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PREFACE
 

The main results of our analysis of the transport of
 

cosmic rays in the interplanetary and interstellar media are
 

studied and summarized. We show that previous modulation
 

theories are incorrect except for high energies (> 1 BeV)
 

where solar modulation effects are observed to be very small.
 

The main outcome of our effort is a new convection-diffusion
 

equation which is valid in the energy region where solar modu

lation is observed.
 

We formulate the problem of the transport of cosmic rays
 

in full generality from first principles (Chapter II). A
 

master equation is deduced which allows for a closed formula

tion of the transport problem. We show that two dimensionless
 

parameters (a measure of particle energy and a measure of field
 

fluctuation strength) characterize the transport regimes. In
 

the ultrahigh energy regime where the Fokker-Planck equation
 

holds, contact is established with conventional theory. We
 

then resum the set of contributions that corresponds to only
 

two-point correlations with straight line trajectories. This
 

resummed equation allows us to extrapolate from ultrahigh to
 

high energies.
 

We then deduce.the equations for the omnidirectional inten

sity and flux as the first two spherical harmonic components
 

of the velocity distribution function (Chapter III). These
 

equations are the basis for transport theory in the modulation
 

energy range. To discuss these equations, we develop suitable
 

asymptotic expansions (Chapters IV, V) which are applied to
 

deduce the cosmic ray transport theory.
 

We strongly recommend that our transport theory be applied
 

to the wide range of modulation problems of current interest
 

since it is the only derived theory which is applicable in the
 

modulation region.
 

A summary of special problems and publications is given
 

on page x immediately preceding the main body of this report.
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SPECIAL PROBLEMS AND PUBLICATIONS
 

This report covers work carried out during the three-year
 

period of January 12, 1968 to January 11, 1971. The main pur

pose of our program has been to implement Fermi's proposal that
 

many important properties of cosmic rays should be understood
 

in terms of the interactions of charged particles with the
 

turbulent electric and magnetic fields contained in the large
 

scale plasma that surrounds the Sun and penetrates the galactic
 

disc. Our work on cosmic ray modulation is discussed thoroughly
 

in this report. In addition, we have also been concerned with
 

a number of special topics; in particular:
 

1 - Electrostatic effects in stellar winds.
 

2 - The heating of hydrogen clouds by cosmic rays and
 
the possibility of giving a noncosmological explan
ation for the black-body background radiation.
 

3 - Statistical mechanics in relativistic form, including
 
as a special case relativistic thermodynamics. This
 

,subject needs considerable clarification, especially
 
when electric fields play a significant role. Even
 
the simplest model (two-body relativistic potentials)
 
presents substantial difficulties.
 

4 - A theoretical study of x-rays from the solar wind
 
in the low-energy band.
 

5 - A feasibility analysis of a windowless x-ray counter
 
whose mhin chamber is protected by a flow of gas
 
through a fluid dynamic nozzle.
 

We include below a list of the publications that have been
 

made during the past three years. The main body of the text
 

'ollowing the list of publications discusses our work on the
 

transport theory of co mic rays.
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CHAPTER I 

INTRODUCTION - OUTLINE OF TIE PROBLEM
 
AND SUMMVARY OF RESULTS 



This report contains our development of the only cosmic
 

ray transport theory available which is derived rigorously
 

from first principles and is suitable for studies of the solar
 

modulation problem. The only assumptions made in our deveiop

ment of this theory are: (1) we have neglected strong anisotropy
 

in the cosmic ray beam, (2) we have neglected higher thah two

point correlations in the random magnetic field, and (3) we have
 

assumed the two-point correlation tensor to have an isotropic
 

form.
 

The result of our analysis can be stated in the form of a
 

convection-diffusion .transport equation for the cosmic ray omni

directional intensity, with the relationships between the trans

port coefficients and the mean and random magnetic fields given.
 

We summarize this result here. The transport equation is
 

- vtV.(I)I (1)' 


where I is the omnidirectional intensity which is a function of 

position, time, and rigidity. All lengths in Eq. (1) are 

measured in units -of L , a macroscopic length which measures 

the size of the region in which the particles are contained; 

time is measured in units of L/v , where v is particle speed. 

The diffusion tensor has two components for diffusion -perpen

dicular and parallel to the mean magnetic field; they are given 

by 

= ) (2) 

and
 

DII= 1II (3) 

The convection velocity, V , can be shown -to be an average Alfven 
drift velocity due to curvature and gradients in the mean field, 
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but modified due to the interaction with the random field. It
 

is given by
 

v = v x (fv) (4) 

where is a unit vector in the direction of the mean field and
 

The quantities yL"'11 and wDg are related to the correlation
 

function through the solution of the following dispersion rela

tions
 

W - ( YJ)2fj de-xe K1 (,X) (6) 

w (EI)2 fodXe J- [K (e,X)cos g - Kg(c,X)sin a)X] (7) 
0 

and
 

= (EI) 2 dXe~ Ki(=X) sin ag% + Kg(EX) cos wX (8) 

The correlation function is written in the isotropic form
 

Rij( ) 6ijA(r ) + B(r)rir (9) 

We define
 

A(E,X) - (-Z-j±idzA(r)P;(z) (10) 

and
 

IlfzB(r)P(z)(11)
(,X)j 
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where Pg is the 2'th-order Legendre polynomikl and
 

=-z V- -cos EX ] / 2 
X 2+ (1-z, 2)( .(12)r(eXz) 


We now introduce the following four combinations
 

A+A
1 F A Al ]2 0 (13)
1 L 0 -5 2J =3L[1 P
 

K1 = 1L B4 "T B( + B04)
 

12 15L 2-- 7 0
 

K~ =~- B + B2 +B] (15) 

The kernels in Eqs. (6) through (8) are given by
 

c o
K~ ~~82 2K /cos X-l 2 (6
 
KH (cX) = 2J1 cos - 8 1 2 2XO ) (16) 

K1 (e,X) = OF+OF o G 2K2 si cK)S sin cX)2 (co 

(17)
 

and
 

K (.,X) = OF sin EX - X2K2 2cos e=l sin EX (18) 

These equations give a transport description of the cosmic ray
 

particles in random magnetic fields. The complexity of these
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equations is necessary to describe the low rigidities (less than 

1 BV) in which modulation effects are observed. For very high 

rigidity, our results simplify considerably to a, = =_(E7)2 

and )g = 0
 

There are two independent parameters in this theory. They
 

are: E, a measure of the inverse rigidity of the particles, and
 

q, a measure of the strength of the fluctuations in the field.
 

Our work is based on a truncated uaster equaticn for the cosmic
 

ray distribution function which we derive from the Liouville equa

tion using the technique of Kaufman.1 This equation can be
 

written schematically in the form
 

D f (_ (E7)2C( E)f (
Dt (19) 

where D/dt is a convective time derivative taken along the
 

trajectory of the particles in the mean field and C(E) is an 

integrodifferential operator which gives the effect of the random 

field on f By deriving this equation from first principles, 

we have found that the right side of Eq. (19) represents the 

leading term of an expansion of the exact master equation in 

powers of (en) . Higher-order terms in (en) bring in the effects 

of higher-order correlations in the random field. In the inter

planetary field, E=l at approximately 1 BV . Since E is 

inversely proportional to rigidity, we see that to discuss solar
 

modulation effects we must develop a theoay which is valid for
 

Previously developed theories of cosmic ray transport in
 

random magnetic fields can be shown to be based on equations of
 

the form of Eq. (19) which are, in some cases, identical to our
 

truncated master equation and, in other cases, have been shown
 

to be equivalent.2,3,354 However, in all of these theories, when
 

modulation energies are discussed, the approximate effects of
 

C(c) are determined by expanding C in powers of 1/e and
 

retaining the leading term. These expansions are in clear
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violation of the condition (En)d << 1 unless n -- 0 . In the 

transport theory which we have presented in the preceding para

graphs, no expansion in c has been made. Thus, the theory is 

valid in the range E - 1 

In the remainder of this report, we describe the derivation
 

of our transport theory. In Chapter II,we formulate the problem
 

of the transport of cosmic rays in full generality from first
 

principles. We keep explicitly only magnetic fields, though
 

electric fields could be introduced in most of this chapter with

out great difficulty. The problem is set up in terms of the
 

Liouville equation which is then ensemble-averaged over the dis

tribution of magnetic fields. A master equation which consti

tutes the foundation of our work is deduced which allows for a
 

closed formulation of the transport problem. Two special cases
 

are then discussed. In the ultrahigh energy regime, contact is
 

established with conventional theory. We then resum the set of
 

contributions that corresponds to only two-point correlations
 

with straight line trajectories. This resummed equation has an
 

H-theorem and allows us to extrapolate from ultrahigh to high
 

energies.
 

In Chapter III, we deduce the equations for the omnidirec

tional intensity and flux as the first two spherical harmonic
 

components of the velocity distribution function discussed in
 

the previous chapter. These equations are the basis for the
 

transport theory in the modulation energy range. With the tech

niques of the next two chapters, we have deduced the new con

vection-diffusion equation given here.
 

In Chapter IV, we develop the asymptotic expansion for
 

systems of linear equations. The techniques developed in this
 

chapter apply to the master equation of Chapter II, as well as
 

to the equations of Chapter III. We show how to extract the
 

secularities and how to obtain regular expansions.
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We find that for short-range two-body correlation functions, 

when e - 1 , the flux equation is an integrodifferential equa

tion with a long-range kernel. Kernels with short range have 

been treated previously and the available uniformization tech

niques are adequate. The special problems presented by long

range kernels are discussed and solved in Chapter V. 

In Chapter VI, we introduce electric as well as magnetic
 

fields. In particular, we obtain complete solutions for the
 

problem of charged particles moving in uniform fields. Two
 

Lorentz-invariant, gauge-invariant constants of the motion are
 

obtained which turn out to be adiabatic invariants. We, thus,
 

have laid the groundwork for an expansion in small electric
 

fields (such as those in Alfven waves).
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CHAPTER II
 

GENERAL FORMULATION OF THE PROBLEM -

ULTRAHIGH AND HIGH-ENERGY APPROXIMATIONS
 



Following Fermi's original paper in which he suggested
 

that the cosmic ray flux is of galactic origin but still iso

tropic due to the presence of a disordered galactic magnetic
 

field, a great deal of work has been done to refine our under

standing of the transport of energetic particles in random
 

electromagnetic fields. In the earliest of this work, transport
 

equations were assumed which usually had one feature in common:
 

the connection between the relevant transport coefficients and
 

the state of the random field was only loosely modeled Attempts
 

to strengthen the connection between the transport coefficients
 

and the random field have been made, quite naturally in studies
 

of the kinetic theory which might underlie-the cosmic ray trans
port theory. In some cases,3 the Boltzmann equation has been
 

adopted, but then it has become necessary to devise an effective
 

cross section for the particle-random field interaction. Even
 

so, this approach has led to transport theories in which all the
 

transport coefficients could, at least, be related to the assumed
 

cross section. A major advance was made when several investiga

tors introduced the Fokker-Planck equation as a possible kinetic
 

theory.4 In the transport theories which resulted, the transport
 
coefficients could be directly related to measurable properties
 

of the random field.
 

Recently, attempts have been made to justify the assumption
 

of the Fokker-Planck equation as the relevant kinetic theory for
 
energetic particles in random electromagnetic fields. These
 

attempts have been based on the more fundamental Liouville equa

tion or its equivalent. Hall and Sturrock5 using the quasi

linear approximation, have constructed a kinetic theory from the
 

Liouville equation which they have demonstrated to be equivalent
 

to the earlier Fokker-Planck theories. They use a test particle
 

analysis in which the effects of the moving charged particles on
 

the electromagnetic field are neglected. Kulsrud and Pearce 6
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have developed a more general, self-consistent theory in which
 

the field can be affected by the energetic particles. In both
 

of these theories, under suitable conditions, the authors have
 

shown that they are able to reproduce the results of Jokipii
4
 

which are based on the Fokker-Planck equation. The essential
 

conditions which are necessary for these comparisons are: (1) a
 

stationary random magnetic field with no electric field and
 

(2) low rigidity particles so that the radius of gyration of the
 

particles is negligibly small compared to the correlation length
 

associated with the random field.
 

The work which we present in this report falls into the class
 

of papers in which the appropriate cosmic ray kinetic theory is
 

derived from the Liouville equation. Our work does not embody
 

all of the generality of the previous papers in this class; we
 

limit ourselves to a test particle-analysis of particles moving
 

in a stationary magnetic field with no electric field. Early in
 

our work, we reproduce a special case of the kinetic theory of
 

Hall and Sturrock; however, our approach is considerably differ

ent. We do not use the quasi-linear approximation at the outset;
 

and, as a result) we are able to determine more exactly the con

ditions under which this kinetic theory is a valid approximation.
 

We find these conditions in contradiction to the assumption of
 

low rigidity particles which is made by Jokipii, Hall and
 

Sturrock, and Kulsrud and Pearce when they attempt to evaluate
 

the Fokker-Planck coefficients or their equivalent. This is not
 

to say that the Fokker-Planck or the equivalent kinetic theories
 

do not apply; the problem lies in further approximations which
 

have been made in the evaluations of the Fokker-Planck coeffi

cients.
 
In our approach, following the technique of Kaufman7 W6
 

construct from the Liouville equation the exact master equation
 

for the ensemble-averaged, one-particle distribution function.
 

We then expand the master equation in powers of the magnitude of
 

the random field. Stopping at second order, we obtain the
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kinetic theory of Hall and Sturrock with no electric fields, 

which is equivalent to the Fokker-Planck theory as well. The 

conditions under which the relevant expansion parameter is small 

can be stated as follows. Let us measure the particle radius of 

gyration in the mean field in units of the two-point correlation 

length in the random field. When the radius of gyration is of 

the order of the correlation length, then r9 - 1 . If ri is 
the ratio of the root-mean-square value of the random field to 

the magnitude of the mean field, then the Fokker-Planck theory 

is a valid approximation so long as r >> 1 . The previous 

attempts of Jokipii, Hall and Sturrock, and Kulsrud and Pearce 

to evaluate the Fokker-Planck coefficients by obtaining the 

leading-order term in an expansion of the coefficients in rg 

about rg=O is clearly in violation of this condition. 

In Section 1, immediately following this Introduction, we 

derive the master equation. In Section 2, we expand the master 

equation to second order in cI . Also, in Section 2, we 

expand our "interaction operator," the equivalent of the Fokker-

Planck coefficients, up to n'th order in e and then resum. 

We use the time-scale extension technique8,9 to ensure the 

compatibility and uniformity of our expansions; a simple pertur

bation expansion fails for large times. In Section 3, we note 

that an H-theorem can be calculated from our kinetic theory; an 

arbitrary initial distribution function always relaxes to a
 

final, isotropic state. In addition, -we calculate the relaxation
 

time necessary for the final state to be reached. From these
 

calculations, we find an additional constraint on our theory.
 

Distribution functions which are very anisotropic cannot be
 

described by it.
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I. DERIVATION OF THE MASTER EQUATION
 

We ignore the effects of interparticle collisions and,
 

instead, concentrate on the behavior of charged particles in a
 

magnetic field characterized by a field ensemble mean part,
 

<B> , and a random part, B" Then the Liouville equation~4M 
for the N-body distribution function reduces to
 

F (1) () ()Fl
 

- + KF + G( + T)F") = 0 (1.)
 

where F(1)(x,p,,c) is the one-body distribution function which 

depends on position, x , direction on the unit-momentum sphere, 

p , and time - The differential operators which appear in 
Eq. (1.1) have all been written in dimensionless forms in the
 

following manner. A length, X , has been introduced which is 

a measure of the two-point corretlation length in B Time is 
measured in units of the traversal time, X/v , where v is the 

particle speed. Thus
 

-V= t(v/X) (1.2) 

Spatial gradients in f are measured in units of X ; therefore
 

K=^ (1.3)
 
'4 

The Lorentz operators £ and £ are written as
 

£ = -p•$. -- (I 

and
 

where Q and Q" are the skew-symmetric tensors defined by
 

- ll 



= Eijk k = Ei k - (1.6) 

-and
 

s B
 

ia 
 k
= lijk k = 'ijk ...... 
VA -

The carat denotes the unit vector, p = p/p , and, in addition, 

we use the notation = -. j-P AP Both £ and Z< do not
 
operate on functions of the magnitude of the momentum. Dynamical
 

variables in momentum reduce to the two directions on the unit

momentum sphere.
 

As a result of this dimensional analysis,-two parameters
 

emerge. The first of these
 

is a measure of the relative strength of the random part of the
 

field. The second parameter is
 

.X<B (1.9)
 

where P is the particle rigidity. e can be thought of as the
 

ratio of the correlation length to the gyro-radius of the particle
 

in the mean ft'eld.
 

We look for solutions to Eq.-(1.1) of the form
 

F(l) = f + g (1.10)
 

where f is the field ensemble average of F(l) and g repre
sents the fluctuations in F(I) . To determine the relevant 
kinetic theory for f , we further assume that f is-independent, 

of position. In a later paper, we will allow weak gradients to 

determine the transport properties of the particles in the random 

magnetic field.
 

Following the technique of Kaufman (1968) we have determined
 
from Eq. (1.1) that f obeys the following master equation
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6f * f = ( EI2 . . .(ci)2 (l-c<nKa>)kZi<za'>fr~l 

where
 

1 = + K + eZ + EZ' (Y.12) 

Thus, G is the Green's function operator with the total
 

Hamiltonian
 

R = K + et + e7Z' (1.13) 

for the generator of the particle motion. Before going on, we
 

note that Eq. (i.i) is considerably more general than implied
 

here. Any force field for which a Hamiltonian for the particle
 

motion can be constructed could be included in the formalism
 

which leads to Eq. (l.!l). In particular, in subsequent work,
 

we plan to include electric fields with random parts.
 

2. EXPANSION IN en WITH LINEAR TIME SCALES EXTENSION 

Given the master equation for f from the previous section, 

we notice that it contains two independent parameters e and 

eq . In this section, we construct an asymptotic expansion of 

f to second order in En . We employ the linear time scale 

extension technique to ensure the uniform validity of the expan

sion for large time.
 

A power series expansion of the master equation in E7 is
 

given by
 

6f + c f = (E1) 2 KZ'GOZ'>f + O(E' 1

where G0 is the Green's function integral operator which inverts
 

= 1 + K + eZ (2.2) 
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The generator of the particle motion is R = K + cL , the
 

Hamiltonian operator in the mean field. Notice that the second

order interacticn operator <£'G invlves only the two

point correlation function in the random field. Thus, an
 
expansion of f to second order in Cl neglects the effects
 

of higher-order field correlations.
 

A generalization of Eq. (2.1) in which electric fields
 
have been included has been derived by Hall and Sturrock.5
 

They use the quasi-linear approach to go directly from the
 

Liouville equation to their version of Eq. (2.1), bypassing
 
the construction of the master equation. They have also pointed
 

out the equivalence of the Fokker-Planck equation and Eq. (2.1)
 

to second order in E7j . Indeed, they find that their theory 

for stationary magnetic fields and in the limit of vanishing 

rigidity reduces to the low rigidity work of Jokipii4 which 

is based on the Fokker-Planck equation. Kulsrud and Pearce
 

find that under the same conditions, which they adopt for most
 

of their paper, their Fokker-Planck theory of cosmic ray
 

propagation reduces also to the low rigidity results of
 

Jokipii.
 

We find ourselves in disagreement with the low rigidity
 

results of these previous theories. By deriving Eq. (2.1)
 
from the exact master equation, we find the specific condi

tion for its validity as an approximation, (ci)2 « 1 

The low rigidity results of Hall and Sturrock, Jokipii, 
and Kulsrud and Pearce are computed asymptotically in the 

limit of vanishing 1/c , where Eq. (2.1) itself is not 

correct.
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not made 
Hall and Sturrock and Kulsrud 

and Pearce have 

specifiq comparisons Of their 
theories with the high-rigiditY
 

Jokipii which are calculated 
asymptotically in the 

results of 
On comparing our results 

with those of
 
Elimit of vanishing 


Jokipit'S, we find that 
the first term of our e-expanSion 

gives
 

Thus, our theory is in 
agreement with
 

his high rigidity results. 
 our
 

Jokipil's asymptotically 
in the limit of infinite 

rigidity; 

e - 1
 

theory contains significant 
corrections to Jokipii's.when 


(when the radius of gyration 
end the correlation length 

in the
 

random field are of the 
same order ofrmagnitude) 

and our theory
 

1/ . 

is in definite disagreement 
with the expansions 

in 


f in powers
 
We have attempted a perturbation 

expansion of 

The formal
 

but have found it nonuniform 
in time. 


and
of En e 


ordering in the ezpansiOn 
fails for large time 

because of secular
 

To obtain a uniforgi.xpansion
 
growth of the higher-order 

terms. 


we employ the time scale 
extension technique° 

remove
 

of f In the
 

this secular behavior 
from the perturbation 

expansion. 


following, the nonuniform 
behavior of the perturbation 

terms will
 

be clearly exhibited.
 f5 which
 

We introduce an extended 
distribution function, 


"
 (mOl,'r2'' 
')
 

is a function of many independent 
time scales 


f if a restricted trajectory
 
f is considered an extension 

of 


can be found in 
the multidimensional
 

to f(T)
OT)2 f(ox!,I,.-..) reduces 
time-scale space along 

which 

crj
f in powers of 


We further expand 


(2.3)
 
aif'1 + (en) 2 2 +

f + 

and use the freedom we 
have in choosing a restricted 

trajectory
 

in the time-sCale space 
to ensure the expansion, 

as determined
 

from Eq. (2.1), is uniformly 
valid in time.
 

We have found that a linear 
trajectory is suitable 

for
 

f in Eq. (2-3).
 

removing nonuniform terms 
from the expansion of 


The trajectory is given 
by
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Tn= (e)n (24)
 

and along this trajectory
 

... (2.5)-= + ) + ) 

The extension of Eq. (2.1) is obtained by substituting Eqs. (2.3)
 

and (2.r) into Eq. (2.1); we do not extend the interaction oper

ator. By combining the coefficients of each power of (e),we
 

find to second order
 

. 0.o (2.6k+° 
00
 

and
 

_ + + + sZf2 <ZGoZ >f-o (2.8) 
0 1. 2
 

From Eq. (2.5) we find
 

(2,9)
0(%0) = e 0 O(l (2,9 

We have used the following notation: f0 O) gives the dependence 

of f0 on T0 and all higher-order time scales to be introduced 

while f0(tl) gives the dependence of f0 on l and all the 

higher-order time scales but with T0 = . By substituting 

Eq. (2.9) into Eq. (2.7) and integrating over o, we find
 

ToTo

0l( ¥.1 ) =- (2.10)
 

To remove this secular behavior on the T0 scale from fl we set
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_( 0) 0 (2-11)
 

and
 

0 0 0 (2.12) 
T-1 

In this case, Eq. (2.8) reduces to
 

6E-2 + Sf f-0 +.zG0 'E 
. 
 (2.13)
Zo- + KG o'> 

We have been unable to evaluate the secular behavior of the
 

perturbation term in Eq. (2.13) directly. The difficulty is rela

ted to the helical trajectory generated by R . On the other 

hand, a further expansion of G in pouers of E is possible. 

We find
 

Go[1 + eGoZ 1 OGoo =Z(-)n(GoonGO (2.14) 

h=O 

where the generator of the particle motion in G00 is simply K;
 

the particle moves along a straight line at constant momentum. 

This simplification in the particle trajectory is actually suffi

cient to overcome the added complexity introduced by the infinite 

summation in Eq. (2.14). Upon expanding f0 and f2 in powers 

of E , we find we are able to evaluate the secular behavior 

of each term in this expansion of the interaction operator. We 

find that a nested time-scale extension in e is necessary to 

ensure the uniformity of the expansions of f0 and f2
 

Substituting Eq. (2.14) into Eq. (2.13), we find 

-f2 20 +4
+ -2 - ~ +4t(G00z)00>_% (2.l5) 
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where
 

<c"(%oZ)no 0 <Z (Xp) (x-ps,^)>_%(p,'s) (2-16)
fo )s 


with
 

X ) dXXnl(?)E(X) (2-,17) 

for n > 0 and with JO(s) = 1 The quantity L is defined by 

15(r) M e ce 2.18) 

which reduces to 

(r1 = z - 2 (2..1. 

where 

I2 = p-.7 = p. 6../- (2.20) 

We now expand fo and f2 in powers of e so that 

+ (2.21)
fo = foo + fOl + E2f0 2 

and 

+
£2 =-2o -£21" + ... (2.22)
 

We further extend these functions and choose the trajectory
 

mn= ( , )m~nT (2.23)
 

so that, in particular,
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N2 
= -~+ ± +± .. * (2.24)

Tr0 -00 01-r 0'r2 

and 

+ EC T - +(2-25) 
TT2 =20 '21 Z'22
 

From Eq. (,2.6), we find 

6_foo 
 0- 00 (2.26) 

and then
 

fOl 3f 0
 

. OT01 -00 = 0 (2.27). 

Since f00 does not depend on 00 

Ol= - Fe oI + o (2.28) 

Notice that we are restricting our choice of initial conditions to 

foi(To0=O) = 0 (2.29) 

for all i > 0 To remove the secular growth in fO , we must 

let 

eL 00 +E
 

01 + o0 0 (2-.30) 

and then
 

f01 = 0 (2.31) 

Again, from Eq. (2.6) 

-02 + 00 0 (232) 
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Therefore
 

-02 = -00 (2.33) 

We- let 

oand 02 = (2.34) 

This process can be repeated to obtain 

foi 0 i = 1,2,3... (2.35) 

and
 

i = 2;3, ... (236)-01
 

From Eqs. (2.1), ,2.16) and (2.17), we find to zeroth order
 
in e
 

-20+ -0 
 f 
- - ds ) (x-ps,p)>foo(P) (2.37)
00 20 0 

where, from Eq. (2.26), f00 does not depend on the variable of
 
integration, s In Appendix A we how that if
 

-1 J, .3 
x x
r = - = -ps (2.38) 

and if we choose the isotropic form for the two-point correlation
 

function for the random field
1 0
 

*(239)Ri (") = A(r)6i1 + B(r) rr. 

where A- and B are arbitrary even functions of 
 r , then 

p) (x~p)> = A(r)V2 ,(2.40) 

where 
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V (2.41) 
op op
 

is the angular part of the Laplacian operator in spherical momen

tum coordinates. Thus, we find
 

-20 -00 fOosA(s^2 

00 20 (242
 

We assume that A(s) is sharply cut off at s 11 so that
 

(2.43)
f dss A(s) 

hand, if
 

j00
 

j dsA(s)
 

reaches a constant finite value for T00 1 , then integration
 

of Eq. (2.42) over r00 to obtain f2 0 will lead to growth of
 

the perturbation term directly proportional to T00 for large
 

TOO " The time scale extension technique has been introduced
 

by us to remove this secular behavior of the perturbation terms.
 

We set
 

6f00 

7-=J 
(s ^2 fo 

dsA(s)V foo (2.44) 
20 0 

and
 

& TOf 
j d .A.__..^2f
 

-00 (2.45)
f20(00)= 2 0 (t) 0 
OV 

S 
Ar 

which leads to a finite f20 ('00 ) (and, therefore, a uniform 

expansion of f2 to this order in c and further gives us the 

leading kinetic equation for f0 in G The nonzero f 2 0 ( 0 1 ) 

must be reatined to allow a uniform expansion in higher orders of 
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To first order in E , we find from Eq. (2.15) 

f20 
 6f21 
 600
 
+ Z-20 + = +
 

01 00 21
 

-<2'(x4) 006) (2.46) 

By direct computation, we find that
 

-V,]0 (2.47)
 

Therefore, from Eqs. (2.45) and (2.30),
 

0o+ Lf 4 00 ) 6E2+0(20('0l) (2.48)
d'r01 2.012
 

The first-order kernel is
 

- 2=SIc 2 (2.49) 

To evaluate the effect of K2 in the interaction term, we write'
 

)= 4 i PJ~'ij( 4 )y (x )>Pg - (2.50)
PM
 

acting on '(-^(x-ps) can be written as Z acting on 

Now r,2 acting on £ 

£2(X-ps) Therefore 

4z' (x^)'C2z:(xIP^)> =---1 m,PJ[Piz -JX"g ('>; ^ eD 

where the symbol [i i] signifies that £ acts only on the quan

tities within the bracket and not on everything to the right. The 

expectation value can be evaluated and on carrying out the rest 

of the operations indicated in Eq. (2.51) we find 
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K)>24'(tp)> = 0 (2.52) 

Thus
 

=6f 0(tO1) 6° 2fOO
 

+
o "+ z-20(0 1) - '

01 00 
 3.
 

- <£t(tp) f 0o dss U'(x4s,p)>foo(p) (2.53) 
0
 

and
 

f2i(00) = £2 1 (tOI) - 200 + £ 2 0 ( 0 1 ) + 

T foFo ds ds <P (x,p)s ZZ (x-p)_o 
00
 

(2,54)
 

The procedure at this point is as follows. The perturbation term
 

can be written in the general form
 

Ql( OO)fO0 - -00 (yl+A)fO0 (2.55) 

where Q(C00 ) is a bounded function of T and I and A1
 
are T00 independent. They have been differentiated by the
 

condition 

-2
[v,a 1 ] = 0 

(2.56)
[^,y 11 00 

We set
 

E21(00)= E21( 0) - Q(Y OO)fO (2.57): 
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+ £f20 ('01) = y1f00 (2.58)
 
01
 

and
 

o 

(2.59)
 

W21 10
 

This separation of terms is dictated by the condition that
 

£21 ( 00)- be bounded and by the compatibility condition9
 

(3r&° -00 -- [V$A1]foo = 02.6o) 
00 21 21 00 

The secular part of the perturbation term which commutes with
 

V2 
 determines the kinetic behavior of f00 on the T21 scale, 

while the secular but noncommuting part determines f20 01 ) 
Since we are primarily interested in the kinetic behavior of f003
 

we shall not specify the Q's and y's in this and higher orders
 

in e hli is actually zero but higher-order I's are not) but
 

we will give the An We find
 

=- K xp)f dssi2(xp)> 0 (2.61) 
21 f 

The fact that this A commutes with V isnot made clear
 

here, but this point will be covered later in this calculation.
 

By using similar reasoning to higher orders in c , we 

have found 

6 00f 

(2.62)
 

O 2n nC
 

where
 

oo
(_) xp T:J 

n KCn! f dSSs (x-psp)> (2.63) 
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In Appendix B we show that
 

n 

I~ k ~kc, k (2.64)n-

k=O
 

where we have adapted the notation
 

[,C.,' = [£,'c 1 [['£']] = [m£'12 (2.65) 

so that [sJ.']k stands for the k'th commutation of £ with 
£" 

In Appendix 0 we show that
 

[£L'lk = (' 1)1/2(k-L)r1 (k odd) (2.66) 

[£'£Z]k = (_1 )1/2(k-2)r2 (k even) (2.67)
 

and, of course,
 

"
[zz']o = z (2.68) 

where P1 and r2 are defined by 

[Liz'] . .p4]-- (2.69)6p
 

and
 

r LFrI ^ K'- . 0'.( 

,2 = , 1] = P'[w "P+P' ] ap (2.70) 

Equations (2.66) and (2.67) follow from thce additional property 

[Z),F2 ] = -PI (2.71) 

In Appendices D and E we .prove that 
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xp >(2.72) 

and
 

x p ) >  <r2 ( x p̂ ) C( = A(s)(Z 2 -V 2 ) (2.73) 

Thus, we can write 

I dl~n~n n^An 
A ( n-f-
dsA(s)snV2fo
0 + 

(-)1/2(k-1) £n-kf dsA(s)sf0f + 

k=l,3,... 

- (_1)nz (n-k -/ n.k.nz2Q2 

k=2,4,... 

Since £ and V2 commute, it is clear that each An commutes
 
V2
with and therefore the compatibility conditions are satisfied.
 

From Eqs. (2.25) and (2.29) we see that
 
co co 

-o 
 a-oo 
n
 
ZrFZ2 Tr- 6 = eA40 (2.75)n=O n=O 

We substitute Eq. (2.74) into (2.75) and in the terms containing 
the summations over k , we first interchange the order of 
summation, then substitute for the summation over n , the summa
tion over m = n-k to obtain 

00 

2=j dsA(s) zr(.)nzn tr s V f0 +
 
n=O
 

( 1)/2(k-1) '( 5 )k om £msf 0 + 
0 k=l,3,... m=O 

k/2 O 

0 k=2,4,... m=0 2.6
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The summations can now be recognized as the expansions of the
 

exponential and'trigonometric functions. Thus
 

wf2 = dsAse -[cos esV-+(l-cos es) 2 - esZ]fO (2.77)-0 I \Ct ^2,2si 

2 0 

Along the restricted trajectory given by Eq. (2.38) we obtain to
 

second order in eq
 

'~-(P,'r) + Ec4fo(p,-C) = (En) 2 dsA(s)e-Ecos csv' + 

s 2
+ (1-cos - sin cst]foCrr) (2.79) 

Equation (2.70) gives a kinetic description of charged particles in
 

a stationary random magnetic field. In the next section, the
 

conditions under which this description is valid will be specified
 

In more detail.
 

I THE RELAXATION TO ISOTROPY
 

Equation (2.78) has the property of driving an arbitrary 

initial distribution function to isotropy. In fact, the final 

state is always the angular average in momentum of the initial 

state. To see this, we note that since £ and V2 commute, they 

must have common eigenfunctions. These eigenfunctions are the 

spherical harmonic functions with e , the polar angle relative 

to the mean magnetic field and 0 , the azimuthal angle about 

the mean field, as variables. We find with this choice 

V2Y2m = -2(2+1)Yym (3.1)
 

and
 

ZY = -imY m (3.2) 

We substitute an expansion of fo given by
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f0 (p,) I Cfm)Y.m(SA) (3.3) 

into Eq. (2.7&Y and use the orthogonality of the spherical har

monics to obtain
 

o-- iemf2m(r) = 

=-(EI))2fosA(s)eimes[ (L(2+l)-m2)cos Es- 2 -im sin f 

0
 
(3.4) 

The effect of the integral coefficient on the right side can be
 
made more transparent by introducing the spatial Fourier transform 
of A(s) We imagine a sensor moving through the stationary 

magnetic field with constant velocity, U , measuring the 

magnitude of the components of the field orthogonal to U The
 
sensor sees the random part of the field varying with time. Thus,
 
the Fourier transform can be written as a power spectrum which
 

depends on the angular frequency, kU/Xe , where k is the 

dimensionless wave number. Then 

I wdkikS n 
A(s) = dkei(0 

and Eq. (3.4) can be written
 

2m i(em-(GT)2A'm)f -(Ec1) 2 A f 2 (-r) (3.6) 
2
7- i~m(r Im 2m (3
=m 

where
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L-6i70 -f P±L (0) 

2 %m)( 

2P±L(0)(37
+(s(2+l)-m(m-l)) P n 3-7 

and 

A'm =f k no m2(
 
_Lmj0 k+ em) 

+ ~t(±)r (rnl)+'±)+ 

(s 8)
 

in which 00 denotes the Cauchy principal value. Assuming a 

positive definite P1 , we see that A m is always positive and 
A0 0 = 0 . Thus, all fem decay exponentially to zero with decay 
time (measured in units of the traversal time) 

m = (3.9)
 

(E'I)2A 
m
 

except for fo0 which remains constant. We notice also that
 
the ff oscillate with a frequency modified from the gyrofre
quency in the mean field by the factor (C)2A'm The differ
ence between the real gyrofrequency and the gyrofrequency in the
 

mean field depends on the specific power spectrum which is in
serted into Eq. (3.8).
 

In order for the time scale extension technique which we
 
have used to obtain this result to remain valid, the various time
 
scales must remain distinct to preserve the ordering of terms in
 
our power series expansions. Thus, the decay time must remain
 

distinct from, and larger than, the traversal time. We must have
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> >
te 1 if (Gq)2 << 1 ,this condition is generally
 

satisfied,-unless f0 is very anisotropic. In that case, we
 

could have A m >> 1 for large values of A . Our kinetic 

theory is correct to second order in (el) only if the more 

restrictive condition 

(E,1) 2A m << 1 (3.10)
 

is satisfied.
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APPENDIX A
 

We prove that
 

<A'(A)Z'(4')> A(r) 2 (Al)
 

when
 

x - pr(A2) 

where r is the magnitude of the separation between x and x
 

From the definition of £ we have
 

- - '(x).pp.'(4)>ij - (A3)
6Pi 
 6Pj
 

but
 

o' (X).p- (x= E) pikpmjnPkPmRn ( ) (A)
 

where r =x - x and where
 

R n(-r) :< (X) (X-")> (A5) 

For.the isotropic random field 

ROn(r ) = A(r)8In + B(r)rYrn (A6) 

where A and B are even functions of r Notice that the 

second term, B(r)r~rn , in Eq. (A6) does not contribute to 

Eq. (A) when r = x - x is proportional to p Therefore 

<n (X)-pp.n ()> ij = i mjnPkPmA(r)aIn 

S(ij-pip (AVj )A (r). 
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Thus 

<Z=(x)L (x)> A(r)(. ) A(r )v (A8) 
6p 6p 

where we have defined 

V - n (A9) 

~p ~p 

with 

A 

n =8i -iPiPj (AIO) 
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APPENDIX B
 

(a) We prove that
 

nnk
n
n! 0-k[,',] (BI) 

k=O 

where 

[£ k ( 1 )1/2(k-l)r I (k odd) (B2) 

[£'£I]k = (_1 )1/2(k-2)r2 (k even) (B3) 

and 

(B4)
0 = L 

The proof follows by noting that for n = 0 Eq. (BI) is an
 

obvious identity and for n = 1 and n = 2 Eq. (Bi) is also true
 

if we remember the definitions of r1 and r2
 

r I = [Lot'] r 2 = [£,r 1] (B5) 

We show that the (n+l)'th term given by Eq. (Bi) is in agree

ment with the results of operating from the right on Eq. (BI)
 

with £ Thus, any order can be generated from the n=O and
 

1 cases.
 

From Eq. (B1) 
n 

nn!k tn-k[ztik (B6)
 

k=O
 

Let n be an odd integer. Then
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n
 

k=1,3...
 

n-k! (B7)
n-k(-l)i/2(k-2)r2z 


k=2,4,...
 

We define m = n + 1 and commute the L'r and F2 which appear
 

in Eq. (B7) to obtain
 

.sz-zm =9t m-i[cz-]+
£z-


m-1
 

+1 -i~i-i I (_l)1/2(k-l)Zm-l-k(£Fi-F2) +
 
k=1,3, • •.
 

m-2k
 

rn-k II)F (k-2)zm-2 -k r+r1) .(B8)
 

k=2,4,...
 

With K = k + 1 , Eq. (B8) can be written 

£-£m £mtt zr-["£"] 

m-1+ f ri-1k £(t - mk )k 4 
1k 

k-1,3,••• 

ji1/2(x-2)zFCr2
rn-i) tiz-l + 

m-2 k 

(M- 1-k) kk.! + 

k=2,4 ...
 
+ -1 (- )-nmI! m-
 (-i)I/2 (K-3) 
 (B9)
 

+ m-/C) I (IC-1). r
 

5
 



Now, letting x = k and combining the summations over odd and 

even values of k , we find 

m-1 -1ki: m-[£I 

£,£m = £m], +iim+T. £mkzck + 

k=l,3,•• 
m-2k
 

+ 1 [.Z z (BlO) 
lc=2,tI4...
 

or
 

czm k (Bli)=kiO(m-k):k! 

which completes the proof for odd n The proof for even n
 

is similar.
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(b) We prove that
 

n Y (- 1) n! £-kZ -gk 	 (B12), 

k=O -(n-k)1k!
 

for all n by noting that for n = 0 and 1 , Eq. (B2) is 

obviously true, and that given Eq. (B12)for an arbitrary n 

then the correct expression for the (n+l)tth term is generated 

by commuting Eq. (B12) with . Thus 

n kn-k-k7 (-l) n!nit-R 
.n+1 
(n-k).k. [C) z Z,] (B13)
 

k=0
 

Define m = n + 1 Then Eq. (B13) is given by 

(-fi) k(r-)1!: m-kzzk +
 
t
~~m kr-i-k)1!C 

k=O 
m 

+	 (-_)k( i) 4 :m-k,£k (B14) 

k=1 
1 1 

where the summation index in the second term on the right side 

'has been shifted by one. The summations on the right side of 

Eq. (B14) for k = 1 to m - 1 can be combined to give 

m-1
 

+ (-~mz~ + (_,)km! £m-k ,£k 

[ ]m= 4:m£-' + (.lm-m +Tl (m-k)k. 4:mZZ (B15) 

k=1 

which can be written
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in 

m!n-k)!1,I (B16) 

k=O
 

and which completes our proof.
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APPENDIX C
 

The r-operators are defined by the commutators

1" (cl) 

[E,r1 r2 (02) 

In addition, 

[Z,F 2] = - 1 (03) 

To establish notation, we rewrite Eqs. (CI), (C2) and (C3) in the 

following manner 

[£ )1 E=[z£'] = r1 (04) 

2 (C5)
 

3= (C6)
 

In this appendix, we prove that
 

P£ P']n = (-1)l/2(n-l)r (n odd) (C7)
 

and
 

n = (_1 )l/2(n-2).2 (n even) (C8)
 

Notice that Eqs. (C7) and (C8) reduce to Eqs. (C4) and (C5) for 

n = 1 and 2 . To prove Eqs. (C7) and (C8) , we assume them 

valid for the N'th term and prove that the (N+l)'th and 

(N+2)Ith term are generated by the commutation rules of Eqs. (C2) 

and (C3). 39 



Let n = N be an odd integer. Assume
 

N= (- )1/2(N -)p (C9) 

Then
 

]

]N+1 ((N- )[, 


- (-1)1/2(N'I)F2 (Ci1) 

Define M - N+. , an even integer. From Eq. (CIo) 

= (- 1 )1/2(M-2)2 (ci) 

in agreement with Eq. (08).
 

Now
 

+ (-1)1/2(M-2)[ rP2] (012)
 

From Eq. (C3) 

[£'£']M+I= (-1)1/2M1 (013) 

or 

[L'Z']N+2 = (-i)i/2[(N+2)-l]rI (C14) 

Thus, all odd n terms can be generated starting from Eq. (C4). 

The proof of the even n terms is similar. 

40
 



APPENDIX D 

We prove that 

<F=(x,p)(x,p)> -A(r)P (Dl) 

when 

x =x - pr (D2) 

The operator r1 can be written in the form 

rl = p• (P'-PO')* - (D3)
 
op
 

Therefore, Eq. (Di) is given by
 

-pip kplpx(4
j X) 


which can be rewritten as 

Nb--Pkckm[%Ri(r)R (rA (5 

-Pi P Gi jm)j (D5-) 

where r = x - x We assume the isotropic random field 

Rij('r) = A(r) ij + B(r)rir j (D6) 

Then Eq. (D5 ) reduces to
 

P -- PkekmL(6imA+r2 BPiPm)Pj = -Pi(6 mA+rBpjPm) (

-P m( V (n7) 

Because of the skew-symmetric ckkn the terms containing B(r) 

do not contribute. Some further manipulation of Eq. (D7) leads t
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-Pj)+ Pk > kpi% - A + 

it(6k-J~)+ ;kC kl 2-li A 

++Pi Jk-Pj.k ) ;k 2 _. (D8) 

Again, because of the skew-symmetric e , only the first term 

of Eq. (D7) contributes. Thus, 

< r l ( Xp ) Z (x p )> --A(r);Pj^i i jj j * 

= -A(r)t (D9) 
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APPENDIX E
 

We prove that
 

A(r) Z2 -v 2 ) (El) 

when x = x - pr by substituting in Eq. (El) the following
 

expression for F2
 

r= (.) - Z' (E2) 

Thus
 

x= ( (x)) (x,p)> p xp)> 

= tK(P.(3 ))'(t;)> - A(r)7 2 (E3) 

We must evaluate
 

<(P-iB (x))z (x,p)> =-13 mX)iijk kX 

==-PmPi GijkRmk (r-)' - (E4) 
6Pj 

#% a%
 

where r =x - x With
 

Rmk(r ) = A(r )(mk + r2B (r)pmpk (E5) 

we find
 

-- 1(p 64 41 A(r) (E6) 

Substituting Eq. (E6) into Eq. 
E), we obtain Eq. (E)
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CHAPTER III 

OMNIDIRECTIONAL INTENSITY AND FLUX EQUATIONS 
FOR ALL BUT VERY LOW ENERGIES
 



INTRODUCTION
 

Most modulation phenomena occur in the interplanetary
 

magnetic field in the vicinity c > 1 Thus, expansions in
 

E, as presented in the previous chapter, are not well suited
 

for studies of the modulation problem. Expansions in 1/E
 

might be somewhat more useful; but, as we have already noted,
 

such expansions have been carried out incorrectly until the
 

present time.
 

In this chapter, we present an alternate method for
 

obtaining a useful modulation theory. We treat c - 1 right
 

from the start carrying the full dependence on E in the trun

cated mezter equation. To reduce the complexity of the result

ing theory, we give up a full kinetic description of the cosmic
 

ray distribution function by studying only the first two moments
 

of a distribution function which is assumed to be very nearly
 

isotropic. This approach is well suited to studies of the
 

observed cosmic ray distribution function where anisotropies
 

have been found to be very small.
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1. THE OMNIDIRECTIONAL INTENSITY AND FLUX EQUATIONS
 

We expand the distribution function about isotropy in terms
 

of the spherical harmonic functions. The result is
 

p2f .11 (.1) 

where I(T) is the omnidirectional intensity given by
 

p 2 d~pf (pIT)(12 (1.2)T(r) = p2fdy(r 

and O(T) is the flux given by
 

( = .).fdf ppf(p,) (1.3) 

The integrations in Eqs. (1.2) and (1.3) are carried out over
 

all directions on the unit momentum sphere. Notice that both 


and ¢ are differential functions of rigidity. The next term
 

in the expansion in Eq. (1.1) measures the anisotropy in the
 

cosmic ray pressure tensor, which we neglect.
 

By substituting Eq. (1.1) into the'truncated master equa

tion and using the orthogonality of the spherical harmonics on
 

the unit momentum sphere, we find
 

0 (1.4)
 

and
 

3 )2f d f( d < 

We must find the behavior of ('T) for large - and then, on
 

adding weak spatial gradients in I , we can find the transport
 

equation for I which is appropriate for the modulation problem.
 

The major simplification which is introduced by the study of
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only the lowest moments of f is readily apparent from Eq.
 

(1.5). Equation (1.5) is in the form of a matrix exponential
 

equation for ¢ where the integral operator which operates on
~A 
¢(--X) is no longer a differential operator in p In addi

tion, because of the integration over &p which remains, only
 
p ,^ - k^
 

certain low-order moments of the operator K2.p)e kp.a')>

.4
 

contribute to the evolution of ¢ ; the full complexity of this
 

operator never enters.
 

In the "interaction" representation of Eq. (1.5), we have
 

for
 

s(T) = e- .(z) (1.6). 

the equation
 

T (e )2fdd K( .; ) (1.7) 

where 
x-r)= .(-)) - (X-r)cos eX + rl(x-r)sin ex (1.8) 

and where
 

= p + Nysin EX) + 00 EXIX-)j (1.9) 

To take advantage of the fact that Eq. (1.7) only depends on
 

certain low-order moments of the operator <( 2 .pT-P^
(x-r)>
 
we introduce Legendre polynomial expansions of A(r) and B(r)
 

from the correlation function. We let
 

A(r) =Z A(?L)yP )- (wi0 

1=0
 

and
 

B(r) =ZB (X)P.S(z) (!.IIl) 

2=0
 

where P,(z) is the 2'th-order Legendre polynomial function
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of z ( and where r is the magnitude of Eq. (1.9) given
 

by
 

•- l- (G?,)2-cos EX 
r = 21+ (1-z2 ) 7(Px2j/( 

The coefficients, A,(X) and B,(X) are given by
 

A2 (X)~ 1 A(r)P2 (z)dz 	 (1.13)
 

ano
 

B2 (X) ( f
1B(r)rP(z)dz (1.14)
 

After considerable-algebra, we find
 

2 
 'fL dx{2J Cos EX-sX2K()(OS ?1JP-ST-rx) + 
0 

__ -(cTI) 

2 3f dXjj+Jicos CX2 (K( )+(2)) 2 sin cXQI- snwO> 
-(ej)
 

dco ex-1A + 
- K( 6x)2 
+ 	 (cr)2 3 tj X sin Ec-X2(K(1)+K(2)) 

.(/cos cX-y - eX~~( (1.15 

where
 

47 



4r
 

4 = + Ao-L A2 


5-L2- B4 -T 2e 01
K(') 4yf B 2 +] (
 

and
 

+ 2) _Bir. 4 -a 
85L-

4 
4 + 7 0o
2 2 
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2. THE LIMIT, e = 0 

In the limit c = 0 (but (G7) 2 finite) we find
 

51) 47r K(l) +(2) 5(231) 

and
 

4YA 0 , = A0 (2.2) 

In addition,
 

A0 A(X) and B0 B(X) (2.3) 

Therefore 

7 = -2(eT9 2 fO dX A(X) S(r-X) (2.4) 

In this limit, O(T) obeys the same equation as S(T)
 

A straightforward linear time-scale extension of Eq. (2.4)
 

yields
 

dT 00 (2.5) 

where 0 is the leading term in a power series expansion of
 

in powers of (E1) 2 We have, in addition, normalized all
 

lengths to the parallel integral length
 

= 2 d% A(X) (2.6) 

p 0 

Upon adding weak spatial gradients, we find
 

B- = + aV'¢0(2.7) 
= 0 
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and
 

40 21
 
T + - aVI (2.8) 

In these equations, the gradients are measured in units of L , 

a macroscopic length which measures the size of the-system con

taining the particles and 

x 
P (2.9) 

For I(-r) slowly varying in T , we can eliminate 0 from 

Eqs. (2.6) and (2.7) when T 1/a The result is 

VVI (2.10) 

a familiar convection-diffusion transport equation for I0 , the
 

leading term in a power series expansion of I in a A new
 

time scale has been introduced in Eq. (2.10)
 

T = a-x (2.11 

The velocity, V , is the average Alfven drift Velocity due to 

curvature and gradients in the magnetic field averaged over an
 

isotropic distribution of particles. This result is in agree

ment with the previous chapter if the expansion of Eq. (1.1) is
 

substituted into the high-energy theory calculated there.
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3. FINITE ENERGY (e - 1) 

Equation (1'.15) can be written in the general form
 

A
 
- - (ETIrO dXK(,X).(t-X) (3.1)
 

UT 
 0
 

where K(c,X) is a tensor kernel which symbolizes the large
 

collection of terms shown in Eq. (1.15). We have seen from
 

Eq. (2.4) that when e -;> 0 , K(e,X) takes on a very simple form
 

with the attractive feature that it has a sharp cutoff in X
 

due to the finite range of the correlation coefficient, A(X)
 

It is this property of the finite range of K(c,X) when e -> 0
 

that allows us to apply the linear time scale analysis to obtain
 

the high-energy kinetic and transport theories. When e 1 


however, the kernel takes on a long tail which goes as 1PL
 

The mathematical techniques for handling Eq. (3.1) with such a
 

kernel have not been developed previously. In the next two
 

chapters, we develop the necessary techniques to determine the
 

long-time behavior of Eq. (3.1) when the kernel is long-ranged.
 

The long tail in K(e,X) is a general feature which comes 

from those particles which have pitch angles relative to the mean 

field close to 90 . The basic interaction between a charged 

particle and the random magnetic field lasts as long as the 

particle remains within a length Xp of its starting position 

at some arbitrary origin in time when the interaction is assumed 

to start. When e << 1 , the gyroradius of the particle is very
 

large compared to Xp Therefore, the particle's trajectory is
 

essentially straight through the correlated region; the distance
 

between the particle's position at time t and at time t=O
 

grows linearly with time, and the length, Xp , is quickly
 

achieved. On the other hand, when s - 1 , the gyroradius and 

are equal in magnitude. Therefore, we must take into account
 

the helical nature of the particle's trajectory in the mean field.
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X 

If the velocity of the particle parallel to the mean field is
 

small, the particle may take a long time to get further than
 

from its starting point. The particle-field interaction
P 
can last very long and, as a result, can contribute an inordin

ately large amount to the interaction integral operator on the 

right side of Eq. (3.1). The result is K(X) = l/X for 

X>> I We present, here, a specific demonstration of how one 

of The coefficients involved develops the long tail for a Gaussian 

correlation function. By examining any one of the A t s or 

Bz 's one can convince oneself that the results shown here are 

a general feature of e - 1 even though A(r) and B(r) may be 

short-ranged functions. 

We .:alculate A0(X,e) when
 

2
 
-
A(r) = e r (3.2)
 

We define the function
 

1 - IcX)22- - cos ex)23.3)
 

Then
 

r = [(l+C(EX)) - l(EX)z2]1 /2 (3.4) 

Therefore
 

A0 (X,e ) = e-X2 (l+ (CX))fz eX 2C(EX)z2 

-x2(l+d(cx)) 
777 e Erf(XV707) (3.5) 

Notice, for E = 0 , Ao(%,e) = e . However, for finibe E 

and for large eX , 
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1 _cos eX) 

A (3.6) 

In the next two chapters, we study models of Eq. (3.1) to
 
develop the mathematical techniques necessary to find the long

time behavior of the flux. In the first of these chapters, we
 

consider a class of matrix exponential equations in which Eq.
 
(3.1) is contained. In the following chapter, we study a scalar
 
model of Eq. (3.1) with a long-range kernel given by
 

K(X) = 1(r)K()(3-7) 
1 +T 

We will nee that the behavior of functions governed by this
 
kernel i6 rather surprising; in particular, the decay time is
 

not analytic in the expansion parameter but behaves as
 

(clin c:l)-I 
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CHAPTER IV
 

APPROXIMATION METHODS
 
FOR THE GOVERNING EQUATIONS 



INTRODUCTION
 

We discuss here the uniform expansion of matrix exponen

tials in a rather general form. We succeed in obtaining
 

uniformizing formulae under the conditions that the generator
 

of the time translations is a linear operator in Hilbert space.
 

This means that we are not confining ourselves to a finite
 

dimensional matrix system. The major restriction in the
 

analysis is the assumption that the direct Taylor expansion
 

of the unknown function has secular behavior which is of a
 

polynomial nature. The polynomial has as its maximum degree
 

the order of the term in the direct perturbation expansion.
 

This restriction is serious and effort is being made to remove
 

it. It is, however, worth noting that with the definite poly

nomial assumption made very definite conclusions can be reached
 

with practically no restrictions on the operators involved.
 

Thus, a class of partial differential equations which is con

siderably wide is included. The type of equation included,
 

in fact, -encompasses the class discussed by Akhiezer in his
 

large monograph.
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1. NONDEGENERATE PERTURBATION THEORY
 

We write the equation to be solved in terms of a Schrodinger
 

form as 

iZ + AU = -6BU 

We decompose the perturbation as 

B = aA + r (1.2) 

where we have chosen 

Tr(A - r) = 0 (1.3) 

We readily obtain 

= Tr(A• B) (1.4)
Tr-A • A7 

Substitution of (1.2) into (i.1) yields 

i +(+a6)A'U=-6r (1.5) 

We redefine the parameters of relevance by introducing 

s = (l6ab)T . (1.6) 

so that the original Schrodinger equation now reads 

u-s+ A- U = -e- u (1.7) 

We now proceed to perform an expansion of the following form 

+ 0%'T) 2%('to) (1.8)S(1o) = '0 G0 + + ... 

T1(T0)= CI( 0 ) + C2rjl(O) + ... (1.9) 

T2(-0)) = c212(0) + ... (1.10) 
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We readily obtain for the derivative with respect to the para

meter, s ,
 

Similarly, we have 

d_sd'r0 l+ e + E ... (1.12) 

Thus, the Schrodinger equation reads
 

+ s nl 6+.
+Td1~i '_+E 77 2 2 

122
 
-(++ + + ... )(A + e)U (1.13) 

We.notice that the expansion used (represented by Eqs. (1.8)
(1.10)) is sufficiently general to include both Lighthill
 

stretching and a time scale. In particular, many time scales
 

are included.
 

In zeroth order, we find
 

i T + .AU = o (1.14)0 


whose solution can be written as
 

iATo. 

U0() = e UO0 1 ) (1.15) 

A first-order equation can be written as
 

+ A U -0 - A • U0 - .u 0 (1.16) 

0 1 

We can solve this equation as 
iAT 0 6UU0 TO -

UI(1O) = e "UI( I) I l 
TC1 

+ iC0A U0 + i 1 
0 

0 

(1.17) 
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where we have introduced the convenient abbreviation
 

-
r(X) = eiAX.r. A (I;18)
 

In order to study the secularity, it is useful to multiply the
 

equation (i.17) by the inverse of the leading-order operator as
 

given by (1.15). We then find
 
1iA-o I, -iATo0- Uo
 

UI= e OUI(I)U 0 (0 )e e- UO- + ioA + 

+ I 0O dX(x) (1.19) 

A simple manipulation yields
 

-iAT 0 1 1 iAT o= 1 -1 eo +
 
e r Ul(-To)Uo (o)e = U(tIUo( I) - iAl + A + 

1 1( 1)~(1
 

TO
 
+ d I (-x) (1.20) 

where we have introduced
 

A -i ----u (U_i) (1.21)
 

We obtain
 
- i A - Oli I - iAT 0 

lrn e1 T1 UI (- )f O )e = 0 (1.22) 
r0T-~> 1 00 

providing that the following condition is fulfilled
 

A = rn- A + dXr(-P) (1.23)0 

We can make the calculation more explicit by using a complete
 

set of eigenfunctions of the unperturbed operator. We let
 

Ain> = anln> (1.24) 

We can then obtain matrix representations in terms of the basic
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eigenvectors as
 

A =Zanin> <nj (1.25) 
n 

r Z rmnm> <n (1.26) 

m,n 
We have then the following expression for 

(- = eiAX1 1m,nlm> <nle l AX 
m,n
 

rmn e-i(am-an)X m> <ni (1.27) 
m,n 

We readily can split the sum as
 

r(-x) =Z mmm> <ml +Z m,n ei(aman)im> <ni (1.28) 

m m,n
 
where the prime signifies 
m / n We thus see that (1.23)
 

becomes 

A1 = i amm> <ml + Z IF'm> <mI} (1.29) 
0O m 71n
 

If we now let
 

el = 'o0(1.30) 

and
 

0 = 'Y10 (1.31) 

we can write
 

A1 =ZYam + r, )Im> <ml (1.32) 
m 

Furthermore,
 

A1 . A = (-yam + rm.)Im> <m Zan In> <n 
m n 

YZamamlm> <ml +Z,rmmamm> <ml (1-33) 
m 588 m 



It is readily shown
 

Tr(A A) = j amam =0 (1.34) 

and we thus conclude m 

= , %= 0 (1.35) 

The final expression for A1 reduces to
 

Al =rimmlm> <mI (1.36) 
m 

This is one of the principal results of the paper. We notice
 

that the first-order quantity is written as

u1 (TO) = eiA0 uI() + 1 dx(X) T0 1 Uo( O) (1.37) 

Since we have
 

£A1,A] = 0 (1.38)
 

we also conclude that
 

= A1A1(1.39) 

To obtain a final expression for the perturbation result, we
 

notice some useful relations, in particular,
 

?(x) = rmn ei(am-an)Xm <n (1.40)
 
m~n
 

d0 () = AIr 0 + Im e i(am-an) In> xni (1.41)
 

We can then write
 

f dXr(x) = A1t0 +'S(-C0 ) (1.42) 

where we have introduced
 

",i (am-a n ) 

) a - Im> <nl (1.43) 

in5,n 
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Thus, the first-order expression is given by
 
.1 iA- 0 

u1 ( 0) = ei Ul(' 1 ) + i(o8G) u%(o ) (1.44) 

Differentiation yields
 

Ul(7O ) iA-c0 aUl(-) 
i 6'r, = i e T-1- ! 0) " Al. U0(TO) (1.45) 

Multiplication by A1 yields
 

A1 T 1(4 0 ) = etl U(1 ) + iI t(-0 )•Uo(-'O) (1.46) 

We thus obtain
 

UJ (--Va) iATOF uij(t 1)6-u1 + A1Ul(-O) ==e)e Ul + AUi(rI)j-iTs "jo( 0) 

(1.47)
 
The following calculation now indicates the behavior of the
 

quantity J We have, in fact,
 

/ ei(am-anOl 
r

[(-1o),A1] rmn ia-n m ) r , m[ 
I a > <nl 'Ir'> <m'I 

m,n m
 

, fmnFmm iam-an -X [m> <mI6nm--Im'> Knlamm]=.I"r~mm i(a ,-an)-c<n 

m,n m
 

e )T--m> < n l nm\/ei (aman-lh -ZFmnmm i(= 'mn (a-n m a 
i(am-an)
(- i(a -a 


m,n
mnn 

• /el (am-an) 0i 

Zrmn(nn-rmm)( i(a -a 1) Im> <n (1.48) 

m.n mn) 

We then conclude
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ei (a' a') -oD 
* (r.. rM)(e (kam-an,)o) Kni (1.49)A~j =ZXr 

m,nn 
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2. SECOND-OBDER 	PERTURBATION THEORY
 

The second-order 	equation is written
 

U2 
 6U1 U0 6U0
 
6- il 	 Uo
"2 1 -	 1 7*2 TF- r1 - 10 A 

i -, + l'iO-	 iT)2 - u- .= r. h oA o. 
1 2 (2.1) 

We have to use the following expression
 
)
6U1 iAco0 Ul < 	 0i 

i =:ie 	 -if dxr(x) - l]Ai100 (2.2) 

which was derived from first-order theory. Multiplication by r
 

gives
 

iA 0 PTO 
r-u1= r.e 0 ul(It1 ) + iF dF(X) -U 0 - A1 • UO(UO) 

(2.3) 
The second-order 	equation can then be written as
 

6U2 	 iA' AU( r10
0 U ) 

+ 
A .U2 -i + i dXP(X)4 1 U0 - ir ex1 % + 

1 0 

iAT 0 TO 

F-e Ul (-l)- irfo dO(?)U0 + ijo0. A1 U0 + 
0 

+ 	 71 A1 Uo - "12 T - 1 oA 1o (2.4) 
2 

The solution of this equation can be written
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iA° Ul(l)
-
 UoTo
 
T
 (X')AlU(U2 (4o) =-T' 1 +-f0d2X d A1 o) 

To12 2 - iAr0 J
2061U 0 + if dXP(X)e Ul(l) + 

P 0 Jx 0 d 0
-Jo 1 Aodxi(1 ) dX' (X').0 + 0 dX(4°-x)r(x)Alu(T°) 

OA *U O (25)
i lAIUo -712 o + iTj


We now note some integral relationships, in particular,
TO 0 " T 
JdXfro dX'I'((X) fto rX' 0X = f 0 dX xr(x) (2.6)

xI f~d

To0 "o TO - 4To 

-r dXf d'r(V') -fI dX(TO-X)F(X)= - 0 f dxF(x) (2.7) 

0 0
 

We can therefore re-express the second-order quantity as
 

A 
 T
o
 

TiAT 0 6u1(Cl) + o dX(X)A U 1 2 2
 
U2'rO) = -1 0 e - + J() - TT0AUo + 

±fo dul(t!) - f dxr(X) fx dX(X) U0 + 

iiA 1 Uo - T12 -1 + iToA " U (2.8) 

We also note the following decomposition of the double integral
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+
X () f X,° 	 f adX' O-) +k'i x -i f Xrl?1U) 
I o
 

0 	 2' 

.+ X 	dXF r'(x ),(x j(.0
2 o '30
 

2e TO0 e LuUo~~T iA1?I, [I U2 0 1(0
 
Wfecasheo rete e
s cond-oer eationa

+ i(A T)e u (t) +
1 0
 

2,- + ~u .FOaxfddxF(x-)7(x1 (2.10) 

After some simplification, we obtain
 

u T= 	 ±+ j0 A *U 0 - i 1 TJ 0 -p ~ A1 JjU + 

[0 1 ( 1 - AU t) + iiA O Tl(j4 
1 ) + 

- -.~f 	 dxf' ' [7x)()u 0 (2.11) 
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As in first-order theory, in order to study the secular behavior
 

we multiply by the inverse of the zero-order operator to obtain
 

11 Xt 6Uo0 1)) iI 2 2LJ 

t _o iAtoF~1J(t 1 ) A ]-14 -tAt 0oT12 2irU ~ ~2T22 - iAIU 1(r1)jUO (t1 )e +U0 + -1 1- 2 113 + 
Ir-it0 +ANUF1~ 

+ 12- et(o 1 ( 1 )uo( 4 )e 

+ e ,) J +U2(}O)U U0 0] 

= I2 2A 2 fro- eO] o L5 ixl3) 1 (.1)+
--iAl-i 11 )iA1 o o I(I0
 

12o 11 12 

2122
 

e
+[1 , Alle + i !_2e i±lt-UU(l)Uol(ti)e
. 11+
 

_iA1e i T1-c 1 i T0 iA65
jAltlijeliAl-i l-1 -iAIt 1 i 

* t dxfo dX'. L(?),r(X)]e 0e~ (2.13) 

The secular part is then obtained in the following fundamental 

expression 6 
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iA2 = lim T0 A - i T 1 + 

'r0 -iA±'rlF/( (i) iA pt)\--('4 I[iZJ- J +A
1 1 ) +IIrtk
TOe-i 1l(--0m- , . J.1A +
 
-2[ko'rF 1 - i1 0)X2' 

1 - 1 1 \]iATo iA1x4.AFt Tdxf o
-lalh e o % [,r(x ),r()e i1l(.4
 
2 ' A1 1 0e
 

We will now perform several operations to simplify this result.
 

We notice
 

ToT
 

+ f6J)J(] (2.15)
0
 

so that we can rewrite the quantity A2 as
 

-
iA2 lim 4- ' +
= 2 0 A 1 1
 

0 " Ot'2 '2
 

h2 L_ -i iAIU1 (%)>0 (Vi) +1 [A1,J Al + 

1 0iA 1 1 -iAT 0
 

2 _- EAe --eiAIt - e e
- T1 2 e al1e 2 

Sf 0 dXjp(X),AJe 0 1e  1f dXt(X),i(X) 
 (2.16)
 

After some manipulations, we obtain
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iA 2 = lim %A - i A
2 0 T2 

3I-
-2n iA L\T,U ---aUl(Tl)O ('l)+ [Al,, ]]eiAlT + 

- e1 1 iAtO0f L(X),A 0 e + 

e '-iAl T dxr i iAl l} (2.17) 
1,qe- f] 

It is useful to recall the following relationship
 

"I 
(a m-a n ) 

V 1)'A] = .mn mn- mm 1i(am-an)) <l (.8[(>-),A] r ~ (2.18)zrn(Prnnrln)(e -1m> <nI 

m n
m,n 


as well as the integral relation
 

TO 
-r r i(a -an>)r 0 - TTa }Im> n 

J L0 m, nn ) -a 21i(a n 
m,n M an) (2.19) 

The matrix representations for / and its derivative are very 

useful 

- i(am-an )X 
(x) - Fm,nei an m> <n (2.20) 

m,n mm n 

= r() i(am n)XIm> <n (2.21) 

m,n 
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The commutator of > with e can therefore be written 

i(a -a)X
 
V [ mn m'n ii(am-au ) 

x
 
m~p m'n;


XI. <nl,,m-> <n-I 
" i(am-an 
 (ala
 

rmnrmn2 i(am-anj )e [,m> <n',6mn +
 
m,n
 

Im'> <nlnm]
 

rmZ rnn e i(am-an)X e )XM><n'I +
 

m,n n' n/n' m n
 

r Z ,ei(am-an)X ii(am'am
 

- mn Fmmtricrm-an)e in> Kni
 
m,n m (2.22)
 

Some manipulations simplify this expression to
 

/ei(am-an)X i(an-am)X
 
)(X) ()J = I I rnm' i(am-an- e ,m> <m, + 

mn mm 
n/n' 

i(a -am)e i ( m,' n < 

zrm a > Im'> <ml 
m,n ml (2.23) 

We can combine the terms in the double sum in the following way
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i(am-anI ().k) = m f(mn nm, i(am-am )X>e i(an-am )>),m> <m'I + 
=2 


m,nm'mn 
n/m'
 

/- i (am-am)>, i(amo-an)?_ 
e
-rnm r m ,n , i(anae ) )Ira> <m1) (2.24)

m/ 

The secular part of the integral can now be extracted as
 

fdrc M> rS-c TO r. <m + r M> <m 

Tm 

m,n 


t0 mn ia-a) nm mn i(am-an)J 

nm
 
(2.25)
 

This expression can be rewritten as
 

Sec fo 64A((), )J -2i- o r r Im> <ml (2.26) 
m, n 

We are now ready to obtain a simple expression for the quantity
 
A2 Substituting (2.26), we obtain
 

iA2 = limr 0 A i A1 +IV0 - T12 "2 
0 1 

- 0 1 1 j t))-0)(t 1 ) + £A1AS]e 1 i +-iA1 t[ l(t) 


-tiAfn ( -i(am-an )TO iA T 
e712 Y, mnnn- Fm) -i(am-an) )lm> nle + 

mn
 

TO e-iAlTI Z n Im>aM1 ei l (2.27)
 

m,n
 

We notice that this expression can be further manipulated as
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----

A = lm i I A -{TA- +
2 	 2
 

0---> M0r 

_iAlr/ aUl 	 -I
 
(9Ul5 ) AIUl()>OJ(tI) + itAlp] ]ei l + 

TO ,-,-i (am-an)-C il 
e-iA 1
- i T mn(nn-rarn) e n. I> <n e l 1 + 

mm neIP ll 	mn mnn Im m, ealml} n)28
 

+ oe I Zr r e
 
min
 

It is important to express the commutation rules of A1 with
 

We obtain the following relations
 

-- i(am-anA
 

[Al'] = 	 - r(r r )( (am-aln ) I> <n (2.29) 

min 

-
eiA"[A:l, ]e
iA X
 

[AIy41 =z Zrnn- mm)(a 	 ur> nI(230 

1 1)( /le i (am-an )X
 
-Fm(rnn-rm')r i-e n Ira> <n! (2.30)
 

minl
 

We can thus write
 

[AI'WJ F(n-r) 	 u~ma
Lr m".M /e i (am-an)kln r> <nI (2.31) 

mn
 

A simpler expression for A2 that results is given by
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A = lim -i 2 Al + 

"2' Ul ) +l
+ ui(Ti)>;( I + 

iI. mni'aman)) ira> Kni] et~t + 

r2.2
 ' jm
+0 e-~~ *~y eAlT }
1mn (am-n)e
 

m,n 

01\.Ie' +mm 

If we now consider the following two operators
 

0\ rmn(rnn-rmm) Im> <n (2.33)01,=L /m (am-an)
 
min
 

02 = (am-an) (2.34)

min 

0Yr" mnrrim Im> < m 


we obtain the following relation
 

r r 

[A• ma[ [m'> <re'1, Im> <m1] 

m m,n
 

CIr~'mn )m-> <milm~m- Im> <m,16mm.]FT L 


(2.35)
m,n m , 


which can be summarized as 

[AI,02] = 0 (2.36) 

71 
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Similarly, we obtain
 

i(am-a n ) [n> 
m m,n
 

m n)
M'n 

Z Z ,, n r mn( rnn- rr)) [ Im < l'dm2 -37) 
m,n m m 

nn]
L~n - i(am-an) L n 
m~n
 

so that we have
 

(2.38)
Im> <njMn i(an
mn
Bywrtig= 


UT 1-1 mniam--an ) 

U1 Q(-r) / r- -r 
i + A1U 1 U 1l) = 1 ~ I 1l) (2.39)
n-ima Im>K<nIu0 (t


m,n 

we obtain
 

2 {im- i A - A + 2 rn nr (2.40)
2 2 m,n 

We are now prepared to determine the scales and we introduce them
 

through
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T12 = T 0(2. 41) 

(2.42)
1o = YOO 

(2.43),1 = ^TlO 

We can thus write
 

A2 _-y0A _ y 1 Al +Zrm ln> <ml (2.4 
m,n 

This expression'is more compactly written as
 

A2 = -iyoA - 71AI + 02 (2.45)
 

Multiplication and the tracing operation yields 

A + 02 -A (2.46)
2 A = -imoA A - A 

Tr(A2"A) = -i70 Tr A -A +.Tr(0 2 "A) = 0 (2.47) 

We therefore oDtain 

-i Tr(O2 -A) (2.48) 
Tr(A-A) 

Multiplication and tracing with 02 yields
 

0A -- r 1inr(>m a In'> Kn'l
2 -A mn rim a -a n n' 

jn' amlm> <ml (2.49) 

73
 



Tr(O2 -A) in rm )am (2.50) 

m,n
 

Thus, we can write
 

r r m 

"0= -i mn nmQ ) (2.51)a2
 
m 

Multiplication and tracing with A2 yields
 

A2 A 1 = -iyoA • A, - 1AI . A1 + 02 A1 (2.52) 

Tr(A2 .AI) = 0 = -yl Tr(A1.A,) + Tr(02 "A1 ) (2.53)
 

and thus we obtain
 

Tr(02 .A1 (254) 

71 = Tr(A,.'A2 ) 

Multiplication and tracing with A1 yields
 

A1 * 1 =Zr m.mim~in <mllm) <ml
m,
m 


Y , rmmrmmlm><ml (2.55)
 

m 

Tr(AI'A) = 2m (2.56) 
mm 

Since we also have
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02 .A Imrnr I M> <ml m><' 

2 = 
1 X'mn mrim T-an (2.57), 

mn
 

Tr(O2.A1 ) = vlmn nm mm (2.58)
 
(am-an) 

mn
 

we obtain
 

Z mn nm mm 

1 h -n(2.59).
-

mm 

m 

We can then write
 

A = Tr(O2 -A) A Tr(O2A-A A (.o
2 2 Tr A - Tr(A (2.60) 

0=Z rrmnrim 7I(a> -a<ml (2.61) 
mn
 

This is a rather compact equation for the second-order uniform

ization. We can now verify a number of the properties of the
 

second-order uniformization. In fact, we have
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http:Tr(O2.A1


F~ru> GIAi
 
)
L m (aman

m,n
 

41 mana Z;'wjm><i~mxm'u]'
 
m,n m
 

I irm'm[Imxm'IanIm 
 ><nI6m
 

mn m
 

=,.mn Lrnni,> <n-Im>o> )l 
i-7m-an7 L
 

m.n
 

ainn rmm)Im> <n1 (2.62) 
mn 

Since the first-order equation can be written as
 

6i O +al(l) +F m-U Im> <nl,Am To"m
 
S+ Al 1) +(i Z' i(aj-a 7) tn>( KIAJ( 1)m,n (2.63) 

we have
 

T iAIT1 I d-lei l (nI-I)
iA+ 


Ul(l= e UI( ± da' <n 
m,n 

iAl T I,'1) xrA l -iA~ = et f Im> <n iA ie-Uo() 

o Min n) (2.64) 

After some manipulation, we can write the result as
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1 ra~ • -iA T 

U=() e Ut 2) + e 7 )Im> <ne 
iAIr A M" 

nm 

Ammn 

y-m n) ti> <ni UO(t,) 
mn
 

If we now introduce the useful notations
 

Allm> = 1x rmmm'> <m'Im> = rmIm> 

A,I -a> = rmIm> 

we can write
 

niAo iAl ' I r )e i(am-an)-r 
0 11+__ -= mm nn 1 

m,n
 

, n m n 'K~u& 0
 

We can then give compact results which are
 

X n i(am-an)T0 i(rn -rnn)T 1 1Ia
UI 0 =e iA-r0 e iA-C 1U (2)Le jr: e 

mjn 

iA- 0 eiAl~1 iA2U I
1 2
uO(4 O) =.e 0 e eI2Z2 UOF%) 


A slight rearrangement also yields
 

77 

A 
UO(t) + 

(2.65)
 

(2.66) 

(2.67) 

(mn'0i.<U)
 

n~(o 

(2.69) 

(2.70)
 



. iAl TI I' r rFi(r -r_) 1 _
UI('l) = e U1 (t 2 ) +Z a__ )[e7 (mm nnT1 _1ir> <nIUo(O) 

, n (2.71) 

We note that since we have 

A2 = 02 - i"0A - 71A I (2.72) 

with 

02 Z rmn nm lm><ml 

m,n (2.73) 

we can also obtain a matrix representation for 02 This is
 

given by
 

°21m=I M,> <m' I 
rn1nrm"nrn"m". (am .- m>a n 

Inm
= rmnr 
n nm (am-an) 

n/m
 

7mn Im> (2.74) 

n 

n/m 

If we then set 

021m> = Omm> (2-75) 

we find 

OM .. nm (2.76) 

n (am-an)
 
n/m
 

We can express A2 then as 

A2'm> = (Om - iYoa m - Yrmm)Im> (2.77) 
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which can be summarized as
 

A2Im> =aIm> (2.78)
 

6m = 0m - iyoam - 7irmm (2.79)
 

We can finally rearrange the first-order result which can be
 

given as
 

+ AlUl( 0 )= e i t + A - ( 

= ie±A0[( am n Im> <nl),AljeAro UO( O ) + 

m,n 

i(am-an)T 0 

irmn(nn-mm)(i at)Im> <nII-To(t 0o) 
m,n 

m~n
 
r i ,i-(am-an)T 0 

- irmn(nn-Fmm)Qei~am~an ) -')Im> <nIo(vO) 

m,n
 

= X rmni(Fnn-)mm) iramn. 

m,n 

= V n Im> <nI>A1J Uo(to) (2.80) 

mn 

which can be written compactly as
 

i 3T + AUl(. ) = i P ImP <h l 

mn (2.81) 
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Utilizing Eq. (2.32), we now notice that alternative expressions
 

for A2 can be given
 

A2 =lim i A - A + 

e112 ! Ki -- il 1}) "
 
+o L 1 + A1Up)t1))U;C+1 

- rnn-rmnmn ]iA 1 oim>KM 

-i Z I n m> <nj e +n m
 
m,n m,n
 

lin{i L A - A + [0 u 1)( + 

-
m n) [ina> <nJsAi]e- i(mm-Fnn)'j + 

mjn 

+T)!2.+ Tnrmnrnmm -a Mt (2.82)K 
We see thus that the second-order theory can be made fully
 

explicit. Operators that uniformize the expansion are computed
 

explicitly and the major assumption, we repeat,has been the
 

linearity of the perturbation expansion in first order and of
 

the quadratic behavior in the second order.
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3. DEGENERATE PERTURBATION TBEORY
 

We now consider degenerate perturbation theory by writing
 

the Schrodinger equation as
 

V+ (A+cB)V = 0 (3.1) 

If we consider the new operator 

V = eiA U (3.2) 

we thus obtain an interaction representation 

i - = -cBU (3.3) 

OT 

with the operator
 

B" e-iAt-B-e i AT (3.4) 

We now introduce matrix representations as follows 

Alm,> = amlm,ct> (3-5) 

The symbol a denotes the degenerate eigenstates associated 

with each eigenvalue an 

B = X Bma,npIma> <n,iH (3.6) 
mn
af3
 

- -i(a -a)r
B =L Bmant e Imc> <nI (3.7) 

mn
 

The relevant time-dependent operator given by Eq. (3-7) can be
 

rewritten as
 

B(,r) = Bmamp Ima> <m1 +,,Bmanl e-i(aman)Im> <n13 (3.8) 
m mrn 
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We now consider a linear time scale extension which is given by
 

"T-= o , Uo(To) = Uo(Il) 	 (3.9) 

The zero in first-order equations yields
 

1U
00U
 

or
 

6U	1 iU 0 

o- i T7- BUo (3.11)
0 1 

We can integrate to yield
 

-() 	 T0O
.
iul(- o ) --iul("I ) -iro UT10 - dXB(X)UO(*T) (3.12) 

To investigate the secularity, we multiply by the inverse of the
 

zero-order operator obtaining
 

UioUo('O)= U!(4 1 -	 UO (Xl) + i rdixl)U,(%c) " 

10
 

(3.13)
 

We now define
 

A1 = -i 0 u0 (i 	 (3.1) 

We thus obtain
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U1(t 1 - + ma> <mP1 
m 

U!('o)Uol (0) = I)Uo'(%I) iCoA1 i0oXBma m 	 + 

v- /e-i (am-an) Ol
 

+ 	 ± mnBme,nP -i(am-an )-M> <nI (3.15) 
m, n im na~n( 

We let
 

A, lBamam Ima> <mPj 	 (3.16) 

m 

so that 	the first-order operator is given by
 

-i (am-an)-rO 

UIO) = - e - Im> ! )UI(1) ZBma,np a-a ImB- <nIo( (3.17) 

m/n 

We note 	the commutativity
 

1
[A1IA] = %ma,mn lima> <mS1,A] = 0 (3.18) 

m 

The following matrix representations are used extensively
 

X1 A Ym= Ima> <m3 (3.19)A1 

m 1 1, 

A =A m , Am = amZm> <mci (3.20) 

m a 

We notice
 

[Al§A m] 	 = 0 (3.21) 

We thus 	have a compact version of (3.,17) as
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uJ( o )  u 1(t(1 ) + if dXB(X) - ToA 1]%(41 ) (3.22) 
0 

We now define
 

o ° doxB(x) - mA 1 (3.23) 

The matrix representation is given by
 

e- (am'- a n )
-r i0
 

(T)= i, Bmcfln mia,n l,,o <na (3.24) 
mr/n m n 

The first-order operator is then given by
 

'Ol($ ) = Ul( I ) + i(-ro)Uo(54) (3.25) 

The time derivative of Eq. (3.23) is
 

(d = B-ro) - A1 (3.26) 

We can therefore write
 

dI _u 1 (Ti) + i, ) U (3.27) 

or 

Ur1 =U 1 ( ) (mo)AIUoU(j) (3.28) 

resorting to the matrix representation
 

2% B- ei(aman)'TOima> K<0 (3>29)=m~n 


m/n

af3
 

whenever necessary.
 

We now consider second-order theory. The basic equation is
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)U0- 6U1 'CU2 
- + i - + i - -B 1 (3.30) 

Using the lower-order results, we obtain
 

0 17-

0 T2 i 1 

1 

-U2 i U -- 0 (X
 

2 1
 

- -i 2 - 11T-). + 

-Al!('Tl ) - iA JO( l
 

(3.31)
 

whose integral can be expressed as
 

iu2( o ) = iu_(' l ) 0- ' T I-( 

+ if0 d? (X),% JUO('T) -I(vo)Uo( I) +
0 

- i f To dJ(XAx)Uo('!) (3-32) 

We shall need some integral representations. In particular,
 
TO 
 To
 

Jo~ df(),'X To +? 
.2 ft o x[ (x);'(x)] 

1 2 0) + xf t dX[(X),,()] (3-33) 
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l(l) ,Alul(. 1
.o U0 . a 
2( 0) = iu2 ("1 ) - TO A-U1('-)+ 

r- 0 -V 

+ if 0°dX[J(),Al]uO(') -/(Qro)Uo(41) + 

2- o)Uo' 1 ) fi dX[(X),0(X)]Uo(1 ) (3.34)
 

To study the secularity, we use the trick of multiplication by
 

the zero-order operator. We obtain
 

_ -T) U (,)U-lr , Utl'
 
(T ) +
 2 )1o= uFtl)uO dl) - To d&2 1 ) 

o?(i + ° + 

1 ('O 1 11 
" f"0dX[(X),] + tA-T0) + 

2, ( fdx,()x] (3.35)
-

0 

The commutator of J with A1 can be computed explicitly. The 

calculation yields 

[J( ),Al ] 

7 -i(a -an )Xi ,Bmni~ m~ ' / B ',vI mct><n1 , Im' ><mvI" n
 

= 1Bman,(e Ta_a lZm[L,m-v1m>nIItL<~I 
rn/n m n M 

(e i(am-an)X-1-[jm><m'vlS+ 
a -a /Ln [L + 

n
m/n m, 


Im'jL><nPj6m'm6 =
 

86
 



-i (a -a ) X
 

i mXa,np\ a -a BnPnv
 

m/n m n
 

- B,m a mv> <n I}
 

i B ~~-(a--a)X><n
±ZBma,nBn ,nv e " am-a ) ima> KnvI +- rn/n am-af
 

(2-i(a -a )X
 

= imZna 3\( an-am Bnv,na Iv> <mDI
 
rn/n 'r
 

v -i(am-an)X 

n- ) Ira> Knv,,I + 

m/n 

v 
ii(am-an) 

+ iZBZ ,(aenl3,mc~nv, nP\( a-aam-ann ) nv> <mal (3.36) 
m/n 

V 

The integral of the commutator is also of importance
 

o dXB~XX),%l] = 

= m am ) Im> <nvl + 

v 

Inv> <mal +

+i nvnfBnPmae (arm-an) 2 

aP
 
v 
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___________ 

- i'r BmanBn Ima> <nv + 

mn ma,n nn ,nv (am-an) 

V 

im B Inv> <rac (3.37) 
O OYnv,nBnP,mm (a3a3)

nm
rn/n 


V 

The commutator of J with the time derivative is also computed
 

explicitly. We first obtain
 

(ei(ap-aq A)
[i(a-an), 
r- Ama, piqv7 a -aq
m/n p/q 

<[Im 6 <qvmv]<n vi> >6[q> 

e-i(ap-aq)X 
l
 

B-i(a -an)X 


m/n p/q
aj3 p v 

-zi ra,np pnL,qv q -a Ainxi 

-i(am-a n)X-i(ai-am )?L p+>< 

+ ZZ mct, neBp ,mae k a -a 
rn4n p m
m/n p/m 


- Bmnnpe- B i(am-an )?¢ i(an-ap )X q,/ 

m/n p/n
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- ( a ',-am e - i ( a '13 e> a n )%-+, BnP,mapPonI n aa n - '' <<ma 
(3.38)a1 p/n 

Some manipulations are needed in order to write this expression as 

tyS(x)4'(x) ] =- - /~ (ma~ ~ (aa) \Pf 

ee rnI

Bman nB pa-> <xI + 

nm/n p/n -


B B, ei(aP-a I)X_-e- i(an-am)X p <aBp, n 


(am-a X-i n ) 

+
m n a) <p )mi> 


-X-i (an-am )x,.
-z Bm,nnpme apan 

mrnn p/n
 

aep (a- p
L 

1 Pnn, -a(eaa ) ImPi> <mat + 
(2ei(apM-ampm/n p/n 

P pa/n-a 

In'> <ma3+ 
pp, n (eoapa 


Mn/n p/n
 

irna> <mPa~
 

rn/n mn 

Imp.> <mci (3.39) 
+ X vmp,nP Bn ,m am-a n
 

rn/n
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We-also will need
 

dX[A(X),2(X.)]
 

= -i /.'ma, nP,p mnn 	B e am-n)- aP-an)-, Imct> <pi + 
nTn p/n
 

ei (a m -an )T0 
 ,
 

+ i B/p ,n Bn,m(a~an2)cap-an)) Ip> <mal + 
m n np n p><arn/n p/n 


,
/e-i(am-ap ) 0 i
+4i Bz.nPn,PnI B 'a-ap)(a-n) ImaC P~ 
i~ 	 a,7 ImaP1> <PP.1 

m/n p/n
 
af prm
 

ei(am-ap )'m0
 

- j pt n~n inc/i p4 Krnc 
n p/n n 

p/n
 

+ 	x Bma ' nfn3,-mL am-a<Mii+n ++ 	 BraBnrp Ima> 
m/n 

+T0 Bm n ImP> <ml 	 (340)
 
+' 0~ mii nPBni3ma a -a 	 (.0M_n 	 a-n
 

a~p
 

We note that we can write
 

)
0( -1 . t1 -1 iAt 1 ( 
- uo(t 1 ) = e U0 ()e (3.41) 

iA T 1u 0(2) 

T2 	 7T2- ' 

We now define A2 through the equation
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iU0(2) U-(' -2)
 
r O32' 22(3.42) 

This can also be written as
 

6J0(Tl ) -I A' 1 1iZr 1 -iA1 16-u2 U (l) = e (iA 2 )e (3.43) 

We thus obtain
 

-' 1 . -1 )iT~iA!l -i Air, °lT1).i
20U 0 ( ) = UO) (TL--o A2e +i-0( ''-+AI T)" 

2-[ = eJ 
•U 1o(4r) + TO~ ),1 + ij(TUo)  2(To) +

0 1T2 
0
 

f df[(x),A(x)] (3.44) 

0 

The secular part of this expression can be extracted explicitly.
 

We have
 

Sec U2(0)U0 (TO) = -it0e A2e-iAl% T (i -- I + 

+ AlJl(T 1)>0(tl)- itoZma,nBnZnv 

m/n
 

V 

IM> <nvl Inv> <mcl 

(am-a) nv,n BnW,ma (a-a)
 

- m nB m in m-a nV 

T0 B Im > <m pI + 
2 a ma,nP n,m am-an
 

0Imp> <Mal 
Y BmL nOnm a - (3.45) 
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The time dependence of A2 that is obtained in (3.43) is then
 
obtained as
 

e 22e l (i r 1 + A1U(4l) 1 J( 1 ) + 

BmIra> KnvI N 

- manBn3,nv (a -a nv,nl nf3,ma 
m/n m n n /n 

V V 

Inv> <mal +IiBmB ma> <mI + 

(am-an) m/n (am-an
 

a~p 

+ i-ZBmn0Bnma Imp> <mal (3.46)
rn/n 
 (am-an)
 

We now introduce a new basis as
 

Ima>* = ICMQm> (3.47) 

where
 

Allma>* = &1mcP> (3.48) 

The degeneracy is removed in the new basis by the first-order
 

perturbation. We note the following relation
 

Alma>* = amm Im-> = amlma>* (3.49) 

The orthogonality of the new basis is expressed by
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* ,,~*>. ' m Cm npIM
sn~ima x 0 <my > 

yv
 

m mC (3.50) 

In view of completeness, we can write
 

=Iv- c + 
8 5 = cM+ (3.51)

y 

whence
 

m+m 

a a cary cY (3.52) 

I m+ M+ 

-

Therefore, we also have
 

= C 0 (3.53) 
a
 

We can then write
 

m L CC*Zta a> = Zi m++CM jmy> 

a ay a c

= ( Imy = Irnt> (3.54) 

The new basis can be written as 

= mma> (3.55)+ ma>* 

a
 

The adjunct vector is then computed by
 

Kmil ZCma <mal* 

Cm <mal (3.56) 

a 
93 



so that we have
 

Cm *<mCaI (3.57)
<mplI C41
 

a 

The time-dependent A can then be written as
 

eA e = (3 t1!) + AIU(t >-(tl) +2 l 0 

ZB B< ><nvi BI B lmv><nal + 

mnBnnv (a -an/n nVn nm (am-an) 

V + V 

+ Bv YW 
rn Bm,nBnP,mL( a(n Im *<myl + 

+ v-7 m CMa
 

+ [mBYm Imv> km-y (3.58)
 
r/ny % (ara n) 

a~[L
 

We now assume that the starred basis is made by nondegenerate
 
eigenfunctions of A We can then let
 

AU = ma nABnnV Ima> KnvI I +d+ 1 n nBnDm (am-an) 00 ) 

V
 

+ZBn Inv> <mal 
rn/n (m an) 1 

V
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mL 

M+ m 

- - BmnpBnBm a Imv>* *<mTIU0(Vl) (3.59)
rn/n V/'Yn 

cm+m 

where the quantity A2 is given by
 

B av VP lmy>* mvl + 

+2= 21 , Bm,neBni,mj1 -a*(a~~v vl.0 

The expression for LA2ALma>n*w (aa0 Iv> Nmml,,V
 

in some detail. In particular, we have
 

that has been 1obtained a-will be studied
 

[A2,AI ] = = 0 mA2,A] (3.61)
 

Thus, the starred basis is constituted by eigenfunctions of A2
 
so that in order to go to higher-order theory another basis is
 
unnecessary. Since we can write
 

AI IP> a[m (3.62) 

we haveTh eprssonfo 2 ha hs ee otind il b sude
 

A1=,Bm ,m Imd> <mPI (3.63) 

m 

)1 B mm> <m)B (3.64) 
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The adjoint statement is
 

Kmvjdm ZBma'm mvlma1> <mpj
 

=Y'BmVmml (3.65) 

which can be written as
 

B,mvm Ml=<v m (3.66)
EBmv,m m I =KmVI A'2 3.6 

Similarly, the matrix representation of the direct statement is
 

given by
 

AmImV> =Z BmmItma> <mIrmv> 

=Z Bma.mvlm> (3.67) 

so that
 

Zm>Bma"mvma> (3.68) 

a 

We notice the following relation 

B ImP> <nvl + B Inv> <mal 
mneBn5,nV a -a + nv,n Bn,m am-an 

m/n m n m/n m 

V V 

AnInP> <maIma> <nIA1 
-=£ Bman aM-an L nlra ar-an 
m. mm/n 
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B Ira> <nIA 1 - AlIna> <nI
 
L Bman (am - an)
rn/n
 

Imaann 1 (3.69) 
IPr/n 


We can then write the first-order equation as
 

1U+ B Ima> <nfI ,AIUo(il) + 

T+1 =Lr, n mtLto (am-an) 

c+ m 

Bma,nBnl3,m±- a m+mYI' Imv>* zmyIUo(4 1 ) + 

+ M
 

-" B B 0 1±VCyaU Imv *l2L. L n,ma (anmm z (3.70)nmn n y U5'r)

rn/n v/-y
MAI V/n, < ,!Uo$) 

A slight rearrangement yields
 

> Kn I
 
o e.Im 


S + %i [nB nn u0 1) 


BmnBrit *<M-Iuj(T

rn/n v/y m
 

-i B ~In 1l) (3.71) 

We can then obtain an explicit representation for the first-order
 
operator.
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.ABma n r I iA1XFm -BAl'. 
iUl("l) = ie 1Uirf)d [(ms><n)J,&lJe uo()+ 

aI

-i1 2)1 0rvKn~ 1a 

r n d7rn
m7_n A2 Bm CMr+ nr riA1 X -1:AX 
= UiP~2)+is (a 7 -a ) x~frncP00P
 

•ill 1.UBma nP f d%--[ei'l'jma><n je-i kU(r) 

Cm +
im
 

avw-4 f VaXe
i B-a(nBnPmp amm/nrn/n V/-Y (3.72) 

After some rearrangement, we have
 

Ul( l £ [e l1 T jlma><nI~je -I m>nPl (I + 

m/n
 

m+ Ri6m6 

e _ Bm-np nPm) nmV)*<mTIU0( l) (3-73) 
mnn VAy
 

This expression can be manipulated into the form
 
m
IAI Iu (B)Z a n0 IAl Tl -iAI1o 

Ul (4O) = eu U e Im> <nUfe ri) + 

m/n 

c yj.± (e mV -. 
Bman~nPil (arnan) k. I v,<-i o-,'/ma) 


m/n V/y
 

Q8
 



--i(a( -an)30n 

man (aman) Ima> <nPlU 0 (l) (3.74) 
mn 
a13
 

We can therefore write.
 

iA 1 - 1 i
Br mn

U t
 ' ma,np a'
m eIUl(O) = e U (T2)+z v I(anVa flyIUo(l + 

m/n vy 

- i(am-an), 0 + nvnylu(t)

- mane (amn-an -av
 

Sm+ m .i (6m-s5m) . 
-' Cw (e -Bn ' 1-1' jlmV I QmYjUo(T)-Zt ma,nenDnL -a~ (omi)

m/nL v/Y 1 V (375)r/n v tv in 67
 

We return to the original noninteraction representation operator 

and see 

iA. J(a- ,ATB+Ti6m_6nT 

01 1iAl Iaman, + n0 m [e n)0 v 
Vl(0-O) =e e Ul('2)+x a;an av -,L
 

mtn 

*Imv>**<n-YVo(t o ) + 

Cm m 1(6 )c 
+i av W/mnBr~U-'-V my'*m e---- l -6 tin-y, VO (-r0) 

(a -an)L (]m-IK) 

VA i(3.76) 

We also have
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VoT) 
0eiA e iA2 -VO(-,3).(.vjA) e 1 2 (3.77) 

This gives a compact representation of the uniformized result.
 

It is of interest to note the expression for t secularity
 

in second order. It is given by
 

e-i(am-an)rO
 

2(0) 0 (0) = U2 (tl)UO (l)- BmanBnn- (a-a )/m2 nvI 

rn/n n 

V 

+z BnvnP~nPne(a-a)2 Iv> KaI + 

me - i (am-an) 
V
 

/ -i(am-anaP
 
Zma,nKC -a:nUI ><n+ 

rn/nmn 

1 B . -i(am-an )Tr0 -i(a M,-a
2- am-a )( amn'-acL0 

1'n~mn'P'\ " 

rn/n m'/n' a,-.n
 
ap a'P'
 

Im> <njI Im''> <n'Dj (3.78) 

The main result (Eq. (3.77) shows a modified Schwinger-Dyson
 

expansion is the propagation operator which is uniformly valid,
 

providing double and triple summations that have been considered
 

are really convergent. The main results are explicit formulae
 

for the secular parts which can be extracted without ambiguity.
 

The main tool employed has been the completeness of the eigen

functions of the unperturbed operators. Note that if the starred
 

basis still had contained degeneracy relative to A1 , then the
 

procedure outlined here to remove the degeneracy with Al could
 

be repeated with A2 or higher-order A's until the degeneracy
 

is removed.
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CHAPTER V 

TECHNIQUE FOR TREATING 
THE LONG-RANGE KERNEL 
IN TE FLUX EQUATIONS 



The equation for the cosmic ray flux in a random magnetic
 

field can be modeled by
 

-cft dX,f t- (l) 

where f(t) is the flux which is considered here to be only a
 

function of time, The integral term on the right represents the
 

effect of the random field on the flux; the parameter, E , which
 

measures the coupling is considered small. The problem is to

determine the long-time (or near eqauilibrium) behavior of the
 

flux, which then can be used to determine the transport properties
 

of the cosmic ray density. Perturbation or iteration techniques
 

produce expansions of f(t) in e which are nonuniform for 

large time, and the standard adiabatic approximation fails because 

of the long range of the kernel which decays only - 1/X for 

large A 

. The type of equation modeled by Eq. (1) appears often in
 

studies of kinetic theory, but usually with a kernel, K(X) , 

which is short-ranged due to the typically short-ranged inter

actions which are studied. The adiabatic approximation can then 

be made to determine the leading long-time behavior of f(t) 

Since the coupling parameter is small, we assume that f(t)
 

changes slowly compared to the time scale over which the kernel,
 

which represents the short-ranged interaction, decays. Then a
 

good approximation to f(t) is given by
 

af (2)
 

where A is a constant given by
 

=ft K(X) (3)
 

The flux decays exponentially to zero with a rate determined by 

A Clearly, this approach fails for K(X) = 1/l+% , since A 
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becomes undefined. The problem with A is directly related to
 
the decay of K(X) for large X , which is too slow for K(X)
 
to be integrable in the sense of Eq. (3).
 

The long tail in K(X) for the cosmic ray flux is due to
 
those particles which have very small velocity, compared to a
 
typical particle, parallel to the mean magnetic field 
 Thus,
 
although their velocity may be high, their translation in space
 
is quite slow and their interaction with the random magnetic field
 
in a given region of space can last arbitrarily long. In previous
 
attempts to construct kinetic theories for cosmic rays, the adia
batic approximation has been applied, in spite of its failings,
 
with artificial cutoffs in the upper limit of Eq. (3) or by
 
ignoring the particles in that region of phase space which have
 
pitch-angle near 900 and which contribute the tail in 
K(X)
 

In this chapter, we present several approaches which give 
the long-time behavior of f(t) . One of these approaches, 
which involves the time scale extension technique, is general 
enough to be applied to other kernels which may be more complica
ted but which have the feature that for large X , K(X) - 1/k 
This approach is ideally suited to the true cosmic ray flux equa
tions.
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1. THE LAPLACE TRANSFORM
 

We can obtain an indication of the likely large-time behavior
 

of f(t) by studying its Laplace transform near the origin in
 

the transform variable, ) . From Eq. (1), we find
 

T() - f) (1.1)
 
w +I ~ewE 1 Qn) 

where E!(j) is the exponential integral
 

E1 () =f ds- (1.2) 

EI() has a branch line extending from the origin along the
 
negative real axis to infinity. Near the origin, it is given by
 

- An ) - 7 (-(Iarg aot < v) (1.3) 

n=l
 

and for large w it behaves asymptotically as
 

•E - -- [1 -1 + 2 ..J (Iarg 3I (1.4)
 

y is Euler's constant; i.e., 7: .577... The Laplace trans

form, r(c) , has a pair of poles very near the origin in the
 

negative real half of the w-plane. We ignore all other poles
 

to the left of these, and also the contribution of the branch
 

line, to determine the large-time behavior of f(t) . This
 

procedure cannot give a proof of the behavior of f(t) unless
 
carried to much more detail than we have managed; however, it
 

can serve as a guide to the kind of solution we should look for
 

with other techniques.
 

We look for solutions to
 

co + eeaoEl () = 0 (1.5) 

with
 

e
m = Rei (1.6)
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and with R << 1 . From Eq. (1.3), we let EI(w) = -In Pco where 

r = In y • The real and imaginary parts of Eq. (1.5) can be 

manipulated to obtain 

R2 
 c2 2R cos 0[(0
E e n PR)2+02] (1.7)
 

and
 

e = a + R sine (1.8) 

where
 

cos = On FR (1.9)
 

(An rR)
2+e2
 

For small R and 1I1< v , Eqs. (1.7) and (1.8) have a pair
 

of solutions which can be written approximately as
 

W+ = Gln Cie- (1.10) 

Thus, for large t , we expect 

- lcn
f(t) - e E6t[A cos ert+B sin clt] (1.11) 

where A and B are constants.
 

Equation (1.11) has two surprising features. First, there 

are oscillations on an (ct)-time scale and, second, the solution 

is exponentially damped on a El~n clt-time scale. Since the 

damping is fast compared to the oscillations, the oscillations 

can only make a minor modification to the basic exponential 

solution. We can begin to see why the adiabatic solution can 

never give a good approximation to the long-time behavior. In 

that approximation, we effectively impose exponential damping 

on the slow (et)-time scale but the damping coefficient becomes 

infinite. What that solution is trying to tell us isthat the damping is 
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finite but on a faster time scale than (et) . All hand-waving 

arguments which attempt to produce a finite damping coefficient on 

the (Et) scale actually carry us further from the correct long

time behavior since they actually slow down the exponential damping 

even further. Relative to the cosmic ray problem, these attempts 

make the effects oD the random field on the particles appear much 

weaker than they actually are. 
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2. TEE OUTER EXPANSION
 

In this technique, we introduce two tricks which make it 

possible to find the long-time behavior of f(t) In the first, 

we introduce a new unknown function, g(t) , through 

f(t) = eetg(t) (2.1) 

Then 

_g 

g -

0 
dW 

e-( 

e g(t-X) (2.2) 

In addition, we introduce 

= et , g( = X() (2.3) 

to obtain
 
+ e -Xr 

+x = -e f d -X Xc(+Z-x) (2.4) 

Thus, Eq. (2.4) for X is more amenable to the adiabatic approx

imation due to the exponential damping which we have forced into
 

the kernel.
 

For large T , in order to obtain the leading contribution 

to X in an asymptotic expansion in E , we write 

fj

+- X X(-X (2.5) 

The adiabatic approximation now gives.
 

3± [1l+El(e) 0 
 (2.6)
 

or
 

106
 



-[l+E1 (c)]r 
x(r) = e x(O) (2.7) 

Then
 

e l t(t) = eels n f(0) (2.8) 

In this case, the oscillations are missed, but since they are very
 

slow in any case, this is not a serious shortcoming of this tech

nique. In fact, we will now proceed to refine this technique to
 

regain the oscillations; however, it is doubtful whether this re

finement could be applied in the case of a more complicated kernel.
 

In the next section, we will present a technique which gives both
 

the proper damping and the oscillations and which seems more gener

ally applicable.
 

We go back to Eq. (2.5) and assume the analyticity of x(t)
 

Thus, we can Taylor expand X(--X) about X(-) In this case,
 

00 

+ n ncp-l(6) (2.9) 
On
n=l 


where 

-n eTGn-1 
,n-'(,) = (n-1).. f + F (2.10) 

We once again consider only the leading terms in c to find
 

CO 

+[l+E 1(c)]=- (_,)n nX (-1
 

n=l n(21
 

We substitute
 

- (l+El(6)-v) 
X = e x(o) (2.12) 

to determine the correction, v , to the basic clon el decay we
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found from the adiabatic approximation. We find 

V = An[V-E1 (e)] (2.13) 

Thus,
 

v = In I.n ei ± iv + 0 v (2.14) 
Ion el 

Neglecting Ani.n El compared to E1 (e) , we find 

1x = -(l+1i n cit ilr)t x(O) (2.15) 

and
 

f(t) = -c11n elt[A cos cwt+B sin cut]le (2.16) 

in agreement with the Laplace transform evaluation.
 

108
 



3. LINEAR TIME-SCALE EXTENSION 

In this section, we present another technique for obtaining
 

an asymptotic expansion of f(t) valid for-large t This
 

technique has the advantage of being somewhat more rigorous than
 

the approach in Section 2 and also-considerably more adaptable
 

to cases where the kernel may be more complicated.
 

We introduce an extension of Eq. (1) as follows
 

Df(,ri) f O o ( 0-X, -)(31) 

Dt I I + X. 

where f(,Tl) is a function of two independent variables, To
 

and T1 . with the additional condition that f(tat)=f(t)
 

The total derivative, D/Dt , is along a trajectory in the two

dimensional (T0,T1 ) space specified by
 

(3.2)
D _TO = 17 

Notice that if we set To = t and T, = at in Eq. (3.1), we
 

regain Eq. (1). This is the sense in which we call Eq. (3.1) an
 

extension of Eq. (1).
 

The parameter a is meant to be a function of c which is 

small and which is to be chosen to remove the nonuniform behavior 

in time from the perturbation expansion of f If the kernel 

were short-ranged, we would choose a = e and then the slow time 

scale would be T1 = Et along the "restricted" trajectory. The 

results of uniformizing the perturbation expansion would be 

equivalent to the adiabatic treatment of the original equation 

for f discussed in Section 2. In the case of this kernel, we 

find A = w and therefore conclude that we must search for a
 

different slow time scale which is, nevertheless, faster than
 

et . Thus, we leave a an unspecified function of e which 

must, however, satisfy the following relationships 
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a --0o (3.3)a -0; a
 

We insert an expansion of f into Eq. (3.1) which is given
 

by
 

= -f-+ T+ ... (3.4)
 

and equate the coefficients of equal powers of the relevant para

meters. In doing this, we must be especially careful since we 

already know that the integral on the right side of Eq. (3.1) is 

not O(i) but is some other formal order, a , which we have not 

yet determined. Thus, we have 

S= 0 

(3.5)
 

0
 

and
 

1 0 1 

TO d0o,-X,'r-ctX) 2 p f(r-X,'r1-aX) 

= -f dX I+ - 4F0 l + X 
0 J0 

(3.6) 

We wish to obtain an asymptotic expansion of f to O(E/a);
 

therefore, we neglect the term E(pf1 )/or and also the second
1 


integral term. Then, from Eq. (3.5)
 

a 0 +f 0 = -G dX +x + E dX a1x (3-7)
dT1 aC0 frn 0+
0
 

Upon integrating over T0 , we find
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f T
Tl) I + 1i t+X) +f l (TO, = fl(Ozl) ds fdX 
s 

- - 0-+ dX (3.8) 

To remove the nonuniform secular behavior of fl , we set 

r -I d ?O(r 1-aX) 

(3.9)
I dX + 

and, therefore,
 

fjim,'i) 1 (O,-TI) + ds dX + X (310) 

We determine a from Eq. (3.9) by setting
 
T]
 

fo(O,T1) = e T0(0,0) (3.11)
 

a = -Eet(a) (3.12) 

The roots of this equation which satisfy the conditions of Eq.
 

(3.13) are exactly those which we found in Section 2 in our
 

discussion of the Laplace transform of f ; they are given by Eq. 

(1.10). Notice that these roots have negative real parts; there

fore, even though f0 grows exponentially with T, , along the 

restricted trajectory where Tl = at , fo(t) will decay expon

entially as c(2n E)t In addition, we find from Eq. (3.10) 

fI(TOTI) = fi(0'i)- e 'E2(a(I+Eo))-E2(a)] (3.13) 

where
 

poFe-zt 

E (z) et dt (3.14) 
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For small a , but large a 0 , Eq. (3.13) is given approximately 

by 

- lT+a e-a(l+co) i 

frl(T0T 1 ) = fl(0T - e a[) - 1 (3.15) 

Thus, we have indeed uniformized the expansion of f to order 

1/An c 

Along the restricted trajectory f(0ci0 r) = f(t) Thus, 

we have 

afo 0 (3.16) 

and
 

fo(t) = *atfo(0) (3.17) 

where a is given by Eq. (1.10). By insisting on the reality of
 

fo(t), we find
 

f(t) = e- (An e)t[A cos t+B sin Evt] (3.18) 

for 

t 1 (3.19)
eI n El 
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4. CONCLUSION
 

Of the three methods developed here to obtain the leading 
large time behavior of f(t) , the time-scale extension seems 
the most easily adapted to other more complicated kernels. On 
the other hand, if the slow oscillations were, in some situation, 

considered unimportant, then the outer expansion technique could 
be equally well adapted. 
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CHAPTER VI
 

GENERALIZED LARNOR THEOREM
 



1. INTRODUCTION
 

a. Alfven's Guiding Center
 

We split the world velocity of a charged particle in an
 

electromagnetic field into a space-like and a time-like orthog

onal 4-vectors (with two degrees of freedom each) using field 

strength tensor and its dual. For uniform e and B fields, 

the (Lorentz invariant) lengths of each of these two velocities
 

are constants of the motion and generalize the "parallel" and
 
"perpendicular" energies in a constant magnetic field. 
The
 

space-like velocity always contains the periodic (gyratory) part
 

of the motion of the particle, while the time-like component is
 

the world velocity of the particle's generalized guiding center.
 

The equations of motion for the two projected velocities
 

are solved in a "standard" configuration and combined to give
 

the general solution for the trajectory of a particle in an
 

arbitrary uniform field configuration, with the help of a simply
 

constructed Lorentz transformation that represents a general

A A1 
8 x B drift.
 

Alfven's definition of a guiding center description of the
 

behavior of a charged particle (relativistic, or not) in a uni

form magnetic field follows naturally from basi6 properties of
 

the particle's trajectory. Specifically, the magnitude of the
 

velocity is conserved in time and the motion is easily visualized
 

in terms of gyrations about a point which moves with constant
 

velocity along the magnetic field. The cycle average position
 

of the particle is well-defined and called the guiding center.
 

The distance from the guiding center to the particle position'
 

is called the gyration radius. In situations where, in addition
 

to the magnetic field, there are weak electric fields and/or
 

small gradients and/or time variations in the magnetic field,
 

the Alfven guiding center plus gyration vector approximation
 

to the particle motion is valid. In this approximation, the
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guiding center retains its usefulness; the first-order correc

tions to its motion are computed using standard perturbation
 

theory in terms of the small field variations. Even to first
 

order, this technique has been very useful in many applications
 

(see, for example, Northrop and Teller2 for a study of the
 

trapped particles in the Earth's geomagnetic field). More
 

recently, higher-order terms than the first have been calculated
 

by Kruskal3 for a general class of dynamical systems which
 

include the charged particle in a field.
 

b. New Results
 

In this chapter, we re-examine the study of the guiding
 

center in uniform and stationary electric and magnetic fields of
 

arbitrary magnitudes and directions. We obtain a relativistic
 

generalization of tie guiding center in space-time which is
 

identical, in the nonrelativistic limit in 3-space, to the Alfven
 

guiding center.
 

We employ an operator formalism using projection operators
 

which are constructed out of the field strength tensor and its
 

dual. The pair of projection operators which we use form a
 

complete-orthogonal set which allows us to project the world
 

velocity of the particle into two parts which lie in orthogonal,
 

2-dimensional subspaces. One of these parts is the world velo

city of the guiding center and is time-like. Thus, in any non

singular field configuration, we avoid the problem of averaging
 

over the particle trajectory to obtain the guiding center posi

tion by merely projecting away the oscillatory part of the par

ticle's velocity; the part that is left represents the (time-like)
 

4-velocity of tihe guiding center.
 

The operator formalism constructed in this report is applic

able to any uniform field configuration except the singular case,
 

g'B = 0 and B 0 , where the operators become undefined.
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c. Notation
 

Gaussian units are used throughout this paper. The trans

posed matrix is denoted by a tilde and a prime is used for a 

Lorentz-transformed quantity. The determinant of the matrix A 

is written det A . The dual of a tensor, defined by Eq. (1.3) 

is denoted by a star. The world velocity, u , is written as 

u = (ytvicy) , y = [i - v2/c2 /2 (.1) 

and the proper time - is related to laboratory time by 

ydt = d r (1.2) 

We define the dual f* of a skew tensor f as
 

= v f P * = f (1.3) 

The dual tensor is sometimes defined as
 

F* , (1/2i ) L v5fX (1.4) 

Then
 

(f*')*'= -f (1.5)
 
A 

A 3-vector is denoted by A and its magnitude by
 

A = (A.A)1/2 (1.6) 

The signum function, sgn (x) , is defined by
 

+1 x > 0 

sgn (x) -1 x < (1.7) 
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2. ELEMENTARY PROJECTION OPERATOR FORMALISM
 

We use the motion of a nonrelativistic charged particle
 

in a uniform magnetic field to motivate the general projection
 

operator formalism presented in the next section. Standard
 

analysis is reproduced with (a special case of) our technique
 

which projects the behavior of the guiding center and of the
 

gyration vector from the equations of motion and thus facilitates
 

carrying out their solution. To this end, we write the equation
 

of motion in terms of (a 3 x 3 submatrix of) the electromagnetic
 

field tensor (see Eq. (3.2)). The properties of the particle
 

motion are then characterized through the algebraic properties
S 
of the frequency matrix. The velocity vector, v , satisfies 

d- .1.1 70 B3
- v = SQ-v a : B 0 B(2.1)

at 
 Moe B 3 -B 1 

The useful properties of the field strength tensor are:
 

(A) The matrix is antisymmetric. Thus, 

2= -Z (2.2) 

and therefore Tr = det n = 0 We also have the represen

tation 

2ij = Gijk'9BAk Bk/B (2.3)
 

Furthermore, exp (2t) is an orthogonal matrix which represents
 

a rotation about the direction with rotation angle (Bt)
 

exp(gt) = R(P,Bt) = R(',-Bt) (2.4) 

(B) The matrix 92..g is a projection. Thus,
 

NE=. - =I 1=,= Tr - (2.5) 
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is a projection operator (normal to the magnetic field) since
 

it is idempotent and symmetric
 

N. N = N , N = N 	 (2.6) 

It follows that N is positive definite
 

N > 0 	 (2.7)
 

and that
 

P = - = 	 (2.8) 

is a projection that satisfies the commutativity and orthogonality
 

rules
 

N. P = P. N 0 	 (2.9) 

(C) The matrix a is "parallel" to N and "orthogonaPto
 

P 	 Thus, 

N .&I= N = P . =S2.P = 0 (2.10) 

We can now show that the basic propertiesof the particle
 

motion reflectour algebraic rules. For this purpose, we use
 

the two projection operators introduced, N and P , to decompose
 

the velocity vector into two mutually orthogonal parts
 

v 1 Nv , v - ± =P • v (2.11) 

each satisfying Eq. (?.l) because of (2.10). 

We obtain the standard particle properties in parallel 

with the matrix properties just discussed. 

The quantities v2 (A) Conservation of kinetic energy. 


2 , v2 are conserved because of (2.2). e.g.,
 

I d Av2 dv = 
T dt V - . v = 0 	 (2.12) 

Furthermore, the noninertial effect of the constant magnetic
 

field is eliminated by transforming to a reference frame rotating
 

with angular frequency 0B (Larmor theorem). This immediate
 

consequence of (2.4) is generalized in the next section to include
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relativistic motion as well as electric fields.
 

(B) Periodicity-of vI with angular frequency B . Since 
v_± satisfies (2.1), we have, using the projection property (2.5). 

d 2 a n L I j a -12 1 . 

d - - dt v±-- _ - N •v±= =(2.13)v- -v± 

The vector vI is harmonic because of (2.7).
 

(C) Inertial motion of the guiding center. Using (2.10)
 

d a -1 
- vI= P-. n v = 0 (2.14) 

Thus, the integral of v11,Ax11  represents inertial motion.
 

Integration of
 

± A l oA l dA (215
vII =- v = v +2 - v (215) 

motivates the definition of the guiding center by
 

x1 X+ -V = X - 27 - AXGC (2.16) 

The magnitude of the gyration vector, X. AxL , is the usual 
radius of gyration rg and is given by 

rg = I,, I = v±1/U7 (2.17) 

Combining the integration Of (2.13) and (2.14), we obtain
 

useful representations for the particle trajectory
 

t
v(t) = (f + N cos aB + fl sin %t).vo (2.18) 

Ssin %t Cos %t l 

A:(t) = V, ot + ( Th 2 Qv_ 0 (2.19) 

The projections P and N can be eliminated in favor of 2 by
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using (2.8) and (2.5). In the next section, we show that the
 

inclusion of relativity and electric fields is obtained by a
 

straightforward analogy.
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3. GENERAL FORMALISM 

The Lorentz equations of motion of a relativistic charged
 

particle in an electromagnetic field are
 

UT U = W -U (3.1) 

where o is the antisymmetric field strength tensor
 

(0 B -B2 -i 

e -B3 B1 -el (3.2.2)-=m~ t B2 -B1 0 -ig3eA = -)k 2 B1 0 3j

ig I ig ig 3 

From Eq. (1.3), c* is given by the substitutions B. < -iSi 
From w and a* we can construct two invariants and two useful 

tensor relations
 

det w det 5*= - (.)2 (3.3) 

2
w 1 . =1 W* 0W* =(B2 2) (3.4) 

(D.w + cu*.Co* =-c2I (3"5) 

(C*-W0 = .W*= i(.B)(M e)T = [sgn(t.B)](det o)I (3.6) 

Below, we obtain two orthogonal projection operators analo

gous to those of the previous section
 

111 + l 1ll,, =II,-1-L o (3.7) 

which separate u into two orthogonal parts
 

2(318) 
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u,. u± = 1 *uu = 0 (3.9) 

in such a way that u1 represents the generalization of the
 

standard guiding center velocity. The instructive special case
 

a" B = 0 is discussed in Appendix F.
 

Consider the operator
 

-1 M.M+XT
 

= 

(3.10)
1 + 2X 

where X is a scalar determined from the condition
 

= 0().-f(*) 4(*)•f(0) (3.11)
 

Notice that we have normalized so that
 

fl(w) + fl(p*) = 1(3.12) 

From Eqs. (3.10) and (3.11) we find that X satisfies a quad

ratic. We choose the root
 

-1 + I cD 2
-det I9B 


D -- 1+ 1 + (3.13)
 
L~ /1 

to satisfy the condition that X -->0 as 9B * 0 since in this 

case (3.6) yields the projection property, i.e., (3.7). Using 

Eq. (3.13), we obtain 

-W.'cW + i2 -4 det co ]I 
= [ 2 1 2 (3.14 ) 

2
 

1I )
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The useful matrix properties of f() are given in Appendix 

G. We note that if g-B / 0 

Lim f(lD)= Lim fl(*) (3.15) 

Lim TI10) = Lim fl(*) (3.16) 
B 2 _ - _ 2 +e 2 -0 B 

Therefore, we define the projection operators, and fJ ,by 

22> ef w)B2 >P
 

(3.17)
- il= Hc:2 < 

Then R1 and III are continuous at B2-2=0 and they have
 

the desired properties defined by Eqs. (3.10). From (3.1), we
 

see that and u,, obey the same equation of motion as
u1 

u(r) does. Therefore, if u1 (O)=0 , then u(r)=O for all z 

Thus, the guiding center represents a particle for which u1 (O)=0. 

Since u1 is space-like (see (4.10)), it cannot be directly
 

related to the motion of a particle. Furthermore, u11 and u1
 

are Lorentz and gauge-invariant constants of the motion.
 

By differentiating Eq. (3.1)
 

d2 ~u
u1 

d2 
 .. ±. d2 2 W- ud 2 d (3.18) 

But, from Eq. (3.10)
 

w cw = [XI - (l+2X)fl(w)] (3.19) 

123
 



Therefore
 

B2
d2. c2 (i+-) > 82 

du1 2 1 2 
2 >B 2 (3.20)

± 


2 > 62
 
J2X Bd2 


F2 B2Wau 11=0) f:2(i+x) > (3.21) 

The solutions of Eqs. (3.20) and (3.21) are 

u±(C = sin co± + I cos w±U-rJ-±-u(Q) (3.22) 

ull() = sinh (nl1 T + I cosh w%-cr]1 - u(0) (3.23) 

Therefore 

e" = (2 sin _T + I cos (D±TL)± + ' i sinh 0)l T + I cosh w 

(3.24)
 

Integrating the resulting expression for the velocity, we obtain
 

x - x(o) = I ) + (cos (i±t - 1)].uz(O) + 

+ [I sif a)d1iT + ( (cosh C 11T - 1)]-ul1 (O) (3.25) 

Below, we use this expression to study the motion of the general

ized guiding center.
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4. STANDARD AND SINGULAR FIELD CONFIGURATIONS
 

The possible field configurations are given in Table 1
 

Below, we show that only two configurations, the "standard" and
 

the "singular," need separate treatment, all others being related
 

to the standard configuration either as special cases or by an
 

explicitly given Lorentz transformation.
 

B2 _82 = o (a)
 
e
P, = B 2 > 0 (b) 

B2 2
g = 0 (d) 

B2 9 29 Br > 0 (e)P.122 2(e 

B P, < 0 (f) 

Table 1. Possible Field Configurations
 

(a) The operators constructed in Section 3 are singular;
 
thus, we call this the "singular" configuration. We give the
 
solution of the particle equation of motion for this configura
tion separately.
 

(b) This is the familiar crossed-field case where the
 
magnetic field dominates.- The standard technique which is used
 
to obtain solutions of the particle equation of motion in this
 
case is to consider the motion in a Lorentz frame in which
 
g2 = 0 . The motion in the original frame is obtained by merely
 
adding the consant transformation velocity to the solution:
 
u = (c/B2 )(. x.B) . Thus, by studying the motion of the particle 
in a uniform B field, we actually study the entire class of
 
field configurations.
 

(c) Using similar reasoning, we choose the pure 8-field as
 
the prototype for this class.
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(d,e,f) We will see that when e and B are parallel, il
 
reduce to particularly simple diagonal forms which are inde

pendent of the magnitudes of the field strengths. Furthermore,
 
the parallel field configuration can be reached from any nonper
pendicular configuration through a Lorentz transformation given
 
in Appendix B . Therefore, if we adopt the parallel field case as 
the prototype of each of classes d, e, and f , we may study

B2 
 82 
can take on any value in this example, we can also study the 
special cases, B2 = 0 or p2 = 0 , but these are the pure field 
cases which we have adopted as the prototypes of b and c . 
Thus, the prototypes of all classes except case a can be studied 
through one example in which the l's take on very simple forms. 

all three of these in one example. Furthermore, since 


We now give explicit solutions of the equations of motion
 

in the standard and in the singular configurations.
 

a. Standard Configuration
 

In the standard field configuration (S.C.) we let the S

and B-fields be parallel and in the z direction. Then and
 

nit are given by
 

i 0 0 0 0 0 0 0 

0 1 0 0 0 0 1 

Thus,
 

ui = (yvlyv2,0,0) , Ul1 = (0,0,yv3 ;iyc) , (S.C.) (4.2) 

In the standard configuration, u[ = yv11 represents the motion
 

of the particle along the magnetic field. Henceforth, we will
 

call u11 the world velocity of the generalized guiding center.
 

From Eq. (4.2) we see that
 

U> 0 (4.3) 
2 2
 

but we always have -c2 = u2 + u2 and therefore
 

2 02 
U11 <- (4.4) 

Thus, u1 is time-like in the standard configuration and u1 is
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space-like. By the discussion of the previous subsection, these
 

properties hold also in any configuration. From Eqs. (4.2), if
 

x(r) is the 4-space position of the particle, then the position
 

of the guiding center is given by
 

x1 = (OO'x3r),x4(r)) (4.5) 

and the position of the guiding center "complement" is given by 

X, = (x1 ('),x2 ('C)o,0o) (4.6) 

With the fields in the x3 direction, the vector components of 

Eq. (3.25) are given by 

,/sin B /)Tcos %B-I 

Ax1 Xl() - l(0) Ul(°) - -2(1))(4.7) 

Ax2 = x2(r) - x2(O) = u2(O % + ( (4.8) 

hf°) cos hw 

,'sinh ) pYosh "l'n-)(.9CT> 
3 x3 ('r) - x3 (0) =u 3 ()<we >+cO WE--,J4 

/sinh a. (O)v cosh M -I\ (4.10) 

t : (o)! D\+ Q-- j 

where
 

(.1
2= (eP.j2 2 (,eB2 


and where we have set- t(O) = 0 This result is valid for any 

8 and B In addition, without a loss of generality, we may 

set u3 (0) = 0 , since a Lorentz transformation'parallel to the 

fields does not affect the fields at all. 

In order to write Ax I , Ax 2 , and Ax3 as functions of t 

it is convenient to introduce the new variables 

x(+)(,) = Ax 3 + iAx 4 , - Ax 3 - tAx4 (4.12) 
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where Ax4 = ict Then 

U( + )  u3 + u ( - ) - u3 -iu 4 (4-13) 

Now, Eqs. (4.12) are equivalent to 

(+)(,) = (u-( )[- e -ST ] x(-)() = (u()) 

Equations (4.14) may be solved for w3- . We obtain 

) + 
= 4)(0£n[( 7 

-O (e - .(4.15) 

Upon eliminating MP , we find an implicit relationship between 

Ax3 and t which can be inverted to 

8
3 


Equation (4.16) is a general statement of the 3-position of the
 

guiding center in the standard configuration as a function of
 

time.
 

( - )With Eq. (4.16) and x = Ax3 + ct , we may obtain an 

explicit expression for T(t) 

r 9a- O t + (1 + t2t) )1/2 (4.17)~)n[(IMP, 


This last expression may be substituted directly into Eqs. (4.10)
 

and (4.11) to obtain Axl(t) and Ax2 (t)
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For (cnt/y(0)) << 1 , Eq. (4.17) is given by 

mB n 1 + B (4.18) 

With this expression, we find
 

=vl~bsin (wB/-y(o) )t cos w/YOt 

AX1 4 w()Y(0) v2(O r%/y(o) ) 

(4.19)
 

AX , (aB/(O) )t + cos0)sin. /IO~ (wB/ (O))t 

Ax2 v2 (o ) B/Y2o) +v 1 (°) /o)k 

and from Eq. (4.16)
 

- °jt2 (4.20)Ax33 2\ 0o,/ 

Note that
 

d(Ax)d - < t) (4.21)
 

Thus, the condition that (cnt/y(O)) << i is equivalent to the
 

statement that the motion of the particle along the fields is
 

subrelativistic. Either t is small enough or 8 weak enough
 

such that the particle is not appreciably accelerated along the
 

fields. The motion perpendicular to the fields need not be
 

subrelativistic, hpwever.
 

Equations (4.12) and (4.13) are exact when P and wF
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are equal to zero. The nonrelativistic gyration frequency is
 

corrected to include the relativistic mass; i.e., the relativistic
 

gyration frequency is
 

'B eB _ eB (4.22)T rn~c mc 

If S / 0 , the particle is initially accelerated uniformly 

along the electric field and the motion perpendicular to the 

fields is unaffected. 

When (nt/y(O)) >> 1 , Eqs. (4.1) and (4.17) are given by 

A 3 t (4.23) 

and 

=An (4.24)
 

Thus, in 3-space, the guiding center moves along the electric
 

field with v3 - c and the guiding center complement still
 

gyrates about the guiding center but at a much slower rate than
 

in the subrelativistic regime.
 

b. Explicit Time Dependence for the Singular Configuration
 

Let the field components be given by
 
A 
8 (B,0,0) and B = (0,BO) (4.25) 

The components of Eq. (3.1) are given by
 

d-- =-mU 3 i 6- u2 =0 (4.26) 

d d 
dt 3 = I u4 = iU 1 (4.27) 

For initial conditions, we choose without loss of generality 

t(-C=0) = 0 (4.28) 
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v1 (O) = v2 (0) = v3(0) = 0 (4.29) 

With these initial conditions, we find 

u1 = C(B) , u2 = 0 (4.30) 

= (1/2)c(c3_r) 2 , u4 = ic + (1/2)c()) 2 (4.31) 

From Eq. (4.31) for u4 = iye , we find 

= 1 + (1/2)(L))Br (4.32) 

Thus, the equation dt/dT = y can be integrated directly to
 

find the cubic equaticn
 

1 + t(cOc)2] (4.33) 

Equation (4.33) can be inverted to find
 

2- [ (3t) 2) 1 
(t) = (3 t)1/3{ ( ( t 

(4.34)
 
Equations (4.30) and (4.31) can be rewritten for the three
 

velocities. We obtain
 

c1 2-v = c0 = 
2 v11 (4.35)1 + I(a3) c c 2 c 

Equations (4.34) and (4.35) give the solution for I(t)
 

For WBt , Eqs. (4.34) and (4.35) reduce to the nonrela

tivistic result
 

%zwt v I t(4.36) 

-The particle is initially accelerated uniformly along the 

electric field and slowly gains a velocity component in the 

z-direction orthogonal to both the fields. After the particle 
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is accelerated for a long enough time, we have 

Then 

0)t >> 1 

...-B (6 Bt)1/3 (4.37) 

and 

_1 

c (6 

2 

1t)1/ 3 

v3 

C 

- 1 23(4.38) 
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5. CONCLUSION
 

The operator technique developed here has been shown to
 

be very useful in describing the relativistic guiding center and
 

also the general motion of a charged particle in an arbitrary
 

uniform field configuration. The relative simplicity of the
 

technique leads us to believe that it may also prove useful when
 

the fields are not uniform and stationary. We shall discuss the
 

application of our projection operators to the motion of a particle
 

in fields which have small variations about the uniform configura

tions elsewhere. Since the positions of the guiding center and
 

its complement are given in terms of the particle's position by
 

simple contact transformations in space-time, it is not at all
 

clear that the usual perturbation techniques will be necessary;
 

exact canonical equations of motion for the guiding center and its
 

complement may be obtainable.
 

Our main results are summarized in Table 2 where the pure
 

magnetic field is compared with the general case.
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dv
dA =dii v d 

01 U.t --

q + yi , u = u.L + u11v = 
VVL +/V U.L = u". 

_-1 a0. n (0_"-a)+ xi
 
2 - - W- +2 

+ il2X 
1-L (1(p 2 >B2 

CL"~~~~B 2 e 

fl(_*) > 32 
2
2(e 2 22 2 (e

O:(B ) C) 2 q2 e~~/ 2 

C= (B - 1 + . > 0 

(21 

r2 d 2 
 + j u 0 u I5S 

22-1 
= 0 u e= T+d2U11 I2lUG.C. dv- = 0at dr 2 

(±x B>~ 
1 +2 X 

Bh > 

Table 2. Comparison of' the Pure Magnetic Field wi-th the General Case 

T1 b x C o+pa ri2 s o 11  
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APPENDIX F
 

Note that
 
* * 

(Fl)
C02- 2 

form a complete but nonorthogonal set since, from Eq. (3.9),
 

2 .i= . 2 det nb 
g W2= -et-- I (F2) 

7-


Thus 2 and V play the role of the projection operators if 

S B = 0 Furthermore, from Appendix G, 

2, *w =( , B=0) (F3) 

0B "0 (e- = ) (F4) 

Introducing
 

U1 u 2= u =j2 u(r5) 

we find
 

du2
.du du 0 (F6)

=
-d'-Tr d ) 

The vector u2 represents the constant velocity of the rela

tivistic guiding center when 8 • B = 0 In fact, the expression\ 

u -ul u r .( 1 (0.du (F7) 

integrates tox+ 

+C 


(F)
 

whose 3-part with P = 0 coincides with the position of the 

guiding center (2.14), but 8 • B = 0 
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APPENDIX G. USEFUL MATRIX PROPERTIES 

Using (3.11) and (3.12), we find
 

- i - 2l . -2 =; ee w I (2do d t 
CD CD 

Also, notice that
 
) 2 2CL* D ; + /det a) 

Cu CuD 

(G2) 

2 cu w ;F /det wn 

and
 

/d-e-cu 
(G3) 

In Eqs. (G1) and (G2) we have introduced the notation
 

1 
a = sgn (eC. B [B

2 
- S 2 ] (G4l) 

With these relationships, we may go in a straightforward manner
 

to obtain
 

1 O ( •f± (G)
II2 1 + 2X(l+X)CD* + a * 

(,+Xw* + de'gt coC 
2 . p2 W (aF 

1 + 2XG6 

/det w(I+X)c( + c.ry-7 eO 
*=1+fl) 2X (G7) 
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and 
/det + x 

l + 2X (G8) 

We shall use Eqs. (G5) through (G8) in our construction of the
 

equations of motion of the projected world velocities.
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APPENDIX H
 

Given an arbitrary field configuration (e,B,e) where e 

is the angle between 8 and B , we can find the equivalent 

standard configuration (8C B',e' = 0) The magnitudes of the 

standard fields are 

2
B' 2 - (B 2 S2)[2 + /(B 2 - e) 2+ 4(8B)2 cos e.] (Hl)
B2
+ _ e? 

, 1 62 2 [+ /(B 2 2 + 4(eB)2 cos2 O- (H2)
 

F;2 -B 2
 

The 'velocity which accomplishes the transformation from the arbi

trary to the standard configuration is given by
 

V= a( X B)c (H3) 

where
 

2 2 332_ 22 2 2 
+a = (B2+e) - (B-) 4(8B) Cos e (H4) 
.
2(SB)

2 
sin

22 0 

Thus, for arbitrary (9,B,O) it is possible using the proper
 

Lorentz transformation to obtain (&,B',O) with 5' and B' in 

the z'-direction. Then adL take on simple forms which 

are independent of the magnitudes 8' and B" 
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