
-.< ., July 1971 

-CONTROLLER -
DESIGN TECHNOLO 
for the 

Reproduced by Space Shuttle VehicleINFATION ERVNICEL
INFORMATION SERVICE 

Springfield, 22151Va. 

---- Contract No. NAS8-257,08 
N71 33727 

,o (ACCESSIO UNTR) 

o (PAGE ODE) 

(" 4$ORY) " Honeywell Document 12238-IR1 

(NASA CR OR TMX OR AD NUMBER) (CEGORY) 



12238-IR1 

CONTROLLER DESIGN TECHNOLOGY 
for the 

SPACE SHUTTLE VEHICLE 

Distribution of this report is provided in the interest of 
information exchange. Responsibility for the contents
resides in the author or organization that prepared it. 

July 1971 

Prepared under Contract No. NAS8-25708 by 

HONEYWELL INC.
 
Systems & Research Division
 

Minneapolis, Minnesota
 

for 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 
George C. Marshall Space Flight Center 



FOREWORD
 

This interim report, "Controller Design Technology for the Space Shuttle 

Vehicle; summarizes the study performed during the period 10 June 1970 

to 1 June 1971 for the National Aeronautics and Space Administration, 

George C. Marshall Space Flight Center, under Contract NAS8-25708. 

Dr. S. W. Winder of the Dynamics and Control Division of the Aero-

Astrodynamics Laboratory was the technical monitor. The study was per 

formed in the Systems and Research Division of Honeywell Inc. Dr. G. B. 

Skelton served as program manager. Dr. A. J. VanDierendonck was the 

initial principal investigator. He completed the study of iteration methods 

for the time-varying problem. Dr. C. A. Harvey, succeeded Dr. 

VanDierendonck as principal investigator, completed the work on controller 

simplification and conducted the study concerned with parameter variations. 

Dr. G. Stein became a coprincipal investigator and conducted the sensor 

choice study. Dr. Y. S. Lee ,contributed to the investigation of sensitivity 

to parameter variations. Mr. M. D. Ward assisted with computer pro

gramming and numerical analysis. 

ii 



TABLE OF CONTENTS
 

SECTION I INTRODUCTION AND SUMMARY 1
 

SECTION II CONTROLLER SIMPLIFICATION 7
 
BACKGROUND 
 7
 
SIMPLIFICATION PROCEDURES 9
 

Gradient Iteration Technique 10
 
Parametric Techniques 16
 

SIMPLIFICATION AND QUADRATIC EQUIVALENCE 20
 
TIME -VARYING EXAMPLE 22
 
CONSTANT COEFFICIENT EXAMPLE 26
 

SECTION III PARAMETER VARIATION CONSIDERATIONS 33
 
PROPERTIES OF THE OPTIMAL PERFORMANCE 33
 
SURFACE
 
INSENSITIVITY VIA COMPENSATORS 42
 

SECTION IV SENSOR CHOICE 49
 
MATHEMATICS OF THE SENSOR-CHOICE 50
 
PROBLEM
 
POLE -PLACEMENT QUALITY MEASURES 54
 
GENERAL POLE-PLACEMENT EQUATIONS 57
 

Interpretations and Definiti6ns 58
 
Conditions for Arbitrary Pole Placement 59

Applications to Systems with Compensators 62
 
A Pole-Placement Algorithm 68
 

SECTION V CONCLUSIONS 71 

REFERENCES 73
 

APPENDIX A GRADIENT SEARCH FORMULATION 

APPENDIX B SIMPLIFICATION OF TIME-VARYING GAINS 

APPENDIX C TIME-VARYING GAINS FROM GRADIENT ITERATIONS 

APPENDIX D COMPUTATION OF SENSITIVITY -COEFFICIENTS 

APPENDIX E PARAMETER VARIATIONS EXAMPLE 

iii 



TABLE OF CONTENTS (CONCLUDED) 

APPENDIX F DERIVATION OF THE CHARACTERISTIC 
POLYNOMIAL 

APPENDIX G POLE-PLACEMENT EXAMPLES 

APPENDIX H PROCEDURES FOR COMPUTING COEFFICIENT 
VECTORS 

iv 



LIST OF ILLUSTRATIONS 

Figure Page
 

-1 Dynamic and Static Gain Systems 13
 

Parameters
 

Controller
 

Approximations of J(K, p) and J*(p)
 

u - K*x
 

2 Gradient Step Possibilities 14
 

3 Geometric Interpretation of Parametric Techniques 19
 

4 Constraints and Quadratic Equivalence 21
 

5 Controller Configuration for C-5A 26
 

6 Optimal Performance Surface 35
 

7 Nominal Performance Surface 35
 

8 Performance Surface for Optimized Expected 36
 

9 Performance Surface for Optimal Insensitive 36
 

10 A Geometrical Interpretation of Taylor Series 41
 

11 Optimal Motion in the (x, u) Plane 43
 

12 Phase-Plane Portrait Indicating Unstable Subspace 46
 

13 Basic Sensor-Choice Algorithm 52
 

14 Example Compensator Design 68
 

15 Pole -Placement Algorithm 69
 

V 



LIST OF TABLES 

Table Page
 

1 Behavior ,of ,Implicit Function Method Algorithm for 29
 

the C-5A
 

on p
 

2 Extrapolation plus Gradient Algorithm 30
 

3 Gain Comparison 30
 

4 Performance of Incremental Gradient Algorithm 31
 

5 Optimal Control and Principal Coordinate Dependence 47
 

vi 



SECTION I
 

INTRODUCTION AND SUMMARY
 

The goal of the research program summarized in this report was to develop 
a technology for control system design. The technology was aimed at pro
viding control of flexure and rigid-body degrees-of-freedom of the Space 
Shuttle Vehicle within constraints of practicality. The constraints apply to 

the controller configuration and to the design methods as well. 

At the time the program was initiated, it was anticipated that the Space 
Shuttle Vehicle would exhibit flexure control problems caused by large sizes 

of booster and orbiter sections, coupled modes of the vehicles in mated 
ascent, sensitivity to gust and maneuver excitation caused by large aero
dynamic surfaces, and possible orbiter structural requirements imposed 

by reentry heating.. The large aerodynamic surfaces could also cause a 
significant load relief problem at maximum dynamic pressure and larger 
drift dispersions than were present with Saturn Vehicles. Honeywell had 
achieved considerable success in treating such problems for large launch 

vehicles and large flexible aircraft. A stochastic constrained-response 

theory was developed, and its applicability to the control of a rigid booster 
was demonstrated in 1965 and 1966 (Ref. 1). The B-52 LAMS (Load Alle

viation and Mode Stabilization) system was designed and flight-tested in 
1966 and 1967 (Ref. 2). In 1967 and 1968, applicability of the method to a 

flexible launch vehicle was demonstrated (Ref. 3). In spite of the success 
achieved, the technology developed by 1968 was inadequate with respect to 

three control design problems: (1) controller simplification, (2) sensitivity 

to model inaccuracy, and (3) sensor complement choice. 



Thus the specific goals of this study were to improve the design technology 

by providing: 

* 	 Practical controller simplification algorithms 

* 	 A mathematical method for implicitly including parameter 

variation constraints within quadratic optimization formulations 

* 	 A rigorous mathematical basis for understanding best sensor
 

choice and location
 

The 	first objective is motivated by the difficulty of past efforts to simplify con

trollers. Simplification of the optimal controller in the LAMS program required 

a nine -man/month simulation program, and the optimal controller for the 

flexible launch vehicle was reduced by similar expensive trial and error 

methods. At that time, necessary conditions for optimizing constrained 

acontroller configurations were known (Ref. 4). These conditions provided 

two-point boundary-value problem and computational algorithms for its 

solution. However, it was too expensive to use these algorithms for such 

problems as the flexible launch vehicle control problem, especially if 

several measurement complements or sets of parameter values were to be 

considered. Another drawback to these algorithms was the possibility of 

convergence to an arbitrary local minimum. Improved computational pro

cedures for the solution of optimal control problems and simplification of 

optimal controllers had been developed at Honeywell by 1970 which held 

promise for treating the control problems of highly flexible vehicles. During 

the present study, these procedures were used as a basis for developing 

practical controller simplification algorithms. For the Space Shuttle Vehicle 

these algorithms may be used for controller design for mission phases such 

as the highly flexible orbiter during re-entry and cruise or for control during 

the mated ascent phase. 
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Mathematical models of two test vehicles were used for assessing the 

capability of the simplification procedures and improving them where 
necessary. A rigid representation of the Saturn V with a Voyager payload 

was used for a time-varying ascent study, and a model of the longitudinal 
axis of the C-5A with six flexure modes at a single flight condition was used 

for study of flexible-vehicle control. These choices were made to reduce 
the development cost, but the results of the two studies could be combined for 

actual application to Space Shuttle Vehicle controller design. 

Controller simplification in both cases started with the solution of the 

stochastic constrained-response optimization problem with complete state 

measurement capability. For the launch vehicle, this solution was a set of 

time-varying gains and a time-varying deterministic input which defined the 
controller. This controller minimized a quadratic performance functional 
and, via quadratic equivalence, minimized as well a nonquadratic performance 

functional called the cost functional. This cost functional represents an upper 
bound on the likelihood of mission failure. A gradient iteration technique for 

controller simplification along with methods for choosing initial conditions 

for the iteration technique were developed and tested. These techniques 
proved to be quite capable for the example treated. The original controller 

utilizing ten time -varying feedbacks was simplified to a controller with five 

time-varying feedbacks. 

Attempts at controller simplification for the flexible C-5A vehicle with an 

Implicit Function Method were unsuccessful. The cause of the failure was 

attributed either to lack of damping in the algorithm used or to severe 

sensitivity of performance to gain changes. Damping was added to the 

algorithm. This yielded some improvement, but not enough to provide a 

solution within assumed practicality constraints. Extrapolation based on the 

initial step of the Implicit Function Method was theh used with gradient 

correction to achieve a satisfactory solution. A third method was also used 

successfully. This method, called the Incremental Gradient Method, 
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incorporates desirable features of the Implicit Function Method and usual 

gradient techniques. 

The description of both phases of controller simplification is presented in 

Section II and Appendices A through C. 

Another area in which the design technology needed upgrading to be applicable 

to the Space Shuttle Vehicle was sensitivity to model inaccuracy. In every 

iteration of controller design there is a degree of uncertainty in the data. 

Also, certain dynamics such as high order flexure and fuel-sloshing modes 

are generally ignored to make the design problem tractable. Thus, practical 

controller design must recognize and be tolerant of model inaccuracies. In 

this study such inaccuracies were assumed to take the form of unknown param

eters. Two directions were pursued to yield formulations of the quadratic 

optimal control problems which would implicitly include parameter uncertainty 

constraints. One direction was to determine properties of the optimal per

,formance surface over a segment of parameter space which could be used to 

.derive optimal insensitive controllers. An optimal insensitive controller is 

one that is optimal for a given value of the parameters defining the system 

and minimizes the maximum of the performance index over all admissible values 

bf the parameters. A necessary condition for an optimal insensitive con

troller was derived. This condition was shown to be locally sufficient. The 

nature of these conditions led to the development of an algorithm for computing 

approximately optimal insensitive controllers. The utility of this computational 

approach was tested on the C-5K example, and significant reduction in sen

sitivity was achieved. 

the other direction of the parameter variation study was an investigation of 

the effectiveness of compensators in reducing sensitivity. This study led to 

choosing control parameters to match the performance of dominant dynamics 

of the compensated system to the performance of the optimal uncompensated 

system over the range of system parameters. This approach is intuitively 
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appealing. But for high-dimensional systems the approach is of questionable 
value. 

Analyses performed in these methods of including parameter variation con
straints are described in Section III and Appendix D. Results derived for 
approximately optimal insensitive controllers for the C-5A example are 
presented in Appendix E. 

A third area of technology improvement concerns the choice of types and 
locations of sensors to generate feedback signals for practical control systems. 
This so-called "sensor-choice problem" arises because it is economically 
prohibitive in most applications to measure all system states, particularly 
the rates and displacements of flexure modes. The problem is unsolved 
because it is' theoretically and computationally difficult to determine basic 
performance capabilities of a set of sensors. To do so requires the solution 
of two coupled optimization problems - (1) optimal location of the instruments 
and (2) optimal design of a practical controller to utilize the instruments. 
Both are complex problems when a quadratic performance functional is used 
as the measure of quality. Available methods are based on controller 
optimization routines such as those discussed in Section II nested within 
iterative search procedures for best sensor locations (Ref. 5, 11). 

In this study, the sensor choice problem was approached from the viewpoint 
of finding alternate quality measures which would be more convenient com
putationally yet still provide meaningful indications of performance capability. 
Two measures were proposed, both based on the pole-placement capability 
of the sensor complement. The first measure is the maximum number of 
closed-loop poles, pmax' which can be placed arbitrarily, and the second is a 
measure of deviation of the remaining nonarbitrary poles from specified 
desirable locations. General equations were derived for these quantities, 
and a computational pole placement algorithm was developed for their solution. 
Computational feasibility of the measures was established. However, their 
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practical utility as quality measures, particularly their correlation With 

quadratic cost, remain to be verified. 

Analyses performed on the sensor choice problem re deSdribed in Section IV 

and Appendices F, G and H. 

6
 



SECTION II
 

CONTROLLER SIMPLIFICATION
 

The aim of this phase of the study was to develop economically feasible 

methods for computing simplified controllers for the Space Shuttle Vehicle. 

The simplified. controllers were to be derived from optimal controllers. 

Simplification was defined to be the reduction in the output measurements 

required and, in the case of time-varying gains, reduction in the complexity 

of the time-variations to specified parametric representations. Of course, 

the simplified controllers were to maintain as much as possible the desired 

performance of the optimal controllers. 

BACKGROUND
 

The mission of the Space Shuttle Vehicle is such that at times the control 

problems are similar to those of a large flexible launch vehicle and at 

other times to those of large flexible aircraft. The stochastic constrained

response formulations of these two types of control problems had been 

derived in References 1 and 2. Resulting optimal controllers had been shown 

to provide very desirable performance. The measures of performance and 

the mathematical models for large flexible launch vehicles and large flexible 

aircraft have several common features. The major distinction from a 

mathematical viewpoint is that the control problem for the launch vehicle is 

a finite-time problem with significantly time-varying dynamics, while the 

aircraft can be considered to fly at a single flight condition for a long enough 

period of time that the dynamics may be represented by a constant-coefficient 

model, and a steady-state performance functional is of interest. Common 

features include linear dynamics, many degrees of freedom, stochastic 

disturbance models, and physically meaningful performance functionals 
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which are generally not expressable as integrals of quadratic functions of 

(linear) responses. These common features suggest that, in theory, 

simplification methods which are successful for one problem will also be 

successful for the other. In practice, the computational costs for the two 

problems differ significantly. For example, with a quadratic performance 

functional, the cost of computing an optimal launch vehicle controller for-a 

23rd-order Saturn model is approximately 50 times the cost of computing 

an optimal controller for a 23rd-order model of a flexible aircraft at a 

single flight condition. These facts motivated the separation of the con

troller simplification study into two parts, one part dealing with the time

varying aspect of the problem and the other dealing with the high dimensionality 

of the mathematical models associated with flexure. 

In addition to the difference in computation costs between the time-varying 

and constant-coefficient problems, there is a difference in computer storage 

requirements. For problems with the same number of degrees of freedom, 

the time-varying problem requires much more computer storage than does 

the constant-coefficient problem. Computation time considerations led to 

the choice of a rigid model of a launch vehLcle as a test vehicle for the time

varying aspects of this study. This permitted savings in computer costs 

because of the reduction in order of the system from the model with flexure 

and also because larger sampling intervals could be used. The flexure 

degrees of freedom were retained in the constant-coefficient model. 

Computation time and storage requirements also influenced the type of 

techniques chosen for simplification in the two problems. The high cost of 

computation for the time-varying problem limited the acceptable Mnfethods 

to first-order, that is, methods which utilize at most first-order derivatives. 

Large storage requirements impose the same limit for the constant

coefficient problem if the number of nonzero parameters '(gains) permitted 

in the simplified configuration is large. If the number of such parameters is 

not large, then second-order methods are candidates for consideration. 
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SIMPLIFICATION PROCEDURES 

The starting point for the procedures is a solution to the following 

optimization problem. Dynamics of the system are represented by the 

linear differential equation 

x = Fx+ G1 u+ G2 (1) 

where x is the state vector, u is the control vector and Inis a white-noise 

vector of disturbances with known means and covariance. Responses to be 

controlled are linear combinations of the states and controls given by 

r - Hx + Du (2) 

The performance index is a functional of the form 

J = f1 [R(T), S(T)] + JTf2 [R(t), S(t)]dt (3) 
0 

where 

R(t) = B(t)L(t)]T, r(t) = E{r(t)} (4) 

S(t) = Ej[r(t)-r(t)] [r(t)-(t)]T } (5) 

The superscript T, denotes the transpose. The optimization problem is to 

choose u to minimize J. For the ascent problem, the time T in (3) is finite 
and F, Gi , G2 , H, D, the function f2 , and the mean and covariance of the 

noise may be explicit functions of time. For the flexible-aircraft problem, 

the coefficient matrices, the function f2 , and the noise characteristics are 
constant, f1 is zero and T in the integral in (3) is infinite. 
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The "quadratic problem" occurs when fl and f2 in (3) are linear functions 

of IRand S, since these matrices are quadratic in the responses. The 

solution of the quadratic problem is 

u = K*x + f (6) 

where K* and f satisfy certain determining equations. For simplicity of 

discussion, let us consider the constant-coefficient problem with 

f2 = Tr[QSJ where Tr denotes the trace. Also, for simplicity assume 

Ei ] = 0 which implies f = 0. This last assumption does not represent a 

restriction on the simplification problem. Inclusion of a deterministic input 

in the controller is not a real complication. The determining equations for 

K are 

0 DTQ(H + DK*) + GI TP (7) 

and 

0 = (F + GK*)TP + P(F + GK*) + (H + DK*) TQ(H + DK*) (8) 

Analytically, controller simplification consists of replacing the matrix K* 

with a matrix K of a constrained form which has less independent parameters 
than the number -of elements in K*. The resulting controller, of course, should 

maintain as low a value of J as possible. Thus at this point, J may be con

sidered as a function of K to be minimized subject to the constraining con
figuration imposed on K. The procedures used in this study for performing 

this task may be classified as gradient iteration and parametric techniques. 

Gradient Iteration Technique 

The gradient iteration technique consists of applying gradient methods to the 
minimization with respect to K of the Hamiltonian 
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H(X, P, K) = TrjQ(H + DK)X(H + DK)T + PRF + G 1K)X+X(F + G 1 K)T+N]it 

(9) 

where X denotes the state covariance matrix and N = EIG2MhTG 2 TI. 

The necessary conditions for optimality of K derived by Axsiter (Ref. 4) are 

6H AH 6H 
S-aP" ....- ax 6K =0 (10) 

with K constrained to be of the desired configuration. If complete measure
ment of the state is permitted, the first of equations (10) is uncoupled from 

the last two. With complete measurement of the state not permitted, the 

three equations are coupled. Thus at each iteration, the first two equations 
are integrated to find X and P. Then the gradient aH/K is evaluated. When 

this gradient is nonzero, a step is taken to reduce the value of the Hamiltonian. 

Existence of several local minima for the constrained minimization problem 

is indeed possible. But if an initial value for K is known which is sufficiently 

close to the global minimum, the gradient methods have the desired property 

of convergence to the global minimum with sufficiently small steps. Thus, 
the successful application of this technique depends on having a good initial 

value for K, proper choice of step size, and, of course, the capability t6 
compute gradients economically. 

Two methods were used to obtain initial values of K for the iteration studies. 

The assumed configuration for the controller was u = Kz where 

z : Mx () 

tThe second term in the trace is identically zero for the steady-state problem. 
It is included here to indicate the presence of its analog in the time-varying 
problem. 
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represented a vector of measurements. The first method was to choose K 

to be the projection of K* on M 

=KI K*MT(MMT)-1 (12) 

When the components of z are components. of x, the choice in (12) merely 

deletes the gains in K* which multiply states that are not measured. The 

second method was based on approximating a Kalman Estimator used in 

conjunction with K* by the gain K. 

Essentially, this method involves finding a goodmatch between the open-loop 

responses of Figures 1(a) and 1(b), for a very small measurement noise S. 

Figure 1(a) yields a response in the frequency domain of 

U(jw)) = Y(jW)Z(ju) (13) 

where Y(s) is the Laplace transform of the system shown. Specifically 

Y(s) = K(sI - F - G K* + LM)- L (14Y 

where L is the Kalman gain matrix. 

Figure 1(b) yields a response of 

U(jw) = KZ(jw) (1-5) 

where K is not a function of frequency. 

Two methods to match these responaes were tried. The first was to set the 

static gains equal to the d-c gains of the dynanic system. That is 

K = Y(O) (16) 
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CONTROL INPUT TO KALMAN ESTIMATOR
 

z(MEASUREMENT KALMAN x (ESTIMATE OF STATE x) r1 u 
ESTIMATO(CONTROL 

INPUT) 

9 (MEASUREMENT NOISE) 

(a) DYNAMIC 

z U
 
(b) STATIC 

Figure 1. Dynamic and Static Gain Systems 

The second was to compute a weighted average of Y(j U) over all frequencies. 

That is 

Re J'Y(jw) I Z(jw) Idw 
0 

K =(17) 

0 

where Re denotes "the real part of. " These methods were actually applied 

to the time-varying example discussed below. 

The choice of step size is a problem common to all gradient iteration methods. 

Furthermore, it is well-known that the path of steepest descent is dependent 

on the coordinate system chosen. For simplicity of exposition, consider K to 

be a vector with components k. The gradient iteration may be expressed as 
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K(p+l) = K(p) -CVKH E: >0 (18) 

K=K(p) 

- where p denotes the stage of the iteration, and E denotes the step size. A 

sketch of possible behavior of such an iteration method is shown in Figure 2 

for a two-dimensional K. In this sketch, points A, B, C, D and E indicate 

possible values of K(p+l) corresponding to different choices of C. If the value 

of c chosen is less than or equal to the value corresponding to C, the gradient 
at K(p+l) would be directed in the general direction of the point where H = 0. 

A common manner of choosing c is to perform the minimization of H[K(p+i)l 

with respect to the parameter E. The result for K(p+l) on the segment from 

K(p) ,to C is depicted as point B. For problems such as the time-varying 
control problem, even this one dimensional minimization can be costly so 

that an approximation is generally accepted. It is also clear from Figure 2 

that admissible directions of the step from K(p) to yield decreases in Hare 

all directions with positive projections on the vector from K(p),tb B. In 
the example treated in this study such a modification was introduced. 

Equation (18) was -replaced by 

k2 

-Figure 2. Qradient Step Possibilities 
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K(p+1) = K(p) -(diag Iki(p) )[ VKH[ 'VKHI T-i] , >0 (19) 
1C=K(p) 

where diag Iki(p) I denotes the diagonal matrix with l(p) I as its it h diagonal 

element. In this form 6 represents the maximum percentage change in any 

element of K(p). This iteration equation proved to be successful in the 

example. 

The equations for computation of the gradient in the example are described in 

the discussion of the example. The required computation is the solution of 

a covariance and a co-state equation. For the steady-state problem, the 

gradient of H can be computed as follows. The steady-state covariance 

matrix, X, satisfies 

+(F + G1K)X + X(F + G1K) T N 0 

Thus, H = Tr(H +DK) TQ(H + DK)X = J. The adjoint matrix A corresponding 

to X satisfies 

(F + GIK)TA + A(F + GIK) + (H+ DK) TQ(H + DK) = 0 (21) 

Then 

- Tr [2 (H+DK)T QDEiJ X+(H+DK)T Q(H +DK)t (22)
aK ij aK ij 

w . A K .X 
where Eu - and- is defined by 

WKij aKij 
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(F + G1 K) + - (F + G1 K)T + G 1 EiJ X + X (G 1 ET = 0. (23) 

aK ii '3K ii 

Using the adjoint prqperty-of X and A 

(G 1 E'J X+ X (G 1EiJ)T]
=Tr.[2 !(H + DK)T Q DE ij X+A 


BK..
13 

T2 Tr ji_(H +.DK) QD + AGI E'j xj (24) 

We need only evaluate the two-Thus, to evaluate all of the first partials of J, 

(20) and (21) and the algebraic equations (24). Thiscovariance-typeequations 


convenient property was first discovered by T. L. Johnson (Ref. 5).
 

Parametric Techniques
 

In this technique developed by G. Stein (Ref. 6), a general.gain matrix K is
 

partitioned into two ,orthogonal ,components:
 

K = (K1 + K3)M + XK 2 (25) 

T
where (K1 ,+K 3)M(K 2) = 0. 

The first component(K + K 3)M satisfies the constraint and hence represents 

gains to be retained. The second component XI2 consists of-gains to be 

discarded. The scalar parameter, X, is introduced in equation (25) to permit 

discarding the second component while maintaining one constraint ,onthe first 

component. For generality, the first component is divided into two orthogonal 

components K 1 andE 3 where KI represents gains to be optimized and K 3 is 

fixed. The necessary condition for optimality of'K with respect to the con

strained problem is 
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J[(KI+ K 3 )M + XK2 ] - =0 	 (26) 
K 1 X=0( 

Solutions to this equation may be obtained as noted by D. K. Scharmack 
(Ref. 7) by starting with a K in (25) with X = 1 that satisfies 

aJ(K) 
= 0 (27) 

and choosing I,1 as a function of X such that 	equation (27) is maintained for 
=0 X 1. The most appealing choice for k 1 is the K that minimizes J 

globally; namely 

K* = (K(1) + K 3)M + K2 	 (28) 

According to the Implicit Function Theorem (Ref. 8), K (X)satisfying (27) is 

defined by 

dKl() a2J(KI + K 3 )M + XK-2 1 2j[KI + K3)M + XK2 ] 

= - [ 1	 (29)tdX bK 1aIKT FjKlI 	 k 

Some computational difficulties were experienced in applying this technique 
using numerical integration of (29) for the C-5A example. It was noted that 

equation (29) is equivalent to 

tEquations (26), (27) and (29) make sense in vector matrix notation if K1 
is written as a column vector, which is assumed. 
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d W) = 0 (30) 

dX 

where VJ is abbreviated notation for the partial of J with respect to the gains 

in K . As a differential equation in X, equation (30) is neutrally stable, so 

a damping term of a(?) J was added to the right-hand side. The scalar a(?) 

chosen to be positive since the integration is in the negative X direction.was 
but not complete success. AThis modification gave some improvement, 


hybrid technique using this method of finding K I(. 95) from K1(1), then
 

(0) and then using gradient correction was then usedextrapolating to K 

successfully. 

developed by A. J. Van Dierendonck (Ref. 9).A variation on this theme was 

This variation is called the incremental gradient algorithm. This algorithm 

at X= 1. Then X is incremented tobegins with the same values of K and K 

X+ AX (with -I < A X< 0). Several gradient steps are then taken to obtain 

(X + AX). Another increment in X is then taken with linear predictionK 

used for K I . Again gradient corrections in K are made and the process 

also tried successfully on the C-5Acontinued until X = 0. This method was 

example. 

A comparison of the three parametric methods is illustrated for a simple( 

example in Figure 3. For ease of representation, it is assumed K is a two

= k1 , K2 = k2 . In realistic examples, each of these axes mayvector and K 


be multidimensional subspaces. The sketch is completely hypothetical.
 

The Implicit Function Solution shown is assumed to be exact. The other two
 

paths are intended to be only indicative of the actual situations.
 

18
 



,~ GRADIENT C T 

Co1< C2 < C3 <C 4 5 2C 

Figure 3. Geometric Interpretation of armetric Techniques 
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SIMPLIFICATION AND QUADRATIC EQUIVALENCE 

In the study of the time-varying example, it was discovered that the quadratic 

approximation to a nonquadratic performance functional used in quadratic 

The following exampleequivalence is dependent on the constraints imposed. 

demonstrates this phenomenon. 

= x+y+3y 2 for (x, y) belonging toConsider minimizing the function f(x, y) 

We may think of these sets as representingcertain sets, say K1 and K2 . 

sets of attainability for a dynamical system and suppose that K1 and K 2 

correspond to complete and- incomplete measurements respectively. Then 

since measurements could be ignored in the complete measurement case, 

K2 would be contained in K I . In fact, let us assume K2 is a proper subset 

of K I . To give this problem the interpretation of a stochastic optimal 

control problem, we may suppose that x and y represent covariances of two 

responses. This would imply x > 0 and v t 0. Now suppose that 

K, = j(x,.y) : xzO and xy1/3J 

K == I(x,y) : and xy l}2 

The minimum of f(x, y) for (x, y) in K occurs at x = 1, y = 1/3. This point 

also yields the minimum for the "quadratic" function f(x, y; ql, q2 ) = 

q l x + q 2 y with q, = 1, q 2 = 3. Note that the vector (ql, q 2 ) = (1, 3) is a 

normal to the boundary of K. at (x, y) = (1, 1/3). To interpret f(x, y; ql, q9) 

as a "quadratic" cost function, we consider x and y as variances of 

responses V1 and V2 so that f(x, y; ql, q2 ) is quadratic in the responses. 

For (x, y) belonging to K 2 the minimum of f(x, y) occurs at x = 2, y = 1/2 

and normal at that point is (1, 4). Thus the equivalent quadratic for KI is 

it is f(x,-y; 1, 4). Figure 4 shows the relevantf(x, y; 1, 3) whereas for K2 

geometry for this example. 

20
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.xy = 1 (BOUNDARY OF K2 ) 

xy = 1/3 (BOUNDARY OF K 

=f 13/4 ' 

f =5/3 

Figure 4. Constraints and Quadratic Equivalence 
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This phenomenon may be quite signifiafit' for problem s ' ir which qutadratic 

equivalence and sfimplifkation, are cofisidet e'd. The simplificationi algorithmns 

for such problitis should, probably utilize the gradients of' the nonquadratic 

performance ftrictidnal> at least in the-final stages' and not rel-y on the 

quadratic apprdxiitfdion tlroughout the sii'plffication pro6edure. Thiss'was 

clearly the cas'Oe ii:ithe study' of the fbllowing example. 

TIMEr-VAIYING EXAMPLE 

The vehicle: used-ir thfis example is the rigid-body' representatiofi of the, 

vehicle. described. in Refer-ence 3. The resulting model is [0th order ahd' 

incfhdes. r.igid-bdy,, wind filter, distributed wind loads, and gimbal afigle; 

For this-m'odel-oftlie- vehicle, a sampling rate of T'samples per s-econd

was, cde-quate. rather thah the 50'samrples:pdr second required for'the

original-model which' ihcludedthree flexure 'modes. 

Ihitial optimizatioff ruis were -made' as suming'-complete me tsuremeht capa

bility (i. e7.,, every vehicleand'wifid state -kn'be- measur'ed). Usingthe con

cept ofUquadritic:e fiia-lb-ce, thr664 iterations yieldeea'coniroller whose

upper :bould- of' tfh ,piobabi'ity 'that mission failure (as-des~ribed in lr'eehc'te"32' 

would..occur 'was ' The -upperbould'on, the, probaility of mission'177x i.0- 4 ' 
,failar.eis deaotesby.J*, while J** denotes'a'quadratic cost fun'tibnal. 'It"wa

assumed:tat (pifch'), (pitc'h'rate),.z (drift), (dr'ift rate), aid'f- (gi'mbal 

angl&): could-be-i'edsuitf d"dire'cly but that tle measur'me ts were noisy' A: 

KalmantEstiniator'Was 'derived stb-exfima'te w ain"ix (wina"s&ies ) aifd x,2 

and, x3 (load-distributin st t'es)" The co....'t3 an."-* we com uit d,' ith.

the, optimum-ggins .ahd,the"Kalmah,'Estimator. Althougfr'th'e' quad'ratic-cost'2 
increased.slightly-o Vert the p6rfect- sensing' ca'se the -uppi' bound' on 'the 

-probability of missi6n -fa'ilure loWee''disfgrificahtly frdm 0.'7 x 10 t6"o; 3-x' 

10. 
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The desired form of simplified controller was chosen to be feedback of the 
measured quantities without using compensators. The simplest choice of 
initial gains for the gradient iteration method is the perfect sensing gains 
for states which can be measured and zero for the states not measured. 

For this example, this choice produced results comparable to the perfect
sensing gains. This was understandable since, for this rigid-body model, 
essentially all costs were due to the second bending moment at maximum 
dynamic pressure, and this can be controlled with pitch, pitch rate, and 
the gimbal angle. These results also explain why the Kalman Estimator 
did not appreciably change the results from those for perfect sensing. 

To create a problem to test the gradient iteration method, the terminal
drift constraint was reduced by a factor of three from 30, 000 to 10, 000 
meters. It was found that this new constraint was easily met. Hence, this 
did not create a meaningful problem. 

Thus, another approach was taken. Instead of tightening the constraints, 
the magnitude of the disturbance input was increased by doubling the 
standard deviation of the wind. After changing the quadratic weights, a 
new optimal controller was computed that met the original constraints. This 
controller resulted in an upper bound on the probability of mission failure 

-(J*) of 0. 4299 x 10 . The derivatives of this probability with respect to 

the individual responses indicated that quadratic equivalence was very 
nearly achieved. 

The value of J* for the controller with perfect-sensing gains for measured 
states and zero gains for unmeasured states was 0. 7494 x 10- 6. The 
quadratic cost (J**) for this set of gains was 0. 9344 x 108 compared to 

0.8664 x 108 for perfect sensing. The differences in these costs are 
sufficient to yield a meaningful test of the gradient search method even 
though the values of J* are small. 
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Detailed equations for the gradient iterations are given in Appendix A. One 

step of the search based on minimizing the quadratic cost J** lowered this 

cost to 0.9265 x 10g. The J* cost, however, went up to 0. 2188 x 10 - 5 . 

This was because the quadratic Q(t) used for the perfect-sensing controller 

is not necessarily the best for the constrained system as indicated above. 

The cost J* can be minimized directly in a gradient search as shown in 

Appendix A. This method proved very successful in reducing the J* cost 

x 10- 6 - 8 - 1 2 - 1 7 from 0. 7494 to 0. 1266 x 10 to 0. 1385 x 10 to 0. 110 x 10 in 

three iterations. 

Initial conditions for the gradient iterations were obtained by approximating 

the Kalman Estimator with time-varying gains. Both methods (DC and 

averaging over frequency) were used with data at 33 instants of time, 5 

seconds apart. Linear interpolation was used between these points. The 

first method EK(t) = Y(0, t)] proved to be quite poor because thepitch an6 

pitch rate states are of higher frequency. Thus these DC gains were too 

far off. The resulting quadratic cost was about four orders of magnitude 

higher than for perfect sensing. The probability of mission failure was 

certainty (J*=88). The second method proved to be somewhat better. The 
quadratic cost was up less than one order of magnitude. However, 

probability of mission failure was still certainty (J* = 2). It was still close' 

enough for the gradient search. One gradient step was taken, and the J* 

cost was lowered to 0. 354. 

For problems where the unmeasured states are important, which was not the, 

case here, this method of finding initial conditions appears to be satisfactory. 

Use of more data points in time and frequency would probably give better 

results. The weighted averages were computed using only 12 values of w 

between 0 and 10 radians per second. 
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As a severe test, the gradient method was tried with the d-c gains as initial 

gains. Using appropriate normalization of the gradient vector and using the 

initial quadratic weights, we were able to reduce the J* cost to 0. 373 in 

three steps. For the first two steps, the gradient was normalized for each 

gain over all time separately. This had the effect of changing the shape of 

each gain versus time. If this hadn't been done, and the gradient had been 

normalized over all the gains over all time, only the shape of one gain 

(drift) would be changed, since the gradient for that gain always dominated 

the others. 

For the first two steps (J* = 88 to J* = 0. 525) the original quadratic weights 

were used to drive the response covariances down to a reasonable level. 

The probability calculations were not valid for the original covariance 

values. Thus, minimizing the J* cost was unsatisfactory because the 

gradient was invalid. The quadratic cost in the first two steps was reduced 

four orders of magnitude. 

After the first two steps, the J* cost was low enough for valid calculations 

of the partial derivatives of J* with respect to covariance responses so that 

they could be used for the quadratic weights. One more step reduced the J* 

cost to 0. 373. 

The gradient iterations were terminated with this set of gains since previous 

iteration had been successful in reducing the cost to a desirable value from 

such a value of J*. 

Equations for simplification of the time-varying nature of the gains were 

derived and appear in Appendix B. 

The time-varying gains obtained with gradient iterations from the three 

initial conditions chosen are shown in Appendix C. These figures demonstrate 

that the second and third iterations from the perfect measurement gains were 
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of a fine-tuning nature. The figures also demonstrate improved behavior 

starting from the averaged approximation rather than the DC approximation 

to the Kalman controller. 

CONSTANT COEFFICIENT EXAMPLE 

The test vehicle considered is a 23rd-order model of the C-5A pitch dynamics. 

The model consists of the short-period mode, six flexure modes, two second

order Kussner lift-growth modes, two wind states, and three first-order 

actuators. The three control surfaces are inboard elevators, ailerons and 

spoilers. The response vector consists of stresses and stress rates at five 

stations and normal accelerations at four stations. A more ,detailed 

description of the C-5A model is given in.Appendix E. A possibly practical 

controller form was chosen on the basis of previous analysis of this model 

performed on the LAMS program ,(Ref. 10). This form ,is shown in Fgurwe 5,. 

RIGID BODY TWO 30 INBORD LEVAOR 
STATES GAINS 

RIGID'BODY TWO 10 SPOILERS 
STATES GAINS 

ODYEUE FOURTEEN 0.5 ~AILERON 
AND FLEXURE 'GAINS5+05 

Figure 5. Controller Configuration for C--5A 
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Attempts to use the Implicit Function Method described above required 

small steps in X (AX = -0. 05). Investigation revealed that the gradient of J 

with respect to gains in K (denoted byvJ) was highly sensitive to changes 

in gains. Small percentage changes in elements of K gave rise to orders

of-magnitude changes in components of vJ. The matrix V2J was rather ill

conditioned with a range of 1010 for the magnitudes of its eigenvalues. The 

original algorithm with AX = -0. 05 was unsuccessful at X= 0. 80. The predicted 

controller was unstable. The algorithm was modified to include damping, and 

two gains which appeared to oscillate in a diverging manner were held constant 

(put in K 3). With these modifications, satisfactory performance was obtained 

to X = 0. 50. The gains at X = 0. 45 were unsatisfactory. They yielded a non
definite matrix of second partials V2 J and consequently unsatisfactory gains 

at ? = 0. 40. 

The Implicit Function Method was discarded in favor of extrapolation followed 

by gradient corrections. A predicted set of gains for K I at X= 0 was com

puted from the equation 

K (0) = 20 K'(. 95) - 19 K 1(1.0) (31) 

Ten gradient corrections were made from this predicted gain. The magnitude 

of the largest component of VJ for the resulting gain was less than the magnitude 

of the largest component of VJ at ? = 1. 0. This was considered to.be the 

accuracy that could be expected from the numerical calculations. 

Finally, the incremental gradient method was used with a slightly different 

controller configuration. This configuration consisted of allowing flexure 

feedbacks to the elevator and spoilers. For this calculation AX was chosen 

to be -0. 10, and four conjugate gradient steps were used for correction at 

each value of A. This method proved to be quite successful for the case 

studied. 
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In Table 1, the behaviorNumerical results are shown in Tables 1 through 4. 


of the Implicit Function Method algorithm for the C-5A is displayed. Without
 

damping, the algorithm failed at X = 0. 8. The modified algorithm to include
 

damnping was slightly better, but failed at X = 0. 70. A second attempt with
 

the modified algorithm was made in which two gains corresponding to flexure

mode displacements were constrained to be constant. Greater success was
 

achieved in that failure did not occur until X= 0. 35. However, the last step
 

was very poor, and simple extrapolation proved to be much better. This
 

motivated the extrapolation to X= 0 followed by successive gradient steps.
 

The results appear in Table 2, where step number zero is the result of
 

extrapolation from X= 0. 95 to X= 0. The gradient steps were terminated
 

at the point where the magnitude of the gradient vector, as measured by its
 

largest element, became less than the magnitude of the gradient at X=1.
 

The gains for this controller are given for comparison with the original
 

gains and those from extrapolation in Table 3. Finally in Table 4,, the per

formance of the Incremental Gradient Algorithm is listed. Flexure feed

back to all control inputs was permitted in this case. The cost in the second
 

column is that obtained before gradient correction while column three
 

indicates the cost after gradient correction.
 

The magnitudes of costs and gradients listed in Tables 1 through 4 may
 

appear somewhat large considering the fact that the gradient for the optimal
 

control should be zero. However, these magnitudes are arbitrary in the
 

sense that the scaling of J and hence of VJ is arbitrary. To obtain a calibra

tion of J with respect to physical considerations, the value of J corresponding
 

to no stress and stress rate costs and standard deviations of 0. 1 g for the
 

accelerations at the four stations is 8500. Significance of the magnitude of
 

vJ computed for the optimal controller with complete measurement feedback
 

may be deduced as follows. Suppose that K* denotes the optimal gain matrix
 

which will be considered as a gain vector. In a sufficiently small neighborhood.
 

of K* the cost may be represented as
 

J(K) = J(K*) + 1/2 (K-K*). v2JlI-(K-K- ) 
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Then VJK = V2JIK,(K-K*). Now suppose K-K* = EK* 

where E is a diagonal matrix. The diagonal elements of E may be considered 

as relative errors in the components of K* and should be small if K approxi

mates K*. For the computed optimal controller each element of E was less 

than 0. 019 in magnitude indicating an accuracy of approximately 2% or better 

for each gain. 

Table 1. Behavior of Implicit Function Method Algorithm for the C-5A 

-Original Algorithm Modified Algorithm 

Unconstrained K's Constrained K's 

X J maxl(J)i J max (Vj)i i maxl(vJ)i I 

105
14377 .28. 14377 .28. 105
 
1.00 	 14377 .28- 105 


.43" 105 14427 .14- 105

.88 14429
.95 14429 105 

.45 - 105 14582 .41. 105 
.90 14595 .98 105 14590 


.28 - 105 
.85 14884 .42. 106 14862 .91- 105 14848 


.35- 105
15614 .23. 106 15233.80 
106 .12- 10516092 .34- 15749.75 

16416 .31 - 105
 
.70 


17248 .57 • 105
 
.65 


18275 .53 - 105 
.60 


19470 .52 , 105 
.55 


21170 .18 •106
 
.50 


• 106
24366 .43 

. 45 

•107
86984 .95 

.40 


26482 .53 - 106
 . 4 0 a 

alndicates extrapolated set of gains 
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Table 2. Extrapolation plus Gradient Algorithr 

Step 1 1 5 
Number J 10 maxjVJ)ij 

0 	 97125 51 

1 	 94789 34
 

2 93389 18
 

3 92373 22
 

4 88926 13
 

5 88644 10
 

6 88445 6.3
 

7 83880 0.5
 

8 72191 3.8
 

9 70685 0.9
 

10 	 70679 0.275
 

Table 3. Gain Comparison 

Controller 

Gains Optimal with Extrapolated Final 
Complete Feedback (step 0) (step 10) 

K	 1,1 - ,.02983 - .00780 .00545 

1 - .01574 .0114I,2 	 .0103 


K1 ,3 - .2388 	 .00520 .00899 

K1,4 	 .06796 .0900 .0842
 

K1 5 2.837 -1.06 -1.06
 

K1 , 6 .3137 .048 .100
 

K 1 , 7 -1. 396 -4.90 -4. 90
 

K 1 , 8 - .4093 - .175 - .023
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Gains 

K 1,10 

K 1,1 2 

K 1 , 1 3 

K 1 , 1 4  

K2 , 1 

K
 2 ,2 


K 3,1 

K 3 , 2 

Table 4. 

X 

1.0 


.9 

.8 

.7 

.6 

.5 

.4 

.3 

.2 
S1 


0 

Table 3. Gain Comparison (Continued) 

Controller 

Optimal with Extrapolated Final 
Complete Feedback (step 0) (step 10) 

.685 .345 .005 

.07228 .0723 .0720 

.9918 .491 .491 

.6193 - .485 - .160 

.008698 .00250 .00158 

.004714 - .00850 - .00110 

.001872 - .00073 .00013 

.001119 .00072 .00633 

Performance of Incremental Gradient Algorithn a 

J J
 
(predicted gainsY (corrected gains)
 

14377 14377
 

15380 15186 
17375 16387 

18664 17479 

19394 18870 
25517 21308 

24179 23181 
26086 24832 

27,202 25867 
28146 27194 

30611 28015 

aJ for the free aircraft is 116, 193. 
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SECTION III 

PARAMETER VARIATION CONSIDERATIONS 

The goal of implicitly including parameter-variation constraints within 

quadratic optimization formulations motivated study in two directions. One 

phase of the study was aimed at discovering properties of the optimal per

formance surface over a segment of parameter space and utilizing such 
properties to find optimal insensitive controllers. The other phase of study 

was aimed at reducing sensitivity to parameter variations by introducing 

proper compensators into the controller. Promising results of both 

theoretical and practical value were obtained in the first phase. Although 

intuitively appealing, the problem formulation of the second phase appears 

to be of questionable practical value. 

PROPERTIES OF THE OPTIMAL PERFORMANCE SURFACE 

Consider the scalar equation x = fx + gu + r with performance functional 

J = E (4x +u )dt where Tnis a unity white-noise input. The coefficients 

of the system, f and g, are constants with values in the rectangle R defined 

by 0 f : 2 and 1 g :5. For a controller, u = kx, the performance 
functional is a function of the three parameters, k, f and g; i. e., J = J(k, f, g). 

The optimal control for any (f, g) in R is u = k*(f, g)x where k*(f, g) minimizes 

J(k, f, g). For this simpleample, the solution for k*(f, g) is easily determined 

to be k*(f, g) = [-f- f2 + 4gl]g . In this case J(k*(f, g), f, g) can be obtained 

explicitly as -k*(f, g)g- . This surface over the rectangle R, as depicted in 

Figure 6, has a maximum over the corner (2, 1) and a minimum over the 

opposite corner (0, 5). Further calculations show that the surface J(k*(1, 3)f, g) 

corresponding to performance with the optimal controller for the midpoint 

of R highly accentuates the peak at (2, 1) while providing nearly optimal: 
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performance for points close to the midpoint of R as shown in Figure 7. This 

controller appearsi to be sensitive to parameter variations. To alleviate this 

sensitivity,, a controller could be chosen to minimize Ef,gfJ(k, f, g)] assuming 

a uniform probability distribution for the parameters f and g in the rectangle 

R. With this simple example, this can be accomplished yielding a value of 

k = -2. 82., Indeed the peak of J(k,f, g),which occurs at (2,1) is lower, as 

shown in' Figure 8. But the' controller which minimizes the maximum of 

J(k; f, g)over ! is the optimal controller for the point (2, 1). Any other k 

will give a higher value of J(k, 2, 1). Furthermore J(k*(2, 1)f, g) is less than 

or equal to J(k*(2, 1), 2, 1) as shown in Figure 9. This controller is the 

least,sensitive to parameter variations defined by R. 

The following two theorems indicate that the phenomenon noted in the above 

example is not mere happenstance. The first theorem is an existence 

theorem providing a sufficiency condition for optimal insensitive controllers 

locally, that,is, for sufficiently small variations. This theorem also implies 

that such controllers are optimal controllers corresponding to boundary 

points of admissible parameter variation sets. The second theorem states 

a necessary condition for an optimal controller corresponding to a point in 

the boundary of the domain of admissible parameter variations to be an 
optimal insensitive controller. Here, the expression optimal insensitive 

controller refers to a controller which is optimal for some admissible value 

of the parameters which minimizes the maximum of the -performance over 

'the range of admissible parameter values. 

* 	 Theorem 1-- Consider the system x- = F(p)x + G(p)u,o00x(O) = x and 

an associated performance functional J(u, p) = r (Hx+Du)TQ(Hx+Du)dt 

where-p is avector of:parameters., Let J*(p) = rain J(u, p). Supposeu
 

P is .a point with the property that V J*(p) 0. Then there 

exists an'6 > 0,such that the control u*(p0 ) which minimizes 
J(uV,po) also~minimizes the maximum of J(u, p) with respect to 

p in an e-ball with p0 on the shell (boundary) of the -ball. 

34 



fX=+gu+71,J=E f{4 x2+udt} fi++uii, J E f4x 2 +u2 dt} 
0 0 

03
0) 

J(f, g,z2.82) 
-2.82 = GAIN WHICH 
MINIMIZES 
E {J(F g,k)}-
f,fg 

J(f, g, -4.82)
-4.82 = GAIN WHICH 
MINIMIZES MAX J(f, g,k) 

f 

Figure 8. Performance Surface for Optimized 
Expected Parameters 

f 

Figure 9. Performance Surface for Optimal 
Insensitive Controller 



J(f, g,-2.36) 
-2.36 =k( 3) 

X = x+ gu + , J = E , 4x2+2dtI X=fx+u+r J=E 4x2+u2d 

I' 

f f 

Figure 6. Optimal Performance Surface Figure 7. Nominal Performance Surface 



Proof: For any 6 > 0 let Be(p ) denote the 6-ball with center at 
po-6V pJ*1 (p), i. e., 

Be Ip p Po-eV pJ*(P )+E 1, in IvpJ*(p )I 

Also define M(u; po o e) to be max J(u, p). Then 
pe Be(po)
 

(u; Pe) J(u,po) J*(po). For peB6 (Po) we may express J(u*(Po, p) 

as 
J(u*(p 0 p) = J(u*(po) , p0 ) + VpJ(u(P ), p) +(p-p+ 

P=Po 

p p po 

=JI(po0) +g • (p-po) + 1 /2(p-po) TH(p-po0),+o(e 2) H> 0 

(32) 

Note that g = VpJ(U1 '(po), p) = pJ*(p) 
P=Po P=Po 

For p E Be and E sufficiently small the only possibilities for 

extreme points of J(n*(p ), p) are 

(1) approximately p -HIg if this point lies within Be, or 

(2) points on the shell of Be. 
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The point near po-H-g is a minimizing point. Therefore 

maximizing points lie on the boundary of B6 . 

The problem of extremizing J(u*(p ), p) subject to p po-g+E6 

with ITI- I g I may be treated with a Lagrange multiplier as 

minimizing 

+ ° ( E2 +H = J + g " (P-p) + I/2(P-p )TH(p-po) X( " - g-g). 

This yields 0 = eg+ X - 6 2 H(g-) + 0(6 2) and I =IIIg as 

necessary conditions. For E small these conditions imply that 

X= ±e[1 + o(1)] and 1 = g[i + o(I)]. 

The bottom signs yield the maximum and the top signs yield the 

minimum. The exact solution for the bottom signs is X= -% j= g 

which describes the point p0 Thus on Be J(u*(Po), p) - J(u*(p ), po), 

= J*(p). Hence 

M(u*(p0 ); Po E) J-(p) M(u; po0) 

which was- to be proved. 

Theorem 2 - Consider J(u*(p 0) p) = J*(P. + g " (P-po) + o( Ip-po I) 
with g = VpJ*(p) 1p=po. Let Q denote a closed convex set with non

empty interior in the parameter space. Suppose p0 is a point in 

the boundary of £2with the property that 

J(u*(p 0 po) = max J(u*(P0 ), p). 

p6 0 

'Then g must be an external normal to £ at po. 
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Proof: Assume that g is not an external normal to Qat po0 
i.e., there exists ap, in n such that (p-po). g = c I >0. Since 
0 is convex p(X) = p0 + X(pl-po) lies in ? for 0 < X I and 
(p(X)-p 0 ) g = x (pl-Po)- g = Xcl. Thus 

J(u*(po), p(X)) = J*(p )+(p(X)-po ) g+o(jp(X)-po[). 

= J*(po ) +Xc + o() >J*(p) 

for Xsufficiently small. This contradicts the hypothesis that po 
has the property that J(u*(p ), po) = max J(u*(p0) , p).

pE: 

To utilize information about performance surfaces in determining insensitive 
controllers, approximations and computational techniques are required. For 
this purpose, consider the system 

k = 	 F(p)x + G(p)u, x(0) = x 

and a performance index 

j 	 J (Hx+Du)TQ(Hx+Du)dt
 

0
 

Suppose J*(p) denotes the optimal performance surface, J(K*(p), p), 
corresponding to u = K*(p)x. For an arbitrary controller u = Kx, let J(K, p) 
denote the corresponding cost surface. Define the "error" index as the 

difference 

e(K, 	p) A J(K, p) - J*(p) 
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This error function may be expressed as an implicit function of K and p as 

e(K, p) = Tr)AXo - Tr)PX0 (34) 

Twhere X = x x A satisfies 

(F+GK)TA + A(F+GH) + (H+DK)TQ(H+DK) = 0 

and P satisfies 

FTP + PF + HTQH - PG(DTQD)-IGTP - PG(DTQD)-I DTQH 

- HTQD(D TQD)-I GT - HTQD(DTQD)- D TQH = 0 

A is an implicit function of K and p and P is an implicit function of only p. 

So J(K) and J*(p) can be approximated by truncated Taylor series expansions. 
It is assumed that the parameter variations of F and G are moderate, say 

10 or 20 percent variation from the nominal value. Therefore, we might 

not need higher-order partials of A and P with respect to K and p. At most, 
it is assumed sufficient to expand J and J* in Taylor series up to the second
order partials of A and P. It might turn out for a practical system that the 

first-order expansion of J and J* would be sufficiently accurate. In any case 
the error function e(K, p) can be-explicitly expressed in terms of K and p in 
a reasonably accurate form. Its derivation is given in Appendix D. A 

simple geometrical interpretation of the approximations of J and J* is shown 

in Figure 10, where p is a one-dimensional parameter, and K is fixed. 

In Appendix D the following facts are established. 

(1) e(K-(p), p) = 0 

This implies that the surfaces J*(p) and J(K*(p), p) touch at p. 
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J (K, p) 

/, J (K, p) 

IJ*(p) 
, I.j I/,4- *p
 

I I 
I Io I 
I 	 I I 

IP 0 

EXPECTED RANGE OF p
VARIATION 

J (K, p)= TRUNCATED TAYLOR SERIES APPROXIMATION OF J (K, p) 

*p)= TRUNCATED TAYLOR SERIES APPROXIMATION OF J*(p) 

Figure 10. 	 A Geometrical Interpretation of Taylor Series 
Approximations of J(K, p) and J*(p) 

(2) 	 Vpe(K*(p), p) = 0 

This 	implies the surfaces are tangent at p. 

(3) 	Ke(K-(p), p)= 0 

This is the statement that K*(p) satisfies the first-order condition 

of optimality. 

(4) 	 VKKe(K*(p), p) > 0 

This, together with (3) states that K*(p) is optimal. 

These properties along with computational techniques described in Appendix D 

tofor obtaining truncated Taylor Series approximations make it reasonable 

compute optimal insensitive controllers for realistic systems. 

Results similar to those above were derived by Salmon (Ref. 20). 
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As a test vehicle for this approach, the C-5A model was modified to include 

only rigid-body and three flexure degrees of freedom and first-order 

actuator dynamics. Variations in the natural frequencies of the flexure 

modes were introduced as the parameter variations. Numerical results 

are presented in Appendix E. 

INSENSITIVITY VIA COMPENSATORS 

This phase of the study was aimed at relating the structure of the con

troller to the sensitivity of the controlled system. For a system represented 

by the familiar equations 

x = Fx +G Iu+ G 2 1 

r = Hx+Du 

and the associated performance functional 

J = EljrrTQrdtI 

where the matrices F, Gi , G2 , H, D and Q may depend on a vector 	of 
= parameters, p, it is known that the optimal controller is given by u Kx 

where K may depend on p. The equation u = Kx has a simple geometric 

interpretation. The equation defines a .subspace of the (x, u) space. With 

x and u scalars this interpretation is reduced to: u = Kx defines a line in 

the (x, u) plane. Then optimality would be equivalent to motion in the (x, u) 

plane being -constrained-to the proper line, u = Kx, and (for the regulator 

problem) that undisturbed motion be directed toward the origin. Thus for 

a simple scalar system optimality might be depicted as in Figure 11 where 

the "optimal" lines for three values of p are sketched. 
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UX 

Figure 11. Optimal Motion in the (x, u) plane 

differential equation
Compensation of the feedback may be represented in 

form by augmenting the equations with 

u Kx+K v
0 

v =w 

is augmented to 
where w is treated as the control input and the state vector 

optimality may be approximated by
include v. For the augmented system, 

asking that the motion of the augmented system by approximately in the 

'optimal" subspace. Then a performance criterion could take the following 

motion originating in the "optimal" subspace should'remain in that 
form: 

motion originating outside the "optimal"
subspace and be appropriately stable, 

subspace should approach the "optimal" subspace in an appropriate manner. 

this criterion can be expressed simply
In differential-equation terminology, 


as requiring the "optimal" subspace to be a stable invariant manifold.
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0 

The, single scalar system x = Fx + Gu, x(O) given, with performance index 

= (Qx2 +u2 )dt was analyzed to gain insight into the effectiveness of com

pensator structure in alleyiating sensitivity to parameter variations. For 

numerical calculations it was assumed that F = l+2p, G = 3+4p; Q = 2.25 

and that -0. 6 s p + 0.6. 

The optimal control for any fixed value of p is u K*(p)x with 

= -IF +F +QG2]G I 
K-


The desired behavior of the controlled system was assumed to be that a 
=
closed-loop system principal axis match the line u K*(p)x to a high degree. 

The Laplace transform of the system with w = Ix + K2 v is (without loss of 

generality K is set equal to 1).: 

(s-F)X(s) = x(0) + G[KX(s)-+V(s)l 

(s-K 2 )V(s) = v(0) + K1X(s) 

U(s) = KX(s) +V(s) (35-) 

From these-equations 

V(s) - x(0)K1 + v(0)(s-F-GK)
 
- K+
 

X(S) x(0)(s-K 2 ) + Gv(O) 

=
The requirement that u(t) K*x(t) if u(0) = K*x(O) yieIds-the equration: 

K 1 + (K2 -F-GK)(K*-K) -G(K*-K) 2 = 0 

The left-hand side- may be expanded as a Ta-yor'Series -inp about p = 0 

yielding 
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+ (K 2 -1-3K)[K*(0)-K] - 3[K*(O)-K] 2 
K 1 

+ p I- (2+4K)[K*(o)-K] - 4fK*(0)-KJ 2 + (K 2 -1.--3K-6[K*(0)-K])[K*(0)J'f 

+1/2p 2 {(K 2 -1-3K-6[K*(0)-K)LK*(0)]" - 6([K*(0)],) 2 

- (2+4K+8[K*(0)-K])[K*(0)J'} + higher order terms (36) 

The control parameters K, K1 and K2 can be chosen so that the constant term 

and the coefficients of p and p 2 are zero to yield desired matching of the 

principal axis to u = K*(p)x for p near zero. Stability requirements of the 

resulting closed-loop system are not guaranteed. This may impose further 

constraints on the control parameters and, in so doing, reduce the degree 

of approximation. 

For the numerical example it was found that matching to third-order terms 

in p could be achieved with K = -2. 08, K1 = -1. 03 and K2 = 0.29. The 

corresponding closed-loop poles for p = 0 are -4. 61 and -0. 34. The pole 

at -4. 61 is the desired value for the optimally controlled scalar system 

with p = 0. Thus the compensator pole now is the dominant pole, and the 

corresponding principal coordinate displays the dominant dynamics. This 
= is undesirable. The principal axis which approximates u K*(p)x is an 

unstable axis. Motion originating near this axis does not remain close to 

this axis. Figure 12 is a sketch showing this kind of behavior. 

One other case was considered in which K was set equal to zero. The 

remaining control parameters K 1 and K2 were chosen to eliminate the 

constant and first-order terms in p. The value of the gains were K = -8. 15 

and K2 = -48.2. The corresponding closed loop poles for p = 0 were -4. 61 

and -42. 7. In this case the axis u = K*x was stable and the resulting con

troller exhibited desired properties., Characteristics of this controller 

are given in Table 5. The final column of this table characterizes the 
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Figure 12. Phase-Plane Portrait Indicating Unstable Subspace u = K'x 

behavior of the optimal controller based on p = 0 for comparison. Columns 

2 and 3 indicate good correlation between the dominant principal axis and the 

line u = K*(p)x. Columns 4, 5 and 8 show eigenvalues with good matching 

between columns 4 and 5. On this basis the compensated system appears 

to be less sensitive than an uncompensated system. However, the improve 

ment may not be worth the added complexity. 

Thus, although this method of alleviating sensitivity has some appeal, its 

utility would have to be determined by application to a more realistic and 
more complicated example. Rather than pursue this, it was considered 

more advantageous to study the performance surface for a realistic example. 
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Table 5. Optimal Control and Principal Coordinate Dependence on p 

1 2 3 4 5 6 7 8 

p K* qlt F +GK* -q 2 t x F + GK*(0) 

+.6 

+.4 

+. 2 

+. 1 

0 

-. 1 

-. 2 

-. 4 

-. 6 

-1.96 

-1.94 

-1.91 

-1.89 

-1.87 

-1.84 

-1. 80 

-1.65 

-1.20 

-2.08 

-2.00 

-1.93 

-1.90 

-1.87 

-1.84 

-1. 82 

-1. 78 

-1.74 

-8.39 

-7.13 

-5.87 

-5.23 

-4.61 

-3.98 

-3.36 

-2. 11 

- .92 

-9.03 

-7.38 

-5.92 

-5.25 

-4.61 

-A. 00 

-3.40 

-2.29 

-1.24 

- 7.3 

- 8.9 

-11. 1 

-12.7 

-14.6 

-17.0 

-20.4 

-32.8 

-78. 1 

-37.0 

-39.1 

-41.0 

-41.9 

-42.7 

-43.5 

-44.3 

-45.8 

-47.2 

-7.90 

-6.80 

-5.71 

-5.16 

-4.61 

-4.06 

-3.51 

-2.42 

-1.32 

tPrincipal coordinates are z 1 = x 2 + q 1 xIand z2 = x 2 + q 2 x1 
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SECTION IV 

SENSOR CHOICE 

An important problem in the design of practical controllers for large flexible 

vehicles is the choice of types and locations of sensors to generate the feed

back signals. The problem arises because it is economically prohibitive in 

most applications to sense all system states, particularly the rates and displace

ments of numerous flexure modes. Moreover, experience on previous 

flexure control designs has shown that adequate performance can be obtained 

with significantly fewer sensors than state variables, suggesting that 

economics vs. performance comparisons favor smaller sensor complements. 

In principle, the sensor-choice problem is solved by selecting a complement 

of instruments which exhibits the most desirable cost/performance tradeoff, 

assuming, of course, that the instruments are utilized in an optimum 

fashion, i. e., by locating them optimally along the vehicle and by using 

optimally the information thus provided. It is in these areas that present 

methodology fails. We have too little computing power, or too cumbersome 

computing methods, to determine optimal-locations of sensors and to utilize 

their information optimally with a controller subject to various simplicity 

constraints. Cost/performance comparison for several competing sensor 

complements are thus difficult to come by. 

The research reported in this section is intended to improve this situation. 

Its general objectives are twofold: (1) to increase understanding of the 

relationships between sensor complements and the performance capabilities 

they offer and (2) to improve computational methods for locating and 

utilizing the instruments. 

PUECED]NG PAGE BLANK NOT FILMED 

49 



MATHEMATICS OF THE SENSOR-CHOICE PROBLEM
 

As usual, we are given a mathematical model of the following form:
 

* 	 System: 

= F(t)x + GIt)u + G 2 (t) (37) 

* Responses:
 

r = tI(t)x + D(t)u 	 (38) 

* Performance Measure: 

S.-	 E Yr(t) Qr(t) dtf (39) 
'0 

where all symbols -correspond to:previous definitions. Then we are given 

a collection of measurement instruments (rate and acceleration sensors, 

stress sensors, air data sensors, etc.) from which we may select any 

number and combination to mount anywhere on the airframe. The outputs 

of these instruments are to be used for control. That is, let 0 denote a 

particular subset of instruments, and let vector y denote the locations of 

each instrument (i. e., yi is the location of the i t h sensor). Each location 

can be represented by a scalar number if fuselage and wing positions are laid 

end to end. Then the instrument outputs, at least for linearized models, will 

be 

z = M(t, y, )x 	 (40) 

and the controller must be of the form 

u(t) = L(t, 	z) (41) 



In these latter equations, M(t, y, 0) denotes a matrix of dimension (mxn), where 

m is the number of sensors in the set cl, and the function L(t, z) is a linear con

trol law which is usually constrained to exhibit certain attributes of simplicity. 

For instance, the nondynamic form, L(t, z) = K(t)z, or a dynamic form with 

low-order compensation are desirable. 

With measurements (40) and controller (41) substituted into equation (37), the 

performance measure (39) becomes a function of a y and L, i. e., 

J = J(n, y, L) (42) 

This expression shows explicitly why cost/performance comparisons of sensor 

complements are difficult to get. To evaluate the performance capability, 

JY<(c), of the set of instruments I (whose cost at a given level of reliability is 
presumably known), we must specify both the sensor locations and the control 

law which is best for n, i.e., 

J*M) = min min J(, y, 1
 
y L
 

= J(a, y*(0), L*( . C.)) (43) 

With current capabilities, the simultaneous optimizations of y and L, with L 

subject to simplicity constraints, are expensive indeed. Just to get a feel for 

the magnitude of the problem, suppose we treat a single fixed-time point of 

the general nonstationary situation. Suppose further that a nondynamic con

troller of the form L(z) = Kz is sought. Then we could use one of the parametric 

methods in Section II to compute optimal controllers, L, as functions of y and C 

and we could imbed these computations inside an iterative Newton-Raphson or 

gradient loop to optimize y. Diagrammatically, the procedure would like like 

Figure 13. 

Depending upon the order and complexity of the problem, the inner loop of this 

algorithm [block (1)3 consumes anywhere from one-half to three hours of 

computing, say on an SDS 9300 machine. t The outer loop updating step 

tThe one-half-hour figure was obtained on a 20th-order single flight con
dition optimization for the F4 aircraft (Ref. 6), while the three-hour
 
figure was obtained for the 23rd-order C-5A example discussed in Section
 
II.
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CHOS IT yIA 

SOLVE MIN J(Q,y,L) 

VIA 
PARAMETRIC METHD

I 
EVALUATE VARIATIONS ,OF 

J WITH RESPECT TO y AT 
(a, y) AND UPDATE y VIA (2)GRADIENT OR NEWTON-
RAPHSON STEPS 

__JITERATE 

Figure 13. Basic Sensor-Choice Algorithm 

(block (2)3 can be performed either by repeated executions of block (1) at 

perturbed values 'of y or by the solution of coupled state covariance and 

costate equations which result from analytic evaluations of the first and 

second variations of J. For first partials alone, the latter equations com

prise a system of n(n-1) linear equations. The computations in both blocks 

are thus extremely time consuming - and, of course, they must be repeated 

for as many outer-loop iterations as are required for convergence. 

While it is thus apparent that the algorithm of Figure 13 is ill-suited to the 

general sensor-choice problem, it should be noted that it has been seriously 

proposed for more specialized versions of the problem (Ref. .11) and has 

been successfully run on a specialized version of the "dual" problem - fqrce 

producer choice (Ref. 5). In each case, the specializations were such as 

to greatly reduce the computational loads of blocks (1) and (2). Namely, it 

was assumed that controller L, is subject to no practicality constraints. 

This leads in block (1) to the controller L*(0, y) which consists of a cascaded 

Kalman filter and Kalman controller (a system with nth order compensation). 

S59
 



Both the filter and controller are comparatively easy to compute. Moreover, 

the variations in block (2) also turn out to be simpler. This is because the 
Kalman controller is independent of y in the case of sensor choice, and the 
Kalman filter is independent of y in the case of force producer choice. The 

previously coupled covariance and costate equations uncouple and leave 

comparatively simple equations for the variations of J. 

Since we are concerned here specifically with constrained controllers, the 
simplifications offered by these special cases are inapplicable and the 

algorithm of Figure 13 offers little hope toward solving the sensor-choice 

problem efficiently. The research reported here has therefore been directed 
along different lines. Instead of relying on the quadratic cost, J*(Q), as a 

performance measure of a sensor complement, the research was aimed toward 

development of alternate quality measures with two key properties: 

(1) 	 They should be easy to evaluate, for use in computational
 

algorithms such as Figure 13.
 

(2) 	 They should provide meaningful indications of performance 

capabilities offered by a set of sensors. Ideally, they should 
exhibit strong correlation with the cost J*( 0 ). 

This line of attack follows the approach taken in Reference 3, where two 
alternate quality measures were proposed, though neither proved wholly 

successful in satisfying property (2). 

Like Reference 3, the present research has no final wholly successful 

answers to report. Two promising quality measures were developed, both 

based on the pole-placement capabilities of the sensor complement. As 

such, they strictly apply pnly to stationary problems, but can be used on 

nonstationary ones via frozen-point procedures. Most of the development 

work has been concerned with establishing theoretical equations and 

verifying the computational characteristics required by property (1). 
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Results of these efforts are described below. They are general in nature 

and find application outside of the sensor choice problem in areas such as 

multiloop -controller design, initiation of computational algorithms, and 

sensitivity analysis. As far as property (2) is concerned, several basic 

performance capabilities (e.g., stability, modal characteristics) follow 

directly from the measures. Correlations with J*(0), however, and the 

practical utility of the measures remain to be established on realistic 

design problems. 

POLE-PLACEMENT QUALITY MEASURES 

The basic notion pursued here is to examine the freedom offered by a sensor 

.complement in locating closed-loop eigenvalues as a possible source of 

quality measures. This is motivated by three considerations. First, 

-classical experience with root loci and frequency domain design techniques 

,provides tested insightful relationships between the performance capabilities 

'of a controlled system and the closed-loop pole arrangements permitted by 

sensors. Such notions as stability, frequencies of 'oscillation, damping of 

.individual modes of response and dominance are all apparent from the pole 

constellation. Second, there is a fundamental connection between pole 

placement and the concept of controllability. With full state feedback, 

freedom-to assign all n system poles arbitrarily has been shown mathe

imatically equivalent to the condition of complete controllability (Ref. 12, 13). 

'Hence it appears fruitful to investigate any restrictions of this pole 

assignability property which are imposed by partial state feedback. Third" 
in certain special control problems,, namely single input, the- state dependent 

terms of the quadratic cost (39) can be expressed uniquely in terms of 

closed loop poles, with no dependence on gains or measurements used to' 

bring them about. Though this property' fails for multi-input systems and 

ignores control-dependent terms, it provides a potential link between 

quality measures based on pole placement and the measure J(n). 
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As shown in References 14 and 15, the primary effect of limited 
state measurement is to reduce the total number of poles which can be. 
assigned arbitrarily  from the maximum of n poles with full state measure
ment to a maximum number, pmax' which will be defined later. The effect 
does not confine each pole to some subregion of the complex plane, as one 
might expect from classical root locus plots. Rather, pmax poles may be 
placed anywhere in the plane (subject to certain nonsingularity constraints), 
with the remaining (n-pmax) poles implicitly determined. These observations 

hold for direct feedback of the measurement with a nondynamic controller 
L = 	Kz. If compensation is allowed, the number of arbitrary poles can be 
increased by an amount also defined later. 

These properties suggest the following quality measures for sensor comple

ments: 

* 	 The number of poles, pmax' which can be placed arbitrarily 

* 	 Some measure of deviation (say quadratic) of the unassignable 

poles from specified desirable positions, given that the 

assignable poles are placed in desired spots 

I 

While these are only verbal definitions of what must eventually be analytic 
measures, their potential is apparent. The first serves as a gross differenti

ator between competing sensor complements. If performance requires that 
p poles be positioned accurately, then all combinations of instruments which 
fail to have this capability can be eliminated immediately. Computations 

should be simple, since the measure depends only weakly on sensor locations, 
y. 	 The second measure provides finer differentiation between the remaining 

complements. It evaluates the amount of pole placement deterioration in 
noncritical modes of response, given that the critical modes are adequately 

controlled. This measure should depend strongly on y and could thus be 
used to locate the sensors by means of an algorithm such as Figure 13. For 
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both measures, the pole constellations generated by quadratic-optimal un

constrained controllers could be used to define critical and noncritical modes 

of response and desirable pole locations. 

All this is conditioned, of course, on computational feasibility - whether it 

is possible to determine the maximum number of arbitrary poles and to 

design the controller which achieves the desired critical closed-loop locations 

with computational efforts significantly below the J*( 0 ) requirements. Pole

placement equations and algorithms in the literature suggest an affirmative 

answer (Ref. 14, 15, 16, 17). However, no published procedures were 

found which completely solve the specific problems posed here. For a non

dynamic multi-input multi-output controller, for example, available results 

establish that pmax = m, where m is the rank of the measurement matrix, 

M(Q, y). This number is based on analytical methods which reduce the 

system to single-input form before assessing pole assignability properties. 

In this study it has been shown that significantly more poles can actually be 

placed when the additional degrees of freedom offered by multiple inputs are

utilized. Similarly, no figure seems available for the number of arbitrary 

poles added by a compensator of specified order, and in particular, no 

procedure was found to specify the minimum compensator order required to' 

achieve arbitrary placement of all system poles and to compute the param

eters of this compensator. These questions were answered in the course of: 

this research. The answers take the form of a general set of pole-placement 

equations and a computational algorithm to solve them. Both are discussed 

in the remainder of this section. The algorithm provides a computationally 

reasonable way to evaluate the 'quality measures proposed above. This is 

demonstrated in Appendix G with a few trial computations for F-4 and C-5A 

flight control design problems. 
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GENERAL POLE-PLACEMENT EQUATIONS 

The poles of a closed-loop stationary system (37) with nondynamic controller 

L = Kz are roots of the following characteristic polynomial: 

min (r, m) l Ik
 
P(s) = D(s) + E N (s)
 

k=1 l. k-I kk
I (44) 
p Kjl Ij2"2 ik 

Here P(s) is the closed-loop polynomial, D(s.) is the open loop polynomial of 

(37) with u=O, and the expressions N(s) are various polynominals 

-kassociated with the feedback loops. The summations indexed by jl o j2 , .

and i. 2 ...... k are carried out over all naturally ordered groups of k 

out of r controls and k out of m measurements, respectively, and the sum

mation indexed by pis carried out over all permutations of the sequence 

tk, with algebraic sign taken positive for even permutationsi i l 2 ..... 

and negative for .odd. 

Equation i44) is a polynomial in the complex variable s and in the mr gain
 

s and min(m, r) Its detailed derivation is
variables K, with order n in in K. 


left to Appendix F. Here we will present only interpretations of terms and
 

some procedures for computing them. We will then use shorthand versions 

of the equation to derive necessary and sufficient conditions for placement of 

p poles and to develop explicit expressions for Pmax* These will be shown to 

apply to dynamic as well as nondynamic controllers; they will be illustrated 

with a small example pole -placement problem; and finally, they will be used 

to devise a computerized pole-placement algorithm. 
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Interpretations and Definitions 

The terms, N2 .. Jk(s) may be treated as generalized numerat.or p9ly

nominals of the stationary multi-input system (37.) with multiple stationarv 

outputs (40). For example, the collection of first-order tprms (k=1) are 

the familiar numerators of the transfer function matrix 

H(s) = -M(a1y) (si-F)-IGI j(45) 

Each term can therefore be computed by replacing certain rows of the matrix 

(sI-F) with rows of the measurement matrix M(n, y) and evaluating the resulting 

determinant. For the termN3 , this means replacement ofthe i(j)th row of 

(sI-F), call i (sI-F)) by -(GlIi(j). times the th row, M(k of matrix. 

This procedure assumes that each column of-matrix G has a single nonzero 

entry in positions i(j), j = 1, 2, ... , r; which will always be.the caseffor 

systems with actuator dynamics, and represents-no loss,of generality even for 

.other cases. 

The collection of second-order terms (k=.2) .are -so-called '!coupling numerators" 

of the system, (Ref. 18) which are present whenever two.feedback paths exist 
simultaneously. Each of these terms is computed byoreplacing, two.rows o f 

(sI-F) with rows of IAand computing determinants. For N the replace
ment schedule would be (sI-F)(1( 'J )) replaced by r(G . . ) and 

(sI-F)(i(j2)) replaced by -(G 1)i(j2)j2 ). 

Analogous replacement schedules. apply for higher-order numerator terms, 

with k row replacements for each k -'order term. osirnple interpretation 

of. these terms, however, seems-.to be possible except to say that they arise 

whenever k feedback paths exist simultaneously. 
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Conditions for Arbitrary Pole Placement 

For ease of manipulation, it is convenient to express Equation (44) in the 

following shorthand form: 

P(s) = D(s) + 7 Ni(s) i K) 	 (46) 
I 1 

where the various generalized numerators are designated simply by Ni(s) 

and the gain functions which multiply them are denoted by 0i(K). It is now 

objective to determine the maximum number of roots of the polynominalour 

P(s) which can be assigned arbitrarily by proper choice of K and to determine 

the fate of the remaining roots. To do this, assume that the number of 

arbitrary poles is p, whose maximum is as yet unknown. Assign these poles 

to be roots of a specified polynomial X(s), and let the remaining poles be roots 

of the polynomial 6(s). Then (46) becomes 

P(s) = X(s) 8(s) = D(s) + 	 Z Ni(s) 0i (K) (47) 
i 

and in coefficient-vector-formt we get 

A6 + X = D + z N i 	 Oi (K) 

0 = D - x A6 + 	 r N. el(K) (48) 
i 11 

where Ais a matrix and X a 	vector defined as follows: 

S2
tIn coefficient-vector-form, 	 a polynomial P(s) = P1 + P2 s +P 3 + 

+ s n Pnsn- l is represented by the n-vector P = (P1 P 2 ... Pn)T. 
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10 ... 0 0 

X2 XI 0 0 

A= x3 X2 0 X, 409) 

o i' 

0 1 

0 0 n n-1 

o 0 . 1.. Xn 1 

Equations (48) represent a set of n nonlinear equations of the form f(j, t K) 

which define K and 8 as functions of the specified polynomial X, L 4.'," K JK(XV 

and 8 = 8(%). According to the implicft function theorem (R6f. 9), these 

functions exist in a neighborhood of a point ( 0 , 80s K ) if, dhd 6nly if, the* 

rank of the "Jacobian matrix" 

Hf laf1 

Koo~ 
( o' 60& K))t
 

tThis equation makes sense in vector-matrix notation only if 'K is written oct 
as a vector. This is assumed. 
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equals n, and they are unique if in addition the matrix is square. Existence 
of -solutions K(x), 6(x) are, of course, the very conditions which must be 
proved to establish arbitrary placement of the p poles, x(s). We have thus 
arrived at the following basic result: 

* Theorem 1 - Locally arbitrary placement of p poles is possible 
in a neighborhood of (X. &0, K0) if, and only if,
 

rank [(x, 16, K)] = n
 

This theorem can be used to determine pmax and also to examine pole place
ment conditions in a special neighborhood of interest (X0, 80, 0). To determine 

Pmax' note that the rank of * is bounded by the inequalities 

rank N.i T rank []g rank +rank [Zj (51) 

with the right-hand equality realized when all columns of A are independent 

d¢i 
of columns of E N. KT ." Since rank [jr] must be n, this condition givesi 

n= rank Ni T7 + (npa) 

30¢ (52) 

Pmax Ko OK T IKP rank LNiiTt] 

Now consider the special neighborhood 0, 80, 0), i.e., pole placement in 
the vicinity of the open-loop system. For this neighborhood, all partials 

T (K) vanish save those for the first-ord6r terms N J This gives 

61 



Pmaxl = rank N N ... NN 2 53)
IK0° = 0 

or verbally, the maximum number of arbitrary poles in the vicinity of the 

open-loop system is equal to the rank of the matrix of coefficient vectors 

formed from the system's numerators. If we assume that the system- is 

completely controllable from at least one of its ihputs, say uv , and that the 

matrix M(o, y) has rank m, then the following bounds are readily established 

for Pmax 

m . Pmax IK o = min (n, mr) (54) 

Application to Systems with Compensators 

These results apply verbatim to systems which include dynamic compensators. 

For example, suppose that qthorder dynamic compensation is permitted in 

the controller L(z). We then append q integrators to the original dynamic 

system, i.e. 

x =Fx+GIu+G2T 

;n+l Xn+2 ur+l 
n+2= Xn+3 +ur+ 2 (37a) 

Xn+q ur+q 

M(a y) x 

Xn+i
 

Z = n+ 2 (40a) 

Xn+q 
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K11 02] 
u z (41a) 

LK 2 1 K 2 2 j 

Each integrator adds one input and one output to the original collection of 
inputs and outputs and thus adds additional Ni(s) Oi (K) terms to equation (46). 
The new value pmax is again given by equation (52) and it follows from this 

equation that 

Pmax No Pmax qthNo q order
 

compensation compensation
 

This inequality assumes that the right-hand side is evaluated at 

110= LZ ::11]
adK 

22IK 21 K 

K I I the left-hand side at K . If in particular we let K = 0 and 
120 0 0 

choose K"0 such the (m+1)th measurement is connected to the control uv 
(for which the original system is completely controllable), then an analogy 

to (54) yields 

m+q Pmax qth order rmin [(m+q) (r+q), n+q] (56) 

compensation 

K12 

i06 
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Inequalities (54) and (55) hold in general for different orders of compensation.
th th 

That is, Pmax for qI -order compensation equals or exceeds pmax for q2 

order compensation as long as q2 ' q1 . This fact can be used to determine 

the minimum compensator order required to place any prespecified number of 

poles, p, and in particular, the order required to place all system poles 

(including the compensator). We simply start with q=1, check the rank con

dition (52), then go to q = 2, then q = 3, etc., until the rank equals n+q. 

The procedure will generate not only the compensator order but also a com

pensator design, via the function K(X) and 8(X) implied by equation (48). 

All this is best illustrated with an example: 

Consider the following system 

= 1x 0 u note: Ii(1), ... , i(r) =3 

[dl -'d2 -d]x+[0]u 

z = [ i 0 

[ 

0 .' 
01 

Suppose we want to assess pole placement capability without compensation 

and to design a minimum order compensator (if needed) for arbitrary place

ment of all system poles. 

Without compensation, we can use equation (44) directly to get the following 

first-order polynomial (in K) for the characteristic equation 
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(s3 + p3 s 2 +p 2 s +p1 ) = 

(s3 + d3 s 2 + d2 s + d + K1 1 det 1 det [ -1 

r 1 0 00-10 

or, in coefficient-vector-form 

PL di +KI 01] +_K12 L01i
 
IP3 3
 

Applying (52) we find that 

=2Pmax = rank -1i 

which means that only two poles can be assigned arbitrarily. The third 

remains beyond our control. Equations for all three can be obtained from 

equation (48) and the implicit function theorem, i. e. 

2 
specified roots: s + +
 

unspecified root: s + 8
 

+P2= 8 k[=d 2 + Kl [ + K12 

3 2 d3 01
F11 = - 1 0 01 F F-] 

LK12j ] 3 x1 
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Now let's explore arbitrary placement of all system poles via compensation. 
We begin by appending a single integrator, working up to two, three, or more 

only if required. The augmented system 'is 

x= 0 0 1 0 x + 0u 
-dI d2 d3 01 

= [X~~~10 0 0 0. 

Z 0 1 10 0,
 

10 0 0o
 

with )i(l), .... i(r)f = i(1), i(2)( = 13, 4 1 

Equation (44) now becomes a -second-order polynomial i 'K with first-order 
terms for multiplier functions r0i(K) = K1 , K 1 2 , K 1 3 , 'K2 1, K 2 2, K2 3

, atfd 

second-order terms for (K. K - K (K - KI3K andr(K2K11 22 ( K K 2 1) 41 2 K2 1), 1 1K2 3  1 2K 2 3 
K 1 3 K 2 2 ).1 

The resull 

P2 id +K±I i +12 0 +K3 [_0]2
P3 d2 0 2 3 -
P4 d3- 0 . 

+ (K 1 1 K2 3 - K 3 K 2 1 ) ] + (K12K23,. K1 3 K 2 2 ) [1 
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with all other terms equal to zero. Note, in particular, that all first order 

coupling terms between system and compensator vanish, i.e., terms for 

K13' K21, K22' Again applying (52)- gives 

FK23 0 -K21 -K13 0 -d +Kll 
rak-1 K23 K22 0 -K13 d2+K12 

Pmax = rankP mx0 2- 1 0 0 0 -d 3 
0 0 0 0 0 -1 

whenever KI3 1 0 (this can be shown by computing a determinant for columns 

2, 4, 5 and 6). Thus, arbitrary placement of all poles is possible with a 

first-order compensator in all neighborhoods except those about K- such 

that K13 = 0. This merely says that the compensator will do no good unless 

its output is fed to the input of the original system. [This corresponds to 

the choice of K 12 made to get equation (56).] 

The compensator design and direct controller gains can now be obtained by 

computing the functions K(%), &(x), whose existence is guaranteed by the 

implicit function theorem. Since all poles can be placed, the function 8(%) 

is not present and the remaining function carn be obtained directly from the 

polynomial P(s) above. This gives, 

= x4 s 3specified roots: x(s) P(s) = s4 + + x3 s 2 + %2s + X1 
unspecified roots: 

K23 = d3 X4 

K12 = d2 -X 3 -K23d3 

Ki3 # 0 otherwise arbitrary 

K22 arbitrary 
K11 = dI - X2 - K2 3 d 2 +K12 K23 - K 13K22 

K21 = (-Xi - K 2 3 d I +K 11K23)/K13 

The final compensated system has the structure shown in Figure 14. More 

elaborate computational examples are treated in Appendix G. 
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Figure 14. Example Compensator Design 

-A Pole-Placement Algorithm 

In the example above, the system was sufficiently small to permit direct 
manual solution of the pole-plcement problem. This will not be the -case, 
of course, for large flexible -yehicle design problems.; To establish com
rputational feasibility for the proposed quality measures, therefore, it is 
necessary to develop computerized solutions able to handle high order 
systems. These are provided by the Newton Raphson algorithm shown in 
Figure 15. 

This algorithm was used to carry out the trial computations in Appendix G, 
which deals with 6th- and 17th-order dynamic systems. Computation tinwies 
were very reasonable for both problems. For the 17th-order case with tw0 
control inputs and four measurements, a single rim consumes approximaely 
5 minutes on an SDS 9.300 machine. About half of this time is devoted to the 
computation of generalized numerator coefficient vectors which present 
certain numerical challenges because of their large 'magnitudes -for high
order problems. At present, a 'generalized eigenvalue routine 'is used tp 
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INPUT F, Gr M(., y) 

COMPUTE D AND 
GENERALIZED NUMERATOR 
COEFFICIENTS 	 (1) 

NJ.. C s) 

INPUT K, 7 

2Lf: 	 COMPUTE PMAXIKo 


EQN. (52)
 

K.=K
 
1 0
 

.=0
 

1
Ki i.'I- (K4 i'Ki)-fO, 6i,K.) (3) 

EQNS.(48)(50) 

BLOCK (3) ASSUMES 
THAT IS SQUARE 

Figure 15. Pole-Placement Algorithm, 
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perform the computations. This routine is discussed briefly in Appendix H, 

together with an alternate procedure which may prove more efficient in 

future ,applications of the pole-placement algorithm as an inner loop of the 

basic sensor choice algorithmof Figure 13. The alternate procedure utilizes 

the fact that higher-order numerators of equation (44) can be expr essed in 

terms of first-order numerators (Ref. 18). This fact significantly reduces 

the computations required -to evaluate the coefficient vectors for many 

sensor locations, y. 
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SECTION V
 

CONCLUSIONS
 

This study has produced partial answers to three fundamental problems in 

optimal controller design: (1) controller simplification, (2) sensitivity to 

model inaccuracy, and (3) sensor complement choice. Progress achieved 

on these problems are briefly summarized here along with unanswered 

questions. 

In the area of controller simplification, a gradient iteration method and a 

compatible method for initialization were developed. With these methods a 

simplified controller was successfully designed for a rigid-body model of a 

launch vehicle. Parametric techniques were revised and used to design a 

simplified controller for a large flexible aircraft at one flight condition. 

The remaining question with respect to controller simplification is whether 

the techniques can be combined to handle flexible launch vehicle problems. 

There is no basic inconsistency between the methods, so it appears the 

question can be answered in the affirmative. However, verification can only 

come by actually exercising the techniques on a realistic problem. 

The major result with regard to model inaccuracy is that a boundary point 

of the model's admissible parameters should be used to design an optimal 

insensitive controller. A necessary condition which such a boundary point 

must satisfy was derived. Computational aspects were considered and a 

numerical example corresponding to a flexible aircraft with unknown flexure 

frequencies was treated. The significant question remaining concerns 

admissible ranges of parameters. The magnitude of admissible parameter 

variations in the example was approximately 15 percent. At present such a 

figure must be determined experimentally on the computer for each individual 

problem. An a priori estimate is highly desirable. 
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To gain knowledge concerning the quality of sensor complements, the .pole

placement capacity of a controller with a given sensor complement was 

studied. -The following theoretical result was achieved for jmulti-input 

systems: to determine the maximum pole-placement capacity.offered by a 

sensor complement, ,each input must be utilized, and indeed, the capacity 

of a given sensor complement-is -generally enhanced as more inputs are . 

admitted. Furthermore, ,this .capacity can be evaluated with-reasonable 

computational loads -for compensated as-well as uncompensated systems. In 

fact, the minimal -compensator required.to yieldcomplete pole -placement 

capability can be determined computationally. Algorithms were developed 

and exercised on up to 17th-order examples. The question of how pole

,placement quality measures for a.sensor complement relate to measures 

of quality with respect to controller performance has been left unanswered. 

The positive results achieved in-each of the three.areas. of investigation make 

it possible to apply the ,stochastic constrained-response technology to. the 

design of a-controller-for mated ascent of the Space Shuttle Vehicle. 
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APPENDIX A
 
GRADIENT SEARCH FORMULATION
 

The following flow chart describes the gradient method used for optimizing 
fixed-form controllers for time-varying systems. In the chart, Kk(n) are 
the feedback gains of the k iteration for time n, Hk is the Hamiltonian of 
the k iteration, Pk(n) is the co-state matrix of the k iteration for time n, 
and Xk(n) is the covariance matrix of the kt h iteration for time n. 

IChoose K (nq 

|Solve for Xk(n) as a function of Kk(n), no ... N
 

Solve for Pk(n) as a function of Kk(n), no, .... N
 

Calculate - as a function of Xk(n), Pk(n), and Kk(n); 
aKk(n) 

n=o, ... ,N 

Choose AK k(n), n=o, ... , N, small such that 

N H k T
 
AJk = Tr [L j AKk(n)] < 0
 

S'et Kk+l(n) = Kk(n) + AKk(n), n=o, ... , N 

Iterate 

Al 



If J = J** (the quadratic cost), the Hamiltonian H k is 

H-k = TR [Q(N)H1(N)Ik(N)IT (N)J 

N-i 
+ TR [ At Q(n) (H, (n)+D, (n)K(n)M(n )Xk(nY ('Hi(n)+DI(n)Kk(n) 

n=o 

M(n)) T i 

N-1
 
+ TR [E Pk(n+l)(X(n+l)-X(n))]
 

n=o
 

where Q(n) is the quadratic weighting matrix for time n, &t is the sampling 

interval, M(n) is the measurement matrix for time n, and HI(n), D1 (n) are 

the usual system parameters. 

To solve for Xk(n), use the, following, sample-data covariinee solufon' 

(forward integration): 

Xk(n+l) = [A(n)+B IKk(n)M(n)], Xk(n) [A(n).+AYKk(n) M(n) 

+(At) B 3 (n)W 1 (n)B 3 'T(n) 

where.A(n), BV B3(n), and-W1 (n) are the usual system parameters. Xk(O) 

is known and is.constant. 

To solve for the co-state matrices Pk(h), set 

F~ kHPk(n+l) -- Rk(n)
 

'Xk(n) At:
 

A2
 



which has the solution (backward integration) with 

Pk(N) = HI(N)TQ(N)H1 (N): 

Pk(n) = [A(n)+B Kk(n)M(n) ]TP (n+l)[A(n)+BliKk(n)M(n) ] + 

At[Hl (n)+D I (n)Kk(n)M(h)]TQ(n)[H 1(n)+DI (n)Kk(n)M(n)J 

These equations yield the solution 

6 Hk 

= 2 BIT Pk(n+l) [A(n)+B i(n)Kk(n)M(n) ]Xk(n)MT (n) 
Jk(n) 

+2 At D1 (n)Q(n) H1 (n)+D1 (n)K )MnM(n) ]Xk(n)MT (n) 

with 

6Hk 

= 0.
 

3Kk(N)
 

To choose AKk(n) small such that 

aHkT
 
k EN Tr F AKk(n)]0
n=0 TKk(n) 

we choose
 

SHkT
 

Tr - AKk(n)] 0
k'Kk(n) 
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for all n, which is true if 

k
 

- AK (h 0
aKkij(n) k.h) 0
 

for each i, j, and n, which is true if and LKk (n), are of opposite sign. 
aKkin) ij 

This was accomplished by setting (for e > 0) 

bHk
 

AKk(n) =- K k"I(n) I6 - -aHk _
 
k3l1 (n) 6Kk. ) 2 

If it is desired that J" (the upper bound on the probability of mission failure) 

is minimized instead of J**, simply set all the Q(n) of the above equations to, 

Q(n) Qk(n) = bSk(n$) 

where 

Sk(n ) CH Il(n)+DlI(n)Kk(n)M(n)]X k(n ) [Ei- I ( n ) + D l1 ( n ) K k (h ) IM (n ) ] T 

tFor the launch vehicle, we-have a single input; this means i=l. Normalizing 
over each gain individually consists. in removal of summation over j in 
radicand. 
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This is true because 

j:,...,.a Sk(n) 

= Tr C - - 1 
6K k(n) aSk(n) 

where 

J.. FJS(n) 
-Tr [Q(n) -k ] 

6Kk J(n) -bk (n) 

which are identical if 

3J* 
Q(n) = Qk(n) =2Sk(n) 
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APPENDIX B
 

SIMPLIFICATION Or TIME-VARYING GAINS
 

A method is proposed for further simplification of time-varying optimal con

trollers through time linearization. It is- proposed that the gain matrix K(t) 

be constrained to be piecewise linear with respect to time. That is, let 

K(t) =aA ttk) ,Ifort - t !r t , .,p (BI1) 

where t =0 and t = T.0 p 

The method considers optimizing via a gradieit scheme with respect to the 

a and b with a constraint for continuity of K(t), The breakpdints' tf are 

determined visually from. practicalized gains obtained prior to these param

eter optimizations. 

Also discussed, is.the determinatfon of the deterministic input for the 

simplified controller, 

FORMULATION OF THE PROBLEM 

Figures BI through,B5. show how five.time-varying gains may be split up in a 

piecewise-time sense,.. ft seems: that this could be dbne, reasonably with,six 

breakpoints;, tothrough, t'6. ActualIy the, set of breakpoints would: be, the union 

of thet necessary-breatpoihts" neeessary for each individual time-varying gain. 

The knowledge- of the: phfysics, involved along with the-visual observation of the 

gains would, determn- where' the: breakpoints, should be. From a practical 

point; of view it,fs-advantageous to have as few breakpoints as possible. 
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Given the set of breakpoints, we then define an initial set of gains (in dif

ference equation formulation) 

K(n) = a (n-n) +b , ... ,p (B2) 
0 0 10 114 

where 

b = K*(N)t (Practicalized final time gain) (B3) 
p0 

b = a (n -n+) +b 1=, ... ,p-l (B4)
10 l 0 2A 2+ 12+1 0 

and the a are the slopes of the lines determined graphically or through 

parameter optimizationt where in conjunction with equations (3) and (B4) 

a = Fb/ - K%(n) (n-n4) E (n-n )2 (B5)
o n=nj_ L o n=n 2 

tb may also be determined through parameter optimization by solving the 
Po following two equations simultaneously: 

a [ii - K*(n)] (n-N) t (n-N)2 

n FK*(n -a (n-N)] (N-n 

N 2 
in which case n=npE l[K*(n) - Ko(n) is minimized with respect to a 

P 

and b 
PO
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n
 

where K*(n) are the set of practilized time-varying gains. Then 	 Z 
n=n,_ i2 

[K*(n) - Ko(n)]2 is minimized with respect to a Time n is equal to N; 

no is equal to zero. 

When optimizing on the a and b with the constraint for continuity of K(t), 

the Hamiltonian is 

Hk = TR Q(N)HI(N)X(N)H1T(N)] 

+ 	 TR E AtQ(n)[Hr.(n) + Dl (n)Kk(n)M(n)]Xk(n)[Hl(n) 

n Z+ Dl(n)Kk(n)M(n)]T}+ TR{ Pk(n+l)[X(n+l)- X(n)]l (B6) 

where Q(n) is the quadratic weighting matrix for time n, At is the sampling 

interval, Pk(n) is the costate matrix and Xk(n) is the covariance matrix of 

the k h iteiation for time n, M(n) is the measurement matrix for time n, and 

HI(n) and DI(n) are the usual system parameters. The Kk(n) are defined as 

Kk(n) = a'k (n-nA) + b1k; n,_ 1 n, n, =i ..... p (B7) 

where 

b = K*(N)t (B8) 

with the constraint that 

b . k a,+lk (n,-n,+l) + b 	 +l k p-1 (B9) 

tSee footnote on page Bil. 
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which can be written as 

P [a (n -n + b 
b = a+3 (BIo)Ak j=+l jLk j-1 n) Pk 

From equation (BIO), we see that the b k are functions of the a. , where jAkk
 

is greater than , and b p, and not the k.a 

To solve for Xk(n) use the following sample data covariance solution: 

Xk (n+l) = [A(n) + BIKk(n)M (n)] Xk(n) [A(n) + BiKk(n)M(n)] T 

(B11) 
+ (At) - 1 B3 (n) WI(n) B 3 T(n) 

where 

A(n), BI B3 (n), and W (n) are the usual system parameters. 

Xk(0) is known and is constant. 

To solve for the costate matrices Pk(n), set 

8H_ Pk(n+l ) - Pk(n) 
6Xk(n) At 

which has the solution with Pk(N) = H1 (N)T Q(N) H (N) 

Pk(n) = [A(n) + BIKk(n)M(n)]T Pk(n+l) fA(n) + BlKk(n)M(n)1 (13) 

+ At [HI(n ) + DI(n ) Kk B(n)M(n)]T Q(n) Hl(n) +Dl(n)Kk(n)M(n) 

B9
 



These equations yield the solution 

dI k N UAk-_ dKk(n) (B14) 

da- Fo-aKk-(n) da 
Atkn=,A 

dK(n)Y - n A , I
 
0 n ~n
 

- =n,n n n.! n..
 
pa [n ,_i--n I n 5 n-._ I 

where 

2B T Pk(n+l) FA(n) +B-,(n) Kkn)M(n) X(n) MT(n) 

aKk(n) 1 k - (B 1-5), 

+2At DT(n) Q(n) [H{-1 (n) +DI(n) Kk(n)M(n)i Xk(n) MT(n) 

Note that 

dK(n) db.
 
n - nk. for'rr 1-4 9,n-:5n j < A.

da 3a_.tr i 

We can,use equation (B1)'computed b kward in time to choose AKk(n) in 

a gradient search,. where. 
kKk(n) =-Aa k(n ) + Ab n cn<n, A=1 ... p,- (B16) 
Ak( k V 2k 11 

where. 

Aa -e T aa (B1')
kf a t-- aaA T U?-t,p. a 1 k 

pk 

The subscript i represents. the:ith ompon-ent and e ist the maximum 

-percentage change- in the at ., 

B 10. 



Also 

Ab k kbLk - b 2 k-l 

P 
.j=A+l -n.)Aak nj-1 + (b -bbpk-l) (BI) 

where 

b =K*(N).t 

The gradient search is set up as in Appendix A. If it is desired to minimize 
a nonquadratic cost J7, let 

Q(n) = Qk(n) -a k(n) (B19) 

t This b may also be a variable, where 

6H N aH.k dKk(n) N Hk 
db K (n)=ok pk n=o k 

instead of being fixed since this parameter is not constrained. 

Note 

dKk(n) 
db = I for all n from (B) and (B0) 

Pk
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where 

1 (n) Kk(n)M(n)]TSk(n) = [Hl(n)+D 1 (n) Kk(n)M(n)] Xk(n) [I(n)+D 

as discussed in Appendix A. 

THE DETERMINISTIC INPUT 

From the perfect sensing gains K (n), the deterministic input f(n) is 

defined. The deterministic controller u is then 

E(n)= K (n)i(n) +f (B20)• n 

Since this is the optimum deterministic controller, it may as well be used 

with the simplified controller gains K(n), and a new deterministic 

input f(n), -where 

fr(n) = E(n) - K(n)M(n)i(n) (B21) 

where (n) is the controller defined in equation (B20) and x(n) is the mean 

state vector found by 

3(n+1) = A(nx(n) + B1 (n) + B 2 (u)W(n) (B22) 

which is the same as the optimum since -j(n) is optimum. 

In order to further simplifythe deterministic input to the form 

f(n) = cL(n-n + d, for n_,n <n , 2=1, ... q (B23) 

B 12
 



and can be found with a straight parameter optimizaan initial set of c d 

tion where 

d E (N-n1)dqo n=nq f()-cq(n-N) 

(B24) 

= 
J nn onn_-[d (n-n} qcL = n=n_ o f*(n)3 (n-n )2; 1....

1 

and 

d =cA +lo (n -nA+l) + dt+l° (1325) 

and then use a gradient method to improve on these. It is obvious from 

Figure B6, that the same breakpoints as for the K(n) cannot be used. For 

the gradient method we would use the same procedure as for the K(n) 

except that the gradient is now for the kt h iteration 

- nt 

n n fk(n) 

N 'a j 6fk(n)
 

- afk (n) C
 

where 

nn n 1 9 n
fk(n) =n-nn n_ n1 n2 
SC1 k [n ,_-nA n : nY1 I 
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.o0 2.01. t.o 

Figure B6. 

tao 8.o io.o0 12.o 
TIME SEC (XIO 1) 

Optimal Deterministic Input 

4.6oo 
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and 

H N FH atk(n) N aHk
 
n=o b dqk n=o k
 

bfk(n)
k = i for alln. 

where H is the Hamiltonian associated with the mean responses and 

8H BIT 

__n= - 1 xk(n+1) + 2DT(n)Q(n) I[HI(n) + D1 (n) K(n)M(n)] k(n) 
a fk(n) At X 

+ D1 (n) fk(n) + D2 (n) v(n) 

where, 

Xk(N) = 2H 1 (N)T Q(N) [H1(N) ik(N) + D 2 (N) v(N)] 

xk(n) = [A(n) + B1 K(n)M(n)] 
T xk(n+l) + 2At[Hl(n) + D 1 (n) K(n)M(n)] T Q(n) 

[Hl(n) + DI(n) K(n)M(n)] 3E1(n)+ Dl(n) fk(n) + D 2 (n) TW(n) 

and 

xk(n+l) = fA(n) + B 1 K(n)M(n)] x(n) + B1 fk(n) + B2 (n) 7(n) 

with xk(0) = 

The procedure is then to compute xk(n) forward, and xk(n) and the gradient 

backwards, compute c and d by 
t k+1i k+1 

B15 



AAc - ' 

and 

,d+ ='.dq ,+ 'Ad 

,-or compute k-+f(n) by 

k+a(.n= n) '+ .Ajk(rm) 

where 

91%n) =tAc2 ;(n-n ) -+-Ad ; -n 1n 

The nepw f .for the next step.En)c are;usqd to-rpeatthe._prcedure 

-B16
 



APPENDIX C 

TIME-VARYING GAINS FROM GRADIENT ITERATIONS 

This appendix consists of graphs of the gains found in Section It Iteration 

Method for Time-Varying Systems. They are presented as the following 

figures: 

CI. 0 Gain, Iterations from Perfect-Measurement Gain 

C2. z Gain, Iterations from Perfect-Measurement Gain 

C3. p Gain, Iterations from Perfect-Measurement Gain 

C4. ¢ Gain, Iterations from Perfect-Measurement Gain 

C5. z Gain, Iterations from Perfect-Measurement Gain 

C6. , Gain, Iterations from DC Approximation 

C7. z Gain, Iterations from DC Approximation 

C8. D Gain, Iterations from DC Approximation 

C9. 0 Gain, Iterations from DC Approximation 

CI0. z Gain, Iterations from DC Approximation 

Cli. 0 Gain, Iterations from Averaged Approximation 

C12. z Gain, Iterations from Averaged Approximation 

C 13. p Gain, Iterations from Averaged Approximation 

C14. 0 Gain, Iterations from Averaged Approximation 

C15. z Gain, Iterations from Averaged Approximation 

C16. Gain, Initial and First Iterations 

C17. z Gain, Initial and First Iterations
 

C18. 5 Gain, Initial and First Iterations
 

C19. 0 Gain, Initial and First Iterations
 

C20. z Gain, Initial and First Iterations
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APPENDIX D
 

COMPUTATION OF SENSITIVITY COEFFICIENTS
 

In this appendix three computational methods of determining sensitivity co

efficients of the performance index for parameter variations of the system 

are presented. 

Let the system equation be 

x = F(p) x +G(p) u; x(o) = x (DI) 

where F is a nxn matrix, 

G is a nxr matrix, 

p is an m-vector of parameters 

Let the performance index be 

= S (xTQx + uTRu)dt (D2) 
0 

where Q is a nxn positive definite matrix, and R is a rxr positive definite 

matrix. Let the control law be 

(D3)u = Kx 

where K is a rxn feedback gain matrix. Then the optimal feedback gain 

matrix K* which minimizes J, becomes 

(D4)K* = -R- 1GT (p) P 

D1
 



where P satisfies the following Riccati matrix algebraic equation 

=-PF - FTP + PGR-GTP - Q 0 (D5) 

and the optimal performance index J* may be written as 

J xTpxo Tr IP Xo I (D6) 

with X denoting x0 x0 T. 

On the other hand let us assume that K is simply a feedback gain matrix which 

stabilizes the system (Dl). Then the corresponding system equation becomes 

= (F+GK) x ; x(o) =x (D7) 

and the performance index is 

J - °Te [e (F+GK)Tt (Q+KTRK) (F+GK)tdto dtx 0 KR~e] (D8) 

0 

= 0T e(F+GK)Tt (Q+KTRK)e(F +GK)tdt]Xo0e 

0 

xoTAxo -=Tr.)AXo (D9) 

where 

A e(F+GK)Tt(Q+KTRK)e (F+GK)tdt (D10) 
0 

and it satisfies 

(F+GK),TA +A(F+GK) + (Q+K RK) = 0 (D1I) 

D2 



Note that P is a function of only the parameter p, whereas A is a function 

of both the parameter p and K. 

Now we can define the performance index error due to using a simple stabili
zation matrix K rather than the optimal feedback gain K* for any value of the 

parameter p as follows. 

e(K, p) = J(K, p) - J*(p) 

= xoTAx 0 - xT Px 

= Tr )(A - P) Xo 

- Tr[A(K,p) - P(p)4 Xo] (D12) 

=Note that if K K* = -R- G TP, then A equals P and e(K, p) is zero. 

The function e(K, p) can be expanded into a Taylor's series in terms of K and 
p at any nominal values, of K0 and p0 as: 

e(K p) e(Ko, po) +17Ke[K-Ko] +Ve[p-poi 

+ - [K-K oT e[K-K T 

+-['K-K KKeKK + 2 0p-p7e[p-p o3 

+ higher order terms (D13) 

where K and [K-K ] are considered as vectors and all partial derivatives are 

evaluated at (K , po) V e is the (rn) row vector0 o' K 

8 r 11ll 111'.....I .j ... ,- -
VK [K 11 a2l ari 2412 r2j rD 

D3 



and 7_- is the .(rn)'x(m) matrix 

-6e2 .. -2, e 5e2 

VKe = ZK1 P1 ZKyOP2 " KllbPm
 

2
 .__ 2'e '2' 5 e, 5.e . 

5K 2 5Pl 5K '6K2 1bPm1 2 1 P2 


2 2 2 
- e e, e 

L rnbP1 5KrnbP2 . 6}Krn-m -

Sinilarly other second-order partial matrices 'are defined. 

Since e =-J(K, py - J"(p) 

=Tr IWIC,-P).-P(p) Xl
 

be = aJ ' J
bk' *k b6k
 

T (3A- zP~x 

Tr {(-k) o, where. k denotes an element of K (D14y, 

Thus, in order to obtain a Taylor"s series-expension of e, we must obtain' 

the partials of A. and P with respect to K and p. These partials are called 

:sensitivity:coefficients- of perfbrmance, indices. 

Since-A and -Pare, implicit functions of' K and p, there is no direct method 

to determinethese. partiaIs. The-partials can be determined by solving 

D4



Lyapunov type matrix equations generated by applying the implicit function 
theorem to (D5) and DII). Sample sensitivity coefficient matrix equations 

follow: 

(F+G) )( A)(FGK)= J[A.G+K TR3(E..i ij ij 

-lEAG +KT R I (Ei (D15) 

where Eij denotes an (r)x(n) matrix with the ijt h element equal to one and 
all other elements zero. 

(F+GK)T( A) ' FF K) ' K) A-

_z~F +bG
-TK) (D16) 

TF4CK*)T(+GK-I) K*) + '6G P 

q BF + K*) (D17) 
IPi bI-


Similarly, second-order sensitivity coefficient equations are of the form 
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(FG)T-
( 

)+T-Ki 

bK~ ) (0bm 

[*Ge)Ijr \T/ 

1Jkm( 

k 

-KK 
( k 

(F+GK)' 

/(
ij 

TA T 
BKi3)Gk1 

-I(Eij) TR(EkM]T 

r 3 
- L GEkm] 

- [(Eij)TR(Ekm ) (D18) 

(FGK) iPk/ kij blk 

(-GE .. T) _, A GE 
ij Pk bPk 'j 

3F +_j )T A -A 

a ak W K 

-(fk " A -,A G E;... 

'0 9 k - k 

V. 

+/aF 

- 1 

K 

(f9'y 

Three methods. for, computing, these partiatIs are now discussed. 

ADJOINT' METHOD; 

Let the adjoint matrix, equation. be

(F+GK),W + W(,F+CK)T =. Xo, (D20) 

D6.
 



Since (F+GK) is a stable system matrix and X 0 is a positive semidefinite 

matrix, W is a negative semidefinite matrix. 

Consider 
-- T4 I Xo(D 

ZKij _ 0) 

Substituting (D20) into (D21) produces 

)e Tr A [(F+GK)W +W(F4CK)TI (D22) 

Using the trace properties, Tr(AB) = Tr(BA), Tr(A T Tr(A), we obtain 

aeij Tr [(FfGK)W + W(F+GK)T1 )-}
 
ZK ij
 

=Tr [(FGK)W(f N ± w(~KT( Z 

= Tr + (F+tGl)T(j )WI{% ) (F+GK)W 

= Tr [(F±GK)T ( )A -A) (F+GK) I]W 

The expression inside the bracket of (D23) is the left side of (D15); hence 

b Tr f[AGl±TT~ 3T(+ [ (AG+KTR)(E ) W (D24) 

As we can see, the right side of (D24) is known and hence be can be deter
bK!j 

mined for all i, j; i = 1..... r; j = 1 ..... n. 

D7
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Define another adjoint matrix.V by the equation 

(F+GK*)V + V(F+GK,) T (D25) 

Then 

Tr 
[ 

X ° = Tr 
Pk _6PF I 

(F+GK*)V + - V(F+GK
;Pk 

= Tr (F-iGK*)V +(F+GK*): 
Pk 

V 
-PkJ 

= Tr 
P"[;'.p k 

(F+GK*)
" -, T 

+ (F+GK*) 
PJ (D26)V 

Using, (D.17) in. equatibn. (D26) yields

-L FF aGTr -. X -Tr l,-PP 
')Pk- ]. (] k , ' Pk '/ 

T 'O 
4 + 

: ) Pk 
K 

/ ' 
V 

Therefore 

-- = Tr 
6Pk. 

X 
LPk 

= TrF+ - ) 

-Pr'+ L( K>. 
P!k-)k 

T' 

A+AK 
p 

+ G 

Pk 

) 

' 

W 

+Tr- + k) P +-- K), j (D27) 
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The right-hand sides of (D24) and (D27) involve only known terms and V and 

W. Thus the first-order partials can be computed using (D20), (D24), (D25) 

and (D27). From equations (D24), (D26) and (D27) the following properties 

can be established: 

Property 1: 	 e(Kp) = 0 

K=K*(p o ) 

Proof: 	 K=K* implies A = P since the equations (D5) and (DlI) are 

identical for K=K*. Therefore 

e(K, Po0 Tr[(A-P)Xo = 0 

KK*(Po) A=P 

Property 2: VKe 0 

K =K*(p) 

Proof: 	 From (D24), 

__6e= -Tr [ (AG+KT).1 T 

)Kij 

+ 	(AG+KTR)E.j WI 
13, W K=K*=-RlGTP 

=-Tr I(AG-PG)E]ij T + (AG-PG)Eij) W] A=P 

=0 
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Property 3,: V p = 0 

K-K* (p) 

Proof: From (D27) 

-p 

= -Tr 

+ -- KI6p .(AW-PV
K=K--(p) 
A=P 

-Tr WA-VP) + K-)
 
'-)k 

A=P 

Which is zero if W=V. Comparison of (.D20) and (D25) shows that K=K 

implies W=V. 

Equations for the second-order partial derivative matrices may be obtained 

using the adjoint matrices and equations of the formof (D18) and (D19).- For 

example 

2e 2A
 
=Tr - X
 

K ijKkm \Kij Kkm o
 

-Tr L~m5 G(EijT + K$)G(Eij j. "K m/
L km) ij 


-TR Q ) G(Ekm + R(k) G(Em W ) 

-Tr [[(Eij)TR(,Ekm)] T+ [(Eij)T R(Ekm)]]W (D28) 
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A e2 

As we can see from (D28) we need to determine . The 
Kij 2Kij Kkm 

2 e 

only way we can obtain 'is to solve the matrix equation (D15). We 
aKij 

2 
must solve rn matrix equations to have KKe. This is a severe drawback 

for the adjoint method of determining the partials. 

From (D28) we can obtain a direct proof of the following property of the 

second partial. 

Property 4: VKKe is a positive semidefinite matrix. It is 
K=K* 

positive definite if X0 is positive definite. 

Proof: If K=K*, then the right-hand side of equation (D15) is zero. 

)A
 

Thus- = 0 where k denotes any element of K. Hence, from (D28)
k
 

K=K 
2
 

6KipKkm =- -2 Tr[(Eij) TR EkmW]
 

Direct calculation reveals that Tr[EijTR EkmW = rikwmj. The matrix 

W is symmetric o that r ikmj = w productissymerc so ha w r ikj3m Using the Kronecker 

notation we can then write: 

KeI = -2 RXW
 

K=KD*
 

Dli 



negative semidefinite (definite
R is assumed to be positive definite and W is 

if x is definite). The eigenvalues of the matrix RXW are XiP where Xi 
Sinceand A are the eigenvalues of W (Ref. Dl).

are the eigenvalues of R 

0 for each i and j. Thus iAj !0 so 
R andW are symmetric, i1 > 0 and p 

Strict in
the eigenvalues of -RXW are greater than or equal to zero. 

equalities follow from the assumption that X is positive definite. 

will consider the second method of computing the partials which is 
Next we 


a vector equation method.
 

VECTOR EQUATION METHOD
 

that solutions of -many Lyapunov-
The major drawback of the first method is 


are required. Since the left
 
type equations for different inputs (right sides) 

may not need to solve the Lyapunovweside of the equation does not change, 


There have been numerous investi
equation for each different right side. 


gations which converted the Lyapunov equation into linear algebraic equations
 

(Ref. D2, D3). We will use BingulacIs technique (Ref. D3).
 

Let the Lyapunov-type equation be
 

PA + ATp -Q 

Then Bingulac showed how to convert this equation into the following linear 

algebraic equation: 

BP =-Q 

D12
 



where 

p T (Pill'P12 . in' P22" 2n' P33"' Pn-i n-l' Pnn. 

RT= (qill q 12'... q n' q 22' .... 2q 33' q..n-1 n- 1, qnn ) 

RT


B = {bij } is a mxn matrix depending on the elements of A and
 

n(n+l)

=
 Mn 


2 

Let us apply this technique to (D15). 

(F+GK ) (F+GK) = -C\ aKij +( Ki 

where C{ [AG+KTR](Eij)}T+ {[AG+KTR](Eij)}. The corresponding 

linear algebraic equation is 

(D29)D = -C 

n(n+l) n(n+l) 
where D is a x matrix and its elements depend on the elements 

2 2 
of (F+GK), and 

{ )A 5All Aln 5A 22 A 2n A 3 3 . Ann)\T( ,AI 2 


aKiV -Kij Kij _)Kij Kij 2Kij 5Kiij bKij 

C T = (C11 , C 1 2 ... ,. Cin, 0223 C. ... , •2333... .CniniCT CilC12 n 2 C 23' C 2n' C 33' C3nW "' n-1 n-l' 

C ).
nn
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The equations corresponding to second partials of A may be expressed in 

the form of (D29) with the same D matrix. The right hand side (the C 's) 

Thus the second partials could
would be linear functions of the first partials. 

be expressed in the form 

D - I [T 1D-1T2 + T31 

are well defined matrices and vectors of appropriate dimensions.where the T.1 

G, Q, R and the indices of the variablesThe elements of Ti depend on F, K, 
the second partials

with respect to which derivatives are being taken. Thus, 

can be easily computed once D-1 is determined. However, this method has 

namely unreasonable a different drawback in comparison with the first method, 

let the order of the system be 
computer memory requirements. For example, 

20. Then the number of elements of D is [20(20+1)/2] 2 = 44, 100. This 

storage requirement is too severe. 

The first method for computing the partials requires solutions of many
 

whereas the second method requires extensive computer
Lyapunov equations, 


A third method, described below, is a compromised version of
 memory. 

the two previous methods. 

POWER SERIES METHOD 

D4) formulated a method of solving a Lyapunov-type equation,.Jameson (Ref. 


using a power series of A up to nt h power, without increasing the dimefzsions
 

of the equations. 

Let a Lyapunov-type equation be 

= (D30)AX + XAT C 
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Then X is expressed as 

[n -I 
x - n-i- '+ja A(niIJ)c (AT)(j)1 
= (-I) a• C ( (D3 1 

Li=0 j=0 

where 

a =1 
0 n[n2 

Z = 2(-) { an 2 A2il ;A = 
i=0 

2] 
n1_[n-Ii T(n-i)
 

a~n 7 a. Tr(A )= -- i=0 

Applying (D3 1) to , we obtain 

- n - i - ISZ_1 [n 1 I (n-i-l-j) 1_(EkmT [A+KT ]T 

= E (- lia (F+GK) k A 

,Kkm i=0 j=0 

- [AG+KTRI (Ekm)} (F+GK)T ( )  (D32) 

where 

nn/2 2 
°Z = 2 (-i)n[. a- 2 (F+GK)2j ;(F+GK) = I 

1 [n- I
 
n a i= Tr{ (F+GK)n-'
n LiOD1a. 
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Note 	that Z-1 and a are fixed quantities for a given (F+GK). Then 

n xo)be = Tr K xk2Kn
.6Kkm 

Fn-1 n-i- . 
= Tr[ Z - 1 	 E , (-1)+3Jai (F+GK) E 

i=0 j=0 

(D33)- [AG+KTRI (Ekm)} (F+GK)T ( i) ] 0o 

Using the trace properties, we can simplify (D33) as 

,e n-1 n-i-i 	 T )T + n-
- -TR [ z ( a ((F+GK) X Z 

i=0 j=OiKkm 

-1 (F+GK (n-1.-i-i)
+ 	 n1ni ()1+Ja. ((F+GK) T)()X 

0 j=0 

(AG+KTR) (Ek) = -Tr[(YT+Y) (AG+KTR) (Ek)k (D34) 

where 

n n (-i)Ja i ((F+GK)T) X Z-(F+GK)(n-i-i-i) 

00 j=0 

Note that (Y T+Y) (AG+KTR) is a fixed quantity for a given (F+GK). 

2be
 
The second partial, is expressed as
 

Kij Kkm
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2e 2A
 
= Tr X
 

Kij 'km 	 ijkm m ) 

= -Tr ±YT+Y) (GK	 m )G(EJ] 

-Tr (YT+Y) (K)G (Ekm)j 

-Tr (YT+Y) (Eij)T R (Ekm) 	 (D35) 

B2e 
Hence 

Ks "Kkm
 

[n- 1 n-i- i -i-1-J) 

= r (-1)' Ja (F+GK) ( (AG+Y+YZ-	 ETrY )Z( L'=O j=o ik 

KTR)T (F+GK)T(j)] G(Ers) ] 

+ 	 Tr LYT+Yz-1 1 (F+GK) (n-i-1-J)(AG+KTR) (Ek) 

0~j=O 

(F+GK) T(] G(Ers) 

(Tyz 1 [n-1 n-i-1 i+" " "--j 

+ Tr LYT+Y)z1 E 7-l (-i1 aai(F+GK)(-1--)(E rs)T (AG+i=o j=o 

KTR)T (F+GK)T(j) ] G(Ekm)j 
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i l	 j+TY+)zET I [n-1 zn-i-li -1)i+aj i (F+GK) (n nil) (AG+ 

Y+ L 0 j=0[i=
' j ) ] KTR) (Ers)(F+GK) G(Ekm) 

-Tr [(yT+y) (Ers)T R(Ekm ) ] 	 (D36) 

As we can see from (D36), it is required to compute (F+GK) to determine 
the second partials. If we store all powers of (F+GK), it requires 20 x 400 
8, 000 words memory for a 20th-order system. On the other hand, we can 
compute (F+GK)1 from (F+GK) stored in the memory which requires only 
400 words memory but this requires a large amount of computing time. 
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APPENDIX E
 

PARAMETER VARIATIONS EXAMPLE
 

Numerical results obtained in the study of sensitivity to parameter variations 

for the C-5A example are presented in this appendix. These results demon
strate the applicability of design of optimal insensitive controllers to a real

istic problem with significant range of admissible parameters. The limita

tion in the magnitude of the parameter range is apparent for this problem. 

The model of the vehicle used in this study is described, followed by a de

scription of the problem treated. Numerical results indicating the nature of 

dependence of performance on parameter variations is then summarized. 

Finally an analysis of eigenvalue dependence on parameter variations is pre

sented which indicates limits on the admissible range of parameter variations 

for which the proposed approach to insensitivity is valid. 

MODEL DESCRIPTION 

The longitudinal axis of the C-5A, 'a large transport aircraft, was chosen for 

the constant coefficient example described in Section II. This vehicle was 
chosen because of the inability in a previous study to derive a simplified con

troller from an optimal controller. Also the data was readily available. The 
single flight condition treated is the low-altitude cruise condition with 50 per

cent fuel and 50 percent cargo indicated in Reference 10. The original data 

available consisted of three rigid-body modes, fifteen symmetric structural 

flexure modes described in Table El, lift-growth effects expressed in terms 

of Wagner and Kussner functions for the wing, horizontal tail, vertical tail 
and fuselage and gust penetration effects represerited by time delays. A 

design model was derived for the optimization study reported in Reference 10. 

This model included two rigid-body modes (vertical velocity and pitch rate), 

El 



3, 4, 6, 7 and 11, Kussner lift-growth modes,structural bending modes 1, 
The expecteda second-order wind filter and three first-order actuators. 


value of a quadratic form in stresses and stress rates at two wing stations and
 

three fuselage stations, including the horizontal tail root, and normal accel

erations at four fuselage stations was chosen as the performance index.
 

Aileron, inboard elevator and spoiler control surfaces were used for control
 

Table El. C-5A Mode Descriptions 

Mode (Hz) DescriptionMode Frequency 

1 0. 750 First wing vertical bending 

2 1.780 First wing chordwise bending 

3 2.328 Second wing vertical bending 

4 2. 617 First fuselage vertical bending 

5 2. 814 Outboard pylon lateral bending 

6 3. 061 Inboard pylon lateral bending 

7 3. 196 Third wing vertical bending 

8 4.119 First wing torsion 

9 5. 013 Outboard pylon torsion 

10 5. 155 Inboard pylon torsion 

11 5. 387 Second fuselage vertical bending 

12 6. 024 Horizontal stabilizer vertical bending 

13 6.7,02 Second wing chordwise bending 

14 6. 894 Fourth wing vertical bending 

15 7.891 Second wing torsion
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The design model was used as the constant coefficient' example in Section II. 
The state variables chosen were vertical velocity, pitch rate, structural 
mode displacement.s and rates, control surface displacements, and wind 
model and Kussner function variables. Specifically, the model used in 
Section II consisted of the state vector 

[w,nq, n 	 T 

the control vector 

T
[6a'6e.6sJ 

the response vector, r, a 14-vector 

r = Hx + Dn 

and the performance index J =E 	 fr(t) Qr(t)dtl. 
0 

This model was modified to study the effect of parameter variations. To 
reduce the size of the problem the three highest-frequency flexure modes 
(6, 7 and 11) were eliminated. Also, the Kussner and wind states (PI' P2, P3 

P4 P5" ag) were eliminated, and the deterministic problem was treated. This 
left an eleven-dimensional state vector 

XT=Elx x TT = 	 .Wq, Tfx, x 2 , .... x I = [w, q, i 3 4' 4' 6 a' 6 e' 6s] 

As initial conditions for this problem we chose xi(O) =V2x.. where x.. 
denotes the corresponding diagonal element of the 23rd-order state covari
ance matrix corresponding to the optimal control with complete measurement 
used as an initial point for the simplification of Sebtion II. For the parameter 
variations analysis the performance index was chosen to be 

f[x(t)] Q x(t) + [u(t)] T R u(t)3 dt 	 (El) 
0 
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where Q = (H) Q, R = D QD and H is obtained from the original H matrix 

The cross-productby deleting each column 	corresponding to a deleted state. 

omitted for convenience even though (H)T QD was 
term 2 x 	 (H) T QDu was 

The parameter variations considered were percentage changes in 
nonzero. 


the undamped natural frequencies associated with the three flexure modes.
 

Nominal values for these frequencies were assumed to be:
 

= 5.6 rad/secl= frequency of first flexure mode 

= 14. 5 rad/sec[03 = frequency of third 	flexure mode 

=	 = 17.0 rad/sec*4 frequency of fourth flexure mode 

The vector equation of motion was expressed in the form 

(E2)x = Fx+Gu 

where the 	following explicit dependence on the wi was assumed: 

f43 (Wl)2, f65 -(t3)2, f87 ( 4) 

'
 f44 -2C1w f66 -2C3'3 f88 2I = 	 -4'4
 

PROBLEM DESCRIPTION 

1 and 2 of Section III the 	optimal insensitive controllerAccording to theorems 

the optimal
for a small convex region of admissible system parameters is 

controller corresponding to a set of parameter values belonging to the bound

region which yields the maximum optimal cost. The theoryary of the convex 

gives no quantitative estimate of the possible range of parameters. Similarly, 

the derivations in Appendix D yield qualitative rather than quantitative results 

concerning computational time requirements and approximation accuracy. 

the major purpose for treating this example was to obtain quantitativeThus, 


data from a realistic problem.
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Two 	specific questions to be answered with this example were: 

* 	 Is it computationally feasible to compute a second order
 
approximation to the optimal performance surface?
 

* 	 For how large a range of admissible parameters is such an 
approximation adequate to define an optimal insensitive 

controller? 

Using the adjoint method described in Appendix D, the answer to the first 
question was yes. In answer to the second question the approximation was 
adequate for ± 15%, but inadequate for ± 20% variations from nominal values. 

The 	optimal cost surface is 

J* = Tr fPx0 x 0 T (E3) 

where P is the matrix function of the parameters which satisfies 

PF + FTP - P(GRIGT)P + Q = 0 (E4) 

The second-order approximation to J-* is 

5* = TR [P(wIW 2 ,'w3 )Xo + vW J(AW) + T(AW) (E5)V J*(AW) 

where Aw1 

Ao [ Awl = the vector of flexure mode frequency variations, 

wI" w3 "t4 are nominal values of the flexure mode frequencies, 

5 [=73J " evaluated at l' "w3' w04' and vwJP* , ,j*"]
Lawl 

" 

'au3 atL 4 J 
is the matrix of second partials of J evaluated at the point w., W31 w04. 
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computed 	from the following equations (which areThe partials of J*were 

derived in Appendix D): 

2 Tr VPii
 
2J= p at+ vP -1GT bP
 

aI bF b Tr 	 GR G_ 

where P satisfies (E-4), V is defined by 

(F-GR-GTP)v + V(F-GR- GTP) + X ° = 0 

and 	 satisfies 

+ +4 -, ;0(FG-1G 	P)T?: + _PP(FGR1G Tp1) P P _.T-1 T T 6P 6P -1 T F _ 
(FuG 1 6au aw w 

are presented below.for i = 1, 	 3, 4. Numerical results from these equations 

NUMERICAL RESULTS 

The first and second partials were evaluated to yield the following, approxi

mation: [A1' 

3* = 21204-+ [206, -589, -3663 'No3 

_-1.45 	 -2.63 -10,.24 

+[I'A'3' -2.63 .10. 66 15. 46 1,3 
+[Awl, Au 3 , Au4 3 	 154 (E6) 

For Aw 	 in the cube 0 defined by 

0,: f Ihw.I 0.15w., i = 1, 3,4, 

E6 
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the first-order term of (E-6) dominates the second-order term. The point 
in Q which minimizes -* is readily determined to be 

l 1 = 0.15w1 , Au 3 = -0. 15 3 , A 4 = -0. 15w 4 

The corresponding a* = 24029 compares quite well with the corresponding
value of J* = 24813. Values of J* and Y* at various points in 0 are listed 

in Table E2. The accuracy of the estimated value of J* is reasonably good as 

is evident from Table E2. Also J* identifies extremal points of J* correctly. 

Table E2. 	 Optimal Cost and Estimated Cost by Taylor Series 
Expansion at Nominal F 

Parameter Variations Estimated Cost by
from Nominal Values (%) Optimal Taylor Series Expan-

LW03 	 Cost, J",- sion of Nominal F, *A 1 	 AW 4 

15 -15 -15 24813 24029
 

15 -15 15 21670 21733
 

15 15 15 19608 19491
 

15 15 -15 21089 21108
 

-15 -15 15 21447 21454
 

-15 -15 -15 24091 23575
 

0 0 0 21264 21264
 

-10 -10 -10 22932 22706
 

10 10 10 20088 19950
 

-15 15 -15 20598 20680
 

-15 15 15 19405 19252
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To see whether the optimal controller at the maximum cost Jmax at 15% 1, 

and -15% to from the nominal F was indeed insensitive five points in-15% &)3 4 

selected, and their optimalthe convex region of the parameter variation were 

of the controllers for various pointscontrollers were obtained. The cost J 

in the region were determined. As shown in Table E3, the optimal controller 

at the maximizing point of J* yields lower costs for the points than Jmax' 

whereas the optimal controller at J min produces three points whose costs 

exceed J* 
max' 

An attempt was made to perform the same analysis for an enlarged fl varia

tion of 20% of nominal values. The resulting optimal cost values and costs 

for the optimal controller at the maximizing points displayed in Table E4 

show that this cube is too large. The optimal controller for the maximizing 

point yields unstable systems for two vertices of Q. Also, the cost at one 

vertex exceeds the maximum value of J*. This indicates that one would have 

to "back-off" from the maximizing point to derive a satisfactory controller. 

One computationally.feasible way of analyzing this behavior is to analyze the 

locus of roots as the point defining the optimal controller varies. Such an 

analysis was performed for the 15% cube. 

Comparing Table E3 and Figure El, we can conclude that along the diagonal 

line from P5 = (+15% [0i, -15% t3' -15% wo4 ) to P1 = (-15% ci"v +15% to3 , +15% 

to4 ) the optimal cost J* increases. The root loci of the optimal controller 

of P5 for the points along the diagonal line are given in Figure E2. As seen 

in Figures E2 and E3, if w , W3' and wo change further than -15% to1 . +15%&03'1 4 

+15% wo4 in the same direction, then the damping ratio decreases and finally 

one actuator pole goes to the right half plane, and hence the system becomes 

unstable. At this point a tradeoff between stability and performance would 

have to be made for the 20% cube. Fortunately, the stability margin need not 

be large since parameter variations have already been included. 
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Table E3. Costs of Controllers at Various Points 

Cost due to the Optimal Controller of 

Parameter Variations A1 15%o wi 100 w1 5% 0% -15% W11I w1 
from Nominal Values O3 -15% (113 -10% w3 -5% w3 0% w3 15% w3 

Aw I j A 3 Aw 4 Cost, J, Aw4 -15% 4 -10%wW4 - 5%w 4 0% U4 15% w14 

+15% -15% -15% 24813 24813 248 1251281 25095 
+15% -15% +15% 21670 22455 22213 22128 22146 22728 
+15% +15% +15% 19608 22036 20852 20269 19948 19641
 
+15% +15% -15% 21089 22392 22200 22127 22111 22577
 
+10% +10% +10% 20088 21957 20967 20500 20259 20143
 
+10% -10% -107 23301 23375 23301 23366 23570 2567
 
+ 5% - 5% - 5% 22162 22478 22226 2221922162 23267
 
0% 0% 0% 
 21264 22072 21528 21319 21265 21743 

-10% -10% -10% 22932 23118 22994 23066 23284 12564 i 
-15% -15% +15% 21447 22454 21921 21767 21778 22399 
-15% -15% -15% 24091 24364 24398 24655 1213 309 
-15% +15% -15% 20598 23049 22309 22303 22438 23268
 
-15% 
 +15% +15% 19405 24730 21613 20374 19822 19405
 

Note: means that the value exceeds Ja = 24813.
miax 



Table E4. 	 Costs of the Optimal Controller of (Awl = 20% w1 ,
 

A 3 = -20% w3, AW4 = -20% w4 ) at Various Points
 

Cost due to 	the OptimalParameter Variations 

from Nominal Values Optimal Controller of
 

=
 wl 1,Cost, J* 	 U20 3 -20% w3. 

Jl"3 &4O'44= 	 -20% w4 ) 

+20% 	 -20% -20% 26853 26853 

-20% -20% 25566 27110-20% 

-20% +20% 21756 23039+20% 

+20% +20% 19200 	 -25222
+20% 


-20% 21018 23593
+20% +20% 


-20% -20% +20% 21505 23941
 

0% 21204 
 23501
0% 0% 


+10% +10% 
 +10% 	 20088 24346
 

23146
+ 5% 	 - 5% - 5% 22172 


20300 	 unstable-20% +20% -20% 

+20% 18968 unstable-20% 	 +20% 

means that the value exceeds J max= 24813.Note: "= I, 

El0 



(l5% ,+1 5%'w3 , +15%w4 )= Pl) 

(00/., 00/, O0/6 P2 

5
(+5-/Sw, -%7w3, -576w4) P3 

).4- +f ¢ i / ) ...-- / , )"-1.7,W-),P4
 

/./ '/,w, ( 
- -11, -lo3 ' -/67o4)= P5
 

Figure El. A Convex Range of Parameter Variations 
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O (+1 07owi, -low3 , -10/w 4 ) 
1 (+50/,W-1, -57a -5/w 4 ) 3 
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Figure E3. Costs of the Optimal Controller of J"max for 
Five Points Along the Diagonal Line Between 

max Point and J'min Pont 
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APPENDIX F
 

DERIVATION OF THE CHARACTERISTIC POLYNOMIAL
 

This appendix derives the characteristic polynomial for an arbitrary multi

input multi-output feedback control system. We consider plants of the 

following form: 

x = Fx + Gu (F, G) controllable, rank (G) = r (FI) 

z = Mx (F, M) observable, rank (M) = m 

where x is an n-dimensional state vector, u an r-dimensional control 
vector and z an m-dimensional vector of measured outputs. Without 

loss of generality, we will assume that the matrix G has a single nonzero 
entry in each column. This will always be the case in aircraft or launch 

booster models where each input drives a separate actuator. Moreover, 

even in cases where G contains additional nonzero entries, we can always 

construct a similarity transformation T such that 

x = 	 Tv
 

T - I
v = 1 F Tv + T - Gu (F2) 

z = HTv 

where the new matrix T-1G has the form 

T-I1G 	 (F3) 

This is possible whenever rank (G) = r. It can be readily verified by letting 

T = [T 1 : G] , where T 1 is any collection of (n-r) independent columns, 

independent of G. 

Fl 



21 1.,,
Let the r nonzero entries, of G he denoted by G.. where j 1, 

i =(j) = i(1),
and where i takes on r values depending upon j, i.e 

linear fixed4orm
i(2), ... , i(r). Then the closed-loop system matrix for a 

= Kz will take the following formcontroller u 

i # i(j) for-any j
F(i 

r (F4)
(F + GKM) ( i ) = F() + E G.j.14M(L) 	 i 


j 1, 2, .... r
Io 

where the symbol A ( i ) denotes the i t h row of matrix A. 

the closed loop system matrix is the original matrix F with linear
In words, 

M added to its i( )th rows,combinations of rows of 

This is 
Now consider the characteristic equation of the closed loop system. 

given by 

(F5)
det (sI - F - GKM) = o 

In order to deal with this equation, we will introduce the following notation 

DET [a ( l ) , a ( 2 ) ..... a (r) = .det (A) 

where

i #i(j)(sI - F)(i) 
(F6)oA(i) 

i = ij) for= 
2I,.. r 
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Further, we will let (J) = (sI - F)(i(D, j = 1, 2, .r. 

Verbally, this notation dendtes the determinant of the matrix (sI - F) 

with rows i(1), i(2), . . ., i(r) replaced by -a(1)-- j -a (2) , ... _aa(r) 

respectively. Then it follows that 

det (sl - F - GKM) = DET [OM + E Gi(l) K I M(A). 

M(F)Gf(r)r Fr
(r) +z 

th 

We will now show that equation (F7) corresponds to at most an r order 

polynomial in the gains Kj,. This will be done iteratively, first for 

r = 1, then r = 2, and finally for general r. 

For r = 1, note that we are dealing with the determinant of a matrix whose 

i(1)t h row is a sum of several terms. Using a well known property of 

determinants (see, for example, Hadley, Linear Algebra, page 93), this 

gives 

G. K M(L)3 = DET [0(I)3 + sI D Gi1T
DET [0(1) + Z G i(1)l 1 A MW El[ ] K1 DET C l)1M ( A) I 

A i()A1 

(F8) 

For higher values of r, we simply apply equation (F8) recursively. For 

example, r = 2 yields 
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00)(2) + F Gi( 2 )2 K 2 1 3 = 
DET [0(I) + , Gi(1) 1 K itM 

(2)
 
= DET[r() ¢(2) + zGi( 2 )2 , K 2 M('W] + rK1 1 DET [Gi(1 )1 

AA 
(F9)+ E Gi(2)2 K 2 k M(k) 

k
 

= DET[0(1), 0(2)] + Z K 22 DET[0 (1) Gi(2 ) 2 MU 
)I 

)2M')32k [DET[G.)IKK 2 k DET[G
MU), (2)3 +K+ 


Similarly, for general values of r, we get 

DET ro(1) + E G K M(A... . (r) + F Gi(r)r K 

DET[¢(1) ¢(r)]+ r K DE T() G M () (r)]
2 s DE .W ij...... K.2 


m m
 
+ 	 Z . £E- K. 1 1 K, IDET[ ..,G i(Jl ) G M(2) (r)I 

ji 2 -h1 32* G2 'i(j 2 )j 2 W .,ii'A 11. t 


Sum over all nonrepeated pairs of controls
 

(F1O) 

In I 

"Jp KjIL K-j3 	 ..,Gi(Jl)Jl ... i pJ""... f=l . I... , DET Ed't(1 

Sum over all nonrepeated groups of p controls (r /p! (r-p)i terms) 

mn m DT[i1I(1 . (r 

G i(r)r 3Kr DETTGI+ ... Z K 
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Interpretations 

The various terms of the polynomial (Fl0) have the following interpretations: 

1) DET( 1 ,... 0 (r is the nth order characteristic 
polynomial, D(s), of the open loop system. 

in the .th2) DET ((1),..., G M(), (r))Mit 
inthe 3
 .. .
i(j)j

position is the (n-1)t h order (or lower) numerator polynomial 

of the (jthinput)-to-(Lth output) transfer function. This can be 
verified by computing the transfer function:

-0 ]
 

S(S)=M() (sI - F)-Ii
 
. (si(j)j
 

1 n thDm - [i(j) k cofactor of sl - F] Gi(j)jS)k=l $
 

DET [M(1). M(). M(r): Gi(j)1 

S[ Oi(j)j M(r)
 
---1 DET [0 ......... (r
 

The numerator polynomials will be denoted by NA(s). 
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terms of equation (FIO) the DET [ ] expressions3) 	 For higher-order 

are so-called "coupling numerators" [18], which appear whenever 

several feedback loops exist simultaneously. We will denote these 

jlj2. . . p
 

polynomials by N (s), i.e.,
 
£1A2. . .Ap
 

.- ° ppN (s) = DET i(Jl)j I .0 ijj )j 

I" " p(Eli)
 

Simplifications 

Equation (FI0) can be significantly simplified by using the following two properties. 

jlj 2 
• . .Jp
 

1) N(S) = 0
 

41whenever two or more elements, of the sequence Y2 .. . p 

are identical. This is because the determinant of a matrix with 

zero.two proportional rows or columns is 

•jj	 . . .jp jlJ2 .jp2

2) N (s) +)N (s)
 

2 p 12 p
 

whenever the sequence 1i, . ., is an arbitrary permutation 

of the sequence Z" 2 ... . p The correct sign is obtained by 

noting whether the permutation is even (plus sign) or odd (minus 

sign). This follows from the fact that an interchange of any two 

rows or columns of a matrix only changes the sign of its determinant. 
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Using property (1), we can readily conclude that the makimum order in K of 

the polynomial (FlO) is not equal to the number of controls (r) but equals 

min (r, m)-. To show this,- just compute a higher order term, i.e., let 

r p > m. Then definition (F11) for 

" AVN " p requires that.we substitute some rows of M into (sI - F) 

more than once, so the polynomial must be zero. We can thus eliminate 

a whole host of terms in equation (FIO). 

Still more terms can be eliminated by using property (2). - Note, in particular, 

that the pth order summations 

m m 

1i=1 Ap=l
 

range over all possible combinations of p numbers out of m, including groups 

with repetitions of numbers and groups which are permutations of other groups. 

The former will yield vanishing polynomials while the latter's polynomials 

will differ only in sign from other polynomials. We can thus restrict the 

summation to nonrepeated groups only, and we can collect all groups which 

are permutations of each other to form a single multiplier of the polynomial 

corresponding to, say, the naturally ordered permutation. This gives the 

following reduced characteristic equation: 

min(r, m) J*''.p ) 
P(s)=D(s)+ E N (s) [E(+) K.Ai .. K.p] (FI2) 

p=l {J. "ip2 1 .. ',p 'l t- A1 3 -I 

sum over all permutations 
of A " 1p with appropriate 

sign 

sum over all naturally ordered nonrepeated 
groups of p measurements out of m 

sum over all naturally ordered 
nonrepeated groups of p controls 
out of r 
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APPENDIX G
 

POLE-PLACEMENT EXAMPLES
 

This appendix describes two pole-placement problems which were used to 

debug, exercise, and demonstrate the pole-placement algorithm developed 

in Section IV. The first problem involves rigid-body controller designs for 

a sixth-order lateral-axis model of the F4 aircraft (Ref. 6), with rigid-body 

pole placement taken as the design objective. The second problem is con

cerned with flexure control of a 17th-order pitch-axis model of the C-5A 

transport. In this case, the design objective is taken to be placement of 

rigid body and certain critical flexure poles. These examples serve two 

functions -- (1) they show that the algorithm works, and (2) they illustrate 

how it can be utilized in control design and sensor choice problems. 

THE F4 LATERAL-AXIS PROBLEM 

Disregarding servos, flexure, and other high-frequency phenomena, the 

lateral axes of the F4 can be modeled by the following equations: 

x = Fx + Gu 

where 
p roll rate (stability axes) 

r yaw rate (stability axes) 

- angle of sideslip 

0 of bank
 

rudder actuator deflection
 

-angle 

6R 


6 AS - aileron/spoiler actuator deflection
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uR - rudder actuator input 

ULAS - aileron/spoiler actuator input 

and where the matrices F and G take the following values for a flight condi

tion at Mach = 0. 5, altitude = 5000 feet: 

-1.7680 0.4125 -14.520 0.0000 2.031 8.9520 0 0 

-0.0007 -0.3831 6.038 0.0000 -3. 398 -0.3075 0 0 

0.0016 
1. 0000 

-0.9975 

0. 0000 

-0. 155 

0. 000 

0.0586 

0. 0000 

0.028 

0. 000 

-0.0036 

0. 0000 

G= 0 

0 

0 

0 

0.0000 0.0000 0. 000 0.0000 -20. 000 0.0000 1 0 

0.0000 0.0000 0.000 0.0000 0.000 -10. 0000 J 1 

and 
To represent unity gain actuators, the nonzero values in G (i. e., G 5 1 

G6 2 ) are equal to 20 and 10, respectively. For our own convenience, 

however, we will consider these values to be unity and scale down all final 

gains by a factor of 20 or 10, as required. 

system are characterized by three principal
The dynamics of the above 

modes: 

to a root close to the origin(1) 	 The spiral mode, corresponding 

(-0. 0156) 

(2) 	 The roll subsidence mode, corresponding to a root at -1. 85 

(3) 	 The dutch-roll mode, corresponding to a complex conjugate 

pair of roots at -0. 219 ± j 2.48 

are 	two actuator modes, corresponding to roots at -20
In addition, there 

and -10, respectively. 
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The "quality" of the lateral-axis dynamics is judged to a large degree by the 
root locations associated with the three principal modes. In particular, the 
spiral root shotild correspond closely to a pure integration; as it does in the, 
free aircraft above. This allows pilots to hold nonzero bank angles and turn 
rates without stick commands. 

The roll subsidence root should be fairly large, since it defines the rate of 
response of roll rate due to aileron inputs. Values of -3 or -4, for example, 
are much preferred over the rather sluggish -1. 85 value. Finally, the dutch
roll roots should be damped at least by a ratio of 0. 25 and should exhibit 
natural frequencies in the vicinity of 2. 5 rad/sec. This assures tolerable 
sideslip and/or roll-rate oscillations in response to lateral control inputs or 
disturbances. Note that the free airframe has good dutch-roll frequency 
characteristics but falls short of the damping requirement. 

Given these requirements on pole locations, the lateral axis problem makes 
an attractive pole placement example. In the paragraphs below, we consider 

the possibility of satisfying the requirements with several different sensor 
complements. In each case, the algorithm of Section IV was used to assess 
pole placement capability and to compute controller gains. 

Case 1. Four Measurements 

The following measurements are usually available on the aircraft: 

Pse - sensed roll rate (body axis roll rate) 

r - sensed yaw rate (body axis yaw rate) 
y=Mx se 

a - lateral acceleration at the accelerometer station 
y 

0 - bank angle 
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The measurement matrix corresponding to these signals is given below. 

0.00010.9985 -0. 0541. 0.00 0 0.00 

0 0.00 0.000
M 0. 0541 0.9985 0.00 

6 9 5
0.6084 -2.3640 -27.33 0 -17.85 -3. 

0. 0000.0000 0.0000 0.0 0 1 0. 00 

The various terms of the closed-loop characteristic polynomial [equation (44), 

main text] for this set of measurements were computed with the algorithm 

This table consists of 15 nonzero coeffiand are summarized in Table Gi. 


cient vectors -- one zero-order term, D, eight first-order terms of the
 

form N3, and six second-order terms of the form N3 2 ."1Each vector is 

identified in Table GI according to its order and the control sequence 

p used to generate it.
j jp}I...,and measurement sequence [tl . . . . 

From these sequences, the gain multiplier, A(K), corresponding to each 

vector can be reconstructed as follows: 

General multiplier = F (±) KjilIKj2 2.... Kj 

summed over all permutations of 

fZt1 . . .. tp 

Specific multiplier (p=) = Kj 

Specific multiplier (p=2 ) = (Kj Kj22- KJ2 KJ2tI 

In a neighborhood of the initial gain K o = 0, the number of arbitrary poles 

red from all the first order termsPmax is given by the rank of .a matrix forme 
so that all of the system polesof Table GI. This rank turns out to be six, 


can be placed' arbitrarily. Consequently, the following closed-loop pole
 

assignments were -ade,:
 

,G4
 



Table GI. Polynomial Terms for F4, Four Measurements 

Order 
Control Sequence fjlj2 . . W 
Measurement Sequence £§t 2 ... 
Coefficient Vector (n1n 2 ... n6 ) T 

0 

-360O 02 .2329E 04 .1760E 04 .6846E 63 .762E 03 .3231E 02 

1 1 
1 .1175 E 01 .3706E 03 .4082E 02 -.2174E 2 .,2212E 01 .0000E 00 

1 

1 

1 
2 

1 

.2149E 02 .2915E 02 .6665E 02 .3923E 02 .3283E 01 .0000E 00 

3 
.2921E 02 .3957E 04 .2454E 04 .5325E i3 .2112E 03 .1785E 02 

1 

1 

1 
4 

2 
.3717E 03 .4436E 02 -.1959E 02 -.2031E ol ooooE 00 .0O00E 00 

.3143E 01 -.9982E 03 -,1453E 03 -,1839E n3 -.8956E 0i .0000E 00 

1 2 
2-.5833E 02 -.5607E 02 *4580E. 0j -.3179E 51 -.1 770E 00 .000E 00 

1 2 
3 

o2565E 03 .8493E 03 .6476E 03 .7529E 32' .7615E 02 .3695E 01 

1 2 
4 
..9997E 03 -.1449E 03 -1838E 03 -.8952E 61 .0000E 00 .0000E O0 

2 12 
12*6313E-10 .3351E 01 .2979E O OOOOE O. 000oE 00 .0000e 00 

2 12 

13-,5B!9E 01 .1834r 04 .2433E 02 .1517E )3 .ooooE 00 .0O00E 00 

2 

2 

12 
1 4 

.1812E 00 

1I2 

,1611E 01 .0000E 00 .0000E 00 .0000E 00 .0000E 00 

23 
.1075E 03 .9931E 02 --4928E 01 .1529E j2 .000E 00 0000E 00 

2 12 
24 
-.3346E 01 -.2975E 02 O000E 00 000E o0 .O000E 00 .OooE O0 

2 12 
3 4 
-.1836E 04- -.2403E 02 -.1523E 03 .0000E 30 .6000E 00 0000E 00 
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Spiral (s + 0) 

Roll subsidence (s + 4.0) 

Dutch roll (s 2+ 1.25 s + 6.25) 

Actuator (s 2 + 30 s+450) 

conand the algorithms executed seven Newton-Raphsbfi iterations before the 

vergence test was satisfied. The final gains were 

110.60 0. 1649 -28.641L-41.03 
17.24 -46.65 0. 0000 0.001 

an accuracyThe convergence test required that the spiral root be located to 

of ± 0. 001, the roll subsidence root to an accuracy of ± 0. 01, dutch-roll coef

icients to ± 0. 01 and the actuator coefficients to ± 1. 0. An independent check 

of the closed-loop roots showed that all conditions were satisfied. 

It is important to recognize that each iteration of the algorithm requires a 

square [in this case (6x6,)] Jacobian matrix. Such a matrix was obtained from 

our original (6x8) Jacobian by choosing the first n independent columns and 

deleting the rest. This arbitrarily removes two degrees of freedom and 

are zero.accounts for the fact that the final values of K 2 3 and K 2 4 

Case 2. Three Measurements 

Having shown that four measurements are sufficient for arbitrary pole place

ment, we next proceeded to delete bank angle from the measurement comple

ment. The program was again used to compute coefficient vectors, to assess 

rank, and to carry out Newton-Raphson iterations. 
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--

A bit of reflection will verify that the set of coefficients vector for three 
measurements must consist of all vectors in Table GI which do not involve
 
the fourth measurement. This gives ten vectors -- one zero-order term,
 
six first-order terms and three second-order ones. The rank of the first
order vectors is again six, 
 so all system poles can again be assigned arbi
trarily. For the same assignments used above, the algorithm proceeded to 
execute six iterations before terminating with the following gains: 

2.39 -10.44 -1.19
 
K -16.67 83.57 6.56 ]
 

The desired root accuracies were again verified by an independent check of 
the closed-loop roots. 

Case 3. Two Measurements 

Knowing that three measurements is enough, one is tempted to try two 
so we deleted the lateral acceleration signal as well as bank angle. This 

leaves only two rate gyros as the sensor complement. 

The set of coefficient vectors is again a subset of Table GI, found by re
moving all vectors involving measurements 3 or 4. This leaves six vectors 

-- one zero-order, four first-order, and one second-order. The rank of the 
first-order terms is sonow four, that only partial pole placement is possible. 

The initial gain K ° = 0 was again selected and the spiral, roll subsidence, an 
dutch-roll roots were defined as above. This exhausts the four roots which 
may be arbitrarily specified. We simply have to accept whatever the algor

ithm gives us for the remaining roots. Final gains and unspecified roots 

were found in three iterations: ].5K = [0.43 
L 5 5  1. 88 
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26(s) = s	 +- 27.06 s + 149.1 

actuator roots at -19. 35, -'7.71 

that even though the actuator poles could not be-placed arbitrarily,We see 


they take on quite reasonable values.
 

It appears, therefore, that only two measurements can suffice to achieve
 

modal control of the lateral axes.
 

THE C-5A FLEXURE PROBLEM
 

Appendix E 	 contains descriptions of a 23rd-order flexure model for the C-5A 

This model was utilized here for high-order ipole placementpitch aris. 
notstudies. However, since gust dynamics and Kussner lift growth states do 


these six degrees of freedom were deleted. 'This
enter the feedback loop, 

two states
leaves a 17th-order model, comprised of two rigid body states, 


each for the 1st, 3rd, .4th, 6th, 7th and 1-th flexure modes, and one state
 

each for symmetric aileron, elevator, and spoiler actuators.
 

Open-loop poles for the 17-th-order model are given in Table G2 together
 

with a set of ",desirable locations" abstracted from quadratic optimal flexure
 

control designs and from the LAMS controller (Ref. 10). These locations do
 

not correspond to any one controller but were chosen to reflect general
 

that flexure 	controllers movetrends exhibited by several designs -- namely, 


4, and 7, and leave the
rigid-body poles, 'increase damping of modes 1, 


remaining flexure poles pretty well alone. This same trend was taken to be
 

the design objective for the pole-placement computations reported here.
 

G'8
 



Table G2. 

Mode 

Rigid Body 


lst Flexure 


3rd Flexure 


4thFlexure 

6th Flexure 

7th Flexure 

11th Flexure 

Open-Loop and Desirable C-5A Roots 

Open-Loop Roots Desirable Roots 

-1.03 ±j 1.31 -1. 07 ± j 1.80 

-0.:901 ±j 5.57 -4.00±j 6.00 

-0.462 ± j 14.5 Unchanged 

-1.05±j 17.0 -4.50±j 18.0 

-0. 430 ± j 19. 3 Unchanged 

-0.960±j 20.3 -11.0±j 22.0 

-4. 29 ± j 35.7 Unchanged 

A sensor complement composed of two accelerometers, one rate gyro, and 

one surface position transducer was used in fhe computations. The acceler

ometers were located on the wing, one near midspan and the other near the 

wingtip, while the rate gyro was located near the tail. These locations corre
spond to the LAMS controller (Ref. 10). The position transducer measured 

aileron actuator deflection. The measured sitnals are therefore summarized 

by 

z 1 midspan acceleration 

z 2 wing tip acceleration 

z 3 pitch rate at tail station* 

z4 aileron actuator deflection 

Each signal is a linear combination of rigid body states, bending mode states, 

and actuator states. 

*Due to an error in programming this signal consisted of rigid-body 
pitch rate plus mode slopes times mode positions rather than mode 
rates times mode slopes. 
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these measurements yieldIn a neighborhood of the open-loop system, 

an [ 1. N1 N2 N 3 8 

Pmax 4 1rank[N1...N4N]-. 

1Ko=0 

This is indicated as an approximate value because the numerical determina

tion of the rank of high order matrices is subject-to uncertainty. , In the pres

ent case, the matrix of numerator coefficients spanned 8-dimensional space 

with certainty but possibly also 9-dimensional space. Components in the 9th 

coordinate direction, however, were near the least-bit level of -the machine 

and thus of little practical utility. At any rate, eight closed-loop poles could 

be assigned arbitrarily in a neighborhood of the open-loop system. 

Given this-information,, three sej'arate runs were -made'with the initial condi-

The first run placed four poles (rigid body plus 1st flexure), thetion K = 0. 
and the third placedsecond six-potles (rigid body plus Ist and 4th flexure), 

eight poles (rigid body plus Ist, 4th and 7th flexure). Results are summarized 

in'Table G3. In each case, dpen-loop actuators at -100 (elevator),. -10 

(spoiler), and -6 (aileron) were assumdd, and a square Jacobian matrix was 

obtained by allowing only selected feedback gains to vary. The resulting gain 

structure as' well as the number of Newton-Raphson iterations are also shown 

in Table G3-

As the table indicates, each run achieved its objective of moving a specified 

group of poles into the desirable locations given in Table G2. However, some 

of the remaining unassigned poles were destabilized in the process. In Run 1 

the dahping of 3rd, 4th and 7th'flexure modes was, reduced; in Run 2 the 7th 

mode was actually driven unstable; and in Run 3 an actuator root was driven 

unstable. Fortunately, none. of these runs fully exhaust, the pole placement 

capacity offered by the sensors. Away from the origin, the previously weak 

9th order of rank strengthened sufficiently ,to yield 

Pmax =K -= rank,2 Ni -] 9,
 

Krun 3T
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Table G3. Pole Placement Runs for C-5A 

Mode Run 1 
4 Poles Placed 

Run 2 
6 Poles Placed 

Run 3 
8 Poles Placed 

Run 4 
9 Poles Placed 

Rigid Body -1.07 +j 1.80 -1.07 ±j 1.80 -1.07 ±j 1.80 -1.06 ±j 1.79 

lst Flexure -3.95 ± j 6.00 -4.00 ± j 6.03 -4.09 ± j 6.07 -4.00 ± j 5.94 

3rd Flexure -0. 253 ± j 8.68 -1.07 ± j 14.9 -0. 955 ±j 16.4 -0. 506 ±j 15.8 

4th Flexure -0. 182 ± j 16.5 -4.49 ± j 18.3 -4.59 ±j 18.0 -4.53 ±j 18.3 
6th Flexure -0.258 ± j 19.3 -0.448 ± j 19.4 -0. 357 ± j 19.3 -0.265 ± j 19.3 

7thFlexure -1.59±j 18.6 +0.004±j 17.8 -10.9+3 , 22.2 -10.9± 22.0 
I lthFlexure -4.27±j 35.7 -4.54+3 36.8 -4.08,±j 35.0 -4.15±3 35.1 

Actuators 
-99.8 -107.0 -103.0 -108.0 
-16.3 -2.27 ± j 4.29 + 6.15 - 0.972 
- 6.34 - 10.1 - 2.52 

Number of 
Iterations 11a 5 14 20a 

Gain 
Structure Aileron 

Elevator 
Spoiler 

x x 

x 
x 

4 
x 

x 
x 
x 

x x xjx
j 

xx 

aTotal number of iterations in 20-step incremental stepping procedure 



additional pole could be placed arbitrarily. This extra
which means that one 

the unstable actuator pole back
degree of freedom was used in Run 4 to move 

resulting final pole constellation (Table G3)
into the left-hand plane. The 

shows that our design objectives can be satisfied by utilizing the full capacity 

of the sensor complement. All desired locations are achieved and the re

maining poles are approximately unchanged. Gain magnitudes associated 

compare favorably with the LAMS controller.with Run 4 

An interesting byproduct of these pole-placement computations is what might 

Namely, if an incremental stepping
be called a generalized root locus plot. 

from the open-loop poles to the desired closed
procedure is used to move 

loop poles, i.e. 

( s )
(s, C) = a [ desired(s) - open (s)+ Xopen 


L loop J loop
 

a = 0, Aa, 2Aa ... , 1
 

a familiar single-parameter rootthen pole positions as a function of a form 
movelocus which -shows how unspecified roots migrate as the assigned roots 

toward their specified positions. Such plots are shown in Figures GI and G2 

for Runs 1 and 2 of Table G3. Both figures indicate 'that acceptable levels of 

damping can be obtained for the unspecified roots if a value of a somewhat 

less than unity is accepted for the assigned roots. 
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APPENDIX H 
PROCEDURES FOR COMPUTING COEFFICIENT VECTORS 

This appendix describes two methods for computing coefficients of polynomials 
appearing in the general characteristic equation of Appendix F. These parti
cular computations comprise 
about one half of the entire computational load 
associated with the pole placement algorithm of Section IV. 

METHOD 1 

This procedure is presently used in the algorithm. It mechanizes the computa
tional method of Reference 19 for solving the general eigenproblem det (sB+A), 
where A and B are arbitrary matrices, possibly singular. (The DET C... ] 
expressions of Appendix F inare this form.) The method consists of reducing 
the original problem to a lower-order nonsingular one by repeated Gauss 
reductions of matrices B and A. The nonsingular problem can then be solved 
by standard methods. The reduction goes like this.: 

* Via Gaussian elimination, reduce B to 

B' [Y 4 4 B- ] 

where B'I is upper triangular. 

All elementary operations performed on B are also performed on A, which 

gives 

AAA 

HI 



* 	 Via Gaussian elimination, reduce A' to, 

[A" I"A" |II r1211'
'
All-[A,
 

where A"2 is. upper-triangular. All elementary operations performed' on 

A' are also performed: on B",, giving 

B"l 

We now have' 

"1 B BI.1 [A 1, 

det ,(sBFA),=-F det 's j ± 
• 

L 
,. 

A
22 , 

=-±, det- '	 2 , fet(sB I + A l) 

where the. sign, is: determined, by row. and column operations performed' 

in. the two-Gaussian eliminatfon steps'., 

one-.
If BIl" is 	 nonsingular, the problem has: been.reduced, to a standard 

Otherwise,, we-let,B. =-B"', A =,A"' and, return to 'Step' ('I). 

The remaining nonsingular efgjenprob'lem is' presently being solved by computing 

eigenvalues via.QR.transformations and: reconstructing, coefficients from these. 

Total SDS 9300- computin, times, are, 3: to 5,seconds, per 17th-order"coefficient 

vector.. 

H,2.
 



METHOD 2 

This method utilizes the fact that higher-order generalized numerators can 
be expressed in terms of first-order ones. This offers significant com
putational savings when repeated computations must be performed for
 
different measurement matrices, M(O, y).
 

Expressions for Higher Order Numerators 

An alternate way to derive the characteristic equation of Appendix F is via 
the transfer function matrix -H(s) relating measurements z and control 

inputs u; i. e., 

z(s) = E-H(s)Ju(s) 

u(s) = Kz(s) + uc(S) 

[1 + H(s)K]z(s) = [-H(s)u C(s) 

P(s) = D(s) det (1 + H(s)K) 

Expanding this polynomial and comparing the result term for term with 
equation (F12) of Appendix F provides expressions for the higher order 
numerators. This process is carried out for a 3-output, r-input system 
below, from which the general relationships can be deduced. 
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P(s)= D(s) det zH21Kil 1 + H21Ki2 ZH 21Ki3
 

EH31iKiI EHsiKi12 1 + EH 3iKi
 

= D(s) [I + Ell + 122 + E33 +
 

+ EIE22 - 112E21 + E111E33 - E13E31 + E122E33 - E23E32 

+ Ell22k3 - 'EllE2332- E12E21E33 + F12E23E31 

" E13 Z2 1 X3 2 - T13E22E313
 

r
=Z H iK.m 
where E m K=l 

Note 	that the terms which are first-order in E may be written as 

3 r 
E E HkiKik E E H .KEll 	+ E22 + E33 = k=1i--1 ' = j•A, Iil ik 

Similarly the second-order terms may be expressed as:
 

(K. - Kj 2K.21 +E E 	Hi. *Hi 1K. 2 


H jI H 3j2 (K. 1K'i2 3 -'3 3K.
2l +
 

- Kj13Ki22 )H2jl 	H 3J2 (K I2K2 3 
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This expression can be simplified by observing that terms are skew

symmetric in jl, J2, i.e., interchanging the roles of j, and i2 in a term 

merely changes the sign of the term and in particular if j, = i2 then the 

term is zero. Thus the second-order terms are given by: 

H22 )(K.il 1K.J2J (HI H2 -H 3. H 2 . 1 3 2 - Kjl2K +1 

(HljiH3j 2 -H 1 H .)(K. K. + 

(Hi.H. - J2 3 1 )(K 1 1KJ 2 3 - Kj 3 K.21 )+ 

3j1 K(H2jH3i 2 H22 312 Ki 2 3 -Kj1 3 Kj2 2 ) 

or, in general form 

Z s [2 () H . HA.] [Z ) Kj1 A K..]
 

ilJ2 11'2 P3 P412i2 ill, i2A2
 

4 tall permutations of A112 

tall permutations of jlj 2 

all ordered nonrepeated groups of 2 measurements out of 3 

all ordered nonrepeated groups of 2 controls out of r 

Similar expansion and reduction of the third-order terms yields 

E [ (±) .11 H 3][r (±) K K K 
JlJ2j 3 21l23 P. £i 4 £3i P A i1 1 j 2 ' 2 323 

From these expressions, it follows that the general closed-loop polynomial 

for r inputs and m outputs is given by 
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min(r, m)(±)HL l HP(s) = D(s) I+ E E E [E .() 1jI. H'i
 
k=l Jl''Jk li... k P'
 

[Z (±)Kjl'Kk k 

and comparing with equation (F12) of Appendix F yields 

il"" "Jk
 

N- (s) =D(s) [E (±)HtJ .. H . 

1 J 32 Jk 
[E (k) N4..N 

D(s) k-i Pj ' 

This expression defines all higher-order numerators in terms of first-order 

ones. Note, however, that the definition involves a sum of (nk)
th order 

th k-i 
.. We know frompolynomials divided by the n(k-1) order polynomial D th 

Appendix F that each higher-order numerator is, in fact, an n -order
 
-
 must be a perfect factor ofpolynomial (or lower). This means that Dk 

the sum of (nk)t h order polynomials - a fact which could lead to numerical 

problems in computing Nj l" "] Jk from the first-order terms.. The following 

procedure is suggested: I 'k 

Multiply the definition by Dk - I and express the result in 

coefficient -vector -form: 

- J1...Jk 
DN "k = N 
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where D is an (nk x n) -dimensional matrix constructed from the 
- Icoefficients of D(s) k and N is the coefficient vector of 

E (±)N .. N3k 

Pj 
 1I 

Si"k 
* Solve for N. 2via pseudo inversion, i.e., 

NI ... = (D D-lITN 

This should minimize numerical problems associated with the polynomial 
division. Note that the quantity (D5TI3)-I]T needs to be computed only once.th 

It can be stored and reused for computation of all k -order numerators 
for any given set of first-order numerators. 

Computation of First-Order Numerators 

All that remains now is to compute the first-order numerators. This can 
be done via Leverrier's algorithm (also called Fadeeva's method which 
computes the determinant and all of the cofactors of (sI-F)-. That is, 

tZadeh, L.A., and C.A. Desoer, Linear System Theory, McGraw-Hill,
 
New York, 1963.
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n- B sn-2 

n n-i-1 _ B(s)

(s-F) =
 -=__ 

D(s) n+asn +d nisn-2 +... +d I 

B = I d -Trace (B F) 

B = BnF+d I dni -l/2Trace (B F)
~n-1 n n n n-i 

1
B k = Bk+l F + dk+iI dk = - Trace(BkF)

n+l -k 

1
 
= B 2 F +d 21 d = -- Trace(B1 F)
B 1 

n 

o = BIF + dII 

Once all the cofactors are known, individual first-order, numerators are 

obtained from the relation 

N i(s) = E -M k Bki(j)(s) Gi) jk 

This expression shows that repeated runs with different M matrices are very 

economical, since the B(s) matrix (and also the (]1T3 )-I]) T expressions above) 

need not be recomputed for a new M matrix. 
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