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FOREWORD

This interim report, "Controller Design Technology for the Space Shuttle
Vehicle; summarizes the study performed during the period 10 June 1970
to 1 June 1971 for the National Aeronautics and Space Adminisiration,
George C. Marshall Space Flight Center, under Contract NAS8-25708.

Dr, S. W. Winder of the Dynamics and Control Division of the Aero-
Astrodynamics I_}aboratory was the technical monitor., The study was per-
formed in the Systems and Research Division of Honeywell Inc. Dr. G. B.
Skelton served as program manager, Dr, A, J. VanDierendonck was the
initial principal investigator. He completed the study of iteration methods
for the time-varying problem. Dr. C. A, Harvey, succeeded Dr,
VanDierendonck as principal investigator, completed the work on controller
simpiification and conducted the study concerned with parameter variations.
Dr. Q. Stein became a -copi:‘incipal investigator and conducted the sensor
choice study. Dr. Y, S. Lee contributed to the investigation of sensitivity
to paré.meter variations, Mr., M., D, Ward assisted with computer pro-

gramming and numerical analysis.
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SECTION I
INTRODUCTION AND SUMMARY

The goal of the research program summarized in this report was to develop
a technology for control system design. The technology was aimed at pro-
viding control of flexure and rigid-body degrees-of-freedom of the Space
Shuttle Vehicle within constraints of practicality. The constraints apply to

the controller configuration and to the design methods as well.

At the time the program wag initiated, it was anticipated that the Space
Shuttle Vehicle would exhibit flexure control problems caused by large sizes
of booster and orbiter sections, coupled modes of the vehicles in mated
ascent, sensitivity to gust and maneuver excitation caused by large aero-
dynamic surfaces, and possible orbiter structural requirements imposed
by reentry heating., The large aerodynamic surfaces could also cause a
significant load relief problem at maximum dynamic pressure and larger
drift dispersions than were present with Saturn Vehicles. Honeywell had
achieved considerable success in treating such problems for large launch
vehicles and large flexible aircraft. A stochastic constrained-response
theory was developed, and its applicability to the control of a rigid booster
was demonstrated in 1865 and 1968 (Ref. 1). The B-52 LAMS (L.oad Alle-
viation and Mode Stabilization) system was designed and flight-tested in
1966 and 1967 (Ref. 2). In 1967 and 1968, applicability of the method fo a
flexible launch vehicle was demonstrated (Ref. 3). In spite of the success
achieved, the technology developed by 1968 was inadequate with respect to
three conirol design problems: (1) controller simplification, (2) sensitivity

to model inaccuracy, and (3) sensor complement choice,



Thus the specific goals of ‘this study were to improve the design technology

by providing:
e Practical controller simplification algorithms

e A mathematical method for implicitly including parameter

variation constraints within quadratic optimization formulations

® A rigorous mathematical basis for understanding best sensor

choice and location

The first objective is motivated by the difficulty of past efforts to simplify con-
trollers. Simplification of the optimal controller in the LAMS program required
a nine-man/month 'simulation program, and the optimal controller for the
flexible launch vehicle was reduced by similar expensive trial and error
methods. At that time, necessary conditions for optimizing constrained
controller configurations were known (Ref. 4). These conditions provided a
two-point boundary-value problem and computational algorithms for its
solution. However, it was foo expensive to use these algorithms for such
problems as the flexible launch vehicle control problem, especially if

several measurement complements or sets of parameter values were to be
considered. Another drawback to these algorithms was the possibility of
convergence to an arbitrary local minimum. Improved computational pro-
cedures for the solution of optimal conirol problems and simplification of
optimal controllers had been developed at Honeywell by 1970 which held
promise for treating the control problems of highly flexible vehicles, During
the present study, these procedures were used as a basis for developing
practical controller simplification algorithms. For the Space Shuttle Vehicle
these algorithms may be used for controller design for mission phases such

as the highly flexible orbiter during re-entry and cruise or for control during

the mated ascent phase.



Mathematical models of two test vehicles were used for assessing the
capability of the simplification procedures and improving them where
necessary. A rigid representation of the Saturn V with a Voyager payload
was used for a time-varying ascent study, and a model of the longitudinal
axis of the C-5A with six flexure modes at a single flight condition was used
for study of flexible-vehicle control. These choices were made to reduce

the development cost, but the results of the two studies could be combined for

actual application to Space Shuttle Vehicle coniroller design.

Controller simplification in both cases started with the solution of the
stochastic constrained-response optimization problem with complete state
measurement capability. For the launch vehicle, this solution was a set of
time-varying gains and a time-varying deterministic input which defined the
controller. This controller minimized a quadratic performance functional
and, via quadratic equivalence, minimized as well a nonquadratic performance
functional called the cost functicnal, This cost functional represents an upper
bound on the likelihood of mission failure. A gradient iteration technique for
controlier simplification along with methods for choosing initial conditions
for the iteration technique were developed and tested. These techniques
proved to be quite capable for the example treated. The original controller
utilizing ten time-varying feedbacks was simplified to a controller with five

time -varying feedbacks.

Attempts at controller simplification for the flexible C-5A vehicle with an
Implicit Function Method were unsuccessful. The cause of the failure was
attributed either to lack of damping in the algorithm used or to severe
sensitivity of performance to gain changes. Damping was added to the
algorithm. This yielded some improvement, buf not enough to provide a
solution within assumed practicality constraints. Extrapolation based on the
initial step of the Implicit Function Method was then used with gradient
correction to achieve a satisfactory solution. A third method was also used
successfully. This method, called the Incremental Gradient Method,



incorporates desirable features of the Implicit Function Method and usual

gradient techniques.

The description of both phases of controller simplification is presented in

Section II and Appendices A through C.

Another area in which the design technology needed upgrading to be applicable
to the Space Shuttle Vehicle was sensitivity to model inaccuracy. In every
iteration of controller design there is a degree of uncertainty in the data.

Also, certain dynamics such as high order flexure and fuel-sloshing modes

are generally ignored to make the design problem tractable. Thus, practical
controller design must recognize and be tolerant of model inaccuracies. In
this study such inaccuracies were assumed to take the form of unknown param-
eters. Two directions were pursued to yield formulations of the quadratic
optimal control problems which would implicitly include parameter uncertainty
constraints. One direction was to determine properties of the optimal per-
formance surface over a segment of parameter space which could be used {o
.derive optimal insensitive controllers. An optimal insensitive controller is
one that is optimal for a given value of the parameters defining the system

fand minimizes the maximum of the performance index over all admissible values
of the parameters. A necessary condition for an optimal insensitive con-
troller was derived. This condition was shown to be locally sufficient. The
nature of these conditions led to the development of an algorithm for computing
approximately optimal insensitive controllers. The utility of this computational
approach was tested on the C-54 example, and significant reduction in sen-

sitivity was achieved.

The other direction of the parameter variation study was an investigation of
the effectiveness of compensators in reducing sensitivity., This study led to
choosing control parameters to match the performance of dominant dynamics
of the compensated system to the performance of the optimal uncompensated

system over the range of system parameters. This approach is intuitively



appealing. But for high-dimensional systems the approach is of questionable
value,

Analyses performed in these methods of including parameter variation con-~
straints are described in Section III and Appendix D, Results derived for
approximately optimal insensitive: controllers for the C-5A example are
presented in Appendix E,

A third area of technology improvement concerns the chc;ice of types and
locations of sensors to generate feedback signals for practical control systems.
This so-called "sensor-choice problem' arises because it is economically
prohibitive in most applications to measure all system states, particularly
the rates and displacements of flexure modes. The problem is unsolved
because it is’ theoretically and computationally difficult to determine basic
performance capabilities of a set of sensors. To do so requires the solution
of two coupled optimization problems — (1) optimal location of the instruments
and (2) optimal design of a practical controller to utilize the instruments.
Both are complex problems when a quadratic performance functional is used
as the measure of quality. Available methods are based on controller ~
optimization routines such as those discussed in Section II nested within
iterative search procedures for best sensor locations (Ref., 5, 11).

In this study, the sensor choice problem was approached from the viewpoint

of finding alternate quality measures which would be more convenient com-
putatiohally yet still provide meaningful indications of performance capability.
Two measures were proposed, both based on the pole-placement capability

of the sensor complement. The first measure is the maximum number of
closed-loop poles, Prax which can be placed arbitrarily, and the second is a
measure of deviation of the remaining nonarbitrary poles from specified
desirable locations. General equations were derived for these guantities,

and a computational pole placement algorithim was developed for their solution.
Computational feasibility of the measures was established. However, their



practical utility as quality measures, particularly their correlation with
guadratic cost, remain to be verified,

Analysés performed on the sensor choice problem dre &egdr.ibed in Section IV
and Appendices F, G.and H.



SECTION iI
CONTROLLER SIMPLIFICATION

The aim of this phase of the study was to develop economically feasible
methods for computing simplified controllers for the Space Shuitle Vehicle,
The simplified controllers were to be derived from opiimal conirollers,
Simplification was defined to be the reduction in the outpuf measurements
required and, in the case of time-varying gains, reduction in the complexity
of the time-variations to specified parametric representations., Of course,’
the simplified controllers were to maintain as much as possible the desired
performance of the optimal controllers.

BACKGROUND

The mission of the Space Shuttle Vehicle is such that at timres the conirol
problems are similar to those of a large flexible launch vehicle and at . )
other times to those of large flexible aircraft, The stochastic constrained-
response formulations of these two types of control problems had been
derived in References 1 and 2, Resulting optimal controllers had been shown
to provide very desirable performance. The measures of performance and
the mathematical models for large flexible launch vehicles and large flexible
aircraft have several common features, The major distinction from a
mathematical viewpoint is that the control problem for the launch vehicle is

a finite-time problem with significantly time-varying dynamics, while the
aircraft can be considered to fly at a single flight condition for a long enough
period of time that the dynamics may be represented by a constant-coefficient
model, and a steady-state performance functional is of interest. Common
features include linear dynamics, many degrees of freedom, stochastic
disturbance models, and physically meaningful performance functionals



which are generally not expressable as integrals of quadratic functions of
(linear) responses. These common features suggest that, in theory,
simplification methods which are successful for one problem will also be
successful for the other, In practice, the computational costs for the two
problems differ significantly. For example, with a quadratic performance
functional, the cost of computing an optimal launch vehicle controller for-a
23rd-order Saturn model is approximately 50 times the cost of computing
an optimal controlier for a 23rd-order model of a flexible aircraft at a
single flight condition, These facts motivated the separation of the con-
troller simplification study into two parts, one part dealing with the time-
varying aspect of the problem and the other dealing with the high dimensionality

of the mathematical models associated with flexure.

In addition to the difference in computation costs between the time-varying
and constant-coefficient problems, there is a difference in computer storage
requirements, For problems with the same number of degrees of freedom,
the time-varying problem requires much more computer storage than does
the constant-coefficient problem. Computation time considerations led to
the choice of a rigid model of a launch vehicle as a test vehicle for the time-
varying aspects of this study. This permitted savings in computer costs
because of the reduction in ordér of the system from the model with flexure
and also because larger sampling intervals could be used. The flexure
degrees of freedom were retained in the constant-coefficient model.

Computation time and storage requirements also influenced the type of
techniques chosen for simplification in the two problems. The high cost of
computation for the time-varying pro;blem limited the acceptable niethods

to first-order, that is, methods which utilize at most first-order derivatives,
Large storage requirements impose the same limit for the constant-
coefficient problem if the number of nonzero parameters (gains) permitted

in the simplified configuration is large, If the number of such parameters is

not large, then second-order methods are candidates for consideration.



SIMPLIFICATION PROCEDURES

The starting point for the procedures is a solution to the following
optimization problem. Dynamics of the system are represented by the

linear differential equation

X = Fx+ Gyu+ Gy (1)

where x is the state vector, u is the control vector and 1 is a white-noige
vector of disturbances with known means and covariance. Responses to be

controlled are linear combinations of the states and controls given by

r = Hx -+ Du (2)

The performance index is a functional of the form
~N

I = IR(T), (DI + [ 1o, (R, s(6)as (3)
O
where
R(t) = MOE®IT, X0 = E{zn)} (4)
sty = E{r(t)-F01le()-7(t)] T} (5)

The superscript T, denotes the transpose. The optimization problem is to
choose u to minimize J. For the ascent problem, the time T in (3) is finite
and F, Gl’ G2, H, D, the function f2,

noise may be explicit functions of time. For the flexible-aircraft problem,

and the mean and covariance of the

the coefficient matrices, the function fz, and the noise characteristics are

constant, f; is zero and T in the integral in (3) is infinite.



The ""quadratic problem' occurs when f; and £, in (3) are linear functions
of R and S, since these matrices are guadratic in the responses, The

solution of the quadratic problem is

u = K¥x+f (6)

where K* and f satisfy certain determining equations. For simplicity of
discussion, let us consider the constant-coefficient problem with

fz = Tr[QS] where Tr denotes the trace. Algo, for simplicity assume

E{n} = 0 which implies f = 0, This last assumption does not represent a
restriction on the simplification problem. Inclusion of a deterministic input

in the controller is not a real complication. The determining equations for

K are

0 = DTQ(H+ DK*) + GlTP : (7)
and

0 = (F + GK*)TP + P(F + GK*) + (H + DK*)TQ(H + DK%*) (8)

Analytically, controller simplification consists of replacing the matrix K¥*

with a matrix K of a constrained form which has less independent parameters
than the humber'of -elements in K*. The resulting controller, of course, should
maintain as low a value of J as possible. Thus ai this point, J may be con-
sidered as a function of K to be minimized subject to the constraining con-
figuration imposed on K. The procedures used in this study for performing

this task may be classified as jgradient iteration and parametric techniques,

Gradient Iteration Technique

The gradient iteration technique consists of applying gradient methods to the

minimization with respect to K of the Hamiltonian

10



H(X, P, K) = Tr{Q(H + DK)X(H + DK) " + PUF + &, K)X+X(F + G,K) T+N1}t
(9)

where X denofes the state covariance matrix and N = E{GZTTIT 2T}.

The necessary conditions for optimality of K derived by Axséter (Ref, 4) are

. OH . aH 3H
X = —_—, P = - -_, ———— 0 (10)
3P 3xX 3K

with K constrained to be of the desired configuration. If complete measure-
ment of the state is permitted, the first of equations {10) is uncoupled from
the last two. With complete measurement of the state not permitted, the
_three equztions are coupled. Thus at each iteration, the first two equations
are integrated to find X and P. Then the gradient dH/XK is evaluated. When

this gradient is nonzero, a step is taken to reduce the value of the Hamiltonian,

Existence of several local minima for the constrained minimization problem
is indeed possible, But if an initial value for K is known which is sufficiently
close to the global minimum, the gradient methods have the desired property
of convergence to the global minimum with sufficienfly small steps. Thus,
the successful application of this technique depends on having a good initial
value for K, proper choice of step size, and, of course, the capability to
compute gradients economically,

Two methods were used to obtain initial values of K for the iteration studies,

The assumed configuration for the controller was u = Kz where

z = Mx (11)

tThe second term in the trace is identically zero for the steady-state problem.
It is included here to indicate the presence of its analog in the time-varying
problem,

11



represented a vector of measurements. The first method was to choose K

to be the projection of K¥ on M
K = KMo (MM7T)! (12)

When the components of z are components of x, the choice in (12) merely
deletes the gains in K* which multiply states that are not measured, The
second method was based on approximating a Kalman Estimator used in

conjunction with K* by the gain K.

Essentially, this method involves finding a good .match between the open-ioop
responses of Figures 1(a) and 1(b), for a very small measurement noise 5,

Figure 1(a) yilelds a response in the frequency domain of

U(jw) = Y(GWZ(jY (13)

where Y(s) is the Laplace transform of the system shown. Specifically

Y(s) = K(sI- F - G K%+ LM) 'L (14)
where L is the Kalman gain maftrix.

Figure 1(b) yields a response of

U(jw) = KZ(jw) (15)
where K is not a. function of frequency.

Two methods to mafch these responses were tried. The first was to set the
static gains equal to the d-c gains of the dynamic system. That is

K = Y(0) : (18)

12



_CONTROL INPUT TO KALMAN ESTIMATOR

2 (MEASUREMENT) KALMAN _ |x (ESTIMATE OF STATE x e )
ESTIMATOR (CONTROL
INPUT)

£ (MEASUREMENT NOISE)
(a) DYNAMIC

®) STATIC

Figure 1. Dynamic and Static Gain Systems

The second was to compute a weighted average of ¥(j W over all frequencies.
That is

Re [ Y(jw)| Z(jw) |dw
0

[ 1Z(jw) |aw
O

where Re denotes ''the real part of." These methods were actually applied

to the time-varying example discussed below,

The choice of step size is a problem common to all gradient iteration methods.
Furthermore, it is well-known that the path of steepest descent is dependent
on the coordinate system chosen., For gimplicity of exposition, consider K to

be a vector with components ki. The gradient iferation may be expressed as

13



K(p+l) = K(p) - eV H|, € >0‘ (18)
K=K(p)

" where p denotes the stage of the iteration, and € denotes the step size. A
sketch of possible behavior of such an iteration method is shown in Figure 2
for a two-dimensional K. 1In this sketch, points A, B, C, D and E indicate
possible values of K{(p+1) corresponding to different choices of €, If the value
of € chosen is less than or equal to the value corresponding to C, the gradient
at K(p+1) would be directed in the general direction of the point where H = 0.
A common manner of choosing € is to perform the minimization of H[K(p+1)]
with respect to the parameter €, The result for K(p+1) on the segment from
K(p) to C is depicted as point B. For problems such as the time-varying
control problem, even this one dimensional minimization can be costly so
that an approximation is generally accepted. It is also clear from Figure 2
that admissible directions of the step from K(p) to yield decreases in H are
all directions with positive projections on the vector from K{p} to B, iIn

the example treated in this study .such a modification was introduced,

Equation {18) was replaced by

-Figure 2. Gradient Step Possibilities

14



K(p+1) = K(p) - e(diag [k.(p)| )[VKH[ |V, Hl ]'1] , €30 (19)
K=K(p)

where diag ‘ki(p)l denotes the diagonal matrix with [ki(p)l as its ith diagonal
element. In this form € represents the maximum percentage change in any

element of K(p), Thig iteration equation proved to be successful in the
example,

The equations for computation of the gradient in the example are described in
the discussion of the example. The required computation is the solution of

a covariance and a co-state equation, For the steady-state problem, the
gradient of H can be computed as follows. The steady-state covariance
matrix, X, satisfies .

(F + G K)X + X(F + GIK)T +N=0 (20)

Thus, H = Tr(H +DK)TQ(I—I + DK)}X = J. The adjoint matrix A corresponding
to X satisfies

(F + GIK)TA + A(F + G,K) + (H+ DK) T Q(H + DK) = 0 (21)
Then

aJ T y T o X

— =Tr[2(H+DK) QDE"J X+ (H+DK) Q (H+ DK) ] (22)

JK.. 3K, .

ij L
i A aK oX
where E'J £ and is defined by
aKij aKij

15



3X  aX T o 7 5T
(F + G_.K) + (F +G.K)” + G E3 X+ X(G,EYN =0 (23)
1 1 1 1
3Ky 3K : _

ij
Using the adjoint property.of X and A

od

———r——

aKij

T

7r [2(H + DK)T @ DEY X + 4 (G, EY X+ X (G, EY)

I

2 Tr {T(H + DK) " QD + AG, ] N x} (24)

Thus, to evaluate all of the first partials of J, we need only evaluate the two
covariance-type equations (20) and (21) and the algebraic equations (24)., This

convenient property was first discovered by T. L. Johnson {Ref. 5).

Parametric Techniques

In this technique developed by G. Stein (Ref. 6), a general gain matrix K is

partitioned into two .orthogonal -components:
K = (' + KM + AK? (25)
where (K + KI)MEHT = o.

The first component .(Kl + KS)M satisfies the constraint and hence represents
gains to be retained. The second component ?C'K'z consists of gains to be
discarded. The scalar parameter, A, is introduced in equation (25} to permit
discarding the second component while maintaining one constraint on the first
component, For generality, the first component is divided into two orthogonal
components Kl and.K3 where K'l represents gains to be optimized and K3 is
fixed, The necessary condition for optimality of 'K1 with respect to the con-

strained problem is

16



3rl(x?! + KS)M + AKZJ‘
- =0 (28)

1
o o

Solutions to this equation may be obtained as noted by D, K. Scharmack
(Ref. 7) by starting with 2a K in (25) with A = 1 that satisfies

3J(K)
— = 0 (27)

ol

and choosing Kl as a function of A such that equation (27) is maintained for
0 = A= 1, The most appealing choice for A = 1 is the K that minimizes J
globally; namely

2

K# = (K1) + KO)M + K (28)

According to the Implicit Function Theorem (Ref, 8), Kl()\) satisfying (27) is
defined by

-1
dKl(l) azJ[(K1 + K3)M + xKZJ azJ[Kl + K3)M + AK2] N
= - (29)

dA skl !t SK1ah

Some computational difficulties were experienced in applying this technique
using numerical integration of (29) for the C-5A example, It was noted that

equation (28) is equivalent to

TEquations (26), (27) and (29) make sense in vector matrix notation if Kl
is written as a column vector, which is assumed.

17



d
—(v) =20 (30)
dx

where ¢J is abbreviated notation for the partial of J with respect to the gains
in Kl. As a differential equation in A, equation (30) is neuirally stable, so
a damping term of a(\) J was added to the right-hand side. The scalar a(?)
was chosen to be positive since the integration is in the negative A direction,
This modification gave some improvement, but not complete success, A
hybrid technique using this method of finding K ( 95) from K (1) then
extrapolating to Kl(O) and then using gradient correction was then used

successiully.

A variation on this theme was developed by A, J. Van Dierendonck (Ref, 9).
This variation is called the incremental gradient algorithm. This algorithm
begins with the same values of K and K1 at A= 1. Then  is incremented to
A + Ar(with -1 < AA< 0), Several gradient steps are then taken to obtain
Kl(l + A7), Another increment in X is then taken with linear prediction
used for Kl. Again gradient corrections in Kl are made and the process
continued until A = 0. Thig method was also tried successfully on the C-5A

example,

A comparison of the three parametric methods is illustrated for a simpley
example in Figure 3. For ease of representation, it is assumed K is a two-
vector and K1 = kl’ K2 = k2‘ In realistic examples, each of these axes may
be multidimensional subspaces. The sketch is completely hypothetical,

The Implicit Function Solution shown is assumed to be exact. The other two

paths are intended to be only indicative of the actual situations.

18
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SIMPLIFICATION AND QUADRATIC EQUIVALENCE

In the study of the time-varying example, it was discovered that the quadratic
approximation to a nonquadratic performance functional used in quadratic
equivalence is dependent on the constraints imposed. The following example

demonstrates this phenomenon.

Consider minimizing the function f(x, y} = x+y+3y2 for (%, y) belonging fo
certain sets, say Kl and Ks. We may think of these sets as representing
sets of attainability for a dynamical system and suppose that Kl and K2
correspond to complete and incomplete measurements respectively. Then
since measurements could be ignored in the complete measurement case,
Kz would be contained in Kl‘ In fact, let us assume K2 is a proper subsel
of Kl‘ To give this problem the interpretation of a stochastic optimal
control problem, we may suppose that x and y represent covariances of two
responses. This would imply x = 0 and v = 0. Now suppose that

Ky

{{x,y) : x0 and xy=1/3}

K, = {(xy) : %0 andxy=1}

The minimum of £(x, y) for (x, y) in K, occurs at x =1, y = 1/3. This point
also yields the minimum for the '"quadratic' function x, y; q;. qz) =

Q% + 4oy with qq = i, Ay = 3. Note that the vector (ql, q2) =(1,3) is a
normal to the boundary of K; at (x,y) = (1,1/3). To interpret f(x, y; qq. q-z)
as a."guadratic" cost function, we consider x and y as variances of
responses V1 and V, so that £(x, y; - qz) is quadratic in the responses.
For (x, y) belonging to K, the minimum of f(x,y) occurs atx = 2, y=1/2
and normal at that point is (1, 4), Thus the equivalent quadratic for Kl is
f(x, y; 1, 3) whereas for Kz it is f(x, y; 1,4). Figure 4 shows the relevant
geometry for this example,
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xy =1 (BOUNDARY OF K2J

_xy = 1/3 (BOUNDARY OF Ky)

I/ 1/

= I X+ F X
3y~
/ﬂ \
f=5/3

Figure 4, Constraints and Quadratic Equivalence
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This phenomenon may bé quite significant for problems in which quadratic
equivalence and sifnplification are considefed. The simplification a‘igprith:fhs
for such probleéfnis should probably utilizé the gradients of the nonquadratic
performance furctional, at ledst in the final stages and not rely on the
quadratic approxirhdtion througliout the simplification procedure, This was

clearly the case in'the study of the following example,

TIME~VARYING EXAMPLE

The vehicle: usedin this example is the rigid-body representation of the-
vehicle. déscribed in Reference 3. The resulting model is 10th order a"nt?'
includes. rigid body;, wind filter, distributed wind loads, and gimbal angle:
For this model.of {fie: vehicle, a sampling rate of 10 ‘samples per second-
was adequate. rather than the 50 samples’ pér second required for the

original.model which included thirée flexure modes. :

Initigl optimization runs were made as suhlingac'omplete'.meélélirenie‘ht' capa-
Bility (i. €., every vehicleand wind state can'be measired). Using-the cont
cept of.quadratic ?e*tq'lii‘{r_'aflia:ﬁ;ie—; three iterations yielded a conirolier whose®
upper bound- of thézprobability 'that mission failuré (as-described in Réference 3:
would.occur was' 1, T 10°%, The upper bound on the probability of mission
fajlire:is denotediby.J*, while J** denotes a'quadratic cost functional, It wak
assumed:that ¢ (pitch), ¢ (pitch'rate), .z (drift), z (drift rate), and B (gimbal "
anglé) could besmeasured direcfly but that the measuréments were noisy:- A’
Kalman Estimatorwds ‘'derived td-extimate v and x (wind states) and x;, Xz
and Xg- (load-distribution ‘states).. Thecosts, J* and" Tk welé computédwith’
the-optimum gdins .and the'Kalmah Esfimator. Although the quadratic-cost’
increased .slightly over:the pérfect-sénsing case, the-uppér bc'aimd““o'r};th‘e
probability of mission failure loweredsigniticatitly from 0.7 x 1074 to'0! 3%
100 °,
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The desired form of simplified controller was chosen to be feedback of the
measured quantities without using compensators, The simplest choice of
initial gains for the gradient iteration method is the perfect sensing gains
for states which can be measured and zero for the states not measured,
For this example, this choice produced results comparable to the perfect-
sensing gains. This was understandable since, for this rigid-body model,
essentially all costs were due to the second bending moment at maximum
dynamic pressure, and this can be controlled with pitch, pitch rate, and
the gimbal angle. These results also explain why the Kalman Estimator
did not appreciably change the results from those for perfect sensing,

To create a problem to test the gradient iteration method, the terminal-
drift constraint was reduced by a factor of three from 30, 000 to 10, 000
meters. It was found that this new constraint was easily met. Hence, this

did not create a meaningful problem.

Thus, another approach was taken, Instead of tightening the constraints,

the magnitude of the disturbance input was increased by doubling the
standard deviation of the wind, After char}ging the quadratic weights, a

new optimal controller was computed that met the original constraints. This
controller resulted in an upper bound on the probability of mission failure
(I%*} of 0, 4299 x 10—33. The derivatives of this probability with respect to
the individual responses indicated that quadratic equivalence was very
nearly achieved.

The value of J* for the controller with perfect-sensing gains for measured
states and zero gains for unmeasured states was 0, 7494 x 10 °, The
quadratic cost (J*%) for this set of gains was 0, 9344 x 108 compared to

0. 8664 x 108 for perfect sensing, The differences in these costs are
sufficient to yield a meaningful test of the gradient-search method even
though the values of J* are small,
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Detailed equations for the gradient iterations are given in Appendix A, One
step of the search based on minimizing the quadratic cost J** lowered this
cost to 0, 9265 x 108. The J* cost, however, went up to 0,2188 x 10_5.
This was because the quadratic Q(t) used for, the perfépt-—sensing controller
is not necessarily the best for the constrained system as indicated above.
The cost J* can be minimized directly in a gradient search as shown in
Appendix A, This method proved very successful in reducing the J% cost
from 0.7494 x 107° -12 17,

to 0,1266 x 10“8 to 0,1385 x 10 to0 0,110 x 10 n
three iterations,

Initial conditions for the gradient iterations were obtained by approximating
the Kalman Estimator with time-varying gains, Both methods (DC and
averaging over frequency) were used with data at 33 instants of time, 5
seconds apart. Linear interpolation was used between these points, The
first method [ K(t) = ¥(0, t)] proved to be quite poor because the pitch anc
pitch rate states are of higher frequency. Thus these DC gains were too
far off, The resulting quadratic cost was about four orders of magnitude
higher than for perfect sensing, The probability of mission failure was
certainty (J*=88)., The second method proved to be somewhat better. The
quadratic cost was up less than one order of magnitude., However,
probability of mission failure was still certainty (J* = 2), It was stili close'
enough for the gradient search. One gradient step was taken, and the J*

cost was lowered fo 0, 354.

For problems where the unmeasured states are important, which was not the:
case here, this method of finding initial conditions appears to be satisfactory.
Use of more data points in time and frequency would probably give better
results. The weighted averages were computed using only 12 values of ®

between 0 and 10 radians per second,
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As a severe test, the gradient method was tried with the d-c gains as initial
gains. Using appropriate normalization of the gradient vector and using the
initial quadratic weights, we were able to reduce the J¥ cost to 0,373 in
three steps. For the firgst two steps, the gradient was normalized for each
gain over all time separately. This had the effect of changing the shape of
each gain versus time. If this hadn't been done, and the gradient had been
normalized over all the gains over all time, only the shape of one gain
(drift) would be changed, since the gradient for: that gain always dominated
the others,

For the first two steps (J* = 88 to J* = 0, 525) the original quadratic weights
were used to drive the response covariances down to a reasonable level,
The probability calculations were not valid for the original covariance
values, Thus, minimizing the J* cost was unsatisfactory because the
gradient was invalid, The quadratic cost in the first two steps was reduced

four orders of magnitude,

After the first two steps, the J* cost was low enough for valid calculations
of the partial derivatives of J* with respect to covariance responses so that
they could be used for the quadratic weights, One more step reduced the J*
cost to 0,373, .

The gradient iterations were terminated with this set of gains since previous
iteration had been successful in reducing the cost to a desirable value from

such a value of J%,

Equations for simplification of the time-varying nature of the gains were

derived and appear in Appendix B,
The time-varying gains obtained with gradient iterations from the three

initial conditions chosen are shown in Appendix C. These figures demonstrate

that the second and third iterations from the perfect measurement gains were
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of a fine-tuning nature. The figu:f‘es also demonstirate improved behavior
starting from the averaged approximation rather than the DC approximation

to the Kalman controller,

CONSTANT COEFFICIENT EXAMPLE

The test vehicle considered is a 23rd-order model of the C-5A pitch dynamies.
The model consgists of the short-period mode, six flexure modes, two second-
order Kussner lift-growth modes, two wind states, and three firsi-order
actuators. The three control surfaces are inboard elevators, ailerons and
spoilers. The response vector consists of stresses and stress rates at five
stations and normal accelerations at four stations. A more detailed
description of the C~5A model is given in Appendix E. A pogsibly practicdl
controller form was chosen on the basis of previous analysis of this model
performed on the LAMS program (Ref. 10). This form is shown in Figure 5.

RIGID BODY [P TWO 30 INBOARD ELEVA'LOR
STATES i GAINS 1 5+30

| R1GID BSODY N — m% . ol 10 . SﬁPOILERS
STATE : p 15710

'} RIGID-BODY ; ' All-

| AND FLEXURE [ P| FOURTEEN| | 0.5 | AILERON

4 'STATES, —P S+ 0.5

Figure 5., Controller Configuration for C~5A
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Attempts to use the Implicit Function Method described above required
small steps in A (AN = -0, 05), Investigation revealed that the gradient of J
with respect to gains in Kl (denoted by v J) was highly sensitive to changes
in gains, Gmall percentage changes in elements of Kl gave rise to orders-
of-magnitude changes in components of yJ. The matrix sz was rather ill-

10 for the magnitudes of its eigenvalues. The

conditioned with a range of 10
original algorithm with AA = -0, 05 was unsuccessful at A= 0.80. The predicted
controller was unstable, The algorithm was modified fo include damping, and
two gains which appeared to oscillate in a diverging manner were held constant
(put in Ks). With these modifications, satisfactory performance was obtained
to A = 0.50. The gains at A = 0. 45 were unsatisfactory. They yielded a non-
definite matrix of second partials sz and consequently unsatisfactory gains

at A = 0,40,

The Implicit Function Method was discarded in favor of extrapolation followed
by gradient corrections. A predicted set of gains for K1 at A= 0 was com-
puted from the equation

k10) = 20 K1(. 95) - 19 K(1. 0) (31)

Ten gradient corrections were made from this predicted gain, The magnitude
of the largest component of @ for the resulting gain was less than the magnitude
of the largest component of VJ at A = 1,0, This was considered to be the

accuracy that could be expected from the numerical calculations,

Finally, the incremental gradient method was used with a slightly different
controller configuration. This configuration consisted of allowing flexure
feedbacks to the elevator and spoilers. For this calculation AN was chosen
to be -0. 10, and four conjugate gradient steps were used for correction at
each value of A. This method proved to be quite successful for the case
studied,

27



Numerical results are shown in Tables 1 through 4. In Table 1, the behavior
of the Implicit Function Method algorithm for the C-5A is displayed. Without
damping, the algorithm failed at A = 0.8, The modified algorithm to include
dainping was slightly better, but failed at A = C. 70. A second attempt with
the modified algorithm was made in which two gains corresponding to flexure-
mode displacements were constrained to be constant. Greater success was
achieved in that failure did not occur until A = 0. 35. However, the last step
was very poor, and simple extrapolation proved to be much better, This
motivated the extrapolation to A = 0 followed by successive gradient steps.
The results appear in Table 2, where step number zero is the result of
extrapolation from A = 0,95 to A= 0. The gradient steps were terminated

at the point where the magnitude of the gradient vector, as measured by its
largest element, became less than the magnitude of the gradient at A =1.

The gains for this controller are given for comparison with the original

gains and those from extrapolation in Table 3. Finally in Table 4, the per-
formance of the Incremental Gradient Algorithm is listed. Flexure feed-
back to all control inputs was permitted in this case. The cost in the second
column is that obtained before gradient correction while column three

indicates the cost after gradient correction,

The magnitudes of costs and gradients listed in Tables 1 through 4 may
appear somewhat large considering the fact that the gradient for the optimal
control should be zero. However, these magnitudes are arbitrary in the
sense that the scaling of J and hence of VJ is arbitrary. To obtain a calibra-
tion of J with respect to physical considerations, the value of J corresponding
to no stress and stress rate costs and standard deviations of 0.1 g for the
accelerations at the four stations is 8500, Significance of the magnitude of
vJ computed for the optimal controller with complete measurement feedback
may be deduced as follows. Suppose that K* denotes the opfimal gain matrix

which will be considered as a gain vector., In a sufficiently small neighborhood.

of K* the cost may be represented as

JK) = J(K*) + 1/2 (K-K*) - v23|K*(K'K*)
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Then VJ]K = v2JlK*(K~K*). Now suppose K-K* = EK*

where E is a diagonal matrix. The diagonal elements of E may be considered
as relative errors in the components of K* and should be small if K approxi-
mates K¥*. For the computed optimal controller each element of E was less
than 0. 019 in magnitude indicating an accuracy of approximately 2% or betfer

for each gain,

Table 1. Behavior of Implicit Function Method Algorithm for the C-5A

‘Original Algorithm Modified Algorithm
Unconstrained K's | Constrained K's

A J max [(2J )il J max](VJ)i | J maxl(vJ)i |
1,00 | 14377 | .28~ 10° |[14377 | .28 10° | 14377 | .28 10°
95 | 14420 | .88 - 10° | 14429 | .43- 10° | 14427 | .14 10°
00 | 14595 | .98 - 10° | 14500 | .45- 10° | 14582 | .41. 10°
85 | 14884 | .42+ 10° | 14862 | .91- 10% | 14848 | .28. 10°
.80 15614 | .23 . 10° | 15233 | .35 10°
.75 16092 | .34+ 10® | 15740 | .12+ 10°
.70 16416 | .31 10°
.65 17248 | .57« 10°
. 60 18275 | .53 10°
.55 19470 | .52 + 10°
.50 21170 | .18 - 10°
.45 24366 | .43~ 108
. 40 ' 86984 | .95 10"
. 402 26482 | .53 - 10°

#ndicates extrapolated set of gains
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Table 2, Extrapolation plus Gradient Algorittimr
Step -5
Number J 10 ¥ - max |(vJ)il
0 97125 51
1 94789 34
2 93389 18
3 92373 22
4 88926 13
5 88644 10
6 88445 6.3
7 83880 0.5
8 72191 3.8
9 70685 0.9
10 70679 0,275
Table 3. Gain Comparison
Controller
Gains Optimal with Extrapolated Final
Complete Feedback (step 0) (step 10)
K1’ 1 - .02983 - . 00780 ~ . 00545
. K1,2 - , 01574 .0103 .0114
Kl, 3 - ,2388 . 00520 . 00899
K1,4 . 06796 . 0900 . 0842
Kl, 5 2,837 -1, 06 -1,086
K1,6 . 3137 . 048 . 100
Kl, " -1, 396 -4, 90 -4, 90
K1,8 - .4093 - 175 - .023
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Table 3, Gain Comparison {Continued)

Controlier

Gains O ptimal with Extrapolated Final

Complete Feedback (step 0) (step 10)
K1,10 . 685 . 345 . 005
Ki 12 . 07228 . 0723 . 0720
K1’13 . 9018 . 491 . 491
K1,14 - .6193 - .485 - . 160
K2 1 . 008698 . 00250 . 00158
K2 9 . 004714 - , 00850 -~ . 00110
K3 1 . 001872 - , 00073 . 00013
Ky o .001119 . 00072 . 00633

Table 4. Performance of Incrementél Gradient ‘.Algorithi'xtta

A (predictgd gaing) - (correctgd gaing)
1,0 14397 14371
.9 15380 15186
.8 17375 16387
.7 18664 174179
. B 19394 18870
e D 25511 21308
- 24179 23181
.3 260886 24832
o2 27202 25867
.1 281486 27194
0 30611 28015

45 for the free aircraft is 116, 193,
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SECTION IIT
PARAMETER VARIATION CONSIDERATIONS

The goal of implicitly including parameter-variation constraints within
quadratic optimization formulations motivated study in two directions, One
phase of the study was aimed at discovering properties of the optimal per-
formance surface over a segment of parameter space and utilizing such
properties to find optimal insensitive controllers, The other phase of study
was aimed at reducing sensitivity to parameter variations by introducing
proper compensators into the controller, Promising resulis of both
theoretical and practical value were obtained in the first phase, Although
intuitively appealing, the proi)lem formulation of the second phase appears

to be of questionable practical value,

PROPERTIES OF THE OPTIMAL PERFORMANCE SURFACE

Considgr the scalar equation x = fx + gu + 1 with performance functional

J=E I (4x2+u2)dt where T is a unity white-noise input, The coefficients

of the %ystem, f and g, are constants with values in the rectangle R defined
by0=f=2andl <g=<5, For acontroller, u = kx, the performance
functional is a function of the three parameters, k, f and g; i.e., J = J{k, f, g).
The optimal control for any (f, g) in R is u = k*(f, g)x where k¥(f, g) minimizes
J(k, f, g). For this simple example, the solution for k*(f, g) is easily determined
to be k*(f, g) = [-f- I 4 4g2]g-1. In this case J(k*(f, g), {, g) can be obtained
explicitly as -k*({, g)g_l. This surface over the rectangle R, as depicted in -
Figure 6, has a maximum over the corner (2, 1) and a minimum over the
opposite corner (0, 5), Further calculations show that the surface J(k*(1, 3)f, g)
corresponding to performance with the optimal controller for the midpoint

of R highly accentuates the peak at {2, 1) while providing nearly optimal’
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performance for points close to the midpoint of R as shown in Figure 7, This
controller appears: to be sensitive to parameter variations. To alleviate this
sensitivity, a controller could be chosen {o minimize Ef’ g{ J(k, f, g)} assuming
a uniform probability distribution for the parameters f and g in the rectangle
R. With this simple example, this can be accomplished yielding a value of

k = -2, 82.. Indeed the peak of J(k, f, g) which occurs at (2,.1) is lower, as
shown in Figure 8. But the controller which minimizes the maximum of

J(k, f, g) over R is the optimal controller for the point (2,1)., Any other k

will give a higher value of J(k, 2, 1), Furthermore J(k*(2, 1){, g) is less than
or equal to J(k*(2, 1), 2, 1) as shown in Figure 9. This controller is the

least sensitive to parameter variations defined by R.

The following two. theorems indicate that the phenorrienon noted in the above
examial‘e is not mere happenstance., The first theorem is an existence
theorem providing a sufficiency condition for optimal insensitive controllers
locally, that is, for sufficiently small variations, This theorem also implies
that such controllers are optimal controllers corresponding to boundary
points of admissible parameter variation sets. The second theorem stafes

a necessary condition for an optimal controller corresponding to a point in
the boundary of the domain of admissible parameter variations to be an
-optimal insensitive controller, Here, the expression optimal insensitive
controller refers to a controller which is optimal for some admissible value .
of the parameters which minimizes the maximum of the performance over

the range of admissible parameter values.

K Theorem 1.— Consider the system X = F(p)x +.G{p)u, x(0) = X and
an associated performance functional J(u, p) = fz (Hx+Du)TQ(Hx+Du)dt
where p is a-vector of parameters, Let J*(p) = mliln J(u, p). Suppose
p, is-a point with the property that va*(pO) # 0. Then there
exists an-€ >0 such that the control u*(po) which minimizes
J{(u, po) -also.minimizes the maximum of J(u, p) with respect to

p in an €-ball with P, OR the shell (boundary) of the .ball.
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Proof: For any €> 0 let B, (po) denote the €-ball with center at
-€ * i
Py V59 (p)s i.e.,

B, = fp:p= po-eva=k(pO)+en, In |S|VpJ*(p0)| .
Also define M(u; Py €) to be max J(u, p). Then
peB(p,)

M(u; po,e) z J(u, po) 2 Jﬂ‘(po). For pSBe(po) We Imay express J(u*(po), P)
as

J(uH(p ), p) = J(wk(p ). p ) + ¥ J(w{p ), p) |. (p-p,) +

p=p,
2. 0
"I {wk(p ), p)
1/2(p-p )T 0 2
P-p,) (p-p)+ol€)
T
- 3p P=p,
e T 9
z J¥(p y+g- (p-p0)+1/2(p-po) H(1'.>-po)k+o(€ ), H>0
(32)
Note that g = V_J{uw* s =V J%
ote ag_p(u(po)P) P (p)
P=P, P=P,

Forp€ B, and € sufficiently small the only possibilities for
extreme points of J (u*(po), p) are

(1) approximately po—H_lg if this point lies within B, or

(2) points on the shell of B,.
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The point near po—H—Ig is a minimizing point. Therefore

maximizing points lie on the boundary of B,

The problem of extremizing J (u*(po), p) subject to p = P, =Sgten
with | n I = | g| may be treated with a Lagrange multiplier as

minimizing
2
H=J_ +g- (p-p) + 1/2(p-p-O)TH(P-p0) + o(e”) + M- g-g)

This yields 0 = €g + A7 - €2H(g-n) + 0(e%) and |n| = |g| as
necessary conditions., For € small these conditions imply that

A=xell+o(1)]and n = 1 gl1 + of1)].

The bottom signs yield the maximum and the top signs yield the
minimum. The exact solution for the botiom signs is A= -€, N=g
.Which describes the point Py Thus on B, J(u*(po), p) s:J(u*(po), po)
= J*(po). Hence

M(w(p_); p, €)= J*(p ) = M(u; p_, €)
which was- fo be proved,

Theorem 2 — Consider J(u*(po)', p) = J*(pb) +g- (‘p-po‘) + o |p-p0 D

with g = VpJ*(p) ‘p“p . Let Qdenote a closed convex set with non-
"PTPo

empty interior in the parameter space, sSuppose po is a poinf in

the boundary of Qwith the property that

IwHp), po) = max I (p ), p).
peED

‘Then g must be an extérnal normal to Q at po.
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Proof: Assume that g is not an external normal to Q at P,

i.e., there exists a Py in Qsuch that (pl-po) "g=cey > 0. Since
0 is convex p(d) = 1'30 + }L(pl—po) liesinQ for 0 £\ <1 and

(p(h)-po) - g=rp;-p)- g = Ac,. Thus

I(wH(p ), pA)) = I¥(p ) +(p(A)-p )+ g+ol|p(M-p, |)

J*(po) +Aey + oM ‘>J*(p0) (33)

for A sufficiently small. This contradicts the hypothesis that P,

has the property that J(u*(po), po) = max J(u*(po), pl.
peQ

To utilize information about performance surfaces in determining insensitive
controllers, approximations and computational techniques are required, For

thig purpose, consider the system

¥ = F(p)x + G{p)u, x(0) = X,

and a performance index

3 = [(Es+Dw) T Q(Hx+DWat
e}

Suppose J*#(p) denotes the optimal performance surface, J(K*(p), p),
corresponding to u = K¥(p)x, For an arbitrary controller u = Kx, let J(K, p)
denote the corresponding cost surface. Define the "error" index as the
difference

e(K, p) A J(K, p) - J*(p)
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This error function may be expressed as an implicit function of K and p as

e(K, p) = Tr{AX | - T_r}PXOf (34)

T o
here X =x x "2 A sa
where X T satisfies

(F+GK)TA + A(F+GH) + (H+DK)TQ(H+DK) =0

and P satisfies

FIp+ PF+ HYQH - P(D QD) lgTp - PG(DTQD)"lpTQH

- m o Topy leTr - H gpb QD) *'nToH = o

A is an implicit function of K and p and P is an implicit function of only p.

So J(K) and J*(p) can be approximated by truncated Taylor series expansions,
it is assumed that the parameter variations of F and (3 are moderate, say

10 or 20 percent variation from the nominal value. Therefore, we might

not need higher-order partials of A and P with respect to X and p. At most,
it is assumed sufficient to expand J and J* in Taylor sSeries up to the second-
order partials of A and P, It might turn out for a practical system that the
first-order expansion of J and J* would be sufficiently accurate. In any casé
the error function e(K, p) can be explicitly expressed in terms of K and p in
a reasonably accurate form, Its derivation is given in Appendix D. A
simple geometrical interpretation of the approximations of J and J% is shown

in Figure 10, where p is a one-dimensional parameter, and K is fixed,

In Appendix D the following facts are established,

(1) e(R*(p),p) =0

This implies that the surfaces J¥*(p) and J(K*(p), p) touch at p.
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:I-(K, p) = TRUNCATED TAYLOR SERIES APPROXIMATION OF J{K, p)
T*(p) = TRUNCATED TAYLOR SERIES APPROXIMATION OF J*(p}

Figure 10. A Geometrical Interpretation of Taylor Series
Approximations of J(X, p) and J*(p)

(2) Vpe(K*(p), p)=0

This implies the surfaces are tangent at p.

(3) Vge(K*(p),p) = 0
This is the statement that K#(p) satisfies the first-order condition

of optimality,

v %
(4) Vge(K#(p),p}> 0
This, together with (3) states that K*(p) is optimal.

These properties along with computational techniques described in Appendix D
for obtaining truncated Taylor Series approximations make it reasonable to

compute optimal insensitive controllers for realistic systems.

Resulis similar to those above were derived by Salmon (Ref. 20).
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As a test vehicle for this approach, the C-5A model was modified to include
only rigfd-body and three flexure degrees of freedom and first-order
actuator dynamics., Variations in the natural frequencies of the flexure
modes were introduced as the parameter variations, Numerical results

are presented in Appendix E,

INSENSITIVITY VIA COMPENSATORS

This phase of the study was aimed at relating the structure of the con-
troller to the sensitivity of the controlled system. For a system represented

by the familiar equations

*

X

Fx + G u + Gy

Hx + Du

2]
]

and the associated performance functional
5 = B{frT Qr dt}

where the matrices F, Gl, Gz, H, D and Q@ may depend on a vector of
parameters, p, it is known that the optimal coniroller is given by u = Kx
where K may depend on p. The equation u = Kx has a simple geometric
interpretation. The equation defines a .subspace of the (x,u) space, With
x and u scalars this interpretation is reduced to: u = Kx defines a line in
the (x, u) piane. Then optimality would be equivalent to motion in the (x, u)
plane being constrained-to the proper line, u = Kx, and (for the regulator
problem) that undisturbed motion be directed toward the origin, Thus for
a simple scalar system optimality might be depicted as in Figure 11 where

the "optimal" lines for three values of p are sketched.
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Figure 11, Optimal Motion in the (%, u) Plane

Compensation of the feedback may be represenied in differential equation

form by augmenting the equations with

||

u Kx + K v
o

v = W

where w is treated as the control input and the state vector is augmented to
include v, For the augmented system, optimality may be approximated by
asking that the motion of the augmenied system by approximately in the
"optimal' subspace, Then a performance criterion could take the following
form: motion originating in the "optimal’ subspace should remain in that
subspace and be appropriately stable, motion originating outside the "optimal"
subspace should approach the "optimal' subspace in an appropriate manner.
In differential-equation terminology, this criterion can be e‘xpressed simply

as requiring the ''optimal'’ subspace to be 2 stable invariant manifold.
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The_single scalar system X = Fx + Gu, x(0) given, with performance index
J = I (QX2+u2)dt was analyzed to gain insight into the effectiveness of com-
pens%tor structure in alleviating sensitivity to parameter variations., For
numerical calculations it was assumed that F = 1+2p, G = 3+4p, Q@ = 2,25
and that -0,6 = p=s+0(,8.

The optimal control for any fixed value of p is u = K¥(p)x with
g+ = -[F +fF* +Qa’lg™t

The desired behavior of the controlled system was assumed to be that a
closed-loop system principal axis match the lire u = K*(p)x to a high degree,
The Laplace transform of the system with w = -le + K'zv is (without loss of

generality Ko is set equal fo 1);

(s-F)X(s) = x(0) + G[KX(s)+V(s)]

n

(s -KZ)V(S) v{0) + KIX(S)

n

U{s) KX{s) + V(s) (35)

From these equations

- :x:(O)K1 + v(0)(s-F-GK)

= K -+ =
X(s) X(O)(S—Kz) + Gv(0)

V(s)

The requirement that u(t) = K#x(t) if u(0) = K*x(0) yields-the equation:

K, + (K, ~F-GE)(K*-K) S GR*-K)Z = 0

The left-hand side may be expanded as a Taylor 'Series in p-about p = 0
yielding
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K, + (Kz—l—SK)[K*(O)—K] - 3[K*(0)-K]2

+p {- @HKR)[K*(0)-K] - algx(0)-kP + (K2-1-SK-GEK*(O)—K])&c*(O)J'}
+1/2p° {(Ky-1-3K-6LK*(0)-KHLK*(0) 1" - 6([K*(0) In>

- (2+4.K+8[K*(0)-K:|)[K*(O)]'} + higher order terms (36)

The control parameters K, Kj and Kz can be chosen so that the constant ferm
and the coefficients of p and p2 are zero to yield desired matching of the
principal axis to u = K¥(p)x for p near zero. Stability requirements of the
resulting closed-loop system are not guaranteed, This may impose further
consiraints on the conirol parameters and, in so doing, reduce the degree

of approximation.

For the numerical example it was found that matching to third-order terms
in p could be achieved with K = -2, 08, K1 = -1,03 and K2 = 0,29, The
corresponding closed-loop poles for p = 0 are -4, 61 and -0.34. The pole

at -4, 61 is the desired value for the optimally controlled scalar systiem -
with p = 0, Thus the compensator pole now is the dominant pole, and the
corresponding principal coordinate displays the dominant dynamics. This

is undesirable, The principal axis which approximates u = K¥(p)x is an
unstable axis, Motion originating near this axis does not remain close to

this axis, Figure 12 is a sketch showing this kind of behavior,

One other case was considered in which K was set equal to zero. The
remaining control parameters K1 and K, were chosen to eliminate the
constant and first-order terms in p. The value of the gains were K, = -8, 15
and Ky = ~-48,2, The corresponding closed loop poles for p = 0 were -4, 61
and -42.7. In this case the axis u = K*x was stable and the resulting con-
troller exhibited desired properties., Characteristics of this coniroller

are given in Table 5. The final column of this table characterizes the
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Tk

Figure 12, Phase~Plane Portrait Indicating Unstable Subspace u = K#*x

behavior of the optimal controller based on p = 0 for comparison, Columns
2 and 3 indicate good correlation between the dominant principal axis and the
line u = K¥(p)x. Columns 4, 5 and 8 show eigenvalues with good maiching
between columns 4 and 5. On this basis the compensated system appears

to be iess sensitive than an uncompensated system. However, the improve-

ment may not be worth the added complexity.

Thus, although this method of alleviating sensitivity- has some appeal, its
utility would have to be determined by application to a more realistic and
more complicated example, Rather than pursue this, it was considered

more advantageous to study the performance surface for a realistic example,
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Table 5. Optimal Control and Principal Coordinate Dependence on p

1 2 3 4 5 8 ]

p K* qlT F + GK* M -q2’r F + GK*{0)
+, 6 -1, 96 -2,08 -8, 39 -9.03 - 7.3 -37.0 -7. 890
+. 4 -1, 94 -2, 00 ~-7.13 ~-7.38 - 8.9 -38.1 ~-6. 80
+, 2 -1, 91 -1. 93 -5. 87 -5, 92 -11.1 ~41,0 -5.71
+. 1 -1.89 -1.90 -5.23 ~5.25 12,7 -41,9 -5, 16

0 -1, 87 -1, 87 -4,61 -4.61 -14,86 -42, 7 -4,61
-.1 -1.84 -1, 84 -3.98 -4, 00 -17.0 ~43.5 -4, 06
-2 -1.80 -1.82 -3.36 -3. 40 -20. 4 -44_ 3 ~-3.51
-.4 -1,65 -1,178 -2, 11 -2.29 ~32.8 -45, 8 ~-2.42
-.6 -1.20 -1, 74 - .92 -1.24 -78.1 -47,2 -1,32
TPrincipal coordinates are 2, =¥y +q.%; and zy = x, + g %,
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SECTION IV
SENSOR CHOICE

An important problem in the design of practical controllers for large flexible
vehicles is the choice of types and locations of sensors to generate the feed-
back signals. The problem arises because it is economically prohibitive in

most applications to sense all system states, particularly the rates and displace-
ments of numerous flexure modes. Moreover, experience on previous

flexure control designs has shown that adequate performance can be obtained
with significantly fewer sensors than state variables, suggesting that

economics vs. performance comparisons favor smaller sensor complements.

In principle, the sensor-choice problem is solved by selecting a complement
of instruments which exhibits the most desirable cost/performance tradeoff,
assuming, of course, that the instruments are utilized in an optimum
fashion, i.e., by locating them optimally along the vehicle and by using
optimally the information thus provided, It is in these areas that present
methodology fails. We have too little computing power, or too cumbersome
computing methods, to determine optimal locations of sensors and to utilize
their information optimally with a controller subject to various simplicity
constraints, Cost/performance comparison for several competing sensor

complements are thus difficult to come by,

The research reported in this section is intended to improve this situation.
Its general objectives are twofold: (1) to increase understanding of the
relationships between sensor complements and the performance capabilities
they offer and (2) to improve computational methods for locating and

utilizing the instruments,
PRECEDING PAGE BLANK NOT FILMED
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MATHEMATICS OF THE SENSOR-CHOICE PROBLEM

As usual, we are gi_ven a mathematical model of the following form:
) System:
X = Fl)x+ G, (thu + Gy(t)n (37)
» Responses:
r = H{t)x + D{t)u (38)
¢ Performance Measure:

. T
3= Ef[rT® o dtf (39)
‘0

where all symbols correspond to previous definitions. Then we are given

a collection of measurement instrumenis (rate and acceleration sensors,
stress sensors, air data sensors, etc.) from which we may select any
number and combination to mount anywhere on the airframe. The outputs

of these instruments are to be used for control., That is, let () denote a
particular subset of instruments, and let vector y denote the locations of
each instrument (i.e., ¥; is the location of the i*® sensor). Each location
can be represented by a scalar number if fuselage and wing positions are laid
end to end. Then the instrument outputs, at least for linearized models, will
be

z = M(t, y, Q)% (40)
and the controller must be of the form

u{t) = Lt, 2) (41)



In these latter equations, M(t, ¥, () denotes a matrix of dimension (mxn), where
m is the number of sensors in the set o, and the function L(t, z) is a 1inea:r con-
trol law which is usually constrained to exhibit certain attributes of simplicity.
For instance, the nondynamic form, L(t, z) = K(t}z, or a dynamic form with
low-order compensation are desirable.

With measurements (40) and controller (41) substituted into equation (37}, the

performance measure (39) becomes a function of 0, yand L, i.e.,
J = Jaoy L) (42)

This expression shows explicitly why cost/performance comparisons of sensor
complements are difficult to get., To evaluate the performance capability,
T*(q), of the set of instruments 0 (whose cost at a given level of reliability is
presumably known), we must specify both the sensor locations and the conirol
law which is best for q, i.e.,

J*(Q) = min min J(Q, y, L)

y L
JQ, y:(), L*(.,., Q) ) (43)

With current capabilities, the simultaneous optimizations of y and L, with L
subject to simplicity constraints, are expensive indeed. Just to get a feel for

the magnitude of the problem, suppose we treat a single fixed-time point of

the general nonstationary situation. Suppose further that a nondynamic con-

. troller of thé form L{z) = Kz is sought. Then we could use one of the parametric
methods in Section II to compute optimal controllers, L, as functions of ¥y and Q
and we could imbed these computations inside an iterative Newton-~-Raphson or
gradient loop to optimize y. Diagrammatically, the procedure would like like
Figure 13,

Depending upon the order and cofi'xplexity of the problem, the inner loop of this
algorithm [block (1)] consumes anywhere from one-half to three hours of

computing, say on an SDS 9300 machine.t The outer loop updating step

+The one-half-hour figure was obtained on a 20th-order single flight con-
dition optimization for the F4 aircraft (Ref. 6), while the three-hour
figure was obtained for the 23rd-order C-5A example discussed in Section
IL.
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|
CHOOSE INITIAL y

>

SOLVE MIN Jq,y,L)
L eh)

VIA
PARAMETRIC METHOD

EVALUATE VARIATIONS OF
J WITH RESPECT TOy AT
(€, v} AND UPDATE y VIA (2)
GRADIENT OR NEWTON-
RAPHSON STEPS

| ITERATE

Figure 13. Basic Sensor-Choice Algorithm

[block (2)] can be performed either by repeated executions of block {1) at
perturbed values of y or by the solution of coupled state covariance and
costate equations which result from analytic evaluations of the first and
second variations of J. For first partials alone, the latter equations com-
prise a system of n{n-1) linear equations. The computations in both blocks
are thus extremely time consuming — and, of course, they must be repeated
for as many outer-loop iterations as are required for convergence,

While it is thus apparent that the algorithm of Figure 13 is ill-suited to the
general sensor-choice problem, it should be noted that it has been seriously
proposed for more specialized versions of the problem (Ref. 11) and has
been successfully run on a specialized version of the "dual" problem —force
producer choice {Ref. 5). In each case, the specializations were such as

to greatly reduce the computational loads of blocks (1) and {2). Namely, it
was assumed that controller 1, is subject to no practicality constraints.
This leads in block (1) to the controller L*(q, y} which consists of a cascaded

Kalman filter and Kalman controller (a system with nth order compensation).
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Both the filter and controller are comparatively easy to compute. Moreover,
the variations in block (2) also turn out to be simpler. This is because the
Kalman contiroller is independent of y in the case of sensor choice, and the
Kalman filter is independent of y in the case of force producer choice. The
previously coupled covariance and costate equations uncouple and leave
comparatively simple equations for the variations of J.

!
Since we are concerned here specifically with constrained controllers, the
simplifications offered by these special cases are inapplicable and the
algorithm of Figure 13 offers little hope toward solving the sensor-choice
problem efficiently, The research reported here has therefore been directed
along different lines. Instead of relying on the quadratic cost, J¥{(Q)), as a
performance measure of a sensor complement, the research was aimed toward
development of alternate quality measures with two key properties:

(1) They should be easy to evaluate, for use in computational

algorithms such as Figure 13.

(2) They should provide meaningful indications of performance
capabilities offered by a set of sensors. Ideally, they should

exhibit strong correlation with the cost J*(Q).

This line of attack follows the approach taken in Reference 3, where two
alternate quality measures were proposed, though neither proved wholly
successful in satisfying property (2).

Like Reference 3, the present research has no final wholly successful i
answers to report. Two promising quality measures were developed, both
based on the pole-placement capabilities of the sensor complement. As
such, they strictly apply only to sfationary problems, but can be used on
nonstationary ones via frozen-point procedures. Most of the development
work has been concerned with establishing theoretical equations and

verifying the computational characteristics required by property (1).
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Resgults of these ‘efforts are described below. They are general in nature
and find application outside of the sensor choice problem in areas such as
multiloop -controller design, initiation of computational algorithms, and
sensitivity analysis, As far as property (2) is concerned, several basic
performance capabilities (e.g., stability, modal characteristics) follow
directly from the measures. Correlations with J*()), however, and the
practical utility of the measures remain to be established on realistic

design problems. -

POLE-PLACEMENT QUALITY MEASURES

The basic notion pursued here is to examine the freedom offered by a sensor
complement in locating closed-loop eigenvalues as a possible source of
quality measures, This is motivated by three considerations. First,
.classical experience with root loci and frequency domain design techniques
provides tested insightful relationships between the performance capabilities
‘of a controlled system and the .closed—loop pole arrangements permitted by
sensors. Such notions as stability, frequencies-of oscillation, damping of
individual modes of response and dominance are all apparent from the pole
constellation. Second, there is a fundamental connection between pole
‘placement and the concept of controllability. With full state feedback,
freedom-to assign all n system poles arbitrariiy has been s-hown mathe-
imatically equivalent to the condition of complete controllability (Ref. 12, 13).
Hence it appears fruitful to investigate any restrictions of this pole
assignability property which are imposed by partial state feedback. Third,
in certain special control problems, namely single input, the state dependent
terms of the quadratic cost (39) can be expressed uniquely in terms of
closed loop poles, with no dependence on gains or measurements used to
bring them about. Though this property fails for multi-input systems and
ignores control-dependent terms, it p}rovidés a potential link between
quality measures based on pole placei'n'ent and the measure J*{Q).
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As shown in References 14 and 15, the primary effect of limited

state measurement is to reduce the total number of poles which can be.
assigned arbitrarily — from the maximum of n poles with full state measure-
ment to a maximum number, Prax’ which will be defined later. The effect
does not confine each pole to some subregion of the complex plane, as one
might expect from classical root locus plots, Rather, Pax poles may be
placed anywhere in the plane (subject to certain nonsingularity constraints),

with the remaining (n-p ) poles implicitly determined. These cbservations

max
hold for direct feedback of the measurement with a nondynamic controller
L = Kz. If compensation is allowed, the number of arbitrary poles can be

increased by an amount also defined later.

These properties suggest the following quality measures for sensor comple -
ments:

e The number of poles, pma » Which can be placed arbitrarily

X

® Some measure of deviation (say quadratic) of the unassignable
poles irom specified desirable positions, given that the
assignable poles are placed in desired spots
{

While these are only verbal definitions of what must eventually be analytic
measures, their potential is apparent. The first serves as a gross differenti-
ator between competing sensor complements. If performance requires that
p poles be positioned accurately, then all combinations of instruments which
fail to have this capability can be eliminated immediately. Computations
should be simple, since the measure depends only weakly on sensor locations,
y. The second measure provides finer differentiation between the remaining
complements. It evaluates the amount of pole placement deterioration in
noncritical modes of response, given that the critical modes are adequately
controlled. This measure should depend strongly on y and could thus be
used to locate the sensors by means of an algorithm such as Figure 13. For
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both measures, the pole constellations generated by quadratic-optimal un-
constrained controllers could be used to define critical and noncritical modes
of response and desirable pole locations.

A1l this is conditioned, of course, on computational feasibility — whether it
is possible to determine the maximum number of arbitrary poles and to
design the controller which achieves the desired critical closed-loop locations
with computational efforts significantly below the J*(Q) requirements. Pole-
placement equations and algorithms in the literature suggest an affirmative
answer (Ref. 14, 15, 16, 17). However, no published procedures were
found which completely solve the specific problems posed here. For a non-
dynamic multi-input multi-output controller, for example, available resulis
establish that Prax - ™ where m is the rank of the measurement matrix,
M(n, y). This number is based on andlytical methods which reduce the
system to single-input form before assessing pole assignability properties.
In this study it has been shown that significantly more poles can actually be
placed when the additional degrees of freedom offered by multiple inputs are:
utilized. Similarly, no figure seems available for the number of arbitrary
poles added by a compensator of specified order, and in particular, no
procedure was found to specify the minimum compensator order required to’
achieve arbitrary placement of all system poles and to compute the param-
eters of this compensator. These questions were answered in the course of
this research. The answers take the form of a general set of pole-placement
equations and a computational algorithm to solve them. Both are discussed
in the remainder of this section. The algorithm provides a computationally
reasonable way to evaluate the'quality measures proposed above. This is
demonstrated in Appendix G with a few trial computations for F-4 and C-5A
flight control design problems.
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GENERAL POLE-PLACEMENT EQUATIONS

The poles of a closed-loop stationary system (37) with nondynamic controller

L. = Kz are roots of the following characteristic polynomial:
min (r, m) UTERR
P(s) = D(s) + ¢ T ees T Nz Lk(s,)
k=1 Jpe oo dg Lyeo- by 1
(44)
&) K., K. ceo K,
[12 1%y Jgte 3k’*k]

Here P(s) is the closed-loop polynomial, D(s) is the open loop polynomial of
31 L B
Ll .e
associated with the feedback loops. The summations indexed by jl’ jz,

(37) with u=0, and the expressions N . J‘El‘((s) are various polynominals

eead
and Lys Bgs +-e, 4 BTE carried out over all naturally ordered groups of k €
out of r controls and k out of m measurements, respectively, and the sum-
mation indexed by p ) is carried out over all permutations of the sequence

kys B ooes by s with algebraic sign taken positive for even permutations

and negative for .odd.

Equation (44) is a polynomial in the complex variable s and in the mr gain
variables K, with order n in s and min(m, r}) in K. Its detailed derivation is
left to Appendix F. Here we will present only interpretations of terms and
some procedures for computing them. We will then use shorthand versions
of the equation to derive necessary and sufficient conditions for placement of
p poles and to develop explicit expressions for Prnaxt These will be shown to
apply to dynamic as well as nondynamic controllers; they will be illustrated
with a small example pole-placement problem; and finally, they will be used

to devise a computerized pole-placement algorithm,
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Interpretations and Definitions

j .. jk
The terms, N .6-1 4 (s) may be treated as generalized numerator poly-
nominals of the statlo]?lary multi-input system (37) with multiple statlonar,y
outputs (40). For example, the collection of first-order terms (k=1) are

the familiar numerators of the transfer function matrix

H(s) = -M(Q.y) (sI-F)7'G, 145)
Each term can therefore be computed by replacing certain rows of the matrlx
(sI-F') with rows of the measurement mairix M(q, y) and evaluatlng the resultlng
determinant. For the term N:l this means replacement of the 1(;[) row of
{sI-F), call 1t (sI- F)(l(:')), by (Gl) ()] times the ,eth row, u‘) Jof matrix, M
This procedure assumes that each column of .matrix G1 has a s1ng].e nonzero
entry in positions i(j), j = 1,2,...,r; which will.always be it‘.he‘cas_e‘fqr
systems with actuator dynamics.and represents.no loss .,_off_’g,enerclit'ytevop’ggr
.other cases.

The collection of second-order terms (k= 2j -are so- called couphng numeratorss'
of the system (Ref. 18) which are present, whenever two feedback paths ex:st

simultaneously. KEach of these terms is computed by replacmg two, rows, of
J1ig -

(sI-F) with rows of M and computing determinants. For N the replace—
ment schedule would be (s1-F)1(1) replaced by ¢ (G 1%31 ) and

(i(jo) (£2) B
sI-F)'"27 replaced by ~(G M 42
(s1-8) P T CriGag

Analogous replacement schedules. apply for hlgher -order, numerator, terms,
with k row replacements for each kt]"_l—order term. No.simple mterpretatlon
of these terms, however, seems to be possible except to say that they arise

whenever k feedback paths exist simultaneously.
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Conditions for Arbitrary Pole Placement

For ease of manipulation, it is convenient to express Equation (44) in the
following shorthand form: .

P(s) = D(s) + 3 Ny(s) ¢; (K) (48)
i

where the various generalized numerators are designated simply by Ni(s)
and the gain functions which multiply them are denoted by cpi(K). It is now
our objective to determine the maximum number of roots of the polynominal
P(s) which can be assigned arbitrarily by proper choice of K and to determine
the fate of the remaining roots. To do this, assume that the number of
arbitrary poles is p, whose maximum is as yet unknown. Assign these poles
to be roots of a specified polynomial 3(s), and let the remaining poles be roots’
of the polynomial §(s). Then (46) becomes

P(s) = A(s) 6(s) = D(s) + 3 Nyls) ¢; (K) (47)
1

and in coefficient-vector-formt we get

Ns + x = D + 3 N;g; (K)
i

0=D—1-A5+2Ni¢i(K) (48)
i

where Ais a matrix and ) a vector defined as follows:

2
+In coefficient-vector-form, a polynomial P(s) =p; +pgs +pg s *+...
pnanl +s is represented by the n-vector P = (p1 Pg ¢+ pn)T.
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ll 0 L 0
Ay Aq -
N=12g 2y A (49)
Ay An-i A ‘ M
1Ay Ay | Xg
0o 1 .
0 0 ... 1 | Ay

FEqguations (48) represent a set of n nonlinear equations of the form £(3, 8, K) =0,
which define K and § as functions of the specified polynomial 3, i.€.," K =K
and § = (1), According to the implicit function theorem (Réf. 8), these
functions exist in a neighborhood of a pdint ()\o, 8 Ko) ify ahd only if, the’

rank of the "Jacobian matrix”

f | of
g 8, KJ) = |— | =p
26~ 1 2K
L { loéoKo
B (5091
! 29;
= A ¥ N.
o % i T
i 2K K

+This equation makes sense in vector-matrix notation only if K is written out
as a vector. This is assumed.
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equals n, and they are unique if in addition the matrix is Square. Existence
of -solutions K(1), &()) are, of course, the very conditions which must be
proved to establish arbiirary placement of the p poles, a(s}). We have thus
arrived at the following basic result:

1

e Theorem 1~ Locally arbitrary placement of p poles is possible
in a neighborhood of (7\0, 8 K 0) if, and only if,
rank [y(ag, 5, K )] =
This theorem can be used to determine Prax and also to examine pole place-
ment conditions in a special neighborhood of interest (KO, 8, 0). To determine
PLax’ note that the rank of § is bounded by the inequalities

24, 29,

s rank [|] < rank T N,
T ;i 9KT

rank | ¥ N.

+ rank [A] (51)
i ! 2K

with the right-hand equality realized when all columns of N\ are independent

0.
1
of columns of ¥ N, T Since rank [{] must be n, this condition gives
i 2K
29,
.n = rank { v N, +(n-p )
;g 1 QKT max
(52)
. 29;
p = pank |[y¢ N. ‘ N
max K [i PoxT 1K, k

Now consider the special neighborhood (',\0, 8 0}, i.e., pole placement in
the vicinity of the open-loop system. For this neighborhood, all partials

—a“? ; (K) vanish save those for the first-order terms N:L . This gives
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_ 1.1 1.2 r
P ax = rank jvy Ny LN N LN (53)

K =0
0

or verbally, the maximum number of arbitrary poles in the vicinity of the
open-loop system is equal to the rank of the matrix of coefficient vectors
formed from the system's numerators. 'If we assume that the system is
completely controllab‘le from at least one of its inputs, say u v and that the
matrix M(Q, y) has rank m, then the following bounds are readily established

for Praxt

= min (n,' mr) (54)

KO=0A

M = Prax

Application to Systems with Compensators

These results apply verbatim to systems which include dynamic compensators.

h‘order dynamic compensation is permitted in

For example, suppose that qt
the controller L(z). We then append g integrators to the original dynamic

system, 1i.e.

f{ = Bx + Glu + Gzn
::in+1 = Xn+2 * ux‘+1
X = X +u
n+-2 n+3 r+2 \ (372)
Xn+q = ur+q )
[ Mo, y) =
Xn+1
Z = X 42 (402a)
 niq
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Kll -Kzlz

o
1]
N

(41a)

K21 K22

Each integrator adds one input and one output to the original collection of
inputs and outputs and thus adds additional Ni(s) N (K) terms to equation (46).
The new value Prmax is again given by equation (52) and it follows from this
equation that

p £ p (55)

max |5 max q1:h order

compensation compensation

This inequality assumes that the right-hand side is evaluated at

K 11 K 12
o} o
KO =
K 21 K 22
. O 0
and the left-hand side at Ko = Kil. If in particular we let Kél = 0 and

choose Kcl)z such the (m+1)th measurement is connected to the conirol U,
(for which the original system is completely conirollable), then an analogy
to (54) yields

mtg < p_..| in < min [(m+q) (r+q), ntq] (56)

d ~ order
compensation

0 Klz
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Inequalities (54) and (55) hold in general for different orders of compensation.

for qlth-order compensation equals or exceeds Pax for qzth-

That is, Prax
order compensation as long as g, < dq- This fact can be used to determine
the minimum compensator order required to place any prespecified number of
poles, p, and in particular, the order required to place all system poles
(including the compensator). We simply start with q=1, check the rank con-

dition (52), then go toq = 2, thenq = 3, etc., until the rank equals niq.

The procedure will generate not only the compensator order but also a com-

pensator design, via the function K(}) and §())-implied by equation (48).
All this is best illustrated with an example:

Consider the following system

o 1 o 0
x=10 0 1 |x+ 0 |u note: Ji(1),...,ir)} = Jun} =
~d, -d, -dg 1

Suppose we want to assess pole placement capability without cornpenéaﬁon
and to design a minimum order compensator (if needed) for arbitrary place-

ment of all system poles,

Without compensation, we can use equation (44) directly to get the following

first-order polynomial (in K) for the characteristic equation
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3 2
(s +p3S +pzs +p1)

-1 0 5 -1 0
3 2
(s™ + d3s + dzs + dl) + K11 det | O s -1 +K12 det [ 0 s -1
-1 0 0 0 -1 0
or, in coefficient-vector-form
Py d; | -1 0
Py | = |9y tKyy 0 K12 -1
p3 d3 0

max

which means that only two poles can be assigned arbitrarily. The third
remains beyond our control. Equations for all three can be obtained from

equation (48) and the implicit function theorem, i.e.

specified roots: s? + Ag8 + Ay

unspecified root: s + 8y
P, A 0 ] d, -1 0
Py [= |ha] Syt A | = |99 | TEyp |0 ST
Pg ! Ay 43 0 0
5. ] [, -1 0] 'Ta
54 A 1
Kig|=~ |2 0 -t dy = %y
5] -1 0 o dy - A
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Now let's explore arbitrary placement of all system poles via compensation,
We begin by appending a single integrator, working up to two, three, or more

only if required. The augmented system is

0 1 0 0 0 0

L os 0 0 1 0 <+ 0 0 w
-d; -d, -dg 0 -1 0:4
0 0 0 0 | 0 1_
M1 0 0 0

z = 1 0 X
0 0 0 1

with {i(1), ..., i} = i1, w2} = {3, 4|

Equation (44) now becomes a second-order polynomial in K with first-order

terms for multiplier functions r¢i(K) = K 11° K12, K13, ‘K,21—’ K22’ 'K2_.3"and‘
second—ordgr: terms for (K Ky, - K K, ), (K  Kyo - K13K2‘1), and (K, K,z -

K13K22)"
The resuli
P, 0 0 K
Pa |- di | +x 1l ok 0
11 12
Ps a, 0 -1
134 -d3 0 ‘_0
T1
+ (K. K., -K..K.) |0
117723 13721 ' 0
Rt
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with all other terms equal to zero. Note, in particular, that all first order
coupling terms between system and compensator vanish, i.e

K13, K21, K22' Again applying (52)-gives

., terms for

0 ~K -K

9% 21 13 0 ~d Ky

cpan | 7 K23 a2 O Kz -dptKy,
pmax 0 -1 0 0 0 —d3
0 0 o0 0 0 -1

whenever K13 # 0 (this can be shown by computing a determinant for columns
2, 4, 5 and 6)., Thus, arbitrary placement of all poles is possible with &
first-order compensator in all neighborhoods except those about K o such
that K13 = 0. This merely says that the compensator will do no good unless
its output is fed to the input of the original system. [This corresponds to
the choice of &2 made to get equation (56). ]

The éompensator design and direct controlier gains can now be obtained by
computing the functions K(}), §()), whose existence is guaranteed by the
implicit function theorem. Since all poles can be placed, the function §(})
is not present and the remaining function can be obtained directly from the
polynomial P(s) above., This gives

: 3
specified roots: Als) = P(s) = 54 S 1352 T AgS T Ay
unspecified roots:

Koz = d3 ~ 2y

Kig = dy - A3 = Kyady

K,g # O otherwise arbitrary

Koo arbitrary

Kip = Gy =g = Kygdy + K pKog - Ki3Kgg

K21

(-ny =~ Kggdy + K Kyg)/Kyg

*

The final compensated system has the structure shown in Figure 14. More

elaborate computational examples are treated in Appendix G.
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ORIGINAL |-
SYSTEM .} Yo >

11
12/¢
. Ky, 1
K13 : =3
. I — . K22
—1K23 ..
COMPENSATOR

Figure 14, Example Compensator Design

-A Pole-Placement Afgorithm

In the example above, the s‘ystema Was suffi_cientljr small to permit direct:
manual sélutflon of the pole-placement problem, This will not be the case,
of course, for large flexible-vehicle design problems.” To establish com-
putational feasibilii:y for fhe proposed quality -measures, therefore, it is
necessary to develop computerized solutions able to handle high order
systems. These are provided by the Newton Raphson algorithm shown in
Figure 15,

This algorithm was used to carry out the frial computations in Appendix G,
which deals with 6th~ and 17th-order dynamic systems. Computation times
were very reasonable for both problems. For the 17th-order case with two
control inputs and four measurements, a single run consumes approximately
5 minutes on an. SDS 9300 machine. About half of this time is devoted to the
compuiation of \generalized numerator coefficient vectors which present
certain numerical challenges because of their large magnitudes for high-
order problems. At present, a -generé.lized eigenvalue routine is used to
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INPUT F, Gy, M@, y)

l

COMPUTE D AND

GENERALIZED NUMERATOR
COEFFICIENTS

(1)

e -y
N (s}
{ll LN B {1(
INPUT KD ——!
COMPUTE pyyp o
K
EQN. (52)
INPUT >
K.=K
1 ¢
; =
P

8, 8.
1] i -1 .
l;i+1:| = [KE :l - 3y, Ges Ki) F{x, &, Ki) (3)

EQNS. (48) (50}

NO

CONVERGENCE
CHECK
BLOCK (3) ASSUMES
THAT ¢ 1S SQUARE
STOP
Figure 15.

Pole-Placement Algorithm
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perform the computations, This routine is discussed briefly in Appendix H,
together with an alternate procedure which may prove more eificient in
future applications of the pole-placement algorithm as an inner loop of the
basic sensor choice algorithm of Figure 13. The alternate procedure utilizes
the fact that higher-order numerators of equation (44) can be expressed in
terms of first-order numerators (Ref. 18). This fact significanily reduces
the computations required to evaluate the coefficient vectors for many

sensor locations, y.
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SECTION V
CONCLUSIONS

This study has produced partial answers to three fundamental problems in
optimal controller design: (1) controller simplification, (2) sensitivity to
model inaccuracy, and (3) sensor complement choice. Progress achieved
on these problems are briefly summarized here along with unanswered

questions,

In the area of controller simplification, a gradient iteration method and a
compatible method for initialization were developed. With these methods a
simplified controller was successfully designed for a rigid-body model of a
launch vehicle. Parametric techniques were revised and used t{o design a
simplified coniroller for a large flexible aircraft at one flight condition.

The remaining question with respect to controller simplification is whether
the techniques can be combined to handle flexible launch vehicle problems.
There is no basic inconsistency between the methods, so it appears the
question can be answered in the affirmative. ‘However, verification can only

come by actually exercising the techniques on a realistic problem.

The major result with regard to model inaccuracy is that a boundary ‘point

of the model's admissible I;arameters should be used to design an optimal
insensitive controller, A necessary condition which such a boundary point
must satisfy was derived, Computational aspects were considered and a
numerical example corresponding to a flexible aircraft with unknown flexure
frequencies was treated. The significant question remaining concerns
admissible ranges of parameters. The magnitude of admissible parameter
variations in the example was approximately 15 percent. At present such a
figure must be determined experimentally on the computer for each individual

problem. An a priori estimate is highly desirable.
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To gain knowledge .concerning the quality of sensor complements, the pole-
placement .capacity -of a controller with a given sensor complement was
studied. ‘The following theoretical resuli was achieved for multi-input
gystems: to determine the maximum pole-placement capacity .offered by .a
sensor complement, .each input must be utilized, and indeed, the capacity
of a given sensor complement-is generally enhanced as more inputs are -
admitted. Furthermore, -this-capacity can be evaluated with reasonable
computational loads for compensated as well as uncompensated systems. I
fact, the minimal compensator required.to yield complete pole-placement
capability can be determined computationally. Algorithms were devel_opéd
and exercised -on up to 17th-order examples. The question of how pole;
.placement quality measures for a .sensor complemenrit relate to measures

of quality with respect to controller performance has been left unanhswered."
The positive results:achieved in-each of the three.areas of investigation make

it possible to apply the stochastic constrained-respohse technology. to.the
design of a controller-for mated.ascent of the Spacé Shuttle Veehiclg,
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APPENDIX A
GRADIENT SEARCH FORMULATION

The following flow chart describes the gradient method used for optimizing
fixed-form controllers for time~varying systems. In the chart, Kk(n) are
the feedback gains of the kth iteration for time n, Hk is the Hamiltonian of
the kth iteration, Pk(n) is the co-state mztrix of the llzth iteration for time n,

and Xk(n) is the covariance matrix of the kth iteration for time n,

Choose Ko(n)

— V¥ ¥

Solve for Xk(n) as a function of Kk(n), n=o, ,..N

Y

Solve for Pk(n) as a function of Kk(n), n=o, ,..,N
L]

Calculate

BHk

as a function of X, (n}, P, (n), and K, (n);
k k k
aKk(n)

n=o, ,..,N

'

Choose AKk(n), n=0, ..., N, small such that

N aHk T
AJ =T Tr[[——| AK (n)]<0
n=o 3K, (1)

Set Kk-!-l(n) = Kk(n) + AKk(n), n=o, ...,N

Tterate

Al



If J = J¥¥ (the quadratic cost), the Hamiltonian Hk is

H,_=TR [Q(N)I—Il(N)X_k(N)HlT(N)]

k

N-1 ;
+TR L2 M Q) (H,(n)+D, (K, () M(n) )X, (0 (H;m)+D ;(n)K (n)
n=o

Mn)) T ]

N-1
+TR [T P, (n+1}(X(n+1)-X(n))]
n=p k

where Q(n) is the quadratic weighting matrix for time n, &% is the sampling
interval, M(n) is the measurement mairix for time n, and Hl(n)‘, l(n) are

the usual system parameters,

To solve for Xk(n), use the following sample data covariance: solution

(forward integration):
X, (n+1) = [A(m)+B, K, ()Min) )X, () [A(n)+B; K, (n)Mn) 77

+Hot) B, W, B, ()

where. A(n), Bl’
is known and is. constant,

B‘S(n), andWl(n) are the usual system parameters. Xk,(0)~

To solve for the. co-state matrices Pk(ﬁ), set

aHk Pk(n+1) - Pi{(n}

3 Xk(n) At

AZ



which has the solution (backward integration) with
P, (N) = H (N QM)E, ()
P, (n) = [A(n)+BlKk(n)M(n)]Tpk(nﬂ)[A(n)+BIKk(n)M(n)] +
MLH, (0)+D | (WK, () M{) ) Q) [H, (0)+D | (K, () M) ]

These equations yield the solution

[

SH,
T 2B1TPk(n+1)[A(n)+Bi(n)Kk(n)M(n)]Xk(n)MT(n)
X |
126t D, T(m)Q(n) [H. ()+D, (K, (n)M(n)1X. (n)M> (n)
1 in 1 k! k
with
SH, .
— - 0.
BKk(N)

To choose AKk(n) small such that

T
N oHy
ATy = z Tr L AKk(n)]S 0,
n=0 aKk(n)
we choose
T
BHk
Tr [ AKk(n)] <0
aKk(n)

A3



for all n, which is true if

o H

k
AK., (ny= 0
aHk
for each i, jand n, which is true if ——— and AKk (n} are of opposite sign,
’ oKy (n) i]
i

This was accomplished by setiing (for ¢ > 0)

aHk )
AR, () = - §|K,_ ()| ——— f
535 Ky ok, () % oHy 2
ij ‘ i, _j_,n _H_BK -

(n):
ki

If it is desired that J% (the upper bound on the probability of mission failure)
is minimized instead of J**, simply set all the Q(n) of the above equations to

Ad®
Q) = Q) =————
3 Sk(n)

where

8, (m) = [H, ()4D | (K (m)M(n) X, () [ (n) +D1(n)Kk(h).M(n)J.T

TFor the launch vehicle, we have a single input; this means i=1, Normalizing
over each gain individually consists.in removal of summation over j in
radicand,

Ad



This is true because

5 J* B* 95y ()
———. = TI'
3K, (n) 33, (n) 9K, (n)
ki ; k kij
where
d Juk 35, ()
———— = Tr [Q(n)
OKk_ {n) - oKy .(n)
1). i

which are identical if

oJ%

AU = Q) =~
kn

Ab

-]



APPENDIX B
SIMPLIFICATION OF TIME-VARYING GAINS

A method is proposed for further sir-nplification of time-varying optimal con-
trollers through time linearization. It is proposed that the gain matrix K(t)
be constrained to be piecewise linear with respect to time. That is, let

K(t) = a (t~t£)‘+b~ fort, (st<st, g=1...,P (B1)

£ &

where to = 0 and tp =T,

The method considers optimizing via a gradient scheme with respect to the
a, and b P with a constraint for continuity of K(t). The breakpoints t g are
determined visually from practicalized gains obtained prior to these param-

eter optimizations.

Also discussed is the determinafion of the deterministic input for the

simplified controller..

FORMULATION OF THE PROBLEM

Pigures Bl through:B5 show how five time-varying gains may be split up in a
piecewise time: sense., It seems: that this could be done reasonably with. six
breakpoints; t through 1:"6,., Actually, the set of breakpoints would: be the union
of the: necessary breakpoints necessary for each individual time-varying gain.
The knowledge- of the: physics: involved along with: the visual observation of the
gains would: determine: where- the: breakpoints. should be. From a practical

point: of view it iz’ advantageous: to-have as few breakpoints as possible.
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Given the set of breakpoints, we then define an initial set of gains (in dif-
ference equation formulation)

K = - + .' ) = *s o
e ago (n-n ) ‘bf’o, n, ;sn'sn, 41, s P (B2)
where
bp = K¥(N)t (Practicalized final time gain) (B3)
0 .
b = a (n -n, ,)+b i 451, ..., p-1 (B4)
24 £+1o 4 e+l £+10

and the a , are the slopes of the lines determined graphically or through
parameterooptimization-r where in conjunction with equations (B3) and (B4)

n - n
£ ' 2 2
a, =9I \:bz -K‘ﬂ‘(n)] (n-nﬂ) X ) (n-nz) (B5)
0‘ n=n£'_1 o n=nz_1

tb_ may also be determined through parameter optimization by solving the
Po following two equations simultaneously:

N . N 0
ap = 5 [bp - K*(n):l (n-N) )3 (n-1)
o n=np_ 1 0 n-np_ 1
p (n) (n-N) (N )
b = K*(n) - a n- -n
Po nz=n |: Po p-1
p-1 .
N 2
in which case 7 [K*(n) - Ko(n)] is minimized with respect to a
n=n o
p-1
and b_ .
P

O

B7



1

4
where K¥(n) are the set of practilized time-varying gains. Then I
n=n
2 -1
[K*(n) ~ Ko(n)] is minimized with respect toa, . Time n, is equal to N;

o
n, is equal to zero.

When optimizing on the a ‘ and b P with the constraint for continuity of Kit),

the Hamiltonian is

T
H, = TR{QMVE,(N)X, (NH, (N)]

N-1

+ TR{ z  AtQn)[H(n) + D, (0K, (n)M{n)IX; (n)[H, (n)
- " n—o rz[' . N_l ) - - 1

+ Dy (m)K, (n)M(n) ] }+ TR{ T P, (n+1)[X(n+l) - X(n)] f (B6)
n=o :

where Q(n) is the quadratic weighting matrix for time n, At is the sampling
interval, Pk(n) is the costate matrix and Xk(n) is the covariance matrix of

th
the k

I—Il(n) and Dl(n) are the usual system parameters. The Kk(n) are defined as

iteration for time n, M(n) is the measurement matrix for time n, and

Kk(n) = azk(n"nﬂ')+b£k;n£-ls n<n, =1, ..., p {(B7)
where

bpk = K*(N)+ : . {B8)
with the constraint that

b.ékv = a’€’+lk (n,q,_n,e,+1)+b,e,+1; 4=1,...,p-1 . (B9)

tSee footnote -on page Bll.
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which can be written as

P —
b, = ¢

) -,
k  jeatl | Ik

{n. —n.)—} +b B10
N (B10)

Prom equation (B10), we see that the b P are functions of the aj , Where j

k k
is greater than 4, and bp » and not the a e

k k

To solve for Xk(n), use the following sample data covariance solution:

Xy (ntl) = [Am) +BK, (MMn)] X m) [A) + B K, (mM@n)]" (B11)

+ (at)! BS(n)'Wl(n) B, ' (n)
where

A(n), B1 Bg(n), and Wl(n) are the usual system parameters.

Xk(o) is known and is constant.

To solve for the costate matrices Pk(n), set

E)Hk Pk(n-i-l) - Pk(n)

3%, (n) ~ - At

(B12)

which has the solution with P, (N) = H, ()" Q(N) H, ()

P, (n) = [A(n) + BlKk(n)M(n)]T Pk(n+1) [An) + B, K, (n)M(n}] (B13)

+ At[H, () +D (n) K (M@} ]" Qn) [H, (n) +D, (n)K, (a}M(n) ]

B9



These equations yield the solution

de _ NaHik

deCn)

(B14):

=z
da 4, 1= 3K, (n) da by
dK (n)- 0 n, <n
= - N -
= n-n, n, ;Snsn,
) n, ;~n, nsn, g )
where
aHk T T
aTk(;l—)— = 2B1 Pk(n+1) EA(n)+BnI(n) Kk(n)M(n)} Xk(n) M~ (n) (B15)
+24t D, (n) Q@) [, @) +D, () Ky ()Mm)] X ) M ()
Note that
dK(n) db, .
da,e = a“f, = n-z__l. - nz' for nj,—«l‘ <n = njf i< 4

We can.use equation (B15) computed backward in fime to choose AKk(n) in

a- gradient search, where

= - v n. . €£mWwEn =1, ..., 0 B16
AKk(n) L'&azk(n‘ n‘@_) + /_\.bE.I{, ny g £ms n, 4=1, p ( )
where.
2y ’ 3l
A, = I ki % (B17)

¢

4y - . % s ga

ki . a: a. 2. .
\/,@ni‘, p & % ki

The subscript 1 represents. the:ith"c'ompbﬂe'nt‘ and ¢ is: the maximum

percentage change in the e,
k

BTO



(R18)
P Pxg

The gradient search is set up as in Appendix A, If it is desired to minimize
a nonquadratic cost T , let

33"
QR(n) = Qk(n) = SSI{TY (B19)

+ o s
This b
15 p

may also be a variable, where
k

H N 3H K, () N 3H,
_EK_= 3 = 7 —_—

instead of being fixed since this parameter is not constrained
Note

de(n)

0 = 1 for all n from (B7) and (B10)
Py

Bl1



where

S, (n) = [H,(0)+D, (n) K, mM(m)] X, n) [H, ) +D (1) K @Mn)]"

as discussed in Appendix A,

THE DETERMINISTIC INPUT

From the perfect sensing gains K (n), the deterministic input t(n) is

defined., The deterministic coniroller uis then

w(n) = K )Fn) +1 : (B20)

Since this is the optimum deterministic controller, it may as well be used
with the simplified controller gains Ki(n), and a new deterministic

input f (n), ‘where

£ (n) = W(n) - Kn)M@)x(n) ‘ (B21)

where W(n) is the controller defined in equation (B20) and X(n) is the mean

state vector found by

x(n+1) = A{njx(n) + Bl.,ﬁ_(n) + B 2(u)"7w(n) (B22)
which is the same as the:optimum-since u(n) is optimum,.

In order to further simplify.the deterministic input to the form

f(n) = c,” .(n-nz)+d£ for n,  Snsn,; =1, ...,Q (B23)

B12



an initial set of c, and d 4 can be found with a straight parameter optimiza-

tion where

N
d = 7 ) - ¢ (n-N) (N-nn_ .)
% n=n \: %% q-1
. q—]_
{B24)
n’gl ng 9
¢, I [dﬂ - #{n)] (n—ng) ¥ (n—n‘@) : 2=1,....0
[8) n-nﬂ;’“l O n=n£__1
and
d,@o TS (o, n, )t d;a+1O s 451,...,9-1 (B25)

and then use a gradient method to improve on these, It is obvious from
Figure B6, that the same breakpoints as for the K(n) cannot be used, For
the gradient method we would use the same procedure as for the K(n)
except that the gradient is now for the kth iteration

n=o zk
where
0 nj’ <n
Bfk(n) _{n-n n <nsn
e, L 4-1 2
£
k n'e_l—nz nsnE_l

B13
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and

_B_a_aﬁ = 15\’] fa“IfIn) . :fé‘(n) = lz.\"‘T __(___:fﬂlzl) since
Clk n=o 9k qk n=o k

afk(n)

5d = 1 for all n.
Gk

where H is the Hamiltonian associated with the mean responses and

3E B T

_ 1
3 fk(n) At

M (m+1) + 2D, T (@) {[H, () + D, () Km)M(n)] X, ()

+ D (n) £, (n) + Dy(n) Fw(n)f

where,
M (N = 2H, (N1 QN [H,(N) E (0 + D, ¥ ()]
Ak(n) = [An) + B, K(n)M(n)]T ?\k(n:!-l) + ZAt[Hl(n) + Dl(n) K(n)M(n)]T Q(n)
{[H, () + D, (1) K)M(n) ] (@) + D, @) f,(n) + Dy(n) 7 (m)}
and

Ek(n-f'l) = [A)+ B, K(n)M(n)] §k(n) + By fk(n) + Bz(n) Fw(n)
with x (0) =X .

The procedure is then to compute xk(n) forward, and xk(n) and the gradient

backwards, compute c P and d by
e+l Qe+

BI15



£ ~=C "'" ~A§:
e A Mk

and

4 = . + ,Ad
Y1 % e

or compute *fk &1’(nj) by

where

;Af»k.('n) =Ac, - {(n-—.%) -+ Ad " k Dy <nsn 4’ A7l 0, d

7
s

Ay

The new .f (n}) .are-used o repeatithe ;phrp,cedgne_for the next step.

kT

~“B16



APPENDIX C
TIME-VARYING GAINS FROM GRADIENT ITERATIONS

This appendix consists of graphs of the gains found in Section II, Iteration
Method for Time-Varying Systems. They are presented as the following

figures:
Cli. gb Gain, TIterations from Perfect-Measurement Gain
Cz2, z Gain, Iterations from Perfect-Measurement Gain
C3. 8 Gain, Iterations from Perfect-Measurement Gain
C4. ¢ Gain, Iterations from Perfect-Measurement Gain
Ch, z Gain, Iterations from Perfect-Measurement Gain
C6. ¢ Gain, Tterations from DC Approximation
CT1. z Gain, Tterations from DC Approximation
Ca. B Gain, Tterations from DC Approximation
C9, ¢ Gain, Iterations from DC Approximation
C10. z Gain, Iterations from DC Approximation
C11, ¢ Gain, Iterations from Averaged Approximation
ciz, z Gain, Iterations from Averaged Approximation
C13. g Gain, Iterations from Averaged Approxiration
Cl4. ¢ Gain, Iterations from Averaged Approximation
C15, 7z Gain, Herations from Averaged Approximation
Cis. # Gain, Initial and First Iterations

cit, z Gain, Initial and First Iterations

Cc1s, 8 Gain, Initial and First Iterations

C1o9. ¢ Gain, Initial and First Iterations

C20, 7z Gain, Initial and First Tterations

C1
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DC APPROXIMATE GAIN (DCAR)
FIRST ITERATION FROM DCAG
SECOND ITERATION FROM DCAG
THIRD ITERATION FROM DCAG

FOURTH ITERATION FROM DCAG
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APPENDIX D
COMPUTATION OF SENSITIVITY COEFFICIENTS

In this appendix three computational methods of determining sensitivity co-
efficients of the performance index for parameter variations of the system

are presented,

Let the system equation be

X = F(p) x +G(p) u; x(0) = x, (D1)

where F is a nxn matrix,

G is a nxr matrix,

p is an m-vector of parameters

Let the performance index be

3 = [ FQx+ v Rudt (D2)
o

where Q is a nxn positive definite matrix, and R is a rxr positive definite

matrix. I.et the control law be

u = Kx (D3)

where K is a rxn feedback gain matrix, Then the optimal feedback gain

matrix K% which minimizes J, becomes

K# = -R7IGT (p)P (D4)

b1



where P satisfies the following Riccati matrix algebraic equation

“PF - F'P+PGR™IGTP-Q =0 (D5)

and the optimal performance index J¥ may be written as
5 = T -
pe={x Tpx | =mr P x| (D6)

. . T
with Xo denoting X X, .

On the other hand let us assume that K is simply a feedback gain matrix which
stabilizes the system (D1). Then the corresponding sysiem equation becomes

x=(F+GK)x ; x(0) = % (D7)

and the performance index is

@ T
7= x, TRt QixTri)eF R at (D8)
Q

[ex] T .
XOT[I o (FHGK) 1 (Q+KTRK)e(F+GK)tdt]xO
o

- XOTAXO = Tr jA Xof (DY)
where
© T
A L ORI TG TR (FHOK) gy | (D10)
(8]
and it satisfies
T T
(F+GK) A + A(F4GK) + (Q+K RK) = 0 (D11)

D2



Note that P is a function of only the parameter p, whereas A is a function
of both the parameter p and K,

Now we can define the performance index error due to using a simple stabili-
zation matrix K rather than the optimal feedback gain K* for any value of the
parameter p as follows,

1

T T
Xo Axo - Xo PXO

Tr {(A - P) X_|
= Tr{{A(K, p) - P(p)} X_] (D12)
-1.T

Note that if K = K* = -R "G~ P, then A equals P and e(K, p) is zero.

The function e(K, p) can be expanded into a Taylor's series in terms of K and

p at any nominal values. of KS and P, as:
e(K,p) = e(K,.p,) +VKe[K—K0] +%e[p—p0]
1 T Lleo o ]
+ 5 [K-K_] Ver[p—po]+ 5 Lpp )" Ve lK-K ]
+Lxx TV, elk-K J+4[p-p T ¥ elp-p,]
2 o KK o~ 2 o) PP o]
+ higher order terms (D13)

where K and [K-~K O] are considered as vectors and all partial derivatives are

evaluated at (K _, P, VKe is the (rn) row vector

Ve =|98 28 _ R L - U L (-
K [3K11 L 3" 3K, EL 3R

D3



and V,,_ is the {(rn)x(m) matrix

- 2 .2 2
\ 3 e .. d e .. 3 €
. . L - 2.
az-e 3.2 e . D e.

BKZIBPI BKZIBPZ o BK21apm . .

2 2 . 2
3 e . 3 e o €
BKrnap‘l E’K'J:'napz . aKrnapm -

Similarly other second-order partial matrices are defined,

Since e = J(K, p)} - J*(p)

= Tr[ A, ») ~PE} X0,

o8& _ad _ad%.
ak 3k a:k_

=Tr %(—g—% - '%RE)XO &

=Tr {(%RA—) XO} where. k denotes an element of K (D14y.

Thus, in order to obiain a Taylor's series.expension of e, we must obtain
the partials of A and P with respect to K and p. These partials are called

.sensitivity coefficients- of performance. indices.

SincerA and P are implicit functions of K and p, there is no direct method
to determine'these. partials., The partials can be determined by solving

D4



Lyapunov type mairix equations generated by applying the implicit function
theorem to (D5) and D11), Sample sensitivity coefficient matrix equations

follow:

T/ 3A SA . T T
(F+GK) (aTij)+(aKij)(F+GK) = -{lAG+K R](Eij)}
= - ][AG+KTR](E13)} (D15)

th

where Eij denotes an (r)x(n) matrix with the ij element equal to one and

all other elements zero.

' T
(F*GK)T(%) +(~§AI;—1)(F+GK) - (RE., % K) A

ap;
3F , 3G
-~ AfS- 40 ¥ D16
oP; op ) ( )
T3P \, (o3P SF aG‘)T
¥ * + PHGK*) = {2 + 21 K% P
(F+GK) (Bpi) (api)( ) Bpi api’
L o2F K*) (D17)
api 'aPi

Similarly, second-order sensitivity coefficient equations are of the form

D5



(F+GK)T(-—~————' i + (——O = )(F+GK)-
. 3K 0K, /T VoK oK/

[ i

QA
A oKy u
\ 5 i

y T
- G(ElJ) L( G(E, )
o N
G(Ekm} (————)G(Ekm)
.
-| @y R(E ﬂ l:E ) R(Ekm)J (D18)

2

2
T{_ 5 A 3 A
(F+GK) ( ) + (.\ )(F+GK)

T 3A ._ 23A
= - (GE,,)” 22 - 22 GE,.
(GE 3Py Oy 4

(3F .36 \T 3A 24 [F 3G

i3,
(G g\ A-aAGw, (O19)
opy 1) apy ik

Three methods. for computing these partials are new discussed.

ADJOINT METHOD:
Let the adjoint matrix equationm be

(FGK)W + W(F+GK) T = X_ (D20)

Deé.



Since (F+GK) is a stable system matrix and X, is a positive semidefinite
matrix, W is a negative semidefinite matrix,

Consider

dA

_oe .
T 3K;; O} (D21)

Substituting (D20) into {(D21) produces

2K .

22 - o7p (-ﬁA—) [{F4GK)W + W(F+GK) L] (D22)
ij *4j

Using the trace properties, Tr(AB) = Tr(BA), Tr(AT) = Tr(A), we obiain

ae
L =7
oK

H

{[(F+GK)W + W(F+GK) ](a )}

- dA T(dA -
= Typ {[(F+GK)W aKij)+W(F+G§<{). (aKij }

- Tr {[(aa;? ) (B+GR)W + (F4GK)’ i“%) 3}

n
=]
H

{[(FmK)T(aaéj) +(aa§‘ij) (F+GK) JW }

The expression inside the bracket of (D23) is the left side of (D15); hence

5K

¢ - -Tr[{[(AG+KTR)(Eij) ]T + [ (AG-!—KTR)(Eij)]} W] (D24)
1]

As we can see, the right side of (D24) is known and hence a?{e“ can be deter-
1]

mined for alli, j;i=1, ..., r;j=1, ..., n.

D7



Define another adjoint matrix V by the equation

(F+GKH)V + V(F+GK*) T = X_ (D25)
Then
“ap P 3F ]
Tr |— X | =Tr | — (F4GE¥)V + — V(F+GK*)
Py 3P, Capy
'.“—5]?". ) TBP.—,
= Tr | — (F+GK*)V + (F+GK*)"™ — V|
o3P 3Py
- AP . T Py ] ‘
=Tr — (F+GK*) + (F+GK*) ™ — | V (B26)
AP Py
Using (D17} in. equation (D26) yields:
aF 3G T aF )
= -Tr —— ke K¥ P+ P [— + — K V
APy, BRy \ Py
Therefore
a<
3Py
3G

aG v T o
v K*) vl mzn)
ap'l( . ’;

D8



The right-hand sides of (D24) and (D27) involve only known terms and V and
W. Thus the first-order partials can be computed using (D20), (D24), (D25)
and (D27). From equations (D24), (D26) and (D27) the following properties
can be established:

Property 1: e(X, po) =0
K=K*‘(p0)
Proof; K=K* implies A = P since the equations (D5) and (D11) are

identical for K=K*. Therefore

e(K, p,) = Tr{(A-P)X_ ]| = 0
K=K*(p0) A=P
Property 2: Vk© =0
K=K*(p)
Proof: From (D24),
ae ;
= -Tr [ ([('AG+KTR)E..] T
13
5K, .
Gy
K:-_ £

+ (AG-I-KTR)Eij) w]
K=K%*=-R 'GP

T

=0

=P

D9



Property 3= Vpe = 0
K-K¥(p)
Proof: From (D27)
e . | /aF oG T
Rl =-Tr |[— +—K*| (AW-PV)
apk apk aPy
K= *(p) - A=P
B .?5F 3G
-Tr |(WA-VP)[— + — K*
5Pk Hpk J
A=P

Which is zero if W=V, Comparison of (D20) and (D25) shows that K=K*

implies W=V,

Equations for the second-order partial derivative matrices may bé obtained

using the adjoint mairices and equations of the form of (D18) and (D19)., For

example
aze azA ,
— = Tr : X,
o83 km 338y
A T aA (
= -Tr G(Eij) + GE; )| | W
aKkm aKkm s
[ SA T AA
-TR GE, )| + |[—aE | Iw
K. km K, . km
\"i] ij

T T T
-Tr [[(Eij) R(E, )]+ [(Eij) R(Ekm)]]W£

|

D28)

D10



2

3 2e
As we can see from (D28) we need( ) to determine — ., The
aky5 33535 m
aze
only way we can obtain [———/|is to solve the matrix equation (D15). We
aK..
1]

must solve rn matrix equations to have VIZC e.

K This is a severe drawback

for the adjoint method of determining the partials.,

From (D28) we can obtain a direct proof of the following property of the

second paf'tial.

Property 4: WV

KK®
K =K%

is a positive semidefinite matrix.,

It is

positive definite if X is positive definite.

Proof:

nA
Thus—
ak
K=
2
3 €

K38 m

K=K

Direct calculation reveals that Tr[Eij

W is symmetric so that r,. w
ik mj

notation we can then write:

V,

KK® = -2 RXW

T =
R Eka] =r

=r.w
ik

If K=K*, then the right-hand side of equation (D15) is zero.

= 0 where k denotes any element of K. Hence, from (D28)

. T
= -2 Tr((E) R By W]

.. W__.. The mairix
ik ‘mj
jm? Using the Kronecker product

Di1



R is assumed to be positive definite and W is negative semidefinite (definite
if X is definite). The eigenvalues of the matrix RXW are A; ,uJ where 3;
are the eigenvalues of R and . are the eigenvalues of W (Ref. D1). Since
R and W are symmeiric, A > 0 and “3 < 0 for each i and j. Thus A, pJ = 0 so
the eigenvalueg of ~RX W are greater than or equal to zero, Sirict in-
equalities follow from the assumption that Xo is positive definite.

Next we will consider the second method of computing the partials which is

a vector equation method.

VECTOR EQUATION METHOD

The major drawback of the first method is that solutions of many Liyapunov-
type equations for different inputs (right sides) are required. Since the left
side of the equation does not change, we may not need to solve the Liyapunov
equation for each different right side. There have been numerous investi-
gations which converted the Lyapunov equation into linear algebraic equations
(Ref. D2, D3)., We will use Bingulac's technique (Ref. D3),

Let the Lyapunov-type equation be

PA +ALP = -Q

Then Bingulac showed how to convert this equation into the following linear

algebraic equation:

P12z



where

pl=(p P P., P

v 117 F1ar o Poy P,.P P P )

22,000, 2n_q 33, e ay ]:1—1 I]_—]_, nn

T

v "y Qe Gy Ggg e Qo A3 o noy e Uy

R

B {bij }is a mxn matrix depending on the elements of A and

n({n+1)
m =————
2

Let us apply this technique to (D15).

T( 3A ( 3A
(F+GK) —) + —) {F+GK) = -C

3Ky 345

where C = {[AG+KTR](Eij)}T + {[AG+KTR](Eij)}. The corresponding

linear algebraic equation is

A
o () - <, (o20)
aK, .
i,
n{nt+1) n{n+1)
where D is a X matrix and its elements deperd on the elements
2 .2

of (F+GK), and

E) R L y v ey 3 3 o ey

(3A )T <3A11 312 hin dhgp gy g3 By

aKij y aKij aKIJ aKlj aKlJ 8 ij aKlj o ij
CT = (C C C C C C C . C vee, C
) 112 <1277 Tin® T22° 723 °° 7’ Tan’ T3% **? ¥3n’ **n-1n-1’
C .
nn

D13




The equations corresponding to second partials of A may be expressed in
the form of (D29) with the same D matrix. The right hand side (the Cv's)
would be linear functions of the first partials. Thus the second partials could

be expressed in the form

L, plT, + Ty
where the T are well defined matrices and vectors of appropriate dimensions.
The elements of T; depend on F, G, K, Q, R and the indices of the variables
with respect to Wthh derivatives are being taken. Thus, the second partials”
can be easily computed once D1 is determined. However, this method has
a different drawback in comparison with the first method, namely unreasonable
computer memory requirements. For example, let the order of the system be
20, Then the number of elements of D is [20(20+1)/2] = 44, 100. This

storage requirement is too severe.

The first method for computing the partials requires solutions of many
Lyapunov equations, whereas the second method requires extensive compuier
memory. A third method, described below, is a compromised version of

the two previous methods.
POWER SERIES METHOD
Jameson (Ref. D4) formulated a method of solving a Lyapunov-type equation,.
using a power series of A up to nth power, without increasing the dimensions

of the equations.

Let a Lyapunov-type equation be

AX+XAT =c - (D30)

D14



Then X is expressed as

n-1 n-i-1 . . . .
X =21 [z £ (-17ay aln-i-1-9)q (AT)(J)] (D31)
i=0 j=0
where
a =1
o
n/2
7 = 2(-1)B [y a AZ{I ;A% =1
- n-2i
i=0
1 n-1
a = ——l:z a Tr(An 1)}
n —
n { i=0
3A
Applying (D31) to , we obtain
aKkm

n-1 n-i-1 o . .
( A )-—-Z-I[Z g (-0Ma meax) 0D {-1(Ekm)T [AGHK R]T

BKkm i=0 j=0
T )
- [AG+K R ] (Ekm)} (F+GK) (D32)
where
n n/2 21 0
Z = 2(-1y | ¢ =a 24 (F+GK) ; (FHGK)™ =1
i=o o4 _

1 -1 .
a =- —|7 8 Tr{(F+GK)n'1}
n n |i=0

D15



Note that Z~ 1 and a are fixed quantities for a given (F+GK). Then
3¢ 3 :
Tr XO
aK]aim 5Kkm

n-1 n-i-1 c s . .
rrpz7} [z e (0 @er) (n'l"l‘J){-(Ekm)T[AG+KTR]T
%0 =0

i

(7
—[AG+KTR](Ekm}} (F+GK) L ]Xo] (D33)

Using the trace properties, we can simplify (D33) as

&)

ae n-1 n-i-1 e _ P
= —TR|: (z r (-1 (Frer)™) T X Z Lpsgryin-i-1 3)) T

3K, i=0 §=0

n-1 n-i-1 .. (3) _ L
+(Z bR (-1)1+Jai ((F+GK)T) Xo Z, 1(F+GK)(n i-1 J))

i=0 j=0
(AGHKTR) (B, ) ] = ~Tr[(Y1+Y) (AGHK R) (B, )] (D34)

where

n-1 n-i-1 <y (3) _ i1
v = (z r (-1)a, (F+GK) 1) X Z Lipagryini-l 3))

i=0 §=0

Note that (Y- +Y) (AG+K 'R) is & fixed quantity for a given (F+GK).

aze
The second partial, ————is expressed as

sy 3yem

D16



3598 km

2
d €
Hence
3K 3K

km

2
A
e ( _L_“X)
aKij aKkm

-Tr | (Y T+v) (

n-1 n-i-1
= Tr 1:(YT+Y)Z"1 L’g T

(3)
K'R)T (rrax) T ] G(Ers)]

n-1 n-i-1

+ Tr [(YT+Y)Z"1 I:z y

(3)
kTR)T (FiGK) T ] G(Ekm):|

i=0  j=0

i=0 j=0

i=0 j=0

3A
-Tr (YT+Y) (

it (n-i-1-j) T
(-1) ai(F+GK)' (Ekm) (AG+

)
(F+GK) G(Ers)

n-1 n-i-1

+ Tr [(YTJrY}Z-l [2 T

D17

A
aK. . N (Ekm)
ij .

“Tr | (Y1+Y) By R (Ekm):|

(-1)i““ja,].L(F+GK)(n"i“H’(Er

(D35)

NG (n-i-1-j) T
(-1)Va, (F+GK) (AG+K'R) (E,_ )



n-1 n-i-1 .. . )
+1r | (YTeyyzd |:g - (-1)1+3ai (F+er) P11 (A
| i=0 j=0

o (j)}
T T
K'R) (E, )(F+GK) G(E, )
-Tr [(YT+Y) (ErS)T R(Ekm)] (D36)

As we can see from (D386), it is required to compute (F+GK)j to determine
the second partials. If we store all powers of (F+GK), it requires 20 x 400 =
8, 000 words memory for a 20th~order system. On the other hand, we can
compute (F+GK)j from (F+GK) stored in the memory which requires only

400 words memory but this requires a large amount of computing time.
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APPENDIX E
PARAMETER VARIATIONS EXAMPLE

¢
Numerical results obtained in the study of sensitivity to parameter variations
for the C'-5A example are presented in this appendix. These results demon-
strate the applicability of design of optimal insensitive controllers to a real-
istic problem with significant range of admissible parameters, The limita-

tion in the magnitude of the parameter range is apparent for this problem.

The model of the vehicle used in this study is described, followed by a de-
scription of the problem treated. Numerical results indicating the nature of
dependence of performance on parameter variations is then summarized,
Finally an analysis of eigenvalue dependence on parameter variations is pre-
sented which indicates limits on the admissible range of parameter variations

for which the proposed approach to insensitivity is valid.

~

MODEL DESCRIPTION

The longitudinal axis of the C-54, a large trénsport aircraft, was chosen for
the constant coefficient example described in Section 1I, This vehicle was
chosen because of the inability in a previous study to derive a simplified con-
troller from an optimal coniroller, Also the data was readily available. The
single flight condition treated is the low-altitude cruise condition with 50 per-
cent fuel and 50 percent cargo indicated in Reference 10, The original data
available consisted of three rigid-body modes, fifteen symmetric structural
flexure modes described in Table E1, lift-growth effects expressed in ferms
of Wagner and Kussner functions for the wing, horizontal tail, vertical tail
and fuselage and gust penetration effects represerited by time delays. A
design model was derived for the optimization study reported in Reference 10,

This model included two rigid-body modes (vertical velocity and pitch rate),

1



structural bending modes 1, 3, 4, 8, 7T and 11, Kussner lift-growth modes,

4 second-order wind filter and three first-order actuators. The expected
value of a quadratic form in stresses and stress rates at two wing stations and
three fuselage stations,including tfle hc'Jrizontal tail root, and normal accel-
erations at four fuselage stations was chosen as the performance index,

Aileron, inboard elevator and spoiler control surfaces were used for control,

Table E1. C-5A Mode Descriptions

Mode Fra%;t)ancy Description
1 0.750 First wing vertical bending
2 1,780 First wing chordwise bending
3 , 2.328 Second wing vertical bending
4 2.617 First fuselage vertical bending
5 2,814 Outboard pylon lateral bending
6 3.061 Inboard pylon lateral bending
7 " 3.196 Third wing vertical bending
8 4.119 First wing torsion
9 5.013 Qutboard pylon torsion
10 5.155 Inboard pylon torsion
11 5.387 Second fuselage vertical bending
12 6.024 Horizontal stabilizer vertical bending
13 6. 7.02 Second wing chordwise bending
14 6. 894 Fourth wing vertical bending
15 7.891 Second wing torsion
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The design model was used as the constant coefficient’ example in Section II.
The siate variables chosen were vertical velocity, pitch rate, structural

mode displacements and rates, control surface displacements, and wind
model and Kussner function variables. Specifically, the model used in
Section I1 consisted of the state vector

. . . . . . T
[W: q, 1'11, T]ls T'lss n3: T14, TI4, ‘1']6; ﬂa: T]r?, T]r?.- T]l 1’ 'ﬂl 1:63_: ﬁe: 55’ pl’ pz: p3: p4: p5s Qg]
the control vector
- - - T
tf’a’ Ge’ 55]
the response vector, r, a 14-vector
r = Hx 4+ Dn

and the performance index J = E { j’mr(t)TQr(t)dt].
o

This model was modified to study the effect of parameter variations. To
reduce the size of the problem the three highest-frecuency flexure modes
(6,7 and 11) were eliminated, Also, the Kussner and wind states (pl, pz, Pg
Py ps, ag) were eliminated, and the deterministic problem was treated., This

left an eleven-dimensional state vector

T T . . . T
X —[Xl.vxz:'--:xllj - [W, C],'ﬂ1, nl, n3:n3.vn4s n4; 68.’ 6@’ 6S]

As initial conditions for this problem we chose xi(O) =Y X where Xes
denotes the corresponding diagonal element of the 23rd~order state covari-
ance matrix corresponding to the optimal control with complete measurement

used as an initial point for the simplification of Section II. ¥or the parameter

variations analysis the performance index was chosen to be

3 = Im{[x(t)]T 62 x(t) + [u(t)]T R uf(t)} dt (E1)
o]
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where (32 (H)T éH R = DT QD and ﬁ is obtained from the original H matrix

by deleting each column corresponding to a deleted state. The cross product
term 2 X (H)T QDu was omitted for convenience even though (H) QD was
nonzero. The parameter variations considered were percentage changes in
the undamped natural frequencies associated with the three flexure modes.

Nominal values for these frequencies were assumed to be:

@ ‘= frequency of first flexure mode = 5.6 rad/sec
wg = frequency of third flexure mode = 14,5 rad/sec
w, = frequency of fourth flexure mode = 17, 0 rad/sec

The vector equation of motion was expressed in the form

x = Fx +Cu (E2)

where the following explicit dependence on the w, was assumed:

2 _ 2
~(w3) , f = -(w4)

f 87

43

It
L

2
-l fes

fa0 = 2019y fog = ~2C3¥3 fag = 20494

PROBLEM DESCRIPTION

According to theorems 1 and 2 of Section III the optimal insensitive controller
for a small convex region of admissible sysiem parameters is the optimal
controller corresponding to a set of parameter values belonging to the bound-
ary of the convex region which yields the maximum optimal cost. The theory
gives no quantitative estimate of the possible range of parameters. Similarly,
the derivations in Appendix D yield qualitative rather than quantitative results
concerning ‘computational time requirements and approximation accuracy.
Thus, the major purpose for treating this example was to ol?tain quantitative
data from a realistic problem,
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Two specific questions to be answered with this example were:

] Is it computationally feasible to compute a second order
approximation to the optimal performance surface?

e For how large a range of admissible parameters is such an
approximation adequate to define an optimal insensitive
controller?

Using the adjoint method described in Appendix D, the answer to the first
question was yes. In answer to the second question the approximation was

adequate for & 15%, but inadequate for + 20% variations from nominal values.

The optimal cost surface is

. T
J* = Tr {Px x "] (E3)

where P is the matrix function of the parameters which satisfies

T -1.T

PF+F P-PGR G )P +Q=0 (E4)
The second-order approximation to J* is

-~ " 1 £\ “
J* = TR {P(wl,wz,wS)Xo} + VwJ-'-(Aw) 19 (Aw) waJ (Aw)  (EB)

where T Awl
A = Aws = the vector of flexure mode frequency variations,
A 4

Wy, Wg, W, are nominal values of the flexure mode freguencies,

7 J% = od* = ad* S oJ* evaluated at w_, w,, W
W ? 1 73

awl awS aw4

4’ and vwa (S

is the matrix of second partials of J evaluated at the point Wys Woys Wy.
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The partials of J* were computed from the following equations (which are

derived in Appendix D):

3% 3F

'—w" = 2 Tr VP B__
i Wy

azJ* 3F ., aP , oF ;o IaP -1.T 3P

= T]{' .____V_+.__V___. _‘Tr — GR G’ a_wv

awiaoj oy awj awj awi ow; i
where P satisfies (E-4), V is defined by

F-crcTrwv + vE-GRIGTP) +X_= ©
and oP satisfies

awi
w-cr leTP)T 2P +2F mgr laTp +pE 4+ P2ELT -0
awi awi awi awi

for i =1, 3, 4. Numerical resulis from these equations are presented below,

NUMERICAL RESULTS

The first and second partials were evaluated to yield the following. approxi-

mation: Aw 1

Fx = 21204 + [206, -589, -3667 | Luw, |
Aro4
-1.45 -2,63 -10.24 || Aw,

-2.63 . 10.66 15.46 || Aw,| (ES)
~10.24 15.46 24,88 Av

+ [Awl, Mg, AW

g3 Ayl

4
For Aw in the cube Qdefined by

0= {Aw: |Awi[ <0.150v;, i=1,83,4}

6



the firsi-order term of (E-§) dominates the second-order term. The point

in  which minimizes J+* is readily determined to be
/_\.wl = 0. 15w1, Aw3 = -0, 1504, Awy = —0.15m4

The corresponding J* = 24029 compares quife well with the corresponding

value of J* = 24813. Values of J* and J* at various points in  are listed

in Table E2. The accuracy of the estimated value of J* is reasonably good as

is evident from Table E2, Also J* identifies extremal points of J* correctly.

Table E2. Optimal Cost and Estimated Cost by Taylor Series
Expansion at Nominal I

Parameter Variations Estimated Cost by

from Nominal Values (%) Optimal | Taylor Series Expan-

Mo Do, Aw, Cost, J*| sion of Nominal F, J*
15 -15 ~15 24813 24029
15 -15 15 21670 21733
15 15 15 19608 19491
15 15 -15 21089 21108
-15 -15 15 21447 21454
-15 -15 ~15 24091 23575
0 0 0 21264 . 21264
-10 -10 -10 22932 22706
10 10 i0 20088 19950
-15 15 -15 20598 20680
-15 15 15 19405 19252
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To see whether the optimal controller at the maximum cost J I};l ax at 15% Wy
~15% s and -15% Wy from the nominal F was indeed insensitive five points in
the convex region of the parameter variation were selected, and their optimal
controllers were obtained. The cost J of the controllers for various points
in the region were determined. As shown in Table E3, the optimal controller
at the maximizing point of J% yields lower costs for the points than J «‘=m ax’

whereas the optimal controller at J*min produces three points whose costs

xceed J* .
e Jhax

An attempt was made to perform the same analysis for an enlarged Q varia-
tion of 20% of nominal values. The resulting optimal cost values and costs
for the optimal controller at the maximizing points displayed in Table E4
show that this cube is too large. The optimal controller for the maximizing
point yields unstable systems for two vertices of Q. Also, the cost at one
vertex exceeds the maximum value of J%, This indicates that one would have
to "back-off" from the maximizing point to derive a satisfactory controller.
One computationally feasible way of analyzing this behavior is to analyze the
locus of roots as the point defining the optimal controller varies. Such an

analysis was performed for the 15% cube.

Comparing Table E3 and Figure E1, we can conclude that along the diagonal
Tline from P5 = {(+15% Wy, ~15% g, -15% w4) to P1 = (-15% W, 5 +15% Wgs +159%,
w4) the optimal cost J* increases, The root loci of the optimal controller

of P5 for the points along the diagonal line are given in Figure E2, As seen
in Figures E2 and E3, if W5 Was and W, change further than -15% Wy +15% W,
+15% w 4 in the same direction, then the damping ratio decreases and finally
one actuator pole goes to the right half plane, and hence the system becomes
unstable, At this point a tradeoff between stability and performance would
have to be made for the 20% cube, Fortunately, the stability margin need not

be large since parameter variations have already been included.
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Table E3, Costs of Controllers at Various Points
- Cost due to the Optimal Controller of
L Awl 15% wl 10% wl 59, Wy 0% Wy -15% Wy
Parameter Variations .
from Nominal Values ot /_\4,)3 -15% Wy -10%, Wy -59%, Wy 0% Wy 15% 0y
; ptimal

Awl &ws Aw4 Cost, J=* Aw4 ~15% Wy ~10%, Wy - 59, W4 0%, Wy 15% Wy
+15% -15% -15% 24813 24813 24888 [25128] [25590]
+15% -15% +15% 21670 22455 22213 22'128 22146 22728
+15% +15% +15% 19608 22036 20852 ' 20269 19948 19641
+15% +15% -15%, 21089 22392 22200 22127 22111 22577
+10% +10% +10% 20088 21957 20067 20500 20259 20143
+10% -10% -10% 23301 23375 23301 23366 23570 {25673]
+ 5% - 5% - 5% 22162 22478 22226 22162 22219 232867
0% ’ 0%, 0% 21264 22072 21528 21319 21265 21743
~10% -10% -10% 22932 23118 22994 23066 23284 [25649]
-15% -15% +15% 21447 22454 21921 217867 21778 22399
-159% - 154, -15% 24091 24364 24398 24655 Im
-15% +15%, -15% 20598 23049 22309 22303 22438 23268
-15% +15% +15% 19405 24730 21613 20374 19822 19405

Note: "]::__—_]" means that the value exceeds T oy = 24813,




Table E4, Costs of the Optimal Controller of (Awy = 20% wy,
-20% w3, Awg = -20% wg) at Various Points

Parameter Variations
from Nominal Values

Cost due to the Optimal
Controller of

gg‘gtmi (Buy = 20% w;, Awg = -20% wg.

Ay Awg awy Dy = -20% ©,)
+20% -20% -20% 26853 26853
-20% -209% -20% 25566 [27110]
+20% -20% +20% 21756 23039
+20% +20% +20% 19200 25222
+20% +20% -20% 21018 23593
-20% -20% +20% 21505 23941

0% 0% 0% 21204 23501
+10% +10% +10% 20088 24346
+ 5% - 5% - 5% 22172 23146
-20% +20% -20% 20300 unstable
-20% +20% +20% 18968 unstable

Lon tr s -
Note: :[ mea}ns t‘hat the value exceeds J max 24813,
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(-15‘7@3_' +15%w3' +15%w4)= P1
(+15%0; +15%, +15%0,)

+
1
iy / Iy |
Y |
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Y B A
i |
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Figure El. A Convex Range of Parameter Variations
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Figure E2. Root Loci of the Optimal Controller of
(Awy = 15% w1, Awg = -15% w3, Awg =
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APPENDIX F
DERIVATION OF THE CHARACTERISTIC POLYNOMIAL

This appendix derives the characteristic polynomial for an arbitrary multi-
input multi-output feedback control system. We consider planis of the
following form:

X

i}

Fx + Gu (¥, G) controllable, rank (G)
z = Mx (F, M) observable, rank (M)

i
L

(F1)

B

where x is an n-dimensional state vector, 1 an r-dimensional control
vector and z an m-dimensional vector of measured outputs. Without
loss of generality, we will assume that the matrix G has a single nonzero
entry in each column. This will always be the case in aircraft or launch
booster models where each input drives a separate actuator. Moreover,
even in cases where G contains additional nonzero entries, we can always

construct a similarity transformation T such that

x =Ty
71l r v+ 7! Gu (F2)
HTv

1)

where the new matrix T LG has the form

T lg - [—9—-] (F'3)

This is possible whenever rank (G) = r. It can be readily verified by letting

T = [T1 1G], where T1 .is any collection of (n-r) independent columns,

independent of G.
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Let the r nonzero eniries of G be denoted by Gij where j=1, 2, .0e, T,
and where i takes on r values depending upon i, i.e., 1=i()) =i1),
i(2), ..., i{r). Then the closed-loop system matrix for a linear fixed-form

controlier u = Kz will take the following form

F(i) i #i(j) for any j

® + cr' =

(F4)

F(i) + ¥ Ginj.EM(ﬁ) i = i(j)

s@ j=1:—2:"!—‘,r

where the symbol A(l) denotes the ith row of matrix A,

In words, the closed loop system matrix is the original matrix F with linear
combinations of rows of M added to its i(j)th Tows,

Now consider the characteristic equation of the closed loop system. This is

given by

det (sl - F - GKM) = o (F5)

In order to deal with this equation, we will introduce the following notation

peT (atl), 2, ..., 2%} = det(a)
where-
(- i #103)
N s (F6)
M) i = i(j) for
-a 31,2, «o., T



Further, we will let ¢(j) = (gl - F)(i(j)) ji=1, 2, .

Verbally, this notation denctes the determinant of the matrix (sI - F)
with rows i(1), i(2), ..., i{r) replaced by -a(l), —a(z), -a(r),
respectively. Then it follows that

det (sl - F - GKM) = DET [¢1) + ¢ Gie1)1 K1, MY
)

(£7)
K, ud

¢7 +5 G ;

7 i(rir

We will now show that equatior (F7) corresponds to at most an rth order
polynomial in the gains K,

4
r =1, thenr =2, and finally for general r.

This will be done iteratively, first for

For r = 1, note that we are dealing with the determinant of a matrix whose
i(l)th row is a sum of several terms. Using a well known property of
determinants (see, for example, Hadley, Linear Algebra, page 93), this

gives

)

DET [¢'} M9 = DET [V + £K,, DET[G, VAL

+ 35 G,
g 1 P (1)1

(1)1 B1g

(F'8)

For higher values of r, we simply apply equation (F8) recursively. For
example, r = 2 yields

'3



pET (oM + : Gie1)1 Ky M( 053 ” Gy2)2 Kz Mu)]

(1) (2) w (%) (2)
DET[¢"" ¢ +§Gi(2)2K.zzM 1+ 8Ky, DET[Gq) M™. ¢

’
(k)
+ 1)2, G;(2)2 Koy M7 (F9)
- DET[4'Y, %] "z Ky, DET (1), G, 5, MY
(2) (2) (£) (k)
+ )E Kl,@ DET[ G, (1)1 M, ¢ ] +1§; Kok DET EGi(l)l M, Gi(2)2 M ]%

Similarly, for general values of r, we get

(r) (ﬁ,)

DET [\ )+§G(1)1 Kis v, ..., +EG1(r)r 1

= DET[qs s eeas ¢(r)]+ Dy ”2 KJE DETF¢( ), . os 1(3)3 M('z), ¢(r)]

j=1 ¢=1
m m
+ 2 0% %K Ko DET ) .G, . ML,
iyds =l a,=1 Jrf1 Joa G403,

Sum over all nonrepeated pairs of controls

e M(tz) (r)]

i(35)s

. (F10)

K (1) M), )y

2 . »

j‘]_‘"jp ‘e'l:]' ‘6 =1 jlzl *g’ DET [¢ 2 ":G
S o’

Sum over all nonrepeated groups of p controls (r!/p! (r-p)! terms)

a8 ds o0 G
G, iphp

a4 {4r)
+3T .. Ky K . DETTG;(1); M Vs e Gy M o

4



Interpretations

The various terms of the polynomial (F10) have the following interpretations:

1) DET (q,.(l), oy ¢(r)} is the nth order characteristic
polynomial, D(s), of the open loop system,.

2) pETY, ..., Gii)s MG, L 8T with Gy M4 i the R
position is the (n—l)th order (or lower) numerator polynomial
of the (jth input) -to-(zth output) transfer function. This can be
verified by computing the transfer function:

Do

Y8 or = ar(B) -1y |
u—j(s) = -M"* (sI - F) z E:Ti(j)j :

Lo
==l 5 -m_ . [i(j) kth cofactor of sI - F] G
“D(s) 4 I Mk - . ()]
_ 1 (1) (2) (r).
by PET e, oo MY, i, g ]Gi(j)j

(2) ¢(r)

1 1
- pET [, ..., Gy M5 +e s ]

D(s)

‘ i
The numerator polynomials will be denoted by N £(s).
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3) For higher-order terms of equation (F10) the DET [ ] expressions
are so-called "coupling numerators' [18], which appear whenever

several feedback loops exist simultaneously. We will denote these

Jjdge - -jp'
polynomials by N (s), 1i.e.,
;91:62- - -gp
jl‘ . o]
P
Aev o .;zp 1771 PP
(F'11)
Simplifications

Equation (F10) can be significantly simplified by using the following two properties.

jljz. L] ljp
1) N (s}=0
glzzl L) . g’p

whenever two or more elements. of the sequence ,el, 22, cees ,ﬂp
are identical. This is because the determinant of a matrix with

two proportional rows or columns is zero.

jljz' . .jp Jljz' * 'jp
2) N (5)= (N (s)
,61152- s » Ep 1'82. - . 'GIS

whenever the sequence ,e,i, zé, cae, ,Gp/ is an arbitrary permutation
of the sequence ’E’l’ )&z, cees zp. The correct sign is obtained by
noting whether the permutation is even (plus sign) or odd (minus
sign): This follows from the fact that an interchange of any two

rows or columns of a mairix only changes the sign of ifs determinant.
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Using property (1), we can readily conclude that the maximum order in K of
the polynomial (F10) is not equal to the number of controls (r) but eguals
min (r, m). To show this,- just compute a higiler order term, i.e., let

r =2p >m. Then definition (F11) for

Jll * .j

N P requires that we substitute some rows of M into (sI - F)

Ay - - Lp
more than once, so the polynomial must be zero. We can thus eliminate

a whole host of terms in equation (F10).

Still more terms can be eliminated by using property (2). - Note, in 'particular,
th .
that the p~ order summations

m m

E LI T E
51"1 Lp_l

range over all possible combinations of p numbers out of m, including groups
with repetitions\of numbers and groups which are permutations of other groups.
The former will yield vanishing polynomials while the latter's polynomials

will differ only in sign from other polynomials. We can thus restrict the
summation to nonrepeated groups only, and we can collect all groups which

are permutations of each other to form a single multiplier of the polynomial
corresponding to, say, the naturally ordered permutation. This gives the

following reduced characteristic equation:

min(r, m) 31‘ . jp
P(s)=D(s)+ T T ¥y N . (s) () KJ. P 'K;i . 1> (F12)
= i . a8 j - " - 4 8 1 1
p=1 ;[1‘ Jp,zl zp 2y ,Gp PP
sum over all permutations
of byees ,@p with appropriate
‘sign
sum over all naturally ordered nonrepeated
groups of p measurements out of m

sum over all naturally ordered
nonrepeated groups of p controls
outof r
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APPENDIX G
POLE-PLACEMENT EXAMPLES

This appendix describes two pole-placement problems which were used to
debug, exercise, and demonstrate the pole-placement algorithm developed
in Section IV, The first problem involves rigid-body controller designs for
a sixth-order lateral-axis model of the F4 aircraft (Ref. 6), with rigid-body
pole placement taken as the design objective. The second problem is con-
cerned with flexure control of a 17th-order pitch-axis model of the C~5A
transport, In this case, the design objective is taken to be placement of
rigid body and certain critical flexure poles. These examples serve two
functions -- (1) they show that the algorithm works, and (2) they illustrate

how it can be utilized in conirol design and sensor choice problems.

THE F4 LATERAL-AXIS PROBLEM

Disregarding servos, flexure, and other high-frequency phenomena, the
lateral axes of the F4 can be modeled by the following equations:

;: = Fx+ Gu
where
- roll rate (stability axes)

- vaw rate (stability axes)

E

r

B |- angle of sideslip
¢ |- angle of bank

4]

-~ rudder actuator deflection

- aijleron/spoiler actuator deflection

G1



u - rudder actuator input

upgl- aileron/spoiler actuator input

and where the matrices F and G take the following values for a flight condi-
tion at Mach = 0.5, altitude = 5000 feet:

" _1.7680 0.4125 -14.520 0,0000 2. 031 8. 9520 | b o
-0.0007 -0.3831 6.038 0.0000 -3.398  -0.3075 0 o

.| 0.0016 -0.9975 -0.155 0.0586 0.028  -0.0038 G0 O
10000 0.0000 0.000 0.0000 0.000  0.0000 0 0
0.0000 0.0000 0.000 0.0000 -20,000  0.0000 1 0
0.0000 0.0000 0.000 0.0000 0,000 -10.0000 0 1

To represent unity gain actuators, the nonzero values in G (i.e., Ggy and
) are equal to 20 and 10, respectively. For our own convenience,
however we will consider these values to be unity and scale down all final

gains by a factor of 20 or 10, as required,

The dynamics of the above sysiem are characterized by three principal

modes:

(1) The spiral mode, corresponding to a root close to the origin
(-0.0156)

(2) The roll subsidence mode, corresponding fo a root at -1. 85

(3) The dutch-roll mode, corresponding fo a complex conjugate
pair of roots at -0,219 +] 2.48

In addition, there are two actuator modes, corresponding to roots at -20

and -10, respectively.
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The "quality” of the lateral-axis dynamics is judged to a large degree by the
root locations associated with the three principal modes., In particular, the
spiral root shouild correspond closely to a pure integration; as it does in the
free aircraft above. ‘I‘his' allows pilots to hold nonzero bank angles and turn
rates without stick commands,

The roll subsidence root should be fairly large, since it defines the rate of
response of roll rate due to aileron inputs. Values of -3 or -4, for example,
are much preferred over the rather stuggish -1, 85 value. Finally, the dutch-
roll roots should be damped at least by a ratio of 0. 25 and should exhibit
natural frequencies in the vicinity of 2. 5 rad/sec. This assures tolerable
sideslip and/or roll-rate oscillations in response to lateral control inputs or
disturbances. Note that the free aiz:frame has good dutch-roll frequency
characteristics but falls short of the damping requirement.

Given these requirements on pole locations, the lateral axis problem makes
an attractive pole placement example. In the paragraphs below, we consider
the possibility of satisfying the requirements with several different sensor
complements. In each case, the algorithm of Section IV was used to assess
pole placement capability and to compute controller gains,

Case 1. Four Measurements

The following measurements are usually available on the aircraft:

i pse_ - sensed roll rate (body axis roll rate)
L - sensed yaw rate (body axis yaw rate)
y = M= ay - lateral acceleration at the accelerometer station
@ - bank angle
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The measurement matrix corresponding to these gignals is given below.

0,00 0. 000
0.00 0,000
-17.85 -3.695
0. 00 0. 000

0.9985  -0.0541 0. 00
0. 0541 0. 9985 0, 00
0.6084 -2.3640 -27.33
0.0000 0.0000 0.00

-0 O O

The various terms of the closed-loop characteristic polynomial [equation (44),
main text] for this set of measurements were computed with the algorithm

and are summarized in Table G1. This table consists of 15 nonzero coeffi-
cient vectors -- one zero-order term, D, eight first-order terms of the

form NJ{, and six second-order terms of the form N:l 112 . Each vector is
identified in Table G1 according to its order and the control sequence

{31, e ] }and measurement sequence {tg,---02 1 used to generate it.
From these sequences, the gain multiplier, ¢1(K) corresponding to each

vector can be reconstructied as follows:

General multiplier = 25 () K.

K. K.
I L

'f'1322“ Jpp

summed over all permutations of
{25 -oos 25}

Specific multiplier (p=1} = K;
J1*

Specific rultiplier ( 2) = (K, , K, - K. K. . )
P P ipty dgta ite by

In 2 neighborhood of the initial gain K | = 0, the number of arbitrary poles
Prrax is given by the rank of a matrix formed from all the first order terms
of Table G1. This rank turns out to be six, so that all of the system poles
can be placed arbitrarily. Consequently, the following closed-loop pole

assignments were made:
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Table G1,

Polynomial Terms for F4, Four Measurements

: Control Sequence {jljz. . .jK}
Order Measurement Sequence {Ll{,z. .. IK}
K Coefficient Vector {nlnz. .. Dg N
o
*3650E 02  «2329E 04  +1760F o4 J6B4SE 33 ,p762E o3 «3231EF o2
1 1
1
=*1175E 01 «3706€ 03  +4082E 02 «e2174E 52 =.2212E 01  «000OE 00
1 |
2
*2149E 02 +2915E 02  +6665E 02 43923 a2 .3283E 0 10000E 00
1|1 B
3-oasa1E 02  +3957E ob  +2454E o  +5325€ 33 ,2112F 03 .1785E 02
1 1
& : -
*3717€ €3 +4436F 02 «+1959E 92 ».2031F 01 .0000E 00  .0000E 00
1 2
! *3143E 01 ++9982E 03 «+1453F 03 »+1833E 33 =.8954E 01 «000OE Q0
1 2
a--58.33E 02 «=+5607FE 02  +458pE. 01 ~e3179E 31 ~.1770E 00 +0700E 00
i 2 ‘
3 «2545E 03 +8493E 03 B4THE 03 +7529E a2  .7615E 02 +3695€ 0f
1 2
“--99975 03 ~=+1449E 03 =el838F 03 =8952F A1  «0000E 00 +0000E 00
2 12
' ?63335—10 «3351E of *€979E 02  +0000E 00  +0000FE 00  «0000E 00
2 12
1-?5219E Gl +1834F 04 «2433E p2  +1517E 93 00008 00 .0%00E 0O
2 12
: ‘:1812E 00  «1611E 01  «0000E 00  +0000E 00  +0000E 0O  +0%00E 00
2 12
2 ?10755 03 +9931F 02  «+4328F 01 +1525E 32 «G000E 0o +0000E 00
2 |12 )
E-?33q6€ 01 =+2975E 02  +000OE 00  «00Q0E 00  «0000E 00  +00GOE 0O
2 12
3-?18365 O04- =e2403F 02 «+1523E 03  +0000E 30  .0000E 00  «0000E 00O
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Spiral (s +0)
Roll subsidence (s + 4. 0)
Dutch roll (s> +1.25 s + 6. 25)

Actuator (52 + 30 s+ 450)

and the algorithms executed seven Newton-Raphson iterations before the con-

vergence test was satisfied. The final gains were

~-41,03 110.60 0, 1649 -28,64
K =
17, 24 -46, 65 0. 0000 0. 00

The convergence test required that the spiral root be located to an accuracy
of £ 0,001, the roll subsidence root fo an accuracy of + 0,01, dutch-roll coef-
icients to + 0. 01 and the actuator coefficients to + 1.0, An independent check

of the closed-loop roots showed that all conditions were satisfied,

Tt is important to recognize that each iteration of the algorithm requires a
square [in this case (6x6)] .J acobian matrix. Such a matrix was obtained from
our original (6x8) Jacobian by choosing the first n independent columns and
deleting the rest. This arbitrarily removes two degrees of freedom and

accounts for the fact that the final values of K23 and K24 are zero,

Case 2, Three Measuremenis

ct
Having shown that four measurements are sufficient for arbitrary pole place-

ment, we next proceeded {o delete bank angle from the measurement comple-
ment, The program was again used to compute coefficient vectors, to assess

rank, and to carry out Newton-Raphson iterations.
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A Dbit of reflection will verify that the set of coefficients vector for three
measurements must consist of all vectors in Table G1 which do not involve
the fourth measurement. This gives ten vectors -- one zero-order term,
six first-order terms and three second-order ones, The rank of the first-
order vectors is again six, so all system poles can again be assigned arbi-
trarily. For the same assignments used above, the algorithm proceeded to
execute six iterations before terminating with the following gains:

[ 2,39 -10.44  -1.19
K = ‘

-16.67 83. 57 6. 56

The desired root accuracies were again verified by an independent check of

the closed-loop roots.

Case 3, Two Measurements

Knowing that three measurements is enougl:1, one is tempted to try two --
so we deleted the lateral acceleration signal as well as bank angle. This
leaves only two rate gyros as the sensor complement.

The set of coefficient vectors is again a subset of Table G1, found by re-
moving all vectors involving measurements 3 or 4. This leaves six vectors
-- one zero-order, four first-order, and one second-order. The rank of the
first-order terms is now four, so that only partial pole placement is possible,
The initial gain Ko = 0 was again selected and the spiral, roll subsidence, anc
dutch-roll roots were defined as above. This exhausts the four roots which
may be arbitrarily specified.‘ We éimply have to accept whatever the algor-
ithm gives us for the remaining roots, Final gains and unspecified roots

were found in three iterations:

-0.43 3.57
-1.55 1.88

K
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o(s) = sz+27.065+149.1

actuator roots at -19, 35, ~7.71

We see that even though the actuator poles could not be placed arbitrarily,

they take on quite reasonable values.

It appears, therefore, that only two measurements can suffice to achieve

modal control of the lateral axes.

THE C-5A FLEXURE PROBLEM

Appendix E contains descriptions of a 23rd-order flexure model for the C-54A
pitch axis. This model was utilized here for high-order pole placement
studies. However, since gust dynamics and Kussner 1lift growth states do not
enter the feedback loop, these six degrees of freedom were deleted. 'This
leaves a 17th-order model, comprised of two rigid body states, two states
each for the 1st, 3xd, 4th, -6th, 7th .and 11th flexure modes, and one state
each for symmetric aileron, elevator, and spoiler actuators.

Open-loop poles for the 17th-order model are given in Table G2 together
with a set of "desirable locations' abstracted from quadratic optimal flexure
control designs and from the LAMS -controller (Ref. 10). These locations do
not correspond to any one controller but were chosen to reflect general
trends exhibited by several designs -- namely, that flexure controllers move
rigid-body poles, ‘increase damping of modes 1, 4, and 7, and leave the
remaining flexure poles pretty well alone, This same trend was taken to be
the design objective for the pole-placement computations reported here,
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Table G2. Open-Loop and Desirable C-5A Roots

Mode Open-Loop Roots Desirable Roots
Rigid Body -1,03+j 1.31 -1,07+£j 1.80
1st Flexure -0.801 +j 5.57 | -4.00%3j 6,00
3rd Flexure -0.462 +j 14.5 Unchanged
4th Flexure ~1.05+j 17.0 -4.50+3 18,0
6th Flexure -0.430+3j 19,3 Unchanged
7th Flexure -0.960 + j 20. 3 -11.0x+j 22.0

11th Flexure -4.29+j 35.7 Unchanged

A sensor complement composed of two accelerometers, one rate gyro, and
one surface position transducer was used in the computations. The acceler-
ometers were located on the wing, one near midspan and the other near the
wingtip, while the rate gyro was located near the tail. These locations corre-
spond to the LAMS controller (Ref. 10), The position transducer measured

aileron actuator deflection, The measured sitnals are therefore summarized

by

i zl—1 - midspan acceleration
Zg - wing tip acceleration
7 Zg - pitch rate at tail station*
Zy - aileron actuator deflection

Each signal is a linear combination of rigid body states, bending mode states,
and actuator states.

*Due to an error in programming this signal consisted of rigid-body
pitch rate plus mode slopes times mode positions rather than mode
rates times mode slopes.
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in a neighborhood of the open-loop system, these measurements yield

i - 1 1.2 3~
hpmax = rar_lk[Nl...N4N1...N4]- 8
K0=0

This is indicated as an approximate value because the numerical determina-
tion of the rank of high order matrices is subject-to uncertainty. . In the pres-
ent case, the matrix of numerator coefficients spanned 8-dimensional space
with certainty but possibly also 9-dimensional space. Components in the 9th
coordinate direction, however, were near the least-bit level of-the machine
and thus of little practical utility. At any rate, eight closed-loop poles could

be assigned arbitrarily in a neighborhood of the open-loop system.

Given this information, three ‘separate runs were -made with the initial condi-
tion Ko = 0. The f‘irsf run placed four poles (rigid body plus 1st flexure), the
second sixpoles (rigid body plus lst and 4th flexure), and the third placed

" eight poles (rigid body plus 1st, 4th and 7th flexure). Results are summarized
in Table G3. In each case, dpen-loop actuators at ~100 (elevator),. -10
(spoiler), and -8 (aileron) were assumed, and a square Jacobian matrix was
obtained by allowing only selected feedback gains to vary. The resulting gain
structure as well as the number of Newton-Raphson iterations are also shown
in Table G3:

As the table indicates, each run achieved its objective of moving a specified
group of poles into the desirable locations given in Table G2. However, some
of the remaining unassigned poles were destabilized in the process. In Run i
the darmping of 3rd, 4th and 7th flexure modes was. reduced; in Run 2 the 7th
mode was actually driven unstable; and in Run 3 an actuator root was driven
unstable, Fortunately, none.of these runs fully exhaust the pole placement
capacity offered by the sensors. Away from the origin, the previously weak
9th order of rank strengthened sufficiently to yield

= rank| 3 N, %93 = 9,

i aKT

Pmax
Ko"Krun 3
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Table G3,

Pole Placement Runs for C-5A

Mod Run 1 Run 2 Run 3 Run 4
oae 4 Poles Placed 6 Poles Plac'ed 8 Poles Placed 9 Poles Placed
Rigid Body -1,07 £j 1,80 -1,07+3 1,80 -1.071j 1,80 -1,06 7 1.79

1st Flexure
3rd Flexure
4th Flexure

6th Flexure

- 7th Flexure

11th Flexure

-3.95+7j 6. 00

~0.253+j 8.68
~0.182+j 16.5
-0.258+j 19.3
-1.59+j 18.6

-4,27 %3 35.7

-4,00+j 6,03

-1.07j 14,9
-4.43+j 183

-0.448 + j 19. 4
+0.004 +j 17. 8

-4.54+3j 36.8

-4,09:j 6,07

-4,00%j 5.94

-0.955+j 16,4

-4.59+j 18,0

-0,357+j 19.3

z10.9+3 . 22.2

-4,08+j 85,0

-0.506 +j 15, 8
-4,58 +j 18.3

-0.265 7§ 19. 3

-10.9+£j 22,0

4,15 3§ 35.1

Actuators
~-89.8 -107.0 -103.0 ~108, 0
-18.3 -2,2T+j 4.29 + 8,15 - 0,972
-~ 6,34 - 10,1 - 2,52
Number of a a
Iterations 11 5 14 20
2, 2. 2
Gain 1 2
Structure Aileron | x | x x | x x| x X x| x X
Elevator x | x x| x{x X x| x
Spoiler X X {x X1 x X x X

&Total number of iterations in 20-step incremental stepping procedure



which means that one additional pole could be placed arbitrarily. This extra
degree of freedom was used in Run 4 to move the unstable actuator pote back
into the left-hand plane, The resulting final pole constellation (Table G3)
shows that our design objectives can be satisfied by utilizing the full capacity
of the sensor complement. All desired locations are achieved and the re-
maining poles are approximately unchanged. Gain magnitudes associated

with Run 4 compare favorably with the LLAMS controller.

An interesting byproduct of these pole-placement computations is what might
be called a generalized root locus plot. Namely, if an incremental stepping
procedure is used to move from the open-loop poles to the desired closed-

loop poles, i.e.

= - A A
Ms, a) Q[Kdesired(s) open(s)] + open(s)
loop loop

=0, Ao, 200, ..., 1

then pole positions as a function of « form a familiar single-parameter root
locus which shows how unspecified roots migrate as the assigned roots move
toward their specified positions, Such plois are shown in Figures G1 and G2
for Runs 1 and 2 of Table G3. Both figures indicate 'that acceptable levels of
damping can be obtained for the unspecified roots if a value of o somewhat

1ess than unity is accepted for the assigned roots.
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MODE 11 =
{35
& w
MODE 7 x | .o
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X OPEN LOOP (x = 0)
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MODE 3
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+ Oy 1K —
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Figure G1, Root Locus: Runl
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APPENDIX H
PROCEDURES FOR COMPUTING COEFFICIENT VECTORS

This appendix describes two methods for computing coefficients of polynomials
appearing in the general characteristic equation of Appendix F., These parti-
cular computations comprise about one half of the entire computational load
associated with the pole placement algorithm of Section IV,

METHOD 1

This procedure is presently used in the algorithm. It mechanizes the computa-
tional method of Reference 19 for solving the general eigenproblem det (sB+A),
where A and B are arbitrary matrices, possibly singular. (The DET [-..1]
expressions of Appendix F are in this form.) The method consists of reducing
the original problem to a lower-order nonsingular one by repeated Gauss
reductions of matrices B and A. The nonsingular problem can then be solved
by standard methods. The reduction goes like this:

® Via Gaussian elimination, reduce B to

where B‘11 is upper triangular.

All elementary operations performed on B are also performed on A, which

gives
I
1 1
PR s Sl T
- v ALY
21| 22
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® Via Gaussian elimination, reduce A' to

where A;z is. upper triangular. All elementary operations performed on

At are: also performed on B', giving

JERTEN o
) Byl Pra|
B" = |-

1o 1o

We now have:

det (sBrA) =+ det &

!

- sl ASTE i f AT LR
=+ det A}y, det(sBy; + A

where the. sign:is: determined by row and column operations. performed’

in.the two Gaussian elimination steps.

If Bllll is nonsingular;, the problem: has been reduced to @ standard one.
Otherwise, we-let B.= B,'l'.‘l,, A =‘_A."1'_‘1,, and return: to Step (1)
The remaining nonsingular eigenproblem is presently being solved by computing
eigenvalues: via. QR: transfonmations: and: reconstructing coefficients from these.
Total SDS 9300-computing’ times. are: 3: to 5. seconds, per 17th-order coefficient

vector..
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METHOD 2

This method utilizes the fact that higher-order generalized numerators can
be expressed in terms of first-order ones. This offers significant com-
putational savings when repeated computations must be performed for

different measurement matrices, M(Q, y).

Expressions for Higher Order Numerators

An alternate way to derive the characteristic equation of Appendix F is via
the transfer function matrix -H(s) relating measurements z and control

inputs u; i, e.,

[-H(s)Ju(s)

z(s)

|

u(s) Kz(s) + ucks)
[1+ H(s)K]z(s) = [-I—I(s)]uc(s)
P(s) = D(s) det (1 + H(s)K)

Expanding this polynomial and comparing the result term for term with
equation (F12) of Appendix F provides expressions for the higher order
numerators, This process is carried out for a 3-output, r-input system
below, from which the general relationships can be deduced,
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1+ 3H K, THK, ZHKig |
B(s) = D(s) det £H, K 1+ SH, K.,  THyKs
] TH3; %Ki TH3 Ko SR FE)
=D(s) [1+ 11 + Typ + T3g +
+ 51Ty - Tip%1 + D11%33 T F13%31 F Yaa¥33 T F23%32
+ %y1%99%s3 ~ T11523%2 ~ T12%21%83 * T12¥a3%31
+ T13821%32 ~ T13%02%31]
. .
where % = K

H -
Jhaal i=1 .61 im

Note that the terms which are first-order in ¥ may be written as

T

r
y HK.=3x 3 H, . K
=ﬁﬂ€alm'jlﬁ SUNRILS|

B w

Ty T Egp v B33 7

Similarly the second-order terms may be expressed as:

vy H,. H. K. K. ,-K. K. )+
3132 131. 2js. 311 322 312 gl
H,. H K. K, o -K, K. )+
1j; "33y jq1 i3 313 igl
H,. H,. K, K., -K. . o)
2j; TBiy 02 dg8  Tig3 1p?
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This expression can be simplified by cobserving thai: terms are skew-
symmetric in jl’ 32’ i.e., interchanging the roles of jl and j2 in a term
merely changes the sign of the term and in particular if jl =, then the
term is Zero. Thus the second-order terms are given by:

I X (H,. H,. ~H,. H,. XK., K. , - K. K. )+
T e M R P R R R P S P
(H,., Hy, - H.. H,. XK. K. 5 - K, K. )+
15,783, " Hagy ey B 15,3 7 Ky 95,
H,. H,. -H,. H,. XK. K. , - K. ;K.
( 2i; iy T2y 331)( 1127353 T8 322)
or, in general form
r ¥ [z @®H, . H, .1z ®K, , K., ]
s L3y A5l 1141 14
P 191 272 P 171 9272
Jylg A1y B P
L all permutations of Aido
11 permutations of j1j2

all ordered nonrepeated groups of 2 measurements out of 3

all ordered nonrepeated groups of 2 controls out of r

Similar expansion and reduction of the third-order terms yields
b} b} [» ®)H, . H .H . ][z BK. , K. , K. ,]
iigis 414ty Po A1 d2da AglgT TR Uik Jpds Jads

From these expressions, it follows that the general closed~loop poclynomial

for r inputs and m ouiputs is given by
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min(r, m)
P(s) = D(s) <1+ X T [z ®H, ;.H ]
]S.:l- 31.‘: -Jk ,ﬂl- LI l’k Pj 1 1 k k

P I 4T ety

[z K. , ..K. ]l
p J

and comparing with equation (F'12) of Appendix F vields

Jyee By ,
N (s) = D(s) [T MH JH, L ]
Ay b P, 4y '6232 Wk
1 AP P
= [ @ NJE Ng..N J
Dis )k 1 PJ

This expression deflnes all higher -order numerators in ierms of first-order
ones. Note, however, that the defmltlon involves a sum of (nk) order
polynomials divided by the n(k-—l) order polynomial Dk 1_._ We know from
Appendix F that each higher-order numerator is, in fact, an nth-order

k-1 must be a perfect factor of

polynomial (or lower). This means that D
the sum of (nk)JCh order polynomlals —a fact which could lead to numerical
problems in computing Nil' -+ Ik from the first- order terms.. ‘The following

procedure is suggested:

e  Multiply the definition by D* ™! and express the result in

coefficient~vector -form:

- jl"'jk
DN = N
£1'..%

HE



where D is an {nk x n)-dimensional matrix constructed from the

coefficients of D(s)k"1 and N is the coefficient vector of

31 jk
LT (#HN ...N
A

Pi ’51

j1‘ RN
via pseudo inversion, i.e.,
zl. LN ] 5}{

o Solve for ¥

ige ey
N, = (oI5 15Ty
1. . & %

This should minimize numerical problems associated with the polynomial
division. Note that the quantity BD) 5T needs to be computed only once.
It can be stored and reused for computation of all kth—order numerators

for any given set of first-order numerators.

Compuiation of First-Order Numerators

All that remains now is to compute the first-order numerators. This can
be done via Leverrier's algorithm (also called Fadeeva's method®) which
computes the determinant and all of the cofactors of (sI—F)"l. That is,

tTZadeh, L.A., and C.A, Desoer, Linear System Theory, McGraw-Hill,
New York, 1963,
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o B B FBpaS e TH
(sI-F) ~ = = 5
D(s) n n n-
s +d s +d ;s t...+tdg
Bn =1 dn = =Trace (BnF)
]311_1 = BnF + an dn_1 = -1/2Trace (Bg-lF)
: . 1
B, =B P+ I d_ = - Trace(B, F)
T Bra® T S k
: 1
ZB1 = BZF + dzI d.1 = -;—Trace(BlF)

0 = BlF +d1I

Once all the cofactors are known, individual first-order numerators are
obtained from the relaiion

ey -
Ny(s) = E Mg Bri(p® Cip;

This expression shows that repeated runs with different M matrices are very

T

economical, since the B(s) matrix {(and also the (ﬁTﬁ)-lD“ expressions above)

need not be recomputed for 2 new M matrix.
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