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ABSTRACT
A process where energy release rate is proportional to the square root
of the Reynolds number of a burning particle or surface is used to demonstrate
some distinctive dynamic properties of a disturbed convectively controlled
burning process. The instantaneous energy release rates. caused by assumed
periodic flow field disturbances are numerically evaluated and examined.
Correlation coefficients which express the energy released insphase with.the
pressure\disturbance-are evaluated and analytical .solutiong for these

%

coefficients are derived.

The response of the process is shown to be highly sensitive to the harmonic

distortion of the disturbance. - For some disturbances the energy released in-
phase with the pressure disturbance is an order of magnitude larger than that
for linear (sinusoidal) disturbances. The results show that harmonic distor- ‘
tion increases the coupling between the burning process and the flow field.
This amplifying effect of harmonic distortion is suppressed when a disturbance
becomes steep-fronted; therefore, steepening can act to limit the -equilibrium
amplitudes in disturbed systems. Amplification is also suppressed when the.
velocity disturbance is phase shifted with respect to the pressure disturbance

or when the process is exposed to a high steady velocity.
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INTRODUCTION

The energy release process in many reactive systems depends on the con-
vective forces on a burning particle or surface. For such systems, both the
density and velocity associated with nonsteady flow will affect the rate of
energy release. The purpose of this paper is to examine and evaluate the
dynamic coupling between a convectively controlled burning process and a
nonsteady flow field where pressure, density and gas velocity vary periodically.
Emphasis is placed on distorted (nonsinusoidal) flow field disturbances which
~include these with "shock-like" wave shapes. |

For most reactive systems, linear (small sinusoidal perturbation) analyses
provide much of the basic insight into the behavior of the disturbed system.
Linear analyses aré valusble because one can readily comprehend the physical
behavior described by the analysis. However, the distortion and gas motion
which accompany many disturbances are neglected in linear analyses. -The
practitioner in real systems should know and understand the significance of
these deviations from linearity. The method of analysis employed in this study
is directed toward the objective of expanding upon the insight which linear
analyses provide by including the affects of distortion and gas motions in the
evaluation of dynamic properties.

A process where energy release rate is simply proportional to.the
Reynolds number of a burning particle or surface to an exponential power is
used to demonstrate some distinctive dynamic propertles of the convectively
controlled burning process. The instantaneous energy release caused by
assumed flow field disturbances are numerically evaluated and examined. A

correlation coefficient which expressed the energy released in-phase with the
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pressure disturbance is evaluated and analytical solutions for the coeffi-
cient are derived. The effect of distortion and gas velocity on the coeffi-
cient is discussed with regard to the growth and decay of the disturbance.

The method of analysis and some of the results have been reported pre-
viously (1,2) in studies of combustion instability in liQUid propellant
rocket engines. The broader implications of these previous studies are re-
viewed without the application to a specific reaction system. Additional
analytical solutions and evaluations are presented for steep-fronted and .
"shock-like" disturbances which are frequently encountered in a variety of
reactive systems,

MODEL

The model used to evaluate the iesponse properties of a convectively
controlled burning process to flow field disturbances includes the following
elements:

Inergy Release Process
A process is assumed where energy release rate is given by:

o\1/2 .
W o= Kl(Re)l/2 = Kl(ég—) (1)

u

An energy release rate dependent on Reynolds number, as expressed by»
equation (1), characterizes the convective heat and mass tranéfervmechanisms
which dominate many energy release processes. The gas viscosity, n, and the
characteristic dimension, D, are assumed constant. The velocity pérameter U
is the magnitude of the relative velocity seen by the particle or surface.

.For this study a two-dimensional flow field which is steady in one dimension
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and periodic in the other is assumed. For such conditions U is defined by:
T N (2)
Combining equation (1) and (2) with the relation o = B(1 + p'), an
energy release rate normalized by the rate without perturbations is given

by:

| | AL/4
sy - “*p“”{“(u’%)] (5)
Kl(ég AV)

>

o8

Flow Field Disturbances
The pressure, density and velocity are assumed to be periodically
varying in the flow field. Nonlinear disturbances in these. variables are

assumed to be generally described by series of the form:
A - ;

o

p' = :E: pp cos(nwt - oy)

py, cos(nwt - @) (4)
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The angle Py (harmonic phase angle) gives the phase relation between
the harmonic components. As .in linear analyses, pressure and density dié-
turbances are assumed to be in-phase With each other. The angle Qn (Velocity—
pressure phase angle) expresses the phase relation between the velocity and

pressure disturbances. For traveling waves, which will often be discussed,
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the velocity and pressure are assumed in-phase as inh lihear analyses,

Equation (4) is simplified for some specific evaluations in order to
reduce the number of variables. The assumptions that Pnh = TPy and u, = Cp,
are madg. These are approximations adopted from linear theory and adequately
characterizevthe gas dynamics for the demonstration purposes of this study.

Specific evaluations are made for two types of harmonically distorted
disturbances. In one type the distortion is limited to two harmonic compo-
nents. . In the other type multiharmonic distortion is chsidered where the
harmonic coefficients are assumed ordered by Py =,p§ and the phase angles
¢p 8and 6, are assumed constant. Such highly ordered harm@nic series can
. describe the "spiked" pressure wave shapes observed in strong traveling
acoustic modes (4) as well as "shock-like" shapes. |
- Response PropértieS‘

The response properties are éxpressed by correlating parameters which
relate the perturbation in energy release rate to the imposed disturbances
in the flow field. One of the more important correlating parameters is the
component of the energy release rate perturbation which is_in-phase with the
pressure disturbance. According to Rayleigh's criterion for heat driven
waves, this in-phase response gages the ability of the process to amplify or
attenuate the flow field disturbance.

For this analysis the component of the energy release rate perturbation
in-phase with the pressure disturbance will be called the in-phase response

factor, f. It can be extracted from the energy release rate perturbation'
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and normalized by a correlating procedure (1) defined by:

2n
\jﬂ W'P' dot
0

R =~ Aox (5)
fo (P")? dwt

By linear analysis, it can be shown that enérgy is added to the flow

field disturbance when & is positive and energy lost when negative. Growtﬁ

or decay rate of the diéturbance depends on the magnitude of R. In'unstablé

rocket combustions,'where energy is continually lost due to exhaust flow,

£ must usually be greater than about unity for sustained oscillations.

Whether such linear criterion apply directly to nonlinear disturbances has

-not been rigorously’eét&blished.‘ However, applicatioﬁs such as that made

to Priem and Guentert's nonlinear studies in reference 1 show that criterion

éétégiished by linear analyses acceptably predict nonlinear behavior.
Anaiyticél Solutions’

Approximate analytical solutions for the response can be derived by ex-
panding the bufﬁing rate ékpreSsioh (eq. 3) in a Taylor series. Details of
this method are given in reference 1. By neglecting harmonic content higher
than second order in the Taylor series and cross products of harmonic coeffi-
cients higher than the fourth order the following general solution for ® is

obtained for @l = O
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The harmonic coefficients and phase angles are shown to interact in
various combinations to affect the response.
For the more specific disturbance where p = vp, and u = épn, the

solution takes the form:
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In this solution, the amoﬁnt of second harmonic distortion 1s expressed
as a ratio of second to first harmonic amplitudeé, PZ/pI' rThe first term in
equation (8), 1/2y, i8 the linear response - the response to small sinusoidal
disturbances.

The solution for R to second order in Py for the multiharmonic dis-

turbances where P, = p? and ¢ and @ are constants is given by:

2
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In all of the solutions, the response factor R is a maximum when the
phase angles ¢ and 0 are equal.to zero. For equation (9) this condition
of zero angles characterizes "spiked", traveling type disturbances.

DISCUSSION OF RESPONSE PROPERTIES

In the first part of this discussion the effect of the distortion in a
disturbance on the instantaneous energy release rate will be described to
illustrate some distinctive properties of the convectively conﬁrolled burning
process. - The instantaneous energy release rates were evaluated numerically
"with the aid of a digital computer. The discussion of the response factor R,
which follows, is also supplemented with some numerical evaluations which help
estab;ish the precision of the approximate analytical solutions for &.

Instantaneous Energy‘Release Rates

The effect of harmonic distortion‘on the instantaneous energy release
rates is best illustrated by considering the multiharmonic disturbances
where P, = p?. For these disturbances, harmonic distortign increases with
pressufe amplitude. Figures 1-3 shows the change in the pressurebﬁave
shape with amplitude and compares the numerical solution for the energy re-
lease rate with the pressure disturbance for several conditions.

Figure 1 illustrates a type of reference condition in which velocity
disturbances are neglected. The energy release rates are eguivalent to
those for a process which is only density sensitive (w =~ pl/Z)‘ Without
velocity oscillations, the energy release rate essentially follows the pres-
sure disturbance but at a reduced amplitude. The peak energy release rate
varies from about one-half the peak pressure for disturbances which are |

sinusoidal (fig. 1(a)) to much less than one-half for the "spiked" distur-

~
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bences (fig. 1(d)). There appears to be a loss in response with an increase
in the harmonic distortion for a process which is only density sensitive.

Figure 2 illustrates the importance of velocity disturbance for the
same pressure disturbances considered in figure 1. The effects of velocity
disturbances are very pronounced for sinusoidal type disturbances (figs. 2(a)
and (b)). The energy release rate perturbation is‘much larger than the
pressure disturbance but exhibits two peaks. Two peaks exits because the
convectively controlled process is sensitive to the magnitude and not the
direction of the velocity vector and the magnitude is high at both high and
low pressure conditions. With regard to coupling between the flow field
and the process, the two peaks appear to have counteracting affects, that
is, energy is released first in-phase and then out-of-phase with the pres-
sure. |

The correspondence between energy release rate and the pressure dis-
turbances in figure 2 progressively improves with aﬁ increase in pressure
amplitudes. When the amplitude and distortion are high (fig. 2(d)) the
"spiked" disturbances cause a very similar disturbance in release rate.
The second peak in release rate seen at low amplitudes is suppressed but
the peak which is in-phase with the pressure peak remains large. The energy
release rate perturbation appears as an gmplified pressure disturbance.

Flgure 3 illustrates the dynamic behavior for disturbances Which be-
come steep-fronted and "shock-like" with an increase in pressure . amplitude.
The results are very similar to those for the symmetrical type “spiked"
disturbances illustrated in figure 2. An increase in amplitude and harmonic
distortion improves the correspondence between the energy release rate and.

pressure disturbance.
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These effects of harmonic distortion on the dynamic behavior of con-
vectively controlled burning can be discussed from a more quantitative stand-
point by a comparison of the in-phase response factors which relate the en-
ergy release rates to the pressure disturbances.

Response Factor .

The effect of an increase in the harmonic content of a disturbance on
nthe response factor ® d1is the best illustrated by initially considering
disturbances which contain only first and second harmonic components. The
analytical solution given by equation (8) applies to such disturbances.
Figure 4 shows the effect of second harmonic distortion on the wave shape
and on. the in-phase response factor & for disturbances where the harmonic
phase angles ¢ and 6 are equal to zero. The response factor exhibits
optimum properties as a function of both pressure amplitude (P;ms’ the root-
mean-square amplitude of the disturbance) and second harmonic content
, (pzfpl, the ratio of second to first harmonic pressure amplitudes). Maximum re-
sponse occurs with a Second harmonic tontent of aboht 0.8 at an amplitude of 0.0z2.
This maximum is about.an order of magnitude larger than that for linear
(sinusoidal)} disturbances which is shown by the p2/pl = Q curve in figure 4.
The result implies that second harmonic distortion can have a very large
effect on the growth of a disturbance.

The effect of increasing the harmonic content in .disturbances with .
multiharmonic distortion is shown in figure 5. The analytical solution
given by equation (9) applied to such disturbances. TFor figure 5, the har-
monic and velocity-pressure phase angles are equal to zero. These distur-.

bances are of the type considered in figure 2. Figure 5 shows that an in-
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crease in pressure amplitude which increases the harmonic distortion causes
an increase in the response factor & for any constant value of relative
Mach number, (AN/C). At low amplitudes, the response is the linear value
of l/2r and it asymptotically approaches a value of about 3 .times this
linear value at high amplitudes. The result implies that in some systems
a disturbance above some finite amplitude may be needed before the response
is sufficiently large to cause a disturbance to grow in amplitude. Rocket
engine combustors exhibit such behavior.

Figure 5 also shows the effect of the steady velocity (Av/C) on the
response. The convectively controlled process is more sensitive to velocity
oscillations when the steady velocity environment of a particle ofysurface
is small. Figure 5 shows that the response factor increases with a.decrease
in the steady veloeity. For any real process, however, there is a lower.
1imit to this steady velocity where convective forces no longer control the
rate of energy release and this analysis is no longer applicable.

Analytical and numerical solutions for the response factor can be com~
pared in figures 4 and 5. Such comparisons have shown that the analytical
solutiqns generally over-predict the response by about 10 percent but ad-
equatély express the functional dependence of the response factor on the
distortion variables.

The harmonic phase angle ¢ affects the response factor as'shown_in,
figure 6, As. ¢ increases, the disturbance changes from-being symmetrical
about the peak as shown in figure 2 and becomes steep-fronted like those
shown in figure 3. . Such wave steepening caused by an increase in ¢ 18

shown in figure 5 to suppress the increase in & with an increase in pres-
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sure amplitude. At an angle of n/Z the response remains near the linear
value of l/ZT even at high pressure amplitudes. This result implies that
wave steepening may be a mechanism whereby pressure disturbances reach
limiting amplitudes in reactive systems. That is, if a disturbance steepens
and becomes "shock-like“»as it grows in amplitude the energy added in-phase
with the disturbance would decrease and eventually reach a condition where
no more growth is possible.

For all the examples discussed thus far, the velocity disturbances
have been in-phase with the pressure disturbance (6 = 0). Figure 7 shows
the effect on the response factor of varying this phase relationship. An
increase in the velocity-pressure phase angle 6 is shown to suppress the
in-phase response factor in a manner similar to that for the harmonic phase
angle @, but the effect is less severe. At an angle of u/z, the response
8 remains above the linear value of l/ZT at high amplitudes. In reactive
systems, the velocity-pressure phase relation usually deviates from in-phase
properties when the disturbances are reflected off of walis or exhibit
standing-mode properties of acoustic resonance. Such disturbances should
grow less rapidly than traveling wave disturbances.

- CONCLUDING REMARKS

This analysis has shown the response properties of a convectively con-
trolled burning process to be highly sensitive to the harmonic distortion
of a flow field disturbance. Harmonic distortion can amplify or attenuate
the reSpbnse in a manner which should significantly alter the growth or

decay of a disturbance. Directing‘more attention toward these response
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properties of convectively controlled burning could increase the understand-
ing of the dynamic behavior of many reactive systems and provide new ap-

proaches to experimentally modify the behavior of a specific system.
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AfPENDD( - SYMBOLS
speed of sound
characteristic dimension
harmonic order
bressure

= 1/2
. ; 12 2\
root~mean-square pressure amplitude z pn
n=1

harmonic coefficient for pressure disturbance of order n

Reynolds number

in-phase response factor, equation (5)

time

magnitude of relative velocity vector

gas velocity

harmonic coefficient for veloecity disturbance of order n

steady relative velocity of particle or surface with respect to
the gas

dimensionless energy release rate

energy release rate per unit time and volume

ratio of specific heats

harmonic phase angle for velocity-pressure relation

gas density

harmonic coefficient for density disturbance of order n
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harmonic phase angle
gas viscosity
frequency
primed quantities denote dimensionless perturbations, x

barred gquantities denote mean values

1

= x -'E/i‘
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DIMENSIONLESS PERTURBATION

DIMENSIONLESS PERTURBATION
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Figure 1. - Comparison of instantaneous energy release rates and pressure dis-
turbances. Conditions: P*= ), pf cos nut; u=0.
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Figure 2. - Comparison of instantaneous energy release rates and pressure
disturbances. Conditions: P'=Y" plf cos nut; u= 521 p cos nat.
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NONLINEAR IN-PHASE RESPONSE, &
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{b) ANALYTICAL SOLUTION.

12
-
1.0 P ;
A
.8 v Ve
6 A '94/40/)
001 01 1 1.0
PRESSURE AMPLITUDE, Py
L 1 1 ! 1 I } 1 ] }
o .0 .02 .05 .1 .2 51 2 5

MAXIMUM TO MINIMUM PRESSURE AMPLITUDE, Phax = Phin

{c) NUMERICAL SOLUTION.

Figure 5. - Response and wave shapes for multiharmonic
disturbances. ¢=0,0=0, y=1.2
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Figure 6. - Effect of harmonic phase angle on the response to
multiharmonic disturbances equation (9). 8=0, Avic=
0.02, y=12
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Figure 7. -Effect of velocity-pressure phase angle on the response to
multiharmonic disturbances equation (9). ¢ =0, Avic=10.02,
y=1l2
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