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A STUDY OF THE  FEASIBILITY OF APPLYING CAPACITIVE 

DISPLACEMENT-MEASTJRING TECHNIQUES TO 

OPEN-MESH GRID STRUCTURES 

By Richard  DeLoach 
Langley  Research  Center 

SUMMARY 

This  paper  provides  theoretical  and  experimental  support  for  the  hypothesis  that a 
noncontacting  capacitive  displacement-measuring  transducer  can  be  used  to  measure dis- 
placements  in  open-mesh  grid  structures with  extremely  small  surface  areas.  Examples 
of such  structures  include  reflector  nets which form  the  primary  substructures of radio 
telescopes  and  radar  receiving  units.  Test  models of this kind of structure are typically 
so lightweight  and  flexible  that  mounted  transducers would alter  their  dynamic  response 
characteristics. Noncontacting transducers  are  therefore  required  for  modal  analysis 
and structural  stability  tests  on this class of structure. 

The  purpose of the  paper is to  evaluate  the  feasibility of employing a capacitive 
probe  in  displacement  measurements of structures with low surface  areas,  particularly 
open-mesh  grid  structures. A solution is found for  the  field of a charged  square-mesh 
grid mounted parallel  to a flat grounded  plate.  A  variational  technique is used  to  deter- 
mine  the  capacitance of this grid-plate  capacitor  in  terms of easily  measured  geometric 
parameters. It is known that  the  capacitance of a parallel-plate  capacitor is directly 
proportional  to  the area of the  plates.  Because  the  relative  surface  area of a large-mesh 
grid is extremely  small,  original  estimates of the  capacitance of a grid-plate  system  were 
correspondingly  small.  However,  the  theoretical  capacitance  formula  derived  herein 
predicts  grid-plate  capacitance  values which a re   o rde r s  of magnitude larger  than  these 
preliminary  estimates.  The  theory is supported  with  experimental  data.  Results show 
that a noncontacting  capacitive  transducer is indeed  feasible  for  detecting  displacements 
in  surfaces with  extremely  small  surface  areas. 

INTRODUCTION 

The  purpose of this report  is to  demonstrate  that a noncdntacting  capacitive 
displacement-measuring  transducer  can  be  used  to  measure  displacement  amplitudes  in 
open-mesh  grid  structures  possessing  minute  surface  areas.  Examples of such 



structures  include  the  reflector  nets which form  the  primary  substructures of radio 
telescopes  and  radar  receiving  units. 

In  July 1969 a need  arose at the  Langley  Research  Center  for an instrument  to  mea- 
sure  the  dynamic  response of two models of a radio  telescope satellite called  LOFT (Low 
Frequency  Telescope).  Both  models  have  essentially  the  same  overall  configuration, 
which consists of a spin-stabilized  reflector  net  fabricated  from  an  open-mesh  grid of 
flexible,  very  lightweight  strands of rubber-coated steel yarn.  The  larger  model  has a 
diameter of 15 meters  while  the  smaller  model  has a diameter of 5 meters.  The  pro- 
posed  testing  program  calls  for  the  models  to  be  rapidly  rotated  in a large vacuum  cham- 
ber with  the  resulting  centrifugal  force  used  to  deploy  the  reflector  net  and  maintain its 
shape. (It is necessary  to conduct  the tests under  vacuum  to  avoid  the  problems of air 
drag  in deploying  the  model.) Bursts of forced air from  jets mounted  on  independently 
rotating  exciter  arms  under  the  reflector  net  will be used  to  excite  resonance  modes  in 
the net. It is these mode shapes which a r e  to  be measured.  The tests are complicated 
by a number of factors. Among the  most  serious  complications a r e  the  very  small  sur- 
face  area of the  reflector  net  and  the  fact  that it is extremely  flexible  and  lightweight. 
Conventional  mounted transducers  are not practical  since  even  the  smallest  ones  avail- 
able are  massive enough to  alter  the  dynamic  response of the  structure. 

. 

It has  been  suggested  that a small,  flat  plate  might  be  mounted  near  the  reflector so  
that  the  reflector  net  and  plate  will  form a capacitor.  As  the  grid-plate  geometry  changes 
as a result of the  modal  displacements of the  net,  the  grid-plate  capacitance  will  also 
vary,  and  these  changes  in  capacitance  can  be  related  to  the  motions of the  grid. 

Capacitive  probes  have  been  in  use  since 1920 when R. Whiddington  and his collab- 
orators  first  investigated  their  potential  application  to  the  measurement of pressure,  
temperature,  and  force, as well as displacement  (refs. 1 to 4). Since  then,  capacitive 
probes have  found an  ever-increasing  range of applications  (ref. 5). However,  most of 
the  standard  capacitive  measurement  systems  in  use today  involve  very  close  proximity 
between  the  probe  and  the  subject  surface  (refs.  6  and 7). This  close  proximity  causes a 
maximum  percentage  change  in  capacitance  for a given small  displacement  in  the  subject 
surface,  providing a high degree of resolution  in  the  measurement  system.  In  the  LOFT 
application,  however,  close  proximity  between  probe  and  subject is not practical.  Dis- 
placement  amplitudes  on  the  order of 5  to 10 cm  are  expected  in  the  tests, which means 
that  the  probe  must  be  mounted at least  that far from  the  subject.  Actually,  in  order  to 
avoid  fouling  the  net  during  model  deployment,  the  probes  should  be at least 25 cm  from 
the  surface of the  net.  Most  capacitive  displacement-measuring  systems  involve  probe- 
subject  separations on the  order of millimeters o r  less.  Not only a r e  the  probe-subject 
separations  necessarily  large  in  the  LOFT  application, but  the  relative  surface  area of 
the  steel  yarn which makes  up  the  net is minute.  (Each  strand is only 0.25 mm  in 
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diameter, while adjacent  strands  can be  on  the order of 150 mm  apart.)  For a given 
probe,  the  probe-subject  capacitance is proportional  to  the  area of the  subject  and 
inversely  proportional  to  the  probe-subject  separation.  Because of the  large  probe- 
subject  separations  and  minute  subject  surface  area  involved  in  the test, it was  originally 
feared  that  the  available  probe-subject  capacitances would be  much  too  small  to  be  prac- 
tical. It was  therefore  necessary  to  determine  analytically how the  grid-plate  capaci- 
tance would depend on  grid-plate  geometry  parameters  in  order  to  evaluate  the  feasibility 
of employing a capacitive  transducer  in  the  LOFT  tests. 

A  square-mesh  parallel  grid-plate  capacitor is used as a model  for  the  analysis. 
The  field of such a capacitor is solved,  and a variational  technique is used  to  determine 
the  capacitance of the  grid-plate  capacitor  model  from  the  field  solution.  The  theoretical 
results  are  compared with experimental  data. 

SYMBOLS 

An capacitance  geometry  constant, DJV 

a mesh  parameter,  distance  between  adjacent  parallel  wires  in  grid 

an  general  Fourier  coefficient 

b  grid-plate  separation 

C capacitance 

CL capacitance  per  unit  length of a parallel  wire-plate  capacitor 

Dn potential  distribution  constant 

dn radial distance  from  an  arbitrary point in  the plane of a grid of parallel 
charged  wires  to  the axis of charge of the  nth  wire 

dn' radial distance  from  an  arbitrary point in  the  plane of a grid of parallel 
charged wires to  the axis of charge of the  nth  image  wire 

L  length of a rectangular  parallel-surface  capacitor ' 

n  positive  integer 
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excess  charge 

wire radius 

electric  field  energy 

potential  difference 

width of a rectangular  parallel-surface  capacitor 

Cartesian  space  coordinates 

separation-of-variables  constant 

displacement of the axis of. charge of a charged wire due to the  influence of 
an  adjacent  grounded  plane  (see  fig. 4) 

electric  permittivity 

linear  charge  density 

volume of integration 

potential  distribution 

ANALYSIS 

Figure 1 is a sketch of the  grid-plate  capacitor which is used as a model for the 
analysis.  The  grid is a square  mesh of cylindrical  wires,  each of radius r, separated 
axis-to-axis by a distance a. The  grid is parallel  to  the  plate  and is separated  from it 
by a distance b. The  grid  and  the  plate  have  the  same  length L and  the  same width W. 
In  the  analysis,  the  field of this grid-plate  capacitor is solved  and a variational  technique 
is used  to  determine  the  capacitance  from  the  field  solution.  This  variational  technique 
is described  in  the following  section. 
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Figure 1. - Parallel   grid-plate  capacitor.  

Approach 

To  invoke  basic  definitions  in  determining  the  capacitance of a pair of arbitrary 
conductors  held at some  fixed  potential  difference, it must  be  possible  to  determine  the 
total  excess  charge  residing  on  either of the  conductors. For systems  possessing  rela- 
tively  complex  geometries, this can  be a rather  difficult  task.  However,  there do exist a 
number of techniques  for  determining  the  potential  distribution  associated  with a charged 
system. It would therefore  be  useful  to be able  to  express  the  capacitance of some  arbi- 
trary charged  system  in  terms of the  potential  distribution of that  system.  This  can  be 
done by equating  the  energy  stored  in  the  field of an  arbitrary  capacitor  to  the  energy of 
an  arbitrary  electric  field. If U is the  field  energy, C the  capacitance, V the 
potential  difference,  and rp the  potential  distribution  between two conductors,  the  fol- 
lowing relation is true  in  general: 

L 

The  right-hand  term  describes  the  energy of an  arbitrary  electric  field bounded by 
the  limits of the  volume  integral  and  the  middle  term  describes  the  energy  stored  in  the 
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field of an  arbitrary  charged  capacitor,  independent of its geometry. It is understood 
that  the  volume  integral is taken  throughout  the  region  bounded by the  conductors.  The 
symbol E represents  the  permittivity of the  environment (air, vacuum,  etc.). It is the 
product of the  permittivity of free  space  and  the  dielectric  constant of the  medium  between 
the  conductors.  Equation (1) yields  the following: 

C =-$IT (V@)2dT 
V 

Thus,  the  capacitance of an  arbitrary  condenser  charged  to a potential  difference  of 
V volts  can  be  expressed  in  terms of the  potential  distribution which exists  in  the  region 
bounded by the  plates of the  condenser. It is necessary only  to  find  the  potential distri- 
bution in  the  region bounded by the  condenser when it is charged. But equation (2) also 
possesses a very  remarkable  property. Note that it expresses  capacitance  C as a func- 
tion of potential  distribution @. Any @ can  be  inserted  in  equation (2) to generate  an 
expression  for  capacitance, but  obviously  only  the t rue @ will  yield  the  right  capaci- 
tance. Of all the  possible  potential  distributions  which  might  exist  within a given  charged 
condenser,  the  question is, which potential  distribution @ is actually  present? 

From  arguments  based on the law of the  conservation of energy it can  be shown that 
if  two arbitrary  fixed  conductors  are  held at a given  potential  difference,  charges will 
tend  to  distribute  themselves  on  the  surface of the  conductors  in  such a way as to  store 
the  least amount of energy  in  the  field  between  them.  This is a special  case of Thomson's 
theorem  (ref. 8). From equation (1) it can be seen  that  the  energy  stored  in a charged 
condenser is directly  proportional  to  the  capacitance of that  condenser. It is therefore 
clear  that when a fixed  potential  difference is impressed between two conductors (a con- 
denser)  the  charges  tend  to  distribute  themselves  on  the  conductors  in  such a way as to 
create a potential  distribution  corresponding  to  some  minimum  capacitance.  That is, of 
all the  physically  realizable  values of @ that  might  be  used  in  equation (2), the  correct 
@ is the  one  that  generates  the  smallest  value  for C. This is quite  significant! 
According  to  the  ordinary  calculus of extremums, if  a continuous  function  has a minimum, 
then  first-order  departures  from  that  minimum  in  the  independent  variable  correspond  to 
departures  from  the  minimum  in  the  dependent  variable  which a r e  only second  order  to . 

the  deviations of the  independent  variable. For example,  consider  some  continuous  func- 
tion  C(@) which has a minimum at GC. Then C(@,) is the  minimum of that  function. 
Now consider a first-order  departure  from GC in @; that is, consider  C(@c + 6@), 
where 6@ is some  first-order  departure  from &. From  laws  developed  in  the  cal- 
culus of extremums it can be  shown  that  C(@c + 6 @ )  differs  from C(@,) only to  sec- 
ond order,  even when 6@ is a first-order  deviation  from @c (ref. 9). Therefore, i f  
a first-order  approximation  to @ is inserted  in  equation (2) instead of the  true 
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I expression  for 4, the  resulting  expression for the  capacitance  will  be a second-order 
approximation  to  the  correct  capacitance  because, as was  determined  above,  the  true 
potential  distribution $J corresponds  to a minimum  capacitance C .  

The  preceding  analysis  has  been  based  in  part  on  arguments  developed  in  the  ordi- 
nary  calculus of extremums. But @ in  equation (2) does not represent a variable  in  the 
ordinary  sense; it represents  potential  distribution, which is itself a function of coordi- 
nate  space. It might  therefore  be  argued  that  an  analysis  based  on  the  ordinary  calculus 
of extremums  does not necessarily  apply  to  equation (2). But  the  analysis  can  be  rigor- 
ously  extended  to  cover  the case at hand by invoking  the  calculus of variations  instead of 
the  calculus of extremums.  This  analysis is a bit  more  involved  than  the  one  that  has 
been  outlined  and  will not be  presented  here, but the  results  are  the  same as if  @ were 
treated as an ordinary  variable  instead of a function  (ref. 10). 

The  important  point is that  the  capacitance of a condenser  with a completely  arbi- 
trary  geometry  can  be  determined  from a knowledge of the  potential  distribution which 
exists when the  condenser is charged  to  some  fixed  potential  difference.  Furthermore, 
if the  true  potential  distribution is unknown, a second-order  approximation  to  the  capaci- 
tance  can  be  derived by using only a first-order  approximation  to  the  true  potential 
distribution. 

As a simple  example of an  application of this  analysis,  consider  the  case of a 
parallel-plate  capacitor  with  one  plate  grounded  and  the  other at a potential V with 
respect  to ground.  The  grounded  plate is assumed  to  be  in  the z = 0 plane  and  the 
charged  plate is in  the z = b  plane.  The  potential  distribution, known to  be  linear, 
might  look  like  the  following: 

or 

$I =- v z  
b 

If the  plates are  rectangular, with  length  L  and width W ,  equation (2) becomes 

ELW c =- 
b 

This is recognized as the  correct  formula for the  capacitance of a parallel-plate  capaci- 
tor  with  plate  dimensions L by W separated by a distance b. 

Now the  potential will be  assumed  to  be unknown and  the  capacitance of a parallel- 
plate  condenser will be  estimated by inserting a trial potential  into  equation (2). Of 
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course,  the  potential  distribution of a parallel-plate  capacitor is known to  be  linear, but 
to  illustrate  the  usefulness of equation (2) in  deriving  close  approximations  to  capacitance 
from  rough  approximations of potential, a nonlinear  potential is inserted  into  equation (2). 
Assume, for example,  that c) is a sinusoidal  potential: 

@ = V sin - 712 
2b 

This  potential  meets  the  prescribed  boundary  conditions  but is certainly not linear.  To 
see what sor t  of capacitance it produces,  equation (6) is inserted  into  equation (2) to  yield 

E cos2 E dx dy dz 2b 

or 

Note that  the  sinusoidal trial potential  leads  to  the  correct  capacitance  formula 
multiplied by a factor  slightly  greater  than 1, namely 712/8. This is certainly a very 
close  approximation  to  the  true  capacitance,  considering how poor  the  potential  approxi- 
mation  was. If other  incorrect trial functions are used  in  equation (2), other  approximate 
capacitance  formulas  will  be  generated, but just as in  this  example,  the  approximation  to 
the  correct  capacitance  will  always be  much  closer  to  the  true  capacitance  than  the trial 
potential is to  the real potential.  Actually, a very  accurate  expression  for  capacitance 
can  be  obtained  from a close  approximation of the  potential;  the  better  the  potential 
approximation,  the  better  the  expression  for  capacitance.  This  method of deriving 
second-order  approximations  to  capacitance  from  first-order  approximations  to  potential 
is an application of what is called  the  electrostatic  theory of least action. It is a technique 
whereby  approximate  solutions  can  be found to  otherwise  intractable  problems. 

In  the  following  sections of this  paper,  the  potential  distribution of a grid-plate con- 
denser is determined  and  used  in  equation (2) to  generate  an  expression  for  the  capaci- 
tance of a grid-plate  condenser.  The  field  solution  entails a few  approximations  and 
therefore is not an  exact  solution, but because of the  variational  technique  used,  the 
resultant  capacitance  formula is quite  accurate. 

Two-Dimensional  Grid-Plate  Potential  Distribution 

The  field  problem  has  been  cast  in a Cartesian  coordinate  system  with  the flat plate 
(dimensions L by W) in  the 2 = 0 plane  and  the  grid of wires in  the z = b  plane. 
The  wires  have a radius r and are  separated a distance a from axis to axis. The 
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plate is assumed  to  be  grounded (i.e., at 0 potential)  and  the wires of the  grid are at 
potential V with respect  to  the  plate.  In  order  to  simplify  the  field  problem,  the  grid 
is imagined  to  consist of two "subgrids,"  one  subgrid  being  composed of wires running 
parallel  to  the X-axis and  the  other  being  composed of wires running  parallel  to  the 
Y-axis. The  problem is thus  simplified  into a pair of two-dimensional  field  problems. 
The  solutions  to  these two problems  are combined to  yield  the  potential  distribution of 

* the  three-dimensional  grid-plate  configuration.  Figure 2 illustrates  one of the  subgrids. 

Z 

/ 

' /  

' I  I ' I  I 

$ = V  

I I 
I I 
I I 

I 
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I 
I 

//////// - X +  
3 / /  

$ = O  
r L 4 

Figure 2. - Fie ld  of a gr id-plate   capaci tor .  

The  potential  distribution  corresponding  to  figure 2 must  satisfy  Laplace's  equation 
and  meet  the  boundary  conditions.  The  uniqueness  theorem  guarantees  that any such 
solution will be correct  and unique. 

Laplace's  equation  in two dimensions,  expressed  in  Cartesian  coordinates, is 

v @(X,Y) = 0 2 

One possible  solution  to  this  equation is 

@ = D cos ax sinh az (8)  

The  constants D and a must  be  evaluated  to  make  equation (8) meet  the  boundary 
conditions. 

Since  the  wires are indistinguishable, $ is the  same at x = 0 as at x = a for 
any given z. Then 



cos 0 = cos aa 

aa  = 2n7r (n = 0,1,2,3,. . .) 

a=- 2na 
a 

., 

Parallel to  the X-axis in  figure 2,  the  field  changes  periodically.  This  suggests 
that  the  field  can  be  expressed as a Fourier series. (Indeed,  any  valid  solution  to 
Laplace's  equation  can  be  expressed as a Fourier series.) Equation (10) has  the  form 
of the  nth  term of such a ser ies ,  which  might  look like  the following: 

I$ = 2 Dn COS - sinh - 2 n7rz 
a a 

n= 1 

At large  distances  from  the  grid,  the  potential  must  approach  that of a uniform 
charge  distribution.  That is, in  the  region between the  grid  and  the  plate, as z/a 
approaches  zero  the  potential  must  approach a linear  function of z. This  function $ I ~ ( Z )  

is the  potential  corresponding  to  the  constant  electric  field  that would exist at large dis- 
tances  from  the  grid.  Equation (11) is modified  to  include  the @,(z) term: 

. -  

The  function cp0(z) is linear  in  z,  does not depend  on x, and is zero when z = 0. 
When z/a  approaches  zero,  the  oscillating  terms  in  the  sum  approach  zero  and  the 
potential  approaches @o as required. 

Equation  (12) still  satisfies  Laplace's equation. Now  Dn and  @o(z)  must  be 
determined so that  equation (12) will meet  the  boundary  conditions.  Before Dn and @o 
can  be found, the  boundary  conditions  must  be  established. 

The  potential is zero at z = 0 by the way the  problem is se t  up. Since @o(z=O) = 0 
by definition,  equation (12) already  satisfies  the  lower boundary  condition.  The  potential 
on  the  upper  boundary is V wherever  there is a wire and  something less than V in  the 
space between  the wires.  Figure 3 is a schematic  representation of the  potential  in  the 
z = b  plane. 
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Figure 3 .  - Poten t i a l  at  upper boundary. 

Since @(x,b) is a periodic  function, it can  be  evaluated  over  the  range 0 5 x S a 
and  expanded in a Fourier  series.  The  potential  over  the  range 0 5 x S a is the  poten- 
tial corresponding  to a parallel  array of wires of radius r separated  center-to-center 
by a distance a with charge  residing on  one  side of the  wires  (because of the  influence 
of the  grounded  plate).  The  potential is considered only  on the  line  connecting  the  centers 
of the  wires  (the z = b  plane). 

The  method of images  will  be  used  to  solve  the  field of, a grounded  plate  near  an 
array of parallel  charged  wires.  The  potential of an  array of parallel  charged wires in  
the  presence of a grounded  plate is the  same as that of an array of parallel  line  charges, 
each  one  corresponding  to  the axial center of charge of one of the  wires. If the grounded 
plate is replaced by a parallel   array of image  line  charges, as in  figure 4,  the  field is 
unchanged. For  each  wire,  the  location of the axial center of charge will depend  on  the 
wire  radius  and  on  the  wire-plate  separation. If the  distance  between  each  wire  and  the 
grounded  plate is very  large,  the  center of charge  can  be  said  to  correspond  to  the axis of 
the  wire. If the  wire-plate  separation is vanishingly small,  the axial center of charge  for 
each  wire  will  approach  the  bottom  edge of the wire. 

7 

In  figure 4, 6 represents  the  distance that the axis of charge of each wire is dis- 
placed  from  the  geometric axis of the wire due to  the  influence of the  grounded  plate. 
Consider  the  potential at point  P(x,b),  which lies  in  the  plane of the  grid.  The  potential 
at P(x,b) is composed of contributions  from all the  line  charges  and  image  line  charges. 
If dn represents  the  distance  from point P to  the  nth  line  charge  and  dn'  represents 
the  distance  from  point P to  the nth image  line  charge,  they  can  be  expressed by 

dn' = V(X - na) + (2b - 6) 2  2 

11 



Grid Plane """"""""" I 
6 

- n  ... - 2  - 1  7 ,"*""+""+ - 

LEGEND 

0 Displaced Axes of Charge 

o Image  Axes of Charge 

8 P (x ,  b) 

Plate Plane 

"""""""""" 1 
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Both of these  expressions hold for  positive  and  negative n. The  potential of a line  charge 
can  be  shown  to  be 

@=-" -  x In  d + Const. 
2T€ 

where X is the  linear  charge  density, d is the radial distance  from  the  line  charge, 
and  the  arbitrary  constant  defines  the  zero of potential.  Therefore  the  potential at 
point P due  to  the nth line  charge is 

V 

@n = -- 
2 T€ 
x In dn + Const. 

and  the  potential at point P due  to  the nth image  line  charge is 

@n = - In dn' + Const. r x  
2 a€ 

The  potential at point P is then found  by superposing  the  @n  and Gn' values: 

+- 
@(x,b) = - x 1 ( In ix  - na)2 + (2b - 6 ) q  - lnkx - na)2 + 6q1l2) + Const. 

1/2 
47r€ n=- 03 

o r  , finally, 

The  maximum  value of 6 is r ,  the  wire  radius,  corresponding  to  the  case when 
the  plate is almost  touching  the  grid of wires. Of course,  the  minimum  value of 6 is 
zero,  when the  plate is far away from  the  grid. If a2 >> r2 (which is true  for a large- 
mesh  grid of fine wires), 6 can  be  neglected  in  equation (14) for all cases  except  the- 
n = 0 case.  Since x can  be as small  as r (@ is defined by eq. (14) in  the  region 
between  adjacent  wires)  and  since 6 can  be as large as r (corresponding  to a vanish- 
ingly small  grid-plate  separation), it is not  immediately  obvious  that 6 can  be  neglected 
in  equation (14) i f  n = 0. In  appendix A it is shown that  even  when  the  plate is close  to 
the axis of the  wires,  neglecting 6 in  equation (14) introduces a negligible error   in   the 
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n = 0 term. The error  introduced  in the other  terms of equation (14) will be even less.  
Therefore, 6 is dropped  from  equation (14). With 6 assumed  to be zero for all 
practical  purposes,  equation (14) can be restated as follows: 

This  infinite  product  can  be  expressed  in  closed  form (ref. 11) as follows: 

where a = - 27r 
a '  

Equation (14) thus  becomes: 

@(x,b) = L ( l n  COSh 2ab  - 
8 w 1 - cos ax 

To evaluate  the  constant,  consider  the  fact  that when x = r,  @(x,b) must  be V, 
the  potential of the  wire: 

@(r,b) = V = -(ln X cosh 2ab  - cos + Const. 
8 a ~  1 - cos ar 

Thus 

Const. = V - - X cosh 2ab - cos ar 
8 7re 1 - cos ar 

Then 

@(x,b) = -in X C O S h  2ab  - COS CYX ) + cosh  2ab - cos ar 
8ae 1 - cos ax 1 - cos ar (18) 

or 

@(x,b) = V + - In X (cosh 2ab - cos ax)(1 - cos ar)  
87re (cosh 2ab  - cos ar)(l - cos ax) 
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Of course,  equation (19) holds  only  between  the  wires  since  the  potential  inside a con- 
ductor  must  be  the  same as the  potential on the  surface.  The  potential  inside  the  wires 
(0 < x < r and  (a-r) < x < a) is V. Therefore, for 0 < x < a, $(x,b) is as follows: 

- 
V (0 6 x I r) 

V+-In X (cosh 2ab  - cos ax)(1 - cos a r )  
87rc (cosh 2 a b  - cos ar)(l - cos ax) 

2 x 6 (a-r] 

V 
c 

In  equation (12) the  potential  distribution  was  cast  in  the  form of a Fourier  cosine 
ser ies  with two as yet  unidentified  constants. In order  to  evaluate  these  constants,  equa- 
tion (20) is expanded in a Fourier  cosine  series  and  compared  term by term with  equa- 
tion (12). The  expansion is carried  out  in appendix B with the following result: 

@(x,b) = V(1  - * a + T[ cosh 'Os 2ab  + 2 ln(2 sin y]} 
VT 

cosh 2ab  
ax 

co 

2VT 7r - 2 Si(nar1 cos nax 
n 

n=2 

where 

T =- x 
8 m V  

ff =2 2 
a Si(nar) = dx 

X 

Equation (21) represents  the  grid-plate  potential  distribution  in  the  plane of the  grid. 
It is the  upper  boundary  condition.  That is, when equation (12) is evaluated at z = b  (the 
plane of the  grid)  the  constants Go and Dn must be  such  that  equation (12) and  equa- 
tion (21) are identical. Note that the  upper  boundary  has  been  expressed as the  sum of a 
$o term,  a $1 term,  and  an  infinite  series of terms  @n,  where  n 2 2. This is simply 
because  equation (20) was  taken as the  sum of three  functions,  and  the  Fourier  cosine 
expansion of one of them  contained  only two terms  (see appendix C). It is therefore  nec- 
essary to express  equation  (12),  the  general  solution,  in a form  similar to  equation (21) 
in  order  to  evaluate  the unknown coefficients.  Clearly,  equation (12) can  be  expressed as 
follows: 
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Consider this expression at z = b: 

@(x,b) = G0(b) + Dl  cos   s inh - + 2 Dn COS - 2nm si& - 2nab 
a  a  a  a 

n=2 

This is just  the  general  solution of the  potential  problem  evaluated at the  upper  boundary. 
If equation (23) is compared  term by te rm with  equation (21), the  upper  boundary  condition, 
the  following  equalities are identified: 

@,(b) = V{ 1 - + T l c o s  cosh  2ab + 2  ln(2 s i n y j }  

D l  COS - VT ax a a cosh  2ab 

Since a = a, these  equations  can  be  written as a 

@,(z) = V{ 1 - + T I  cosh COS 2ab  + 2 ln(Z sin 2 b 

Dn = 
2VT 7r - 2 Si(nar) 

sinh  nab  na 
(n 2 2) (2 6) 

Equations (24) to (26) are  inserted  into  equation (22) to  yield  the  general  solution of 
the  potential  problem  in two dimensions: 
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t 

+ 
sinh a b  

- 
cash 2 a b  

sinh a z   c o s  ax 

+- 2VT r - 2  Si(nar)  sinh  naz cos naX 
71 n  sinh  nab 

n=2 

This is the  solution  to  the  problem  in two dimensions,  but  the  actual  grid  consists 
of a plate  and - two perpendicular  arrays of parallel  wires.  The  solution  to  the  three- 
dimensional  problem is thus a superposition of a pair of two-dimensional  solutions.  That 
is, @(x,y,z) is in  reality  @(x,z) (eq. (27)) superimposed  with  the  following  equation  for 
@(y,z) (eq. (27) with x replaced by y): 

@(y,z) = V (1 - + T[ cos ar 
cosh 2ab  + 2 Ink  s in  ?]}E 

+ VT f b  - 2 si(arg - 
sinh a b  7r cosh  2ab 

sinh a z  cos a y  

+ 2VT 2 7r - 2 Si(nar)  sinh  naz 
na - sinh  nab 

cos nary 
n=2 

The @o t e rm is unaffected by the  superposition. It is just  the  potential which 
exists at large  distances  from  the  grid  where  the  oscillating  terms  in  the  series do not 
add  appreciably  to  the  potential;  that is, it corresponds to  the  uniform  charge  distribution 
which the  grid  appears  to  have at large  distances  from it. For a given z ,  @o is a func- 
tion only of the  charge  density  and  since  superimposing two similar  (perpendicular)  wire 
arrays  does not  change the  overall  charge  density of the  grid,  the @o term  remains 
unaffected. When @(x,z)  and @(y,z) are  superimposed,  the  result is as follows: 

I 

c 

@(x,y,z) = v { 1 - - 4:r + T [  cos ar + 2 l n t   s i n  ?]}E 
cosh  2ab 

+ VT el;. - 2 si(ar3 
sinh a b  7r cosh  2ab 

sinh  az(cos ax  + cos  ay) 

m 

+- 2VT x a - 2  Si(nar)  sinh  naz(cos nCLX + cos nay) 
7r n  sinh  nab (29) 
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Equation (29) describes  the  potential  distribution  that exists between a flat  grounded 
plate  and a square-mesh  grid of wires charged  to  some  potential V with respect  to  the 
plate. All the  parameters are easily  measured  except T, which is defined by 

I: 

It would be  most  convenient  to  be  able  to  express X in   t e rms  of some  easily  mea- 
sured  parameters.  This  can  be done as follows. The  capacitance of a system  consisting .I 

of a long  charged  wire  parallel  to  an  infinite  grounded  plate is 

where q is the  excess  charge on the  wire  and V the  potential  difference  between  the 
wire  and  the  plate.  From this it follows  that 

where Cz is the  capacitance  per  unit  length of the  system.  Thus  the  linear  charge 
density of a charged  wire  in  the  presence of a grounded  plate is 

x = vcz 

The  capacitance  per  unit  length of a wire-plate  system is (ref. 12) 

L J 
Thus 

2 ?T€V 

and 

1 T =  1 

4 In: b2 - r2 + b L" !1 
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Equation (32) can  be  inserted  into  equation (29) to  find  the  potential  distribution of a 
charged  grid-plate  capacitor  in  terms of easily  measured  parameters,  namely  the  grid- 
plate  spacing  b,  the  parallel-wire  separation a, the  wire  radius r, and  the  grid-plate 
potential  difference V. 

Computation of Capacitance  From  Potential 
? The  fact  that  the  capacitance  between  arbitrarily  shaped  conductors  can  be  derived 

from  the  potential  distribution  that  exists when the  conductors are charged  was  discussed 
in  the  section  entitled "Approach. I t  The  relation  between  capacitance  and  potential  was 
expressed  in  equation (2): 

This  volume  integral is taken  throughout  the  region bounded by the  conductors. An 
expression for 6 is derived  in  the  previous  section (eq. (29)), and in  appendix C this 
expression is inserted  into  equation (2) to  yield 

I 03 \ 
C = F b 2 +  2 An 2 nab  sinh 2 

n= 1 

where 

A , = 1 - -  4rT + T i  
a 

'Os ar 
cosh  2ab 

+ 2 In 

T ,(E - 2 Si (a r1  
A1 = 

sinh a b  a cosh 2ab  

An 2T a - 2 Si(nar) 
sinh  nab  na 

(3 3) 

(n 2 2) 

4 In 1 Jb2 r2 + b 1 4  - )I 
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Note that  in  equation (33) the  term  outside  the  parentheses is the  formula  for  the 
capacitance of a parallel  solid-plate  capacitor with  plate  dimensions L and W and 
separation  distance b. The  term  in  parentheses is a measure of  how this  capacitance 
is changed when one of the  plates is replaced by a square-mesh  grid of wires with radius 
r separated  axis-to-axis a distance a. 

It should  be  remembered  that  the  expression  used for the  potential  distribution  to 
determine  the  capacitance was only an  .approximate  one. Although the  capacitance  formula 
is derived by a variational  method  that  requires only an  approximate  expression  for @ to 
yield a very  close  approximation  to  the  true  capacitance,  nevertheless  equation (33) repre- 
sents only an  approximation  to  the true grid-plate  capacitance.  Just how good this approx- Ji 

imation is can  be  determined by actually  measuring  the  capacitance of a number of grid- 
plate  configurations  and  comparing  the  results  with  predictions  based  on  equation (33). 
Values  reported  in  the  next  section  reflect  equation (33) carried  out (by computing  calcu- 
lator)  to 15 terms. Actually,  the  series  in  equation (33) converges  quite  rapidly,  and  very 
good results  can  be had by retaining  fewer  terms  in  the  series. 

Yj 

EXPEFUMENTAL CONFlltMATION OF THEORY 

Capacitance  measurements  were  made  on a number of grid-plate  configurations. 
The  grid-plate  capacitors  were  composed of a single flat polished  plate of aluminum  and 
a number of interchangeable  grids.  Each  grid  in  turn was positioned  above  the  aluminum 
plate by means of a number of columns of small  cardboard  spacers, which varied  in height 
from 5.1 mm to 12.7 mm  in 1.3-mm increments.  Several  data  points  were  taken  for  each 
grid,  every point corresponding  to a different  grid-plate  separation.  Thus,  for  each  grid, 
an  experimental  curve of capacitance as a function of grid-plate  separation  was  generated. 
A  theoretical  curve  was  obtained by programing  the  capacitance  formula  on a computer 
with  instructions  to  increment  b,  the  grid-plate  separation  parameter.  Each  computer- 
generated  data point was  also  plotted.  Comparisons  between  the  empirical  and  theoretical 
curves  indicate  that  the  grid-plate  capacitance  formula is exact  within  experimental  error. 

Figure  5  illustrates a typical  experimental  configuration.  The  flat  plate is mounted 
on a hollow block of polystyrene  to  displace it from  the  table  and  reduce  the  effect of s t ray 
capacitance.  The  spacers  are  positioned on  the  plate  and  the grid is placed on top of the 
spacers.  The  spacers  were  positioned so  as to  prevent  the  grid  from  sagging.  End 
effects  were  suppressed by using  relatively  small  grid-plate  separation  distances and 
relatively  large  grids  and  plates  (ratios of plate area to separation on  the  order of 500 
to 1). The  capacitance  measurements  were  made  with a precision  industria1  capacitance 
bridge.  The  recorded  data,  corrected  for  effects of the  cardboard  spacers,  fringing 
fields, and meter-lead  capacitance, are  reported  in  tables I and II for  two grid-plate 
capacitors. In each  case,  predicted  and  measured  values  are given for  a number of grid- 
plate  separations. 
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Figure 5. - Configuration fo r  Capacitance  measurements. 
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TABLE 1.- 6.4-mm MESH 

- 
Wire  radius, 0.318 mm f 0.013 
Mesh  dimension, 6.350 mm f 0.025 
Edge of grid  and  plate, 30.5 cm f 0.1 
Spacer  thickness  (each), 1.270 mm f - 

Number of 
spacers 

4 
5 
6 
7 
8 

10 

Grid-plate  capacitance, 
picofarads 

139.8 f 1.5 
116.4 f 0.3 116.3 f 1.9 
142.8 f 3.5 

65.3 f 0.5 66.0 f 0.6 
79.1 * 0.3 79.0 f 0.6 
88.7 f 1.0 88.2 f 1.0 

100.3 f 0.7 99.7 f 0.8 

TABLE IT.- 25.4-mm MESH 

- 
Wire radius, 0.635 mm f 0.051 
Mesh  dimension, 25.400 mm f 0.102 
Edge of grid  and  plate, 30.5 cm f 0.1 
Spacer  thickness  (each), 1.270 mm f 
L 

Number of 
spacers 

. .  

4 
5 
6 
7 
8 
9 

10 
- 

Grid-plate 
~" 

picofarads 
" 

Experimental 

108.3 f 6.5 
95.3 f 2.0 

74.7 1.5 
68.0 f 1.1 
61.4 f 0.8 
58.0 f 0.8 

" 

83.9 f 2.1 

! 
90.2 f 1.0 
81.1 f 0.9 
74.0 f 0.7 
68.4 f 0.8 
63.8 f 0.7 
60.0 f 0.7 
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