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ABSTRACT
 

Th zinc-oxygen system was found to be capable of producing up to 
350 discharge-charge cycles above the 1. 0 volt end-point at 25' C on the 
Z-hour discharge/2 7hour charge regime at a'discharge current density of
 
11-12 mA/cm2 . Unit cell performance was further determined at various 
current densities over the temperature range of 0' to 40 C. Test cycle 
regimes included the 2-hour discharge/2-hour charge; 2-hour discharge/
 
4-hour charge; Z-hour discharge/ZZ-hour charge; and the Z4-hour discharge/
 
24-hour charge. Cycle life-was limited by configurational changes in the
 
anode and in some instances by the oxygen electrode. 

Two types of zinc anodes were tested: (a) the zinc powder-carboxy 
methyl cellulose (CMC) gel suspended anode, and (b) the zinc oxide formulated 
anode. Both types were mechanically supported by silver expanded grids. 
Of the two types of zinc anodes, the zinc powder-CMC gel electrodes gave the 
longest cycle life with the limiting factor being degradation of the CMC gel and 
subsequent shape change. 

Two types of oxygen cathodes were also tested. The first was purchased
 
fron the American Cyanamid Company under the designation of "LAB-40. " 
This was used as the oxygen electrode on discharge and as the charging elec­
trode (at which oxygen was evolved) during charge. Cycle life was limited by 
an electrolyte wetting problem and the solution of noble metal catalyst into 
the KOH with subsequent deposition upon the zinc electrode and consequent 
formation of a hydrogen gassing couple. 

The second type of cathode was the Union Carbide "fixed-zone" electrode 
in which the catalytically active carbon layer is bonded upon a thin but strong 
porous metal backing. A nickel charging electrode was used for charging the 
zinc in order to protect the catalytic carbon layer from oxidation. Resulting 
unit cells, therefore, were of a 3-electrode design. 

Data developed from the experimental unit cell work were used as a 
basis for a paper design study of a 28-volt, 3 KWH rechargeable zinc-oxygen­
battery. The two-electrode structure, employing American Cyanamid "LAB-40" 
oxygen cathodes, was selected for this study. An important consideration which 
led to the selection of the American Cyanamid cathode was the simplicity and 
weight reduction of the 2-electrode charge-discharge circuit as opposed to that 
required for cycling a 3-electrode cell system. The energy density of the design 
battery including tankage and auxiliary equipment is directly related to discharge 
time and the size of the battery. For a Z-hour discharge, this value is 2 watt­
hours per pound. If the discharge time is increased to 8 hours, the energy density 
rises to 35 watt-hours per pound. 

Fifteen rechargeable zinc-oxygen unit cells and two 6-volt- 10 ampere­
hour batteries complete with tankage and auxiliary equipment were delivered 
to NASA. 



INTRODUCTION 
The zinc-oxygen system was selected for development as a recharge­

able battery system for spacecraft applications because of its energy density 

advantage over the other common rechargeable systems. With a theoretical 

energy density of 541 watt-hours per pound, the energy density of the zinc­

oxygen system exceeds the best of other rechargeable systems, such as, silver­

zinc, nickel-cadmium and lead acid by a factor of over four. A comparison of 

the calculated maximum theoretical watt-hours per pound figures for these 

systems is presented in Table I. 

TABLE I. 

MAXIMUM THEORETICAL ENERGY DENSITY OF RECHARGEABLE 
BATTERY SYSTEMS 

(from thermodynamic data or the working voltage) 

Open 
Circuit Watt-Hours 

System Characteristic Cell Reaction Voltage per pound 

Lead-Acid Pb + PbO2 + 2HzSO 4 zt ZPbSO4 + 2 HzO Z. 1 

Nickel-Cadmium Cd + 2NiOOH+ 2 H 2O2 Cd(OH)z + 2Ni(OH)2 1.35 100 

Silver-Zinc Zn + Ag2 O - ZnO + 2Ag 1. 5 118 

Zinc-Oxygen 2 Zn + Oz 22 ZnO 1.65 541 

The technical approach was based upon Union Carbide's background exper­

ience in fuel cell technology, in the "Air Cell" and in various primary alkaline 

and rechargeable battery systems. 

Two types of oxygen electrodes were employed in the present work; 

(a) the thin "fixed zone" plastic-bonded carbon electrodes developed by 

Union Carbide(1-7) and, (b) fuel cell electrodes developed by the American 

Cyanamid Company designated as "LAB-40". Two general types of zinc elec­

trodes were used: (i) a zinc powder suspension in a carboxy methyl cellulose 

gel developed by Union Carbide for use in alkaline batteries and, (ii) zinc oxide 

powder formulations of the general type used in silver oxide-zinc batteries. 

76 
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All materials used in making the cells and batteries are readily available 

from domestic suppliers. 

The feasibility of recharging the zinc-oxygen system was demonstrated 

by the program of work conducted. Work was done on parallel programs 

exploring a two electrode and a three electrode experimental cell construction. 

The two electrode cell used the American Cyanamid Company "'LAB-40" oxygen 

electrodes while the three electrode cell employed Union Carbide "fixed zone" 

plastic-bonded carbon oxygen electrodes in conjunction with an expanded nickel 
"charging electrode". The greater stability and longer -cycle life was realized 

from cells in which Union Carbide "fixed zone" oxygen electrodes were used. 

Cell performance was determined at various current densities and 

over a temperature range of 0' to 400 C. Most of the unit cell. testing was 

carried out on cycling schedules of 2-hour discharge - 2-hour charge. Z-hour 

discharge - 4-hour charge, 2-hour discharge - 22-hour charge and 24-hour 

discharge - :24-hour charge. 

The zinc electrodes used for most of the work were zinc gel type anodes 

from which over 350 cycles were delivered when cycled at current density of 

11-12 mA/cm and 176 cycles when cycled at a current density of 20-25 mA/cmn. 
Anodes molded from formulations of zinc oxide with admixtures also showed 

promise of extended cycle life. 

Data developed from the experimental unit cell work was used as the 

basis for a paper design study whose object was to determine the optimum 

weight and volume of a 28 volt - 3 KWH rechargeable zinc-oxygen battery. 

Unit cell performance'data was likewise used as the basis for constructing the 

batteries delivered to NASA. Two 6 volt - 10 ampere-hour battery systems 

were built and delivered to NASA in accordance with the terms of Contract 

No. -NAS-5-10Z47. One was made with American Cyanamid oxygen electrodes 

while the other employed Union Carbide "fixed zone" oxygen electrodes. 
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DISCUSSION 

A. Description of Electrodes 

1. Oxygen Electrodes 

Two differerit types of oxygen electrodes were used in construct­

ing the experimental cell made under this contract. These are: 

(a) Union Carbide Thin "Fixed- Zone" Oxygen Electrodes 

The Union Carbide "fixed-zone" electrode consists of an 

electrochemically active carbon layer applied to a porous metal backing. 

These electrodes were originally developed for use in fuel cell batteries. A 

cross section of such an oxygen electrode is shown in Figure 1. Since cata­

lyzed carbon is used in this electrode in place of platinum metal catalysts, 

the electrode is relatively inexpensive. Bonding this catalyzed carbon layer 

to a thin but strong porous nickel structure, however, results in a mechanically 

strong electrode. Oxygen easily reaches the reaction site by flowing through 

the porous nickel backing of the electrode. Permeation of electrolyte through 

the porous electrode is prevented by a wetproofing treatment. This wetproofing 

treatment results in a hydrophobic electrode that has a stable interface which 

does not rely upon a sensitive pressure balance with its attendant sensor 

problem to maintain the gas-liquid interface at an appropriate level in the 

structure.
 

Since the thin "fixed-zone" oxygen electrode is susceptible to damage 

from oxygen evolution which would occur during charging, it is necessary to 

use a separate nickel charging electrode. If oxygen were evolved directly upon 

the catalyzed carbon surface of the oxygen electrode during charge, anodic oxida­

tion of this surface would occur. Surface oxides would be formed that can be 
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viewed as intermediates in the combustion of carbon (8). Efforts to characterize 

the surface oxides of carbon have been reviewed by Garten and Weiss (9). 

Functional groups, such ad hydroxyl, carbonyl, and carboxyl have been inferred, 

by Lygin et al (10) from chemical and IR studies. The polarographic identifica­

tion of quinone and hydroquinonehas been reported by Hallum and Drushel (11). 

FIGURE 1. 

OF 	THIN "FIXED-ZONE" ELECTRODESCROSS-SECTION 

CATALYZED CARBON LAYER
_]___ 	 BACKING 

CARBON
22 	MLS 

UNION CARBIDE POROUS NICKEL 	 C-3367 

"(b) 	 American Cyanamid "LAB-40" Oxygen Electrodes 

The second type. of oxygen electrode used was obtained from 

American Cyanamid. This electrode is composed of a catalyzed, electro-" 

chemically active layer bonded with TEFLON, molded onto a gold-plated 

nickel scree i collector and backed with a porous hydrophobic material. The 

particular electrode used was labeled "LAB-40". The "LAB-40" electrodes 

investigated had a backing designated as Bfl4. No further information beyond 

the notation that the backing was porous and hydrophobic was -available from 

the 	supplier. Since the "LAB-40" oxygen electrodes had been reported pre­

viously to be resistant to oxygen, they were used directly (as oxygen evolving 

anodes) for cell charging. 



-5­

(c) Oxygen Electrode Reaction 

The most probable reaction for oxygen consumption during
 

discharge at either of the two types of oxygen electrodes described above
 

would be in accordance with the reaction,.
 

Oa + H2 0 + 2e = HO + OH 

Since the peroxide is unstable in the presence of the catalyzed active layers 

of both types of oxygen electrodes, it would be expected to decompose. The 

rate of peroxide decomposition increases with higher temperatures thereby 

resulting in reduced polarization and higher electrode potential. Reduction in 

current density also results in reduced polarization and higher electrode potential. 

Z. Zinc Electrodes 

(a) Zinc Gel-Type Anodes 

The zinc gel-type anodes used in the present work are those 

developed within Union Carbide for use in primary and rechargeable alkaline 

battery systems. Work done prior to initiation of this contract effort had 

indicated that such an electrode was capable of performing at current drains 

at least as high as those represented by the 'two-hour discharge rate of the 

present spacecraft application. 

The zinc anode mass is contained within an expanded amalgamated 

silver metal basket. A silver backing sheet is spot welded within this basket 

to provide a rigid positive contact to the silver baskat. The silver basket 

serves primarily as the anode mass restraining member in this electrode while 

the silver backing sheet serves as a strong current collector. The zinc gel-type 

anodes are assembled in the charged condition. 

(b) Anodes Fabricated from Zinc-Oxide Formulations 

The second type of zinc anode used in building the experi­

mental cells of the present contact effort was one in which the electrode was
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fabricated in the discharged condition using "formulations" of zinc oxide. 

This was done in an attempt to minimize anode slump due to shape change 

(discussed in detail in another section of this report). The zinc oxide anode 

"formulationsP are listed in Table 1. Anode plates were constructed from 

each by doctor-blading a weight of "formulation" equivalent to 7. 5 ampere 

hour's of zinc on each side (15 A-h total) of a 3"1 x 3" expanded silver grid 

(5 Ag 1Z-3/0) to which a 4-5/8" long silver wire of . 03Z" diameter previously 

had been spot welded as a lead. The plate was then completed by being 

surrounded with an envelope of expanded silver (5 Ag 5-6/0) and pressed to 

a 3" x 3 anode. 

TABLE U1 

ZINC OXIDE FABRICATED ANODES 

Electrode Formulation 
Component ZnO- 1 ZnO- 19 

ZnO 83. 1 83. 1
 

HgO 4. 0 4.4
 

Asbestos fibers 5.2 5. 2
 

Distilled HZO 7. 7
 

35% KOH + 5% ZnO - 7. 3
 

Total 100. 0 100. 0 
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The expanded silver used for both the grids and the restraining 

envelopes for both the zinc gel-type anodes and the zinc oxide formulation 

anodes was obtained from the Exmet Corporation. Their designations for 

these are 5 Ag12-3/0 and 5 Ag5-6/0, respectively. 

(c) Zinc Anode Reaction 

The oxidation of zinc during discharge may be written by the 

following series of reactions: 

1Zn + OH ZnOH-

ZnOH" 1 ZnOH + e 

ZnOH + OH_ Zn(OH)2 + e­
Zn(OH)2 + ZOH" Zn(OH);" 

Zn(OH)4 - ZnO + HzO + 2OH 

Obviously the final product of the reaction will be dependent upon 

the hydroxyl ion concentration. A discussion of this is given by Farr and 

Hampson (12). 

During charging of the zinc electrode, the zinc that is first deposited 

comes directly from the zinbate ion in solution in the immediate vicinity of 

the anode plate. This results in a drop of zincate concentration at the face 

of the electrode plate and within the pores of'the plate. With the depletion or 
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serious reduction of the concentration of zincate ion in the immediate vicinity 

of the positive electrode, additional zincate ion diffuses towards the electrode. 

However, the rate of the latter is so low that solid zinc oxide at the anode 

plate now becomes the principal source of zinc that is reduced to metal 

during cha,rge. 

3; Charging Electrode 

An expanded nickel grid was used as the charging electrode for• 

zinc cells made with Union Carbide "fixed-zone" oxygen electrodes. Thi's 

consisted of Exmet Corporation 5 Ni 15-2/0 material of 3" x 3" x 0. 020". 

The nickel electrode was used as the positive electrode versu's the zinc 

negative during charging and, of course, was not in the circuit during 

discharge. 

An experiment was performed to compare the-theoretical ampere­

'hour equivalent of oxygen evolved (209 cm 3 per ampere hour) with the actual 

amount of oxygen leaving the charging electrode compartment during charge. 

Two cells were charged at a constant current following a 3 A-h discharge. 

The oxygen leaving the charging electrode compartment during charge was 

collected in an inverted graduated cylinder filled with oil. This was possible 
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because of the effectiveness of the membrane separator in confining the 

evolved oxygen to its respective chambers and preventing it from entering 

the 	anode compartment of the cell. The mouth of the graduated cylinder 

was 	immersed in a pool of oil 2" to 3" deep which was contained in a 2000 

cm 3 	beaker. Experimental data recorded were time, current and oil 

displacement readings. A comparison between the theoretical and actual 

oxygen gas evolution for the ampere hours of charge is shown in Figure 2. 

These data indicate that within the limits of experimental error the actual 

and 	theoretical oxygen gas evolution are the same. 

B. 	 Spacers 

The configurational design of the spacers used between the charging 

electrode and the other two electrodes of the unit cell was found to be critical 

because oxygen entrapment occurred during charging of the cell in a flooded 

static system. As oxygen is evolved at the nickel grid charging electrode, 

it must rise as bubbles which break at the surface. An obstruction-free path 

is therefore essential as entrapped oxygen pushes electrolyte out of its
 

designated compartment.
 

The early unit cells were constructed by using two woven polypropy­

- lene spacers, one on either side of the nickel grid charging electrode and 

each 3" x 3" in size. No probkem was encountered with respect to oxygen 

entrapment or expansion of electrolyte so long as the charging current density 

did not exceed 12 nA/cm2 . When current densities higher than this were used 



FIGURE 2 
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for charging, a problem was encountered with gas entrapment and expan­

sion of the electrolyte-gas mixture above the electrolyte chamber. The 

woven polypropylene spacers were accordingly replaced with eight vertically 

positioned vinyl strips spaced equidistant from one another. Each of these 

was 3 inches in length by 0. 020-and 0. 020-inch. This redesign of the spacer 

system enabled the charging rate to be increased from 12 rnA/cm to 24 mA 

per cmz. Above 24 mA/cm2 , however, a new problem was encountered. 

This was simply that oxygen was not evolved at a faster rate than it could 

conveniently travel up through the electrolyte and break at the surface with­

out pushing a portion of the electrolyte above the electrolyte container. An 

additional modification was made to the charging electrode spacer cell 

arrangement for the purpose of further improving the charge rate capability 

of the cell. The spacing on the zinc side of the charging electrode was elimi­

nated while the spacing on the oxygen side was doubled. With this change, 

while the total volume of the charging electrode space remains the same, .a 

considerably larger passageway now existed for the movement of oxygen to 

the top of the cell. This change also resulted in more uniform support for 

the zinc electrode which was achieved by putting the charge electrode immedi­

ately adjacent to the separator system of the zinc electrode. The use of 

equispaced vertically positioned vinyl strips was retained but, - of course, the 

thickness of these was now doubled. With this additional change, cells dem­

onstrated the capability of accepting charge at current densities in excess of 

85 mA/cm2 . Before this modification was introduced, charging current 

densities of only 24 mA/cm could be handled by the cell. 
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C. 	 Separator System 

The basic requirements of a good .separator system for the zinc­

oxygen rechargeable cell include the following: 

1. 	 Resistance to penetration by zinc dendrites 

2. 	 -Low resistivity 

3. 	 Impermeability to oxygen ­

4. 	 Resistance to oxidation 

5. 	 Inertness in the cell environment over the temperature 
range of 0 to 400 C. 

The two separator membranes which almost satisfied these requirements 

were the Borden C-3 membrane and the RAI PERMION membranes (110, 

116, and 1770C). 

1. ,Borden C-3 Membrane 

The C-3 membrane was produced by the Borden Chemical 

Company under a NASA contract. It is reported to be a composition of 

30 percent poly(.vinyl methyl ether/maleic anhydride) in a.methyl cellulose 

base. The use of even a single layer of C-3 membrane separator resulted 

in shelf life extension from 15 to 20 cycles,delivered by sausage-casing cells, 

to 50 cycles delivered by the C-3 membrane cells. This performance was 

obtained in spite of an abusive 50 percent overcharge (less than the amount 

of overcharge required to compensate for chemical shorting of the zinc elec­

trode in cells employing sausage-casing type separators) used in the cycling 

regime. Cell operation during this time was essentially unattended. 
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The C-3 membrane effectively separates the anolyte from the catho­

lyte, and is quite resistant to zinc dendrite growth. It is also an effective 

separating member for preventing oxygen, generated at the charging electrode 

during charge, from reaching the zinc electrodes and thereby chemically 

Idischarging" the zinc electrode. 

A double layer of C-3 separator was effective to the extent that 

168, 356, and 252 cycles were delivered from unit cells at 0 ° , Z5', and 

40'C, respectively. These cells were cycled on a 2-hour discharge/2-hour 

charge schedule. Thirty cycles to 100% of rated cell capacity (5 ampere­

hours) were obtained at 25°C on a 24-hour discharge/24-hour charge schedule. 

Cycling current densities on the Z-hour discharge/2-hour charge schedule, 

and the 24-hour discharge/24-hour charge schedule correspond to 11. 5 mA 

per cm and 3. 6 mA/cm2 , respectively. Unfortunately, the C-3 separator 

is subject to the following two limitations: i) foaming of the electrolyte at 

charge current densities greater than 12 mA/cm, and 2) degradation of the 

separator with time to the extent that it loses its ability to keep the oxygen 

evolved on charge confined-to the charging electrode cavity. Chemical short­

ing of the zinc inevitably occurred when the separator degi'aded to this extent. 

It was observed that discoloration and apparent degradation of the 

C-3 separator had occurred in the cells removed from test because of foam­

ing of the electrolyte. Since it was known that the C-3 separator dissolved in 

water, an examination of the C-3 and other similar materials for foaming as 

a function of- KOH concentration was conducted. The examination was designed 

to determine: a) if the C-3 was definitely causing the foaming problem; b) if so, 

was there a KOH concentration where foaming occurred at a minimum tolerable 



- 14­

level; and c) if there were a separator material suitable for use in the zinc­

oxygen rechargeable unit cell among other similar materials received from 

the Borden Chemical Company. 

To simulate actual cell conditions in terms of separator and elec­

trolyte volume, two 9-inch pieces of each of several separator materials 

received from the Borden Chemical Company were immersed in 40 cc portions 

of each of eight KOH concentrations. Oxygen was bubbled in at the rate of 

5 cc/min. This corresponded to the rate at which oxygen was evolved from 

the charging electrode in cells that were removed from test because of 

electrolyte foaming. The KOH concentrations tried were: 31, 33, 36, 39, 

41, 43, 45, and 49 percent. These samples were observed for discoloration 

of the separator and electrolyte foaming. A blank ( a sample of each of the 

KOH concentrations mentioned with no separator immersed therein) was 

observed along with samples containing separator materials. 

Green discoloration of the separators tested was observed at KOH 

concentrations below 39 percent. No discoloration was observed at 41 percent. 

The 41 percent level also seemed to be the optimum concentration in terms 

of foaming. KOH concentrations above 41 percent did not seem to further 

retard foaming. Although foaming was observed in the samples containing 

separators at all KOH concentrations tried, no foaming was observed in any 

of the samples of KOH that did not contain separators. 

a) Surfactants as a Means of Controlling Electrolyte Foaming 

Next a study of surface active agents as possible means of 

controlling the electrolyte foaming was conducted. Since 41 percent KOH was 

established as the optimum electrolyte concentration, this was.selected as 

the basic electrolyte for the study. 
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The surface active agents tried were meta-cresol, octyl'alcohol, 

dibutyl phthalate and G. E. ANTIFOAM- 10. The latter was recommended 

and supplied by the Borden Chemical Company. Each of these materials 

was tried at concentrations of 0. 1 ppm, 1. 0 ppm, 5 ppm, and 10 ppm. 

Tests were conducted in the same manner as those used to determine the 

optimum KOH concentration. The results were as follows: 

(1) G. E. ANTIFOAM-10 and meta-cresol did not reduce foaming 

at any concentration tried. 

(2) A marked reduction in foaming was observed in samples con­

taining 5 ppm of octyl alcohol. 

(3) A reduction in foaming was observed in samples containing 

I ppm of dibutyl phthalate. No foam was observed at the higher concentra­

tions of dibutyl phthalate tried. 

Based on these findings, four cells were activated with electrolytes 

containing the surface active agents in concentrations that seemed to control 

foaming, namely, 5 ppm and 10 ppm of octyl alcohol and 1 ppm and 5 ppm 

of dibutyl phthalate. Attempts to cycle these cells at a current density of 

24 InA/cm resulted with the following: 

(1) With 5 ppm of octyl alcohol, foaming to an intolerable level 

occurred during the first charge. 

(2) With 10 ppm of octy alcohol, foaming occurred near the end of 

the first charge and to an intolerable level during the second charge. 

(3) With 1 ppm and 5 ppm of dibutyl phthalate, there was no foaming 

during the first charge; however, foaming to an intolerable level occurred 

during the second charge. 
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Only temporary relief was gained through the'use -of the surface 

active agents tried. In addition, electrolyte flooding to the back side of 

4the oxygen electrode was observed in every cell to which a surfactant had 

'been added. For these two reasons, further studies of surfactants were 

abandohed.
 

b Cell Reaction Mechanism Vs. C-3 Separator
 

The Borden C-3 separator is reported to be a composition
 

of 30 percent poly(vinyl methyl ether/maleic anhydride) in-a methyl celiulose
 

base. mn.the present zinc-oxygen unit cell, foaming of the electrolyte could
 

be caused by.decomposition of'the methyl cellulose to lower molecular weight 

materials which would tend to redu~e -the surface tension of the electrolyte. 

During discharge both the anodic and cathodic reaction mechanisms
 

could contribute to:the formation of an environment favorable to degradation
 

of the C'-3 separator. The reactions are -as follows:
 

Anodic: Zn + 40H- = ZnO - + 2Hi0 + 2e-

Since hydroxyl ions are consumed and water is produced .in the reaction, the 

anolyte becomes weaker in concentration. With'this condition more pronounced 

at the electrolyte layer between the C-3 separator and the zinc anode, con­

ditions favorable to degradation of the C-3 could occur. The'C-3 separator 

dissolves in water and tends to 'degrade faster and foam more in electrolytes 

weak in caustic. 

Cathodic: 02 + HzO + 2e-= HO; + OH-


It is known -that methyl cellulose is atftacked by peroxides. Since the cathodic
 

reaction me'chanism involve-s peroxide formation, possible -C-3 degradation
 

".fronm this source cannot be ignored. 
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During the charge mode of unit cell operation, oxygen is evolved 

from a third charging electrode. The rate at which oxygen is evolved is a 

function of the charge current density. C-3 degradation could occur in the 

rich oxygen environment to which it is subjected during this mode of cell 

operation, particularly during higher current density charges. 

2. PERMION-lI0-and 116 Separators 

These separators are reported to be radiation-crosslinked low 

density polyethylene-acrylic acid copolymers. One layer of each of these 

films was first introduced into each of two cells as a second film-type sepa­

rator situation between the C-3 and the charging source to protect the C-3 

membrane from the effects of the oxygen evolved from the charging electrode. 

The foaming was inhibited to some extent but not to a tolerable level. 

Investigation of both PERMION-110-and 116 used as single membrane 

separators for the zinc-oxygen rechargeable system was very encouraging. 

These materials possessed the ability both to resist dendrite penetration and 

oxygen permeation. In addition, they possess comparatively low electrical 

resistivity. Cells employing these separators were charged at current den­

sities up to 24 nA/cm and absolutely no foaming of the electrolyte was 

observed. PERMION- 110 seems to be more resistant to dendrite penetration 

than the 116 type. Whereas, not a single case of dendrite penetration was 

observed in cells employing the former membrane, dendrite penetration was 

observed in three cells employing the latter. Multiple layers of PERMION 110 

were not necessary to prevent dendritic shorting. 

3. PERMION 1770C Separator 

This separator is also a product of RAI Research Corporation 

and is reported to be a chemically grafted polyethylene-acrylic acid film. 
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This material was investigated as a replacement for PERMION-Il0 and 

found-to be,its apparent equivalent. The 1770C material performs equally 

as well as the 110, both in terms of-its resistance to dendrite penetration 

and oxygen permeation as well as comparatively low electrical resistance. 

This investigatioi was made necessary because the 110 film was no longer 

available. 

D. Electrolytes 

The electrolytes used.in rechargeable zinc oxygen experimental 

unit' cells consisted of aqueous solutions of potassium hydroxide with or 

without dissolved zinc oxide. The major-portion of the work'cwas done with 

potassium hydr.oxide solutions within the range of 31%'to 42% by weight. The 

weight percent of zinc oxide varied from 00 to 7%. Exampl~s, of the solu­

tions used are 31% KOH plus 5.4% ZnO, 36% KOH plus 2. 6% ZnO, 38% KOH 

plus ?% ZnO, 38% KOH.plus 3. 5% ZnO, 41% KOH plus 7% ZnO, 42% KOH plus 

2% ZnO, and 42%0KOH plus 3. 5% ZnO. In general, the zincate dissolved in 

the potassium hydroxide electrolyte was found to be desirable in the anolyte 

and undesirable in the catholyte. 

The ,presence of zincate in the anolyte is particularlydesirable when 

the zinc electrodes used are of-the type fabricated from zinc oxide formulations. 

Excess zincate in the electrolyte prevents the solution of zinc oxide from the 

electrode and thereby preserves the mechanical integrity of the ,electrode. Two 

additional advantages are derived from the presence of zincate in the anolyte: 

i. e. , the tendency for.dendrite formation during charging and the likelihood of 

hydrogen evolution is reduced. These latter two advantages apply equally 



- 19 ­

to cells made with zinc gel-type anodes as well as to cells made with anodes 

fabricated from zinc oxide formulations. The presence of high concentrations 

of zincate in the catholyte were found to be undesirable because they have 

the effect of depressing the potential of the oxygen electrode and thereby 

reducing the over-all cell voltage. 

Potassium hydroxide concentrations of 41% were found to be the 

more desirable ones within the range of concentrations studied. This was 

found to be quite important in cells in which Borden C-3 separator membranes 

were used. Lower potassium hydroxide concentrations lead to greater likeli­

hood of dissolution of the membrane. The 41% potassium hydroxide solutions, 

were found to minimize the electrolyte leakage through the cathode while 

still providing adequate wetting to its active layer. Leakage of electrolyte 

through the cathode occurs when electrolytes of lower potassium hydroxide 

concentration are used. 

E. Unit Cell Construction 

The structural material used for building the experimental unit 

zinc oxygen cells was LUCITE. The initial test cell was an assembly that 

was designed for reuse as well as to allow possible changes in the components 

that would result in alterations of the over-all cell thickness. The test cell 

was composed of two LUCITE endplates that were machined to slip-fit into 

a rectangular shaped box. Cell components were housed in the box between 

the two plastic plates. The LUCITE plates were originally sealed in place 

with a silicone-type adhesive (a material that could be cut away with a scalpel 

after a test was completed, so that the enclosure could be re-used and the 
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cell parts could be examined). The original silicone adhesives used were 

not totally satisfactory as evidenced by a leakage problem. This problem 

was solved by substituting epoxy resins to accomplish the seal in the place 

of the silicones. A detached view of this early cell assembly can be seen 

in Figure 3.
 

Significant changes and modifications that were made.to the unit 

cell enclosure as work progressed during the period of this contract included 

the following: 

1. 	 A LUCITE frame assembly was designed to compart­

mentize the anode behind a membrane separator away 

from the oxygen-rich environment of the compartment 

housing both the charging electrode and the oxygen elec­

trode. The membrane was sealed into a 3" x 3" opening 

of the frame. The zinc electrode was subsequently sealed 

into its own compartment behind this separator assembly. 

2. 	 Reservoirs were provided to iccommodate electrolyte 

expansion above both the negative and positive cell 

compartments. 

3. 	 A connecting channel was introduced between the reservoirs 

above the positive and negative compartments to allow 

electrolyte flow from one compartment into the other when 

the level of the channel was reached. This maintained a 

balance-in the electrolyte levels of the respective compart­

ments thus compensating for the fluctuation of electrolyte 

level with cycling at the sacrifice of contamination of the 

catholyte with some zincate. 
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A comparison of the size of the original zinc oxygen rechargeable 

shown photographi­experimental unit cell with that of the final unit cell is 

cally in Figure 4. The reduction resulting from the smaller cell construction 

amounted to 255% without any decrease in cell capacity. The area of the 

respective electrodes remained unchanged. The components of the larger, 

sectionexperimental unit cell are described in Table III. Cutaway and cross 

views are shown in Figure 5. 

TABLE III 

COMPONENTS OF EXPERIMENTAL UNIT CELL 

Component Dimensions Weight (g) 

"Fixed-Zone" oxygen electrode(a) 3" x 3" x 0. 022" 10. 0 

Polypropylene screen(b) 3" x 3" x 0. 030" 1. 5 

Expanded nickel metal(c) 
charging electrode 3" x 3" x 0. 020" 2. 6 

Polypropylente screen(b) 3" x'3" x 0. 030" 1.5 

C-3 membrane separator (dry)( d }  3" x 3" x 0. 0015" 0. 3 

Zinc gel-type anode(a) 3" x 3" x 0. 100" 1Z. Z 

Electrolyte (44% KOH + 2% ZnO 25. 0
 
dissolved therein)
 

Oxygen source (e) oxygen cylinder 

(a)UCC .Type-.2 electrode 

(b)Lamport 

(c)Exmet
 

(d)Borden
 

(e)Linde
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FIGURE 4
 

SIZE REDUCTION ACHIEVED IN UNIT Zn-CO CELL DESIGN
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FIGURE 5
 

CUTAWAY AND CROSS SECTION VIEWS OF EXPERIMENTAL ZINC-OXYGEN
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The zinc-oxygen rechargeable unit cell shown in Figure 5 and 

described in Table III has demonstrated its ability to deliver over 350 

cycles at a current density of 11. 5 mA/cmz at room temperature. 

With increased discharge rates the objective, cells of the afore­

mentioned construction (PERMION separators substituted for C-3 separators) 

were discharged across a fixed resistance of 0. 75 ohm. Although cycle life 

was obtainable in cells of this construction at the increased rate of discharge, 

the findings indicated the need for further constructional changes to improve 

the overall electrical performance. The discharge voltage at this higher rate 

of discharge was comparatively low. 

A series of cells, each with a modification in the cell design to 

improve the discharge voltage characteristics, were built. The cell construc­

tion, the details of which are described in Table I, provided a base against 

which these modifications of cell elements could be compared. 

The modifications were as follows: 

1. Decrease in separator resistance by using one layer of PERMION 

110 and 116 instead of two layers. It was established that one layer of these 

separator materials was effective for successful cycling of the cell. PERMION 

1770C proved to be just as effective as the 110 and 116 membranes. 

2. Increased anode collector contact. Zinc equivalent to 10 ampere­

hours of theoretical capacity was applied to both sides of an expanded silver 

collector. The silver collector was cut to size 3-1/8 in. x 3 in. so as to 

leave 1/8 in. of exposed expanded silver across the top of the 3 in. x 3 in. 

area that comprised the zinc mass. The expanded silver envelope that tightly 

restrains the zinc was spot welded across the top to the centrally situated 
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expanded silver grid. This arrangement provides bilateral symmetrical 

collector contact to the zinc mass as opposed to only bilateral contact made 

by the expanded silver restraining envelope in the construction shown in 

Figure 6. The expanded silver used as the center grid was designated 

10 Ag 20-4/o. The expanded silver used for the restraining envelope was 

5 Ag 5- 6 /o. Both materials were products of the Exmet Corporation, 

3. Electrolyte resistance was decreased by reducing the electro­

lyte gap by 25 percent. 'This was accomplished by replacing the polypropylene 

spacers on each side of the charging electrode with 8 equispaced 1/8 in. wide 

x 0. 02 in. thick x 3 in. long vertically positioned vinyl strips. This change 

also provided an obstruction-free path for oxygen to leave the cell during 

charge, thus decreasing the possibility of oxygen entrapment that was a 

problem with the woven polypropylene spacers. 

4. The use of the American Cyanamid oxygen electrode eliminates 

the need for a separate charging electrode as the cell is charged directly off 

the charging electrode. Elimination of the charging electrode further reduces 

the electrolyte gap by another 50 percent. Reduction of the amount of electrolyte 

through reduction of the electrolyte gap also improves the watt-hours per 

pound ratio. 

Two cells were constructed, each with a combination of the features 

that individually improved the electrical performance of the sequence of 

aforementioned cells. However, one cell employed a thin "fixed-zone" 

oxygen electrode that required a separate charging electrode for charging I 
the zinc, while the other cell employed an American Cyanamid "LAB 40" 3 
oxygen electrode. PERMION 110 was the separator used in both constructions. 

I 
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FIGURE 6 

RECHARGEABLE ZINC-OXYGEN UNIT CELL WITH THIN 

"FIXED-ZONE" OXYGEN ELECTRODES 
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IC 
D 

J L= 

3" - F_______ 

Cutaway View Cross Section 
C-4146 

A - LUCITE backing plates 

B - Zinc anode bilaterally disposed on an expanded silver grid and 
restrained in an expanded silver envelope. 

C - Separator system: 

a) VISKON vinyon (electrolyte cushion absorber 

b) PERMION membrane separator 

c) PELLON cushion 

D - Equispaced vertically positioned vinyl strips 

E - Nickel screen (charging electrode) 
F - Equispaced vertically-positioned vinyl strips 

G - "Fixed-Zone" oxygen electrode 

H - Expanded Ni cathode collector 

and retainer) 

J - Woven polypropylene spacer provides space for oxygen passage 

K - Gas inlet 

L - Gas outlet 

*Removed from final unit cell. 



Construction of the modified three electrode unit cell employing a thin "fixed­

zone" oxygen electrode is shown schematically in Figure 7 and described in 

Table IV. The travel of oxygen through the cell is shown in Figure 7a while 

Figures 7b through 7e are photographs showing the assembly steps involved 

in building the test cell. The construction of the two-electrode unit cell 

employing an American Cyanamid electrode is shown in Figure 8 and described 

in Table V. 

TABLE IV 

COMPONENTS OF THE MODIFIED ZINC-OXYGEN RECHARGEABLE UNIT 

CELL EMPLOYING THIN "FIXED-ZONE" OXYGEN ELECTRODE 

Components Dimensions Weight (g) 

"Fixed-Zone" oxygen 

electrode 3" x 3" x 0. 22" 10.09 

Plastic spacers 3" x 0. 060" x 0. 020" 0. 58 

Expanded Ni charging 
electrode 3" x 3" x 0. 2.6 

Plastic spacers- 8 equispaced 
vertical strips 3"1 x 0. 060" x 0. 020"1 . 58 

PELLON No. 10194C 3" x 3" x 0. 010" .4 

PERMION separator 3" x 3" x 0. 0015" (wet) . 33 

VISKON vinyon 3"I x 3" x 0. 007" .Z8 

Zinc gel type anode 3" x 3" x 0. 075" 31.0 

Electrolyte: 41% KOH 20-25 cc 27-34 
containing 7% ZnO 

VISKON vinyon is a nonwoven synthetic fabric whose composition is reported 
to be rayon. vinyon and wood floc by the supplier, Chicopee Mills, Inc. , 

Nonwoven Fabric Division, 47th & Worth Street, New York, N. Y. 



FIGURE 7 

CUTAWAY AND CROSS SECTIONAL VIEWS OF 

ZINC-OXYGEN RECHARGEABLE UNIT CELL 
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LEGEND FOR FIGURE 7 

I. 	 LUCITE case. 

2. 	 Electrolyte reservoir above the positive compartment. 
(Positive compartment houses both the oxygen electrode 
charging electrode. ) 

3. 	 Electrolyte reservoir above the negative compartment. 
(Negative compartment houses the zinc electrode. ) 

U
 

and the 

4. 	 Channel connecting the electrolyte reservoirs above the positive compart­
ment and the negative compartment. (Allows electrolyte to flow from I 
one compartment to the other when levels rise due to electroosmosis. 

5. 	 Gas exit tube above positive compartment. 

6. 	 Gas exit tube above negative compartment. 

7. 	 External lead to oxygen electrode (only in the electrical circuit during I 
discharge). 

8. 	 External lead to charging electrode (only in the electrical circuit during Icharge). 

9. 	 External lead to zinc electrode 
charge and discharge). 

10. LUCITE backing plate. 

II. Gas spacer. 

(in the 	electrical circuit during both 

3
 
1
12. Oxygen electrode (2. 7" x 2. 7" x 0. 022"). 

13. Vertically positioned vinyl spacers. 

14. Charging electrode (Z. 7" x 2. 7" x 0. 020"). 	 I 
15. Vertically positioned vinyl spacers. 

16. Separator system: (a) PERMION 1770C, (b) VISKON vinyon, (c) PELLON. 

17. Zinc electrode (3" x 3" x 0. 120"). 3 
18. Oxygen inlet tube. 

19. Oxygen outlet tube. 

I
 
U
 

1 
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FIGURE 7a 

TRAVEL OF OXYGEN THROUGH ZINC-OXYGEN 

RECHARGEABLE UNIT CELL 

Oxygen inlet port 

Oxygen outlet channel . 

It
 

Oxygen inlet channel 

Porous nickel LUCITE 

back of oxygen
Ielectrode 
Oxygen outlet 

port 

C-6336 

Both inlet and outlet ports terminate into channels of increasing diameter 

with increasing distance from the ports in order to provide more uniform 

oxygen feed. Arrows show oxygen paths through the cell. 
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FIGU:ZE 7b 

ASSEMBLY OF Zn-O z CELL 
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Step I 

Step 2 c-6343 
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FIGURE 7 c
 
ASSEMBLY OF Zn-03 CELL
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FIGURE 7d
 

ASSEMBLY OF Zn-OQ CELL
/I
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FIGURE 7e 

COMPLETED RECHARGEABLE Zn-O CELL 

C--6348 
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FIGURE 8 

Rechargeable 

G 

Zinc Oxygen Unit Cell Using American Cyanamid 

Oxygen Electrode 

"LAB 40" 6 

A 

to 

B 

D 

,B 

C 

CC 

N~D 

IE F EJE 

A 
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C 
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E 

F 

G 

H 

3 

LUCITE backing platesH 

Zinc anode bilaterally disposed on an expanded silver grid and 

restrained in an expanded silver envelope.I 
Separator system: 

a) VISKON vnnyonl (electrolyte absorber and retainer) 

b) PERMION membrane separator 

Equispaced vertically positioned vinyl strips 

American Cyanamid LAB-40 oxygen cathode 

E.xpanded nickel (gas spacer) 

Ag strip cathode collector spot welded to edge of cathodeI 

Gas inlet 

Gas outlet 

I 
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TABLE V 

COMPONENTS OF THE MODIFIED ZINC-OXYGEN RECHARGEABLE
 
EXPERIMENTAL UNIT CELL EMPLOYING AN AMERICAN
 

CYANAMID "LAB-40" OXYGEN ELECTRODE
 

Components 	 Dimensions Weight (g) 

American Cyanamid oxygen 
electrode (LAB-40) 3" x 3" x 0. 0Z8" 15. 09 

Plastic spacers 

(8 vertically positioned) 3" x 1/8" x 0. 020" 0. 58 

PERMION separator 3" x 3" x 0. 0015" 0. 33 

VISKON vinyon 3" x 3" x 0. 007" 0. 28 

Zinc electrode 3" x 3" x 0. 075" 31 

Electrolyte: 41% KOH + 7% ZnO 15-17 cc 21-23 

F. 	 Zinc Dendrite Penetration and Electrical 

Resistance Testing of Several Separator Materials 

Separator materials were evaluated for resistance to zinc dendrite 

penetration and for electrical resistance in alkali media. The separator mate­

rials tested were the Borden C-3, VISKON vinyon, PERMION 110 and 1770C. 

.Testing of the separators was conducted at 25 0 C., The Borden C-3 separator 

was tested in 41 percent KOH because of its tendency to degrade faster in lower 

KOH concentrations. The other materials were tested in 31 percent KOH. These 

tests provided a means for comparing separator materials in two areas that most 

significantly influence electrical performance. The test procedures were as 

follows: 
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1. Zinc Dendrite Penetration 

The test equipment consisted of a two-chamber cell with the sepa­

rator (1" diameter) being tested held between the chambers. A zinc micro­

cathode (0. 0049 sq. cm) was placed with its face up against one side of the 

separator while a zinc macroanode (5 sq. cm) was placed 1/ 16" away from the 

cathode on the opposite side of the separator. The two electrodes were so 

positioned that the microcathode was parallel and centered with respect to 

the macroanode. Current was allowed to flow at a cathode current density of 

250 mA/cm2 and the time required to grow a zinc dendrite through the sepa­

rator to the anode was measured. The maximum electrolysis time used was 

2 hours. This zinc dendrite penetration test is a somewhat modified form 

of the test described by Dalin and Solomon (13). Table VI shows that when 

no separator is used a shorting dendrite is grown after only 25 minutes of 

electrolysis. The use of VISKON-vinyon as the separator only slightly retards 

the growth of-dendrites. Borden C-3, PERMION 110 and PERMION 1770C 

films, however., do not allow zinc dendrite penetration even after 2 hours of 

electrolysis. For this reason these separator films were chosen for-more 

exhaustive evaluation in test cells. 

TABLE VI
 

ZINC DENDR ITE-SEPARATOR TEST
 

Time required to grow dendrites 
Separator through separator to the anode 

No separator 	 25 minutes 

35 minutesVISKON vinyon 


Borden C-3 Did not grow dendrite through separator
 

PERMION 110 , ,, ,, ,, ,t "
 

PERMION 1770C " "
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2. Separator Resistance 

An alternating current method (14) was used to measure the sepa­

rator resistance. The test cell was designed in such a way that the area 

of 'exposed separator surface was 0. 15 square inch. The test consisted of 

measuring the cell resistance (without any separator) then measuring the 

resistance with the separator in place. Samples were kept in the "as 

received" condition until the test was started, Thirty-one percent KOH was 

added to the test cell and resistance measurements were taken across the 

fixed platinized platinum electrodes. An Industrial Electronics bridge was 

used to measure resistance. Polarization-free measurements are deter­

mined by this method. Table VII shows typical data on several separator 

materials. 

TABLE VII 

RESISTANCE-SEPARATOR TESTS 

24-Hour Typical Values(A) 

Measured Dry Wet 
Separator Resistance Thickness Thickness 

Borden C-3 1. 5Z 0. 0013" 0. 0022" 

PERMION 110 0. z 0. 001" 0. 0015" 

PERMION 1770C 0. 3o 0. 0015" 0. 002" 

(B) Specific Resistances 

, /cm a/cm Q/cm U/cm 
Separator 5 min 10 min hr 24 hr 

Borden C-3 - - 130 130 

PERMION 110 41- 41 41 41 

PERMION 1770C 37 37 37 37 
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G. Problem Areas Encountered in Cycling Unit Cells 

I. Electroosmosis and Cycling of the Unit Cell 

Electroosmosis hindered cycling of zinc-oxygen cells on a 2-hour 

discharge/4-hour charge schedule to a theoretical output/input balance of 

2. 5-3. 0 ampere-hours. This was not a problem when cells were cycled on­

a 2-hour discharge/2-hour charge schedule to a theoretical output/input 

balance of 1. Z-1. 4 ampere-hours. 

As cycling progressed, the electrolyte level in the anode compartment 

would rise during charge and was accompanied by a corresponding lowering 

of the electrolyte level in the cathode compartment during charge. This 

electrolyte would not return to the cathode compartment during discharge. 

This was not a simple problem of electrolyte level fluctuation in the respective 

electrode compartment during cycling, which is normal in cells employing a 

membrane separator. 

A carboxymethyl cellulose gel-zinc powder anode was used in the 

cells in which this problem occurred, thus the viscosity of the anolyte increased 

after overnight contact with the gelled anode. The viscosity of the catholyte was 

not affected by this gel, since the anode was sealed off in a separate compart­

ment on the other side of the PERMION 110 membrane separator. During 

discharge the more viscous anolyte would not move to the cathode compartment 

as would normally be expected. However, the catholyte would move to the anode 

compartment during charge and mix with the more viscous anolyte. The catholyte 

involved, which was now also viscous, would not return to the cathode compart­

ment. The net effect was overflowing of electrolyte from the anode compartment 

and ultimate evacuation of the cathode compartment. 
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The problem was the reverse in cells employing anodes fabricated 

from zinc oxide mixtures in which no CMCiC gel was present. The rise in the 

electrolyte level now occurred in the cathode compartment. As the electro­

lyte level of the cathode compartment rose with cycling, the electrolyte level 

of the anode compartment dropped. Electrolyte return to the anode compart­

ment could now be achieved only with a slow-low current density charge. 

No problem was encountered when 2-hour discharges were followed by the 

slow 22-hour charges, nor was it a problem when cells were cycled on a 

24-hour discharge/24-hour charge schedule. 

A solution to the problem was provided simply by designing an inter­

connecting channel between the positive and negative electrolyte reservoirs. 

With such a channel electrolyte levels can easily equilibrate with cycling. 

2. Zinc Anode Shape Change 

It was demonstrated that the zinc-oxygen unit cell is capable of 

rechargeability and continuous operation after occasional very deep discharge. 

Performance of a cell that was completely discharged and returned to the 

normal cycling schedule is shown in the Experimental Unit Cell Performance 

section of this report. 

Repeated deep discharges caused severe anode shape change and 

associated problems. Impaired anode mass-collector contact and a loss of 

capacity associated with the continually diminished geometric surface area 

was the primary mode of failure of all cells consistently discharged at a 

current density of 25 mA/cm z to 25 percent theoretical depth in two hours. 

The active anode area of dissected cells had decreased by as much 

as 70-80 percent. As a result, the current density imposed on both the anode 
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and the cathode was continually increased as cycling progressed. An initial 

current density of 25 mA/cm on a fresh cell becomes over 100 mA/cmZ 

after 75 percent zinc reorientation has occurred. 

Over 300 cycles were delivered from a unit cell employing a 10­

ampere-hour zinc anode. This cell was discharged at a current density of 

11-12 rnA/cmn to 1Z-14 percent zinc depth in two hours. Low discharge 

voltages associated with 22-25 mnA/cm discharging of this cell necessitated 

modifications to improve the anode-collector contact and to decrease the cell 

internal resistance. These modifications improved the discharge performance 

to the extent that a discharge current density of Z-25 mA/cm? could be attained 

at essentially the same voltage level as the 11-12 mA/cm discharge current 

density in the cell from which over 300 cycles were delivered. 

Doubling the rate of discharge, while maintaining the discharge time 

constant,, correspondingly doubled the discharge depth (iZ- 14 percent to 

25-30 percent depth of a 10 ampere-hour anode). Severe anode shape change 

occurred early in the cycle life of cells discharged to this depth. Failures 

due to problems associated with 70-80 percent zinc slump (estimated visually) 

were not uncommon after 50-60 cycles. 

Over 300 cycles could be obtained from a 10 ampere-hour cell sub­

jected to 12-14 percent depth of discharge in two hours, while only 50-60 

cycles could be expected from a cell consistently subjected to 25-30 percent 

depth of discharge. This observation suggested the feasibility of retarding 

anode slump and correspondingly increasing cycle life by limiting the discharge 

depth to a value comparable with that at which the previous cell delivered over 

300 cycles. Two cells were built, both employing anode structures identical 

to the aforementioned 10 ampere-hour cells, but with increased zinc capacity. 



- 43 -

One of these cells contained a 20 ampere-hour anode and the other a 15 

ampere-hour anode. Both of the cells were discharged across a fixed load 

of 0. 75 ohm at an average current density of 23 nA/cm. The theoretical 

zinc depth per discharge on the 20 ampere-hour cell and the 15 ampere­

hour cell was 13 and 17 percent, respectively. Both of these cells delivered 

176 cycles before failure clue to anode slump and associated problems. 

Approximately 50% slump had occurred when cycling was terminated. 

3. 	 Problems Associated with the 'Cathode 

a) The Union Carbide thin "fixed-zone" oxygen electrode demon­

strated far better stability of performance than did the American Cyanamid 

"LAB 40" oxygen electrode. Performance of the thin "fixed-zone" electrode 

usually improved with cycle life due to improved wetting of the electrode 

active layer as cycling progressed. 

A small amount of water transpiration through the "fixed-zone" 

electrode to its gas side that usually appeared as moisture across the bottom 

part of the electrode was .observed after 40-50% anode slump had occurred. 

Severe flooding of the thin "fixed-zone" electrode occurred only when cycling 

was continued after anode slump reached the 50-6516 level. Zinc electrode 

failure preceded flooding in most cases. 

Unit cell operation was not affected by small amounts of water tran­

spiration to the gas side of the thin "fixed-zone" oxygen electrode. The cathode 

vs. zinc reference potential was usually higher after a small amount of tran­

spiration than before. 

The problem of water transpiration can at least partially be attributed 

to a higher current density imposed on the cathode as a result of anode slump 
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(overloading of that part of the cathode facing the reduced zinc area).
 

However, very little increase in cathode polarization was observed at cathodes
 

operating under this imposition.
 

b) Problems associated with cycling of the American Cyanamid 

"LAB 40" oxygen electrode involved both the oxygen electrode itself and the 

zinc electrode. Severe cathode flooding and/or serious cathode polarization 

limited cycle life of, cells employing this electrode. The result of polarization 

at the "LAB 40" oxygen electrode was a continuously declining discharge voltage 

as well as a progressively higher charge voltage as cycling progressed. This 

problem occurred regardless of whether the zinc electrode was charged against 

the "LAB 40" oxygen electrode or against a separate charging electrode. 

However, it was retarded to some extent (about 10%) when the zinc was not 

charged against the oxygen electrode. "LAB 40" oxygen electrode vs. zinc 

reference measurements as low as 0. 09V have been observed due to cathode 

polarization while the "LAB 40" was operating under a moderate discharge 

load of 1. 3 amperes (a current density of Z7-nA/cm). 

Severe flooding of the "LAB 40" oxygen electrode cannot be attributed 

to high current density operation resulting from anode slumping. Very early 

flooding of this electrode always preceded significant anode shape change. As 

a matter of fact flobding of these electrodes in cells that were activated with 

electrolyte and left to soak over night occurred when no back pressure was 

applied during the soak period. Subsequent cells employing this electrode 

were activated only after applying back pressure equivalent to 2 inches of 

water. This applied back pressure was sustained during cell operation. 

Although leakage through the electrode was retarded, it still occurred shortly 

after cycling began. 
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Serious gassing at the zinc electrode was also a problem with 

cells employing the "LAB 40" oxygen electrode, thereby contributing 

to anode slumping. Gas build-up within the anode mass occurred during 

both charge and discharge. The problem was more severe in cells employ­

ing the "LAB 40" electrode when the zinc was charged directly against the 

oxygen electrode itself than in cells utilizing a separate charging electrode 

to charge the zinc. A probable explanation for the anode gassing is the 

dissolution and migration of noble metal from the oxygen electrode over 

to the zinc electrode to form a gas couple. Actual plating of noble metal 

on the anode is also a possibility particularly when the anode is'charged 

directly against the oxygen electrode. The presence of both platinum and 

palladium on zinc anodes removed from spent cells was substantiated by 

x-ray fluoresence examination. 

4. 	 , Possible Explanations for Drop-Off in Performance 
of the Zinc-Oxygen Unit Cell at 00 C 

Zinc-oxygen experimental unit cells suffered a drop-off in dis­

charge voltage when they were cycled at 0 C. Factors thought to contribute 

to this include: 

1. 	 Increased ohmic resistance resulting from the increased 

viscosity of the electrolyte at low temperatures. 

2. 	 Because of the increased viscosity, diffusion of the elec­

trolyte through the electrolyte film (which is continuously 

built up during discharge) is hindered. 

3. 	 Decreased wetting of the active layer of the oxygen electrode 

resulting from increased electrolyte viscosity. 

4. 	 Shaw and Remanick (15) proposed that the drop-off in per­

formance at 0 ° C could be caused by localized freezing 

resulting from changes in the electrolyte concentration in 

cells employing membrane separators. 
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H. Charging Techniques 

Cells employing the Union Carbide thin "fixed-zone" oxygen 

electrodes were charged by using an expanded nickel charging electrode. 

Thus, the oxygen electrode is not in the circuit during the charging process. 

Cells employing American Cyanamid "LAB 40" oxygen electrode were charged 

directly against the oxygen electrode. A detailed discussion of the various 

charging techniques investigated follows: 

1. Constant Current Method 

Constant current charging for a fixed time was the method 

employed for most of the work. Charge input was the same as discharge 

output for zinc-gel type anode cells. Overcharge, however, was necessary 

to properly charge anodes fabricated from zinc oxide compositions. Cycling 

was carried out on schedules of 2-hour discharge followed by 2, 4, 6, and 

22 hours of constant current charge. Twenty-four hour discharging followed 

by 24-hour constant current charging was also studied. 

2. 	 Constant Current-Voltage Limited and ConstantCurrent-
Voltage Limited Trickle Charging of Unit Cells 

Constant current-voltage limited and constant current-voltage 

limited trickle charging was investigated to: (1) prevent serious overcharge; 

(2) control dendrite growth, and (3) minimize hydrogen evolution. The-constant 

current-voltage limited -and the constant current-voltage limited trickle charging 

are essentially the same. These are described below: 
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a) Constant Current-Voltage Limited Charge, 

The current was preset at a constant value such that the input 

was balanced with the output in the required time (depending on the cycling 

schedule) to a preset voltage (below hydrogen evolution). 

When the preset voltage was reached, the charge was switched 

to open circuit and remained on open circuit until the required time (depending 

on the cycling schedule) had elapsed. 

b) Constant Current-Voltage Limited Trickle Charge 

The current was preset at a constant value such that the 

input was balanced with the output-in the required time in the same manner 

as was employed with the constant current-voltage limited method. The 

difference being that when the preset voltage was reached, the charge was 

switched to constant voltage trickle charge instead of open circuit. The 

charge is then voltage limited and decreases from the initial constant 

current limit to some significantly smaller current value. This value 

would depend upon the ability of the cell to accept charge at that voltage 

value. 

The feasibility of charging zinc by means of this type of charge was 

not established because of the unstable end-of-charge voltage associated 

with shape change of the zinc anode structures evaluated. During the constant 

current portion of the charge the cells reached the voltage limit before being 

fully charged. Decrease in zinc mass-collector contact and polarization of 

the zinc anode, both associated with anode shape change, were the main 
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causes of the end-of-charge voltage increase that prohibited full utilization 

of a constant current charge with a voltage limit, or a voltage limiting 

trickle charge unless the charge time was sufficiently extended. 

3. Modulated Current Charging Methods 

Modulated current charging has been used in electroplating to 

control the character of electrodeposits. This method of charging was also 

investigated for charging the experimental zinc-oxygen unit cells. It has 

been suggested that a decay of the concentration gradient at an electrode 

occurs when the current is shut off. This has the effect of equilibrating 

the metal ion at the electrode surface to that of the bulk solution. Metal 

ions thus diffuse to the surface of the electrode where the plating occurs. 

When the current is on, these ions are available for deposition. The net 

effect is a more uniform electrodeposition. 

Three methods of modulated current charging were investigated 

during the course of the contract effort. The methods investigated were: 

a) Asymnetrical Alternating Current Method 

This technique was first investigated by Ernest Beer of 

the Netherlands and described by R. W. Hallows (16). Maurice Baddour 

of the Lewis Research Center constructed a charging system based on this 

work and used it successfully to charge Leclanche cells. The circuitry used 

to charge zinc-oxygen experimental unit cells was a duplication of the circuit 

used by Baddour and later by Donald Vargo (17) in his evaluation of the 

technique.
 

The"6harging technique utilized a 5.4 ampere peak current during 

the forward component. The reverse component was approximately 100 of 
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the forward component. The net current during the charge was 1. 3Z amperes. 

Charging was carried out over a Z-hour period against a separate charging 

electrode. Figure 9 is an oscillogram of the current trace used together with 

a quantitative description of the cycle used. Cell cycling performance is 

described in Section ,1Zhand is graphed on Figure 53. 

b) Periodic Open Circuit and Periodic Reversal Methods 

A constant current D-C power supply was used in conjunction 

with a pulse generator to provide variable pulse lengths and frequencies. 

Essentially the same circuitry was used for both periodic open circuit and 

periodic current reversal methods of charging. A fixed resistance of proper 

value to produce the desired reverse current was across the cell during the 

OFF (deplating) time in the case of the periodic current reversal method. 

During the OFF (deplating) time in the case of the periodic current reversal 

method zinc metal was actually being removed. 

Charging by means of periodic open circuit and periodic current 

reversal methods was carried out over a period of 6 hours and 22 hours, 

respectively. The periodic open circuit cycle was ZZ. 5 seconds with an 

ON (plating) time of 7. 5 seconds and an OFF (open circuit) time of 15 seconds. 

The plating current density was 24 mA/cmz . The periodic reversal cycle 

was 60 seconds with an ON (plating) time of 54 seconds and an OFF (deplating) 

time of 6 seconds. The current density during both plating and deplating times 

was approximately 4 mA/cm2 . Figure 10 shows typical periodic open circuit 

and periodic reverse current cycles as they were applied to charging zinc-oxygen 

experimental unit cells. 
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FIGURE 9 

OSCILLOGRAM AND DESCRIPTION OF
 

ASYMMETRICAL A. C. CELL CHARGING METHOD
 

P710186 

C-7008 
Description of Current Trace 

Peak current 5.4 amperes 

Average current 3.3 " 

Cycle efficiency 40% 

Net charging current 1. 32 amperes 

Ampere hour charge (2 hrs) (1. 3 arnps) = 2. 64 amp-hr s 
(this includes 1. 51/ overcharge) 

Net charging current density 28 mA/cmz 

Reverse component 10% of forward component 
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FIGURE 10 

INTERRUPTED D. C. CHARGING CYCLES 

Periodic Current Reversal Method of. Charge Periodic 0. C. 
1.0 Method of Char 1 
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Cycle Efficiency 80% ICycle Efficiency 

33.376 

-1. 0 
Note: In order to charge cells by this 
method it was necessary that the theoreti­
cal input be 173% of cell output, otherwise 
uncharged anode mass is observed. 

22 hours 6 hours 

C-5834 



I. Zinc-Oxygen Rechargeable Unit-Cell Performance 

Performance data of zinc-oxygen unit cells are divided into two 

sections based upon the type of zinc anode structures used. Cycling is 

shown to termination of tests. The number of cycles obtainedfrom a cell 

by the time the end of discharge voltage declined to 0. 8 volt was noted. 

Figuresll through 57 placed immediately following Section I in this report 

describe the various cycling tests performed. Cycle life summaries are 

given in Tables VIII and IX. 

1. Zinc Gel-Type Anodes 

a) Performance of Unit Cells at 00, 250, and 40°C 
with Thin "Fixed-Zone"Oxygen Electrodes 
and Double Layers of C-3 Membranes 

Cells tested on a 2-hour discharge/2-hour charge schedule 

,at 00, 25' and 40'C delivered 168, 356, and 256 cycles, respectively. 

Discharge was through a fixed resistor of 1.75 ohms. This represented 

the 14% depth level based upon the actual ampere-hour equivalents of zinc 

present at an average current density of 11. 5 mA/cm. A balanced constant 

current charge was used. All of the energy was delivered, above 1. 0 volt 

on the 250 and 40'C tests. Cells were operated at 0°C at a somewhat 

reduced capacity. These data are presented in Figure 11 to 16. 

Rechargeability after complete discharge of the zinc was also 

demonstrated with an experimental unit cell operated at 250C. This is 

graphed in Figure 17. Figure 17 shows a period from the 156th through 

the 172nd cycle when the cell was discharged for 2 hours, followed by 2 

hours on open circuit, for a total of 16 discharges. Following the 172nd 

discharge the cell was charged until the theoretical ampere-hour input was 

equal to the total output of the discharges. The rate at which the cell was 



TABLE VIII 

SUMMARY OF CYCLE LIFE OF ZINC-OXYGEN RECHARGEABLE EXPERIMENTAL 

UNIT CELLS EMPLOYING UNION CARBIDE PROPRIETARY ZINC GEL-TYPE 

ANODES AND THEIR THIN "FIXED-ZONE" OXYGEN ELECTRODES 

Actual anode capacity, ampere-hours, zinc metal 10 > 15­

-------- --- -> * -2-4- - 24-24 -E -2-4Discharge-charge schedule, hours °
 I 0 I• ! ' 


Temperature, degrees, Centigrade 00 1250 140' 0. 250 40- 0' 25- 140- 0 jZ50 ;400 

Average discharge current density, mA/cm 10.4 11.8 11.8 22.5 124 
I II 

Average charge current density, mA/cm2 10.4 111.8 11.8 11.3 1Z 12.3 - - 11 l.5 lZ 

27Output per discharge, ampere-hours 1.18 11.3 11.3 .6 2.8 2.86 - 2.54 Z.90 2.78
1 13 26I2 ~ 6 ­

1 S 2.86 -.. 2.54f2.90 2.781 .3I1.31 2.6 

Input per charge, ampere-hours 1. ? 1 .1 2.8I 

Number of cycles to 0. 8 volt 168 356 256 50-60 1 50-60 50-60 -I 30 i00 176 I100 

Performance shown in Figure No. 16 26 24 1 31 j 32 

http:2.54f2.90


TABLE IX 

SUMMARY OF CYCLE LIFE OF ZINC-OXYGEN RECHARGEABLE EXPERIMENTAL UNIT CELLS EMPLOYING 

UNION CARBIDE'S THIN "FIXED-ZONE" OXYGEN ELECTRODES AND ANODES 

FABRICATED FROM ZINC-OXIDE FORMULATIONS 

Anode mix designation ZnO#1 ZnO ZnO# 19 
#10 

Rated anode capacity, ampere-hours 4 5 10 

Method of charge IE Constant Current __C PR 

Discharge-charge schedule, hours 2-2 Z-4 2-4 2-2 2-4- a-z z _24-- a-a a-z 

Temperature, degrees, Centigrade 25 a5 , a5 0' a50 40' 0' Zs 40' 0' a5' 40' 0' Z5 40 25' Z5 
U, 

Average discharge, current density mA/cm z Z4 31 31 7 Z7 27 a7 Z7 Z7 27 27 27 6.45 6.45 6.45 27 Z7 

Averagq charge, current density, rnA/cmz 30 15.3 17.35 30 30 30 15 15 15 2.75 2.75 2.75 8.54 8.54 8.54 2.7 

Output per discharge, ampere-hours Z. 74 3.0 3.0 Z. 6 Z. 6 2. 6 Z. 6 Z. 6 Z. 6 2.6 Z. 6 Z. 6 7.44 7.44 7.44 2.6 2. 0 

Inputper charge, ampere-hours 3.0C 3.0 3.36 2.8 2 Z. 8 2.8 z. 8 2.8 2.86 .86 .86 9.85 9.85 9. 85 Z. 6 3.85 

Number of cycles to 0.8 volt 100 124 108 60 128 116 72 165 115 60 130 114 17 60 Z4 134 

Performance shown in Figure No. 38 39 40 49 41 45 50 4Z 46 51 43 47 52 44 48 53 54 
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recharged after complete discharge of the zinc was identical to the routine 

2-hour rate of charge. The unit cell was returned to the original 2-hour 

discharged/2-hour charge schedule and continued to cycle out to 356 

cycles. The discharge performance after recharging the zinc from complete 

discharge was essentially unchanged. 

Cycle life at 250C on a 24-hour discharge/24-hour charge schedule 

is shown in Figures18 and 19. Discharges were across a fixed resistor of 

6 ohms. This represented the 50% zinc depth based upon the theoretical 

ampere-hour equivalents of the actual weight of zinc present in the anodes. 

The average discharge current density was 3. 7 mA/cmz. Balanced constant 

current charging was used. 

With higher current density operation as a major objective, cycling 

current densities on a 2-hour discharge/2-hour charge schedule commen­

surate to 25 0 zinc depth were attempted on cells employing C-3 as the 

separator. Continued cycling of these cells was prohibitive due to foaming 

of the electrolyte during charge. The foaming problem was found to be 

associated with the C-3 separator as was previously described. 

b) Performance of Unit Cells at ZSC 
with Thin "Fixed-Zone" Oxygen Electrodes 
and Double Layers of PERMION Membranes 

PERMION 110- and 116 obtained from RAI Research Corp. 

(formerly Radiation Applications, Inc. ) were tested as separators after 

foaming problems were found to be associated with the C-3 separator. 

Both of these materials appeared to meet the requirements for successful 

operation. PERMION 110 was somewhat more resistant to dendrite pene­

tration than the 116 film. Cycle life obtained with cells using these two 

separator membranes is shown in Figures 20 and 21. Even a single layer 

of the 110 membrane was sufficientfor successful cycling as shown in 

Figure 22. 
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c), Typical 25'C Cycling of Cells Designed to have 
Improved H igh-Rate Discharge Capability 

The 	low discharge voltage associated with 0. 7.5 ohm discharg­

ing 	of the unit cell (see Figures Z1 and ZZ) necessitated the need for modifi­

cations of the unit cell element to improve its high-rate discharge capability. 

this regard was achieved by making the following modifica-Improvement in 

tions in the unit cell element arrangement. ­

1. 	 Improved anode-collector contact. 

2. 	 Decreased cell internal resistance obtained by 

reducing the electrolyte gap and by the use of 

only one layer of PERMION 110 membrane. 

Further improvement in discharge performance could have been 

obtained by the use of the American Cyanamid oxygen electrode if this elec­

trode had demonstrated capability of stable operating performance. However, 

probleins with this electrode, as was described in section G, prohibits its use. 

Figure 23 shows typical cycles delivered by unit cells constructed as described 

below: 

1. 	 A unit cell incorporating the changes designed to improve 

the high-rate discharge capability and employing a 

T-2 oxygen electrode. 

2. 	 A unit cell incorporating the changes designed to 

improve the high-rate discharge capability and employing 

an American Cyanamid oxygen electrode. 

3. 	 A unit cell employing a T-Z oxygen electrode with no 

other changes in cell construction. 

These cells were discharged across a fixed resistance of 0. 75 ohm. 

Constant current charging was balanced so the input was equal to the output. 

Cycling was on a Z-hour discharge/4-hour charge schedule. 

See pages 3,and 4 for a description of this Union Carbide "fixed-zone" oxygen 
electrode which is designated here as the T-2 electrode. 
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d) 	 Performance of a Unit Cell at 25 0 C 
Employing a Thin "Fixed-Zone" Oxygen Electrode 
with a 10-Amp-Hour Zinc Gel-Type Anode 
Discharged to Z. 5-3. 0 Amp-Hours Output 

The continually declining discharge voltage level of the 

cell described in Figure 24 was the result of anode slump due to shape 

change. Testing was terminated when the end-of-discharge voltage reached 

0. 8 volt, which value was associated with 70-80% anode slump in practi­

cally every cell repeatedly discharged to 25-30% depth in 2 hours. Fifty 

to sixty cycles were generally delivered by cells repeatedly discharged to 

this depth in Z hours. However, 108 cycles were delivered by the cell 

shown in Figure 24. 

e) Performance of a Unit Cell at 400C 
Employing a Thin "Fixed-Zone" Oxygen Electrode 
with a 10-Amp-Hour Zinc Gel-Type Anode 

Figure 25 shows the Ist, 12th, 24th, 36th, 48th, and 56th 

cycles of a cell discharged across a fixed resistance of 0. 75 ohm at a 

current density of 22 rnA/cmZ to 26% depth. Cycling was on a 2-hour 

discharge/4-hour charge schedule. This cell employed a 10 ampere-hour 

anode and was susceptible to the same problem of anode slump as the cell 

cycled at 25°C. 

f) 	 Performance of a Unit Cell at 0C" 
Employing a Thin "Fixed-Zone" Oxygen Electrode 
with a 10-Amp-Hour Zinc Gel-Type Anode 

Figure 26 shows the Ist, 12th, 24th, 36th, 48th, and 56th 

cycles of a cell cycled at 0°C on a 2-hour discharge/4-hour charge schedule. 

Discharges were across a fixed resistance of 0. 75 ohm. The discharge 

current density was approximately Z1 mA/cm?. The same anode problem 

limited the life of this cell. 
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g) Performance of a Unit Cell at 25C 
Employing a Single Layer of PERMION 110 
Before, During and After Complete Discharge of a 
10-Amp-Hour Zinc Gel-Type Anode 

Figure 27 shows the discharge performance of a cell that 

was cycled on a 2-hour discharge/4-hour charge schedule. The first two 

discharges were followed by charges. The zinc was not recharged follow­

ing discharges 3 through 12. The cell was on open circuit during the 

4-hour periods scheduled for charge. At the end of the 12th discharge the 

zinc was charged so that the theoretical ampere-hour input was 9. 6 ampere­

hours. The charged current was 800 mA; this is equivalent to a current 

density of 14 mA/cm or the normal charge current for a 4-hour charge of 

this cell on a 2-hour discharge/4-hour charge schedule. The cell was 

returned to the original cycle with no change in discharge performance. 

h) Performance of Unit Cells at 250C 
Employing Thin "Fixed-Zone" Oxygen Electrodes 
with 15 and Z0 AmpHour'Zinc Gel-Type Anodes 

Over 350 cycles were delivered by a unit cell that was 

discharged to 1. 2-1. 4 ampere-hours output (12- 14% zinc depth) in ? hours. 

The discharge current density was 11-12 mA/cm. Discharges were across 

a fixed resistance of 1. 75 ohms. 

The unit cells that were modified to improve the high-.rate discharge 

capability are capable of discharges at double the current density (22-25 

mA/cm) with good voltage regulation, However, repeated 2-hour discharges 

across a fixed resistance of 0. 75 ohm to 2. 5-3. 0 ampere-hours output 

(equivalent to 25-307o zinc depth on a 10 ampere-hour anode) drastically 

reduced cycle life. Anode slump of 70-80% as was explained above was the 
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cause of failure after 50-60 cycles. The fact.that cycle life was so drasti­

cally reduced when identical anode structures were discharged to 2. 5-3. 0 

ampere-hours output (25-30% zinc depth), suggested the possibility of 

minimizing anode shape change, and extending cycle life by employing 

anodes of such capacity that a 2. 5-3. 0 ampere-hour output was to a depth 

comparable to that of the 350 cycle cell. 

Two cells, one with a 15 ampere-hour anode, and one with a 

Z0 ampere-hour anode were cycled. The charge-discharge current densities 

and the cycling schedule was identical to that of the 10-ampere-hour cells 

from which only 50-60 cycles were delivered. However, discharges across 

a fixed resistance of 0. 75 ohm to 2. 5-3. 0 ampere-hours output were equiva­

lent to 13% and 17% zinc depth, respectively, on a 20-ampere-hour and 

a 15-ampere-hour anode, compared to 25-30% depth on the 10-ampere­

hour anodes. One hundred and seventy-six cycles with good voltage regula­

tion were delivered from both the 20 ampere-hour and the 15 ampere-hour 

cell. A threefold extension of cycle life was realized from a 50%6 increase 

in zinc capacity. These data are shown in Figures 28 through 30. 

i) Performance of Unit Cells at 0' and 40'C 
Employing Thin "Fixed-Zone" Oxygen Electrodes 
and 15-Amp-Hour Zinc Gel-Type Anodes 

Cycle life of 100 and 120 was obtained from these cells at 

0 and 400C, respectively. Performance data are plotted in Figures 31 and 

32. 

j) Performance of Unit Cells at 250 C 
Employing American Cyanamid "LAB 40" Oxygen Electrodes 

The feasibility of using American Cyanamid "LAB 40" oxygen 

electrodes for recharging was demonstrated. However, apparent deterioration 
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of the active layer and flooding of this electrode limited cycle life. 

Migration ana'deposition of noble metal upon the zinc electrode thereby 

forming a serious gassing couple was another problem. X-ray fluores­

cence examination of zinc electrodes removed from spent cells employing 

the "LAB 40" electrode substantiated the presence of noble metals. The 

problems associated with the use of the "LAB 40" oxygen electrode seem 

to be less severe when the electrode was not used for charging the zinc, 

i. e. , when a separate charging electrode was used for charging. However, 

under all conditions of open cell operation in which cells employing "LAB 40"' 

oxygen electrodes were tested, the ultimate cause of failure was associated 

with the oxygen electrode. 

Cycling of cells employing "LAB 40" oxygen electrodes was carried 

out on schedules of 2-hour discharge/4-hour charge, Z-hour discharge/2Z­

hour charge, and 24-hour discharge/24-hour charge. One or more of the
 

aforementioned problems associated with the use of this electrode was the 

cause of failure of every cell tested. The problems were not eliminated 

when the electrodes were only subjected to very low current density 22-hour 

charging, nor were they eliminated when the electrodes were only subjected 

to very low current density 24-hour discharge/24-hour charge cycling. 

Generally, failure associated with the use of the "LAB, 40" oxygen 

electrode occurred very early in the life of the cell. However, 52 cycles 

were delivered from one cell before failure due to cathode polarization 

occurred. Another cell delivered 36 cycles before failure due to ele'ctrolyte 

flooding of the electrode was observed. In contrast, 129 cycles were deliv­

ered from a cell built with a separate charging electrode for charging the 

zinc after the first 31 cycles. 
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Figure 33 shows 52 cycles delivered by a unit cell employing a 

"LAB 40" oxygen electrode and a 20 ampere-hour zinc gel-type anode. 

Failure was due' to cathode polarization. 

Figure 34 shows 36 cycles delivered by a unit cell employing a 

"LAB 40" oxygen electrode. Failure was due to cathode flooding. 

Figure 35 shows 129 cycles delivered by a unit cell employing a 

"LAB 40" oxygen electrode and a separate charging electrode. The cell 

was charged over the first 31 cycles against the "LAB 40" oxygen electrode. 

k) Comparison of the Polarization Characteristics 
of the Thin "Fixed-Zone" Oxygen Electrode with that of the 
American Cyanamid "LAB-40" Oxygen Electrode 

Figure 36 shows a comparison of the polarization charac­

teristics of the Union Carbide thin "fixed-zone" oxygen electrode and the 

American Cyanamid "LAB-40" oxygen electrode as cycling progressed. 

Performance of the Union Carbide thin "fixed-zone" electrode 

actually improved over 56 cycles whereas the "LAB-40" electrode started 

to polarize badly after 36 cycles. The improvement seen in the perform­

ance of the Union Carbide thin "fixed-zone" electrode was due to improved 

wetting of the electrode active layer as cycling progressed. Although the 

voltage of the "LAB-40" oxygen electrode versus a zinc reference electrode 

was higher than that of a "fixed-zone" electrode on a fresh cell, the "LAB-40" 

electrode flooded and suffered apparent degradation of its activity as cycling 

progressed. The "LAB-40" electrode was used to recharge the zinc. The 

zinc electrode in the cell employing a thin "fixed-zone" oxygen electrode was 

charged by a separate charging electrode. 
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2. Anodes Fabricated from Zinc Oxide Formulations-

An investigation of anode structures other than zinc gel-type 

anodes undertaken in an effort to determine if additional cycle -life and 

deeper discharge were possible. The work was aimed toward extending 

cycle life by minimizing shape.change of the anodes when subjected to 

repeated deep-discharging and higher discharge current densities. This 

investigationnvolved the testing of anode plates fabricated from zinc oxide 

formulations. 'The formulations were designated ZnO#l, ZnO#10 and ZnO#19'. 

In addition, cells employing anode plates fabricatedtfrom the formu­

lation designated ZnO#19 were made with 0. 15-inch edge overlap (negative 

plate larger than positive plate) to investigate the effect of this concept on 

minimizing edge effect and subsequent shape change. This concept was 

suggested in the literature by McBreen et al(1 8 ) who reported that preferential 

plating toward the higher zincate center of the anode face resulted in a 

thicker more dense mass toward the center and depletion at the edges. 

Based on these findings, they suggested that the negative plate .be made 

slightly larger than the positive plate. 

Performance of zinc oxygen experimental unit cells employing 

anodes fabricated from zinc oxide formulations was as follows: 

a) Formation Cycling of Unit Cells Employing Anodes 
Fabricated from Zinc Oxide Formulations 

Cells employing anodes fabricated from zinc.oxide formu­

lations were assembled while the anodes were in the discharged state. 

Formation cycling was required before cell operation. The objective of 

formation, cycling was to ensure the availability of the desired ampere­

hour equivalents of actual zinc (100% availability as ampere-h6ur output). 

See p. '6 for description of ZnO #1 and ZnO #19. ZnO #10 consists of 43g ZnO, 
1. 5 g asbestos fibers, 21. 5g Cu powder, 21..5g Zn powder, 3. 4g Hg, and 9. ,ig 
0. IN KOH. The resulting amalgamated copper serves as a matrix collector 
for the zinc electrode. 
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This was accomplished by subjecting the unit cells employing these anodes 

to three formation cycles before cell operation. Typically, the anodes 

fabricated from the formulation designated ZnO#19 were cycled to ensure 

a 10-ampere-hour output by subjecting them to three cycles consisting of 

72 	hours charge at 210 mA, followed by discharging at 400 mA constant 

current to 0. 30 volt. Figure 37 shows the result of formation cycling 

of a ZnO#19 anode. 

b) 	 Performance of a Unit Cell at 25°C 
Employing a Thin "Fixed-Zone" Oxygen Electrode and a 
5 Amp-Hour ZnO#l Anode 
Cycled on a 2-Hour Discharge/?-Hour Charge Schedule 

A cell employing an anode fabricated from the zinc oxide 

formulation designated ZnO#l was formation cycled to provide 5 ampere­

hours zinc capacity. Cycling was carried out on a Z-hour discharge/ 

Z-hour charge schedule. Discharges were across a, fixed resistance of 

0. 750 ohm. The discharge current density was 24 mA/cm. The charge 

current density was 30 mA/cm2 . Total output per discharge was 2. 75 

ampere-hour (55%0 zinc depth). The required 3. 0 ampere-hour input was 

equivalent to 8. 7% overcharge. Figure 38 shows 100 cycles to 0. 8 volt 

delivered from such a cell. 

c) 	 Performance of a Unit Cell at 250C 
Employing a Thin "Fixed-Zone" Oxygen Electrode and a 
5 Amp-Hour ZnO#1 Anode Cycled on a 2-Hour Discharge/ 
4-Hour Charge Schedule 

Electroformation of zinc was to the 5 ampere-hour level. 

Cycling was on a 2-hour discharge/4-hour charge schedule. The discharge 

current density was 26 mAA/cm2 to a 3. 0 ampere-hour output. Discharges 

were to 60% zinc depth. The charge current density was 15. 6 nA/cm to 
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a 3. 25 ampere-hour input. The 3. 25 ampere- hour input was equivalent to 

8. 2% overcharge. Both charging and discharging was done with constant 

current. Figure 39 shows 144 cycles delivered from such a cell. 

d) Performance of a Unit Cell at 25°C 
Employing a Thin "Fixed-Zone" Oxygen Electrode 
and a 5Amp-Hour ZnO#10 Anode 

This ZnO#10 anode was formation cycled to 5. 0 ampere­

hours capacity. Routine cycling was on a 2-hour discharge-4-hour charge 

schedule. Cycling current density, output per discharge, and input per 

charge were identical to that of the 5 ampere-hour ZnO#1 anode described 

above. Figure 40 shows 120 cycles to 0. 8 volt delivered from such a cell 

e) 	 Performance of a Unit Cell at 25 0 C 
Employing Thin "Fixed-Zone" Oxygen Electrode 
and ZnO#19 Anodes 

Anodes fabricated from the zinc oxide formulation ZnO#19 

were formation cycled to ensure an input of 10 ampere-hours zinc capacity 

(the capacity of zinc gel-type anodes). Routine cycling was carried out on 

schedules of 2-h6ur discharge/2-hour charge, 2-hour discharge/4-hour charge,
 

2-hour discharge/22-hour charge, and 24-hour discharge/24-hour charge.
 

Both discharging and charging'was constant current. Discharge current 

densities were 27 mA/cm and 6. 45 nA/cm2 for 2-hour discharges and 

24-hour discharges, respectively. The charge current densities were 

30 mA/cm2 during a 2-hour charge, 15 mA/cm during a 4-hour charge, and 

2. 75 rnA/cm for a 22-hour charge of cells discharged for 2 hour to a 2. 6 

amp-hour output (26% zinc depth). The charge current density was 8. 5 

nA/cm for 24 hours for cells discharged for 24 hours to a 7. 5 ampere-hour 

output (75% zinc depth). Figures 41 to 44 show these data. 
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f) 	 Performance of Unit Cells at 40 0 C 
Employing Thin " Fixed-Zone" Oxygen Electrodes 
and ZnO#19 Anodes 

Cycling at 40°C of unit cells employing ZnO#19 anodes was 

identical (cycling current density, output, input, etc. ) to 250C cycling. 

Figure 45 shows 400 C performance of a cell cycled on a 2-hour discharge/ 

2-hour charge schedule. Figure 46 shows 40'C performance of a cell 

cycled on a 2-hour discharge/4-hour charge schedule. Figure 47 shows 

400C performance of a cell cycled on a 2-hour discharge/2-hour charge 

schedule. Figure 48 shows 400C performance of a cell cycled on a 24-hour 

discharge/24-hour charge schedule.
 

g) 	 Performance of Unit Cells at 0°C 
Employing Thin "Fixed-Zond'Oxygen Electrodes 
and ZnO#19 Anodes 

The operating parameters (cycling current density, output, 

etc. ) were identical to those of the 25CC cycling tests. Figure 49 indicates 

the 00C performance of a cell cycled on a 2-hour discharge/?-hour charge 

schedule. Figure 50 shows 00 C performance of a cell cycled on a 2-hour 

discharge/4-hour charge schedule. Figure 51 gives 0C performance of a 

cell cycled on a Z-hour discharge-Z2-hour charge schedule. Figure 5? 

shows 00C performance of a cell cycled on a 24-hour discharge/24-hour 

charge schedule. 

h) Performance of a Unit Cell at ?SC 
Employing a Thin "Fixed-Zone" Oxygen Electrode 
and a ZnO#19 Anode Charged by Asymmetrical 
A-C Method of Charge 

Cycling of a unit cell at 250C to determine the effect of asymmetrical 

alternating current on recharging the anode was carried out on a Z-hour discharge/ 

2-hour charge schedule. Charging was against a separate charging electrode. 
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The peak charging current density was approximately 11Z rnA/cmZ. The 

average current density was 69 m-A/cmz. Since the cycle efficiency was 

40% as a result of a 10%o reverse (deplating) component, the net charge 

current density was approximately 27. 5 nA/cmZ. The discharge current 

density was Z7 mA/cm. Discharges were at 1. 3 amperes with constant 

current. The mode of failure after 134 cycles was due to a break in the 

seal around the oxygen electrode. Approximately Z5% slump had occurred 

by this time as compared to failures due to 50-60% slump of anodes in 

cells charged by conventional 2-hour constant current charging. Figure 53 

shows the 25C performance of a cell charged by asymmetrical alternating 

current. 

j) Performance of Unit Cells at Z50C 
Employing Thin "Fixed-Zone" Oxygen Electrodes 
and ZnO#19 Anodes charged by Periodic 
Reverse and Periodic Open Circuit Methods of Charge 

Figure 54 presents the performance of a cell charged by 

the periodic reverse method of charge. The periodic reverse cycle was 

60 seconds with a plating time of 54 seconds and a deplating time of 6 

seconds. The current density during both plating and deplating was 4. 7 

mnA/cm. Cycling was carried out on a Z-hour discharge/2Z--hour charge 

schedule. Discharging was constant current at a current density of 27 

mA/cm2. 

Figure 55 plots the performance of two cells charged by periodic 

open circuit-methods. The periodic open circuit cycle on .one of the cells 

was ZZ. 5 seconds with a plating or charge time of 7. 5 seconds and an open 
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circuit time of 15 seconds. The-plating current density was 33 mA/cm. 

The periodic open circuit cycle on the other cell was 28 seconds with a 

charge time of 7 seconds and an open circuit time of 21 seconds. The 

plating current density was 17. 7 rnA/ccm z . 

k) 	 Comparison of a Typical Z-Hour Discharge at 250.C 
Following a 2-Hour Asymmetrical A-C Charging with 
a Z-Hour Discharge Following Z-Hour Constant 
Current Charging 

Figure 56 shows a comparison of typical 2-hour discharge per­

formance of a cell following Z-hour asymmetrical alternating current charging 

with that of a cell charged with constant current for 2 hours. Both cells were 

discharged at a current density of 27 mA/cm. 

A) Comparison of a Typical 2-Hour Discharge at 250C Following 
22-Hour Periodic Reverse Charging with a 2-Hour Discharge 
Following 22-Hour Constant Current Charging 

Figure 57 presents a comparison of typical Z-hour discharge 

performance of a cell following 2Z-hour periodic reverse charging with that 

of a cell charged with constant current for 22 hours. Both cells were discharged 

at a current density of 27 rnA/cm3 . 

m) 	 Summary of Cycle Life of Zinc-Oxygen Rechargeable 
Experimental Unit Cells Employing Union Carbide' s 
Proprietary Zinc Gel-Type Anodes and their Thin 
"Fixed-Zone" Oxygen Electrodes 

Table VIII summarizes the cycle life obtained from experi-­

mental unit cells employing Union Carbide's proprietary zinc gel-type anodes 

and thin "fixed-zone" oxygen electrodes. 
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n) 'Summary of Cycle Life of Zinc-Oxygen RechargeaSle 
Experimental Unit Cells Employing Union Carbide's 
Thin "Fixed-Zone" Oxygen Electrodes and Anodes 
Fabricated from Zinc Oxide Formulations 

Table IX summarizes cycle life obtained from experimental 

unit cells employing anodes fabricated from zinc oxide mixtures and thin 

"fixed-zone" oxygen electrodes. 



FIGURE 11 

0°C DISCHARGE-CHARGE PERFORMANCE OF A UNIT CELL EMPLOYING A THIN 
FIXED-ZONE" OXYGEN ELECTRODE, 10 AMPERE-HOUR ZINC GEL 

TYPE ANODE AND A DOUBLE LAYER OF C-3 SEPARATOR 

3. 0 
2-Hour Discharge/2-Hour Charge 
Fixed Resistance Discharge 1. 752 

Constant Current Charge 0. 60 Amp 
Cycling C. 1D. 10.4 rnA/cm? 

2. 0. 
"C 
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ist Cycle 84th Cycle 168th Cycle 
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Cycle Number 
C-5833 
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FIGURE 12
 

DISCHARGE OF RECHARGEABLE UNIT CELL MADE WITH 
BORDEN C-3 SEPARATOR FOR 168 CYCLES 

2-Hour Discharge - 2-Hour Charge at 00 C
 
Fixed Resistance Discharge 1. 750
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C-4150
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FIGURE 13 

250 C DISCHARGE-CHARGE PERFORMANCE OF A UNIT CELL EMPLOYING A THIN 
"FIXED-ZONE" OXYGEN ELECTRODE, 10 AMPERE-HOUR ZINC GEL TYPE ANODE AND 

A DOUBLE LAYER OF BORDEN C-3 SEPARATOR - IST, 178TH, AND 354TH CYCLES ARE SHOWN 

2-Hour Discharge/2-Hour Charge at 250 C 
Fixed Resistance Discharge 1.75 0 

Constant Current Charge 0.65 Amperes 
Cycling C.D. -,11.8 ma/cm2 

1.0 02-Zn 7 9,-Zn 02Z 
1st Cycle 2 178 Cycle 354th Cycle 

Cycle Number C-5830 

0 
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FIGURE 14 

DISCHARGE OF RECHARGEABLE ZINC-OXYGEN UNIT CELL MADE 

WITH BORDEN C-3 SEPARATOR FOR 356 CYCLES 

2-Hour Discharge - 2-Hour Charge at 25 0 C 
Fixed Resistance Discharge 1. 750i 

Average Zn Discharge Depth 13% 

1.0 N S 

0 ZZ4 36 48 60 72 84 96 108 1ZO 13Z 144 156 168 1o 192- 204 216228 240 

Cycle Number 

23 6'4Z6 Zs8 300 31Z 324 336 348 

c­ 4 1.51 

336 



FIGURE 15 

3. 0 

40 0 C DISCHARGE-CHARGE PERFORMANCE OF A UNIT CELL EMPLOYING BORDEN 

SEPARATOR AND A 10 AMPERE-HOUR ZINC GEL TYPE ANODE 

Z-Hour Discharge/Z-Hour Charge 
Fixed Resistance Discharge i. 75Q 

Constant Current Charge 0. 65 Amperes 
Cycling C. D. - 11. 8 mA/cm? 

C-3 

2.0 

Charges: Ni vs. Zn 

4-4 
,-4 

0 

1. 0 
1st Cycle 128 Cycle 

25Znd Cycle 

Discharges: O vs. Zn 

0 

Cycle Number 

C-5832 
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FIGURE 16 

DISCHARGE OF RECHARGEABLE UNIT CELL MADE WITH BORDEN SEPARATOR 

2 Hour Discharge - 2 Hour Charge at 40'C 
Fixed Resistance Discharge 1. 75 0 

FOR Z56 CYCLES 

1.0 

0 

-I I I- I I I I I I I I I I I I I I I I I 

1 12 24 36 48 60 72 84 96 108 120 132 144 156 168 180 192 204 216 228 240 252 256 
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C-4152 



FIGURE 17 

RECHARGEABILITY AFTER COMPLETE DISCHARGE OF ZINC 
IN UNIT CELL SHOWN IN FIGURE 2 

3.0 	 Fixed Resistance Discharge 1. 752 
Discharge
Number 	 Amp-Hr Output
 

157 1. 12
 
158 	 1. 08 
159 1. 04 	 Charges following 
160 0.96 171st and 172nd discharges
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2.0 164 0.21 	 1. 4 Amp-Hr 5. 6 Amp-Hr Input 
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FIGURE 18 

IST, 6TH,- 12TH CYCLE OF ZINC-OXYGEN UNIT CELL CONTAINING A DOUBLE 
LAYER OF C-3 SEPARATOR 

2.'8 24-Hour Discharge/24-Hour Charge at 25°C 
Fixed Resistance Discharge to 6a 

2.4 

1st Charge - 6th Charge 12th Charge 
2 0 ----- --

Ni vs.. Zn Ni vs. Zn Ni vs. Zn 
3.6 mA/cm2 3.8 mA/cm 3.8 mA/rcm2z 

1.6 

16t Discharge 6th Discharge 12th Discharge 

1.2 -­

02 vs. Zn 0? vs. Zn O vs. Zn 
3.6 r'A/cm 3.8 mA/cm 3. 8 mA/cmz 

0. 8 

0.4 

N 

Cycle Number 

0'
 

C-5836
 



FIGURE 19 

18th, 24th, and 30th CYCLE OF ZINC-OXYGEN UNIT CELL CONTAINING 
A DOUBLE LAYER OF C-3 SEPARATOR 

24-Hour Discharge/24-Hour Charge at 25 0 C 

Fixed Resistance Discharge 6&2 

4-. 

0 

Z.0 18th Charge--­_---

Ni vs. Zn 
3.6 rnmA/cmZ 

18th Discharge 

24th Charge 

Ni vs. Zn 
3. 8 n A/cmZ 

24th Discharge 

30th Charge 

Ni vs. Zn 
3.7 rnA/cm 

30th Discharge 

1.0 
Oz vs. Zn

3.6 mA/cm 
0 z vs. Zn 

3.8 mA/cm 
Oz vs. Zn 
3. 7 mA/cm 

0 

Cycle Number 
G-5835 



Z..0 

FIGURE 20 

DISCHARGE OF RECHARGEABLE UNIT CELL AT 25 0 C CONTAINING A DOUBLE-
LAYER OF PERMION ,10 SEPARATOR 

Discharges were across a Fixed Resistance of 0. 75 ohm for 2 Hours 

Average Zn Discharge Depth 22% 

1.0 o 

0. 8 volts 

0 1 Z4 48 72 9 120 

Cycle Number 

144 16 19z 

C-4153 

Z18 



Z50 

FIGURE 21 

C DISCHARGE OF RECHARGEABLE UNIT CELL CONTAINING A 
DOUBLE LAYER-OF PERMION 116 SEPARATOR 

Discharges were across a Fixed Resistance of 0, 75 ohm 
Average Zn Discharge Depth Z2% 

1.0 

z 0. 8 volt, 

1 12 24 36 48 6o 
Cycle Number 

72 84 96 108 

C-4154 



PERFORMANCE 

FIGURE 22 

OF RECHARGEABLE UNIT CELL AT 250 C CONTAINING A SINGLE 
A SINGLE LAYER OF PERMION 110 

Fixed Discharge 0. 75 ohm Charge was Constant Current 

2.0 

-00 

0 

Nt vs. Zn 
1st Charge 

Ni vs. Zn 
Z0th Charge 

w! 

NI vs. Zn 
40th Charge 

NI vs. Zn 
bOth Charge 

Ni vs. Zn 
80th Charge 

Ni vs. Zn 
90th Charge 

C) 

O, vs. Zn 
1st Discharge' 

0, vs. Zn 
20th Discharge 

Oz vs. Zn 
40th Discharge 

O vs. Zn 
60th Discharge 

O, vs. Zn 
80th Discharge 

Oz vs. Zn 
90th Discharge 

Cycle Number 
C -4 155 
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FIGURE 23TYPICAL CYCLE AT 25 

MODIFIGATIO 

OF CELLs INCORPORATING 

DESIGNAIMED AT IMPROVINGRATE CAPABILITY Tq I.GHOF TljpE UNIT CELL 

C. . Arnpe re-H our. Ip
.. 
 .
 

3- 6 Ampn~ 

C* 2,.4rn ar,_H ,' Outp ,t 

A. Zinc electrodePhusAmexican 
ryonveldllecor system

with improedoCyanamid COllect 
ygen electrode.B. Same zinc electrode as A plus UCC T2 OxygenC. electrodeZinc electrode with former collector system plusOUCC T-z oxygen electrode. 

Discharges 
were a ft-,ross ixed rsistn 
Charge. 

of 0. 75 ohm for 2 houWere constant curreor 

0 

Ti0e (Hours) 

C-41S6 



FIGURE 24 

PERFORMANCE OF CELL AT 25 0 C WITH "FIXED-ZONE" OXYGEN ELECTRODE AND 
10 AMP-HR ZINC GEL ANODE DISCHARGED TO 2.5 - 3. 5 AMP-HR OUTPUT 

3.0 
n
Separator:--single layer "Permioz IIC 

Z4th 48th 7?nd 96thChage Charge Charge Charge Charge 

4-Hour Charge (C. D. approx. 11 nmA/cm 2 )
 

4 
 000
 

1.0
 

1st 24th 48th 72nd 96th 108thDischarge Discharge Discharge Discharge Discharge Discharg( 

2-Hour Discharge (C. D. approx. 22 niA/cm) 70-80% 

Anode slump
 
had occurred
 

0 
Cycle Number 

.C-4203 



3.0 

FIGURE 25 

40 C PERFORMANCE OF 10 AMPERE HOUR CELL DISCHARGED 
TO 2. 5 - 3. 0 AMPERE HOUR OUTPUT 

Separator: single layer of "Permiio t'l11 

2. 0 
1st 12th 24th 36th 48th 

Charge Charge Charge Charge Charge 

4-Hour Charge(C. D. approx. 11 rnA/rcm z) 

0 

1.0 -. 
Ist 12th Z4th 36th 48th 56th
 

Discharge Discharge Discharge Discharge Discharge Discharge
 

Z-Hour Discharge(C, D. approx. 2Z mA/cm) 

0 

Cycle Number 

C-4209 



3. 0 

0°C PERFORMANCE 

FIGURE 26 

OF 10 AMPERE-HOUR CELL DISCHARGE AT 25% ZINC DEPTH 

0 

2.0 

Ist 

Charge 

12th 

Charge 

4-Hour Charge (C. 

-II 

24th 
Charge 

D. approx. 

36th 
Charge 

10. 5 mA/cm) 

48th 
Charge 

1. 0 

1st 
Discharge 

12th 
Discharge 

Z4th 
Discharge 

36th 
Discharge 

48th 
Discharge 

56th 
Discharge 

2-Hour Discharge (C. D. approx. 21 mA/cm2 ) 

0 

Cycle Number 
C-42 10 



FIGURE 27 

DISCHARGE PERFORMANCE 
DISCHARGE 

BEFORE, DURING, AND AFTER COMPLETE 
OF ZINC-OXYGEN UNIT CELL 

m 
I­

3.07 

2.0 

Cycle No. 

3 
4 
5 
6 

8 
9 

10 
11 
12 

Total 

Amp-Hr Output 

2.80 
2.70 
2.70 

.45 

.40 

.24 

.11 

.09 

.07 

.04 
9.60 

2-Hour Discharge/4-Hour Charge at 250. 

Fixed Resistance Discharge 0. 750 

/ e 0 A A1 

0 

2 4. 6 8 10 12 14 16 18 20 2Z 

Cycle Number 
C-3890 



FIGURE 28 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 
ELECTRODE AND A 15-AMPERE-HOUR ZINC GEL TYPE ANODE 

3.0 .2-Hour Discharge/4-Hour Charge at 25°C 

Theoretical Anode Depth per Discharge: 17% 
Separator: Single Layer of PERMION 110 

2.0 

Charges: . 

-
ist 24th 48th 72nd 96th 120th 144th 168th 

x 
176th 

0 
Discharges­

0)1 
Charge C. D. - 11 rnA/ cm z o 

0. 8 

l10st 24th 48 72 nd- 9th 

Discharge C. 

10tl, 

144th_ 

i-22A/cmZD. - /slump) 

1 6'Tt_ -­ 176th 0. 8V 

(50% anode 

0 Cycling was terminated when the end-of-discharge voltage reached 0. 8V 
I IJ 

Cycles 
C-5858 



FIGURE 29 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 
ELECTRODE AND A 20 AMPERE-HOUR ZINC GEL TYPE ANODE 

3. 0 
2 Hour Discharge/4-Hour Charge at 25 0 C 

Charges: 

Theoretical Anode Depth per Discharge: 13% 
Separator: Single Layer of PERMION 110 

2.0 -
1st Z4th 48th 72nd 96th 

I 
120th 144th 

Z 
168th 176th 

I 
o 

0 
~Charge C. D. - I I rA/cm2 

> Discharges: 

1. 0 

0.8 
1st 

-

" 4th 48th 72nd 96th 

-_.. 
1h j144th 

_ 

168th 

..--
176th 

0.8 

0 
Cycling 

Discharge C.D. -22rnA/cm 

was terminated when the end-of-discharge 
f 

z 

voltage reached 0. 
I 

8V 

50% anode 
slump 

I 

Cycles 
C-5859 



FIGURE 30 

COMPARISON OF 10, 15, and 20 AMPERE-HOUR ZINC GEL TYPE ANODES 
DISCHARGED TO 26%, 17% and 13% DEPTH 

Cell No. Canac% Discharged Discharge C. D. Out.zt No. Cycles to 0. 8V Secarator 

1 15 A-h Z hours ZZ =A/cm' Z 6 A-h 176 Single Layer 

z Z0 A-h Z hours ZZ =A/c=2 Z. 6 A-h 176 Per-ioa 110 
3 10 A-h Z hours ZZ mA/=2 z. 6 A-h 108 (1 cell) 
4 10 A-h Z hours - 72 mA/cn z Z. 6 A-h 50-6G Avg. of 10 cells 

(1) --------- 15 A-h anode 

(2) Z0 A-h anode
 

(3 &4)t 10 A-h anode
 

1. 0 

06 
c 176 cycle s 

- 70-80% 70-80% "-50% 16 
anode slump anode slump anode slump 

01 
0 1 24 48 72 96 120 144 168 

Cycles 
C-5831 



FIGURE 31 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE' OXYGEN 
ELECTRODE,AND A 15 AMPERE-HOUR ZINC GEL TYPE ANODE 

2-Hour Discharge/4-Hour Charge at 00 C 

3.0 Fixed Resistance Charge: 0. 752
 
Separator: Single Layer PERMION 110
 

1st 24th 48th 72nd 96th 
2. 0 

Constant Current Charge: 0. 68Ampere 

w
.4­
-4 

0 

Cycle Number 

C-5837 



FIGURE 32 

3. 0 

40°C PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
ELECTRODE AND A 15 AMPERE-HOUR ZINC GEL TYPE ANODE 

2-Hour Discharge/24-Hour Charge 
Fixed Resistance Discharge 0. 750 
Constant Current Charge: 0. 78 Ampere 
Separator: Single Layer of PERMION 110 

OXYGEN 

2. 0 Ist 24th 48th 72nd 96th 

0 

Charges Ni vs. Zn 

1. 0 

0.88 1st 24th 48th 72nd 

Discharges Oz vs. Zn 

96th 120th 

01 
Cycle Number C-5839 
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FIGURE 33 

PERFORMANCE OF A UNIT CELL EMPLOYING AN 
AMERICAN CYANAMID "LAB 40" OXYGEN ELECTRODE 

AND A 20 AMPERE-HOUR ZINC GEL ANODE 

3.0 
2-Hour Discharge/4-Hour Charge at 25°C
 

Fixed Resistance Discharge 0.750
 

Separator: Single layer PERMION 110 

2. 0 ­

1st 24th 48th 52nd 

Charge Voltage:Zn vs. 02 

44 

0 

1st 

1.0 24•th
 

Discharge Voltage: Zn vs. O. 

*Zn Ref vs. Cathode very close to cell voltage, indicating 

the voltage drop is at the cathode. Separator-free Ref 
vs. Cathode voltage only slightly higher. 

01 
Cycle Number 

C-5838 



FIGURE 34
 

CYCLING OF AMERICAN CYANAMID-LAB-40'ELECTRODE CELL AT 31% ZINC DEPTH
 

1st 
Charge 

12th 
Charge 

24th 
Charge 

36th 
Charge 

> . 0 
ist 

Discharge 
12th 

Discharge 
24 h 

Discharge Discharg 
Cathode flooding was 
the.cause of failure 
after 36 cycles 

Cycle Number 

0 

C-4207 



FIGURE 35 

PERFORMANCE OF A UNIT CELL EMPLOYING AN AMERICAN CYANAMID "LAB 40" 
OXYGEN ELECTRODE 

Z-Hour Discharge/4-Hour Charge at 25 °C
 

3.0 	 Separator: Single Layer of PERMION 1770C 

Charge: Ni charging electrode vs. Zn
 
Charge: Oz vs. Zn
 

2.0 -0 

Large voltage drop was due to build-up iof H2 In the anode ua. due to noble
 
metl to Zn cnle. Cell wa. produc.in Ht less severe trbbuo
Z. 	 althogh it still exists 
H preferentally to ctarg g the inc. 	 Typical of discharge. 32-40. However
 

time to sharp drop mcreasig with each
 

0 	 cycle 

1.0 

drop due to anode 
& cathode polarization 

ist 28th 
31st 32nd 44th 96th 128th 129th 

0 Discharge: Oz vs. ZnI 

Cycle Number 
C-5860 

http:produc.in


FIGURE 36 

IR-Free Cathode Polarization - American Cyanamid LAB-40 Vs. Union Carbide T-2 

1.5
 
Separator: Single Layer of PERMION 110 

C 

u 1.0 

1*.0 
(D Fresh cell 

Qj56 cycles 
Nq @ 28 cycles 

4 Fresh cell 
36 cycles -

Id 

og0.5 

Union Carbide T-2 

American Cyanamid LAB-40 

0 I I I I 1 I 
10 20 30 40 50 60 70 80 90 100 

C. D. mA/cm? 

C-4208 



FIGURE 37 

FORMATION CYCLING OF AN ANODE FABRICATED FROM ZnO FORMULATIONDESIGNATED 
ZnO #19 

Charging was carried out at a current density of 3. 6 mA/cm2
 

Discharging was to 0. 30 volt at a current density of 7 mA/cm
 

10 

0
 

04 
04 

0 0 

4 p 

0 

3 4 
Cycles 

C-5842
 



FIGURE 38
 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN ELECTRODE 
AND A 5 AMPERE-HOUR ZnO-1 ANODE 

3. 0 
.st, Z4th, 48th, 72nd, 96th and 100th cycles are shown. 

2-Hour Discharge/2-Hour Charge at 25°C 

Discharge Voltage Ni vs. Zn
 

1st 4th 48th 72nd 96th 100th
Constant Current Charge - C. D. -30 mA/cm z 

Charge Voltage 02 vs. Zn 

0 

1.0 1st 24th 48th 72nd 96th 100th
 

-Fixed0. 8. Resistance Discharge 0.750 C.D. "24 -M/crn 

Cycling was terminated when the end-of-discharge voltage reached 0. 8V. 

0 I I 

Cycles
 

C-5843
 



3. 0 

FIGURE 39 
PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 

ELECTRODE AND A 5-AMPERE-HOUR ZnO#1 ANODE 

Z Hour Discharge/4-Hour Charge at 25 0 C 

ist, 24th, 48th, 72nd, 96th 120th .nd 144th cycles are shown. 

Charge Voltage: Ni vs. Zn 

2. 0 ist 24th 48th 72nd 

Constant Current Charge: C. D. 
4-I 

16 

96th 

mA/cm 

120th 144th 

1. 0 

0. 8 

1st 24th 

Discharge Voltage: O vs. Zn 

48t'- 72n 96th 

Constant Current Discharge: C. D. 

120th 

31 mA/cm 

144th 

-

Cycling was terminated when the end-of-discharge voltage reached 0. 8V 

Cycles 

C-5861 



FIGURE 40 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FDXED-ZONE" 
ELECTRODE AND A 5-AMPERE-HOUR ZnO# 10 ANODE 

OXYGEN 

3.0 
2-Hour Discharge/4-Hour Charge at 250 C 

Charge Voltage: Ni vs. Zn 

2. 0 
Ist 24th 48th 

Constant Current Charge 

72nd 

- C. D. 

96th 

16 mA/cm z 

120th 

'0 

0 

1.0 
0.8_ st 

... 

Discharge Voltage: Zn vs. 0 z 

- -

24th 48th 72nd 

76th 120th 
Constant Current Discharge - C. D. 31 mnA/cm 

.Cycling was terminated when the end-ofdischarge voltage reach.0 8V. 

0 1 

Cycle s 

-- I I 

C-5844 



FIGURE 41 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN
 
ELECTRODE AND A 10-AMPERE-HOUR ZnO#19 ANODE
 

,3.0 
2-Hour Discharge/Z Hour Charge at 250C 

Theoretical Output: 2.6 Ampere Hour 

2. 0 15th 3 Ist 47th 63rd 79th 95th 111th 127th 

Constant Current Charge: C. D. 30 mA/cm 
Charge Voltage: Ni vs. Zn 

Discharge Voltage: O vs. Zn 

1.0 

ist 16th 32nd 48th 64th 80th 96th 112th 128th
 

Constant Current Discharge: C. D. 27 mA/cm 

Cycling was terminated when the end-of-discharge voltage reached 0. 8V
 

0
 

Cycle Ndimber 
C-5862 



3. 0 

FIGURE 42 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
- 'ELECTRODE AND A 10-AMPERE-HOUR ZnO# [9 ANODE 

2-Hour Discharge/4 Hour Charge at 25'C 

Theoretical output: 2. 6 ampere hours 
Ist, every 24th, and the 165th cycles are shown 

OXYGEN 

Charge Voltage: Ni vs. Zn 

2.0 23rd 47th 71st 95th 119th 143rd 164th 

Constant Current Charge: C. D. 15 rnA/cm 

00 

* Discharge Voltage: Oz vs. Zn 

1. 0 

1st 24th 48th 72nd 

Constant Current Discharge: 

96th 

C. D. 

120th 

27 mA/cmn 

144th 1th 

0. .. . 

Cycling 

...---­

was terminated when the end of discharge voltage reached 0. 

Cycles 

8V 

C-5863 



FIGURE 43 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 
ELECTRODE AND A 10 AMPERE-HOUR ZnO#19 ANODE 

3.0 
2-Hour 	Discharge122-Hour Charge at 25 0 C 

Theoretical Output: 2. 6 Ampere Hour 

2. 0 	 Charge Voltage: Ni vs. Zn 

Ist 	 24th 48th 72nd 96th 120th 130th 

Constant Current Charge: C. D. 2. 75 mA/cm0 

Discharge Voltage: 0a vs. Zn 

ist 24th 48th 72nd 96th 120th 130t 

Constant Current Discharge: C. D. 27 nnA/cm 

Cycling was terminated when the end of discharge voltage reached 0. 8 V 

0 

- Cycles 

C-5864 



FIGURE 44' 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIPN"FIXED-ZONE" OXYGEN 
ELECTRODE AND A 10-AMPERE-HOUR ZnO#19 ANODE 

3.0 
24-hour Discharge/24-Hour Charge at 25C 
Separator: Single Layer PERMION 1770C 

Theoretical Output: 7. 5 Ampere-Hours 

Discharge Voltage Ni vs. Zn 

Ist 12th 24th 36th 48th 60th 

Charge Charge Charge Charge Charge Charge
 

Constant Current Charge - C. D. 8. 54 mA/cmz 

,0 Charge Voltage O vs. Zn 

1. 0 
1st 12th 24th 36th 48th 60th 

Discharge Discharge Discharge Discharge Discharge Discharge 

Constant Current Discharge - C. D. 6.45 mA/cm 

0
 

Cycles
 

C-6959 



FIGURE 45 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 
ELECTRODE AND A 10-AMPERE-HOUR ZnO#19 ANODE 

2-Hour Discharge/2-Hour Charge at 40 0 C3. 	 0 .... 

1st, every 24th, 116th, and 119th cycles are shown. 
Separator: 	Single Layer PERMION 1770C 

Theoretical Output: 2. 6 Ampere-Hours 

Charge Voltage: Ni vs. Zn 

2. 0 
.023rd 4 7th 71st 9 h 118tht 

Constant Current Charge - C.D. 30 inA/cin 

0 

Discharge Voltage: Oz vs. Zn 

1. 0 

Ist 24th 48th 72nd 96th I 16th 

Constant Current Discharge - C. D. 27 mA/cmZ 119th 

Cycling was terminated when the end-of-discharge voltage reached 0. 8V or below. 
0 

Cycles 

C-5846 



FIGURE 46 

3.0 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
ELECTRODE AND A 10 AMPERE-HQUR ZnO-19 ANODE 

2-Hour Discharge/4--our Charge at 40°C 

ist, every Z4th, and l11th Cycles are shown. -

Separator: Single Layer PERMION 1770C 
Theoretical Output: 2. 6 Ampere-Hours 

OXYGEN 

Charge Voltage: Ni vs. Zn 

2.0 23rd 47th 71st 
Constant Current Charge 

95th 

- C. D. 15 mA/cmz 

114th 

0 

Discharge Voltage Oz vs. Zn 

1. 0 

1st Z4th 48th 72nd 96th 115th 

Constant Current Discharge - C. D. 27 mA/cmz 

Cycling was terminated when the end-of-discharge voltage reached 0. 8V 

Cycles 
C-5847 



FIGURE 47 

3.0 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
AND A 10-AMPERE-HOUR ZnO#19 ANODE 

2-Hour Discharge/fl-Hour Charge at 400C 
Separator: Single Layer PERMION 1770C 

Theoretical Output: 2. 6 Ampere-Hours 

OXYGEN ELECTRODE 

2.0 1st 24th 

Charge Voltage: Ni vs. 

48th 72nd 

Zn 

96th 111th 

Constant Current Charge - C. D. Z. 75 ntA/cmz 

Discharge Voltage: Oz vs. Zn 

0, 

1st 74th 48th 72nd 96th 111th 114t 

Constant Current Discharge - C. D. 27 mA/crnz 

0 
Cycles 

C-585z 



FIGURE 48 

PERFORMANCE OF A UNIT CELL EMPLOYING A 10-AMPERE-HOUR ZnO#19 ANODE
24-Hour Discharge/24-Hour Charge at 40'd 

Theoretical Output:. 7. 5 Amp. Hours . Separator: Single Layer PERMION 1770( 

z.0 ___
1st 1Zth 24th 

Charge Voltage: Ni vs. Zn 
Constant Current Charge: C. D. 8.54 rnA/cm? 

0
0 

Ist 
 6th 12th 18th Z4th 

Discharge Voltage: Oz vs. Zn 
Constant Current Discharge: C. D. 6.45 mA/cmn2

Cycles 

C-5853
 



FIGURE 49 

UNIT CELL EMPLOYING A THIN"FIXED-ZONE" OXYGEN ELECTRODE AND 
A 10-AMP-HOUR ZnO#19 ANODE 

3. 0 

Charges: 

Theoretical Output: 2. 6 Amp-Hour 
Separator: Single Layer PERMION 1770C 

Z-Hour Discharge/2-Hour Charge at 00 

2. 0 
ist 12th 24th 36th 

Charge Voltage: Ni vs. Zn 
Constant Current Charge: C. D. 30 mA/cm 

48th 60th 

_j 

0 

Discharges: 

Ist 12th 24th 36th 48th 
Discharge Voltage: O z vs. Zn 

Constant Current Discharge: C. D. 27 mA/cm 

60th 

Cycles 

C-5854
 



FIGURE 50 

3.0 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" OXYGEN 
ELECTRODE AND A 10 AMPERE-HOUR ZnO-19 ANODE 

2-Hbu Discharge/4-Hflour Charge at OC 
Theoretical Output: 2. 6 Ampere Hours - Theoretical Input 218 Ampere Hours 

Separator: Single Layer of PERMION 1770C 

2.0 
23rd 

to. 

27th - 43rd 47th 
Charge Voltage: Ni vs. Zn 

Constant Current Charge: C. D. 15 mA/cm 

59th X 71st 

o 

Discharge Voltage: O vs. Zn 

1. 0 

1st 12th Z4th 28th 44th 48th 60th 72nd 

0 

Constant Current Discharge: C. D. 27 mA/cm 

Cycles 
C-5865 



FIGURE 51 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
OXYGEN ELECTRODE AND A 10-AMPERE-HOUR ZnO#19 ANODE 

3.0 
Theoretical Output: 2. 6 Ampere Hour 
2-Hour Discharge/22-Hour Charge at 0'C 

Separator: Single Layer of PERMION 1770C 

2. 0 lth' 

Charge Vpltage: Ni vs. 

23rd 27th 28th 

Constant Current Charge - C. D. 

Zn 

35th 47th 

. 75. nA/cmz 

59th 
'0 

04.)
'-I 

1.0 

Discharge Voltage: Oz 

-

vs. Zn 

1st 12th 24th 28th 29th 36th 48th 60th 

0 

Constant Current Discharge: 

Cycles 

C. D. ?7 maA/cm z 

C-5855 



3.0 

FIGURE 52 

PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
ELECTRODE AND A 16-AMPERE-HOUR ZnO# 19 ANODE 

24-Hour Discharge/24-Hour Charge at 0°C 

Separator: Single Layer PERMION 1770 C 
Theoretical Output: 7.5 Ampere-Hours 

OXYGEN 

2.0 

Ist 4th 8t / 12th 16th 
Charge Voltage: Ni Vs. Zn 

Constnt. Current Charge - C. D. 8. 54 rnA/crn z 

o Discharge Voltage: Oz vs . Zn 

1.0 

Ist 4th 8th 12th 16th 17th 

Constant Current Discharge,- C. D. 6.45 rnA/cm2 

0 

Cycles C-5848 



FIGURE 53 -

DISCHARGE PERFORMANCE OF A UNIT CELL EMPLOYING A TIN 't FIXED-ZONE" 
OXYGEN ELECTRODE AND A 10-AMvPERE-ISOUR ZnO#19 ANODE 

CHARGED BY ASYMMETRICAL A-C CHARGE METHOD 

Z.0 
Z-Hour Discharge/Z-Hour Charge at 25 0 C
 

Theoretical ouput: 2. 6 Ampere-Hour
 

Ist, every 1Zth, 133rd, and 134th discharges are shown 

0 

* 	 - 20% anode slump had 
occurred.-,Break at cathode 
seal allowed electrolyte to 

0- I 
leak out leaving cell dry. 

- I. - t 

lz Z4 36 48 60 7Z 84 96 108 130 13Z 133 134 
Discharges 

C-5866 



FIGURE 54 

DISCHARGE PERFORMANCE OF A UNIT CELL EMPLOYING A THIN "FIXED-ZONE" 
OXYGEN ELECTRODE AND A 10-AMPERE HOUR ZnO#19 ANODE 

CHARGED BY PERIODIC REVERSED CURRENT METHOD 
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FIGURE 55
 

PERFORMANCE OF UNIT CELLS EMPLOYING THIN "FIXED-ZONE" OXYGEN 
ELECTRODES AND 10-AMPERE HOUR ZnO#19 ANODES CHARGED BY 

PERIODIC OPEN CIRCUIT METHOD 
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1. 5 

FIGURE 56 

COMPARISON OF A TYPICAL 2-HOUR DISCHARGE FOLLOWING A Z-HOUR 
ASYMMETRICAL A-C CHARGING WITH A Z-HOUR DISCHARGE FOLLOWING 

Z-HOUR CONSTANT CURRENT CHARGING 

-------- Discharge following A-C charging 
Discharge following constant current charging 

92 

0 

1.0 

Discharge C. D. V7 mA/cmnz 

2. 6 Ampere-Hours Output 

0.5 

0 
0 1 

Hoar s, 
2 

C-585 1 



- 115 ­

1.5 

FIGURE 57 

COMPARISON OF 2-HOUR DISCHARGE AT 25"C FOLLOWING 22-HOUR PERIODIC 
REVERSE CHARGING WITH Z-HOUR DISCHARGE FOLLOWING 

z-HOUR CONSTANT CURRENT DISCHARGING 
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J. 6-'-",Volt, 10 Amp-Hr Zinc/Oxygen Rechargeable Battery 

1. Design Concept of Battery System 

Pursuant to Contract NAS-5-10247, two 6-volt, 10 amp-hr zinc 

oxygen secondary batteries were built and delivered to NASA. A Z-hour 

discharge rate and 22-hour charge rate were recommended for these. 

Appropriate monitoring and safety devices were incorporated in the systems 

each of which was complete with oxygen containing pressure vessel. 

Feasibility studies conducted with unit cells operated at essentially 

one atmosphere were used in selecting the anodes, membrane separators, 

cathode" materials, etc. Certain compromises were made in the interest of 

arriving at the most practical battery design for spacecraft.use in a zero 

gravity environment. Thus zinc-oxide type anodes were used in preference 

to zinc gel .anodes even though longer cycle life was obtained in single cells 

with noncirculating electrolyte from the latter. This was done because of 

the need to circulate the electrolyte to effect gas-liquid separation if the 

battery were to be cycled in a zero gravity environment. Electrolyte circu­

lation would have adversely affected the mechanical integrity of the zinc-gel 

anode because of CMC degradation and subsequent shape change. PERMION 

1770C membrane separators were used in both batteries. Union Carbide 

Corporation "fixed-zone" T-2 oxygen electrodes were used in one of these 

while American Cyanamid "LAB-40" oxygen electrodes were used in building 

the second.6-volt, 10 anp-hr battery. 

The design concept utilized a common electrolyte which is pumped 

into and out of each cell through small long channels. These channels result 

in high resistance conductive paths between cells thereby keeping the parasitic 

electrical losses to a tolerable level. The effe.ctive use of such channels has 

been demonstrated in fuel cell batteries built and tested at the Parma Technical 

Center of the Union Carbide Corporation. 



-117­

2. Construction of Battery System 

The proposed system is to operate in a sealed oxygen tank at elevated 

oxygen pressures. A schematic diagram of the power system is shown in 

Figure 58. The battery unit with its associated gas/liquid separator­

reservoir is contained within the oxygen tank. In operation the reactant 

oxygen is consumed during discharge. In the charging cycles, oxygen gas 

is generated within the battery and via the circulating electrolyte is returned 

to the reactant (oxygen) storage tank for reuse in the next discharge cycle. 

Circulating the electrolyte by means of a pump removes the generated gas 

within each cell of the battery. Gas-electrolyte separation would be accom­

plished in an adjacent compartment by centrifugal action effected by the pump. 

Hydrogen getters (platinum catalyzed plates) absorb hydrogen gas which may 

be generated. 
FIGURE 58 

BLOCK DIAGRAM OF UCC Zn-Oz BATTERY 

OUTPUT 

* Oxygen 

6V- amp-hr Tankage 

* -- Secondary~Battery ] 

Reservoirl H--z­
as/Liquid-- Gette;r 02O 

SeparatorI 

Pummp
 

Electrolyte Pump 

C-4466 



The battery construction developed is essentially the same as that 

proposed in the design study for a 28-volt, 3KWH zinc-oxygen rechargeable 

battery described in Appendix I. It consists of a compact modular cell which 

when assembled in a six-cell unit and potted in epoxy resin forms the battery 

shown in Figure 59. 

FIGURE 59 I 
BATTERY UNIT 

I 

• ! I 
I 

, 

I 

C-4455 

The battery unit and electrolyte reservoir are attached to a cover plate 

and a back plate by means of four threaded mounting rods as shown in Figure 60. 1 
The electrolyte output port of the battery extends into the reservoir and the battery 3 
electrolyte input port tube protrudes past the reservoir through the cover plate 

into the externally mounted electrolyte pump. A deep drawn stainless steel case 

is mounted over the battery and reservoir and is bolted to the cover plate forming 

the oxygen tankage. The complete rechargeable battery system is shown in Figure 61. U 
I 

: % 
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FIGURE 60
 

SIDE VIEW OF SYSTEM WITH TANKAGE REMOVED
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FIGURE 61 

UNION CARBIDE ZINC-OXYGEN RECHARGEABLE 6-VOLT 
10 AMPERE-HOUR BATTERY SYSTEM 
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a) Modular Cell 

The modular construction consists of an anode and two cathode frames 

which are cemented together to form a dual cathode cell, as shown in Figure 62. 

Appropriate channels and indentations are incorporated in each frame to form 

the necessary electrolyte and gas cavities. I 

FIGURE 6Z I 
MODULAR CELL i 

Anode 
Framei 

Electrolyte Channel 

I 
Cathode Frames [I 

*\Silver Anode I 
Terminal Wire 

Silver Cathode 3 
Terminal Tabs 

I 
3C-6600 
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An exploded cross-sectional sketch of the modular cell construction 

is shown in Figure 63. The molded anode contains 67. 7 grams of #ZnO- 19 

anode mix molded at 500 psi into a perforated silver envelope formed of three 

spot-welded 3/0 expanded silver grids. The resulting electrode measures 

3" x 3" x 0. 135". A silver wire (0. 032" diameter) spot-welded to the silver 

envelope serves as the negative terminal lead for the cell. 

The cathodes obtained were cut to a 3" x 3" size. A folded 1/4" strip 

of 5 mil silver sheet, which serves as a current collector, is attached to one 

edge of the cathode by means of silver epoxy adhesive. Attached to the current 

collector is a 5 mil by I/2" wide silver terminal tab. cast intoThe cathode is 

an epoxy frame made of three parts Union Carbide 2774 resin and two parts 

VERSAMID 125 resin. Slots are built into the cathode frame to produce the. 

necessary internal input and output electrolyte ports as well as passages to 

the exterior to obtain access to the oxygen. The cavity on one side of the 

cathode frame forms the electrolyte cavity which contains an expanded grid, 

separator and charging grid, if used. The cavity on the other side serves as 

the oxygen access passage.
 

b) Six-Cell Unit 

The battery supplied under this contract consists of six (6) cells 

assembled and potted in epoxy resin. As shown in Figure 64, long electro­

lyte channels (1/16" diameter x 2-1/4" long) are incorporated in the input 

and output of each cell to circulate the electrolyte and provide resistive 

electrical paths between cells to reduce electrolyte leakage currents. The 

electrolyte ports of each cell are connected in parallel with the input at the 

bottom of the battery and the output at the top. 

Two types of batteries are supplied in this contract. The cells of 

each battery are constructed essentially in the same manner except for 



FIGURE 63
 

EXPLODED CROSS SECTION OF MODULAR CELL
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FIGURE 64
 

SIX CELL BATTERY UNIT POTTED IN EPOXY
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the cathode material and the charging electrode. The battery having cells 

with the Union Carbide T-2 "fixed-zone" cathode material each contain a 

separate nickel charging electrode. The battery containing cells having 

American Cyanamid "LAB-40" cathodes utilized the cathode as the charging 

electrode. 

The two types of batteries can also be distinguished by the fact that 

the one containing "LAB-40" cathodes has twelve electrical leads; whereas, 

the T-2 cathode battery with additional charging grids has eighteen leads. 

c) Electrical Circuitry 

Individual leads from each celi electrode are terminated in a plug 

in the tank cover plate to facilitate inner battery cell connections and means 

to monitor cell and total battery voltage. Schematic diagrams of the two 

batteries and respective terminal number connections at the AMPHENOL 

type lZ6-806 plug are shown in Figures 65 and 66. 

FIGURE 65
 

(AMERICAN CYANAMID CATHODE) BATTERY TERMINALS
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FIGURE 66 

(UNION CARBIDE CORPORATION T-2 CATHODE) BATTERY TERMINALS 

2 4 7 10 13 16 

1 5 8 10 14 20 
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Reservoird) 

The reservoir is a block of plastic positioned between the battery and 

the tank cover. It contains a cavity into which the output electrolyte port of 

the battery empties. At this point, the gas, which is transported from the 

interior of the battery in the form of bubbles in the electrolyte, is separated 

and exhausted into the gas tankage. The reservoir also serves to compensate 

or adjust for electrolyte volume changes which occur in the battery. 

e) Electrolyte Pump 

coverThe electrolyte pump is mounted externally on the face of the 

plate by means of a stainless steel bracket. It is mounted outboard to prevent 

The pumpcombustion due to the operation of the D.C. (brush) pump motor. 

operates at tank pressure and is magnetically coupled to but physically isolated 

from the motor and the external atmosphere. 

The pump furnished was designed and used on another project and is 

much more powerful than necessary for this use. It requires approximately 

2. 5 volts at 200-250 mA for operation. The pump is rotated at a slow speed 

and is required to deliver only enough pressure head or electrolyte flow to 

produce an output of electrolyte from the battery into the reservoir. 
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f) Tank 

The tank is a deep drawn stainless steel container whose bottom is 

reinforced by a 1/16" welded, circular, stainless steel plate. Four 1/8 NPT 

ports are installed on the bottom. The open end of the tank has a rolled over 

lip. 

g) Operation 

The battery system is shipped fully assembled but in a discharged 

and inactive condition. To activate (fill with electrolyte), first remove the 

tank by disconnecting the twelve mounting lugs. Activation is accomplished 

by injecting 41% KOH + 3-1/2% ZnO by means of a hypodermic syringe into 

one of the vent holes on the top of the electrolyte reservoir as shown in 

Figure 67. Electrolyte should be added until the level in the reservoir is at 

the input tube port from the battery. 

FIGURE 67 

BATTERY ACTIVATION 
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h) Socket Connections
 

The respective cell connections to form the battery are accomplished
 

at the external mating socket connector, AMPHENOL No. 126-807.
 

In the case of the battery having "fixed-zone" cathodes and an additional 

charging electrode per cell, a separate socket connection is used, shown in
 

Figure 68 for the charging cycle only.
 

In the case of the battery having "LAB-40" cathodes, the same socket
 

connections, shown in Figure 69 are used for connecting the cells in series
 

for both charge and discharge cycles.
 

FIGURE 68 

CHARGING SOCKET CONNECTIONS FOR CELLS HAVING CHARGING ELECTRODES 
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I 

3. Testing of Experimental Battery System
 

Prior unit cell work was conducted with oxygen at essentially one
 

atmosphere pressure. Operation in a closed vessel at elevated oxygen 

pressures resulted in an increase in cell operating voltage, as well as 3 
volumetric electrolyte changes due to compression of inner cell entrapped 

gas. Since a complete evaluation of the pressurized system would require 

time and effort far in excess of the commitment of this contract, only the 

major aspects of such an evaluation were considered. These included' 

(a) the design and construction of a prototype battery suitable for testing, 3 
(b) enclosing the battery in a suitable tank, (c) providing a means of 

pumping electrolyte through the battery, and (d) installing a simplified I 
system for electrically connecting and monitoring each cell. The testing 

required monitoring the voltage of each cell, the battery temperature, and 

the tank gas pressure. A rapid decrease in cell voltage indicates cell 3 
reversal (of one or more cells) accompanied with the evolution of heat and 

hydrogen. 
 I 
For safety reasons, the battery system testing was programmed to 

evaluate by steps each operating condition in order not to exceed the known 

safety limits. During the initial discharge cycle, the battery was operated 

at low tank pressure to determine the feasibility of circulating the electrolyte 

and the ability of the battery to perform at rated capacity. Subsequent discharge 

cycles at higher oxygen operating pressures included battery temperature 

I
 
I
 



1-129­

measurements and extended operating time. The danger of ignition at elevated 

oxygen pressures plus the possible generation of hydrogen required caution 

and verification of safe operating conditions. 

a) Single Modular Cell Test - (K-I) 

This test was conducted to evaluate the feasibility of circulating elec­

trolyte through a cell. 

A single cell was constructed (shown in Figure 70) having a "LAB-40" 

cathode and a zinc oxide type anode. Channels were provided to permit 

oxygen flow across the face of the cathode, and ports were used to permit 

electrolyte flow through both inner cavities of the cell. 

Electrolyte was circulated through the cell at a slow rate and reused 

by manually maintaining a electrolyte pressure head at the input port of the 

cell to produce a flow from the output port. Figure 71 is a chart of the test 

results showing the voltage level spread for the even discharge and charge 

cycles. The test was terminated after 51 cycles because of oxygen supply 

failure over an unattended weekend. Discharging under the conditions of 

complete depletion of oxygen produces wetting and/or flooding of the cathode 

which permanently damages the cell. 

The test proved the practicability of circulating electrolyte through 

various chambers of the cell and the collection and transporting of the gen­

erated gas external to the cell. Such electrolyte circulation is deemed 

necessary for the battery to operate in the zero gravity environment of space. 

Provision of a suitable pump in the electrolyte circulation system would create 

a synthetic gravitational field for the separation of O from liquid electrolyte 

during battery charging. 



FIGURE 70
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FIGURE 71 

CELL VOLTAGE VS. CYCLE LIFE 
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b) Battery KB-3 

The initial test of the rechargeable battery system was conducted 

with battery KB-3 which was built with Union Carbide type T-2 cathodes. 

Due to electrolyte leakage problems, the discharge cycles were conducted 

with the battery in the tank under manually controlled oxygen conditions, and 

the charge cycles were performed with the battery outside the tank to allow 

dissemination of the generated gas into the atmosphere. 

Charts of the test data for the first three discharge cycles may be 

seen in Figure 72. The first discharge cycle proved the feasibility of 

circulating the electrolyte through both sections of each cell, the collecting of 

electrolyte and the separation of gas and electrolyte in the reservoir. The 

battery operated on a 3-ampere load at voltages above six volts. 

The second discharge cycle was conducted in the same manner as the 

first with the battery drain steadily increased in I-ampere steps to the rated 

discharge drain of five amperes. This test was terminated due to the rapid 

decrease in voltage of one cell below 0. 8 volt. 

The objective of the third discharge cycle was to determine the battery 

temperature rise and the effect of elevated oxygen tank pressure on the operation 

of the battery. The battery temperature increased-to 13Z°F on 5-ampere discharge. 

When the drain was reduced to 3 amperes, the temperature decreased and 

leveled off at 118 0 F. The tank was pressurized with oxygen to 12. 7 psig vith no 

adverse effects. 

In the first three charge cycles, the capacity of the anode was steadily 

increased by charging to sustain a 37ampere hour discharge. The fourth discharge 

cycle is shown in Figure 73. After flushing with oxygen, the system was pres­

surized with oxygen to 13.4 psi, and after 32 minutes, the tank pressure was 



- 133 -

FIGURE 72
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NO. KB-3 	 -0
 
8.0 	 0 

First Discharge Cycle 	 0 

b6.0 

- Battery Voltage t N 
0 

4. 0 	 Amperes Load 4.0 2. 0 

0-0 Oz Pressure
 
2 " 0 


2.0 0.0
 

0.0 D 	 0.0 0. 0 

0 20 40 60 80 100 120 140 160 180
 
Time - minutes
 

"d 
0 

Second Discharge Cycle w 0 
8.0 

Battery Voltage 	 '1 4
 
0 
> f-	 -- AmperesLoad 

&10"o-	 O Pressure 

w - --	 2.0 1.0M 2.0 r - --

0.0 .0.0 	 0.0 
0 	 20 40 60 80 100 120 140 160 180
 

Time - minutes
 

0 

F 48.0 
Third Discharge Cycle 	 140 

,fl6"0 	 IC- - Battery Voltage 120 15.0 
"3 

> 4. 0 	 -- Amperes Load0 -- 80 10.,0 
0rP4. 	 o-o* a,Pressure8010

" .Oc= L _ 	 , 60

4--	 U- Temperature 

S2.05.0
 

20 
0.0 -	 0 0.0 

0 	 z0 40 60 80 100 120 140" 160 180
 
Time - minutes
 

C-6960
 



- 134 -

7.00Fourth 

ZINC/OXYGEN 

FIGURE 73 
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again manually increased with oxygen. While the oxygen consumption, as 

indicated by the decrease in tank pressure, is greater than the calculated 

battery oxygen utilization, subsequent analysis of tank gas in later tests 

indicated the presence of nitrogen in sufficient percentages (16%) to partially 

account for the difference. On maintaining the current drain at 3 amperes, 

the battery temperature increased to 1250F which is within a safe operating range 

and would not dictate the use of a heat exchanger. 

c) Battery KB-S 

fattery construction improvements eliminated initial battery electrolyte 

leakage but subsequent problems involving fluctuation of electrolyte levels 

prevent closed operation on the charge cycle. Due to gas generation, the. 

electrolyte level, as visually noted at the electrolyte reservoir, increases and 

foaming occurs on the charge cycle. In the discharge cycle, gas tank pressure 

greatly reduces the electrolyte level to a point of affecting operation. 

It was not possible in the limited amount of system testing to effect a 

balance which would allow continued closed system operation for both the dis­

charge and charge cycles. 

The KB-8 battery built with American Cyanamid cathodes ("LAB-40") 

was discharged across a fixed resistive load of Z. 0 ohms. After alternately 

flushing and pressuring the tankage to 10 psi with oxygen several times to 

reduce the nitrogen content to a low percentage, the tank was pressurized to 

26. 4 psi with oxygen and secured. The fixed load was then applied. The chart 

of the first discharge cycle is shown in Figure 74. Operation was continued for 

3. 75 hours and was terminated after the rated capacity of 10. 0 ampere-hours 

had been exceeded. 
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Three ,discharge cycles (Figures 74, 75, and 76) for the KB-8 battery 

were obtained before serious blockage of the electrolyte passage occurred 

during the fourth charge cycle and terminated the test. The blockage was 

due to the presence of zinc oxide in the parallel electrolyte connecting channels 

which resulted in an internal gas pressure buildup, eventually forcing gas and 

electrolyte through the cathode. 

During the third charge cycle, gas samples were taken to determine 

whether hydrogen had been getherated. The tank was pressurized and flushed 

with oxygen, then maintained at 1. 0 psi with the battery charging at the 0. 5 

ampere rate. The tank pressure increased to 4. 8 psi after two hours on charge 

at which time gas sampling indicated 73% oxygen, Z6% nitrogen and 1%hydrogen. 

After increasing the charging rate to 1. 0 ampere at a tank pressure of 2. 4 psi, 

a second sample taken after two hours indicated 82% oxygen, 16% nitrogen and 

1. 5% hydrogen. The presence of hydrogen made it advisable not to pressurize 

the tank for the az-hour charging cycle. 

NEW TECHNOLOGY 

There 	is one new technological advance which is believed to fall 

of this contract to be reported, i. e. , the cushioningwithin the scope 

either side of the Borden C-3 membrane to prevent physicalseparator on 

damage to the soft-swelled C-3 membrane. The material employed for this 

was a nonwoven cellulose mat. Protection of the Bordencushioning separator 

separator in this manner contributed to the improved cycle life on the two-hour 

discharge/two-hour charge regime. 
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FIGURE 74 
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ZINC/OXYGEN 

FIGURE 75 
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ZINC/OXYGEN 

FIGURE 76 
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CONCLUSIONS AND RECOMMENDATIONS 

The zinc-oxygen battery system has been found to be capable of 

delivering 350 cycles above the 1-volt discharge end-point with zinc powder­

carboxymethyl cellulose gel anodes and Union Carbide "fixed-zone" cathodes 

at 25°C. This cycle life is dependent upon temperature dropping to-250 cycles 

at 40°C and 168 cycles at 0°C. Actual depth of zinc discharge is about 15% 

based upon the weight of the zinc used. A 2-hour discharge/2-hour charge 

regime was used with constant current charging. Deeper zinc discharge 

cycling with zinc-gel type anodes results in configurational changes which. 

reduce cycle life. At about Z0% depth, for example, the 25 0 C cycle life of the 

2-hour discharge/4-hour charge regime drops to 175 cycles. Cycle life at 

0°C and 40°C is further reduced to 100 cycles. Discharge and charge current 

densities at the 15 and 20% zinc depth are approximately 15 and 20 mA/cm. 

A separator system consisting of a least one layer of a membrane 

film, such as Borden C-3 or PERMION 110 or 1770C was found to be mandatory 

for extended cycle life. Such a film is required to prevent internal cell short­

ing due to zinc dendrite formation on charge and to separate the oxygen gas on 

the cathode side of the cell from reaching the zinc electrode and thereby 

resulting in a chemical short. Obviously this film must be resistant to oxida­

tion. Borden C-3 membrane films were found to perform satisfactorily below 

current densities of 15 mA/cmz . At higher current densities a foaming prob­

lem was encountered with Borden C-3 films. The use of PERMION 110 or 

1770C membrane film circumvented this problem and for thi's reason the 

PERMION films are preferred. 
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The presence of an interconnecting liquid-leveling channel between 

the electrolyte reservoirs above the positive and negative electrodes of each 

cell was found necessary in order to compensate for the electroosmotic 

transport of liquid through the membrane separators with cycling. 

Cell charging directly against an American Cyanamid "LAB-40" 

oxygen electrode was shown to be feasible. Problems encountered, however, 

include deterioration of the electrodets active layer resulting in polarization 

and flooding as well as dissolution of the noble metal catalyst into the 

potassium hydroxide,with subsequent migration to and deposition upon the 

zinc olectrodelresulting in the formation of a hydrogen gassing couple. This 

was proven by x-ray fluorescent examination of zinc electrodes from such 

cycled cells. 

The zinc-oxygen system employing either zinc-gel or zinc oxide 

formulated anodes was capable of recharge even from a completely discharged 

condition. 

Cells made with zinc oxide formulated anodes (ZnO#19) discharged 

at 25°G for 2 hours at current densities of 27 mA/cm3 . These cells delivered 

128, 165, and 130 cycles, respectively, when discharge was followed by 

2, 4, and 22-hour charges. 

Modulated current charging was found to have advantages over constant 

direct current charging. Configurational zinc anode changes with cycling are 

significantly retarded when modulated current is used for charging. 

Zinc gel-type anodes were found to-possess the following advantages 

over the zinc oxide formulated anodes:. 
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(a) 	 better energy density (1. 84 g/AH vs. 1.60 g/AH), 

(b) 	 do not require formation charging, and 

(c) 	 operate better at OC. 

Longer cycle life and greater discharge uniformity resulted from 

the use of Union Carbide "fixed-zone" oxygen cathodes. A nickel charging 

electrode is needed with this cathode, however, to protect the catalytic 

carbon layer from oxidation. Resulting cells are therefore of a 3-electrode 

design. 

Data developed from the experimental unit cell work were used as a 

basis for a paper .design study of a 28-volt, 3 KWH rechargeable zinc-oxygen 

battery. The two-electrode structure, employing American Cyanamid 

"LAB-40" oxygen cathodes, was selected for this study. An important con­

sideration which led to the selection of the American Cyanamid cathode was 

the simplicity and weight reduction of the 2-electrode charge-discharge circuit 

as opposed to that required for cycling a 3-electrode cell system. The energy 

density of the. design battery including tankage and auxiliary equipment is 

directly related to discharge time and the size of the battery. For a 2-hdur 

discharge, this value is 22 watt-hours per pound. If the discharge time is 

increased to 8 hours, the energy density rises to 35 watt-hours per pound. 

It is recommended that additional work be pursued upon the recharge­

able zinc-oxygen system. This recommendation is made in view of the cycle 

life already attained in the course of this work and the ultimate energy density 

potential of the system (541 watt-hours/pound). 

Specific unit cell work recommended includes: 

(a) 	 Concentration upon the development of a highly conductive 

zinc anode structure susceptible to a minimum of 

configurational change with cycling. 

°
(b) 	 Emphasis upon low temperature (0 C) performance of 

the unit cell structure. 
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(c) 	 Further evaluation of modulated current charging 

techniques to still further retard configurational 

change of the zinc anode structure. 

(d) 	 Search for an inert separator membrane film that is 

of lower resistance in the KOH wet condition than 

those presently used. 

(e) 	 As new improved cathodes become available from 

any source, these should be evaluated in any 

further work. 

It is further recommended that a part of the over-all effort should 

be with completely enclosed systems complete with tankage and cell.auxiliary 

equipment where the oxygen generated on charge is re-used on discharge. 
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APPENDIX 

DESIGN STUDY FOR 28-VOLT, 3 KWH ZINC-OXYGEN
 
RECHARGEABLE BATTERY
 

NASA CONTRACT NAS-5-10247
 

1.0 SUMMARY 

A design study was made of the zinc-oxygen system for the purpose 

of determining the optimum weight and volume of a 28-volt, 3 KWH secondary 

metal-oxygen battery for spacecraft has been completed. The design is based 

on current knowledge derived from feasibility studies conducted under NASA 

Contract NAS-5-10247. Preliminary engineering layouts indicate the batteries 

may be contained in spherical tanks with auxiliary mechanisms mounted on three 

support legs. An overall view of the energy density of such a battery (watt-hours 

per pound) as a function of hours of discharge is given in Appendix Figure 1. 

APPENDIX FIGURE I 

ENERGY DENSITY VERSUS HOURS DISCHARGE 
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2. 0 BATTERY DESIGNED FOR Z-HR DISCHARGE/Z2 HR CHARGE 

A battery complete with tankage for the 2-hour discharge and.22-hour 

charge cycle is estimated to weigh 144 pounds and have an energy density of 

20. 8 watt-hour.s/lb. Data showing this are presented in Appendix Table 1. 

The system would be contained in a spherical tank, 21-5/8 inches in diameter., 

and would have a volumetric energy density, of 0. 56 watt-hours/in3. Batteries 

having the same 3 KWH capacity but designed for longer discharge periods will 

have appreciably improved energy density values, due to reductions in size 

made possible by lower current drain requirements. The energy density of a 

battery designed for 6 hours discharge, for example, would be 32. 5 watt-hours/lb. 

Battery design is based on the use of "LAB-40" cathode material. This 

was chosen over the T-2 cathode as an engineering compromise since it simplifies 

multicell construction by eliminating separate charging electrodes and additional 

discharge/charge switching gear. The current density of the cell electrodes 

was limited to 25 mA/cmz for this design study while zinc utilization efficiency 

was limited to 33-1/3%. If'the cell efficiency and operating characteristics were 

improved so that higher current densities could be usefully employed and/or 

higher anode utilization efficiency could be practically achieved, energy density 

improvements for this entire system would be additive and could range up to 

40-50 watt-hours/lb. This suggests that future work for the achievement of higher 

energy densities in this zinc/oxygen system might well be concentrated on the 

zinc electrode. 

In the development of power sources for spacecraft applications con­

siderable effort has been supported by the Government and industry to increase 

the energy density of electrochemical systems in regard to on-board applications. 



APPENDIX TABLE I 

WEIGHTS AND ENERGY DENSITY SUMMARY
 
Z8 VOLT-3 KWH ZINC/OXYGEN RECHARGEABLE BATTERY
 

(Z-hour discharge - ZZ-hour charge cycle regime)
 

Cumulated Totals 

Cell Components g/cell lb/Batt. wt. -lb Watt-hr/lb Reference 

I. Partition Plate 35.2 1.86 	 Table VII 

2. Cathode 520.1 -7.46 	 Sec. 4.3 

3. Cathode'Collector 23.8 1.26 	 Table VII
 

T1 114. 	PELLON Separator 12. 3 0.65 


"
 5. PERMION Membrane 	 3.6 0.19 


6. WEBRIL Separator 31. Z 1.65 	 it 

T I17. VISKON-VINYON Separator 14.9 0.78 

8. Anode 580.9 30.67 	 i t 

9. Anode 	Collector 13.8 0.73 Sec. 4.5
 

10. 	Electrolyte 461.2 Z4.35 Table VII 

Total 1 697.0 .89.60 89.6 33.4 

Battery Packaging 18.7 108.3 27.7 Sec. 5. 2 

Oxygen 1.8 110.1 27.2 Sec. 5.3 

Tankage 20.3 130.4 23.0 Sec. 6.4 

Hardware
 

Pump 1.0 Sec. 6.3
 

Gas/Liquid Sep. 3.5 Sec. 6.Z 

Reservoir 4.0 

H2 Getter 1.0 

Misc. -Piping, Fittings, etc. 4.0 

13.5 143.9 *20.8 

"Comparable numbers for four and six hours discharge modes are shown in Figure 1. 
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While the theoretical maximum output for the active materials of the zinc/oxygen 

system is 490 watt-hours/lb, the reduction of the system to a practical operating 

rechargeable cell reduces this energy density value. This energy density is 

further reduced when the cells are packaged into a battery system complete with 

sustaining hardware. Complete self-sustaining systems with their reactants, 

tankage and hardware present challenging problems. 

3. 0 WEIGHTS AND ENERGY DENSITY CALCULATIONS 

3. 1 Operating Parameters 

Feasibility studies conducted under the present contract resulted in the 

following parameters being used in the design study: 

1. A 2-hour-1500 watt (3 KWH) discharge rate. 

2.. Current density is limited to 25 mA/cm2 -the limiting 
factor being the anode-membrane separator combination. 

3. 	 A 33-1/3% depth of discharge with respect to the 
anode is the most practical to date. 

4. 	 The use of LAB-40 as the cathode electrode eliminates 
an additional charging electrode and circumvents switching. 

3. 2 Weights and Density Summary 

Appendix Table I presents the weights and density summary for a 

2-hour charge/22-hour discharge battery. Reference sections are noted. 

3. 3 Energy Calculations for Lower Current Drains 

Increasing the specified discharge time for the rated 3KWH battery 

from two to four or six hours, allows reduction of battery size (reduced cross­

sectional area by virtue of reduced current requirement for a given current 

density). This can be seen in Appendix Figure 1. 
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3. 4 	 Estimated Energy Density Improvements - Improved Design 

3.4. 	1 Higher Current Densities 

The present current density operating level of Z5 mA/cm is 

limited by the anode-membrane separator combination. Any improvement 

resulting in increased electrode current density will reduce the battery size 

and weight and increase the energy density as shown in Appendix Figure 2. 

3. 4. 	2 Increased Depths of Discharge 

Zinc anode discharge depth is limited to 33-1/3% in the present 

design study (based on theoretical zin5 available). Any improvement in anode 

discharge depth will, of course, increase the energy density. An increase to 

50% depth, for example, will increase the energy density of the battery package 

from 	27.. 7 watt-hours/lb to 30. 7 watt-hours/lb. 

4. 0 	 CELL DESIGN 

4. 	 1 Battery and Cell Requirements 

Appendix Table I presents a tabulation of the watt-hour and current 

drain rates for a two, four and six hour discharge cycle for a given 3 KWH 

battery. As indicated for the maximum energy discharge rate of 1500 watts 

per hour, a 28-volt battery would have a battery drain of 53. 57 amperes. 

APPENDIX TABLE II-

BATTERY CURRENT DRAINS FOR VARIOUS 24-HOUR CYCLES 

Dis charge Charge 

Hrs Watt/hr Amp. Hrs Watt/hr Amp. 

2 1500 53.57 22 136.4 4.87 

4 750 z6.78 Z0 150.0 5.36 

6 500 17.85 18 166.6 6.69 
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APPENDIX FIGURE 2 

ENERGY DENSITY VERSUS CURRENT DENSITY 
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Appendix Table III shows a tabulation of the number of cells required 

per battery and ampere-hours capacity per cell based on the current density 

and the respective cell voltage. The current density and cell voltage are 

discussed in greater detail in another section 

APPENDIX TABLE III 

CELL REQUIREMENT FOR 3 KWH-28 VOLT BATTERY 

No. Cells for 

mA/cm? Cell
Volt. 

28 Volt Batt. 
Cal. No. Watt-hrs 

Watt-hrs 
Per Cell 

Amp. hrs 
Per Cell 

Z5 1.18 23.7 Z4 3000 125.0 105.93 

50 1.12 Z5.0 25 3000 120.0 107.14 

-4.2 Cell Construction 

Cell design is based upon the feasibility study conducted as part of the 

present contract and Union Carbide's background in fuel cell, "Air Cell" and 

rechargeable battery systems. The cell design concept shown in Appendix 

Figure 3 is based on the utilization of the American Cyanamid LAB-40 oxygen 

electrode as both a discharge and charge electrode. A PERMION membrane 

is used to prevent oxide and dendrite shorting. The molded Union Carbide 

ZnO#l rechargeable anode was used. A space is provided between the cathodes 

of each cell and its partition to serve as a-channel for oxygen access to the cathodes. 

Metal collector tabs attached to the respective electrodes enable external 

electrical connections to be made; parallel connection of the dual cathodes in 

each cell as well as series connecting of cells in the battery. 
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APPENDIX FIGURE .3 

ZINC-OXYGEN DUAL CATHODE CELL CROSS-SECTION 
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4. 3 Cathode 

4. 3. 1 Description 

Two types of cathode material have been evaluated. The 

Union Carbide "fixed-zone" material consisting of an active carbon layer applied 

to one side of a porous metal backing and the American Cyanamid LAB-40 electrode 

material. The latter was used in this design study as an engineering compromise. 

This does not require.a separate charging electrode and results in simpler cycling 

circuitry. 

4. 3. 2 Cathode Area and Size 

Feasibility studies to date have indicated a reliable cathode operat­

ing current density of 25 mA/cmz at a potential of 1. 18 volts versus zinc. At this 

current density the cell requires a cathode area of 332. 2 square inches or 18. 22 



inches 	per side for a square cell shape factor to produce a cell current of 

53. 57 	amperes, as indicated in Appendix Table 11. To reduce the cross­

sectional size of the cell, a dual cathode cell construction is proposed and 

a tabulation of the electrode area and size for various discharge cycles is 

shown in Appendix Table IV. 

APPENDIX TABLE IV 

CATHODE AREA AND SIZE PER ELECTRODE FOR DUAL CATHODE CELL 

mA/cmZ 

2-Hr Discharge 

Area Per'Side 
in z in. 

4-Hr Discharge 

Area Per Side 
in, in. 

6-Hr Discharge 

Area PerSide 
in? in. 

25 

50 

166.10 

83.055 

12.890 

9.113 

83.055 

41.519 

9.113 

6.449 

55.348 7.439 

?7.674 5.Z50 

75 55.365 7.430 27.679 5.250 18.449 4.280 

Amp. 

Amp. 

EachSide 

Total 

26.78 

53.57 

13.39 

z6.78 

8.92 

17.85 

4.4 	 Membrane 

The membrane which is positioned between the anode and the charging 

electrode, prevents zinc oxide and dendrite shorting. RAI-1770 C PERMION 

material has proved very satisfactory for this function. 

4. 	5 Anode 

'4. 5. 1 Description 

The anode proposed for this battery is the Union Carbide ZnO#1 

It is fabricated in a discharged state and requires an initial charge prior to use. 

The depth of discharge of the anode is 33-1/3% based on the theoretical amount 

of zinc available. 

4. 5. 2 Anode Calculations 

A 15 ampere-hour ZnO#l anode weighing 27.433 grams (including 

silver grid ehvelope) after molding has a volume of 0. 5355 cubic inches. The 

volume to energy density, of the ZnO#1 anode is: 
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0. 	5355 - 0. 03579 in 3/AH. 
15 

The weight to energy density is: 

27.24433 - . 828 grams/AH.
15 

Using these density values, Appendix Table V presents a tabulation 

of the required anode volume and weight values per cell for the proposed battery. 

APPENDIX TABLE V 

CELLCALCULATED ANODE VOLUME AND WEIGHTS PER 

RequiredAmp-hr/Cell Volume (in3) Weight (grams) 

For Depthof Discharge (Amp-hrx0. 0357) (Amp-hr x 1.828) 
33 1/3%*331/3%* 100%*331/3%* 100%*mA/cm z 100%* 

25" 105.93 317.82 3.781 11.346 193.64 580.97 

11.475 	 587.61
50 107.14 321.45 3.824 	 195.85 


rDepth of Discharge 

-Applying anode volume values listed in Appendix Table V and electrode 

area values (cathode and anode will have the same active areas), anode thickness 

calculated as follows: 

11. 	346 in3 (Vol. for 317. 82 AH) 0. 068 inches anode thickness 

166. 10 in2 (Electrode Area) for two-hour discharge rate 

For the increased discharge cycle periods (lower current discharge rates) 

requiring smaller' electrode areas, anode thickness will increase as indicated 

in Appendix Table VI for a given ampere-hour capacity. 

APPENDIX TABLE VI 

CALCULATED ANODE THICKNESS 

Anode Thickness - Inches 

Anode* Z-Hour 4-Hour 6-Hour 

mA/cm Vol. in 3 Discharge Discharge Discharge 

11.346 0.068 0.136 0.205
 

50. 11.475 0.138 0.276 0.414
 

'331/3 percent Depth Discharge Anode 

25 
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4. 6 Cell Components - Weights and Volumes 

Appendix Table VII is a tabulation of individual cell components as to size, 

number, volume and weight for the 3 KWH-Z8 volt battery to operate on a 2-hour 

discharge/22-hour charge cycle. 

5. 0 BATTERY DESIGN 

5. 1 Description 

The proposed battery construction would consist of cells, individually 

assembled as units and stacked to form the battery. At the time of the stack 

assembly, the individual terminal tabs are connected and core material (to 

-produce electrolyte channels) are positioned prior to potting. The entire 

battery is potted-in-a form with epoxy resin. 

Gas evolution, particularly on the charge cycle, has posed problems 

in the feasibility study of the cell system. The study was conducted with cells 

having separate reservoir chambers for each respective electrolyte cavity on 

each side of the membrane. Gas evolution has been accompanied with changes 

in electrolyte levels for each cavity. For a sealed system such as is proposed 

here, circulating the electrolyte through all cell cavities of the battery will 

remove gas and compensate for changes of the electrolyte volume. The flow 

of electrolyte through each cell requires channels in the battery package to 

evenly distribute and collect the circulating liquid. 

Electrolyte leakage current would result from circulating electrolyte; 

electrically conductive paths exist between cells by virtue of the interconnecting 

potassium hydroxide streams. Union Carbide has set up a computer program 

which generates the equivalent network circuit for the stack internal electrolyte 

loops and using Kirchhoff's law solves the resulting set of simultaneous 

equations. These calculations show that stack internal resistance is generally 

negligible and that the effects of load current on leakage may be neglected. 



TABLE VII
 

CELL COMPONENTS - WEIGHTS AND VOLUME - 2 HOUR DISCHARGE 

166. 10 in2 Area 172.66 in2 Area 
12. 890 in/side* 13. 140 in/side* 

No. Pcs. Thickness Wt. Wt. Volume Wt. Volume Wt. 
Component Per Cell Each Total Gms/in2 Gins/in3 in3 Gins/Cell in: Gmns/Cell 

Partition (1) 1 0.010 0.010 0.204 Z0.41 1.7z6 35. ZZ 

(Polysulfone) 

Gas Space 2 0.015 0.030 4.983 

Cathode (2) 2 0.032 0.064 1.506 11.050 5Z0.1 
(LAB-40) 

Space 2 0.020 0.040 23.112 6.644 
(Electrolyte) 

Separator (4) 2 0.009 0.018 0.037 Z. 989 12.z9 
(PELLON) 

Membrane (5) z 0.004 0.008 0.011 1.3Z9 3.65 
(PE RMION) 

Separator (6) 2 0.027 0.054 0.094 8.969 31.23 
(WEBRIL) 

Separator (7) 2 0.010 0.020 0.045 3.322 14.94 
(VISKON-VINYON) 

Anode Collector (9) 
(Ag- 8. 05 in 2 ea.) 

1 0.010 --- 1,720 172.07 0.080 13.85 

Cathode Colector(3) Z 0.010 --- 1.450 145.03 0.164 23.80 
(Ni- 8. Z in2 ea.) 

Anode (8) 1 0.068 0.068 11.346 580.97 

39.876 1.77 
IZ.776 

CELL TOTAL 0.312 52.60 
*Square Shape Factor 

Electrolyte 
Wiight 

cc Grams 

108.8 153.6
 

39.7 55.9 

17.4 24.5 

117.6 165.8 

43.5 61.4
 

327.0 461.z 

I-
N4 
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5. Z 	 Battery Package Calculations 

5.2. 	1 Cross-Sectional Dimension 

Maximum 	cross- sectional cell 

component dimension 13. 140 inches* 

0. 500 inch battery case wall 1. 000 inch 

Battery Case Cross-Sectional Dimension 14. 140 inches 

5.2.2 	 End Plates 

PANELYiTE 	No. 161, epoxy impregnated glass cloth, 

Density - 1.88 grams/cc 

2 pieces x (14. 140) z x 0.Z50 = 99.96 in 3, 6. 78 pounds 

5.2.3 	 Length 

0. 312 inch (unit cell thickness) x 24 cells 7. 488 inches 

0.250 inch end plates x 2 pieces 	 .500 inch
 

Battery 	Package Length 7. 988 inches 

5. 	Z. 4 Battery Package Volume 

Volume = (14.140)' x 7. 988 = 1597.12 in3 

5.2.5 	 Battery Components Volume and Weight 

Vol. -in 3 Wt. -lbs. 

Unit Cell Components (24 cells) 126Z.4 89.6 

End Plates 99.6 6.8 

Total 1362.0 96.4 

5. Z. 6 Epoxy Potting Resin 

Battery Package Volume 1597. 1 in 3
 

Battery Components plus End Plates Volume -1362.0 in3
 
3


Epoxy Resin Volume 	 Z35. 1 in

Epoxy Casting Resin (2Z. 94"g/in3) 

235.1 in 3 x Z2.94 g = 5393 g = 11.89 lbs. 

5.2.7 	 Packaging 

Vol. -in 3 Wt. -lbs. 

End Plates 99.6 6.8 

Epoxy Casting Resin 235.1 11.9 

334.7 18.7
 

*Ref. Appendix Table VII 
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5.3 Oxygen Requirements 

Table VIII is a tabulation indicating the estimated oxygen requirements 

for 3 KWH operation based on: 

0. 2984 g Oz/Amp-hr (theoretical) 
0. 2984 

32 x 22.4 (1/mole) = 0. 2088 liters/Amp-hr. 

It is assumed in the battery design that 10 percent excess oxygen will be 

required for proper battery operation. 

TABLE VIII 

OXYGEN REQUIREMENT FOR 3 KWH-28 VOLT BATTERY 

mA/cm 2 
Amp-hr 
per cell 

No. 
cells 

Amp-hr 
perBatt. 

Oxygen 
Wt-g Vol-liter Wt-g 

O + 10% 
Wt-lbs Vol-liter 

25 105.93 24 2542.3 758.62 530.8 834.48 1.915 583.8 

50 107.14 25 2678.5 799.26 559.3 879.18 1.938 615.2 

6. 0 SYSTEM DESIGN 

6. 1 Description 

The schematic diagrim Appendix Figure 4, shows the proposed power 

system as it would operate from the solar array. By circulating the electrolyte 

through each cell of the battery, it will be possible to remove the gas generated 

during the charging cycle. A centrifuge is provided for gas-liquid separation. 

After the point of gas separation, a getter will be used to remove hydrogen from 

the O gas prior to its return into the reactant tankage. An electrolyte reservoir/ 

filter is provided in the electrolyte return line to compensate for electrolyte 

expansion during operation and to filter and adjust for changes in zinc oxide 

concentration. 
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APPENDIX FIGURE 4 

SCHEMATIC DIAGRAM OF THE PROPOSED POWER -SYSTEM 
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SEPARATOR & PUMP RESERVOIR/FILTER 

It is also proposed to enclose the battery package within the reactant 

(oxygen) storage tank to further conserve on space and weight. The electro­

lyte pump would necessarily be mounted outboard of the tank to lessen the 

danger of combustion due to the operation of the electrical pump motor. 

6.2 Gas-Liquid Separator 

Under Contract NAS 3-9430, Union Carbide subcontracted Air Research 

Manufacturing Co., a division of the Garrett Corp., for an experimental 

feasibility study of bubble separators. Their work showed positive results 

with a cyclone-type separator and the proposed design here is based on a similar 

device. 
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6.3 Electrolyte Pump 

The Fuel C'ell Department of the Electronics Division of Union Carbide 

Corporation has developed small electrolyte pumps which could be applied to 

this system. The nature of the electric motor operated pump dictates its use 

outboard of the reactant tankage. The use of an A.C. pump is almost mandatory 

for any space mission since it is impractical to consider any replacement of 

brushes in a D.C. motor or operation in a high oxygen partial pressure 

environment. 

It is assumed that spacecraft in which the proposed power system would 

be employed would have an electric inverter on board and that a'small quantity 

of power could be used to operate an A. C. pump motor. 

6.4 Tankage 

The system containment vessel is designed for a-maximum operating 

pressure of 150 psi with a safety factor of 3. 3 based on yield strength. The 

material of construction will be 6061-T aluminum alloy having a working -stress 

of 33, 000 psi and a material density of 0. 1 b/in3 . All interior tank surfaces to 

be coated with nickel or suitable plastic to prevent chemical attack by the 

environment. Using these values, thickness requirements for the vessel have 

been calculated to be approximately 81 mils. Each flange to be '/Z inch thick 

by one inch in width welded to each spherical half section. Three support legs 

are 1/z inch thick having cutouts to mount hardware and effect reduction of 

weight. Tankage weight summary as follows: 

Spherical tank = 118.88 in3 

Flange = 65. 29 in 3 

Legs = 19.05 in3 

203. 2Z in 3 

0.1 lb/in3 x Z03. 22 in' = 20.3 lbs. 
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6.4. i Tankage Structure 

A preliminary design of the reactant tankage, containing the 

battery system, has been developed as shown in the three views of 

Figure 5. The containment vessel is a half-sectioned sphere, the 

bottom section having three support legs into which are mounted the 

electrolyte pump, gas-liquid separator and reservoir-filter. The 

battery is mounted in the spherical sections and is kept in position by 

small corner mounts. The two flanged half sections- are bolted 

together to effect pressurization. 

FIGURE 5a 

TANKAGE STRUCTURE 

I I 

C-4232
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6.4. 2 	 Sphrical Tank Diameter 

Figure 	5b
 

-- All four cdrners of the battery to 

C touch I. D. of sphere. The diagonal 

I 	 of the battery rectangle would equal 

- d--- the diameter of the sphere. 

8'Q 	1 C-4233 

d' 	= de + (14.140) z
 

- ('(7.988)2 + (14. 140)?
/] + (14.140)2)2 


d'= 21.533 in. diameter of sphere
 

6.4.3 	 TankVolume 

3
Vol. (I.D.) of Spherical Tank 	 = 4. 189 r = 4. 189 (10. 766) 3 

= 5227.20 in3 

6.4.4 	 02 Tankage Volume and Calculated Pressure
 

Vol. (I. D. ) of the Spherical Tank 5227. 20, in3
 

Vol. of Battery 1597.12 in3 

Vol. for Oz Storage 3630. 08 in3 or 59.49 liters 

- - 14.7 x 583.9-PV = 	 8583.3V 59.5 -	 59.5 144. 6 psi 

V = Oz requirement for operation of STP-liters
 

V' = Volume of tankage, liters
 

P'.= 14.7 psia
 

P' = O2 tankage pressure - psia
 

Ref. -	 Section 5.3 
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6.4.5 	 Tankage Weight Calculations 

6.4.5.1 Material 

6061-T Aluminum Alloy
 

Working Stress = 33, 000 psi
 

0. 1 lb/in3 
Material Density 

6.4.5.Z Wall Thickness 

Pd 500x 21.5 10750 0 
4S - x 33, 000 -132000 

6.4.5.3 	 WallVolume 

= 4. 189 (10. 847) 3 - 4. 189 (10. 766) 3 

= 118.88 in3 

6.4.5.4 	 Flange 

'/ inch thick - 2 pieces 1.00 inch total 

d' (I.D.) = 21. 533 + .162 = 21,695 

d (O.D.)= 21.533+2.0= 23.533 

Flange Volume = 1 (0. 7854 dz - 0.7854 d'z ) 

= 1 (0. 7854 x 23. 533? - 0. 7854 x 21. 6952 ) 

= 65.29 in3 

Legs6.4.5.5 

(21.75) - (21.75)2(0.7854)4 	 -Area/solid leg
4 

2
473.06- 371.54 101.52 = 25.38 in

4 	 4 
2
Cutouts 12.68 in

12.70 in2 

Figure 6., Support Leg Pattern 

Vol/leg = 12.70x 0.5 = 6.35 in 3 

4 in. Diameter x 3 = 19.05 in 3 

1-1/2 in. Diameter 

3-1/4 in. Diameter 
1-1/2 in. Diameter 

3/4 	in. Diameter 

C-4234 
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