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ABSTRACT

A theoretical solution of the equations of motion is developed for
damped rigid rotors with harmonic forces at the supports. Support de-
flection amplification and the phase angles between the displacements
and the harmonic forces are computed. The harmonic forces represent the
effects at the supports of unbalance forces whose planes of unbalance
are assumed to have an equal distribution for the probability of their
axial locations. Also, support stiffness and damping characteristics
are assumed- to be symmetrical. Under these conditions, which are repre-
sentative of cylindrical roller bearings in rigid pedestals, a low-speed
resonance appears when the center of gravity does not lie on the mid-
plane. Other calculations show that even with a midplane center-of-
gravity location, a low-speed resonance occurs for slender rotors but
not for disks. Deflection amplification at low-speed resonances is
generally smaller than at the major critical speed.
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- SUMMARY

A theoretical steady-state analysis was performed to study damped
vibrations of flexibly-mounted rigid rotors subjected to harmonic forces
at the supports. . The rotor-support system is mounted on a firm founda-
tion. .Viscous damping is assumed in which the viscous force is propor-
tional to the rate of support displacement. Also, the support stiffness
and damping characteristics are assumed to be symmetrical; symmetrical
stiffness is a valid approximation for the characteristics of cylindrical
roller bearings mounted on rigid pedestals. The harmonic forces are rep-
resentative of the effects at the supports of unbalance forces. Thus,
there is an equal distribution of the probability of the axial location

-of the planes of unbalance. A proportional relation is assumed between
the force amplitudes-at the two supports. The results of this analysis

are calculated values for the support deflection amplifications and the
phase angles between the displacement and the harmonic driving forces.

Seven illustrative cases are selected to display the results of

- the ‘analysis graphically over a wide range of rotational speed. The

parameters varied in these cases are damping, rotor shape (which is
varied from a thin shape to a disk), center-of-gravity location, and

force ratio at the supports.

The graphical results reveal that in addition to resonance at the
major critical speed, a lower~frequency resonance occurs when.the center
of gravity is not located at the midplane. ' Other calculations show that
even.with the:center.of gravity at the midplane, a lower-~frequency reso-
nance occurs if the polar-to-diametral moment-~of-inertia ratio is less
than 0.7. Thus, disks should not experience the low-frequency resonance.

‘Deflection:amplification is generally greater at the major critical speed

resonance than at. the lower—-frequency resonance; however, the low-
frequency amplification may be. greater for highly damped rotors.

Results from varying the center-of-gravity location suggest that
there are certain locations that should be avoided in-design because of

‘potentially large .deflection amplification,

INTRODUCTION

The: problem of: vibration effects in rotating machinery has been in-
vestigated for more than a century. Understanding of this problem has.
advanced considerably in recent years as the need for high-speed rotors
has intensified. the effort in rotor dynamics, Numerous investigators
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have used various models, approacheés, and conditions in:this work. Among
various aspects of this problem that have been studied are critical
speeds, deflections, dynamic stability, transient effects, and the ef-
fects of acceleration.

The ability to predict and control rotor dynamics, as reflected
by these aspects, is vitally important in the design of modern high-speed
rotating machinery. Such machinery is frequently designed to operate at
speeds above the rigid-body critical speeds. Thus, in startup and shut-
down, rotors must pass safely through these critical-speed regimes.
Usually, acceleration or deceleration is performed as rapidly as: possible
in order to avoid a damaging buildup of resonant amplitude. As improved
analytical and design techniques are developed to predict and control
critical speeds and resonant amplitudes,:the designer will have greater
freedom to design for operatien near or even at critical speeds.

Reference 1 presents an analysis that identifies critical speeds
for vibrations of undamped rotors: on firm foundations: The critical.
speeds include major critical speed (precession frequency equal to rotor
frequency) and nonsynchronous: critical speeds (other speeds at which de-
flection amplificatien may occur). Yamamoto's analytical and.experi-
mental work, reported in reference 2, shows that bearing defects cause
nonsynchronous critical speeds. In reference 3, Gunter inquires into
the dynamic stability of reotor-bearing systems.

The analysis in reference 4 locates critical speeds for free vibra-
tions of undamped rotors on flexible foundations. It studies the effects
of variations in rotor speed, rotor.and foundation shapes, . and rotor-to-
foundation spring-constant ratio. A comparison of the firm- and _
flexible-foundation results of references 1 and 4 appears in reference 5.

In reference 6, Gunter and DeChoudhury provide ALGOL computer pro-
grams to study steady-state effects of rotor unbalance, dynamic sta-
bility, and transient response. The linearized-equations used in this
reference contain cross-coupling stiffness and. damping coefficients.

The present report extends the analytical work on.rotors. of refer-
ence 1 to include-viscous damping and harmonic disturbing forces. It
determines critical speeds, support deflections, and phase.angles in re-
sponse to harmonic equal and unequal forces at the supports. The har-
monic forces at the supports represent the effects at the supports of
unbalance forces that have am equal probability for axial location or
magnitude. - Another application of the harmonic forces in this report is
to the magnetic forces in a turboalternator. Effects of this type of
force on a rotor are studied in reference 7. Experimental values of
cross—coupling coefficients are usually difficult to determine. The
present report therefore uses a simplified version of the equations of
motion that omits cross-cofipling terms. - Thé simplified analysis is used
in this report to show trends resultihg from varying damping, force ratio
at supports, center-of-gravity- loecation; and moment-of-+inertia ratios.
Seven combinations of parameters arerused to:illustrate the trends.-
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DESCRIPTION -OF ROTOR-SUPPORT MODEL

Figure 1 is a sketch representing the support system of a rotor
with damping. This study considers lateral motion (in the y- and z-
directions) but no axial motion (x-direction). The symbols are defined
in appendix A.

. The support spring constant k/2 is assumed to have the same value
for both supports in both the y- and z~directioms. This is a good
approximation for cylindrical roller bearings mounted in rigid pedestals.
Likewise, a common value of damping factor b/2 is used at both supports
in both directions. Static deflections are neglected; this would apply
to conditions in space.

Harmonic Exciting Forces

Forced vibration due to the unbalance of eccentricity can be repre-
sented by a harmonic force acting at the center of gravity and a harmonic.
couple. The amplitudes of this force and couple are independent of time.
These amplitudes are, however, functions of rotational speed which is in-
dependent of time in the steady-state solutions of this analysis.

For convenience in this study, the resultant force at the center of
gravity is resolved intoe lateral components acting at the supports. The
couple is replaced by the equivalent effects of the moments about the
center of gravity of the force components at -the supports.

The left support in figure 1 is designated as support 1 for identi-
fication and the right support is support 2. The force amplitude at sup-
port 2 is assumed to be proportional to the value at support 1. In the
examples given in the report the preportionality factor r has been
assigned-values of 0, 1, and.2 to represent possible exciting force con-
ditiens due to unbalance.

Viscous damping at the supports is assumed in which the retarding
force is taken to be proportional to the rate of displacement at the
shaft supports.

Rotor Shape

. Rotor configurations that vary from shapes as thin as pencils to
the other extreme represented by disks are considered in this analysis.
Shape is expressed in terms of. the rotor polar moment of inertia I and
its diametral moment of inertia Ip. The analysis is made nondimensional
for generality; therefore, these two moments of inertia are expressed as

T, = ID/MJZ,2 (1)



and
My = IP/ID (2)

Both parameters have small values for slender shapes. For example,

m3 = 0.0149 for a rod whose length is 10 times its diameter. Its value.
for a thin disk is 2. The parameter mj, called the disk effect, is
zero for a concentrated mass and is infinite for a disk having all its
mass distributed over a large radius.

Center-of-Gravity Location
Although the center of gravity is assumed to remain on the shaft
centerline, its axial location is varied. 1In the examples, four typical
values are specified for this location, from midplane to outboard quarter
point, the last of which represents an overhung configuration. '
ANALYSIS

Exciting Forces

The disturbing force components. Fyi and le in the model of

figure 1 are assumed to be harmonic and represented by

F
1

F(w)cos wt (3

and

le

F(w)sin wt (4)

acting at support number 1. The corresponding components at support 2
are assumed to be the multiples

F

]

y, = Ty¥yg (5)

and

F r F (6)

zg z°zq
The force amplitude ¥F(w) is assumed to be independent of time as dis-
cussed earlier. In particular, F(w) = mw“e represents an unbalance
force due to eccentricity e. On the other hand F(w) = a constant rep-
resents the magnetic forces in a turboalternator as shown in reference 7.
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Moments About Center of Gravity

The resulting moment about the y-axis through the center of gravity
is

my = —lezl + zzez (7

The moment about the z-axis is
M, =ty - 158y, @
When equations (3) to (6) are used, the two moment equations become
?%y = F(QZrz - .%7)sin wt (9)

m, = —F(lzry - %1)cos wt (10)

Equations of Motion

The following equations of motion are a mathematical approximation
of the rotor-support model of this study.

2 M 2. M, - ,
2711772 b . . k
—~rt Tt 3 (yl tyy) +5 (g Yz)

]

F(w) (1 + ry)cos wt (11

£2le Qle

2 h. [ _k— — »
7t 2 + > (z1.+ z2) +3 (zl + 22) = F(w) (1 + rz)51n wt  (12)
1 I
R N _ Dy, .y _b,o b,, _k k
7 U2 = v) g By m B m g MRty E m g Pty
= F(w)(lzrz - zl)sin wt (13)

: o b K

. . .b.,. b.. .k x
(zg = 2)) + 7 Gy -9 + 5 4y, ~ 5 4y F 547, ~ 5 Yy

&Lgﬁ

= _F(w)(gzry - %;)cos wt (14)

Laplace Transforms

It is convenient to take the Laplace transforms of the equations of
motion. The following develeopment assumes. that the support displace-
ments and derivatives at time zero are zero.
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With the following type of notation for a Laplace transform
R y(O)] = ¥(s) = ¥ (15)
and zero initial conditions, the equations of motion can be expressed as
M2 M2 s(r_ + L)F(w)
22 2.b_ Lk 1 2 b k)y_ Yy
Yl( s *+ 5 S + )-+ YZ( s+ 5 S + ) (16)

s2 + wz

2 2 SZ + w2
T I I be k2 I ba k&
v (=R 2 2.2 1 ~_, (2.2, "2 —2
Yl(2 s) + Yz(z s) + Zl(% + > + 5 22 . S + 5 S + 5
w(zzr - Zl)F(w)
= 5 > (18)
s 4+
I. bl k& . 1. . bl k& T I
vyl 2 1 L _Db .2 2 g, 2)_ b [P
Yl<£ s + 5 S + ) ) + Y2<£ s + = s+ 2 > Zl(ﬁ s) + 22(2 s)
—s(lz?y - Ql)F(w)
= (19)
2 2
s +w

The coefficients of the Laplace variables are constants A1, Ay, By, By,

and C as defined in the symbols list. Use of these constants in equa-
tions (16) to (19) yields

s(ry + DF(w)

A2Yl + Ale = 2 5 (20)
s +w
w(rz + DF(w)
A2, + AjZ, = 5 7 (21)
s +w
w(zzrz - zl)F(w)
—CYl + CY2 -+ Blzl - 3222 = ) > (22)
s 4w
~s(22rv Ql)F(w)
-B,Y, + B,Y, - Cz, + €z, = — > 3 (23)
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Deflection Solutions

The object of this analysis is to- solve equations (20) to (23) for
the deflections represented by Y; and Y5 at each support. Due to

symmetry, the deflections

Zy and Z, differ from Y; and Yy only

by 90° in phase angles; therefore, no solutions will be developed for Zp
and Zj. The solutions for Y; and Y, are given by

Expressions for N,
minants in equations (26)

N
Sy gu 1O N, pov (24)
1 2 2JD
s 4+ w
and
F(o) |\ N2
Y, = = = (25)
2 2 2] D .
s +w
where R
(ry + 1)s él 0 0
(r. + Do 0 A A
Nl - z , 2 1 (26)
(,Q,zrz Zl)w C Bl —B2
—(er Rl)s 32 -C C
A2 (ry + 1)s 0 0
0 (r_ + Lw A A
N, = g 2 ! (27)
-C (,Q,zrz 21)w Bl —B2
—Bl —(£2r - £1)s -C C
A2 Al 0 0]
0 0 A A
D = 2 1 (28)
-C C Bl —B2
—Bl B2 -G C

Ny, and D. obtained from expanding the deter-
to (28) are given in appendix B.
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All variables are made dimensionless in this analysis and are sum—
marized here for reference.

T, = — (29)
17 T
I
D
T, o= (1)
27 2
5
My = I (2)
o= (30)
4 Vi
_.b_
10 Ja (31)
9
1
Ll =T (32)
2
2
L2 =T (33)

Deflection Amplitude and Phase Angle

This report studies the frequency response to a sinusoidal input.
Mathematically, this- is achieved by setting s = i . 1In dimensionless
form, this is '

T o= inﬁ (34)
Then
Y _a+tic
F(w) b+ ih (35)
k
from which the magnitude is
Y = _3'_2__"2__‘5. (36)
F(w) g2 + h2

k

and the phase angle between the deflection and exciting force is
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_ ~1lfcg = ah
6 = tan (ag T ch) (37)

Detailed expressions for a, ¢, g, and h are presented in appendix B.

Normalized Deflection

The ratio in equation (36) is normalized by dividing by its value
at zero rotational speed (when 1w, = 0) which represents the deflection
at zero exciting frequency or large stiffness; therefore, equation (36)
is expressed by the amplification factor

Y a2 + c2
1 N5
+ h
b= ek — (38)
1 24 o2
SONE P 5. .2
g~ +h
: 'TT4=0
The normalizing factors are derived.in appendix B. Then, by equa-
tions (Bl6) and (B17), equation (36) becomes
1 2
- F(w)/k - g” +h (39)
1 Yl, 2[L2(2r + 1) - Ll]
| F(w) /k ™, =0
for support 1. The corresponding expression for suppotrt 2 is
Y, =,
F(w)/k
H, = ] = =2 - (40)
2 Y2 2[r(L2 Ll) 2Ll]
F(w)/k T =0

4

CATALOG OF RESULTS

Parameter Selections
An abundance of pérameter_combinations is possible for making cal~-
culations in this analysis. Seven.particular combinations were chosen

to display the effects of parameter variations. The intention was. to
provide meaningful results with minimum data production.
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The seven parameter combinations selected are tabulated in table I.

Data Plots

For each of the seven cases of table I, calculations were made for
the amplification factor u (egs. (39) and (40)) and phase angle 6
(eq. (37)) for both supports. Data plots were made in which u and ©
are each plotted against rotor rotational parameter m,. Each point on
the data plots represents a steady-state point.

A negative angle represents a phase lag between the driving force
and the support displacement.

Case 1. - The case. 1l data plots in figure 2 are typical of the fre-
quency response of classic second-order systems presented in textbooks.
Perfect symmetry is assumed for case 1. That is, the center of gravity
is at the midplane (Lj = Lo = 0.5) and both supports are subjected to
forces of the same amplitude (r, = r, =r = 1). Figure 2(a) shows the
effect of damping parameter my; on amplification factor and figure 2(b),

on phase angle.

The amplification factor in figure 2(a) is very sensitive to the
amount of damping in the region about w, = 1., This, of course, is the
condition for which the rotational frequency equals the natural fre-
quency. Because the amplification factor becomes infinite in an.undamped
system at 7, = 1, it is also referred to as the major critical speed.
Farther removed from the condition .of m, =1, the effect of damping on
amplification factor is minor. '

Figure 2(a) also. shows the typical effect that the resonance peaks
occur at gradually lower rotational speeds as damping is increased. No
peak at all is reached for values of T10 8reater than a value of
about 1.2.

Forced vibrations with viscous damping are harmonic and have the
same frequency as the driving force. The lateral support deflections,
however, are out of phase with the driving force. The phase lag is pre-
sented in figure 2(b) as a function of damping and rotational speed
parameter. At the major critical speed, all systems show a phase lag of
90° irrespective of the amount of damping. Below this value, highly
damped systems have the greatest phase lags. Above m,; = 1, the opposite
is true. At rotational speeds near the major critical, the phase angle
is extremely sensitive to rotational speed for lightly damped rotors.

- Figure 2 shows that 1y approaches 1 and 6 approaches zero for all
values of damping as the .rotational speed approaches zero. Thus, at .low.
rotational speeds the. deflection is the same as though the force were
applied statically. Also, at high rotational speeds the phase lag for
all values of damping parameter approaches 180°.



11

Case 2. - The plots in figure 3 show the effect of damping for the
extreme condition' in which support 2 experiences no exciting force
(r = 0). The ordinate in figure 3(a) is given as a deflection-speed

2 2
Yl ﬂl + ﬂa
parameter Fl) /K 2 . A normalizing factor at zero rotational
1

m

speed is not used for support 1 for case 2 because it is zero for r =0
and L; =Ly = 0.5 (see eq. (B16)). All other deflection parameter plots
in this report are normalized except for figure 3(a). Figure 3(b) shows
the amplification factor for support 2. Solutions for equations (20) to
(23) for Z; and Z; were obtained, although not presented in this re-
port. They reveal zero deflection in the z-direction at support 1 at
zero speed when r 1is zero.

Equations (B18) and (B19) relate r and the center-~of-gravity lo-
cation for zero rotational speed and zero deflection at each support.
When the center of gravity is at the midplane (L; = Ljg), equation (B18)
shows that r = 0 for zero deflection at support 1. But, according to
equation (B19) there is no center of gravity location for which r =.0
when the deflection at support 2 is zero at zero rotational speed.

Figure 3(b) shows that there is no deflection amplification for sup-
port: 2 when the damping parameter m;5 is above about 0.6. By compari-
son, the critical damping parameter is 2.0 for free vibrations with mid-
plane center of gravity. Critical damping may be defined as the value
for which maximum amplification factor is 1.

In the phase angle plots of figures 3(c) and (d) all curves do .not
pass through 90° at m4 = 1 as occurs for case 1. This results from
the lack of symmetry of the exciting force.

Case 3. - In case 3, support 2 is subjected to twice the force of
support 1 (r = 2). Figure 4 presents the curves for this case. Fig-
ure 4(a) shows a critical value of mo at a little greater than 0.8
for support 1. The corresponding value for support 2 is 2.2 (fig. 4(b)).

In‘the phase—~angle plots of figures 4(c) and (d), the My =1
crossings are more .closely bunched than for case 2. Otherwise, the
curves in figures 4(c) and (d) are similar to those in figures 3(c)
and (d). '

Case 4. - Figure 5 presents plots that show the effect of center-
of-gravity location. . When the roter center of gravity is located away
from the midplane, an additional set of resonances appears. This set of
resonances is also influenced by the support stiffness and damping char-
acteristics, which are assumed to be symmetrical .in this analysis, The
result is that with a distribution of equal probability of the axial lo-
cation of the planes .of unbalance, the probability of exciting a low-
frequency resonance - increases if the center of gravity is not located
at the midplane. The rotor rigid.body cylindrical and conical modes



12

are coupled together when the center of gravity does not lie on the mid-
plane.

Figures 5(a) and (b) show a resonance. peak occurring at a rotational
speed below the major critical for each curve except the Lj = 0.5 -curve..
The low frequency resonances are much smaller in both amplification and.
magnitude than those at the major critical speed. This means that a.
given amount of damping is more effective in displacement attenuation at
the low-speed resonance.

Figures 5(a) and (b) show that as the center of gravity is located
progressively farther from the midplane, the resonance peaks occur at
lower rotational speeds. This observation is true for both the low- and
high-frequency sets.

A conclusion from figures 5(a) and (b) is that even though addi-
tional resonances may occur when the center of gravity location .is
varied, the more severe deflection amplification occurs at the major
critical speed.

Comparison -of figures 5(a) and (b) reveals that at support 1, maxi-.
mum deflection amplification occurs when the center of gravity lies at
the quarter point (Ll = 0.75). At support 2 the worst condition occurs
when the center of gravity is at the midplane. Furthermore, greater
amplifications occur at support 1 than at support 2.

Case 5. - In case 5 .the center of gravity is located at the support
subjected to the larger driving force (support 2). The damping param-
eter varies for this case which is presented in figure 6. The curves
for mjy = 0.1 are repeated from figure 5. The two sets of resonance
peaks are well defined. At both supports, the highest resonance peak
of the low-frequency set occurs with a damping parameter of 0.5. Fig-
ure 6(a) shows no low-frequency resonance peak at zero damping. Instead,
there is an antiresonance or minimum amplification. At support 2 with
zero -damping there is no resonance or antiresonance among the low-
.frequency set. On the other hand, the low frequency peaks in figure 6(b)
are higher for g, 3_/5 than the high frequency peaks in figure 6(a).

.The critical value of uty for support 1 is about three for the
low-frequency set as shown in %igure 6(a) and 1.8 for the high-frequency.
set. At support 2, figure 6(b), the corresponding values for my, are
2.8 and 0.6,

Comparison of figures 6(a) and (b) suggests that deflection ampli-
fication is more severe at support 1 than at support 2 when the center of
gravity and the larger force are at support 2.

. ‘Case 6. — The results for case 6 appear in figure 7. This case pre~
-sents the effect of the polar-to-diametral moment-of-inertia ratio 4
on deflection amplification. At both supperts the high frequency peaks.
all occur at my = 1. In figures 7(a) and (b), no low-frequency peaks
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occur for values of 73 greater than 1. Therefore, disks (m3 = 2) ex-
perience large deflection amplification at only the major critical speed
whereas slender shapes have two resonant speeds. The value of T3 =0
is fictitious and merely sets a lower boundary to the calculatioms. The
curves representing 73 = 1 depart from the usual pattern at high rota-

.tional speeds.

The phase angle plots in figures 7(c¢) and (d) show all curves pass-
ing through 90° at m, = 1. This results because of the low value of the
damping parameter (T3 = 0.1). The curves would not all pass through the
90° point at higher values of damping parameter as figures 4(c) and (d)
imply.

Comparison of figures 7(a) and (c) shows that the phase-lag peaks
of figure 7(c) occur at rotational speeds between the low-frequency reso—
nances and the antiresonances of figure 7(a). This is also true for sup-
port 2 (figs. 7(b) and (d)).

Case 7. - Figure 8 presents the variation of the disk effect over a
range from zero to 10. No additional resonances occur at either support.
It -should be realized that the value of m3 wused in figure 9 is 2, Fig-
uire 7 has shown that no low-frequency resonances occur .when T3 is one
or greater; therefore, curves drawn for case 7 with .73 values of 0.5
and lower may be expected to show low-frequency resonance peaks., But,
the result of figure 8 is that varying the disk effect Ty does not re-
sult in an additional resonance peak. The 7, = 0 curve has no physical
significance.

All the phase—anglé curves for both bearings pass through 90° at

the major critical speed in figures 8(c) and (d).
INTERPRETATION OF RESULTS

Cross plots were made of some of the amplification curves to .aid.in.
interpreting effects of the parameters varied. All amplification factors
discussed in this section are peak amplification factors. They were read
at the appropriate peak,

Damping

Figure 9 presents peak amplification factor as a function of damping
parameter. Curves are shown.for both supports. Cases 1, 2, and 3 are

represented in figure 9(a) and case 5 results are in figure 9(b).

Center of gravity at midplane. - The center of gravity in fig-.
ure 9(a) is located at the midplane. In this figure it is immediately

-apparent that all curves have the same slope on the logarithmic plot.

They can all be represented by an expression of the form
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Umjg = constant p>1

which_is linear on a logarithmic plot. The condition u =1 corresponds
to critical damping.

In figure 9(a), the line for r = 1 coincides with the support 1
line for r =0 as long as u > 1. The r =1 1line, of course, is
drawn for Y;/F(w)/k; whereas the r = O line represents the noimalized
factor wu.

In a comparison of the dashed set of lines (r = 0) with the solid
set (r = 2) in figure 9(a), it is evident that the amplification factor
for both supports increases as the force ratio r is increased.

‘ When T = 0, support 1 experiences greater amplification than sup~
port 2. The opposite is true when 1t = 2,

Center of gravity at support 2. — The center of gravity. is located
at support 2 for the model of figure 9(b). Figure 5 has shown that an
additional set of resonance peaks occurs when the center of gravity is
displaced from the midplane location. The low-frequency set is dashed
in figure 9(b) and the high-frequency set is solid.

The high~frequency set shown in figure 9(b) has slopes essentially
- parallel to- the lines in figure 9(a).

Support 1 is subjected to greater amplificatien than support 2, in
figure 9(b), for both resonance sets. In figure 9(a) for r = 2, the
opposite was observed.

Comparison of the dashed and solid curves in figure 9(b) shows that
for highly damped rotors, the low-frequency amplification exceeds that ..
of the high-frequency set. 1In all such cases, however, the amplification
factor is less than 2.

The low-frequency set of curves in figure 9(b) reaches a peak at a
damping factor of about 0.4. This implies that the amplification de-
creases for the low-frequency set as damping factor is decreased below
0.4. This circumstance is of no practical advantage, however, because
of the large increase in amplification of the high frequency set.

Center-of-Gravity Location
Figure 10 presents the effect of center-of-gravity location on peak
amplification factor as determined for case 4. Two sets of resonances
appear in this figure for each support.

It is appropriate here to discuss the relative magnitudes of the
curves for the two bearings at a given center-of-gravity location. Over
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-most of the range shown, the amplification factor for support 1 exceeds
that of support:2 despite the fact that support 2 experience twice the
force of support 1. This is not a paradox as can be seen by noting equa-
tions (Bl6) and (B17). For all values of L; and L, except when they
are equal, the magnitude given by equation (B17) exceeds that.of equa-
tion (B16); therefore; the normalizing factor used in calculating u for
support 2 exceeds that for support 1. Thus, although the actual deflec-
tion at support 2 is greater than that at support 1, its amplification
factor u is less.

The most important information given by figure 10 is that there are
certain center—of-gravity locations that should be avoided in order to
prevent large deflection amplification. For the conditions of case 4,
locations given by Lj din the vicinity of 0.83 should be avoided. Fig-
ure 10 shows peak amplification factors at support 1 at this location
for both the low- and high-frequency resonances. Support 2 peaks occur
at L, = 0.6 for both resonance sets so these locations should also be
avoided. Calculations were made at very small increments in L; in
order to define the location of these peaks accurately. The location of
the peaks would be different for other parameter combinations, of course.

. The amplification factor for support 1 exceeds that for support 2
over most of the center—of-gravity range studied. Below about 0.61 and
above about 1.2 for Lj, the support 2 amplification is greater. The lo-
cation at which the amplification factor of the high-frequency resonance
set:.is the same for both supports is very close to the peak for sup-
port 2.

Polar~to-Diametral Mbment of Inertia Ratio

Figure 11 presents the effect of polar-to-diametral moment~of-
inertia ratie T3 on amplification factor under the conditions of
case 6. The most prominent aspect of figure 11 is the small effect that
73 has on amplification factor of the high-frequency set.

For the low-frequency resonance set, in general, amplification fac-
tor decreases as 1743 increases. Above about 0.65 for w3, no low-
frequency set exists.

Over most of the range.in figure 11, the amplification factor at:
support 2 is twice that at support 1.

Support Force Ratio

The effect of support force ratio r on amplification factor
appears in figure 12, Damping .parameter values of 0.1, 0.2, 0.5, 0.8,
and 1 are used in this figure. Cases 1, 2, and 3 were used in produc-
ing figure 13,

~
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- At support -2, represented by dashed curves, the amplification factor
increases approximately linearly with r. The support.l curves decrease
with increasing values-of r. At r = 1 'both supports experience the
same amplification due to symmetry. As r approaches zero, the support
1 amplification approaches infinity, as verified by the fact that equa-
tion (B16) yields zero. The zero magnitude of equation (B16) occurs only
when L; = Lo, of course. At r = 0, the amplification factor at sup-
port 2 remains finite (see eq. (B17)).

The reason that the amplification factor for support 1 is greater
than that for support 2 is explained by the relative magnitudes of equa-
tions (B16) and (B17). Although the amplification factor for support 1
is approaching infinity as r approaches zero in figure 12, the deflec~-
tion is actually approaching zero. Figure 3(a) verifies this obser-
vation. : " '

CONCLUSTION

This deflection amplification analysis of damped rotors shows that
in addition to the major critical speed, a lower-frequency resonance
appears if certain design conditions exist. These conditions include
symmetrical support stiffness and damping characteristics and equal
probability for the distribution of the axial location of the planes.of
unbalance along with either (1) center of gravity not located. at mid-
plane or (2) ratio of polar-to-diametral moment-of-inertia ratio . less
than 0.7; therefore, the low-frequency resonance should appear for
slender rotors but not for disks.



17

APPENDIX A
SYMBOLS
] )
o wfLgr] 4 m /2 4 172
L )
A, k(LGl + M T /2 ¥ 12
ay real part of numerator in eq. (35) for support 1; see eq. (B4)
a, real part of numerator in eq. (35) for support 2; see eq. (B6)
Lmw, .m L
2 1101 1
Bl = k& Gznl + 2 + > )
LT, .7 L
2 2101 2
B2 = kﬂ,érzﬂl + > + 2 )
b/2 linear damping coefficient, kg/sec
c klﬂlﬂ2ﬂ3ﬂ4
cq imaginary part of numerator in eq. (35) for support 1, see eq. (B4)
co imaginary part of numerator in eq. (35) for support 2; see eq. (B6)
D ‘denominator of deflection solution; see eq. (22)
e eccentricity causing unbalance '

F(w) amplitude of harmonic driving force, nt

g real part of denominator in eq. (35)
h imaginary part of denominator in eq. (35)
ID rotor diametral moment of inertia, kg—m2
Ip rotor polar moment of inertia, kg—m2

i V=1

. . 2

k linear spring constant, kg/sec
LA

1 2
Lok

2 e
L Laplace operator

L distance between bearings, m



=

N numerator of deflection solution; see eq. (22)

T bearing force ratio; see fig. 1

8 Laplace variable, sec_l

t time, sec

X,¥,2 rectangular coordinates defined in fig. 1

Y ¥(s) =LIy(t)]

z 2(s) =L[z(1)]

9 phase angle, deg

u deflection amplification factor

T s//k/M

To ID/M,Q,2 = disk effect

Ty IP/ID = yotor polar-to-diametral moment-of-inertia ratio

T, w/JE7ﬁ.= rotational-speed parameter

10 b//kM = damping par;meter

W rotor rotational frequency = harmonic driving force frequency,
rad/sec

Subscripts:

P peak

r condition for rY =r, =T

v y direction; see fig. 1

z z direction; see fig. 1

1,2 supports 1 and 2; see fig., 1

18
rotor mass, kg

moment, nt-m
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Superscripts:
. first derivative with respect to time

o second derivative with respect to time
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APPENDIX B
ANALYSIS DETAILS
General

Expansion of the determinants in equations (24) to (26) yields

N = Gy l)s[%z(Al +A) + B, (AB, +AB i} - (r, + DA (B, - By)
+ Al[(erz - ll)wC(Al + AZ).— (ery 2 )S(A B + A BZ)] (B1)
NZ = —(r <+ l)s[; (A + A2) + B (A B + Aszi] + (rz + l)wAZC(Bl - BZ)
- AZ[(JLzrz - zl)wC(Al + AZ) - (ery - JZ,l)s(AlB1 + A2B2)] (B2)
2 2 2
D =-C (Al -+ Az) (A B -+ A2B2) (B3)

The values of a and ¢ for Y1 in equation (35) differ from the
values for Y2

For support 1 (see fig. 1),

2, .2 2
Ly + L |wr, -.m,T
6(2 2, 4| 2f2 ( 1 2) 2.,°210
= (ry+l) 1T4(1T3"1)1T2+’n‘4 "T\’Z(TTS—].) + > + A
2, .2\ 2 2 2, .2 2
s LZ(Ll tL ) "10 , 22" , "2 | 2Tz T 2(L1 2) 4 2220
4 2 2 4|4 4 8
L,m L wz L, - L L L
221 "2 _ b 08 [ i N/ 271" 72
+ 5 + ) + (1:'.z + l)'lT21T3 ﬁ4 Ll + > ( > ) + ﬁa A
2 .2 2 2, .2)2
LA\LT + L L.mw L+ L
6, & 1( 1 2) 1'10 ( 1 2) 10
+ (ryL2 - Ll) -L1W2ﬂ4 + ﬂa[j 5 + A + Llﬂz + i
2 2, .2 2
EAET Y B Lo (Ll + Lz) RET LY 1
T2 2 4f4 4 8 2 8

2 2
_ - 6. _ & "0 , 1), T4
(r,Ly = Ly)mymgfmLy “4(}1 et é) 3 (B4)
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12 4 12 L, L2+ 1)
+ =+ 1, + 5 +

5
= (ry + 1T =T,y > 2 5 Ty

LTF2

3L L, - L
2™10 2 5 )V )
Ty thmpt "4( 8 ) o * (5 * l)"2“3( byt "4)( 2 >“10

2, .2 2,.2 2
L(L +L) m L, LY+15
e 51 _ 2+L1“2+22 _ﬂ2(1+1 2+1o+ﬂ2)

2 7 8
W 5 1\ 3
+ ”4(8) Mo F (rly = Lpmyr 3" 10[4(L + 2) "z;l (B5)

For support 2,

+ (ryL2

- - 6(.2 _ 4| 2(2
a, = (ry}+l) Tr4(1T3 l)'lT2+Tr4 1r2(7r3

2 2} 2 2 | 2, 12) 2
. Ly(L] + L) 10, "% , M2 2T2 L(L] + 15 L 2Hmo
4 2 2 4% 4 8
1 2 4(‘ T oft1 ~ by
+-—— + (r +1)TJ’2’)T3 Tulls + 5 ( 5 )+174(L 5
2 . 2 2 2 . _2\.2
L (L? + 12} 1. 12 + 12)n
6 4 2( 1 2) 2"10 (13 ‘2) 10
+ (r L2 Ll) —1T4L21T2+’IT4 5 + 4 +L2TI'2+ 7
2 2, 12) a2
o210 T2 ﬂzf_2_+(1‘1+1‘2 L0 Tal 1
2 t3 A 4 g T2 |7%%
2 2
_ sf, "0 1), T4
(rsz Ll)'!T21T3 ’IT4L2 Ty L2 + 5 +3 + 5 (B6)
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-(r +1) 1r5—1T1T2+L]2'+L§+1r +L_lTr -1T3lr-2-+———-———-—Ll(Li+L§)
y 4\ 273 2 22 /2 42 2
L - oLy 5 3y (&3 ~ LT
=g tLm|t ﬂ4(——é—) Mo ¥ (r-z + 1)1T27r3(—7r4L2 + 114) 5
2 2 2 2)
+(ryL2—L1) TrzE—z-gi:Lz—-'-—"I:'-zl+L2'n2+12Tg —Trz 22+(L12L2
2

29 3 : - 5 1y _ 3
tg Tt '"4( ) Mo T Ly Ll)'”2“3'"10["4<1‘2 + 2) “4] (B7)

o

For each‘support, the denominator D has components
2
2 2) 2
2 . (Ll *12) Mo
10 4

_8(2 N2 6| 22 2 2

g=T (" 1,)"2 4 TT2""3(2‘““10) * T
2

o" 4(1‘37[’”‘2) “io

-+ + ==+ (B8)

(B9)
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Restriction: r =r =71
y z

All the calculated results presented in this report were obtained
for the condition

| . r =r =r (810)

Therefore, the values of a and c¢ as modified by this condition are
presented below.

Support 1. -
| 2 . .2 2
‘ L + L Jm T
| _ 6(2 2, 4 ( 1 ‘2) 2 . "M
; e = D "4<“3'1)“2+“4 o (“3'1)’” ot
2 . 2\2 2
| N L (L] + 13 ) 4 o2l (2, 4 1) - s o + "0\t T 2| _ 2
4 2 10 2"3\"1 T T2 2 4
2 . .2 2
. Lz(Ll + Lz) . 3L,77, . L,m, o L, - L2) . L,
4 8 2 2"\ 4 8
6 4‘7Li + L7 "
+ (tLy = LML T, (1, + 1) + “4\_\—_2"—' L, +-3>
Tl'2 ™ '|T2 T
10 2"10 A
L\, ) £S5 (ﬂ3+l)+1r2'rr3(Ll+2)+2
2 2
L L.+ L 3w i
7] e e 10 . "2 1
W4 Z + 7 + 8 + > (n3 + 1) + 3 (B11)



+

L

2 2
L, + L L L, - L
2 1 2 2 1 2
(r + L\ —Hz(ﬂ3 - l) + 5 + 5~ LlﬂB( 5 ) T
2 2
oA, 2(L1,+L2)+L2ﬂ10+1,n I e Nl
412 : 2 8 22 23710 2
2 2
L (L + L ) T
51 71\T1 2 2 1
+ (rL : Ll) " 2 + LT, F Tt ﬂ2ﬂ3(Ll +3
2 2 2
L L, + L m
B | S e M SO U0 (g,_)
ﬂ4 2 + 5 + 3 + ﬂz(w3 + 1)} + ﬂ4 3 “10
Support 2. -
, (Lz 2
_ 6(2 \2, 4 _2([2 1
= —(r +1) 4(1r3 ].)’IT2 + T, 1T2(Tl'3 l) + >
2 2\ 2 2
L (L + L )ﬂ L.m ™
1\V71 2710 12 2 10
+ ? + (“10 + 1) + T \Ly + 5
- 2 2) 2
_ 22, 1(L1 ) Mo M Ll
414 4 8 2 23
6 4 i + L2 io
+ (rL2 - Ll) ﬂéLzﬂz(ﬂ3 + 1) + T, 2 L2 +-E—
kil ‘n’2 Lig
2 10 1 2
+ (ﬂ3 + 1) + ﬂzﬂB(Lz + 2) + 3
2 2
L L, + L 3w ™
2122 , 1T ™ 10, 2 1
T A + A + 3 + 5 (w3 + 1|+ 8

2

__l_

8
2
T
4

O

[Pty

(B12)

+m,

(B13)



2 2
L (L + L ) T

51 T2\ "1 2 2 1

+ (rL2 - Ll) LS > + L,y 5+ T,yT, (Lz + 2)
2 2 2
L L +L, m

slba Tl Ty (;)
"Wz YT 2t +“2(’T3 +1> * T\8) "0 (B14)
Normalizing factors. ~ Displacement magnitudes are normalized by

division by the magnitude at zero rotational speed. This condition re-
quires that

T =0 (BlS)

Therefore, for support 1

]

Ny
=+ 2[L,(2r + 1) - L (B16)

l]
T4

and for support 2

N,
2 2[x(L, - L) - 2L,] (B17)

Setting each of the last two equations equal to zero gives the value of
r for zero deflection at each support. From equation (B16)

L
Y I
N,=0 T 2 (Lz > (B18)

From equation (B17)



T = — (B19)

Finally, equating these two equations to each other yields
L L,
I (320)

L2 L1

Physically, this set of conditions is impossible because although L2
can be less than 1,

L, [ 2 [L,]

Therefore, there is no set of conditions for which

ﬂ4=0

el T2
D D
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