both temperature and pressure were assumed to be constant. Stress and 
strain rate were assumed to be related by a power law which includes a function of 
temperature as a parameter. Thus, the equations a r e  applicable to the s t ress  and 
strain-rate behavior of tubes over a range of temperatures. 

INTRODUCTION 

Tubular components of nuclear propulsion systems may be designed to operate 
under extreme conditions of temperature and pressure such that creep deformation 
occurs continuously during operation. 



An important limitation in designing heat exchangers for high-temperature opera- 
tion is the creep strength of heat-exchanger materials. Similarly, the creep strength 
of nuclear-reactor fuel-pin cladding materials poses a limitation on the operating tem- 
perature of the fuel pins in a reactor. 

Helium -to-air heat exchangers may operate with an internal helium pressure of 
7 to 14 meganewtons per square meter at temperatures from 1000 to 1150 K for life- 
times of 50 000 hours. Under these conditions the heat-exchanger tubes undergo con- 
tinuous creep deformation. Rupture of heat-exchanger tubes must be avoided. The 
amount of deformation accumulated during the operating lifetime of the tubing must be 
limited by design. 

Tubular nuclear-reactor fuel-pin cladding contains the nuclear fuel. Fission gases 
a r e  genqrated a s  the fuel is consumed. Gases collect in the high-temperature core 
void of a fuel pin. The gas is constrained by the volume of void provided in the fuel- 
pin design so that pressure develops a s  a function of fuel burnup. Pressures a s  high a s  
25 meganewtons per square meter may be generated during the life of a pin. 

For high-performance reactors the peak temperature of fuel-pin cladding may be 
from 1100 to 1500 K. In this temperature range, the regularly increasing fission gas 
pressure will cause the cladding to creep during the 10 000-hour design life that is 
typical of these fuel pins. Radioactive fission gases must be contained within the fuel 
pin. Rupture must be avoided. Total creep deformation during the lifetime of the fuel- 
pin cladding must be limited by design. 

The coolant in the gas-cooled reactor must operate under pressure sufficient to 
obtain the heat-transfer characteristics needed to cool the fuel pins. For helium, a 
coolant pressure of about 10 meganewtons per square meter is needed. This pressure 
is sufficient to cause continuous compressive creep of the fuel-pin cladding during the 
f irst  part of the life of the reactor. Compressive creep must be limited to avoid col- 
lapse of fuel-pin cladding. The fission gas pressure gradually increases to oppose the 
coolant pressure. Fission gas pressure is greater than the coolant pressure at the end 
of the life of the reactor. 

Each of these design problems involves the relation between s t ress  and strain rate 
in thick-walled tubes undergoing creep from either external or internal pressure. 

This report presents s t ress  equations and strain-rate equations for applications to 
these problems. The analysis follows the method presented by Bailey (ref. 1) which is 
a three -di.mensional s t ress  analysis of internally pressurized tubes undergoing second- 
ary creep. The analysis presented in this report changes one of his fundamental 
assumptions so that the strain-rate equations apply to a range of operating tempera- 
tures. In addition, by using the boundary conditions for external pressure the analysis 
yields s t ress  equations and strain-rate equations for tubes under external pressure. 
All of the equations apply only to the case of constant pressure and temperature. 



SYMBOLS 

2 -n A material constant, hrml(N/m ) 

a inside radius, cm 

B material constant, hr-' ( ~ / m ~ ) - "  

b outside radius, cm 

C constant of integration 

D constant of integration 

AH apparent activation energy, J/(K)(mole) 

n s t ress  exponent 

p pressure, N/m 2 

R gas constant, 8.3143 ~/(K)(mole) 

r radius, cm 

T absolute temperature, K 

u radial displacement, cm 

; creep rate, hr-' 
- 
E equivalent creep rate, hr- 1 

P b/a 

a s t ress ,  N/m 2 

- 
a equivalent stress,  N/m 2 

x b/r 

Subscripts : 

i internal 

o external 

r radial 

z axial 

8 circumferential 



ANALY SlS 

This analysis follows the work of Bailey for the three-dimensional s t ress  analysis 
of internally pressurized tubes (ref. 1) except for the power law assumption that re -  
lates s t ress  and strain rate. Bailey assumed a power law 5 = A*. In this form both 
A and n a re  temperature dependent. Consequently, strain-rate relations for creep 
in thick-walled tubes under internal pressure based on this power law a re  applicable 
only for a relatively narrow range of temperature for which A and n a re  constant. 

The power law assumed in this analysis contains a temperature correction term 
e -AH/RT. Use of this term reduces the temperature dependence of the constants in 
the s t ress ,  creep-strain-rate relation. With the temperature correction term included, 
the creeb-strain-rate relation used in this analysis is 

This power law has been used by several investigators, for example, Maag and Mattson 
(ref. 2). Garofalo (ref. 3)  indicates that this strain-rate relation applies to secondary 
creep at constant temperature for many metals and alloys a t  low stresses.  Long life- 
times with low creep rates a t  high temperature limit the use of many metals to low 
stresses.  

The use of the power law with the temperature correction term in this analysis and 
adding the boundary conditions for tubes with external pressure provide strain-rate 
relations for thick-walled tubes loaded with static internal or external pressure under- 
going isothermal secondary creep as a function of temperatures. 

The assumptions used in the analysis are  a s  follows: 
(1) The tube material is isotropic. 
(2) Creep associated with the deformation of the tubes is secondary creep. 
(3) Secondary creep strain follows the von Mises flow rule. 
(4) Stress and strain rate a re  assumed to be related by the empirical power law 

k = * ~ $ e - ~ ~ / ~ ~ .  (The sign is selected for tensile (+) or compressive (-) strain rate. ) 
(5) The axial creep rate is assumed to be zero. Planes perpendicular to the axis 

of the tube romain plane. The creep deformation is one of plane strain. 
(6) The, principal axes of s t ress  and creep strain rate a re  coincident and remain 

so  during &'hain up to moderate amounts. 
(7) The principal shear strain rates a re  proportional to the principal shear stresses.  
(8) Poisson's ratio is assumed to be 1/2. This assumption requires that the sum 

of principal orthogonal creep rates equal zero, that is tr t io  + 2, = 0. 



INTERNAL PRESSURE 

The use of the power law assumption with the temperature correction factor results 
in strain-rate equations for i g  and ir. Correlation of the equations with experi- 
mental data will provide values for the material constants. The resulting equations 
a r e  more general than Bailey's strain-rate equations, in that the equations presented 
here include temperature a s  a parameter. 

The s t ress  equations derived by Bailey (ref. 1) are  not affected by this change in 
the stress-strain rate power law assumption. The equations for the s t resses  in a tube 
undergoing secondary creep at constant temperature a r e  given here in the terminology 
of this report for completeness (the derivation is included in the appendix): 

Equation (4) is obtained by substituting the s t ress  equations into the relation for the 
maximum distortion energy s t ress  (equivalent s t ress)  

Use of the modified power law assumption yields the following strain-rate equations: 



cZ = 0 (assumption (5)) (7 

= B P e  -AH/RT (assumption (4), tensile creep rate)  (8) 

These eight equations define the stresses and strain rates in an internally pressur- 
ized tube at constant temperature for secondary creep conditions. 

External Pressure 

The derivation for stresses in tubes from internal pressure uses the boundary 
conditions 

Changing the boundary conditions to 

we have the condition for tubes loaded by external pressure. Then if the boundary con- 
ditions a r e  used to evaluate the constants of integration in the derivation, the equations 
for the stresses become 



Assumption (4) is modified for negative strain rates assuming that compressive 
behavior is similar to tensile behavior. The resulting strain rates are  

- 
E = -BO e 'AH/RT (assumption (4), compressive creep rate)  (16) 

Equations (13) to (15) relate the s t resses  and strain rates to functions of pressure, 
geometry, temperature, and materials properties for a given radius in the wall of a 
tube. The sign of the empirical exponential s t ress  function cn is assumed to be posi- 
tive. 

DISCUSSION 

Equations are  presented for the s t resses  and strain rates in isothermal thick- 
walled tubes with static internal or external pressure that a r e  applicable over a range 
of temperatures. Tube structures that are  designed for long lifetimes at high tempera- 
tures may undergo creep deformation continuously. Design stresses must be selected 
so  that creep rates a re  limited to very low secondary creep rates. If this is done, ter-  
tiary creep deformation will be avoided. The equations presented apply only for tubes 
undergoing secondary creep deformation. 

The power law between s t ress  and strain rate used in developing the equations con- 
tains a temperature correction term. Thus, the equations obtained are  more general 
than previous work because they can be used to describe strain-rate data for a range of 
temperatures. 

7 



The equations presented constitute a closed-form solution to the problem of iso- 
thermal secondary creep in thick-walled tubes loaded with either internal or external 
pressure. When the material properties, constants, and tube geometry are  substituted 
into the equations, the creep strain rates and s t resses  a r e  completely described 
throughout the wall of the tube. 

Fuel-pin cladding and heat-exchanger tubing a r e  generally designed for thousands 
of hours of operation. The principal source of long-term deformation of these tubular 
structures will be secondary creep from pressures acting on the structures. 

Some observations can be made by comparing the equations for s t ress  and strain 
rate for external and internal pressure loading. The equations for strain rate a r e  
similar but of opposite sign. The equations for s t resses  ar, a*, and a, a r e  different, 
while the equations for the equivalent stresses a r e  the same but of opposite sign. If the 
internal pressure and the external pressure acting on a tube a r e  equal, the net equiva- 
lent s t ress  will be zero everywhere in the tube wall. Consequently, no creep will occur 

CONCLUDING REMARKS 

Temperature-dependent strain-rate equations a r e  presented for thick-walled tubes 
undergoing isothermal secondary creep from internal pressure. Temperature- 
dependent s t ress  and strain-rate equations a r e  provided for thick-walled tubes under- 
going isothermal secondary creep from external pressure. 

These equations a r e  applicable to the analysis of stresses and long-term isothermal 
creep deformation of thick-walled tubular structures loaded by static internal or ex- 
ternal pressures. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, June 10, 1971, 
126-15. 



APPENDIX - DERIVATION OF STRESS AND STRAIN-RATE EQUATIONS FOR 

THICK-WALLED TUBES AT CONSTANT TEMPERATURE 

UNDERGOING SECONDARY CREEP 

FROM INTERNAL PRESSURE 

The derivations in this appendix a re  from the analytical precedure presented by 
Bailey in reference 1. The assumption that E ,  = 0 is in agreement with experimental 
evidence. The assumption implies that planes perpendicular to the axis of a tube re -  
main plane. This is the condition of plane strain. 

Force equilibrium for cylindrical geometry in the absence of body force yields 

The strain displacement relations a r e  

Differentiating with respect to time yields 

(where dots indicate d/dt). The compatibility equations for this case reduct to 



Creep is a constant volume process, so  that 

E + E e + E z  = O  r 

Applying the assumption that E, = 0, we have 

Substituting equation (A4) into (A3) yields 

Upon integration, we have 

where the constant C is to be evaluated. 
The assumption that the principal shear strain ra tes  are  proportional to the princi- 

pal shear stresses can be expressed as follows: 

Substituting equation (A4) into (A6) yields 

An expression for the equivalent s t ress  F is given by the distortion energy theory 
(also known a s  the von Mises yield criterion): 

- 1 2 2 a = -  - a,) + (or - az) + (az - a e ) 7  
1/2 

@ 



Substituting for aZ from equation (A7) gives 

The equivalent strain rate 7 corresponding to the equivalent s t ress  is given by 

Substituting for 2, = 0 and ir = -; reduces equation (A10) to 0 

Make the assumption that experimental strain-rate data can be represented by 

2 = ~ p e  - AH/RT 

Then 

and from equations (A5) and (Al) 

Let 



Integration yields 

The constants of integration C and F a r e  evaluated using the boundary conditions. 
At r = b,  or =O 

With D replaced 

Then 



Substituting for C and letting x = b/r and p = b/a give 

Differentiating with respect to r in equation (A15) gives 

Substitution into the equilibrium equation (A l )  yields the equation for og : 

From equation (A7) 

From equation (A9) 



From equations (A4), (Al l ) ,  and (A12) 

cZ = 0 (assumption (5)) 

k = ~ 3 e  -AH/RT 
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