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This report describes high data rate millimeter wave systems for
 
the transfer of image type data. The recommended system approaches
 
use-delta modulation as the digital communication technique, and
 
quadriphase modulation as the modulated carrier technique. This
 
report has been written in two volumes. Volume I deals with all
 
pertinent system and circuit concepts involved while Volume 2
 
addresses the principle technologies and technologies involved.
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SUMMARY PREFACE
 

This report investigates and extends the present low video-rate image­

transfer technology to high data rates using millimeter waves as the
 

transmission medium. The investigations include:
 

" 	Types of sensors capable of frequency components up to
 

40-60 GHz
 

Candidates: 	 Image orthicons
 

Vidicons
 

Isocons
 

Image dissectors
 

Spin cameras 	with photoelectric cells
 

* 	Types of A/D conversion techniques capable of developing
 

bit rates from 40 to 400 Mbps
 

Candidates: 	Delta modulation
 

Cyclic conversion
 

Phase domain conversion
 

CRT A/D converters
 

* 	Optimum types of modulation
 

Candidates: 	 Analog FM
 

Phase shift keying
 

Frequency shift keying
 

" 	Types of modulator and demodulator techniques capable of
 

handling bit rates from 40 to 400 Mbps
 

Candidates: 	 Modulators
 

* Switched-circulator types
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Demodulators
 

* 	Differential phase shift keying demodulators
 

* 	Coherent phase shift keying demodulators
 

* 	Frequency ranges for supporting high data rate digital
 

transmission
 

Candidates: 	 35 GHz
 

60 GHz
 

75 GHz
 

90 GHz
 

* 	Antenna and receivers to provide millimeter wave links
 

with margin above maximum bit error rate
 

Candidates: 	 Optimum acquisition and tracking procedures
 

Antenna size and gain
 

Antenna construction techniques
 

Receiver techniques
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SECTION 1
 

THE COMMUNICATION ASPECTS OF
 
-IMAGE TRANSMISSION HIGH DATA RATE
 

1.1 	 OBJECTIVES 

The objective of this contract is to evaluate suitable signal processing
 

and modulation techniques, and to assess current and projected technology
 

problems and needs associated with the transmission and reception of
 

image type data via millimeter wave relay satellites.
 

The effort under this contract was directed to the communication, signal
 

handling and technological problems associated with the transmission,
 

reception and processing of image type data originating in a surveying
 

satellite and to be transmitted via high speed digital links using
 

millimetet wave relay satellites. A considerable effort was directed
 

to corresponding methods of implementation, related problems, and
 

technology. For the purpose of this stddy, Philco-Ford was guided
 

by the following:
 

a. 	The data should originate in an Earth orbiting satellite
 

to be transmitted via one or more relay satellites at
 

synchronous orbits.
 

b. 	The sources of information should consist of but not
 

be limited to the following:
 

1. 	Linear arrays of detectors with no memory
 

2. 	TV or infrared type imagers
 

3. 	Side looking radars
 

4. 	Radiometers
 

5. 	A collection of low data rate sources
 

This data may be generated separately or simultaneously.
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c. 	The millimeter wave relay satellites should operate in the
 

60 to 100 GHz range, with power requirements less than 100
 

watts.
 

d. 	The baseband information is in-the range of 4 to 40 MHz.
 

The high data rate requirements are in the range of 40
 

to 400 MHz.
 

e. 	A bit stream format should be used, comparable to 32
 

levels or 5 bit quantization.
 

f. 	Modulation/coding schemes were restricted to systems with
 

channel to data rate ratios of 6.4 and preferably less.
 

Philco-Ford furnished the necessary personnel, facilities, services
 

and materials to accomplish the work set forth below:
 

Item I - a. 	Assess millimeter wave technology for space borne
 

use including power sources, detectors, components,
 

circuit techniques, and wideband capability.
 

- b. 	Assess high data rate transmitting and receiving
 

technology, including the processign and recording
 

of wideband information.
 

Item 2 - Determine and compare suitable candidate modulation/
 

coding schemes for the above data rates and classes
 

of data including .use of PSK, FSK, Wary communication
 

and biorthogonal coding. Determine in each case
 

suitable techniques and-problems associated with
 

oscillator stability, timing, synchronization, including
 

data format, frame and bit synchronization.
 

Item 3 - In relation to Items 1 and 2, determine for candidate 

systems possible methods of implementation with the 

aid of block and circuit diagrams and evaluate critically 

with respect to performance, complexity, current and 

projected technology. 

1-2
 

PHILCO C 	 SPACE & RE-ENTRY SYSTEMS DIVISION
Philco-Ford CorPoation ­



TR-DA2180
 

Item 4 - Assess and evaluate the problems and possible techniques 

for pointing acquisition and tracking between an earth 

orbiting vehicle and synchronous satellites whose high 

gain antennas are on the order of 0.2 degrees and less. 

Item 5 - Recommend suitable configurations for transmitting and 

receiving the above classes of data via high data rate 

information links. Define problem areas requiring 

further considerations, and needed technological 

developments to realize suitable system configurations. 

This report presents the results of such investigations into the
 

technologies of (1) image sensor systems, (2) analog-to-digital
 

converters, (3) high speed digital communications, (4) antenna
 

acquisition and tracking, and (5) millimeter wave communications.
 

The report has been prepared in two volumes.
 

* 	Volume I describes the system aspects of image data
 

transfer
 

" 	Volume 2 describes the technology basis of the image
 

data transfer systems
 

The data and systems described in this report reflect actual
 

experience on the part of Philco-Ford, including the transmission
 

of video information from Vietnam to Washington utilizing delta
 

modulation A/D conversion-of a scanned representation of photographic
 

data developed by a slow scan vidicon. A double link from Vietnam
 

to Hawaii by one IDCSP satellite, and then to Washington from Hawaii
 

via another IDCSP satellite was accomplished using digital communications
 

to represent and transmit pictorial data without deterioration of image
 

information. In addition, an in-house-operated 200 Mbps BPSK and delta
 

modulation system using a millimeter wave transmission link has
 

provided a test vehicle to determine the various problems of high
 

speed image data transmission.
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1.2 SENSOR SATELLITE TO RELAY SATELLITE SYSTEMS
 

A conceptual diagram of an image data transmission system using sensor
 

satellites and synchronous relay satellites is shown in Figure 1-I.
 

The basic circuits of the transmission system include the sensors which
 

produce the image data; this image data is converted into a digital
 

data stream, the phase modulators and the millimeter wave amplifiers
 

provide for RF transmission of this data stream.
 

The link includes the path from the sensor satellite to the relay
 

satellite, and from the relay satellite to a ground terminal. More
 

than one sensor may be involved and the broad problem is one of
 

achieving sensor data of proper bit error rate and pictorial quality.
 

This report primarily addresses the sensor satellite to relay satellite
 

system, but the overall system of transferring imagery data from a
 

sensor complex to a data display or recording system can also be
 

applied to a space to ground system.
 

1.3 SYSTEM VARIANTS AND COMMUNICATION PARAMETERS
 

Figure 1-2 shows a partial list of the various system variants and
 

parameters which must be evaluated in determining the effectiveness
 

of the system for translating image data from the sensors to an
 

ultimate data receiver or storage system.
 

These parameters are listed for the various stages of the system to
 

which they relate, and in general, provide the data of the study
 

tasks listed in paragraph i.i.
 

Despite the varied and general nature of the various parameters,
 

in combination they completely define the capability of data relay
 

satellite system to translate image data produced by a sensor
 

satellite to a ground terminal.
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1.4 BASIC COMMUNICATION SUBSYSTEMS
 

The image data communication system of Figure 1-2 can be reduced to
 

a set of subsystems which are shown in Figure 1-3. These subsystems
 

in general define and identify the tasks and basic topics of investigation
 

of the contract.
 

* 	The basic communication aspect ihvolves the choice of modulation
 

to be used. Section 2 in both volumes addresses this key
 

consideration.
 

* 	Case I identifies the subsystem comprised of the sensor
 

complex which translates optical or radiometric image
 

information into an analog electrical signal which is
 

communicated to a display and recording system. The
 

transmission path for the analog data has the characteristics
 

of aft electrical transfer medium which transfers all sensor'­

data to the display and recording system without degradation.
 

See Section 3 in both volumes.
 

" 	Case II identifies the analog-to-digital (A/l) and digital­

to-analog (D/A) converters which convert the analog
 

information to digital bit streams and back to analog
 

information at bit rates of 40, 100, 200 and 400 Mbps.
 

Here, only performance of the A/D and D/A converters
 

is of importance, with the criterion of performance being
 

the bit error rate of, the digital system, and the introduction
 

of noise and impairments into the recovered analog information
 

which is applied to the display and recording system. See
 

Section 4 in both volumes.
 

" 	Case III highlights the modulator and demodulator system
 

which converts the output of the A/D converter into a
 

digitally modulated carrier. This digitally modulated
 

carrier is demodulated and a digital bit stream is
 

developed which reproduces the bit strewm output of
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the A/D converter with noise and enhancement of the
 

probability of bit error introduced by the modulator/
 

demodulator system. See Section 5 in both volumes.
 

Case IV refers to the millimeter wave link which must
 

transmit the modulated carrier across space and receive
 

it at a terminal such as a data relay satellite. The
 

received digitally modulated carrier with the noise and
 

impairments introduced by the millimeter wave link is
 

then applied to the demodulator. See Sections 6 and 7
 

in both volumes.
 

The various sections to follow of this report will follow the
 

philospphy of the various systems as shown in Figure 1-3 and
 

identify the various technologies in each subsystemwhich relate
 

to the data rates and link frequencies involved.
 

1.5 BASIC REPORT CONCLUSIONS
 

The conclusions of the report are summarized as follows in
 

accordance with the objectives listed above.
 

This report presents more than a "block diagram" description of
 

applicable technology and systems; rather it arrives at specific
 

recommendations of system and circuit configurations relating
 

to delta modulation and quadriphase-modulation signalling.
 

The basic conclusions are listed in specific and concise terms.
 

They reflect the directions which have been pursued by the various
 

investigations of the report and are supported by the detail and
 

analysis contained in the various sections of both volumes.
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The basic conclusions are:
 

* Optimum types of modulation
 

.Digital modulation over analog modulation:
 

Improved power efficiency and range; improved
 

ability to cope with link distortion and system
 

noise and to interface with computer systems.
 

* QPSK and BPSK (quadriphase and biphase phase shift keying)
 

Quadriphase modulation is the most efficient means of
 

communication from the standpoint of bandwidth; the
 

required bandwidth is equal to the bit rate.
 

* Optimum Frequency ranges in link
 

Millimeter wave frequencies in 35 to 95 GHz range
 

to most efficiently accomodate the 400 MHz bandwidth
 

required of 400 Mbps data rates and to take advantage
 

of small weight and sizes of very high gain antennas.
 

* High-speed high definition sensors
 

TV scanning types of sensors including vidicons, image
 

orthicons, isocons, image dissectors and spin cameras.
 

Species of scanning sensors can operate with limiting
 

resolutions to 5000 lines and actual scans of 2000
 

lines, can store information, can detect a wide
 

variety of visible and infrared optical spectra.
 

Signal to noise output of wide band sensor systems as
 

determined by illumination level, dark current, and
 

noise figure of video amplifier.
 

Present vidicon technology operates up to 60 MHz
 

bandwidth.
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o 	Optimum A/D conversion techniques for developing bit
 

rates from 40 to 400 Mbps
 

Fastest A/D conversion techniques involve phase domain
 

cyclic conversion to develop up to 5 bit words at 1200
 

Mbps.
 

Optimum fast A/D conversion techniques for image transmission
 

with high redundant pictorial content - delta modulation.
 

Optimum from the standpoint of circuit simplicity ­

2-bit delta modulation at 2.8 bits/sample
 

Optimum from the standpoint of image detail - 3-bit
 

delta modulation.
 

200 Xbps delta modulation can A/D convert and time
 

multiplex the analog outputs of fast scanning-rate
 

sensors.
 

In a link limited data link, 50 MHz baseband band­

width can be represented by 280 Mbps 2-bit delta
 

modulation.
 

* 	Optimum types of PSK modulation techniques for 40-400
 

Xbps bit rates
 

Diode - switched circulator type QPSK modulator for
 

highest speed, simplest circuit, and best quadrature
 

relationships between the four phase vectors.
 

Parameters limiting speed and bit rates
 

Diode switching speed
 

Loss of higher harmonics of switching waveform leading
 

to truncated wave forms.
 

i-II 

SPACE & RE-ENTRY SYSTEMS DIVISrONPI4ILCO) C 	 Philco-Ford Corporaion 



TR-DA2180
 

Detection loss up to 2 dB resulting from waveform
 

degradation.
 

* 	Optimum types of PSK demodulator techniques for 40-400
 

Mbps bit rates
 

Differentially coherent demodulator
 

Simplest demodulation system
 

For error rates of 10-4 , signal to noise ratio
 

required is 0.75 dB -higher than required of
 

coherent system.
 

Ideally adapted to millimeter waves used by BTL
 

in 50 0Hz link.
 

Coherent demodulator
 

Uses carrier reconstruction, bit synchronization,
 

phase locked oscillator, matched filter. Optimum
 

performance.
 

Analysis presented for conditions of noisy reference
 

carrier, and intersymbol interferences due to
 

narrow band filter use.
 

* 	Link optimum at- 60-90 GHz for high data rate transmission
 

across space.
 

Uses carbon epdxy light weight antenna to give 60 dB
 

gain with 6 to 8 ft. antenna diameter.
 

Link analysis shows QPSK transmission to 500 Xbps in
 

60 to 90 GHz range possible with margin at BER = 10 
5
 

when used with 40-100 watt TWT (transmit) and 10-12
 

dB mixer (receive) for worst case.distances of 24,000
 

miles.
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SECTION 2
 

COMMUNICATION SYSTEM ASPECTS OF 
HIGH-DATA RATE IMAGERY TRANSMISSION
 

2.1 	 INTRODUCTION
 

The transmission of image information across space at data rates from 40
 

to 40 megabits per second requires (1) special modulation techniques which
 

are especially suited for high data rate transmission with low error
 

characteristics, and (2) frequency ranges in which such transmission can
 

optimally occur.
 

This 	section will compare analog and digital modulation techniques which
 

can be used for the transmission of image data, and introduce the communi­

cation technologies which are related to the sensors, analog-to-digital
 

conversion, modulatorldemodulator and millimeter wave links. Section 2
 

of Volume 2 provides an analysis of the digital modulation techniques
 

described here.
 

2.1.1 Typical Image-Data Transmission Links
 

Figure 2-1 shows a candidate image data transmission system, using
 

delta modulation techniques and phase-shift-keying modulation techniques,
 

showing the development of sensor information and the development of a
 

modulated carrier from this information. This modulated carrier is
 

amplified in a traveling wave tube amplifier (TWTA) and propagated across
 

space to a relay satellite using millimeter waves as the propagation medium.
 

The relay satellite can provide either of two following operational modes:
 

(a) Frequency translation of the received millimeter wave carrier
 

for propagation to an earth terminal or to another relay satellite.
 

(b) 	Data demodulation of the received carrier and modulation of a
 

new carrier for re-propagation to the receiving terminal on each.
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2.2 MULTIPLE SENSOR IMAGE DATA TRANSMISSION SYSTEM
 

Figure 2-2 shows a multiple sensor image data transmission system which
 

illustrates the numerous alternative parameters which 'are legitimate
 

candidates for various system embodiments.
 

As shown, a variety of sensors of the different scanning types can be
 

multiplexed in time to form a data bit stream having a total bit rate
 

up to 400 Mbps. This multiplexed data bit stream is then modulated onto
 

a carrier using analog or digital modulation techniques, and then trans­

mitted in the millimeter wave frequency range at the typical frequencies
 

of 35, 60, 75, and 94 GHz.
 

The propagated millimeter wave modulated carrier is then frequency trans­

lated to a lower frequency typically in Ku-band for transmission via a
 

space-to-earth link. A demodulator recovers the multiplexed bit stream,
 

and a data demultiplexer clocked by locally reconstructed synchronizing
 

information produces analog sensor data waveforms.
 

2.2.1 Recommended Modulation Technique
 

Candidate modulation techniques which will be discussed in the next section
 

will include both analog and digital techniques. However, phase shift
 

keying in combination with delta modulation analog-to-digital conversion
 

will be shown to more optimally meet the transmission needs of wide-band
 

width image sensors considered singly or in sets which are mutliplexed
 

into a common data channel.
 

2.3 COMPARISON OF ANALOG AND DIGITAL MODULATION TECHNIQUES
 

Analog video signals can be transmitted from their point of collection
 

(sensor aircraft) to a data recovery point (surface terminal) using
 

either an analog or a digital data link. The basic elements of these
 

two types of data links are shown in Fig. 2-3.
 

Analog data links are more commonly used at present because of the avail­

ability of equipment. However, for high data rate image transmission
 

applications, digital data links have important advantages over analog
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links and are less complex and less expensive because of the rapid
 

developments in integrated digital circuits.
 

2.3.1 Advantages of Digital Links
 

Some of the advantages of digital data links relative to analog modulation
 

are given below.
 

2.3.1.1 Data Regeneration
 

In some data link applications, it becomes necessary to relay the data
 

through one or more active repeaters. In an analog link, the noise as
 

well as the signal is amplified and retransmitted. Digital data links
 

permit regeneration of the digital data, thus removing the noise. Erroneous
 

data bits will, of course, be present in the regenerated data, but the
 

cumulative bit errors will cause far less degradation than cumulative
 

noise in each receiver.
 

2.3.1.2 Multipath Rejection
 

Multiple signal paths can cause degradation of both analog and digital
 

links by causing: (1) signal fading and hence noisy reception, and (2)
 

spurious output signals (ghosting). For analog and digital links, the
 

effect of fading can be countered by increasing the link margin, e.g.,
 

more transmitter power. Spurious signals cannot be removed in analog
 

links by increased power since the multiple paths will also be enhanced.
 

In FM reception, good limiter-discriminator design that results in a
 

high capture ratio will discriminate against spurious signals. In a
 

digital data link, the spurious signals are essentially removed when the
 

link margin is sufficient to reduce bit errors caused by fading to an
 

acceptable value.
 

2.3.1.3 Less Susceptibility to Channel Distortion
 

It is of critical importance to the transmission of video information to
 

preserve resolution and phase linearity. As long as a specified bit error
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rate is maintained, a digital data link can cause no video data degrada­

tion as a result of transmission link noise or data link non-linearities 

such as phase distortion caused by microwave component mismatches. Such
 

is not the case in an analog modulation data link where amplitude and
 

phase non-linearities as well as noise and multipath signals throughout
 

the complete data link must be carefully controlled to limit video data
 

degradation.
 

2.3.2 	Quantitative Comparison of Digital and Analog Links for Transmission
 
of Image Data
 

The comparison of output quality for digital and analog links is difficult
 

because the noise effects are quite different. In analog links, additive
 

noise in the data link receiver appears in the output video as random
 

perturbations on the video waveform. For pictorial data the noise per­

turbations will degrade the resolution of the original picture. A criterion
 

commonly used for adequate quality pictorial data is a video SNR of 30 dB.
 

This SNR corresponds to 39 dB peak-to-peak signal-to-rms noise ratio for
 

a sinusoidal video signal.
 

There are two types of noise to contend with in digital data links ­

additive receiver noise and quantization noise. Additive receiver noise
 

does not appear directly in the video output. It affects quality by
 

causing erroneous bit errors in the data stream. The bit errors in turn
 

cause erroneous shifts in the grey scale of the pictorial output.
 

For delta modulation, the grey scale will shift by an amount equal to the
 

step size and persist for the duration of the integrator time constant,
 

on the order of 10 bits. The visual effect is a short grey streak in the
 

output picture.
 

For PCM, the grey scale will shift by an amount corresponding to the PC04
 

bit which was in error. An error in the most significant bit will cause,
 

for example, a shift from black to white; whereas an error in the least
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significant bit will cause a shift of only one level of grey. The effect
 

on the output picture is a spotting, or "salt and pepper", effect.
 

For either delta modulation or PCM, the additive receiver noise does not
 

alter the picture resolution unless the bit errors become excessive.
 

Evaluation of a considerable amount of pictorial data indicates that a
 

BER of 10-4 or better results in a negligible effect on output quality.
 

Adequate pictorial data transmission is still possible at BER's as high
 
.
10"3
 as 


The second noise effect in digital links is quantization noise. Quantiza­

tion noise appears in the video output as discrete steps in the picture
 

rather than producing an exact replica of the continuum of values in the
 

original video waveform.
 

For PCM the quantization noise is directly related to the number of bits
 

per sample by the following:
 

L2 
= 22nQuantization SNR ­

where L - number of quantization levels 

n - number of PCM bits per sample 

For 5-bit PCM the ratio of rms signal to rms quantization noise is 30.1 dB.
 

For delta modulation, the quantization noise is determined by the size of
 

the delta step. In 2-bit delta modulation, the size of the small step
 

determines the quantization noise. (The large step size is chosen to
 

provide the required transient response.) Choosing a small step equal to
 

1/100 of the video dynamic range results in a quantization SNR of 40 dB.
 

2.3.2.1 Signal Power Requirements of Analog and Digital Links
 

The signal power required for analog and digital links can be determined
 

on a relative basis by using comparable criteria for output quality and
 

Fig. 2-4. For a digital link, a BER of 10"4 is specified, while an
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analog link output SNR of 30 dB (39 dB peak-to-peak, signal-to-rms
 

noise) will be required.
 

The formulas used to generate the curves shown in Fig. 2-4 are listed in
 

Table 2-1.
 

The abscissa used in Fig. 2-4 is the signal-to-noise ratio relative to
 

a bandwidth equal to the video bandwidth B . This is an artificial
v 

quantity because the input SWR is actually measured in the RF bandwidth
 

BRF rather than the video bandwidth. S/KTBv was chosen rather than
 

S/KTBRF because Bv is independent of the type of modulation, thus per­

mitting a normalized measure of input SNR for all types of modulation.
 

S/KTBv in dB can be converted to the more familiar S/KTBRF by subtracting
 

10 log (BRF/Bv ) for the modulation method of interest.
 

2.3.2.2 -Non-Ideal Digital Information Transmission
 

Digital information quality is characterized by the error rate as a
 

function of the signal energy per infomnation bit (E) divided by the noise
 

power density (N ). In equation form the signal-to-noise density ratio
 

(S/N0) may be expressed as
 

S/N° - (E/N0 )b 

where b - binary data rate (bit rate)
 

E/N is specified for a particular error rate
 
0
 

From this equation for S/N0 , it is a simple matter to translate an
 

error rate into the value of S/N required in the communication link.
 
0
 

A factor must be added to S/N to account for non-ideal performance in
o 

a practical system. The true system degradation is a complex function of
 

many parameters such as modulator rise time, power amplifier AM-to-PM
 

conversion, phase and amplitude nonlinearities, and many other factors.
 

Detailed system analyses at Philco-Ford have indicated that, for systems
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Table 2-1 a 

Signal to Noise Ratio for Analog and Digital Links 

Analog Data Links (Al) Analog Data Links (Wideband F) Digital Data Links (Biphase or Quadripbase PSK) 

5 
- KTBV 

2 S 
KTBRF * AM suppressed carrier 

SNR 
out 

i D2(RF\/ 
2 RF 

BER 1Af e-x /2 dx 

u T 

KTBv SSB-AM 2 2( E 56 6 B 
where 5I= bI =2I b)(" v =1.2 b 

where BPF= 2 (D + 1) Bv (Carson's Rule) \N 0 t. / N/0 
3 RF = 23 for AM 

= B for SSB-AM D = deviation ratio where S = EbR b = signal power 

V 

S t = 0 KTBv = NBv= noise power in the video bandwidth, B, 
KTiiiFl~ threshold =0v o 

J. j. Downing, Modulation Systems and Noise, R = data bit rate 

rentic- l. New Jersey, 1964, P. 99. -20D+1)= 5.6 B for two-bit Delta Modulation 

(KTh, threshold - 0(v1 

= 16.8 B for six-bit PCM 
v 

a = 2 = ratio of required Eb/N for practical 

demodulation to theoretical Eb/N0 (equipment 

margin) 

A. J. Viterbi, Principles of Coherent C010ation 
McGraw-Hill, New York, 1966, P. 191. 

Tj 
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similar to the relay application, the degradation can be expected to be 

about 1.5 dB- Therefore, upon conversion to decibels 

S/N' - (E/N )b + 1.5 dB 

0 0 

and the error rate curve of Figure 2-5 may be modified accordingly.
 

Many tradeoffs exist in apportioning the error rate in a multisegment
 

communication link such as the relay system, especially when regeneration
 
-5
of the digital data is feasible. An error rate of 1 x 10 errors per
 

bit of information transmitted is assumed for the relay system based upon
 

the more detailed studies of similar systems at Philco-Ford. One must
 

appreciate that a change of plus or minus one order of magnitude of error
 

rate (I x 10-4 to I X 10-6 ) constitutes a + 1 dB change in the required
 
E/N° , which may certainly be accommodated in any detailed system design.
 

For an error rate of 1 x 10-5 , E/N - 9.5 dB
 
0
 

and
 
S/N° - 9.5 dB + 1.5 dB + 10 log (b) - 11.0 dB + 10 log (b)
 

This is the required S/N used in the link calculations.
 
0
 

2.3.2.3 Bandwidths for FM, AM and PSK
 

The minimum bandwidth and transmitter power for a digital link are
 

achieved using 2-bit Delta modulation for the analog-to-digital conver­

sion and quadriphase PSK for the carrier modulation. A comparison of
 

bandwidths for PSK, FM, and AM is given in Figure 2-6.
 

The bandwidth formulas used to generate the curves of Figure 2-6 are:
 

Digital Links
 

2 Rb - 11.2B for biphase PSK
 

BE = Rb = 5.6By for quadriphase PSK 

2Ip = 3.73B for octaphase PSIc 
7U V 

where Rb - digital data bit rate
 

B - sensor video bandwidth
v 
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Analog Links 

2 (D + I)B
v 

for FM 

B - 2B for AM 

B for SSB-AM\ v 

where D - FM deviation ratio 

B = sensor video bandwidth 
v 

In the above expressions for digital data links, it is assumed that 2-bit
 

delta modulation is used for analog-to-digital conversion with 2.8
 

samples per cycle. It will be noted that octaphase PSK permits slightly
 

less RF bandwidth than the propdsed quadriphase PSK. However, it is more
 

susceptible to noise than either biphase or quadriphase and requires con­

siderably more demodulator complexity.
 

For the FM analog data link, an RF bandwidth equal to the Carson's rule
 

bandwidth is assumed. To minimize video phase distortion caused by the
 

required sharp cut-off filters, the RF bandwidth for FM video is sometimes
 

chosen to be wider than the Carson's rule bandwidth by factors ranging
 

from 1.4 to 2. On the other hand, RF bandwidths narrower than the Carson's
 

rule bandwidth are possible if a careful trade-off is made between allow­

able video distortion and required bandwidth restriction.
 

AM, especially single-sideband (SSB) AM, permits the narrowest RF band­

width. However, these modulation methods are more susceptible to noise,
 

multipath and channel distortion than either FM or digital PSK and should,
 

therefore, be considered only for applications where extremely wide sensor
 

bandwidths are required.
 

The use of a threshold extension FM demodulator permits a trade-off 

between RF bandwidth and transmitter power. Without threshold extension 

the analog link requires 3.2 dB more power and 7 percent more bandwidth 

than the best digital link. Increasing the deviation ratio to 4 and 

allowing for 3.5 dB of threshold extension provides an analog link re­

quiring 2.8 dB less power than digital but 1.8 times more RF bandwidth. 
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Not included in this comparison is the incorporation of error correction
 

coding in the digital link. Error correction, like threshold extension
 

in the analog links, trades increased RF bandwidth for reduced transmitter
 

power. Coding will reduce the required power by 2 dB to 3 dB at the
 

expense of doubling the RF bandwidth..
 

A summary of digital and analog data link parameters is shown in Table 2-2
 

and Table 2-3.
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TABLE 2-2
 

COMPARISON OF ANALOG AND DIGITAL LINK
 

Analog Link Digital Link 

Power Efficiency --- 2 x better 

Range (without relay) --- 1.4 x better 

Range (with relay) Noise is Commulative Data Regeneration 
Removes Noise 

RF Bandwidth Comparable Comparable 

Video Bandwidth 50 MHz 35 MHz (200 Mbps) 
(state-of-the-art) 

Video Bandwidth --- 70-100 MHz (400-600 

(under development) Mbps) 

Multipath Fading and Ghosting Increased Error Rate 

Link Distortion Directly Effects Data No Direct Effect 
on Data 

Security None Encryption 

Anti-jam None Applicable to Spread 
Spectrum with Reduced 
Data Rate 

Error Correction None Coding or Off-Line 
Processing 

Data Processing Limited Computer Processing 
of Selected Data 

Size, Weight, Power Comparable Comparable 
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TABLE 2-3 

DIGITAL AND ANALOG DATA LINK PARAMETERS 

Link Type KTB (dB) BRF/B Relative Power 
V KTRF v 

Biphase PSK, 19.0 11.2 Reference
 
2-Bit Delta Modulation
 

Quadriphase<PSK, 19.0 5.6 0 dB
 
2-Bit Delta Modulation
 

Biphase PSK, 23.8 33.6 4.8 dB more
 
6-Bit PCM 

Quadriphase PSK 
 23.8 16.8 4.8 dB more.
 
6-Bit PCm
 

FM (D - 2) With 22.2 6.0 3.2 dB more 
Discriminator Detection 

FM (D - 3) With 19.0 8.0 0 dB 
Extended Threshold 

FM (D - 4),With 16.5 10.0 2.5 dB less 
Extended Threshold 

AM, Suppressed Cartier 30.0 2.0 11 dB'more 

SSB-AM 30.0 1.0 11 dB more 
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2.4 COMPARISON OF MODUIATION TECHNIQUES AT 40 TO 400 Mbps RATES
 

As the bit rate approaches 500 megabits per second, as shown in
 

Table 2-4 the required bandwidths for transmission exceed gigahertz
 

bandwidths except quadriphase modulation* which requires the same
 

C/kT as binary PSK but only one-half the bandwidth.
 

Bit error rates for quadriphase modulation which represent phase
 

shift keying at 00, 900, 1800, 2700 are compared in Figure 2-5 with
 

two other modulation techniques; MFSK (multiple frequency shift keying)
 

and M-ary biorthogonally coded PSK provide maximum communication
 

capacity while quadriphase modulation QPSK provides bandwidth efficiency
 

as well as'good power efficiency.
 

Figure 2-5-shows that, for the same signal-to-noise ratio, standard
 

quadriphase modulation has a higher power requirement than either
 

MFSK or M-ary biorthogonally coded PSK. However, at half-gigahertz
 

rates, MFSK may be impractical due to the complex switching of matched
 

filters required in the MFSK demodulator in what are referred to as
 

the BPID circuits (bandpass integrate-and-dump); on the other hand,
 

error coding which requires at least a doubling of the bit rate and
 

is a key to M-ary biorthogonally coded PSK may make the use of coding
 

techniques impractical until gigahertz-bit-stream technology is as
 

fully developed as is, say, 50-megabit bit stream technology at the
 

present time.
 

Accordingly, quadriphase modulation, which will be described later in
 

this paper, is the key candidate for gigahertz-rate modulation for
 

microwave and millimeter wave frequencies.
 

*8-phase, 16-phase modulations require even less bandwidth but have
 

less power efficiency.
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TABLE 2-4
 

POWER AND BANDWIDTH COMPARISON IN DIGITAL COMMUNICATIONS
 

Digital Modulation Required.Power Required Required Bandwidth (MHz)

BEMt10dBandwidth 40 MBS 100 MBS 200 MBS 400 MBS 

16-ary Coded PSK 0 dB(reference) 4 x bit rate 160 400 800 1600
 

16-ary MFSK 0.8 dB more 4.5 x bit rate 180 450 1000 1800
 

Quadriphase 2.5 dB more 1 x bit rate 40 100 200 400
 

H Coherent PSK 2.5 dB more 2 x bit rate 80 200 400 800
 

PCM/FM 4.6 dB more 2 k bit rate 80 200 400 800
 

PSK 6.0 dB more 3-x bit rate 120" 300 600 1200
 

*0 
m 

m 
z> , 
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00mm 
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The bit error rate relates each type of modulation to the Eb IN where 

Eb is the energy per bit and N is the noise power density, KTs,,where K 

is Boltzman's constant and T is the system noise temperature.
 
s 

The terminal sensitivity factor, C/N., and Eb/N are related by the bit
 

rate, Rb as
 

C- Eb .Rb
 
KT N
 

Thus, as the bit rate increases to, say a half-gigahertz, additional
 

carrier power (C) will be required to maintain a value of 10 Log Eb/NO
 

corresponding to a particular bit error rate.
 

2.5 CANDIDATE TRANSMISSION BANDS FOR HIGH DATA RATE IMAGE TRANSMISSION
 

As indicated in Table 2-5, the principal communication bands below 10 GHz
 

have bandwidths limited to 500 MHz(by international agreement), Such bands
 

can barely accommdate the 400 MHz bandwidth required for quadriphase
 

modulation and, certainly, 16-ary MFSK would use almost a quarter of the
 

presently occupied microwave frequency band.
 

It is evident that higher frequency bands from Ku-band to the optical
 

frequencies will be required for 400 Mbps digital carriers. Of particular
 

interest are the bands at: 15, 35, and 94 MHz where minimum atmospheric
 

absorption windows occur; 60 GHz and 120 GHz for exo-atmospheric spacecraft­

to-spacecraft communication when privacy or low RFI is required; and the
 

wavelengths of 1.06 and 10.6 microns of the helium-neon and CO2 lasers,
 

respectively, to take advantage of the high-speed modulator techniques
 

available at 1.06 microns, or the high efficiency/high power space-to­

earth capability of the 10.6 micron infrared laser.
 

Frequency ranges in the 30 to 100 GHz frequency range are the principal
 

candidates for the transfer of imagery information from a sensor spacecraft
 

to a relay spacecraft. As will be discussed in Section 7, the technology
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TABlE 2-5 

PRINCIPAL COMMUNICATION BANDS 

Frequency Band Bandwidth Use Bandwidth Required 
Center Capability For 400 Mbps QPSK 

2.25 GHz 100 MHz SGS, Apollo 400 

4.0 GHz 500 MHz COMSAT 400 

7.5 Gz 500 MHz Military SATCOM 400 

15.3 GHz 500-1000 MHz ATS-E/Domestic TV/ 400 
Military SATCOM 

35.0 GHz I - 2 GHz Space-Ground 400 
Communicat ions 

60.0 GHz I - 5 GHz Spacecraft to Spacecraft 400 
Communicat ions 

94.0 GHz 1 - 5 GHz Radiometry 400 

120.0 GHz I - 5 GHz Spacecraft to Spacecraft 400 
Communications 

1.06 Microns 1 - 50 GZ Light-guide 1CM Helium/ 400 
Neonlaser 

10.6 Microns I - 50 GHz Infrared-Space/Earth 400 
Communications 
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of millimeter wave power amplification, propagation and reception is
 

now at a stage which makes space links at these frequencies capable of
 

being designed with a high level of reliability and product assurance.
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SECTION 3
 

IMAGE SENSOR TECHNOLOGY
 

3.1 THE DATA CHARACTERISTICS OF IMAGE SENSORS
 

Image sensors perform the function, either singly or in groups, of
 

transducing impinging pictorial data radiation in the visible or infra­

red bands into an analog electrical signal which can then be applied
 

to a recording or display device. The basic image system is shown in
 

Figure 3-1.
 

Three basic parameters are critical to image systems:
 

a. 	MTF: MTF is the modulation transfer function which
 

determines the limiting resolution of the image device.
 

b. 	Video Bandwidth: Video bandwidth is the total electrical
 

bandwidth of the image sensor plus video amplifiers, which
 

determines the image information bandwidth which is a
 

function of such parameters as the number of scanning lines,
 

the frame rate, and the time duration an image sensor
 

"looks" at a particular segment of pictorial data. Band­

width is a separate parameter from MTF and is valid only
 

in an image sensor system having an MTF capable of supplying
 

an information bandwidth which can fill the video bandwidth.
 

c. Signal-to-Noise: The output of ,the image sensor circuit,
 

including video amplifiers will include a noise level
 

which will be a function of both sensor characteristics
 

and currents, received light level, and video amplifier
 

noise figure.
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IMAGEIMAGE INFORMATION 

" MTF 

" VIDEO BANDWIDTH 

* SIGNAL-TO-NOISE RATIO 

Figure 3-1 Basic Image-Device to User System
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The total art of image sensing is vast and beyond the scope of
 

this study; however, the three parameters identified above are critieai
 

to determining the bandwidth and the signal-to-noise ratio of the
 

analog pictorial information which is converted to digital information
 

in the analog-to-digital converter. The image data transmission system
 

of Figure 3-1 will be discussed in detail in the following paragraphs
 

relative to the types of sensors used and their various characteristics.
 

3.1.1 General Sensor Requirements
 

Sensor requirements have been developed in the areas of geology,
 

agriculture, forestry, geography, meterology, and oceanography and
 

can be determined for the most part by the following factors:
 

" Illumination Level
 

* Wavelength Region and Bandwidth
 

" Limiting Resolution
 

* Scene Characteristics
 

* Vehicle Altitude
 

" Sensor System Noise Level
 

3.1.1.1 Wavelengths of Interest
 

The various wavelength regions of interest to be processed by the
 

sensors may be divided into three basic categories:
 

* Visible - 0.4 to 0.7 u
 

* Near Infrared - 0.7 to 5 ji 

" Intermediate and Long Wavelength Infrared - 5 to 20 p
 

The visible spectrum is dominated by diffusely scattered solar radiation.
 

The near infrared spectrum is a transition region from dominance by
 

solar effects to self emission by the earth. The spectrum region
 

beyond 5 u is essentially terrestrial emission with only indirect
 

solar effects. A sensor designed for use in one of these spectral
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regions may have a bandwidth considerably narrower than that of the
 

whole region. This will, of course, have an impact on S/N calculations
 

for each particular sensor.
 

3.1.1.2 Resolution
 

In order to establish a baseline for sensor resolution, reference is
 

made to the NAS/NRC panels on the Useful Applications of Earth-Oriented
 

Satellites. In the panels on agriculture, geology, et. al., a basic
 

ground resolution of 100 feet was specified for a wide variety of
 

applications. In this case the satellite would be at an altitude of
 

300 to 500 nautical miles. On the other hand, the "high resolution"
 

radiometric experiment for ATS F&G has a resolution of 6 nautical
 

miles at synchronous altitude. The common factor in these experiments
 

is angular resolution, which is about 0.1milliradians in each case.
 

3.1.1.3 Illumination Levels
 

The full range of illumination levels cannot be treated in the scope
 

of this report. However, as a reference baseline, the earth's
 

illumination at noon is around 10,000 ft.-candles; this can fall to
 

500 ft.-candles at other times of day and for dark patches of the earth's
 

surface, with an average reflectance at the earth's surface of 107.
 

and an additional 10% reduction in illumination due to spacecraft
 

optics. The actual foot-candles of illumination reaching the sensor
 

will be around 1% of the earth's illumination.
 

3.2 CANDIDATE PHOTO SENSOR IMAGING DEVICES FOR SPACE APPLICATIONS
 

Image devices, which are currently available for space-borne image
 

sensor applications, comprise a large number of different types and
 

species which includes the following:
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a. 	Scanning-beam image tubes:
 

* Vidicons
 

* 	Iricons (infrared vidicons)
 

* Image orthicons
 

* Image intensifier orthicons
 

* Isocons
 

" Image dissectors
 

* Scotoscopes 

b. 	Mosaics or clusters of solid state or electron
 

beam photosensitive cells:
 

* Self-scanned solid state image sensor 

* Spin-camera 

* Radiometric sensors 

* Scanning radiometers 

3.2.1 Functional Classes of Image Tubes 

There are two functional classes of image tubes. One, termed an image­

intensifier, produces an illuminated image on its output surface which
 

is brighter than the image on its input photosensitive surface. The
 

other class, termed a camera tube, also requires an optical input image
 

on its photosensitive surface, but the output is a video signal obtained
 

by sequentially scanning its image by an electron beam. The output of the
 

camera tube may be amplified in a separate image intensifier tube or the
 

image intensifier function can be incorporated inside the single image
 

tube. Electron multiplication can be utilized at each element of the
 

image, or it can be applied within the tube to the video signal obtained
 

from scanning.
 

3.2.2 Camera Tube Types
 

The candidate camera tubes are the vidicon, the image orthicon, and 

the image intensifier orthicon (which is an image orthicon preceded 
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by one or more stages of image intensification and the Iricon
 

(Infra Red Vidicon). The first three devices can be available
 

for operation in any part of the spectral region from the near
 

ultraviolet to the infrared. The Iricon is also available for
 

operation into the far infrared.
 

Camera tubes involve scanning beams and have the feature of storage
 

of information from frame to frame. Storage is not provided by
 

image dissectors or solid state photo-sensor clusters or mosaics.
 

Representative features of various camera tubes are listed in Table
 

3-1.
 

Figure 3-2 gives representative data on various camera tubes
 

including combinations with intensifiers' This table does not
 

necessarily represent the entire current state-of-the-art, and
 

the data are not complete on any one type of tube, However, it
 

does provide a means of comparison between the various camera tubes,
 

particularly with respect to signal-to-noise ratio, and photocathode
 

illuminance. Figure 3-2 indicates the relation between signal­

to-noise ratio and scene illumination, assuming a lens speed of
 

T/1.0 and a bandwidth of 4.5 MHz.
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TABLE 3-1 

SUMMARY OF REPRESENTATIVE CAMERA TUBE PERFORMANCE 

FACE PLATE 

CAMERA TUBE ILLUMINATION % AMPLITUDE LIMITING TYPICAL db 

TYPE AND SIZE (OPERATING POINT)
FOOT - CANDLES 

RESPONSE 
400 T.V. 

AT 
LINES 

RESOLUTION 
T.V. LINES 

SIGNAL TO 
NOISE RATIO 

Image Orthicon 4.5 MC 9 MC 

4-1/2" 2.0 x 10-4 75 800 55 50 

3" 5.0 x 10 -4  50 600 45 40 

Return Beam 
Vidicon 

4-I/2"* 1 x 10­ 3 3000 lines 4000 45 (50 MHz 
50%response 

Vidicon 

1 0.1 (Average 60 1000 55 50 
Sensitivity) 

1-1/21 0.1 (Average 60 1200 58 54 

Sensitivity) 

2.0 (Minimum Lag 

1-1/2" 0.05 (Average 45 1000 30 25 
High Sensitivity) 
Sensitivity 

3" FPS 0.1 2000 line. 3000 45 (45 MHz) 
50% response 

Intensifier 
Image Orthicon 

3" 2 x 10-5 (S-20) 30 450 30 25 
center 

350 
edge 

* Experimental 0. H. Schade (RCA) 
SPACE & RE-ENTRY SYSTEMS DIVISION 
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3.2.3 Self-Scanned Mosaic Image Sensors
 

Self-scanned image sensors due to P. Weimerlet al, produce a video
 

signal without the help of an electron beam. Figure 3-3 shows the
 

principal parts of a solid-state image sensor. It consists of an
 

array of photosensitive elements, each located at the intersection of
 

mutually perpendicular address strips, which are connected to scan
 

generators and video coupling circuits. Sequential scan pulses to
 

the address strips permit an image to be scanned, and a video signal
 

is produced similar to that generated by a television camera tube.
 

For image detail comparable to broadcast television, the array must
 

contain hundreds of thousands of picture elements. Although these
 

objectives have not yet been reached, recent progress indicates that
 

self-scanned arrays can eventually replace camera tubes in some
 

applications.
 

Fabrication of experimental image sensors has utilized silicon technologies
 

that are highly refined. This approach can be justified by the enormous
 

versatility of silicon, which provides, in addition to its integrated
 

circuits, at least four different types of photosensitive elements.
 

These incldde p-n junction photodiodes, phototransistors, photoconductors,
 

and photovoltaic cells. The intrinsic spectral response of silicon
 

ranges from the visible to the near infrared and it can be extended
 

into the far infrared by impurity photoconduction. Even more important
 

to the sensor application is the fact that silicon junctions can be
 

made with sufficiently high resistance to allow integration of light
 

by charge storage for periods exceeding the normal television scanning
 

periods. 

3.2.4 Mosaic Resolution 

The image-forming photosensor mosaic is a large device, requiring a
 

panel edge length of about 0.8 inch for each 100 resolution elements
 

along an edge. A panel of a few hundred lines resolution, then, would
 

1P.K. Weimer et. al, "Multielement Self-Scanned Mosaie Sensors", IEEE
 
Spectrum, March 1969.
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Sensor arrayr 

Block diagram of -self-scanned image sensor, showing three alternative methods of 
coupling out the video signal. 

"(a) A proposed method for fabricating a simple 
two-capacitor photodiode array. 

y 

Cx 

Crossover 
Capacitorsinsulator
 

y 

(b) 
Figure 3-3 
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measure several inches on an edge. Further, it has a longtime constant,
 

requiting about one second to read out each 104 elements (100 x 100
 

elements square).
 

Multi-element photosensor mosaics with resolution capabilities approaching
 

600 to 1200 lines - that is, devices which could have from 360,000 to
 

over 1,000,000 resolution elements and which could seriously compete
 

with vidicons and image orthicons. Such mosaics are beyond the present
 

state-of-the-art which is presently at the 350 element row/350 element
 

line but the Weimer technique shows promise of some day making such a
 

system useful for selected applications.
 

3.3 MICROWAVE RADIOMETER AND SIDE-LOOKING RADAR SENSORS
 

Two types of imaging sensors which do not use camera tubes or photosensitive
 

elements are the microwave radiometer sensor and the side-looking radar.
 

The microwave radiometer provides thermal or temperature information, and
 

is wfdely used in instrumentation for measuring noise temperature, for
 

millimeter wave. The theory of the microwave or millimeter wave radio­

meter - particularly of the Dicke type - is well known and is not repeated
 

here.. However, such radiometer devices are capable of resolving temperature
 

levels with high accuracy at temperature levels representative of the 

earth; this is accomplished by comparing the received noise temperature 

power against a reference noise source, and using a super heterodyne 

driving an integrator to develop a temperature - representative voltage.
 

Figure 3-4 shows the block diagram of a microwave radiometer sensor
 

used in Nimbus satellite applications, using a 19.35 GHz receiver, and
 

using the cold of space as a reference temperature source.
 

Another type of non-camera imaging sensor is the side-looking radar,
 

which is now used in terrestrial applications with pulse outputs representing
 

image data bandwidths in excess of 100 MHz.
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NASA has considered the use of side-looking radar for surface imaging
 

or mapping radar systems applicable to lunar and planetary missions.
 

One approach has involved the use of an existing S-band ranging transponder
 

with a high-gain antenna as a side-looking radar. An experiment was
 

performed on January 24, 1968, using the S-band ranging transponder and
 

the high-gain antenna of the Lunar Orbiter V spacecraft in flight as
 

shown in Figure 3-5. A description of this experiment was contained
 

in SPS 37-51, Vol. III, pp. 314-327.
 

The phase behavior of the reflected signal was related to the physical
 

geometry of the spacecraft-surface positions. Also, the effects of
 

earth-surface-spacecraft relative motion were included.
 

Side-looking radar equipments in orbiting spacecraft are capable of
 

image detail and image resolution comparable to or in excess of the
 

best camera type sensors. However, they require very high transmitter
 

power, and also require processing and correlation with respect to
 

time of the various pulse returns to develop a video signal indicative
 

of the physical area of the earth being scanned. This can be accomplished
 

by on-board spacecraft processing or can be accomplished by transmitting
 

the unprocessed pulse stream as a data stream to a remote or central
 

terminal.
 

3-14
 

SPACE & RE-ENTRY SYSTEMS DIVISIONPHILCO C0 PhdIco-Ford Corporation 



TR-DA2180
 

3.4 VIDEO BANDWIDTH OF IMAGE SENSORS 

The bandwidth of an image sensor - either a scan tube, a mosaic, or a 

rotating scanner can be derived from a consideration of the number of 

scanning lines, the size of the picture target, and the time element 

over which an ifaage or frame is produced. This bandwidth must be 

consistent with the limiting resolution of the imaging sensor.
 

The video bandwidth is in general a function of the number of picture
 

elements defined by the mosaic or by the scanning tube, i.e., number
 

of horizontal scanning lines times the equivalent number of lines in
 

vertical direction.
 

The image is scanned by the image sensor and is then converted into
 

an analog video signal, the bandwidth of which is determined by the 

relation:
 

Video bandwidth in Hertz - LH V
 
2 keT
 

where
 

- horizontal resolution in TV lines
 

IV - vertical resolution in TV lines
 

k = vertical Kell factor
 

e - scan efficiency 

T - time to scan one frame in seconds 

If a vidicon for example has a resolution of 1200 lines horizontally 

and vertically, then for a Kell factor of 0.7, a scan efficiency of 

0.95, and a frame time of 16 seconds, the video bandwidth is approximately 

68 kHz.
 

Figure 3-6 relates the number of horizontal lines with the video bandwidth
 

for the vertical Kell factor of 0.7 and the scan efficiency factor of
 

0.95 used above.
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3.4.1 Bandwidths of Parallel Operating Image Sensors
 

Consider the total video bandwidth provided by N tubes operating in
 

parallel in a readout (R/O) mode.
 

Let K - number of picture elements per tube
 

N - number of tubes in parallel R/O mode
 

tRO - readout time of each tube
 

The video bandwidth is then given by
 

KN
 
BW - 2 --RO Hz
 

Figure 3-19 represents the total video bandwidth as a function of the
 

number of vidicons employed in any parallel R/O configuration. Curve
 

A represents data for the 5140 vidicon tube (R/O time of .09 sees,
 

1.68 	x 106 picture elements per tube).
 

This curve was derived using the following considerations which apply
 

to the 5140 vidicon:
 

a. Recognize that the output of the 5140 vidicons during R/O is
 

a set of parallel analog video signals which can be multiplexed
 

into a single video signal.
 

b. 	The 5140 vidicons are read out in parallel during .09 seconds.
 

c. 	Each tube contains 1125 horizontal lines and 1500 vertical
 
-	 6 

lines, or 1.6875 x 10 discrete picture elements.
 

d. 	At a readout time of .09 seconds, this converts to 18.75 x
 

106 picture elements per second.
 

e. 	Let four vidicons be read out in parallel. There is a total
 
6
of 75 x 10 picture elements per second being presented in
 

parallel to the multiplexer.
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f. 	Apply the Nyquist sampling theorem, i.e., given a
 

transmission channel with BW - A f Hz, the maximum
 

number of picture elements that can be transmitted
 

per second is 2 A f.
 

- 75 x 106
Thus, 2A f 


or, A f = 37.5 x 106 Hz, 

so that BW is 37.5 MHz as shown in Figure 3-7.
 

3.4.2 Wide Band Video Amplifiers
 

The overall bandwidth of the image sensor is determined by the bandwidth
 

of the analog signal produced by the sensor across its load resistance
 

(RL) as shown in Figure 3-8a, and the video amplifier which amplifies
 

this analog signal.
 

Since the driving impedance presented by the sensor and load resistor
 

is in general high - in excess of 50,000 ohms, and into the megohms,
 

the FET low noise transistor (Figure 3-8) is ideally suited to match
 

to this high impedance, and a gain curve is provided with high
 

frequency emphasis such as the characteristic response of the Schade
 

amplifier shown in Figure 3-8 which was developed for a 60 megahertz
 

video system.
 

3.4.3 Wide Band On-Board Image Processing Techniques
 

One 	of the most potent techniques for obtaining highest resolution and
 

therefore widest bandwidth video information is to take actual photographs
 

or film aboard the spacecraft and to then scan the developed film with
 

flying spot scanner or laser scanner techniques. Figure 3-9 relates
 

film rate, lines per millimeter, and film width to video bandwidth
 

showing the 30 to 50 MHz video bandwidth possible at normal processing
 

techniques and standard scanner resolutions.
 

G. Schade, "A Solid State Low Noise Preamplifier and Picture Tube
 
Drive Amplifier for a 60 MHz Video System", RCA Review, March 1968.
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Because of the optimum light levels used in the scanning process,
 

signals provided by flying spot scanners or iaser scanners are
 

also capable of the highest signal to noise ratios.
 

3.5 SIGNAL TO NOISE CONSIDERATIONS
 

The sensor and video amplifier of Figure 3-8 provides an output
 

signal voltage indicating the incident illumination level of the
 

sensor, to which must be included the noise which occurs with the
 

output signal at the video amplifier output.
 

3.5.1 Basic Noise Contributors
 

The basic noise contributors of the sensor system are the noise of
 

the sensor - due to the shot-noise of the electron beam in the case
 

of-a camera tube type of sensor, the target noise, the thermal
 

Johnson noise (20 eKTR) produced by the load resistor, and the noise
 

contributions of the video amplifier.
 

Of particular interest in this noise budget is the so-called dark
 

current of the sensor, usually a small fraction of a microampere which
 

represents the principal noise current output of the sensor in the
 

absence of any illumination.
 

3.5.1.1 Signal to Noise Ratio and Illumination Level
 

-
It is a particular and almost unique feature of an image sensor 


whether photo conductive or photo emissive that the signal to noise
 

ratio depends primarily upon the incident illumination level, increasing
 

from zero to very large values as illumination of the target increases
 

from near zero through the useful illumination range of the sensor.
 

3.5.2 Noise and Sensitivity
 

In any electronic sensor device, sensitivity 
is determined by minimum
 

signal level is usually determined
allowable signal-to-noise ratio. 


by the image illuminance on the photo-conductor 
target and the exposure
 

,time, since the latter determines the total 
number of light quanta
 

Noise
 
available to raise electrons or holes into 

the conduction band. 
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level is then determined by the RMS combination of thermal noise,
 

generation-recombination noise and current noise.
 

Vidicons, image orthicons, and image intensifier orthicons are capable
 

of televising scenes with scene illumination ranging from direct sun­
-5
light ( -104 foot-candles) to completely overcast starlight ( 4I0


foot-candles). The vidicon covers those scenes where photocathode
 
-
illumination can be arranged to be 10 2 foot candles or more.
 

The image orthicon covers photocathode illumination levels to below
 

10-6 foot-candles, while the image intensifier orthicon extends the
 
-
range to about 10 8 foot-candles. The range of operation of these
 

devices overlap one another to some extent.
 

3.5.2.1 Noise Levels in Vidicons
 

At scenes of either low or high illumination, the lowest illumination
 

detectable by vidicon imaging systems is set by noise in the preamplifier.
 

Noise from the statistical fluctuations in the electron readout beam
 

is below the level of the lowest-noise preamps. Thus, vidicon noise
 

is essentially dependent only on electrical bandwidth, not on magnitude
 

of signal current.
 

3.5.2.2 Noise Levels in Image Orthicons
 

Image orthicons use low noise electron multipliers and the beam current
 

(to within 10 percent) is practically independent of signal level.
 

Internal noise in image orthicons is therefore essentially independent
 

of signal level and will be largely determined by the noise contributions
 

of the video amplifier.
 

3.5.3 Basic Signal to Noise Relationships
 

The basic relationships between brightness, contrast and resolution
 

in an ideal video sensor are given by Weimerlin the following equation:
 

k2
 
BC2 


12 D2tO
 

1 P. K. Weimer, " Television Camera Tubes; A Research Review", Advances
 

in Electronics and Electron Physics", Acadamic Press, New York, 1960.
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B - scene brightness (foot-lamberts)
 

C - percent contrast (C -ABAB x 100) 

k - threshold signal to noise ratio
 

D - diameter of lens aperture (in.)
 

1 - limiting resolution in TV lines - N/L 50.6 

t - storage time (1/30 sec for commercial TV)
 

N = number of TV lines 

9 = quantum yield of the primary photo process 

L - length of TV line in inches 

This relationship was obtained by considering the accuracy with which
 

one can count the total number of photons hitting an elemental area
 

of the photocathode in time t.
 

This equation shows that objects with small detail and low contrast
 

will require more light to be sensed. The maximum resolution of a
 

video sensor increases as the square root of the scene illumination
 

and directly as the contrast. It is possible to increase the sensor
 

resolution.capability by increasing the storage time or by using
 

materials that have higher quantum yields. The ideal sensor is
 

approached by present high sensitivity video sensors at low light
 

levels.
 

The signal to noise ratio of an ideal tube can be expressed as:
 

2
 
BC2 = klk
 

i
 

where kI is equal to 5.3 K2/D2 tO for uniform illumination.
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According to this equation, an increase in brightness or a decrease
 

in resolution will increase the signal to noise ratio of the sensor.
 

3.5.4 Practical Signal to Noise Considerations
 

In image sensor systems it is not possible to provide meaningful
 

signal-to-noise analyses and guide lines to meet all illumination
 

conditions, types of sensors, and types of video amplifiers.
 

In general, the level of dark current of the sensor must be determined
 

and the working illumination level range compatible with the sensor
 

characteristics will determine the signal level. The number of lines­

or picture elements and the frame repetition rate will then determine
 

the video bandwidth, which in turn will require the selection of a
 

type of video amplifier whose noise characteristics will largely
 

determine or limit the noise output of the system.
 

In image intensifier orthicon systems working at very low incident
 
-
illumination levels - of the order-of I x 10 5 foot-candles, a typical
 

signal-to-noise ratio in a 4.5 MHz bandwidth can be as low as 3:1.
 

Vidicons and image orthicons operating at higher illumination levels
 

can realize signal-to-noise ratios from 10:1 to ratios of many hundreds.
 

0. Schade's 60 MHz video system, using a wideband high transconductance
 

dual gate MOS video amplifier and operating with visible resolving power
 

up to 3000 lines reported SNR of 40 dB with a signal level output of
 

1-volt and a noise of 10 millivolts rms.
 

3.6 IMAGE SENSOR SYSTEMS
 

Modern image sensor systems which are capable of providing images of
 

fine detail of earth features from a vantage point of many thousands
 

of miles in space, are capable of providing analog output signals with
 

bandwidths into the hundreds of megacycles. These sensor systems will
 

in general include a number of individual sensors - thermal, visible
 

spectrum, and so on.
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Table 3-2 lists the principle characteristics of the various image
 

sensors which have been listed in Table 3-1 and which have been described
 

in Section 3 of Volume 2. As indicated, signal to noise ratios in
 

excess of 40 dB are available with most sensors operated at light
 

levels well above dark current noise with image storage devices such
 

as the FPS vidicon or the return-beam vidicon capable of limiting
 

resolutions up to 4000 TV lines.
 

3.6.1 Sensor System Combinations
 

Combinations of image sensors, to cover various ranges of the visible
 

and infrared spectrum can be operated in a single spacecraft, using
 

multiplexing systems such as are described in the next section, to
 

produce a single 'digital signal. The total analog bandwidth of the
 

multiple sensor system must be greater than the sum of the individual
 

sensor analog bandwidths. The digitized data signal will have a
 

total bandwidth which corresponds to this analog bandwidth.
 

3.6.2 Image Data Bandwidths for Highest Resolutions
 

Modern high resolution imaging tubes and devices are a far cry from
 

the image tubes developed to serve the commercial television industry.
 

The return tube vidicon, developed by 0. Schade at RCA and the FPS
 

vidicon developed by Schlesinger at G.E. have made available to new
 

spacecraft imaging camera tubes with analog video bandwidths up to
 

80 MHz bandwidths; one such tube operated at a high frame rate ­

would fill the available digital data bandwidths (400 MHz) to be
 

discussed in the next section. Groups of lower resolution tubes,
 

on the other hand, with individual lower bandwidths in the 15-20
 

MHz range, can be digitized and multiplexed to provide a combined
 

comparable digital bandwidth, and most new high data imaging systems
 

will use sensor devices in groups to provide such features as
 

multispectral operation.
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TABLE 3-2
 

IMAGING SENSORS
 

0.4 	to 0.8 micron
 

SENSOR GENERAL TYPICAL
 
TYPES USE LIMITATIONS ADVANTAGES RESOLUTION
 

Image Storage
 

1. 	Vidicon Moderate Lag Simple or (TV Lines at
 
(Including 	 Light Level Stable MTF = 10%) 
FP.S type) "= 1000 (FPS) 

3" 3000 (FPS)
 

2. 	Plumbicon Moderate Light Simple,Stable 1 1/2" = 800
 
(Pbo target) Level and Negligible
 

Lag
 

3. 	Return beam Low-Light Level Greater lag Higher 4 1/2" = 4000
 
vidicon 	 with high (lower I beam Resolution
 

resolution than #1 or 2)
 

4.- Image Intermediate More complex than Higher 4 1/2" = 800
 
Orthicon- to low light 1 or 2. Sensitivity 3" = 600
 

level
 

5. 	Image Low Noise,Low More complex than Low Light 4 1/2" = 800
 
Isocon 	 Light Level 1 or 2. level
 

negligible lag
 
and high dynamic
 
range ( 2000:1)
 

6. 	Any one of Higher High voltages and Higher 400 to 500 
above plus one sensitivity lower resolution Sensitivity 
or more stages (typically 100 (due to presently 
of image to 300 gain per available image 
intensifi- stage) intensifier) 
cation. 

Storage Type
 
Infrared Image
 

Sensors
 

Iricon 	 I-R Sensing Simple & Stable 3" = 800 

Non-Storage
 
Infrared Sensors
 

oint Source Rotating Array Non-storage Determined
 
Diodes or Assemblies by Number
 
Photo Transis- of Sensors
 
tors (PbSe or
 
Pbs)
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TABLE 3-2
 

IMAGING SENSORS (continued)
 

Sensitivity
 

0.4 	to 0.8 micron Target
 

SENSOR TYPES LIGHT TYPICAL DB 	 S/N INFLUENCED
 

PRIMARILY BY:
Image Storage LEVEL SIGNAL TO NOISE 
RATIO
Ft.Candles 


1. 	Vidicon 0.1 50 (9 MHz) Video Preamplifier
 
(including 	 45 (45 MHz) Video Preamplifier
 
FPS type)
 

2. 	Plumbicon 0.1 55 (9MHz) Video Preamplifier
 
(Pbo target)
 

10-3  
3. 	Return Beam 45 (50 MHz) Beam Current and 
Vidicon Tube Design 

10-4  
4. 	Image 40 (10 MHz) Beam Current and Tube Design
 
10-4  
Orthicon 	 35 (8 Mlz) Beam Current and Tube Design
 

10-6  
5. 	Image Isocon 40 (10 MHz) Beam Current and Tube Design
 

6. 	Any One of Determined
 
Above Plus by Number
 
One or More of Stages
 
Stages of
 
Image
 
Intensifi­
cation
 

Storage Type
 
Infrared Image
 

Sensors
 

Iricon 	 Equiv. 35 (9 MHz) Video Preamp, and
 
0.1. 	 Target Cooling
 

Non-Storage
 
Infrared Sensors
 

Point Source --- ---	 Video Preamplifier 
Diodes or
 
Photo Transis­
tors (PbSe or
 
Pbs)
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3.6.3 Spin-Scan Image Cameras
 

Spin-scan imaging is used in such systems at ATS, ERTS, and will be
 

used in SMS. Such cameras or image systems--use the spinning of the
 

satellite to scan the surface of the earth and direct the equivalent
 

of a scanning line to each of a group of point sensors.
 

One type of spin-scan camera uses a geometry similar to Figure 3-1Q,
 

which provides cross track scanning by use of a high duty cycle "rocking
 

mirror" located in front of the telescope collector. The image produced
 

at the primary image plane of the telescope is relayed by use of
 

fiber optic bundles to detectors where conversion to an electrical
 

signal is accomplished. Optical filters are used to select the optical
 

pass-band corresponding to each spectral band. Six detectors are
 

employed in each spectral band to permit a slower scanning motion of
 

the "rocking mirror" system. A small mirror, located on a 450 angle
 

with respect to the optical axis, is used for calibration of the scanner.
 

This'aibration is accomplished as the spacecraft comes into the sun
 

view from the dark side of the earth. This mirror drops in place in
 

front of the viewing part of the scanner and requires a clear vertical
 

view in the easterly direction between the earth "limb" and the horizontal.
 

The horizontal view must be adequate to catch the sun for tolerances.
 

resulting from seasonal variations and the launch window.
 

In the ATS multi-color spin-scan cloud camera system, the spacecraft
 

rotation is 100 rpm, the lines per frame is 2407 lines with a frame
 

time of 24 minutes (2.4 minutes retrace time).
 

A dwell time of 9.5 microseconds is provided for an instantaneous
 

field to scan a point source. Photo-multipliers using S-11 and S-12
 

photocathodes are used.
 

* S. D. Dorfman, J. R. Castaldo, and W. L. Exner, "Some Experimental
 
Results in Earth Resources Data Transmission", AIAA Paper 70-328,
 
AIAA 3rd Communications Satellite Systems Conference, Los Angeles,
 
California, April 6-8, 1970.
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To record the earth-image as transmitted from the Spin Scan Cloud
 

Camera, a precise line-start timing reference is required. Since no
 

such reference is needed by the camera itself, none is generated in the
 

spacecraft; however, if the ground equipment is to derive a suitable
 

timing signal it must have available some sort of spin angle reference.
 

This is provided by transmitting, along with the camera video, the output
 

of one of the spacecraft sun sensors, which produces one pulse each
 

spin revolution as its plane of view crosses the sun. (Figure 3-11)
 

Table 3-3 lists many of the operating characteristics of the spin­

scan camera system. Some advantages of the spin camera system, as
 

set forth by S. D. Dorfman et. al. are listed as follows:
 

Compatible with spin stabilization
 

Wide coverage and high resolution
 

Wide dynamic range
 

Simple and reliable space hardware
 

Excellent scan precision and stability
 

Simple, on-axis optics
 

Adaptable to IR
 

3.6.4 	Multi-Spectral Scanner (MSS) for Earth Resources Technology
 
Satellite
 

The MSS for ERTS differs from the spin scan camera for ATS in that
 

satellite motion is utilized to generate one dimension of the picture
 

and an oscillating mirror provides the other dimension of picture scan.
 

The satellite is stabilized and earth oriented in a 500 n.mi. sun­

synchronous orbit. Pictures are generated in a 100 n.mi. swath.
 

A schematic of the MSS camera is shown in Figure 3-12. The 45­

degree scan mirror oscillates at 15.2 Hz and scans 24 or 26 detector
 

elements in four or five spectral bands to generate an MSS image.
 

The first ERTS mission will utilize four bands, and the second ERTS
 

will add the IR channels. A summary of the characteristics of the
 

MSS is given in Table 3-4.
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TABLE 3-3
 

PRESENT SPIN SCAN SYSTEM PERFORMANCE
 

Resolution 0.1 mrad (2miles) 

Dynamic range > 400:1 

Scan lines 2400 

Earth coverage Full earth 

Scan rate 100 lines/minute 

Picture time 24 minutes 

Retrace time 2 minutes 

I.F.O.V. dwell time 9.6 microseconds 

Video bandwidth 100 kHz 

Spectral response 0.48 to 0.63 micron 
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TABLE 3-4
 

MULTI-SPECTRAL SCANNER SYSTEM SUMMARY
 

Scanner 

Optics 9-inch Cassegrain type with 
4-inch secondary mirror, f/3.3 

Scanning method Flat mirror oscillating + 2.9 

degrees at 15.2 Hz 

Instantaneous field 0.077 mr 
of view 

Spectral bands 1) 0.5 to 0.6 micrometer, 
and detectors photomultiplier tubes 

2) 0.6 to 07 'Micrometer, 
photomultiplier tubes 

3) 0.7 to 0.8 micrometer, 
photomultiplier tubes 

4) 0.8 to 1.1 micrometer, 
silicon photodiodes 

5) 10.4 to 12.6 micrometers, 
intrinsic IR detector 

Number of lines Six for bands 1, 2, 3, and 4; 
scanned/band two for band 5 

Limiting resolution 116 feet for bands 1, 2, 3, and 4; 
from 494 n.mi. 348 feet for band 5 

Temperature for -770 to 100OK 
IR detector 

Multiplexer 

Number of channels 26 

Bandwidth 15 megabits/sec 

Accuracy 6 bits 

Initiation of sampling Slit pulse 

Number of samples/scan 4096 
line 
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Different vegetation transmits, absorbs, reflects-and-re-emits radiant
 

energy in various portions of the electromagnetic spectrum.
 

Reflectance is high and thermal emission is low in the photographic
 

infrared band (0.7 - 1.0 microns). In the thermal infrared band
 

(8 - 14 microns), the opposite relationship prevails. A mix of reflectance
 

and emission are important for identifying vegetation or objects between
 

these bands.
 

The same plant also reflects and re-emits radiant energy as a function
 

of its health. Hence, agriculturists are able to develop signatures
 

of distressed plants,' and when they are discovered ground observers
 

can be sent 'to investigate.
 

These signatures will be used to detect crop problems before they are
 

readily visible on the ground. The condition and acreage of an ,
 

agricultural crop can be quickly estimated and used to make national
 

and world estimates of food supplies early in the crop cycle.
 

Wavelengths to cover appropriate regions for agricultural spectral
 

signatures have been determined by joint research of the Agriculture
 

Dept. and NASA and are tabulated in Table 3-5 They are 0.5 - 0.6 

microns, 0.6 - 0.7 microns, 0.7 - 0.8 microns and 0.8 - 1.1 microns. 

The first three bands are in the visible spectrum and the last is in 

the near infrared region.
 

Present plans call for these four bands on ERTS-A and an additional
 

band, 10.4 - 12.6 microns to be put on ERTS-B.
 

The spacecraft, covering the earth in 100-mi. swaths from 496-mi. polar
 

orbit, will photograph the earth in 18 days, thereby affording 20
 

opportunities for complete coverage in its lifetime of a year. Ground
 

features will be resolved to dimensions of about 200 ft. with the multi­

spectral scanner, compared with resolution of approximately 340-475 ft.
 

for the return beam vidicon.
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TABLE 3-5
 
AGRICULTURAL SPECTRAL SIGNATURES
 

Band 1 Band 2 Band 3 Band 4 Band 5 
0.5=0.6 0.6=0.7 0.7=0.8 0.8=1.1 10.4=12.6 
Microns Microns Microns Microns Microns 

Wheat ­ low fertilizer ...... 3.44 2.27 3.56 8.95 

Wheat ­ high fertilizer .... 3.69 2.58 3.67 9.29 

Water....................... 3.75 2.24 1.20 1.89 

Barley, healthy............. 3.96 4.07 4.47 9.29 

Barley, Mildewed............ 4.42 4.07 5.16 11.60 

Oats........................ 4.02 2.75 3.50 9.64 

Oats........................ 3.21 2.20 3.27 9.46 

Pine........................ 3.96 3.35 5.62 16.17 312/307 

Poplar...................... 3.90 2.96 4.13 13.08 

Soybean ­ high H20 .......... 3.29 2.78 4.11 8.67 

Soybean ­ low H20........... 3.35 2.60 3.92 11.01 

Sand........................ 5.19 4.32 3.46 6.1 

Loam - 20% H20.............. 4.21 4.02 3.38 7.57 

Loam - 1% H20 ............... 6.70 6.79 6.10 14.01 
Cultivated land ............. 3.27 2.39 1.58 

Clay......................... 14.34 14.40 11.99 

Gneiss ...................... 7.02 6.54 5.37 10.70 

Ice......................... 18.30 16.10 12.20 11.00 225/283 

Snow........................ 19.10 15.00 10.90 9.20 265 

Loose soil .................. 7.40 6.91 5.68 301 

Fallow...................... 302 

Soil ........................ 315 

Cotton ...................... 301 

Sorghum ..................... 307 

Corn ....................... 307.5 

River ...................... 293 

Pine - diseased ............ 312 

Pine -healthy ............. 307 

Sycamore .................... 4.19 5.22 8.14 20.13 

Sycamore .................... 4.07 4.59 7.92 18.24 

Oceans ..................... 300 

Oceans .................... 264 

Grass meadows ............... 289.5 
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The output of the scanner is made up of the individual outputs of 24
 

photo sensors, six per.spectral band. These are digitized on board
 

the spacecraft, multiplexed intoa single 15 megabits/sec bit stream,
 

and transmitted to the ground.
 

At the receiving stations the bit stream is demultiplexed and recorded
 

on tape. At the central processing station the tapes are played back
 

and the information for each scan (24 channels) is stored in cote
 

memories. The.information is then read out of the memories, converted
 

to analog signals and applied to the photo recorder properly sequenced
 

to produce the four spectral images.
 

3.6.5 An Illustration of a Multiple Sensor System - the ERTS-A Spacectaft
 

The ERTS-A spacecraft which is designed for agricultural applications
 

will carry two sensor packages, a four-channel multispectral sensor (MSS)
 

and three return beam vidicon (RBV) cameras.
 

The multispectral sensor, accommodating four spectral bands from ultra­

violet to far infrared, provides the color registration and resolution
 

needed.
 

3.6.6 The Interface Between the Sensor System and the A/D Converter
 

The camera and mosaic image sensors described in this section have the
 

characteristics of wide dynamic range, wide bandwidths, and MTF
 

characteristic curves whose amplitudes decrease with frequency.
 

When the sensor output is handled by conventional analog or digital
 

PCM techniques, the problem of dynamic range will result in requirements
 

of many levels of quantization on the part of the PCM format, or will
 

require the handling of an analog signal having wide range of voltage
 

excursion in addition to very high frequency components. Otherwise
 

the resulting display of information will switch only between black
 

and white and few intermediate shades of grey giving an image of
 

degraded detail.
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This problem has been approached in low data rate systems by using
 

6-bit PCM representing 64 quantization levels with excellent reproduction
 

capabilities. In the case of the Mars Mariner image data transmissions,
 

computer programmed image "sharpening" at the data terminus has added
 

to picture contrast and resolution.
 

When real time high data rate transmission of high resolution images
 

with large dynamic range (baseband bandwidths up to 50 megahertz) is
 

required, analog techniques become impractical and PCM signals with
 

accuracy in excess of 3-bits require enormous bandwidths.
 

Here techniques relating to bandwidth compression and to the rejection
 

of redundant data become very useful and practical, provided that
 

they are consistent with primary edge-resolution or contouring require­

ments. For most applications, delta modulation can represent both the
 

large bandwidth and dynamic ranges and will be discussed in the Sections
 

5 of both volumes.
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SECTION 4
 

DIGITAL TRANSMISSION OF IMAGERY DATA
 

4.1 INTRODUCTION
 

In this section, the use of delta modulation for the conversion of the
 

analog video data information to a digital bit stream, and its reconversion
 

back to analog data will be discussed. The technology of developing
 

digital bit streams with bit rates from 40 to 400 MEPS is very different
 

from the technology of developing low data rate streams, and this unusual
 

characteristic of the video signal - having a high redundancy data content
 

coupled with high speed image-edge effects-places severe constraints on
 

applicable techniques.
 

High data rate A/D conversion approaches ate identified and discussed in
 

Section 4 of Volume 1; however, emphasis will be placed here on delta
 

modulation and its application to imagery data transmission. The final
 

report will specifically deal with the technology of 200 to 400 MBPS bit
 

streams.
 

4.2 DIGITAL CODE EQUIVALENT OF ANALOG SIGNALS 

In,digital conunications, the analog input signal must be converted to
 

the pulse code which is the digital equivalent of the analog signal.
 

Figure 4-1 shows the general circuit used in digital communications. The
 

output of the A/D converter, which develops the bit stream from the analog
 

signal, is translated by a communication link to a digital-to-analog con­

verter (decoder) where the output is the original analog signal.
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Figure 4.1 	Circuit System Performing the Coding and Decoding Functions
 
in High Speed Digital Communications
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Figure 4-2 shows the principal steps in the development-of the digital
 

bit stream, following the circuit points identified in Figure 4-1. The
 

analog signal is first sampled to establish the amplitudes at key points
 

in the analog waveform.
 

The amplitudes of the samples are then converted to the particular code
 

used by an analog-to-digital converter. In the converter, the sample
 

amplitudes are measured against a quantized scale. If a binary code is
 

used, two bits correspond to 4 amplitude levels, 3 bits correspond to 8
 

amplitude levels, 4 bits correspond to 16 amplitude levels, 5 bits to 32,
 

6 bits to 64, 7 bits to 128 and so on. Thus, in each sampling period,
 

a series of bits are developed which represent the sequence or code repre­

senting that amplitude. In the case of delta modulation, which will be
 

discussed in depth in this section, the code is developed from difference
 

information rather than the gross scale measurement.
 

The codes shown in Figure 4-2 are for a three-bit PCM code with a fourth
 

(first) bit used to indicate whether a sample is positive or negative.
 

The zeros or ones of the coded bit stream must then be converted to the
 

frequency in phase levels of the modulated carrier as will be discussed
 

in the next section.
 

4.3 DATA RATE REQUIRED FOR A GIVEN BASEBAND BANDWIDTH
 

When voice information is to be transmitted by a digital bit stream equi­

valent, the nyquist rate which equals twice the highest significant fre­

quency in the analog signal is coded according to the required bit accuracy;
 

i.e., if the highest significant frequency is F, then the bit rate for N
 

bits per sample is
 

Bit rate in Mbps = 2.F.N
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For image information, however, more than two samples per cycle are
 

used -- as high as five. This requires trade-offs to be established be­

tween increased sample rates leading to an increase in detail, versus the
 

reduction in signal-to-noise ratio due to reduced energy-per-bit due to
 

the reduced duration time of each bit.
 

For systems where the data link capacity is to be the limitation to re­

solution, a sample rate of 2.8 samples per cycle of baseband data is
 

required. For a 2-bit digital system, the bit rate will therefore be 5.6
 

times the highest baseband frequency which is desired to be resolved.
 

A data link limited system will give the maximum quantity of information
 

picture elements for a given data bit rate limitation.
 

In systems that are intended to be sensor bandwidth limited, experience
 

has indicated that a minimum sample rate of 3.6 samples per baseband cycle
 

are required. A greater sample rate than 3.6 samples per cycle will not
 

yield detectably increased performance and should not be exceeded if some
 

control over data link efficiency is required.
 

An actual system might choose some compromise between the two extremes,
 

depending upon the nature of the mission and the input data characteristics.
 

Various combinations of video baseband bandwidth and data link bit rates
 

for an optimized 2-bit delta modulator are listed in Table 4-1.
 

The current Philco-Ford two-bit delta modulator has a maximum sampling rate
 

of 100 megasampies per second (200 Mbps data rate). This sampling rate
 

limitation occurs because of the integrator loop propagation delay using
 

current flight applicable circuit components. Using this maximum capa­

bility, the link limited baseband bandwidth is 36 MHz.
 

Figure 4-3 shows curves of digital data rate as a function of sensor video
 

bandwidth for 2-bit delta modulation, 4-bit BUM and 6-bit PCM based on 2.8
 

samples per cycle. The 4-bit and 6-bit curves are equally applicable to
 

delta modulation.
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TABLE 4-1
 

Electrical vs Optical Analogs
 

Link-Limited Sensor-Limited 

Data Link Data Link 

Baseband Bandwidth Bit Rate * Bit Rate ** 

25 MHz 140 Mbps 180 Mbps
 

36 MHz 200 Mbps 260 Mbps
 

50 MHz 280 Mbps 360 Mbps 

100 MHz 560 Mbps 720 Mbps 

* 2.8 samples per cycle of baseband data, 

•* 3.6 samples per cycle of baseband data. 
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4.4 ALLOWABLE BIT ERROR RATE
 

Noise in the data link receiver will cause errors in the digital data
 

input to the delta demodulator. Data bit errors affect the delta demodu­

lator by causing incorrect step changes into the integrator and a result­

ing shift in gray scale of the output video. This shift in'the gray scale
 

will persist for the memory time of the integrator, which is typically
 

ten samples in duration. The effect on the video output is a gray streak
 

on line in width and ten samples in length.
 

Since the resolution of the video output is not affected by occasional
 

digital errors, the data subsystem can tolerate a relatively large number
 

of errors. Experience with operational transmission of video data using
 

delta modulation indicates that useful data can be obtained with bit error
 

rates as high as 10 2. A threshold value of BER based on subjective
 

evaluation of actual video information seems to be about 10"3 . A BER of
 

104 or lower gives excellent results.
 

4.5 TYPES OF ULTRA HIGH SPEED AID CONVERTERS
 

A/D converters which provide conversion at rates-less than 1,000,000 per
 

second can use many candidate circuits, including parallel and series converter
 

techniques, successive approximation circuitry.
 

In the 40 to 400 Mbps rate range, high speed components and a minimum number
 

of successive logic levels leading to each bit must be used.
 

Problems of accuracy arise from the circuit problems inherent at these
 

high rates, assuming that the individual logic devices and switching
 

elements have switching times and delay intervals consistent with such
 

speed.
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* 	At these bit rates, every wire and connection becomes a
 

transmission line resulting in requirement for termination
 

to avoid reflectors.
 

" 	In low speed A/D converters, static accuracy is, important.
 

At ultra high speed, dynamic accuracy is most important.
 

" 	At ultra high speed bit rates, the threshold devices must
 

slow and settle to the correct value in the specified
 

period.
 

* 	Noise becomes a problem in ultra high speed A/D converters'
 

due to each wire acting as an antenna into which is cross
 

coupled clock signals, data frequencies from other lines,
 

and crosstalk.
 

At the 40-400 Mbps A/D converter speeds, few types of circuits can meet the
 

requirement of speed, low noise and with accuracy. The following paragraphs
 

will discuss the basic aspects of several candidate ultra high speed A/D
 

converter techniques which can operate at these speeds; i.e.
 

* 	Delta modulation method of feedback encoding (redundancy removal)
 

* Cyclic conversion encoder
 

" Phase-plane conversion encoding
 

* 	Threshold encoders
 

* 	Scanning tube-encoder.
 

Delta modulation technology is particularly suited to the transmission of
 

high speed sensor data, and will be discussed at length in this section;
 

however all above methods and techniques will be discussed in the paragraphs
 

to follow:
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4.6 Delta Modulator/Demodulator Implementation
 

For pictorial video information, the most important parameters are good
 

transient response or linear phase response, and low slope loading distortion.
 

Intermodulation distortion caused by non-linear amplitude response is generally
 

not critical. On the contrary, certain types of amplitude nonlinearities such
 

as gamma correctors or contract enhancers may improve the output image quality.
 

Pictorial video transmission systems can also operate at signal-to-noise ratios
 

considerably less than acceptable for quality audio transmission. This fact
 

becomes more obvious when considering that very few end-tb-end photographic
 

or imaging systems can exceed the discrimination of more then 16 shades of grey.
 

For this type of information, a transmission system with a signal-to noise ratio
 

sufficient to determine 100 discrete levels or shades of grey clearly has an
 

excess of signal-to-noise ratio.
 

The channel capacity may be-better utilized by increasing the baseband data
 

rate. Lower signal-to-noise ratios can also be tolerated when the quantizating
 

noise has the property that thapeak noise amplitudes are discretely-limited.
 

For example, a digital system whose peak noise amplitude is less than a shade
 

of grey will produce a better result (assuming contouring is not present) than
 

an analog system with the same PMS signal-to-noise ratio, because the peak
 

analog noise amplitudes will often exceed the visual detectability level.
 

For a multiple bit delta modulator, the optimum operation generally occurs when
 

the slope response limitation of the delta modulator just meets or exceeds the
 

maximum slew rate of input data. When this situation occurs, the system signal­

to-noise ratio is maximized without losing the capability of resolving fine
 

detail after a rapid grey-scale'transistion. Care must be maintained not to
 

over enhance the input data slew rate artifically by the use of techniques such
 

as aperture correction.
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The use of aperture correction can be used to produce nearly any desired
 

modulation transfer function at a given spacial frequency -- at the expenset
 

however, of signal-to-noise ratio. If an excessive amount of aperture
 

correction is used, resulting in a poor high frequency signal-to-noise ratio,
 

slope loading distortion will result unless the slew rate of the delta modulator
 

increases to meet the input data slew rate.
 

An increase in the delta modulator slew rate always trades off an increase in
 

quantization noise on a first order approximation. The actual noise increase
 

ma> be an overall noise increase or an increase in the loop instability, which
 

leads to excessive delta modulator signature. The optimum method chosen to
 

increase the slew rate again depends upon input data characteristics.
 

Unfortunately, while aperture correction decreases primarily the high frequency
 

signal-to-noise ratio, an increase in delta modulator slew rate decreases the
 

signal-to-noise ratio across the baseband spectrum, resulting in an overall
 

poorer system transfer characteristic when excessive aperture correction is
 

used. An optimum system in which a delta modulator is incorporated places a
 

significant amount of the system aperture compensation after the delta demodulator.
 

In summary, an optimum choice of delta modulator parameters must include consider­

ation of the following characteristics of the input data.
 

* Data type and critical distortions
 

* Modulation transfer function
 

* Input data slew rate
 

* Input data noise distribution across total baseband spectrum
 

* Statistical peak amplitude distribution
 

2-bit delta modulation provides the optimum choice to meet these considerations,
 

even though 3-bit delta modulation offers improvement in accuracy as pointed out
 

earlier in this section.
 

4-11
 

SPACE & RE-ENTRY SYSTEMS DIVISION 
Philco-Ford CorprationPHILCO C 



TR-DA2180 

4.6.1 The Two-Bit Delta Modulator - Practical Circuit Aspects 

The two-bit delta modulator employs three levels of quantization of the error
 

between the integrator and the input. Small differences cause a small step
 

correction, which determines the basic peak-to-peak noise, as in the case of
 

the one-bit modulator. However, when larger errors occur, the application of
 

large steps to the integrator greatly improve the slew rate relative to the
 

one-bit modulator. The two-bit delta modulator does not, of course, match the
 

true PCM analog-to-digital converter in the ability to slew the entire peak-to­

peak video in one sample. However, it is fortunate that virtually all practical
 

video systems have high frequency responses-which are significantly attenuated.
 

For example, limiting resolution in many systems is determined at approximately
 

2 percent response. Although a typical two-bit delta modulator requires 10
 

samples to slew. the operating peak-to-peak video range, it will not be- the
 

resolution limiting factor in most video systems.
 

The operation of the delta modulator is illustrated in Figure 4-4. The 

differential amplifier senses the difference between the integrator voltage 

and the analog input. Itfs output level is applied in parallel to the three
 

"quantizers" which, together, constitute a 2-bit parallel analog-to-digital
 

converter.
 

Each of the quantizers"is identical except for the threshold level voltage and
 

the charge increment output to the integrator. In each, the input voltage is
 

quantized as above or below the threshold voltage and time-sampled to set a
 

flip-flop accordingly.
 

The flip-flop outputs are logically combined (now shown) for transmission to
 

the delta demodulator. They also control the charge switches which increment,
 

or decrement the integrator. The delta demodulator employs "quantizers" which
 

do not need the sharp threshold circuit and have much less rigorous requirements
 

for narrowness in the sample gate aperture time interval.
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In Figure 4-3' typical timing waveforms are shown with a hypothetical integrator
 

response to a step input. The scale shown represents the greatly magnified
 

detail of an infinitely sharp edge. As previously explained, this is not
 

representative of typical video sources. (Note that, because of the integrator
 

decay, the pattern of steps required to maintain the static level after the
 

edge contains more positive (+S) than negative steps (-S).)
 

4.6.1.1 Role of the Tht6grator
 

In Figures 4-5' through 4-75 and Table 4-2, integrator characteristics are
 

illustrated and related to transmission errors, transient response, and
 

advantages versus disadvantages.
 

Prediction techniques are in general, costly from the standpoint of speed
 

since such techniques involve one or more sequences of logic levels. Experimental
 

integrator characteristics have the best overall characteristics relative to
 

noise inmunity and adaptability to optimizing image data.
 

4.6.1.2 Variable Step-Size Delta Modulator
 

One type of variable slope delta modulator which has a relatively simple 

implementation is shown in Figure 4-8 The step size is increased exponentially 

with a +++ or --- pattern of the last 3 bits, remains unchanged for the first 

transition after the first change from a repetition sequence, i.e., a pattern 

+-- or -++, and decreases otherwise. 

This type of variable slope delta modulator uses a shift register in series with
 

the integrator and has a much improved transient response and dynamic range as
 

compared to the linear slope system. Distortion for sinusoidal inputs is much
 

improved also. Minimum step sizes can be selected to give SNR = +35 dB for
 

both types at low modulation frequencies fclock/fsinusoid>200. However
 

fclock/fsinusoid = 100.gives SNR of +28 dB for variable slope as compared to
 

only +4 dB for linear slope.
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One alternative approach is to examine the last 3 or 4 output bits of the
 

delta modulator and to control the step size as follows:
 

Output Sequence Step Size
 

. . . +2
 

3 bit storage + + - +1
 

+ - x +I
 

. . . . +3
 

4 bit storage
 
+ + - x +1
 

+ - x X +1
 

The symbol x stands for "don't care." Negative steps correspond to inverted
 

The bit at the farthest left is the last bit transmitted.
output sequences. 


The step response of the encoders can be compared with the linear slope M
 

as shown in Figure 4-9. As can be seen the 3 stage delta modulator responds
 

in 7 steps or half the time required of the linear slope delta modulator. The
 

4-bit storage M responds in only 5 steps.
 

4.6.2 Basic Delta Modulator System
 

A Delta Modulator will receive analog video and will produce non-return-to­

zero (NRZ) digitized output. It will include a self-contained sampling clock,
 

a means to test the video response of the Delta Modulator and Demodulator upon
 

command, and a means to test the link error rate by a commanded digital pseudo
 

noise (PN) generator. Provision can optionally be made for generating precise
 

digitally transmitted video sync actuated by the video source 
sensor.
 

A block diagram of an illustrative Delta Modulator system is given in Figure
 

4-10. The basic Delta Modulator function is contained in the lower half of
 

the diagram, encompassing the video input amplifier to the serial-to-parallel
 

converter.
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The interface with the video sensor is accomplished at the video input
 

terminating amplifier. The video input line is assumed to be a floating­

shield, unbalanced (single-ended) coaxial cable. Triaxial cable may also
 

be employed where the outer shield is a.c. bypassed to the outer case ground.
 

This is especially recommended if UHF or lower frequency radio transmitters or
 

any other on-board pulse or continuous interference sources exist. The input
 

is nominally terminated in the cable impedance to insure flat video response
 

up to the 25 MHz maximum. If a long video cable is anticipated, (e.g., over
 

1 1/2 meters for 25 MHz), then the use of either additional source (sensor)
 

output termination or a precision, adjustable, cable termination at the Delta
 

Modulator is recommended.
 

The video input level is nominally 1.0 volt peak-to-peak, single-ended. The
 

shield is d.c. isolated to avoid spacecraft d.c. ground loops. Differential
 

input amplification will reject low frequency common mode signals (i.e., ground
 

noise) by at least 60 dB. Higher frequency common mode signals (above 100 Kz)
 

will be bypassed from the input shield to local ground. The use of lower signal
 

levels (e.g., as low as 120 millivolts peak-to-peak) is readily feasible in
 

order to conserve driving power providing that the signal to common mode noise
 

can be kept above unity within the video passband. Such an interface is
 

potentially critical, but it has been shown that it is entirely manageable.
 

The input video is assumed to contain a periodic, stable reference level for
 

restoring d.c. levels. The duty cycle of this reference level may be made as
 

small as 0.1 percent or a minimum of 200 nanosec, whichever is larger, providing
 

that an initialization cycle is utilized prior to data transmission. This
 

initialization cycle must contain a number of reference level periods transmitted
 

in the normal cycle to permit the d.c. restorer to stabilize. Three hundred to
 

five hundred such periods, or an accumulated total equal to the repetition time
 

plus 10 usec, (whichever is larger) is suggested as a guide.
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A more rapid response requirement would increase complexity and require
 

special attention to freedom from noise in the video source reference levels.
 

These allowances do not reflect the requirements of possible d.c. restoring
 

in the receiver video system inasmuch as the Delta Demodulator provides
 

inherent d.c. video response. Restoring d.c. in the receiver is not
 

recommended unless careful consideration has been given to the influence of
 

the link error rate on the required integration (i.e., time lag) in restoring,
 

which requires both a minimum duty cycle and a minimum initializing cycle.
 

These requirements generally supersede those listed immediately above for
 

transmitter restoring.
 

The video simulator (ramp) generator allows for a commanded operational
 

check of virtually the entire Delta Modem (including the Demodulator) and the
 

satellite-to-ground link. The ramp waveform is chosen as the simplest means
 

of test, requiring only a few components and less than 50 milliwatts of power.
 

As shown, the ramp generates its own restoring sync pulse. However, it may
 

be desirable also to synchronize the ramp to the sensor restorer sync in
 

order to simplify evaluation of the received signal. This presumes that the
 

ramp is not 'used for standby transmission while the video sensor is shut off.
 

The differential amplifier, the three quantizers (A, B, and C), and the feedback
 

integrator constitute the feedback loop i.e., the heart of the Delta Modulator.
 

Circuit technology is significantly different in the feedback loop for the 40
 

Mbps version as compared to the 200 Mbps version. In the former, almost all
 

functions can be implemented with monolithic silicon devices in stock packages.
 

Digital logic, for example, is one of several high-speed TTL families, e.g.,
 

"SUHL II."
 

Signal wiring must, of course, be reasonably short, and considerable attention
 

is required to ground plane and power plane bypassing: In the 200 Mbps version,
 

custom hybrids (thick film and chip) employ state-of-the-art, high gain-bandwidth
 

devices in a reliable, all-silicon design. Signal interconnections are direct,
 

point-to-point. Digital logic is a high-speed ECL, e.g., MECL III. Power
 

dissipation is higher consistent with the current levels needed for rapid
 

charge and discharge of circuit capacitances. These considerations require
 

careful interlocking of electrical and packaging design in a manner akin to
 

microwave circuit packaging.
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The clock oscillator can be a simple crystal oscillator operating in the
 

25 MHz region followed by frequency multiplication to the operating bit
 

rate. The stability requirements of this oscillator are readily met
 

without an oven by proven temperature stabilizing techniques. The resulting
 

long-term drift is overshadowed by the doppler uncertainty, and the short­

term jitter is insignificant within the power bandwidth product available
 

for the receiver clock tracking look.
 

The clock distributor provides both bit rate and sample rate (= 1/2 bit rate)
 

clock to various functions. It is composed of a binary frequency divider and
 

parallel output amplifiers, i.e., digital gates.
 

The logic levels from the three quantizers are converted to two binary data
 

streams emerging at the sampling rate. The conversion occurs as listed as
 

follows in Table 4-3. 

TABLE 4-3 

Quantizer to Bit-Stream Conversion
 

QUANTIZER THRESHOLD INTEGRATOR DIGITAL OUTPUTS
 

EXCEEDED STEP SIZE Dl, D2
 

A, B, and C Pos. Large 1, 1
 

B, and C Pos. Small 1, 0
 

C Neg. Small 0, 1
 

None Neg. Large 0, 0
 

The two digital outputs DI, D2 are arranged in serial sequence for transmission.
 

Both the three-level-to-binary and the parallel-to-serial conversions are handled
 

digitally by high-speed ECL logic.
 

4.6.2.1 Digital Synchronization
 

Digital synchronization is preferred as a convenience (optional) to replace an
 

analog sync tone burst transmission. It offers better link efficiency by
 

reducing the time required to transmit sync and greatly lessens time jitter
 

in the received sync at the expense of another interface, and a small amount
 

of logic.
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The digital sync generator operates by generating a high-speed sync word
 

such as five repetitions of a seven-bit Barker code at the bit rate when a
 

video sync signal is received from the sensor. This sync word is inserted
 

in the data stream, presumably during a video dead time (e.g., within the
 

reference signal; that is, the d.c. restorer sync period). Assuming that
 

the video sync follows a stable cycle period and falls within, for example,
 

a ten bit interval ("window") over several consecutive cycles, then straight­

forward digital detection techniques in the receiver will give fairly rapid
 

lock-up and negligible probability of false sync and loss of sync at any
 

usable bit error rate. The actual performance parameters achievable depend,
 

of course, on a numerical knowledge of the problem, i.e., the cycle period
 

and the maximum tracking rate required.
 

To conserve power, the Barker'code generator and cycle of five counter are
 

deactivated between sync periods. The average power is thus reduced considerably.
 

For a nominal peak power of four watts and a conservative maximum of 5 percent
 

sync time, the average power is 200 mw.
 

4.6.2.2 PN Test Generator
 

The PN test generator can be utilized in the high-speed model of the Delta
 

Modulator in order to certify acceptable bit error rates during operational
 

pre-use tests. The PN generator provides a fixed maximum length sequence from
 

11 storage elements, i.e., a 2047 bit sequence. It is actuated by command as
 

required.
 

The PN test generator utilizes 11 high-speed (ECL) flip-flops, and digital
 

gates in a standard regenerative configuration. See Figure 4-11.
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4.6.3 Delta Demodulator Configuration
 

The essential function of the Delta demodulator is to duplicate the integrator
 

voltage of the Delta modulator; this duplicated voltage then becomes the video
 

output. The Delta modulator performs this function by'rearranging the incoming
 

digital data (from the differential decoder outputs into the same three-level
 

signals that existed in the Delta modulator flip-flops. This is done by
 

converting serial back to parallel, and parallel data back to three-level
 

which is the inverse of the modulator. -High-speed ECL logic is again
 

utilized.
 

The Delta demodulator quantizer duplicates the flip-flop and charge switches
 

utilized in the Delta modulator quantizer. Therefore, the similar delta
 

demodulator integrator receives similar charge increments and thus has an
 

output slaved to the delta modulator.
 

A block diagram of the delta demodulator is shown in Figure 4-12.
 

4.6.3.1 PN Test Signal Comparator
 

The delta demodulator will include a pseudo-noise (PN) sequence generator
 

identical to that in the spacecraft with the exception that the generator can
 

be rapidly locked in sequence synchronization with the received PN sequence,
 

then used as a reference for comparison on a bit-by-bit basis with the received
 

sequence in a modulo-two adder. The output of the mod-2 adder is ANDed with the
 

bit clock. When a received bit is in error, a clock pulse will be gated-out to
 

an external digital counter.
 

4.6.3.2 Allowable BER
 

Noise in the data link receiyer will cause errors in the digital data input
 

to the delta demodulator. Data bit errors affect the delta demodulator by
 

causing incorrect step changes into the integrator and a resulting shift in
 

gray scale of the output video. This shift in the gray scale will persist
 

for the memory time of the integrator, which is typically ten samples in
 

duration. The effect on the video output is a gray streak one line in width
 

and ten samples in length.
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Since the resolution of the video output is not affected by occasional
 

digital errors, the data subsystem can tolerate a relatively large number
 

of errors. Experience with operational transmission of video data using
 

delta modulation indicates that useful data can be obtained with bit error
 

rates as high as 10- 2 . A threshold value of BER based on subjective
 

evaluation of actual video information seems to be about 10- 3 . A BER of
 

10-4 
or lower gives excellent results.
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4.7 MULTIPLEXING AND DEMULTIPLEXING DIGITAL BIT STREAMS
 

When more than one sensor provides information to be transmitted across
 

the image aata link, multiplexing and demultiplexing of bit streams must
 

be used. The following discusses the technology involved.
 

4.7.1 Interleaving Digital Pulses
 

Bell Telephone Laboratories has designed an experimental high-speed pulse
 

code modulation system to transmit 224 million bits per second over a co­

axial cable. This is accomplished by developing a series of bit streams
 

representing various information signals and various timing and synchron­

izing pulses. The pulse streams of these individually coded signals can
 

be interleaved to form a 224-Mb/s bit stream.
 

In general, when a number of pulse streams are to be combined into a single
 

stream, the rates of the streams may differ and the transmission times of
 

each from source to multiplexing point may vary with time due to tempera­

ture changes and other factors. One way of synchronizing such a system
 

is by locking all of the clocks at the sources to a single master refer­

ence clock and using elastic buffer stores to absorb time -delay variations.
 

This is practical as long as the sources are close-to the multiplexing point.
 

4.7.2 Time Sharing of A/D Converters
 

Time-sharing of a/d converters can be employed only if the over-all system
 

will permit reductions in accuracy and speed.
 

Only when the a/d converter is much more complex than the circuitry needed
 

to multiplex one channel will time sharing offer a reduction in hardware.
 

But only when the error and reduction in conversion rate introduced by
 

the multiplexing circuitry can be tolerated is time sharing desirable.
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Every time an analog signal is processed by some circuit, no matter how
 

simple, an error is introduced. Such is the case with time-sharing, where
 

analog signals are connected secuentially in time to the a/d converter.
 

Time-sharing deteriorates the over-all conversion accuracy: errors due
 

to time-sharing generally increase with the number of signals being
 

multiplexed.
 

There is another penalty paid for time-sharing; namely, conversion rate.
 

When "n" analog signals are senuentially converted in time, each signal
 

is converted only at a conversion rate of 1/n. Using the example of 16
 

inputs again, and assuming that the maximum conversion rate is 16,000 per
 

second, when each of the 16 inputs can be converted only at a rate of
 

1000 per second. Obviously, any economy in hardware through time-sharing
 

can be achieved only by sacrificing conversion speed.
 

4.7.3 Multiplexed Delta Modulator and Demodulator Systems
 

Two methods of digitizing and multiplexing satellite sensor data are con­

sidered. In the first method shown in Figure 4-13, each sensor analog
 

video output is fed to a separate delta modulator, which can be a 1, 2, 3
 

or 4 bit unit, depending upon the nature of the analog data it must auan­

tize and encode. The output of each delta modulator is fed to a multiplexor
 

which generates a serial bit stream. An advantage of this techninue is each
 

delta modulator is specially designed to handle its own specific analog
 

input. This approach lends itself to a multiple sensor system configuration.
 

The secbnd'method shown in Figure 4-14 involves the feeding of analog out­

puts from identical sensors to a multiplexing delta modulator. In this
 

approach, each sensor input together with its related feedback integrator
 

is secuentially switched so as to form, during the sample time, a complete
 

delta modulator unit. Thus, the summing unit and nuentizer is common to
 

all inputs.
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A logical variation on this second method would be the use of; say, two
 

multiplexing delta modulators to handle two different groups of sensors,
 

the output of these delta modulators in turn being multiplexed to form
 

one serial bit stream. Refer to Figure 4-15.
 

The major constraint on the satellite sensor system configuration is the
 

maximum-data rate attainable by delta modulation. This upper bound is,
 

of course, a function of current and projected developments-in high speed
 

digital circuitry. At this point in time a 200 MBPS data bit rate is
 

deemed highly practical.
 

For an'imaging type sensor system (vidicon, image orthicon, etc.) the
 

major system constraints are dictated by the desired coverage and resolu­

tion. These two factors determine the kind and numbers of sensors employed.
 

Readout time is determined by mission requirements and by individual sensor
 

characteristics, i.e., the frequency with which a scene must be viewed and
 

the physics of the imaging tube used.
 

4.7.3.1 Data Bit Rate From Multiple Sensor Systems. Of prime importance
 

in the readout of the on-board sensor system is the relatively high data
 

bit rate generated when delta modulation is employed. To derive this bit
 

rate, it is necessary to first define the recuired analog video BW. This
 

is done as follows:
 

a.' 	 Recognize that the sensor output during readout is an
 

analog video signal.
 

b. 	 For multiple sensors, define the R/O method, i.e., parallel
 

or serial.
 

C. 	 Define the number of data elements, a function of tube face
 

format.
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d. 	 Define the minimum R/O time, determined by operational
 

considerations and sensor physical characteristics.
 

e. 	 Apply the Nyouist sampling theorem to determine the required
 

bandwidth.
 

f. 	 Transform the BW into data bit rate by multiplying by the
 

quantizing code and sampling rate.
 

To derive an expression for data bit rate consider the parallel readout
 

of N identical vidicons having P picture elements each, in T seconds.
 

The resulting analog video will be applied to a multiplexing n-bit delta
 

modulator, sampling at S samples per cycle. The data bit rate is then
 

found 	to be:
 

Npns

Q = data bit rate = 2T 

Suppose we apply the foregoing to the readout of 8 type 74137A RCA vidi­

cons having a 5000 x 5000 TV line format. Readout time is 3.63 seconds.
 

The analog data will be applied to a 2-bit delta modulator having a sampl­

ing rate of 2.8 samples per cycle. Thus,
 

. (8) x (5000 x 5000) (2) (2.8) = 154 MBPS 
(2) (3.63)
 

Clearly, serial R/O would result in a Q of 19.25 MBPS, so that, depending
 

upon system data R/O requirements, the transmission bit rate can vary
 

from 19.25 to 154 MBPS.
 

4.7.4 Multiplexed Delta Modulator Implementation
 

The multiple video signals generated by the various sensors are encoded
 

by delta modulators and digitally multiplexed into dual serial binary
 

digital data streams. The implementation of this equipment is described
 

here.
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In Figure 4-16 an illustrative multiplexed delta modulator has ten video
 

inputs provided and utilized in selected patterns as determined by the
 

Programmer mode control. Two of these inputs are for wideband (i.e., up
 

to 15 MHz) video and eight are for medium bandwidth (i.e., up to 5 MHz).
 

A single bandwidth channel (i.e., up to 40 MHz) is provided at the maxi­

mum data rate. A growth option of three more widebahd inputs is recommended
 

for future sensor options in conjunction with other growth potential to be
 

described.
 

To handle simultaneously the multiple video inputs (up to 9 in number),
 

the delta modulator is split into two parallel sections. The Sampler A
 

section encodes only one channel at up to 216 Mbps. The Sampler B section
 

handles 1 to 9 video signals seauentially by multiplexing the nine inputs
 

and the D/A feedback to and from the nine integrators. Control of this
 

multiplexing is mode-determined and formatted in the programmer. The
 

split delta modulator approach is necessitated because the internal loop
 

feedback cycle would have been impractically short for a mass production
 

design converter within current art at the recuired rates with the added
 

handicap of the multiplexing switching delay. However, the use of two
 

independent converters permits a wide variety of sensor channels to be
 

flexibly accommodated.
 

4.7.5 Multiplexed Delta Demodulators
 

A multiple-channel delta demodulator for up to 10 channels is shown in
 

Figure 4-17. The digital-to-analog converter receives the component data
 

streams and a digital clock. It also receives digital control lines from
 

the programmer part of the surface DDP and utilizes this control to demulti­

plex the nine channels. The deformatted and demultiplexed data is directed
 

to integrator channels.
 

The ten integrators are programmed individually with time constants which
 

are the same as the corresponding integrators in the satellite delta mod­

ulator. The ten video outputs are amplified and presented to ten video
 

coaxial output connectors.
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4.8 IMAGE QUALITY IN DIGITAL COMMUNICATIONS SYSTEMS 

The image quality of the proposed digital data link can be comparable
 

to that of an analog link. Experimental results and data from Philco-


Ford operational programs such as Project Compass Link, have indicated
 

that output imagery is undistinguishable from imagery generated with
 

typical sensor-recorder combinations connected in the back-to-back
 

analog mode provided that the channel sensitivity and received energy
 

per bit ratio are proper.
 

The noise characteristics (quantizing errors) of the analog-to-digital
 

converter are sufficiently low such that more than 18 shades of gray
 

can be discernible on the output imagery if the sensor and recording
 

film are capable of this level of performance.
 

The amplitude linearity should be better than 5%. Any deviation from
 

an ideal linear approximation will then be a smooth monotonic function
 

that will be undetectable in the output imagery. The overall system
 

baseband signal phase shift is determined by the digital-to-analog
 

converter and the demodulator. Linear phase characteristics are
 

critical to video data and the net phase characteristics are adjusted
 

so that transient response overshoot will be less than 5%, and that
 

no detectable image smearing results.
 

Data link errors above a given bit error rate will, in general, cause
 

undetectable signature in the imagery. Certain multiple errors will
 

cause visible signature that will have the appearance of a short "comet"­

like streak along the direction of scan that rapidly decreases in
 

intensity, returning to the correct intensity level in approximately
 
20 to 50 data samples. As a first order approximation, the decay may
 

be characterized by an exponential function. At data link error rates
 

which are better than 10-3 , the output imagery is essentially unaffected
 
by data link errors. The additional link margin should then be provided
 

-
to insure error rates of at least 10 5 .
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The common, analog-link, multipath effect of "ghosting" and phase­

error which cause ringing, 'white after black" and general image
 

smearing and loss of detail are eliminated from the digital data.
 

The effect of multipath will be an increase in the data link error
 

rate, which will cause additive noise to be visible in the recorded
 

imagery. Smearing, ringing and ghosting will be absent.
 

In summary, the performance of an imagery digital link will be superior
 

to an analog link in the presence of multipath reception and the
 

imagery recorded at the link terminus can be generally indistinguishable
 

from that of a hard-wired, back-to-back analog link provided that the
 

- 4 -5
bit error rate of from 10 to 10 is maintained.
 

4.8.1 Some Measured Results
 

This paragraph will discuss various results of measurements made by
 

Philco-Ford on.practical delta modulators optimized for transmission
 

of image sensor data.
 

The most important performance characteristic of any imaging transmission
 

system is its ability to reproduce faithfully a useful facsimile of
 

the input data. The overall primary system measures of performance
 

are generally parameters borrowed from photographic technology such
 

as resolution, image noise, gray-scale rendition and fidelity, and
 

geometric linearity. Other important characteristics which are
 

subjectively important, but difficult to quantitatively measure and
 

interrelate with the primary system parameters, are: smearing and
 

ringing caused-by non-linear phase response, contouring, ghosting,
 

saturation, sync jitter, and effects caused by the sampling process
 

and resultant aliasing error inherent in any line scan system, such
 

as spurious resolution and Moire' effects. The primary source of
 

difficulty is the fact that the evaluating mechanism is the human
 

eye and brain. The difficulty arises when we attempt to use
 

familiar and convenient one-dimensional parameters such as linearity
 

and signal-to-noise ratio as a basis of comparison between totally
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different and non-linear systems. At present, no precisely reliable
 

method has yet been devised for predicting the "usefulness" of a
 

recorded image from knowledge of the simple single-dimensional
 

parameters. Fortunately, experimental data, including data verified
 

in operational systems, is available to evaluate the performance of
 

the delta modulator. The final test of any image transmission system
 

is the viewing.
 

4.8.1.1 Signal-to-Noise Ratios
 

The signal-to-noise ratio of a delta modulator is primarily a function
 

of large and small step size, integrator characteristics, reference
 

threshold levels, input signal dc component, and the input signal
 

structure itself. The determination of the SNR is most easily
 

accomplished by graphical analyses or actual measurements when hard­

ware exists.
 

The measured,peak-to-peak signal-to-noise ratio for a carefully
 

optimized delta modulator is 36 dB for the uncorrelated quantization
 

noise. The total noise consists of uncorrelated quantization noise,
 

as well as a lower frequency noise that is correlated over intensity
 

values and over a resultant area in the output image.
 

Correlated noise may cause a delta modulator signature effect if the
 

optimization required to prevent excessive slope-overloading distortion
 

results in detectable noise. The effect is usually not visible in
 

a properly optimized system. When the effect is visible, its effect
 

on image usefulness is usually minimal, since the "noise" is correlated
 

over common intensity areas and the eye is very effective in seeing
 

through the signature.
 

A typical value of SNR (when total noise is considered) for an
 

optimized delta modulator is 31 dB peak-to-peak signal-to-rms noise.
 

It is important to note that this value of SNR which would cause a
 

visible "salt and pepper" effect in analog transmission due to the
 

gaussian nature of the noise is undetectable in the delta modulation
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system, since the "rms" noise is not random and the peak noise amplitude
 

is fixed and never approaches a shade of gray difference in the dynamic
 

range of the video.
 

4.8.1.2 Noise and Distortion Optimization
 

For reconnaissance sensor information which will be displayed as
 

intensity values in a 2-dimensional spacial coordinate system such
 

as pictorial video, SLAR, IR scanners, and laser illuminators, the
 

most important parameters are good transient response or linear phase
 

response, low slope loading distortion, and an output video signal-to­

noise ratio sufficiently high so as not to degrade the information
 

quality. For many of these sensors, the limiting system signal-to­

noise ratio is set by the ultimate display and recording medium
 

(typically photographic film) rather than the sensor.
 

Some sensors might have video signal-to-noise ratios of better than
 

50 dB, while most recording film is limited to 15 to 20 shades of
 

gray This fact allows this general class of pictorial video
 

transmission systems to operate at signal-to-noise ratios considerably
 

less than acceptable for quality audio transmission. For this type
 

of information, a transmission system with signal-to-noise ratio
 

sufficient to determine 100 discrete levels or shades of gray clearly
 

has an excess of signal-to-noise ratio. The channel capacity may
 

be better utilized by increasing the baseband data rate.
 

Lower signal-to-noise ratios can also be tolerated when the quantizating
 

noise has the property that the peak noise amplitudes are discretely
 

limited. For example, a digital system whose peak noise amplitude
 

is less than a shade of gray will produce a better result (assuming
 

contouring is not present) than an analog system with the same RMS
 

signal-to-noise ratio, because the peak analog noise amplitudes will
 

often exceed the visual detectability level.
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Intermodulation distortion caused by non-linear amplitude response
 

is generally.not critical. On the contrary, certain types of amplitude
 

nonlinearities such as gamma correctors or contrast enhancers may
 

improve the output image quality.
 

For a multiple bit delta modulator, the optimum operation generally
 

occurs when the slope response limitation of the delta modulator just
 

meets or exceeds the maximum slew rate of input data. When this
 

situation occurs, the system signal-to-noise ratio is maximized
 

without losing the capability of resolving fine detail after a rapid
 

gray-scale transition. Care must be maintained not to over-enhance
 

the input data high-frequency content and slew rate artifically by
 

the use of techniques such as aperture correction.
 

4.8.1.3 Phase Characteristics
 

A properly optimized delta modulator with balanced and matched integrators
 

has ideal linear phase characteristics for video transmission. Overshoot,
 

ringing and linearity can be balanced to null. Overshoot specifications
 

of a few percent are required, not to allow for non-linear phase effects,
 

but for worst-case, slope-limiting quantization error overshoot. The
 

phase linearity balance can deliberately be set to cause some edge
 

enhancement overshoot which is often a desirable improvement in the output
 

imagery. The integrator balance is routinely held within a fraction of
 

a percent when linear phase is required.
 

4.8.1.4 Dynamic Range
 

One of the major advantages of a delta modulation system is that it
 

theoretically can have an infinite dynamic range as contrasted to
 

conventional PCM system or power-limited analog systems. Practical
 

circuit limitations obviously limit the dynamic range of a realizable
 

delta modulator to the saturation voltages of various amplifiers and
 

components. Practical dynamic ranges can easily exceed the specifications
 

and ranges of the image sensors.
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The wide dynamic range capability of the delta modulator-and resultant
 

freedom from amplitude overloading distortion are obtained at the
 

expense of a slope limitation factor which causes a slope-overloading
 

distortion if the slew rate of the input exceeds the slew rate of the
 

delta modulator.
 

An optimized delta modulator design adjusts the input data slew rate,
 

for optimum noise considerations and then adjusts the slewing capabilities
 

of the delta modulator to just exceed the processed data slew rate.
 

4.8.1.5 Recovery from Data Link Errors
 

A delta modulator with a "leaky" integrator has the inherent capability
 

to recover from errors. Properly optimized delta modulators typically
 

recover in an approximately exponential manner to less than 10 percent
 

of the error step amplitude in 20 to 70 data sample periods.
 

Most single bit errors are just on the threshold of detectability for
 

delta modulators. Multiple bit errors will cause detectable errors
 

where maximum step difference amplitude is usually limited to 1 or 2
 

shades of gray. Multiple bit error recovery time constants are essentially
 

the same as those for single bit errors.
 

The ude of aperture correction can be used to produce nearly any
 

desired modulation transfer function at a given spacial frequency;
 

however, this is at the expense of signal-to-noise ratio. If an
 

excessive amount of aperture correction is used, resulting in a poor
 

high frequency signal-to-noise ratio, slope-loading distortion will
 

result unless the slew rate of the delta modulator is increased to
 

meet the input data slew rate. An increase in the delta modulator
 

slew rate always trades off an increase in quantization noise as a
 

first-order approximation. The actual noise increase may be an overall
 

noise increase or an increase in the loop instability, which leads to
 

excessive delta modulator signature. The optimum method chosen to
 

increase the slew rate depends upon input data characteristics.
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Unfortunately, while aperture correction decreases primarily the high
 

frequency signal-to-noise ratio, an increase in delta modulator slew
 

rate decreases the signal-to-noise ratio across the baseband spectrum,
 

resulting in an overall poorer system transfer characteristic when
 

excessive aperture correction is used. An optimum system in which a
 

delta modulator is incorporated may place a significant amount of the
 

system aperture compensation after the delta demodulator.
 

4.8.1.6 Test Voltage Waveforms
 

Test waveforms can be used to show the response of an optimized delta
 

modulator. These waveforms include swept frequency square wave, sine
 

wave, and triangular wave inputs.
 

An important consideration of the apparent MTF which limits the response
 

at high frequencies is that the limitation is not a linear modulation
 

transfer function, but rather a non-linear slope-loading limitation.
 

The effect of the limitation is reduced or eliminated as the amplitude
 

is reduced. This is also the case for real video information which
 

can be characterized by an integrated spectrum and exponential probability
 

density function due to finite system apertures. Thus, the true
 

value of the modulation transfer function is unity for all frequencies
 

of interest, as long as slope loading does not occur. An optimized
 

delta modulator does not slope-limit or reduce the effect to a minimum.
 

4.9 COMPARISON OF MULTIPLEXING AND MODULATION TECHNIQUES
 

Various multiplexing/modulation techniques have been considered and
 

evaluated for multiple sensor transmissions:
 

a. SSSC/FDM/F? f. TDM/DM/PSK
 

b. DSB/FDM/FM
 

c. VSB/FDM/FM
 

d. TDM/PAM/FM
 

e. TDM/PCM/PSK
 

* 	 SSSC - Single side band suppressed carrier, DSB - Double side band; 

VSB - Vestigial side band; TDM - Time Division Multiplex; FDM - Frequency 

division multiplex; PAM - Pulse amplitude modulation; PCM - Pulse code 

modulation; DM - Delta modulation
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Each of these will be evaluated to provide a comparison of the performance
 

of each technique.
 

4.9.1 SSSC/FDM/FM 

This technique could develop a single side band suppressed carrier
 

subcarrier representation of each sensor channel, then frequency
 

multiplex all sensor channel subcarriers and then use the composite
 

signal to frequency modulate* the transmitted carrier.
 

Considering the SSC/FDM/FM multiplexing technique in general there
 

are a number of other difficulties which are apparent.
 

One of these is the extreme difficulty of obtaining good low frequency
 

amplitude and phase response to near dc, since the carrier must be
 

suppressed. This can be alleviated by using vestigial or double side­

band multiplexing and this will be discussed later. Another difficulty
 

will be the reduction of inter-channel crosstalk to a level below thermal
 

noise.
 

*For FM modulation the signal/noise ratio SNR at the output of the
 

demodulator is given by
 

3(Af) 
2 

SNK io()I{fgf2 3 ­ f1 j
 

where F = peak deviation
 

f2 = upper frequency 

f1 low frequency
 

and GIN ° = carrier/noise power density at the demodulator input.
 

It can be shown that for linear channels, i.e., SNR proportional to
 

signal level, the SNR required for channels carrying visible-light data
 

is 59 dB (peak-to-peak to RMS) and that for channels carrying infrared
 

data is 54 dB (peak-to-peak RMS).
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The next problem which will be mentioned is intermodulation distortion
 

noise due to linearity and group delay deviations in the IF/RF sections
 

of the downlink. It may not be too difficult to keep this noise to a
 

low level however its contribution must be recognized and minimized.
 

Implementation of SSSC/FDM necessitates the provision of highly stable
 

frequency sources both in spacecraft and on the ground since frequency
 

differences between these are trAisfetrdd directly to the video channel
 

spectra.
 

4.9.2 DSB/FDM/FM and VSB/FDM/FM
 

Both of these multiplexing techniques offer the advantage (over SSSC/FDM)
 

of improved low frequency response and either could be made to meet the
 

amplitude and phase requirements.
 

Both require a greater baseband bandwidth than SSSC/FDM and therefore
 

the permissible peak channel deviations and consequently the attainable
 

SNR's must be less than for SSSC/FDM.
 

4.9.3 TDM/FAM/FM
 

This technique for multiplexing the muitiple sensor channels would
 

require the channels to be sequentially sampled and then to allow
 

these samples to frequency modulate the downlink carrier.
 

The resulting spectrum will be more than twice that of the SSSC/FDM.
 

It is therefore obvious that the attainable SNR will be very much less
 

than for SSSC/FDM.
 

4.9.4 TDM/PCM/PSK
 

As a logical progression from TDM/PAM multiplexing, the merits of
 

digitization by FCM by means of analog/digitdl conversion becomes
 

apparent.
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One of the major benefits of digital transmission is the independence
 

of the channel SNR on the link carrier/noise (for error rates <1 x 10-5 )
 

and the very reduced effect of transmission deviations on channel SNR*.
 

Furthermore, as a consequence of digitizing the analog signals, it is
 

possible to employ non-linear digitization without introducing non-linear
 

distortion.
 

There,are other advantages to this technique also. Fiistly,'the low'
 

frequency response of each channel extends dowifto dc- thus fulfilling
 

another important-requirement. :Secondly, the channel SNR is essentially
 

independent of C/N and-thirdly, PCM/QPSK is less adversely affected by
 

IF/RF linearity and group delay deviations than analog FM.
 

4.9.5 TDM/DM/PSK
 

The merits of TDM/DM/PSK over TDM/PCM/PSK are derived from the fact
 

that for most image data transfer applications, 2-bit and 3-bit delta
 

modulators (DM) provide substantially the same accuracy as 6-bit PCM
 

while requiring much less bandwidth (see Figure 4-3). Also circuit
 

complexity and power requirements for delta modulation are significantly
 

less than that required for 6-bit PCM.
 

However, the disadvantages of DM over PCM are the loss of the d.c.
 

component of the image, and the absence of the full digital equivalent
 

of any particular element of the image - as is provided by PCM which
 

provides a bit word which represents each sample.
 

* In PCM, the SNR due to quantization noise only is 

SNR 	 3 x 2 2N(IiS
 
2 \RNS
 

where N = No. of bits 

and, for 5 bit PCM; for example, which represents an extremely
 

favorable case,
 

SNR = 	 3 x 32 dB 

= 41 dB Li. 

4-49
 
PHILOSPACE 	 & RE-ENTRY SYSTEMS ISION 

Phlco-Ford Corptcn 



TR-DA2180
 

4.9.6 Recommended Technique for Multiplexing
 

Reviewing the foregoing analysis it is apparent that only three techniques
 

seem worthy of further consideration. These are SSSC/FDM/FM, TDM/PCM/QPSK
 

and TDM/DM/QPSK. Each, at the present time, has problems associated with
 

its implementation. SSSC/FDM/FM will meet worst SNR requirements, unless
 

it can be demonstrated that analog companding is feasible and will provide
 

the necessary improvement, and the low frequency response and inter-channel
 

crosstalk requirements will present a severe problem to the FDM designer.
 

On the other hand, TDM/PCM/QPSK can provide acceptable performance but
 

will require A/D converters operating at very high bit rates. Here the
 

high bit rate capability coupled with circuit simplicity of TDM/DM/QPSK
 

is definitely an advantage.
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Section 5
 

MODULATOR/DEMODULATORS FOR PSK DIGITAL DATA SYSTEMS
 

5.1 PHASE MODULATION TECHNIQUES FOR HIGH SPEED DIGITAL DATA
 

For digital bit stream data rates up to 5 Mbps, many modulation techniques
 

are available, to provide both the modulated EF carrier which represents
 

the bit stream and also demodulate the bit stream from the modulated
 

carrier.
 

The data rates of 40 to 400 Mbps which are being addressed in this study
 

are most efficiently served by phase-shift-keying techniques in order to
 

o 	Conserve bandwidth
 

o 	Utilize optimum receiver techniques and data regeneration
 

o 	Avoid the requirement of transmitting carrier synchronization
 

data.
 

The features involving conservation of bandwidth were discussed in Section
 

2 where it was shown for example, that the same bit rates, quadriphase
 

modulation has half the bandwidth of biphase shift keying, and less than
 

a 	quarter of the bandwidth of MFSK.
 

The circuit features mentioned above will be illustrated by the actual
 

systems to be described in this section.
 

5.2 PSK Systems at 40-400 Mbps Data Rates
 

When the data rates exceed 40 megabits in any type of modulation system,
 

certain types of problems must be specifically solved on assure minimizing
 

bit error rate.
 

o 	The bit waveform in which is rectangular at low bit rates,
 

may degrade to trapezoidal or sinusoidal waveforms as the bit
 

rate increases to, in particular, greater than 100 Mbps.
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* 	 Unbalance in the phases of the phase-shift-keyed components
 

can occur.
 

* 	 Transmission at a very low energy per bit makes the system
 

receiver particularly susceptable to noise and phase jitter
 

particularly in the areas of carrier reconstruction and bit
 

synchronization at the receiver.
 

* 	 Switching waveforms and transients must be accounted for to
 

assure bit integrity.
 

a 	 The transmission system will appear as a filter with
 

determinable filter characteristics. Due to the speed of the
 

bit stream modulation, system ranging and intersymbol
 

interference can occur which can degrade transmission.
 

These and other characteristics will be discussed in the paragraphs to
 

follow.
 

5.2.1 BPSK and QPSK MOD/DEMOD System
 

The BPSK and QPSK modulators are now capable of biphase operation at data
 

rates of 100 Mbps to 400 Mbps, respectively. With improvements now
 

occurring in the switching times of the modulator driver, it is expected
 

that rates up to 400 Mbps will soon be possible with BPSK.
 

Figure 5-1 shows the basic system using PSK techniques to transmit digitized
 

sensor data. Note that timing information is also developed by the demodu­

lator.
 

Quadriphase QPSK is recommended rather than biphase for rates above 200
 

Mbps, because quadriphase requires half the RF bandwidth as shown in Fig.
 

5-2 and will tolerate twice the switching time as biphase for the same
 

data bit rate with no increase in transmitter power.
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Figure 5-1 Basic Modulator-Demodulator System
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Figure 5-2 
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A quadriphase modulator is essentially two biphase modulators in phase
 

quadrature. The quadriphase demodulator is more complicated than the
 

biphase modulator since it requires maintaining a proper phase balance
 

and phase accuracy between the tw6 biphase modulated carriers, requires
 

that an amplitude balance be maintained, and requires that crosstalk be
 

minimal.
 

5.3 CARRIER SYNCHRONIZATION IN BIPHASE AND QUADRIPHASE SIGNALING SYSTEMS
 

The normal PSK spectrum does not include a component at the carrier
 

frequency. Therefore, special efforts must be made to recover the carrier
 

from the incoming signal. Three principal methods of carrier recovery
 

are listed as follows:
 

a) Multiplication and filtering. Multiplying the frequency
 

and phase of the received PSK signal by n (the number of
 

phase positions) yields one spectral line at n times the
 

carrier frequency. One may either filter out the spectral
 

line or recover it with a phase lock loop (PLL). The
 

resultant wave form may then be divided by n to yield the
 

original carrier in one of n stable phase positions. The
 

narrower the bandwidth of the filter or the loop bandwidth
 

of the PLL, the smaller the phase jitter of the recovered
 

carrier; however, the recovery time is proportionately
 

longer. This technique for recovering the carrier is
 

normally used in continuous PSK operation where there
 

is no demand for fast recovery times.
 

b) 	Phase Lock Loop with Remodulation. In this approach the
 

received PSK signal is modulated inversely by the baseband
 

signal, which is demodulated by using a VCO output signal as
 

a reference. The transmitter side modulation of the carrier
 

is therefore cancelled and the carrier itself is received
 

in one of n stable phase positions at the output of the
 

remodulator and fed back to the input of the VCO. In this
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case also the phase jitter and recovery time are
 

inversely dependent on the loop bandwidth. This method
 

also yields faster recovery times because of the saw­

tooth shape of the phase detector characteristic.
 

c) 	Phase regenerative PLL. The PSK input is first
 

demodulated by the output of a VCO used as a reference
 

carrier. At the same time, this VCO output is PSK­

modulated with the received baseband signal. The phase
 

difference between the input PSK signal and the re­

generated PSK signal is then fed back to the VCO. The
 

regenerated PSK signal can also be derived from the
 

input PSK signal by direct PSK regeneration without
 

demodulation. Considering jitter and recovery,time,
 

this type of demodulation and carrier recovery has
 

nearly the same characteristics as the PLL with re­

modulation.
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5.4 QUADRIPHASE MODULATORS - CIRCUIT ASPECTS 

There are several methods for obtaining phase modulation with switching
 

diodes at microwave frequencies. They are characterized by the microwave
 

components used:
 

a. Magic T
 

b. Hybrid (Rat-Race)
 

c. 3-dB Coupler
 

d. Circulator
 

The first three require two balanced diodes and are thus more complicated
 

than the circulator type where only one diode is used.
 

5.4.1 Circulator-Type Diode Phase Shifters
 

Two types of diode phase shifters capable of phase modulating a
 

microwave or millimeter wave carrier are shown in Figure 5-3 representing
 

techniques now in use to produce bit rates in the hundreds of megabits
 

and capable of gigahertz modulation rates when such rates are required.
 

The biphase modulator of Figure 5-3 diode-switches between two different
 

lengths of line at the second port of the circulator while the circuit
 

of Figure 5-3 combines two such biphase modulators in a series mode
 

to provide quadriphase modulation.
 

In the biphase modulator of Figure 5-3, the CW signal is supplied to
 

Port 1 of the circulator. At Port 2, most of the power is reflected
 

and proceeds to Port 3, which is the modulator output. The reflecting
 

impedance at Port 2 is determined by the modulating diode and its
 

circuitry, and the phase angle of the impedance is a function of
 

the diode bias delivered by the driver. High and equal voltage
 

standing wave ratios (VSWR) are obtained for both phase angles 0
 

°
 and 180 . This means that the output power at Port 3 is the same
 

for both phase conditions and AM-free, biphase modulation with high
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Figure 5-3 Types of PSK Modulators 
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efficiency is obtained. With rise times at the receiver output of
 

less than 2 nanoseconds, the link can be operated with good efficiency
 

up to about 200 Mbps, which corresponds to 400 Mbps for quadriphase
 

modulation.
 

The diode acts as a controlled short, and when shorted, reflects
 

the carrier energy, thereby decreasing the line length by one-half
 

wavelength, or 1800. The diode conduction, and hence the reflection
 

property is controlled by a digital input, and the resulting waveform
 

at the circulator output is a biphase modulated carrier.
 

Since modulation of the carrier is accomplished external to, and
 

independent of the RF power source, the device most important to
 

the direct biphase transmitter is the waveguide switch system. To
 

achieve efficient biphase modulation, the switch system must deliver
 

a true 1800 phase difference with a minimally small amplitude unbalance
 

between phase positions.
 

For an ideal circulator, the input and output voltage ratio, which
 
I
 

becomes the reflection coefficient r at Port 2 is given as
 

- E "yt - IrIL0)
 

Ein Yoc +Yt
 

where
 

-
9(v) - - 2 tan I B(v)/Yoc if Yt - jBI 

and
 

Y is the circulator characteristic admittance,
 
oc
 

Ir becomes unity when the load admittance Yt is purely susceptive. 

Therefore, no amplitude modulation is introduced and the phase shift
 

e(v) is an arc tangent function of the susceptive load, which is a
 

function of the modulating signal voltage v.
 

1 C. S. Kim C. W. Lee, and J. R. Baner "Varacter S-Band Direct Phase
 
Modulator", IEEE, Journal & Solid State Circuits, Sept. 1966.
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If the load is simply an ideal varactor diode, then
 

Yt a jB(v) = JwC(v) 

where
 

C(v) - Cb
 
(1 - v/vb)n
 

Vb - dc bias voltage + junction contact potential,
 

C b- average capacitance at Vb' and
 

n = 1/3 and 1/2 for the graded and abrupt junctions, respectively.
 

The phase function 8(v) is thus a complex nonlinear function of v.
 

5.4.1.1 Diode Switching Modes
 

Diode switching for biphase modulation may be implemented in either 

of the two fundamental circuits of Figure 5-4. 

In Circuit A, the diode is utilized as a single-pole-single-throw
 

switch (SPST). In the closed position, incident RF energy is reflected
 

and in the open position, RF energy is transmitted to the short and
 

reflected so that the differential phase shift is 1800. In the design,
 

the phase shift is determined by the length of waveguide and the diode
 

may be optimized for switching speed, power capability, and RF amplitude
 

balance between states. From a device standpoint, common switching
 

diodes do not present sufficient impedance magnitude changes to allow
 

efficient biphase modulation with this approach; however, resonant
 

switching diodes are especially suited to this application, as will
 

be explained.
 

In Circuit B, the diode is employed as a lossless device which presents
 

a variable reactance when the diode bias is changed from the forward to
 

reverse condition or vice-versa. In this approach, the phase shift is
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accomplished by a diode design which changes thephase angle of the
 

equivalent reactance of the diode when switched from forward to reverse
 

bias. To achieve effective biphase modulation, the magnitudes of the
 

impedances must be well-controlled so as to minimize amplitude
 

modulation, and in general, external circuit techniques must be employed
 

to provide a reasonable compromise in the device performance.
 

The SPST diode switch technique has the significant advantage of
 

external phase adjustment which has little effect on amplitude
 

imbalance, power capability, and switching time. In effect, the
 

diode may be optimized for these other properties, a fact which
 

leads to a superior biphase modulator design.
 

The key to a successful biphase modulator design utilizing the SPST
 

switch is the double resonance switch. Consider the diode waveform
 

and equivalent circuits in Figure 5-5. When reverse-biased (bias = 

Vr) the diode equivalent circuit consists of the series elements Ld
 

(series inductance), Cj (junction capacity), and rd (series resistance)
 

in parallel with the mount and package capacity Cm. Forward bias
 

(Vf) has the effect of increasing Cj so that C. has a very small
 

reactance.
 

In most switch diode packages, the parallel and series resonances of
 

the switch are quite different in frequency, and for a waveguide
 

mount, the diode is driven into conduction to provide a short to
 

the RF signal and into reverse bias to provide an RF open circuit.
 

In the latter case, the energy propagates through the diode and is
 

reflected from the waveguide short, thus, producing a voltage across
 

the reversed bias diode of twice the incident voltage.. With such a
 

configuration, the incident power is severely limited to a value less
 

than one-half the voltage corresponding to the reverse bias voltage.
 

The double resonance diode is designed so that the series and parallel
 

resonant frequencies coincide. Equivalent circuits and switch actions
 

of a biphase modulator are shown for the switch in Figure 5-6. In
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reverse bias, the series resonance produces an RF short at the diode
 

plane in the waveguide, while forward bias produces an open circuit, and
 

the RF energy is transmitted to the waveguide short, resulting in a
 

phase difference of 1800 relative to the reversed-bias condition. For
 

this type of operation the diode in forward bias passes the RF energy
 

and the reflected voltage (twice the incident value) appears across
 

the diode in the forward bias. The incident power limit is then set
 

by the diode dissipation and currently diode switches operate at
 

levels in excess of two watts up to 26 GHz. Higher levels may be
 

reached with multiple diodes.
 

Risetimes are currently measured in the range of 1.5 to 2 nanoseconds
 

for the transition from 00 to 1800 which corresponds to a data bit
 

risetime of 0.75 to 1.0 nanoseconds.
 

5.4.1.2 Diode RF Admittance
 

The input admittance of the diode/RF circuitry can be measured with
 

the slotted line/VSWR meter as function of,diode bias and plotted
 

on a Smith chart for both silicon epitaxial and gallium arsenide diodes
 

as illustrated on Figure 5-7 and Figure 5-8. It can be seen that 

the VSWR is equally hig' (10 or more) for backward:("0") and forward
 
0


("I") diode bias, and that the admittances are separated by 180 . This
 

indicates that AM-free biphase modulation would result in normal
 

operation.
 

However during the bias tranisition (risetime of the modulating
 

squarewave) the admittance behavior is-quite different. The epitaxial
 

silicon diode is nearly resonant at the operating frequency for both
 

bias conditions; series resonant for backward and parallel resonant
 

for forwaid bias, and the admittance followsra nearly straight line
 

that passes close to the point 1.0 (matched). The non-resonant gallium
 

arsenide diode admittance closely follows a circle.
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Due to these two admittance plots, the modulator output waveforms for
 

phase and RF amplitude with a modulating waveform have a risetime which
 

can be predicted as shown somewhat idealized on Figure 5-7 and
 

on Figure 5-8. As mentioned above, the admittance of the resonant
 

diode modulator, at intermediate bias values, will pass near the matched
 

point so the reflected (output) voltage will have a deep dip with a
 

duration approximately equal to the rise time of the modulating voltage.
 

The output phase on the other hand shifts rapidly near the point 1.0.
 

The gallium arsenide diode modulator has an almost constant VSWR during
 

the transition, so the output voltage stays nearly constant, but the
 

output phase follows the modulating voltage and will have approximately
 

the rise time of this voltage.
 

5.4.1.3 PSK Switching Waveforms At High Bit Rates
 

As the bit rate increases, the rectangularity of the Bpsk waveform
 

degrades resulting in a transmission loss which will be discussed
 

here. This is a principal problem encountered for data rates above 

40 Mbps, and results from bandwidth limitation in the number of Fourier 

components making up the waveform. 

Consider,-for example, the spectrum of a 50 MHz 2 nanosecond rise time
 

modulating voltage from a solid state driver, as shown on.Figure 5-9.
 

The curve of Figure 5-10 uses only 5 sets of sidebands And illustrates
 

the ripple and increase of the rise time occuring at these rates.
 

Filter action on the modulator rise time can introduce an effective
 

energy loss by four mechanisms as analyzed by D. T. Magill. First,
 

filtering PM signals cause an AM envelope to occur. Second, the filtering
 

distorts the rectangular pulse shape such that the ground receiver
 

detector is not properly matched to the now trapezoidal (approximately)
 

pulse. Thus, .amis-matched filter detection loss occurs. Third the
 

creation bf an envelope (prior to the TWT) causes signal distortion
 

and reduced signal detectability through the AM-FM conversion mechanism.
 

The fourth and more mundane filter degradation is insertion loss.
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The filter degradation analyses assume a trapezoidal pulse shown in
 

Figure 5-11. This model represents a reasonable compromise between
 

accuracy and analytical tractability.
 

The existence of an AM envelope implies that the average radiated power
 

is less than the peak radiated power. For the case of a trapezoidal
 

(+1, -1) amplitude pulse, this degradation, known as the envelope
 

loss, is readily calculated to be
 

D 1
 e
 

where t is the rise time (-100% to +100%) of the trapezoidal pulse
r 

and T is the pulse duration (100 nanoseconds).
 

Note that this loss is not as great as when dealing with (1,0). A
 

bipolar pulse has, with respect to envelope, one-half the rise time
 

of a uni-polar pulse.
 

The above equation is based on a worst-case analysis, i.e., a phase
 

transition occurs each 100 nanoseconds. With a quadri-phase signal,
 

a complete envelope null (1800 phase reversal) occurs only one-fourth
 

of the time. Another one-fourth of the time no change and no null
 

occurs. One-half the time a 3-dB dip occurs. If the dip precedes
 

the TWTA, i.e., non-post-TWTA filtering, it is essentially removed
 

by the TWTA saturation characteristic and the average envelope loss is
 

De 
 L6
 

The worst case mis-matched filter correlation loss can be shown to be 

given by 

t 211 r 
D­

{l -2T
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and the average loss by the lower curve (b) of Figure 5-12 which is
 

generated from
 

T - D()+[l P (D,,,p.) + 2 P(DTCP P (D 
where DBC, DTC , and 0AC are the degradations in the best case, typical 

case, and average case, respectively, and p is the nominal E/N
o .
 

Figure 5-12 illustrates these losses. The additional loss occurs
 

since the receiver detector, being matched to a rectangular pulse,
 

accepts too much thermal noise power.
 

5.4.2 3-dB Hybrid Biphase Modulator
 

A biphase modulator can be configured using a 3-dB hybrid with two
 

ports terminated by a pair of varactor diodes,each resonated by an
 

inductance at the carrier frequency when back-biased. Each diode
 

represented could actually be a parallel combination of several
 

diodes. Each diode ensemble reflects most of the indirect rf energy,
 

when switched on, and this reflected power is summed in the other
 

arm of the hybrid coupler.
 

5.4.3 Quadriphase Modulator Using Hybrid/Combiner
 

Figure 5-13 shows a method of combining two biphase modulators, using
 

a 3-dB hybrid and in-phase signal combiner to produce a quadriphase
 

modulated carrier. In this circuit, the carrier is split into
 

quadrature components to drive each of biphase modulators whose outputs
 

are then combined to form a quadriphase modulated carrier wherein
 

the 00, 1800 phases represent one serial bit stream, and the 900,
 

270 phases represent another bit stream.
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5.4.4 Modulator RF Driver
 

The configuration of the oscillator driven of the biphase modulator
 

will be determined by the type of demodulator used in the recefver.
 

If the receiver is of the coherent type (phase-lock), the-oscillator
 

must have very low phase jitter and a crystal oscillatorAmplifier­

multiplier is mandatory, either to be used diredt or at lower power
 

for injection locking of an avalanche diode. If the receiver uses a
 

differentially coherent demodulator, noise frequencies up to several
 

MHz will be well correlated thus leaving the phase detector output­

practically noisefree.
 

This points to the possible use of a free-running avalanche diode as
 

the oscillator driver of the biphase modulator. The noise distribution
 

of this type of oscillator is (nearly) given by the 1/f rule where f
 

is the frequency displacement from the oscillator frequency. Therefore
 

the noise is considerably reduced before frequency range of poor cross­

correlation in the phase detector is reached.
 

The use of a free-running avalanche diode oscillator replacing the
 

crystal oscillator-amplifier-multiplier string was tested in an operating
 

7.5 GHz link whereas the transmitter was modulated with 100 MHz square­

wave (200 MB/s) having a rise time of about 2 nanoseconds. Figure 5-14a
 

shows the phase detector output with the crystal oscillator source in
 

the transmitter.
 

Next the crystal oscillator source was replaced with the avalanche diode
 

oscillator, and the phase detector output was then as shown on Figure 5-14b.
 

Any increase in "fuzziness" caused by noise from the diode oscillator
 

was insignificant.
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5.4.5 Modulating Diode Driver
 

The impedance looking into the modulating diode and its circuitry has
 

a VSWRof 1.5:1 for both phase conditions, so the normalized reflected
 

voltage is .871, accounting for the high efficiency with a loss of
 

only 1.2 dB. With about 1.2 dB loss in the circulator, the modulator
 

loss amounts to 2.4 dB, or an efficiency of 57.5 percent.
 

The driver consists of three emitter-coupled squaring amplifier driver
 

stages and the power output stage. All stages are non-saturating
 

to avoid storage effects. The output voltage levels are controlled
 

accurately by "swing" stabilizers. Figure 5-15 shows a block diagram
 

for the driver.
 

5.4.6 Differential Encoding at Diode Driver Input
 

Differential encoding is employed to resolve the inherent data polarity
 
ambiguity conc6mittant with carrier recovery in a biphase PSK detection
 

system. In differential encoding, a digital "1" input causes a data
 

output transition, i.e., either 1 to 0 to 0 to 1 and a digital "0"
 

input causes no change. Thus, data polarity reversals are irrelevant.
 

The implementation of both differential encoding and decoding is quite
 

simple; see Figure 5-16. A timing diagram illustrating the operation
 

is shown in Figure 5-17.
 

The data ambiguity may also be resolved by the use of any fixed word
 

of known polarity, such as the digital sync word. In the simplest
 

version, a data polarity reversing gate is placed in the receiver and
 

is controlled by the polarity of the received digital word.
 

The digital data is differentially encoded at the input to the diode
 

driver of the modulator in order to resolve the 4-phase ambiguity
 

at the demodulator. The data is encoded so that each of the four
 

possible data words corresponds to a multiple of 900 phase shift
 

in the modulator, according to the following rule:
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Data Word Modulator Phase Shift
 

00
00 

° 
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01 

­
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11 


2700
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The present output of the differential encoder depends upon the
 

present data word, as well as the previous output of the encoder.
 

Note that the data word determines a shift in the modulator phase.
 

The actual input to the modulator, however, determines a specified
 

phase of the carrier according to the following rule:
 

Modulator Input* Carrier Phase
 

00
00 
°
 90
01 

1800
11 
2700
10 


*Differential decoder output
 

A truth table illustrating the operation of the differential encoder is:
 

Previous Carrier Phase
 

900 1800 2700
00 


(00) (01) (11) (10) 

Present 00 00 01 11 10
 

input 01 01 11 10 00
 

data 11 11 10 00 01
 

words 10 10 00 01 11
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The entries within the truth table are the possible differential encoder
 

outputs (modulator inputs) for the various conditions of the data words
 

and previous carrier phase.
 

The circuit implementation of the differential encoder is rather simple
 

and is shown in Figure 5-18.
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5.5 DIFFERENTIALLY COHERENT DEMODULATOR
 

Where optimum sensitivity, i.e. minimum Energy per Bit/Noise Density for a
 

given error rate must be achieved, a fully coherent demodulator is used.
 

This type of detector utilizes a phase lock loop; it requires the solution
 

of problems regarding acquisition, pull-in range, tracking range, etc. These
 

problems all stem from the fact that a coherent reference signal must be
 

generated or reconstructed from the incoming carrier for use in the phase
 

detector. This reference signal is produced by a voltage controlled crystal
 

oscillator- amplifier- multiplier string. An ideal biphase modulated signal
 

has no carrier, a condition that is approximately true in practical opera­

tion, so a coherent CW signal is produced by feeding the signal through a
 

frequency doubler. This signal and the data detector reference, also fed
 

through a doubler, represent the inputs to the loop phase detector.
 

The differentially coherent demodulator does not need a reconstructed refer­

ence signal, and is very simple compared to the coherent type. It therefore
 

has important advantages regarding volume, weight, power consumption and
 

reliability factors when used in satellite electronic equipment.
 

The trade-off for its simplicity is a lower sensitivity. For an error rate
 

4
of 10- , the Eb / N0 is about 9.15 DB or about 0.75 DB higher than for the
 

coherent demodulator.
 

The theoretical performance comparison for coherent and differentially
 

coherent detection of quadriphase PSK is given in Figure 5-19. In practice,
 

the achievable performance with actual equipment will run 2.5 to 3.5 DB
 

below theoretical, with more than half of this degradation attributed to
 

energy loss resulting from modulator switching time and transmitter band­

width restriction filtering
 

5.5.1 Demodulator Configuration
 

As seen on Figure 5-20, the PSK modulated carrier is split in two parts.
 

One part is fed directly to the reference port of the phase detector. The
 

other part goes through a delay line and a phase adjuster to the signal
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port. The total delay is made equal to one symbol period, which for 150
 

Mbps is 6.66 nanoseconds. The phase detector thus operates with the phase
 

.from one symbol and that of the previous symbol -that now has arrived via
 

the delay line.
 

As an example, let one received symbol have the phase 00. If the next sym­

bol also has 00, both ports will have the same phase during this second
 

symbol period. The phase adjuster has been set so that the detector output
 

is maximum positive for this condition. Both symbols could as well have
 

had the phase 1800, and the port inputs would still be in phase during the
 

second symbol period; i.e., the output would still be positive. Thus, the
 

detector output stays positive for a series of symbols having the same
 

phase.
 

If, on the other hand, the first symbol with phase 00 is followed by one
 

with phase 1800, during the second symbol period, the port inputs will be
 

antiphase, and the output will be maximum negative. This output will remain
 

negative as long as there is an 1800 phase shift from symbol to symbol. The
 

detector output is therefore "coded" as follows, as illustrated in Figure
 

5-20.
 

No phase change : positive output ( 0 )
 

1800 phase change : negative output ( 1 )
 

The input signal to the transmitter modulator is differentially encoded;
 

therefore, with differentially decoding in the demodulator as just described,
 

the phase detector yields the uncoded data without ambiguity.
 

Figure 5-21 shows the complete differential phase detection and timing recov­
ery circuit used by W. HubbardIof Bell Telephone Laboratories, for a 300 Mbps
 

link.
 

The couplers, delay lines, and diode mounts are microwave printed circuits;
 

the filters and combining Tee are coaxial. The differential phase detector
 

and the timing recovery circuit are combined (share a common delay line) in
 

order to save space and cost.
 
1 	W. Hubbard et. al, "A Solid State Regenerative Repeater For Guided
 
Millimeter-Wave Communication Systems", BSTJ, November 1967.
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-.f-t.. . 541L Differential phase detector and iming recovry reut 

d-Sr vS11 + S~i)d} 
A straightforward analysis shows that the output voltage of this circuit 

is given by . 

1• cO~ c.{') di'f
" t os {w.+ 

for an input DPSK signal given by
 

with 

IaCt)= Ic + -T ICtI, JLW ') di' tr/2. 

If i',is chosen to be an odd multiple ofn/2 and 1- is chosen equal to T, 

the reciprocal of the bit rate, at the sampling instants [cincutif the 

output is given by 

VQt) = Cos Cm + ) d"/- I. 

Thus, under these conditions the device is the desired differential-phase
 

detector for this signal.
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5.5.2 Differentially Coherent Detection Operation
 

Figure 5-22 shows the simple configuration of the differentially
 

coherent demodulator. Its operation is described as follows.
 

The input signal is split into two parts. One part goes through a
 

power splitter and phase adjusters to the "Reference" ports of the
 

two data detectors. The other part goes through a delay line and a
 

power splitter to the "Signal" ports. The delay at the signal ports
 

is made (very nearly) equal to one symbol period. With quadriphase
 

modulation (2 bits/symbol) and at 100 Mbps one symbol period equals
 

20 nanoseconds. The phase detectors thus operate with the phase of
 

one symbol at the reference port and the phase of the previous symbol,
 

which now has arrived via the delay line, at the signal port. In
 

other words, the phase detector outputs indicate the difference in
 

phase between two consecutive symbols.
 

The operation of Phase Detector #1 will first be considered. With
 

an IF frequency of 1000 14Hz, for example, one period (cycle) lasts
 

one nanosecond.
 

The required delay for 200 Mbps is:
 

2 i0nanoseconds
 
200 x 106
 

This is equivalent to:
 

10
1 = 10 cycles at 1000 MHz 

To get the proper phase relation between the phases of Reference 1
 

and Signal Phase A, the Signal Phase A must be delayed the equivalent
 

of:
 

9-7/8 or 9.875 cycles of Reference 1
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Thus the actual delay will be:
 

1.0 x 9.875 - 9.875 nanoseconds 

The "timing error" will be about 125 picoseconds.
 

For Phase Detector #2, the Signal Phase A must be delayed the
 

equivalent of:
 

10-1/8 cycles
 

and the actual delay is:
 

1.0 x 10.125 = 10.125 nanoseconds
 

so here the timing error is also 125 picoseconds. This is still
 

only a small fraction of the rise time and will affect the integrate
 

and dump value very little.
 

The 4 phase positions are related to the phase detector outputs.as
 

shown on Figure 5-22. If symbol after symbol has the same phase,
 

the phase detector outputs will indicate Phase A. The next symbol
 

may go to the three other positions: +900, 1800, -90C, and it is
 

easy to show the two detector outputs for these phase changes:
 

Phase change
 

for next symbol None +90 180 -90
 

Output 0 Det. #1 + + -

Output 0 Det. #2 + - + 

Indicated Phase A B C D
 

The transmitter is differentially encoded according to the top and
 

bottom lines in this table. If the receiver is to indicate a B phase,
 

the transmitter goes +900 from whichever position it happens to be in.
 
0

If Phase C should be indicated, the transmitter goes 180 , and so on.
 

So by differentially encoding the transmitter and with differentially
 

coherent demodulation, there will be no ambiguity in the data stream
 

output of the demodulator.
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5.5.2.1 Data Filter Configurations
 

The optimum data filters at the output of the phase detectors are
 

integrate-and-dump circuits. Each symbol is integrated over one symbol
 

duration prior to sampling to maximize the SNR at the decision instant.
 

The energy is then dumped to prevent interference with the following
 

symbol. The configuration of the data filters and output logic are
 

shown in Figure 5-23.
 

The data filter willbea single-stage RC with a time constant approximately
 

10 times the symbol duration. The time constant will be switched for
 

each of the three data rates. The energy on the integrator capacitor
 

will be dumped to prevent intersymbol interference. To allow sufficient
 

energy discharge time, each data channel will use two time-shared filters.
 

The decision threshold is set at zero volts so that a hard decision is
 

made as to whether the integrated phase detector output is positive or
 

negative at the end of each symbol. Referring to Figure 5-23, the
 

decision threshold outputs (x and y) will have the following values:
 

x -positive for A or B
 

negative for C or D
 

Y= positive for B or C
 

negative for A or D
 

A, B, C, and D refer to the original data symbols 00, 01, 10, and 11,
 

respectively.
 

The logic resolves x and y into a single received symbol and outputs
 

a 2-bit parallel word according to the following rules:
 

A = 00=xy 

B = 01=xy 

C = 10=xy 

D a ll=xy 
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5.5.2.2 Bit Synchronizer
 

The bit synchronizer shown in Figure 5-24 will generate a coherent data
 

clock from the output of the quadriphase detectors. The data clock will
 

be used as a basis for sampling of the data filter outputs, as iell as
 

provide a digital clock required by the digital data processor.
 

The bit synchronizer operates by phase locking a crystal oscillator to
 

the data transitions at the output of the quadriphase detectors. A pulse
 

is generated for each transition by multiplying the detector output by
 

itself delayed by 1/2 symbol. One such transition detector is employed
 

for each of the two quadriphase detectors in order to maximize the number
 

of transitions. The transition detectors are summed in a linear summer
 

and the resulting output is used as the input to a conventional phase­

locked loop. The bandwidth of the phase-locked loop is chosen to minimize
 

timing jitter from additive noise and multipath.
 

Since the bit synchronizer locks to the quadriphase data bit stream with
 

a clock rate equal to the symbol rate (1/2 the output bit rate), a divider
 

is used in the phase-locked loop which allows the VCXO to operate at the
 

data bit rate. Also, since the phase-lock loop locks with a clock in
 

quadrature with the actual symbol clock, a second divider is used which,
 

when toggled from the inverted bit clock, will produce a symbol clock of
 

the proper phase.
 

To change bit rates, the delay is switched to 1/2 a data symbol and the
 

VCXO output is switched to the proper frequency.
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5.6 
 Coherent and Differentially Coherent Phase Detection
 

The PSK signal can be demodulated either by coherent or differentially
 

coherent phase detection. Coherent detection involves the generation
 

of a phase coherent reference carrier at the demodulator using a phase­

locked loop. Coherent detection requires approximately 2.4 dB less
 

power than differentially coherent detection but involves added circuit
 

complexity. Further, the phase-locked carrier reconstruction loop will
 

be affected by pull-in range, acquisition time, maintenance of carrier
 

lock and phase jitter due to additive noise and multipath. Good phase­

lock loop design can account for all of these link characteristics.
 

As discussed in Section 5.5, differentially coherent detection uses
 

each preceding received RF symbol as a phase reference for the next
 

symbol. Thus, carrier phase shifts from symbol to symbol are detected
 

without the necessity for establishing a fixed phase-locked reference.
 

The theoretical performance comparison for coherent and differentially
 

coherent detection of quadriphase PSK is given in Figure 5-25. In
 

practice, the achievable performance with actual equipment will run
 

2.5 to 3.5 dB below theoretical, with more than half of this degradation
 

attributed to energy loss resulting from modulator switching time and
 

transmitter bandwidth restriction filtering.
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5.6.1 PSK (Coherent) Demodulation - Carrier Reconstruction
 

PSK refers to phase shift keying by a binary message. The phase of
 

the carrier is shifted by 1800 each time the binary data changes.
 

Coherent detection requires that the receiver have knowledge of the
 

phase of the carrier with an uncertainty of exactly 1800. A phase­

locked carrier reconstruction loop is used at the receiver to generate
 

the coherent phase reference.
 

Two types of carrier reconstruction loops are used for binary PSK:
 

(1) the Costas loop or I-Q loop and (2) the frequency doubling loop.
 

For quadriphase modulation, the frequency quadrupling loop can be used.
 

The Costas loop generates a reference carrier signal locked in phase to
 

either of the two possible received signal phases by mating both an in­

phase and phase-quadrature phase comparison as shown in Figure 5-26a.
 

In the frequency doubling loop a coherent reference is generated at
 

twice the received center frequency. The modulation is removed by
 

the frequency doubling. The operation of the doubling loop is shown
 

in Figure 5-26b.
 

The error probability for coherent PSK has been listed in Vol. 2,
 

Sec. 2; that is
 

BEK =p'[.Q2EbN]
 

With regard to terminology, it might be pointed out that PSK and PCM/PM
 

are identical when +900 phase deviation is used in PCI/PM. Phase reversal
 

keying (PRK) and PSK are also identical. PSK is also commonly referred
 

to simply as hi-phase modulation.
 

For complete phase reversal keying; i.e., +900 phase deviation, there
 

is no explicit carrier component in the signal. For applications in
 

which a residual carrier is required such as for Doppler tracking, a
 

phase deviation of less than +900 can be used. For PSK with +9 radians

<T 

deviation (G : j ), the ratio of the carrier component to the total 
signal power is COS 0. The BER is given by:
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ERpsK = cf (Sin A VITPT) , 

for +9 radians deviation. Typically one radian deviation is used, so 

that 1.5 dB more power is required to achieve the same BER possible 

with 9 = y2. 

Figure 5-27 shows the block diagram of a coherent biphase demodulator.
 

The function of the frequency doubler carrier reconstruction loop is
 

described as follows: Carrier reconstruction is performed by a voltage­

controlled oscillator/frequency miltiplier operating in a phase-locked
 

loop. As can be seen in Figure 5-27, the "Signal" for the loop detector
 

is obtained by feeding part of the biphase modulated signal through a
 

frequency doubler. (When the input signal to the doubler "flips" 1800,
 

The doubler output phase change is 3600, i.e., it does not move at all.)
 

The output from the doubler is a CW signal with twice the frequency and
 

a fixed phase relation relative to the (actually nearly missing) input
 

carrier. An extra doubler fed from the synthesized reference signal
 

for the loop detector completes the loop.
 

The loop calculations are performed in the conventional manner with
 

parameters such as tracking range, pull-in range, tracking rate, etc.
 

The VCXO must have as clean a spectrum as practically possible (low
 

phase jitter), and must have good temperature and long-term stability
 

so as not to require too large a part of the loop detector characteristic.
 

These requirements, of course, hold true, also for the transmitter
 

oscillator.
 

The input level to the demodulator is usually at least 10 mW and the
 

data detector output will be about + 75 mV with + 2 dBM signal and + 8 dBM
 

reference. The loop detector operates with about -6 dBM signal and 0 dBM
 

reference.
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5.6.1.1 Times-Four Quadriphase Carrier Reconstruction Loop
 

The times-four carrier reconstruction loop uses frequency quadruplers
 

instead of frequency doublers in the phase lock PSK detector of Figure
 

5-26b.
 

The data modulation is removed by the fourth harmonic operation since
 
° 
any multiple of 900 when multiplied by four yields 0 (modulo 3600).
 

Limiting the RF bandwidth prior to the X4 operation decreases the time
 

(due to finite rise times) that the signal is at a multiple of 900 and
 

this decreases the recovered carrier power. However, decreasing the
 

bandwidth at the X4 input significantly improves the signal-to-noise
 

ratio and decreases the small signal suppression effect. Analyses and
 

experiment have confirmed that filtering (3 dB bandwidth) at the first
 

spectral nulls represents a reasonable compromise between these effects.
 

More severe filtering than that proposed above can create a data sideband
 

lock problem if periodic data is transmitted for test purposes. The
 

bandwidth limiting converts the digital phase modulation to amplitude
 

modulation which passes through the X4 device unaffected and creating
 

sidebands at the repetition rate of the test word. While this problem
 

is not usually severe it can be troublesome particularly for unattended
 

operations that encounter periodic words.
 

The output of the X4 device should be reasonably narrow so as to increase
 

the efficiency of the X4 device. However, the bandwidth must be great
 

enough to encompass the frequency uncertainty (at 4 f.). In fact, since
 

it is impossible to perfectly match the two X4 devices (one in the signal
 

path and one in the reference path), it is desirable to make the filters
 

sufficiently broad that the frequency uncertainty produces relatively
 

little phase shift (e.g., 50 or 100). Thus, with this approach one can
 

readily expect the filter to track to within 0.5 to 1 degree producing
 

degradation of less than 0.1 dB.
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The X4 device can be achieved either with a single stage or two doubling
 

stages. Theoretically, identical performance is achieved. However, the
 

latter approach tends to be favored since it keeps the desired signals
 

at relatively high levels at all points and thus avoids problems with
 

spurious signals causing interference. When the two doubling stages
 

approach is taken,the signal at the output of the first X2 device is
 

biphase modulated. Thus, the filter bandwidth at this point must be
 

no narrower than at the input.
 

The two X4 devices should be made as nearly identical as possible so
 

as to increase the likelihood of accurate phase tracking with frequency
 

uncertainty and temperature drift. Poor tracking will cause a phase off­

set error at the phase detectors and degrade performance. This effect
 

is discussed in a subsequent section on implementation degradations.
 

The harmonic devices should be of the full wave type rather than snap
 

action diodes. The former type offer more stable phase shift with
 

temperature changes and signal level changes than the latter.
 

5.6.2 Carrier Reconstruction Loop Bandwidth Design
 

A second-order loop with nominal dumping coefficient of c - 0.707 is 

standard. The permissible closed-loop bandwidth is bounded from above
 

by thermal noise and loop threshold considerations and from below by
 

dynamic tracking errors and acquisition time requirements. Some typical
 

calculations are perfornied below.
 

The closed-loop signal-to-noise ratio can be shown to be given by
 

SNRloop = SNRRF + (W/B)dB - 12 dB - 'TdB 

where SNRRF is the RF signal-to-ratio prior to the X4 operation, W is
 

the RF bandwidth, B is the closed-loop bandwidth of the phase-lock-loop,
 

and y is a small signal suppression degradation effect.
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The RF signal-to-noise ratio is related to the energy-per-bit-to-noise
 

spectral density ratio by
 

SNRt - (Eb/Ko) (R/W) 

where R is the data rate in megabits per second (Mbps). For a worst
 

case bound on performance let us assume that error rates as high as
 

17 are acceptable and that the RF bandwidth W is set at 2.5 times the
 

data rate corresponding to very broad filtering - more typically the
 

filter bandwidth might be set equal to the data rate. In this worst
 

case the loop signal-to-noise ratio can be shown to be equal to
 

SNRloop - 17.5 dB + (W/B) dB 

Assuming a very conservative loop threshold of 12.5 dB this implies
 

that B - 0.001 W. Taking a 300 Mbps example we find that B - 750 kHz.
 

If the loop bandwidth is decreased to 75 kHz the minimum loop signal­

to-noise ratio will be increased tb 22.5 dB which offers extremely
 

strong lock.
 

More typically one might choose to set W - R where R is the data rate
 

and to operate at a 10-4 error rate. In this ease Eb IN is increased 

by 3.5 dB, and SNRR, is increased by 7.5 dB. As a result, the small 

signal suppression is decreased by 4.5 dB. The net increase in signal­

power-to-noise density ratio prior to the phase-lock loop is only 8 dB 

since the noise is concentrated in 0.4 of the previous (worst case)
 

bandwidth. As a result, the loop signal-to-noise ratio is 8 dB higher
 

for the typical case than for the worst case. Thus, the nominal loop
 

signal-to-noise ratios are 20.5 and 30.5 dB for the wide and narrow
 

loops, respectively. The worst case values will be used in the remaining
 

analysis for the purposes of establishing a conservative design.
 

Let us now consider the loop bandwidth requirements, or rather the
 

capabilities of the two bandwidths of 75 and 750 kHz. The acquisition
 

time is given by
 

acq TF + 0 
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where TF 4 (A f)2/B3 and T0 4/B, correspond to frequency and phase
 

acquisition, respectively. The resulting acquisition times are 343
 

milliseconds and 348 microseconds for the 75 and 750 kHz bandwidths,
 

respectively.
 

The loop gain required to achieve a pull-in range of + 6 MHz (at 4 fo) 

is given by 

k 4 3 A f2/B P 20204 f 2/B 

which corresponds to loop gains at 5.82x109 and 5.82x10 for 75 and
 

750 kHz loop bandwidths, respectively. These loop gains are quite
 

high and can probably be best achieved through the use of LC rather
 

than the crystal VCO's.
 

The Ioop bandwidth is also set by the maximum transient error, due to
 

a parabola of phase, that is, the rate of change of doppler. In this
 

section the peak phase error tolerable (at 4 f ) is assumed to be
 

100 which yields a maximum degradation of 0.2 dB and which exists
 

only during the period of maximum acceleration. The peak transient
 

error (in degrees) is given by
 

ED = 1.12 a/B
2
 

where 0 (t) = at2 describes the path length change measured in degrees. 

Thus, a < 8.90 B2 or expressed as doppler rates at f the maximum 

tolerable doppler rates are 35 MHz/sec and 3.5 GHz/sec for the 75 kHz
 

and 750 kHz bandwidths, respectively. It is anticipated that the
 

narrow bandwidths suffice for most applications.
 

The-loop bandwidth must also be wid enough to accommodate the link
 

phase jitter and incidental FM due to imperfect up and down conversion
 

operations. Typically, phase jitter and incidental FM are only problems
 

for very low data rate systems where loop bandwidths must be on the
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order of 100 Hz or lower. Thus, no difficulty is anticipated with these
 

phenomena since the minimum loop bandwidth proposed is three orders of
 

magnitude broader. Previous analyses on quadriphase modems have
 

established the feasibility of 100 Hz loop bandwidths at X-band.
 
Certainly, three orders of magnitude loop bandwidth increase can
 

accommodate one order of magnitude change in the RP frequency.
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5.6.2.1 Implementation Errors of Carrier Reconstruction Loop
 

This part summarizes a portion of the extensive analyses of
 

signalling performed with Philco-Ford quadriphase modems.
 

The prime source of system degradation, due to phase-lock loop per­

formance is static phase error. Figure 5-28 plots the error rate
 

degradation (in dB) as a function of this phase error and also the
 

non-orthongonality phase error 6. There are several sources of phase
 

error most of which can be calibrated out. Phase shift due to
 

frequency uncertainty and phase error due to the finite loop signal­

to-noise ratio are the fundamental error sources that cannot be
 

readily calibrated.
 

The static phase error (at 4 f ) due to frequency uncertainty is
 
0
 

given by 0 = 4Af/k where /3f is the frequency uncertainty (at 4 f )
 

and k is the loop gain. For the loop gains proposed to achieve a
 

pull-in range of + 6 MHz the phase errors are found to be 0.4 and
 

0.040, for the narrow and wide loops, respectively. Before these
 

- phase errors can be used with Figure 5-28, they must be divided by 

four to convert them to the phase detection frequency (f0). As
 

may be seen from Figure 5-28, the loss due to this effect is a negligible
 

few hundreds of a decibel.
 

The effect of finite loop signal-to-noise ratio can be roughly
 

estimated from Figure 5-28 also. The loop phase jitter (at 4 f )
 

measured in radians is given by
 

=1/ SNRop
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For the wide and narrow loops we have 0.237 radians and 0.075 radians,
 

respectively. Referred to the fundamental frequency, these errors
 

yield degradations of 0.31 and 0.06 dB, respectively. Clearly, the
 

narrow loop performs better but it should be cautioned that even the
 

broad loop will perform better than the above worst case calculations
 

indicate.
 

5.6.2.2 Carrier Reconstruction in the Presence of a Noisy Reference
 

In order to coherently detect a quadriphase-modulated signal, it is
 

necessary to either reconstruct the carrier or to make use of a trans­

mitted pilot carrier. This memo is an analysis of the carrier re­

construction section of a quadriphase demodulator.
 

Basically, the quadriphase (QPSK) signal may be described as
 

2S cos £wot + 3(t) + @1 

where S is the average power of the signal,
 

w is the carrier radian frequency,

o 

qp(t) is the modulation (i.e., c(t) takes on one of
 
the values + i/4, + 3rr/4 radians for a period
 
of T seconds),
 

and 9 is a random phase angle uniformly distributed over (0,2n).
 

Passing this signal through a nonlinear device and filtering so as to
 

recover the fourth harmonic yields
 

K cos (4w 0t + Tr + 4 0) 

where we see that the modulation has been removed and in its place a 

constant phase term is left. To reconstruct the carrier, one can 

divide down by four and subtract out 11/4 radians and obtain KI cos 

(W t + 9) which may be used as the coherent reference. 

5-58
 

SPACE & RE-ENTRY SYSTEMS DIVISIONPHILCO C6 Philco-Ford Corporation 



TR-DA2180
 

In a physical system the implementation is generally as indicated in
 

Figure 5-29. The QPSK signal and additive gaussian noise with one-sided
 

spectral density of N watts/Hz are passed through a bandpass filter
 

sufficiently wide to pass at least the main lobe of the QPSK signal.
 

The phase-locked loop (PLL) tracks the signal component at 4zo from
 

the (.)4 device and the reconstructed carrier is obtained from the
 

VCO output at w0.
 

This analysis consists of deriving the signal-to-noise ratio at the
 

input of the PLL and, knowing this, the average error rate for the
 

detected QPSK signal.
 

Since each of the possible phases of the transmitted quadriphase
 

signal are equally likely, we need consider only one of them in
 

formulating the probability of making an error in the detection
 

process. Furthermore, since the PLL is tracking a carrier at 4f0
 
we must divide its output signal by 4 yielding a reference signal at
 

f . This divide-by-four operation has the advantage of also reducing
 0
 

the phase difference Pby 4. Figure 5-30 shows a phasor diagram of a 

received signal originally transmitted as 

cos (wot + 2+ 9). 

where E is the symbol energy
 

The reference signalused in coherently detecting this signal is 

of the form 

K cos(W t + e + () 
0 4 

The four equally likely choices for symbol in each time period T
 

results in
 

1og 2 4 - 2 bits of information/symbol 
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The assignment of the symbol to each pair (x, y) of binary digits
 

transmitted may be arbitrary and we will choose to do it as indicated
 

in Figure 5-30. Here we see that the assignments are:
 

x y P(t) 

0 0 - r 
4 

0 1 +3n 
4 

1 0 _ 
4 

I I­
4
 

Since the transmitted symbol may be considered the vector addition 

of the x and y components we will assume that the noise is also 

composed of x and y components. Each component of noise (nx, n ) 

will be assumed gaussian with zero mean and one-sided noise density 

N watts/Hertz. Further, we assume the two components to be statisticallyo
 

independent.
 

A hard decision as to which two bits were transmitted is made by
 

determining in which quadrant the received signal vector lies, For
 

the case shown in Figure 5-30, one bit will be in error if the received 

vector lies in quadrant II or IV and two bits will be in error if it
 

lies in quadrant III. No error will result if it lies in the first
 

quadrant. The conditional probability of a bit error when two bits
 

(one symbol) are transmitted given an angle ris
 

Prob(bit error per 2 bits/f) - 1/2 
2 

erfc cos +erfc sin a 
2 f' -t 

where erfc (z) - 2 r e dt 

Using the ideas of conditional probability,
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Prob(bit error/bit transmitted) = Prob(bit errorjcp)Prob((p) 

exp(SNR cos w)_erfc cos + erfc sin ) j&p 
8rrI (SNR) A 0 A0 

where again, a = 4 

and E 	a symbol eiergy
 

- 2 bit energy - 2Eb
 

The above equation cannot be evaluated in closed form, however; a
 

computer program was written to numerically integrate itwith various
 

values of SNR and EbIN
 

For the sake of simplicity, SNR was taken to be of the form.
 

SNR L -f Eb/N o
 
SRL jGEbo
 

where 	1 a constant 

Curves of bit error probability vs input Eb/N with several values of
 

0 are shown in Figure 5-31. It will be noted that forf = 5 there is
 

at most a degradation in performance of 0.2 dB (i.e. the transmitted
 

power must be increased by at most 0.2 dB to provide the error performance
 

achieved by a noiseless reference). The portions of the curves drawn
 

broken are areas where the PLL is not in lock and should not be used
 

for system operating points.
 

In physical systems one would want to keepP as large as possible to
 

reduce performance degradation. This is usually done by lowering BL.
 

A compromise must be made here, however, because reducing BL increases
 

the acquisition time of the loop. If EbIN is small, it is to be
 

expected that the PLL will lose lock and be required to reacquire before
 

coherent reception is possible. One then uses the largest BL possible
 

consistent with low system degradation.
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Figure 5-32 shows a similar curve, due to Lindsey for BPSK.
 

'5.6.2.3 Effects of Oscillator Noise on Quadriphase Performance
 

When operating at frequencies in the tens of gigahertz it is extremely
 

difficult to obtain highly stable local oscillators. The problem is
 

further compounded when a requirement is made for tens of milliwatts
 

of power to be generated efficiently by the oscillators (as in a
 

transmitter up-converter).
 

The avalanche diode oscillator is capable of these power levels, but
 

has poor frequency stability (i.e., the FM noise spectrum of this
 

oscillator has large components over much of the range fc + 20 MHz [4 )J. 
This FM noise spectrum produces a phase error in the tracking loop
 

(see Figure 5-33) which degrades the loop performance and hence increases 

the average probability of bit error.
 

It is the purpose of this note to determine the degradation of quadriphase
 

and biphase error rate performance due to the noisy oscillator. It should
 

be noted that although Figure 5-33 shows the receiver L.O. to be the noisy
 

one, in actual fact the noisy oscillator is in the transmitter up-converter.
 

However, since we are not concerned with non-linearities in the transmission
 

path we can place this noise source as it is shown in the figure and
 

obtain the same degrading effect.
 

5.6.2.3,1 Total Loop Phase Error
 

2 
The total mean square phase error of the phase locked loop, a T is composed
 

of two parts - that due to the FM noise of the oscillator, a ., and that
 
2
due to thermal noise in the receiver, a N . A properly designed PLL is 

operated near phase lock-and in this condition may be considered a linear 

device. A rule of thumb 2 for this condition is . .. < 

1 Lindsey, W. C., "Phase-shift-keyed Signal Detection with Noisy Reference
 

Signals," IEEE Trans. on Aerospace and Electronic Systems, Vol. AFS-2,
 
pp. 393-401; July, 1966.
 

2 Loc. Cit., pg 5-78 
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Since the FM noise and thermal noise are clearly independent and the
 

PLL is assumed linear, we may invoke the superposition theorem and
 

show that the mean square phase error components are additive.
 

2 2 2'1
aT- a +a -1
GT FM N
 

The signal-to-noise ratio in the PLL, SNRL, is
 

1 1 

SNRL =2 T 2 2 (2) 
T FM N 

A calculation of 2FM for a specific avalanche diode oscillator is
 

performed in the Appendix. Included is the mathematical model and
 
2
 

equations for determining a 2 for all oscillator types which fit
 

the fairly broad characteristics of the model.
 

5.6.2.3.2 Probability of Bit Error for QPSK
 

Reference [2] has derived the probability of bit error vs Eb/No
 

for various values of the2Lparameter 5 (SNR = P Eb/No) for the 

quadriphase case where a FM= 0. For notational convenience we
 

will call
 

2 = sNR (3) 

Eq (2) can now be written as
 

1 
 SNRL 
SNR = 2 = 2T 1+ SNR L X

L FM (4) 

Eb/No
 
2 

1 + Eb/No a FM 

Substituting this modified value of SNRL into Eq (42) of [2] yields
 

(2)Loc. Cit. pg 5-78
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p (bit error).- esp (SNR cos [erfc (4k cosa) + 

-'T 81T Jo (SNRL) 

erfe 2b Sin coj d 0"Nb (5)
 

where a =7 

4 

lo (.)'A Modified Bessel Function
 

The integration is carried out numerically using the Gaussian method with
 

the results shown in Figures 5-34 and 5-35: Figure 5-36 shows the degradation in 

graphical from for P equal to 1 and 5. For finite values of P it is seen 

that the degradation caused by g FM = 0.1 increases with Eb/No. The FM 

noise causes the probability of bit error to asymptotically approach 

some non-zero value as Eb/No- co.
 

5.6.2.3.3 Probability of Bit Error for BPSK
 

In an analogous manner we may show that the average probability of bit
 

error for the biphase case is
 

1 exp(SNRi cos)e
 
P(bit error) - 10 SNRO) 22
 

(6)
 

This expression was numerically integrated and the results are plotted 

as a function of E/No in Figure 5.37 with T2 FM as a parameter. 

Degradation in performance is plotted vs. E/No in Figure 5-38. 
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5.6.2.3.4 Calculation of 2 FM
 

]
Without too much difficulty it is possible to show[i that the mean square
 

phase error of the PLL due to the FM noise of the local oscillator is
 

2M f ( f )2 ( f m / fn ) 4 4 df (A-i) 

where Af is the frequency deviation (peak) (Hz) at fm of the FM
 

spectrum fm is the frequency offset from carrier frequency
 

(Hz) fn is related to the PLL bandwidth (fn - .3x (loop 

bandwidth) (assumes second order loop with .7 damping
 

factor)
 

To use (A-1) one must know the FM spectrum of the U) (scaled to account
 

for the x4 or x2 operation prior to entering the PL) and the equivalent
 

noise bandwidth of the PLL.
 

A typical application may have an avalanche diode oscillator (ADO) as
 

the WO. As a free running oscillator the ADO has a very noisy output.
 

To reduce this FM noise it may be injection-locked to a more stable
 

source of considerably less power [4] like a crystal oscillator-harmonic
 

generation chain. In general, once the ADO is locked to the low power
 

source its output FM spectrum close to the carrier approaches that of
 

the low power source and as fm increases the noise spectrum tends
 

asymptoically to that of the free running ADO. A typical example is
 

given in Figure 5-39.
 

(4) Lo. Cit, pg 5-78
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A generalized worst case solution of (A-i) can be obtained,by drawing
 

straight line segments above the actual spectral components as shown
 

in Figure 5-40. The integral in (A-1) is now evaluated as
 

K-


K2
 

Af
 

a 

0
 
0 b c d 

fm -

Figure 5-40 Straight Line Approximation to Curves of Figure-A-I.
 

0- 2 i/2f 7Af(fi/fn)4 

0-2.
 
1I (fm/fn)4d -2
2 
 mm


fb [K1 K. f2 -2 (lf)4 

1K2 - ) fm] fm (fm/fn )4 dfm (A-2) 

I )-f(fm/fn) 

1 / (fm/fn) 4+(fm/fn)m 

For fm in the range (0, b) the integral in (A-2) would be difficult to 

evaluate in closed from so we obtain the maximum value of the product 

f'fm in this interval which is 
2 

K b K b
 
Af'fmtaxI - 1- - i- if a <<K 1 (A-3)

4 (Kl-a) 4 
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This gives an upper bound on the first integral in A-2 of
 

f [ KI (KI1 a) f] 2 - (fmn/f) )4'Ad

"b f fm T + (fm/fn df 

sf ( l)(m/fn)4 dfm (A-4) -

Using the change of variable
 

x- fm/fn (A-5)
 

it is now possible to obtain an upper bound on (A-2) in terms of a sum 

of the following two integral types: 

x2 ,dx Ax + 1 + 1-(V2x 

_x1in 2 V+ l tan 2 

xl 1x V2x + I1X 1 

(A-6)
and 


+1 t2 " )+ 1x2rx 2-' dx = -- in [ x-(+ 1 

114x4 (8 [x 
2 __.A + 1 4 tan1 X1 

Combining (A-2) through A-6) we obtain
 

cr2SR1 " fn +2 -2)FM 16 \f-n7 2 ) [n9 2 __/,2 0+ +2 (0\fn 2 -- tan-' ('44) 

+ [22_22]
 
+ -12 [Inj tan 2)]
a2 Y)-2 (' (A-7 

+ K22 [-in (52 +/26i) +2 tan-'(~a-2)]_\/26 +1 

5-7.7 
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where )' A b/fn) 

V A c/f_ 

and A d/fn, 

For free running oscillators which are relatively stable the FM noise
 

spectrum may be considered to be that of Figure 5-40 with K2 = 0 and
 

c, d-- . Equation (A-7) still holds for this case if the parameter
 

modifications are used.
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5.6.3 Matched Filter Data Detection
 

A matched data detector of the matched filter variety is required at
 

the coherent demodulator output in order to realize, fully the advantages
 

of coherent PSK modulation.
 

The matched filter, a technique widely discussed in the literature, is
 

a circuit whereinthe receiver input signal is "matched" to the filter
 

transfer function characteristics in such a manner as to maximize the
 

filter output signal-to-noise ratio, thereby enhancing the decision
 

process. It can be shown that the matched filter produces the optimum
 

performance independent of the information bandwidth. This is true
 

to the point of intersymbol interference caused by insufficient band­

width.
 

At low bit rates, the matched filter employs a linear integrate-and-dump
 

technique shown in Figure 5-41, wherein the coherent phase detector
 

signal plus noise output is integrated over a bit period, the integrator
 

output is sampled and the filter memory is "dumped" or reset to zero in
 

readiness for the next data bit.
 

In order to achieve efficient matched filter operation, it is necessary
 

to sample the filter at precisely the end of a bit interval and then
 

to dump the filter energy in order to produce a zero memory at the
 

start of the next bit period. The sampling command is generated in
 

the proposed design by a bit clock which is accurately phased to the
 

incoming data. Dumping is accomplished by using two matched filters
 

where one filter integrates over a bit period while the previous bit
 

information is dumped from the other filter. The integrate/dump roles
 

of the filters reverse on each bit, and the timing system is used to
 

select the proper filter for each decision period. If the integration
 

period is not in phase with bit period, there will be crosstalk between
 

adjacent bits.
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As the bit rate increases to above 100 Mbps, the matched filter design
 

and operation can become the determining factor of system operation.
 

At low frequency rates, the matched filter is an RC circuit or filter
 

circuit followed by a dump circuit which short circuits-a capacitor
 

comprising the output impedance of the matched filter. At higher
 

frequency rates, the problems of "moving" capacitance stored charge
 

by the dump mechanism becomes difficult and new types of filters, shown
 

in Figure 5-42 such as transversal filters, or 2-pole Butterworth
 

filters, using series decision-switched gates can be used. Such-gates
 

are associated with very wide band operational amplifiers which must
 

have bandwidths from DC to a frequency high enough to pass all principal
 

components. In all cases no energy dumping is used so that some inter­

symbol interference will exist. For each filter type there exists an
 

optimum choice of a 3-dB cutoff frequency, fe, relative to the symbol
 

duration, T.
 

A block diagram of a matched filter system following a coherent PSK
 

demodulator is shown in Figure 5-43
 

As illustrated in Figure5-43 alternate matched filters are used in
 

order to provide a reasonable period for "dumping" the integrating
 

capacit6is. The output selector alternately selects the filter which
 

is integrating and sampling. The sampling and dump commands are
 

generated from the data clock. Timing signals are shown in Figure 5-44
 

for the commands.
 

To establish bit timing, for the sampling of the output of the matched
 

filters, the output of the coherent demodulator, as shown in Figure 5­

43is conditioned and filtered to compensate for variations in amplitude,
 

baseline offset and bandwidth. Passing the signal through a nonlinear
 

element (such as a zero-slicer and/or rectifier) develops a frequency
 

component at bit rate. The phase of this component is compared with the
 

phase of pulses from the voltage-controlled oscillator (VCO). The
 

error output drives the VCO to maintain lock with the input signal.
 

Appropriate loop compensation (filtering and amplification) permits
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the loop to acquire phase-lock, allows optimum signal tracking under
 

adverse conditions, and maintains phase-lock even in the event of
 

temporary loss of data. Acquisition and tracking ranges of + 10%
 

of the nominal bit rates are typical.
 

5.6.3.1 Data Waveforms
 

The non-return-to-zero (NRZ) waveform developed at the output of the
 

matched filter and shown in Figure 5-45 , uses the bandwidth efficiently,
 

since the entire bit period contains signal information. Timing
 

information is indicated by signal transitions of binary ones and zeros,
 

or zero-crossings of the waveform's average value. The lack of near-dc
 

response in the signal path will cause shifts id the signal's baseline
 

for period of few zero crossings or low transition density. If this
 

baseline-shifting is not compensated, it will seriously affect
 

synchronization and regeneration of bits.
 

Bi-phase waveform compensates for the lack of dc response at the
 

expense of increasing the total bandwidth required. A zero-crossing
 

is assured for each bit period, and the effect of transition density
 

upon the average signal value is minimized. The entire bit period
 

contains signal information.
 

Return-to-zero (RZ) waveform transition density depends upon the
 

quantity of binary "ones" transmitted. This method of signal
 

coding wastes 50% of its bandwidth - because one-half of its bit
 

period does not contain signal information - resulting in a theoretical
 

3-dB loss in bit detection performance compared to NRZ and bi-phase,
 

which are more efficient.
 

Figure 5-46 compares bit error rate versus signal to noise ratio for
 

the three waveforms described above.
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5.6.3.2 Data Detection Matched Filters for High Rate Modems
 

In the design of digital data demodulators for data transmission systems
 

with bit rates of 40 megabits/second and above, special care must be given
 

to the selection of the data detection matched filter.
 

At lower bit rates, modulator and demodulator filter bandwidths can be
 

very wide providing a nearly square phase modulation characteristic and
 

a nearly ideal integrate-and-dump detector characteristic. Hence, the
 

data detection filter will be a good match to the phase-detector output
 

time waveform if no intermediate bandwidth reduction occurs. However,
 

at the higher bit rates several factors prevent the above ideal modulation
 

waveform and data filter from being achieved, These factors include:
 

a. 	Non-zero rise time of the PSK modulator
 

b. 	Bandwidth restriction in the modulator output circuit
 

c. 	Bandwidth restriction in the receiver prior to the
 

data detection filter
 

d. 	Non-zero integrator gate turn-on time and non-zero
 

sample time uncertainty in the data detection filter
 

e. 	Appreciable filter dump time
 

f. 	Non-zero decision threshold width of the bit decision
 

circuit of the data detection filter
 

In addition, other factors peculiar to high bit rate modems which cause
 

power (E/N0 ) degradation and must be considered when choosing the most
 

practical configurations of modulator and data detection filter are the
 

following:
 

g. 	Envelope modulation by the PSK modulator
 

h. 	AM to FM conversion power loss in a hard-limiting TWT amplifier
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In 	view of the problem that exists at high bit rates where rectangular
 

pulses can no longer be expected into the data filter and that the integrate­

and-dump filter can no longer be ideally realized, it is clear that a review
 

of matched filter principles is needed. This section will define the matched
 

filter for a given waveform and discuss ways of approximating the matched
 

filter for a high bit rate waveform with realizable filters. The require­

ments for the filter can be stated simply as follows: its design must
 

minimize the sum of mismatch losses irising.through factors (a) through
 

(f) and incidental losses (g) and (h) listed above.
 

5.6.3.3 Matched Filter Principle
 

A filter is "matched" to the complex envelope of an input signal, whose
 

spectrum function is Uin (w), if, and only if, the filter's frequency
 

function is given by
 

U*in(w) e-jwT
 
H (w) = n (w)
 

"Matching" occurs in that
 

a. 	The filter amplitude variation vs frequency is proportional
 

.to the signal components at those frequencies
 

b. 	The filter phase is the negative of the signal phase (denoted
 

by the conjugate of Uin (w)) so that all signal components
 

add vectorially to a maximum
 

c. 	Signal components are weighted inversely as the noise density
 

(N0 (w)) at each point in the band if the noise density is
 

not uniform
 

The "matched filter" H (w) then maximizes the output SNR at the sampling
 

instant T
 
s 
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For 	a flat noise spectrum, the matched filter may be described by its
 

time domain properties by taking the Fourier transform of the above
 

expression. The result is the impulse response of the filter:
 

h(t) = u* i T - t) 

This expression shows that the matched filter for the signal time waveform
 

Uin (t) is that network whose impulse response is an exact copy (but
 

time-reversed and delayed) of the complex envelope waveform of the signal.
 

It can be shown that, for white noise, the maximum achievable SNR with a
 

linear filter is Y = E/n° . In addition, the output SNR of the matched
 

filter depends only on the ratio of the energy in the signal pulse to
 

the noise power spectral -density, E/n , and is independent of Any detail
 

of the waveform envelope or bandwidth used in the signal.
 

5.6.3.4 Loss Effects for Realizable Data Filters
 

These principles reveal that there exists a distinct hypothetical, but
 

not necessarily realizable, matched filter for any waveform and that this
 

matched filter produces a SNR = E/n° at the proper sample time. Noting
 

that E is the energy under the modulation pulse waveform, the loss effects
 

and 	their causes can be listed as follows:
 

a. 	Reduction of area under the magnitude squared of the modulation
 

pulse which reduces E. This is caused by bandwidth restriction
 

in the modulator (including equivalent modulator rise time effects)
 

and receiver prior to the data detection filter.
 

b. 	Loss due to mismatch between a physically realizable filter
 

and the received waveform. This is caused by there not
 

existing a realizable matched filter for every waveform,
 

by timing errors in the filter (gate turn-on time, sample
 

time and dump time), and by decision threshold level
 

uncertainty.
 

5-90
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHILCO C50 	 Ph.lco-Pord Corporation 



TR-DA2180
 

c. 	Intersymbol interference. This results if the data filter
 

is not dumped after sampling. A trade-off exists between
 

mismatch loss and intersymbol interference loss (a more
 

lossy filter has less intersymbol interference).
 

d. 	AM to PM conversion power loss in a hard-limiting transmitter
 

amplifier. This results if there is envelope modulation due
 

to operation of the PSK modulator.
 

The 	system containing the above sources of energy loss and mismatch
 

loss is modeled in Figure 5-47 . Loss effect (d) above is not included
 

since this does not affect the data filter design but only modulator
 

design. Envelope modulation at the phase switch may be largely avoided
 

by employing variable-reactance diode switching which provides a constant
 

VSWR during the switching transient.
 

The 	model above shows the two possible locations of the bandwidth limiting
 

filters (BPF), before and after the addition of noise. The BPF in the
 

transmitter represents the equivalent modulator low pass function which
 

causes non-zero modulator rise time and any physical bandlimiting built
 

into the transmitter. Bandlimiting at the receiver differs in that it
 

also shapes the noise spectrum. The energy loss due to net bandlimiting
 

is represented by kI. Data filter mismatch loss is represented by k2.
 

Additional losses are associated with sample timing error /T and
 

decision device threshold level uncertainty. These three general losses
 

are treated separately in the material that follows.
 

5.6.3.4.1 Energy Loss Due to Bandlimiting
 

This loss is rather ficticious from a system point of view,if the band­

limiting takes place in the modulatorfor the following reason. There
 

will be less energy in a pulse of unit height due to slow rise time. This
 

energy loss may be associated with the reduction of the amount of power
 

transmitted in the outer sidebands - the higher order lobes of the sinc ()
 

function. The power taken from these outer sidebands appears, of course,
 

* See the Interim Engineering Report, pages 5-24 through 5-36.
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in the more central spectral components because the transmitter is a
 

constant power device. Hence the energy loss does not represent an
 

actual power loss. The energy loss is reflected in the E actually
 

received by the data filter and the loss is given by
 

k 2 t r/(3T)
 

where tr is the rise time of a trapezoidal wave.- This is a worst case
 

figure corresponding to integration starting and sampling taking place
 

at the beginning of a transition. If integration begins and sampling
 

takes place at the 50% rise time points (which is more likely because
 

of bit synchronizer timing) the value of k is 5 t r/(12T).
 

It should be noted that in the quantitative comparison of data filters
 

below, each filter's performance is computed for a square pulse in.
 

The effect of bandlimiting loss k in E is therefore lumped with mismatch
 

loss k2. The total is then labeled "mismatch loss".
 

5.6.3.4.2 Mismatch Loss Due to the Data Filter
 

As pointed out above, the matched filter for the general pulse waveform
 

is not necessarily realizable. The output SNR of the mismatched data
 

filter is Y = k2 E1/n where E1 is the energy under the data filter input
 

pulse. Comparison of filters is carried out for a square pulse, hence
 

tY = kI k2 E/n where E is the energy of a square pulse. Therefore,
 

in the following discussion "mismatch loss" is taken to be k1 k2 . If
 

the actual value of k2 is desired i the waveform shape would be needed
 

to evaluate and remove kI.
 

The performance of several mismatched filters has been evaluated for no
 

intersymbol interference (filters are dumped) and a square pulse input
 

by Jones*. The results are summarized in Figure 5-48 . Note that the
 

hypothetical gaussian filter out-performs the others for BT = .75.
 

Among the realizable filters the 2-pole Butterworth results in 0.6 dB
 

loss with respect to the matched filter (ideal integrate-and-dump for a
 

square pulse). These results are independent of filter input E/n° .
 

* Jones, J. J., "SNR Degradation and Intersymbol Interference with 
Mismatched-Filters", Philco-Ford SRS Communication Sciences Dept.
 
TM 141, March 15, 1968.
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The performance of several filters has also been evaluated in presence of
 

intersymbol interference by Natali I . These results are a function of
 

filter input E/n0, and are presented in Figure 5-49, for E/n° = 6 dB.
 

Note that BT is defined as in the previous figure. The 2-pole Butterworth
 

again has the least loss, best performance occuring for BT = 1.0. No
 

dumping takes place in these filters.
 

The second-order Butterworth data filter has been selected due to the
 

above results for further investigation as an approximation to a matched
 

filter for a bandlimited waveform into the data filter. The performance
 

of the ideal integrate and dump filter and the Butterworth filter with
 
2
BT = 1 have been evaluated for the model of Figure 5-50. The effect
 

of various modulator rise times t and receiver bandwidths BR for a
 

specific bandpass filter characteristic were determined. Figure
 

shows the effect-of modulator rise time alone.' Note that the Butterworth
 

filter gives less degradation for rise time greater than 24%. Figure 5-51
 

shows the effect of receiver bandlimiting alone. Again the Butterworth
 

out-performs the integrate-and-dump for receiver bandwidth less than 2/T.
 

The combined effect of 10% modulator rise time and receiver bandlimiting
 

is shown in Figure 5-52. Here the Butterworth degradation is less for
 

Br < 2.5/T. It is clear then that the Butterworth filter will give nearly
 

equal or better performance than the ideal integrate-and-dump filter if
 

significant modulator rise time (or equivalent transmitter bandlimiting)
 

or receiver bandlimiting exists. Since this filter may be more readily
 

implemented and since transmitter bandlimiting is unavoidable at high
 

bit rates (> 100 Mbps), then the second-order Butterworth is preferred
 

over the integrate-and-dump filter. Additionally, the Butterworth filter
 

without dumping might be considered where the additional degradation due
 

to intersymbol interference could be accepted.
 

1 Private communication from F. D. Natali, Philco-Ford.
 

2 Jones, J. J., "Filter Distortion and Intersymbol Interference Effects
 
on Coherent BPSK and QPSK", Philco-Ford SRS Communication Sciences Dept.
 
Technical Memo (TM) to be published..
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5.6.3.4.3 Data Detection Filter E/no Loss Due to Sample Timing Error
 

Data filter output SNR degradation has been evaluated by computer for
 

the case of the non-dumped filter. Computations of degradation were
 

run for both constant E/no and constant bit error probability. Figures
 

5-53 and 5-54 gives the degradation for a square pulse into the data
 

filter due to a static offset in sample timing1 . Input E/n0 was constant
 

at 9 dB, which corresponds to about Pe (bit) = 10-5 .
 

Three suboptimum data filters are compared to the ideal integrate-and­

dump filter. The suboptimum filters are not dumped. The resulting inter­

symbol interference was computed including the effect of the six preceding
 

symbols.
 

Note that in the non-dumped filters, the optimum sampling time is between
 

zero and eight percent after the beginning of the next bit. The second­

order Butterworth filter out-performs the other suboptimum filters tested.
 

It is evident that, in presence of + 10% sample time error, the Butterworth
 

filter might be preferable to the integrate-and-dump filter.
 

Figure 5-55 presents results for data filter output SNR degradation
 

computed for a constant bit error probability of 10- 5.2 These results
 

compare the undumped second-order Butterworth data filter with the ideal
 

integrate-and-dump filter. The effects of modulator rise time and
 

predetection bandlimiting are presented for the Butterworth filter.
 

Intersymbol interference is computed including only the effect of the
 

previous bit. In these results optimum sampling time is 0 to 3% late.
 

These curves are more sensitive to sample timing error than the curves
 

for constant E/n . Note that the curve for predetection bandlimiting
 

results in performance equal to the no bandlimiting case. This is because
 

the Butterworth filter fits the bandlimited signal spectrum better than
 

the unlimited case. Curve #4 is for 20% modulator rise time. Modulator
 

rise time was approximated by a single real pole-with time constant
 

equal to the desired rise time.
 

1 Private communication from F. D. Natali, Philco-Ford. 

2 Jones, J. J. 
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5.6.3.5 	An Approximation to a Matched Filter for a Typical Modulator
 
Output Waveform
 

Consider 	the approximately trapezoidal time waveform u(t) which results
 

from the modulator non-zero switching-time characteristic. As pointed
 

out above, a data filter which is matched to this time waveform has an
 

inverse time impulse response h (T - T) which is equal to the waveform's
 

time function u (t). Although exact matched filters do not necessarily
 

exist for the general time function, some matched filters can be closely
 

approximated with practical circuits. Such is the case here. The
 

matched filter for the trapezoidal wave can be closely approximated by
 

the lossy integrate-and-dump filter whose impulse response is the
 

second-order time function.
 

h (t) 	 e sin 5t, 0<t<T
 
S(, T<t<0
 

The trapezoidal modulator output waveform (not further band-restricted
 

in the transmitter or receiver) and the lossy I&D impulse response are
 

shown in Figure 5-56 for comparison. It is evident from the figure 5-56
 

that the impulse response of the second-order filter approximates the
 

shape of the trapezoidal wave. Therefore, it can be expected that the
 

degradation of this filter with respect to the (hypothetical) matched
 

filter for the trapezoidal wave will be small.
 

The above intuitive argument is supported by computation of performance
 

of the above realizable, second-order filter with a rectangular wave
 

input. This filter is a two-pole Butterworth and for BT = (v/ 71)
 

ST = .9 the degradation with respect to the matched filter for the
 

rectangular wave is 0.6 dB*. Note that intersymbol interference effects
 

are not included in the computation, hence the filter is assumed to be
 

dumped at the end of each bit period. The conclusion from this evidence
 

is that since the filter impulse response more nearly approximates the
 

trapezoidal wave than the square wave then the mismatch loss should be
 

less than 0.6 dB for an input trapezoidal wave.
 

*Jones, J. J., "SNR Degradation and Intersymbol Interference with Mismatched
 
Filters", Philco-Ford SRS Communication Sciences Department TM 141, March
 
15, 1968.
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5.6.3.6 Degradation Due to Decision Threshold Uncertainty
 

The implementation problems of MPSK for M = 2, 4, 8 and 16 are now
 

considered. The use of MPSK as a bandwidth-conserving technique has been
 

discussed previously, An additional advantage of NPSK for M >2 is
 

that signalling rate decreases with 1/M. This means that data filter
 

circuits will be more easily realized with lumped-constant circuits.
 

The increase in required E/n° for M >4 should be kept in mind, however.
 

The increased demands upon the phase stability of the modulator and
 

demodulator is evident when one considers the phase coding diagram,
 

Figure 5-57 . As shown, a phase error of r/M radians is sufficient 

to cause a bit error. Phase stability of -the reference and narrowness 

of the phase decision threshold become more important as M increases. 

In a present quadriphase system1 phase stability of 70 MHz references
 

are readily maintained to approximately 0.10 accuracy by using temperature
 

and parameter stable delay lines. Similar techniques should provide 10
 

accuracy at 700 MHz, the higher frequency being required to carry 100 to
 

200 MHz signalling rates. The more significant error may be the angular
 

width of the threshold uncertainty zone, which, for a given switching
 

circuit, will increase with the signalling rate. The dependence of
 

threshold phase uncertainty upon decision device time uncertainty is 

plotted vs signalling rate in Figure 5-58 . Included are upper bounds 

on phase error for 1.0 dB loss2 . Note that for 4 PSK and data rates 

above 200 Mbps (symbol rate = 100 MHz), tunnel diode logic (or techniques 

with similarly small timing uncertainty) should be used in the decision
 

circuit. Decision circuit timing uncertainty becomes much more critical
 

for 16 PSK, where tunnel-diode logic should be used for 80 Mbps (symbol
 

rate = 20 MHz) or greater.
 

I Magill, D. T., "Quadriphase Communication System Design: Part I Theory,
 
Part II Design Parameter Considerations", Philco-Ford SRS TM 135;
 
December, 1967.
 

2 Prabhu, V. K., "Error Rate Considerations for Digital Phase-Modulation
 
Systems", IEEE Trans. on Comm. Tech., Vol. COM-17, No. 1, pp 33-42;
 
February, 1969.
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5.6.3.7 Filter Distortion and Intersymbol Interference Effects on QPSK
 

Distortion and intersymbol interference in a sequence of pulses in PSK
 

transmissions, transmitted at intervals of T seconds, arise from both
 

the transmission filter and from the data filters. System performance
 

degradation is measured by the additional amount of energy contrast
 

ratio, E/No, needed to maintain a given average bit error probability
 

with a specified filtering condition relative to the.undistorted ideal
 

case. This is particularly true at the high bit rates discussed in
 

this report.
 

Consideration of intersymbol interference from K previous data symbols
 
K
results in a set of 4K (2 for BPSK) possible signal vectors defined
 

as samples of the data filter output at time, T = T. The squared
 

length of each vector is a signal-to-noise ratio.
 

The signal vector angles, together with the phase detector reference,
 

determine that portion of the length which is effective in making
 

bit decisions. The effective portion of each vector length, perpendicular
 

to the decision boundary, is the projection of the length on a line
 

colinear with the phase reference vector shifted + it/4 (no shift for
 

BPSK).with choice of sign associated with a particular quadrature
 

channel. Because of symmetry, the average performance is the same
 

for both channels and is obtained by averaging the resultant individual
 

bit error probabilities over the entire set of 4K (or 2K) possibilities.
 

For QPSK, the average bit error probability is
 

,.Cos (a 4)b. erfc F . ... i ) co ,perf-K v (T + -rI i1, 
ii' ""iK ref
all iK J5N 

where the individual signal vector angles are given by
 

Imv (T+.rI i 
ei, .... =artan 


ctan Re v ( + TI i1 , ..-K)
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and the coherent phase reference angle is taken to be the weighted average:
 

F_I (T + r iz . .." id 'l2* * 
alliK I 

4'ref ~ i . 2 
lfall kI v (T + tv 1 0 2 

The delay, T , in the decision sampling time is taken to be the group 

delay of the transmission filter measured at the signal carrier frequency 

offset,a, from the transmission filter bandcenter. This is a near­

optimum sampling time. (See Figure 5-59.) 

Figures 5-60 and 5-61 show the effect of mismatched data filter -detection 

only (no transmission filter) as a function of BT product. In each case, 

the optimum BT product is slightly dependent on E/N but BT 1Iappears 

to be a good choice for the 2-pole Butterworth filter and BT c 0.75 

for the single-pole RC filter. 

In Figure 5-62a, Chebychev transmission filter bandwidth-limiting
 

degradation is shown versus symbol-rate-to-filter-bandwidth ratio for
 

both integrate-and-dump and Butterworth data filters. With symmetrical
 

filtering and the same symbol rate, lI/T, QPSK and BPSK have identical
 

performance. To avoid excessive degradation, the 3-dB RF transmission
 

filter bandwidth should be at least twice the symbol rate (BT 2).
 

For severe bandwidth limiting, the Butterworth data filter is more
 

closely matched to the distorted signal than is the integrate-and­

dump data filter. Degradations shown can be reduced by the energy
 

truncation loss curve if transmission filtering occurs before power
 

amplification.
 

The effect of broadband, mistuned transmission filtering is shown in
 

Figure 5-62b as a function of signal carrier displacementn, from
 

filter bandcenter. Low loss requires the signal carrier offset to
 

be no closer than the symbol rate to the filter 3-dB bandedge. For
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a mistuned or unsymmetrical filter condition, QPSK suffers a larger
 

degradation than does BPSK at the same symbol rate and energy/bit.
 

Figure 5-62c illustrates the degradation due to a pure phase distortion
 

with the phase deviation measured at f equal to the symbol rate.
 

Parabolic phase distortion corresponds to a mistuned condition whereas
 

cubic phase distortion corresponds to symmetrical filtering. The
 

introduction of a bandlimiting transmission filter significantly
 

reduces the sensitivity to phase distortion.
 

The degradation for a number of identical transmission filters in
 

cascade is shown in Figure 5-62d. The loss grows slowly with the 

number of filters in cascade, especially from 1 to 2 filters. As 

observed also in Figure5-62d. an initial bandwidth limiting reduces 

the sensitivity to further distortions.
 

5.6.4 Bit Synchronizer
 

The bit synchronizer (see 5.5.2.2) generates a coherent data clock
 

from the output of the PSK detectors. The data clock is used as a
 

basis for sampling of the data filter outputs.
 

The bit synchronizer phase locks a crystal oscillator to the data
 

transitions at the output of the PSK detectors.
 

There are several types of bit synchronizers which are adaptable
 

to 	coherent-data-clock generation from a high speed PSK demodulator.
 

o 	Differentiated Bit Synchronizer: In this system, the
 

detected data stream is differentiated and squared to
 

generate in series of impulses or toggle signals
 

representing the transitions of th& data stream.
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o 	Early - Late Bit Synchronizer: In this system the data
 

stream is applied to a pair of integrate and dump circuits
 

which are driven by a VCO. The two integrate and dump
 

circuits are circuits are clocked differently to dump
 

early, and dump late respectively. The outputs of the two
 

integrate and dump circuits are squared and applied to
 

a comparator and low pass filter which adjusts the timing
 

of the VCO.
 

o 	Digital Bit Synchronizer: In this system each bit period
 

is scanned by a series of high speed pulses and the change
 

in pulse polarity developed from pulses occuring on each
 

side of a zero-crossing transition is used to time an
 

oscillator.
 

While the bit (and word) synchronizer would appear to be peripheral
 

and of secondary importance, actually, it is a key circuit for
 

generating a properly timed clock and will determine the effectiveness
 

of the demodulator process.
 

5.6.4.1 Bit Synchronizer Circuit Implementation
 

The sampled data phase-locked loop phase locks a bit clock to any
 

non-return-to-zero (NRZ) waveform in which data transitions occur.
 

A transition detector provides output pulses coincident with all
 

transitions in the NRZ data. This data transition is used to
 

generate a gating or sampling pulse of one (1) bit period duration
 

and also sets a "set-reset" flip flop used as a phase detector.
 

The sampling pulse is used to gate the output of the phase detector
 

into an averaging circuit and a first-order hold circuit. The output
 

of the hold circuit represents the error signal. The error is then
 

integrated and the integrator output used to control the frequency of
 

a voltage-controlled oscillator (VCO). The clock thus generated
 

resets the phase detector on its negative-going transition, thereby
 

closing the phase-locked loop.
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A bit synchronizer timing diagram is shown on Figure 5-63,the output
 

of the phase detector is averaged over only one bit period following
 

each detected data transition. Assuming that the negative-going
 

clock transition occurs in the center of the data bit, the output of
 

the phase detector will be positive for one-half of the bit period
 

and negative for the other half, averaging to zero over a full bit
 

period, and negative for the other half, averaging to zero over a
 

full bit period. If a phase error exists, the negative clock transition
 

will not occur in the precise center of the bit and the average will
 

not be zero; hence, an error signal will result.
 

5.6.4.2 Bit Synchronizer Error In Modulator Switching Time
 

Non-zero modulator switching time results in less transmitted symbol
 

energy and hence degraded BER at the demodulator. The rise time of
 

practical modulators is on the order of one nanosecond so that at
 

adta rates of 100 Mbps or greater the modulator switching time will
 

produce measurable degradation.
 

The degradation produced by 10% rise time can be determined by
 

comparing the curves labeled "0" and "l" in Figure 5-64. For
 

example, at a BER of 10-4 , the 10% modulator rise time causes 0.6
 

dB degradation.
 

It can be noted by generating other curves for other rise times that
 

the degradations introduced by the modulator rise time and the trans­

mission filters are not independent. The transmission filters-have
 

less effect on a signal generated by a modulator having non-zero
 

rise time. For example, at a BER of 10- 4 , the rise time degradation
 

is 0.6 dB and the degradation from only the filter is 1.1 dB. When
 

the two effects are combined, the net degradation is 1.3 dB, rather
 

than 1.7 dB, the sum of the two degradation sources taken independently.
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In all cases no energy dumping is used so that some intersymbol
 

interference will exist. For each filter type there exists an
 

optimum choice of a 3-dB cutoff frequency, fc, relative to the
 

symbol duration, T.
 

The degradation relative to a perfectly sampled matched-filter is
 

shown in Figures 5-53 and 5-54 for E/N equal to 6-dB and 9-dB,
 

respectively, for several non-optimal data filter types. The second
 

order Butterworth provides the least degradation. In the analysis
 

of the various filters, the intersymbol interference out to six
 

succeeding symbols was included.
 

As the bit rate increases to above 100 14bps, the matched filter design
 

and operation can become the determining factor of system operation.
 

At low frequency rates, the matched filter is usually an RC circuit
 

or filter circuit followed by a dump circuit which short circuits a
 

capacitor comprising the output impedance of the matched filter. At
 

higher frequency rates, the problems of 'oving" capacitance stored
 

charge by the dump mechanism becomes difficult and new types of filters,
 

such as transversal filters, or 3-pole Butterworth filters, using series
 

decision-switched gates can be used. Such gates are associated with
 

very wide band operational amplifiers which must have bandwidths from
 

DC to a frequency high enough to pass all principal components.
 

The problem then becomes one of addressing both switching rates and
 

very wide bandwidths, and this technology will be addressed in the
 

final report.
 

An additional technology which will also influence the quality of the
 

recovered bits is the gate waveform which will deteriorate at the high
 

bit rates; this too will be discussed in the final report.
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SECTION 6
 

ACQUISITION - SEARCH,- TRACK
 

6.1 INTRODUCTION
 

Before an RF transmission link can be established between a sensor satellite
 

and a relay satellite, one satellite must locate, and then acquire and track
 

the other satellite.
 

Any acquisition and tracking system will be a function of: (1) the capability
 

of the system to acquire in a specified time interval, and (2) the ability
 

of the system to maintain a minimum tracking loss resulting from beam mis­

alignment.
 

Acquisition and tracking of a data relay satellite by a sensor satellite,
 

using millimeter waves, will encounter the unique problem of requiring very
 

high gain antennas (60 dB gain) for both satellites to provide the necessary
 

link margin (Section 7). This results in very narrow bandwidths for both
 

antennas and acquisition may never be accomplished. This can be overcome,
 

however, by the sensor satellite using a separate low gain wide beanqidth
 

antenna for the initial acquisition phase and then switching to the high
 

gain antenna when acquisition is achieved. The following paragraphs will
 

address the general problems of search, acquisition, and track, assuming
 

that this narrow-beam/broad-beam capability is present.
 

6.2 ACQUISITION PROBLEM
 

To acquire a satellite in space requires precise knowledge of satellite
 

positions versus time. Each satellite is required to be commanded to point
 

its antenna in a given direction at a given time. If the satellite to be
 

acquired appears in an antenna beamwidth, acquisition is accomplished. If
 

the sought after vehicle does not appear in the beamwidth, then a spatial
 

search is required over the uncertainty region.
 

* The calculations to be used are discussed in Section 6, Volume 2. 

6-1
 

SPACE & RE-ENTRY SYSTEMS DIVISIONPHILCO C00 Philco-Ford Corporation 



TR-DA2180
 

The establishment of a low altitude sensor-to-synchronous-relay link
 

is a critical acquisition problem because large relative motion of
 

the two vehicles can exist with the sensor moving in and out of view
 

of the relay satellite.
 

6.2.1 Spatial Acquisition Considerations
 

Acquisition beamwidth refers to the antenna beamwidth that is useable
 

for acquisition. Normally, beamwidth is given at the 3-dB points ­

here 0.2 degrees or 3.5 milliradians. Useable beamwidth, however,
 

may be defined by the 10-dB points, or lower, providing there is
 

sufficient signal power to trigger the acquisition device if the
 

signal -is received at the beam edge.
 

An acquisition beamwidth must be defined based on received signal
 

power. The larger this beamwidth can be made the better, since it
 

allows for larger uncertainties in satellite location or antenna
 

pointing angle. For purposes of this discussion the 3-dB beamwidth
 

will be used.
 

6.2.1.1 Position Uncertainty
 

A typical relay satellite configuration is illustrated in Figure 6-1.
 

A position uncertainty exists between the relay satellite and the
 

sensor satellite.
 

Satellite uncertainty volume can be defined, based on accuracies of
 

ground tracking antennas, after the orbit is established. This
 

uncertainty volume is then translated into angle uncertainty of one
 

vehicle with respect to another.
 

A relay satellite will establish communication with a low altitude
 

satellite shortly after the latter comes into view and will retain
 

the link as long as possible or until a second relay satellite can
 

acquire it. The distance between the two satellites can vary
 

6-2
 

SPACE & RE-ENTRY SYSTEMS OIVISION
PHILCO CPhilco-Ford Corporation 



TR-DA2180
 

RELAY 
SATELLITE 

00 

SYNCHRONOUS 
SENSOR 

SATELLITE 

EARTH 

LOW ALTITUDE 
SENSOR 

SATELLITE 

Figure 6.1 Satellite Configuration 
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considerably during this time interval. For a given position uncertainty,
 

the angular uncertainty will be minimum at the end points and maximum at
 

the mid-point since the range is minimum. Normally, acquisition will
 

not occur at the mid-point; but, for calculation purposes, i.e., worst
 

case angular error, this will be assumed to be the case.
 

At the point of closest approach the distance between the relay and
 

low altitude vehicle will be:
 

d - 19,327 - A in nautical miles
 

where A - low altitude satellite height above earth
 

Angular uncertainty is then
 

d91 tan 1 

where p - position uncertainty in nautical miles 

Figure 6-2 is a plot of position uncertainty and altitude, A, versus
 

angular uncertainty. Since both the low altitude vehicle and the relay
 

will have a position uncertainty, the total worst case angular error
 

will be the sum of the two.
 

Figure 6-3 is a plot of position uncertainty versus angular uncertainty
 

for vehicle separation of 30,000 n.m. and 40,000 n.m.
 

6.2.2 Short Term Vehicle Stability
 

Three attitude control methods determine short term stability.
 

a. 	Three-Axis Gas Control: The three axis gas control cycles
 

between preset limits about all three axes. If the satellite
 

is heavy and the thrust small, the short term stability can
 

be held to less than l°/min. (0.00003 rad/sec).
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b.. 	Variable Speed Flywheel: Variable speed flywheels provide
 

very good short term stability. Using gas control for gross
 

corrections,only, flywheels can provide a short term stability
 

on the prder of 3 x 10-6 rad/see when the gas control is not
 

thrusting.
 

c. Spin Stabilization: The spin stabilized satellite provides
 
-7
 

the best short term stability, of the order of 0.1 x 10


rad/sec except when thrusting, to correct precession or
 

orbit parameters.
 

6.2.3 Attitude Control Subsystem
 

Attitude control subsystems require earth, sun, and star tracking
 

sensors:
 

a. 	Earth Sensors: Earth sensors are the least accurate of
 

the three types of sensors. Most earth sensors are designed
 

to sense the energy in the 14 to 16 micron CO2 band as
 

the altitude of the measured Co2 is more stable than the
 2. ­

water vapor band. The absolute one reading accuracy of a
 

good earth sensor is approximately 0.00175 radians. After
 

averaging multiple readings an accuracy of 0.00087 radians
 

can 	be obtained.
 

b. 	Sun Sensors: Sun sensors are more accurate than earth
 

sensors. The accuracy is limited to 0.00002 radians.
 

This limitation is due to solar flares and sun spots.
 

Obviously, the sun sensor is inoperative when it is in
 

the 	earth's shadow.
 

c. 	Star Trackers: Star trackers are the most accurate of the
 

sensors. The accuracy is greater than 5 x 10-6 radians
 

and is limited by the drive brain and encoder accuracy.
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Star trackers are large and heavy, and require a sophisticated
 

thermal design. A sixteen bit encoder seems reasonable
 

related to size, weight, and power (12-bit encoders are
 

available) and gives a resolution of 0.1 mr. However, due
 

to a possible ambiguity in the least significant bit, an
 

absolute accuracy of 0.2 mr is used.
 

6.2.4 Spatial Acquisition Accuracy
 

Acquisition accuracy is essentially determined by the type of attitude
 

control employed in the spacecraft. The advantage of the more sophisticated
 

star tracker attitude control system can be illustrated here through a
 

calculation of overall acquisitio accuracy-ta show that a spatial
 

search is not required to acquire the signal. A spin stabilized
 

satellite with a despun antenna is assumed.
 

Total acquisition error, in Table 6-1, is obtained by addition of
 

the individual contributors. Combining errors in this fashion may
 

yield a pessimistic result since all sources must generate errors in
 

the proper sense so that the resultant is the arithmetic sum.
 

Errors are tabulated as either a bias or noise error:
 

o 	Bias Error: An error which is non-varying over short
 

periods of time but which cannot be compensated.
 

* Noise Error: 	A rapidly varying (jitter) error.
 

Total error must be less than 1.7 milliradians for a 3.5 mr, 3-dB
 

beamwidth if acquisition is to be accomplished without spatial search.
 

It is seen that total error will, in fact, permit the antenna to be
 

directed with sufficient accuracy so that a spatial search is not
 

necessary to acquire the vehicle.
 

6-8
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHILCO 4 Philco-Ford Corporaton 



TR-DA2180
 

TABLE 6-1 

ACQUISITION ERROR BUDGET
 

ERROR SOURCE ERROR
 

Bias (mr) Noise (mr)
 

1. 	Position (see angular uncertainty
 
vs position uncertainty Figure 6-2) 0.04
 

2. 	spacecraft
 

a. 	Attitude
 

1. 	Short Term Stability 0.1
 

2. 	Attitude Control 0.2
 

b. 	Gimbal System
 

1. 	Gimbal Alignment 0.5 

2. 	Axes Orthogonality 0.5
 

c. 	Position Reference
 

1. 	Encoder Accuracy 0.2
 
and Resolution
 

d. 	Antenna
 

1. 	Bordsight Shift 0.2
 

Total Error (worst case) 	 1.64 mr 0.1 mr
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Since the tabulated errors are slanted toward the high side and usable
 

bea width is taken as 3-dE instead of, perhaps, 10-dE, a margin actually
 

exists in the above calculation.
 

The point to be made, here, is that acquisition is feasible without
 

spatial search. The outcome would have been reversed had an earth
 

sensor been employed instead of a star tracker as the spacecraft
 

attitude reference.
 

6.3 SPATIAL SEARCH
 

A spatial search by two highly directive antennas on two separate
 

spacecrafts to locate each other is a complicated procedure. Each
 

vehicle is faced with the problem of locating the other in a given
 

time interval. If both vehicles initiate search independently at
 

the same time, one may be searching one end of the search sector
 

while the other is at the opposite end with the result that the
 

search is prolonged and, possibly, the two never acquire each other.
 

A search sequence must be established, therefore, that permits full
 

coverage of the sector in the allocated time and in such a manner
 

that assures essentially 100% probability of successful acquisition.
 

6.3.1 Search Sequence
 

For spatial search to be successful,complete cooperation is required
 

between two satellites. At a given time, one satellite positions its
 

antenna in a predetermined direction and holds this position long
 

enough to permit the second satellite to sweep the complete search
 

sector. At -the end of one search period, the first satellite repositions
 

its antenna for the second search and so on until acquisition is
 

accomplished. The above sequence assumes the first satellite to be
 

radiating a signal and the second to be silent.
 

Acquisition by the second satellite imnediately actuates its transmitter 

so that a signal is radiated to permit the first satellite to acquire. 
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The time required to complete the sweep depends on sector width,
 

spacecraft antenna slew limitations, and-receiver detection capability.
 

The search may be in the form of a spiral around center point or in
 

the form of a raster scan.
 

The number of times the acquisition cycle must be repeated depends
 

on the uncertainty region and on signal level. If the region is
 

sufficiently small and the signal power sufficiently high to provide
 

substantial margin, then perhaps -only one complete search will be
 

required to produce successful acquisition.
 

6.3.2 Signal Detection
 

The second phase of the acquisition problem consists of detecting
 

the signal when it appears in the antenna beam and indicating its
 

presence to the antenna servo/drive so that the antenna can be stopped
 

and autotrack initiated.
 

One method used in detecting the presence of the input signal is
 

shown in Figure 6-4, consisting of a simple amplitude detector, filter
 

and threshold device.
 

Signal presence is indicated when the integrator output exceeds the
 

preset bias level. Bias level is set by signal and noise levels
 

expected in actual operation. Other factors to be considered are
 

the probability of detection and probability of false alarm. A graph
 

is presented in Figure 6-5 showing dwell time and false alarm time
 

versus signal to noise ratio.
 

Dwell time is a property of the integrator which imposes restraints
 

on antenna search speed and/or beamwidth such that the signal is
 

present in the beam for a minimum time period. The probability of
 

detection, Pd, is taken as 0.98. Trade-offs must be made between
 

signal-to-noise ratio, dwell time and false alarm time in the course
 

of system design. 
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6.3.3 Considerations of Signal Power Level
 

In situations where signal power is not sufficient to permit use of
 

wideband tracking techniques, narrowband frequency or phase-lock
 

techniques are utilized.- Receiver complexity is increased in the
 

process but performance is improved.
 

Signal detection in a phase-lock receiver is accomplished in frequency
 

as well as in phase during the acquisition sequence by sweeping the
 

VCO (voltage controlled oscillator) across the frequency uncertainty
 

region.
 

Another variable is therefore added to the acquisition problem, i.e.,
 

frequency search rate is required to be compatible with the spatial
 

search rate. This does not, however, impose major problems on the
 

system, since the desired frequency sweep rate can be obtained rather
 

simply in the receiver by providing a separate acquisition loop band­

width, if necessary.
 

6.3.4 SNP and Frequency Sweep Rate
 

For the phase-lock receiver, signal detection is indicated when the
 

phase-lock loop locks to the incoming signal. An in-lock indication
 

removes the frequency search in the receiver and spatial search at
 

the antenna. The transition from the search phase to tracking is
 

accomplished instantaneously when the loop locks. The only constraint
 

is that the antenna search then be stopped.
 

Maximum frequency sweep rate is dependent on loop parameters and on
 

loop signal-to-noise ratio. An empirical-equation that provides a
 

90% probability of acquisition is given as follows:
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A max , I(SR)-1/2 K WO 2 maximtm sweep rate 
1l-d
 

SNR - Loop signal-to-noise ratio 

K - Factor due to limiter 

we - Loop natural frequency 

d - Factor depending on damping < 0.05 for damping 
factor of 0.7 

Requiring a (b < A d max will increase the probability of signal 
detection. 

A plot of A d)max/(o2 versus loop SNR is given in Figure 6-6. Limiter
0


bandwidth is assumed to be ten times the threshold loop bandwidth for
 

the calculation.
 

6.4 TRACKING 

Once the signal from the satellite is acquired, the antenna must be
 

placed in an autotrack mode to enable the receiver to constantly
 

receive the indoming signal and to maintain the antenna pointed 

properly for the transmitted signal. The block 'diagram of the tracking 

system is given in Figure 6-7. 

A feed or equivalent generates a sum and difference channel in two
 

orthogonal axes. Tracking information is contained in the difference
 

channel amplitude which is processed by the receiver to generate error
 

voltages in each axis for the antenna servos.
 

One of the primary concerns of the tracking system is that it track
 

the incoming signal sufficiently close to the antenna beam peak so
 

that the gain loss is negligible.
 

A criteria is established that tracking error produce 0.5 dB or less
 

degradation in antenna gain.
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6.4.1 Tracking Receiver Configurations
 

Frequency acquisition (location of the incoming signal ii frequency)
 

is accomplished concurrently or after spatial acquisition is complete.
 

In the absence of a spatial search, frequency acquisition occurs after
 

the antenna is directed at the signal source. When a spatial search is
 

required, then the two events must occur simultaneously. The complexity
 

of frequency acquisition depends on the type of receiver employed.
 

A wideband receiver covering the total frequency uncertainty region
 

(oscillator drift and doppler effects) will require very little added
 

capability to perform the function. A narrowband receiver, however,
 

will require a search capability to cover the frequency uncertainty
 

range.
 

A coherent tracking receiver will provide:
 

a. 	Autotrack capability for a two-axis tracking antenna utilizing
 

simultaneous-lobing tracking techniques.
 

b. 	Capability of demodulating telemetry data that is carried on
 

the tracking signal.
 

6.4.1.1 Wideband Tracking
 

One 	form of tracking receiver is the cross-correlation receiver
 

Error signals for the servos are obtained by forming the product of
 

the sum channel signal with each of the difference channel signals to
 

produce, after filtering, a dc error voltage with amplitude proportional
 

to the amplitude of the difference channel signal and polarity indicating
 

the direction or sense of the error.
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The receiver bandwidth must be broad enough to encompass frequency
 

variations in the input signal due to oscillator drift and doppler
 

shift. At the frequencies of interest the doppler shift is on the
 

order of a megacycle when tracking the sensor vehicle; therefore,
 

the receiver bandwidth must be of the save order of magnitude.
 

Noise in the error channels introduces tracking jitter which must
 

also be limited to avoid tracking error.
 

6.4.1.2 Narrowband Tracking
 

The wideband receiver shown in Figure 6-8 can be modified into a
 

narrowband configuration by incorporating automatic frequency control
 

(AFC) to maintain the signal centered in the passband. The width 

of the passband can be reduced with corresponding decrease in noise 

power and increased signal-to-noise ratio. 

Another form of the narrowband receiver is the phase lock receiver.
 

A block diagram is given in Figure 6-9. In this case, phase lock
 

is established on the sum channel signal to maintain the signal in
 

each channel centered in the passband. Since the loop tracks the
 

carrier with zero frequency error, the IF apertures can be made
 

quite small; a 6-dB signal-to-noise ratio in a 1 MHz bandwidth will
 

require 30-dB more signal power than in a 1 kHz phase lock bandwidth
 

assuming the noise density is the same in each case.
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6.5 PROPAGATION TIME ERROR
 

When two satellites are tracking and are in communication with each other,
 

each satellite tracks the incoming signal and radiates its signal to the
 

other through the same antenna. Thus, as Satellite B receives the signal
 

from Satellite A the antenna (Satellite B) will be pointed slightly behind
 

Satellite A. This will cause the transmitted signal (B to A) to be
 

propagated from a point, on the beam, which is off the beam peak And
 

hence, cause an error. The magnitude of the propagation error can be
 

evaluated as follows for a distance of 19,027 nm between Satellite A
 

and Satellite B.
 

Time delay T = 19,027 m 

where c - velocity of light. The Satellite A will move, d, 

with velocity, v, in time, T, 

thus, the angle error, 9 can be derived from
 

tan0 9 =19,027
tan 99 l9 027 0.025 mr
 

where v - 4.1 n.m./sec. 

The worst case error will occur when the velocity vector of one satellite
 

is perpendicular to a line connecting the two satellites.
 

6.6 TOTAL ERROR
 

Total tracking error can now be computed by combining the bias and noise
 

errors obtained in the above paragraphs and tabulated as in Table 6-2
 

for a tracking error budget.
 

For the antenna beamwidth of 3.5 mr, a degradation of 0.5 dB in gain
 

corresponds to an angle of 0.66 mr. Hence, the total error must be
 

less than 0.66 mr to meet desired tracking accuracy.
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TABLE 6-2 

TRACKING ERROR BUDGET 

Source 
(Milliradian) 

Bias Peak 
(Miiliradian) 

Noise I a 

Thermal Noise (15 dB SNR) 

Phase Shift (Pre - 60) 

(Post ­ 100) 

0.02 

0.02 

Amplitude Unbalance (0.5 dB) 

Beamwidth Unbalance (1.1:1) 

0.07 

0.04 

Temperature 

Servo Lag 

0.10 

0.10 

Servo Bias 0.10 

Propagation Time Delay 

Total 

0.03 

0.46 0.02 
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Bias errors above are summed by straight addition. It should be noted
 

that errors combined in this fashion yield a very pessimistic result as
 

the sense of each error must be such that they combine to produce a
 

composite error in a given direction. Such an occurance is highly
 

improbable and the total error will actually be much less.
 

The above worst case combined error is seen to be well within the
 

allocated value of 0.66 mr.
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SECTION 7
 

THE MILLIMETER WAVE LINK
 

7.1 THE MILLIMETER WAVE LINK IN IMAGE TRANSMISSION 

The millimeter wave link is the medium which is used to transmit image 

information across space from a transmitting terminal to a receiving 

terminal as shown in Figure 7-1. This link will determine the amount 

of margin required to transmit a given information data rate at a particular 

frequency over a given distance. Of prime inportance are: 

* Transmitter Power
 

" Transmitter Antenna Gain
 

" Space Loss 

" Receiving Antenna Gain
 

" Receiving System Noise Figure
 

These various parameters will be addressed with particular reference
 

to the particular problems incurred in transmitting data rates of
 

40 to 400 Mbps at the millimeter wave frequencies from 35 to 90 GHz.
 

7.2 LINK BUDGET IN MILLIMETER WAVE SPACE COMMUNICATIONS
 

The link budgets of a spacecraft to spacecraft link, or spacecraft
 

to ground link are vital for determining how much data can be transmitted
 

from one point to another with given antenna sizes, transmitting terminal
 

ERP and receiving terminal gain and system temperature. The following
 

paragraphs discuss how a millimeter wave link budget is computed, and
 

nomographs which relate data rates from 40 to 400 Mbps, frequencies
 

of 35, 60, 75, and 94 GHz for various antenna sizes and receiver noise
 

figures over worst case distances.
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MILLIMETER WAVE LINK 

"RECEIVER
 

DIGITAL-DATA TO DEMODULATOR
 

MDULATED
 
CARRIER
 
FROM
 
MODUATOR
 

PRINCIPAL LINK PARAMETERS
 

" Transmitter Power
 

" Transmitter Antenna Gain
 

* Space Loss
 

* Pointing Error
 

* Receiving Antenna Gain
 

* Receiver Noise Figure
 

Figure 7-1 Basic Millimeter Wave Data Transmission Link
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7.2.1 Link Budget Analyses for Sensor Satellite to Relay Satellite
 

Consider the specific conditions defining the transmission between
 

a sensor satellite and a relay satellite.
 

Freq - 60 GHz
 

Data Rate - 100 - 400 Mbs
 

Range - 24,500 N Mi
 

Data Error Rate - 1 x 10-5 errors/bit
 

The link budget is then determined as follows:
 

1. Tx Pwr (tradeoff parameter) PT dBm
 

2. Insertion loss of Tx components -2 dB
 

(Includes filter combiner, polarizer,
 
diplexer, waveguide RF coupling)
 

3. Transmit antenna gain (tradeoff parameter) - See Figure 7-2 

4 r A 1)Gain -
X2
 

2 
- .Dwhere A 


4 

DT - Tx Antenna Aperture dia. (feet) 

= Antenna eff. ( 71- 0.75) 

x = Wavelength (feet) 

2 2 9 8 4Gain TID 
x 2 

Gain (dB) - 10 log ' + 20 log DT 

Gain (dB) 10 log (9.9)(.75) + 20 log DT
 2.69 x 10' 

- 10 log (2.71)(104) + 20 log DT 

Gain (dE) - 44.3 + 20 log D
T 
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4. 	Space Loss, see Figure 7-3.
 

L - 36.6 + 20 log F + 20 log d F - MHz 

L - 36.6 + 20 log 60 x 103 + 20 log 24500 x 1.15 d - miles 

L - 36.6 + 95.6 + 89 

L - -221.2 -221.2 dB 

5. 	Tracking Loss (both) -0.5 dB
 

6. 	Polarization Loss (both) -0.3 dB
 

7. 	Oxygen Absorption -0.1 dB
 

8. 	Receive Antenna Gain (tradeoff) 44.3 dB + 20 LogD R
 

9. 	Insertion Loss of Receiver Components -1.5 dB
 

(Polarizer diplexer, filter separator
 

and waveguide)
 

10. 	 Link Margin -3 dB
 

11. 	S = PT + 44.3 + 20'log DT -2 -221.2 -.5 -0.3 -0.1 + 44.3 + 20 log DR -1.5 -3.0 

S - PT + 20 log DTDR -140 dB Power (S) at Receiver Input 

12. 	 Noise Density (N ) at receiver input.
 

N 	- KT . K to F where T is the system temperature,
 

T is the reference temperature - 2900K
o 

and F is the equivalent system noise figure.
 

No - KTo F , KTo = -174 dBm
 

N0 (dB) a -174 dBm + 10 log F
 

13. 	 Received Signal to Noise Density Ratio (S/N ) 

pT + 20 log DTD
R -140 dBSN


S/Nff -174 + 10 log F
 

S/N° - PT+ 20 log DTDR + 34 dB -10 log F
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14. Link Tradeoff Equation
 

Received S/N - Required S/N0 

p T+ 20 log DTDR+ 34 dB- F - 11 + 10 log b 

T TDR
 
p + 20 logDD + 34 -F - 1 + 65
 

p + 20 log DTDR F 42 dBm
 

T TDR
 
p + 20 logD - 42 + F (dB)
 

15. Plot the system equation for the ranges of pTDTDR'and F that are
 

feasible in millimeter wave cominications. See Figures 5-5 and
 

5-6.
 

7.2.2 Link Budget Nomographs
 

The link budget analysis approach of the preceeding paragraph-has been
 

used to develop the nomographs of Figures 7-4 through 7-7 based on the
 

baseline link budget computations of Table 7-1. These tomographs are
 

computed to permit relating satellite transmitter power-required to
 

transmit various data rates at 35, 60, 75 and 94 GHz, for various
 

transmitting antenna sizes, to the receiver antenna size and receiver
 

noise figure.
 

The various-secondary impairments of the link are also included, as
 

identified in Table 7-1.
 

7.3 MILLIMETER WAVE TRANSMITTERS
 

A critical parameter in developing Effective Radiated Power (ERP)
 

from the transmitting satellite is the amount of transmitter power
 

which can be developed in the millimeter wave frequencies from 35
 

to 90 GHz.
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BASELINE LINK BUDGETS
 

1. Transmission Frequency - f 	 Hz 35 G 60 G 75 G 94 G
 

2. Data Rate 	 Bps 100 Mbps 100 Mbps 100 Mbps 100 14bps­

3. Baseband Bandwidth - BB 	 Hz
 

4. Receiver IF Bandwidth - Bif 	 Hz
 

5. Transmitted Signal Bandwidth - BT 	 Hz
 

6. XF Channel Bandwidth - BCHAN 	 Hz
 

7. Type Modulation 	 Biphase or QPSK with Diff. Encod.
 

8. Type Detector
 

9. Transmitter Power Output 	 Watts 13 13 13 13 

10. Transmitter Power Output-Av.Unmod.Carrier dbW 11.2 11.2 11.2 11.2 

11. Line and Feed Losses 	 -db -2.0 -2.0 -2.0
 

12. Peak Antenna Gain 10 Log IT df 2N db 53-.4 58-.1 60.0 62.0 

Antenna Dimensions 11 = 70. ft(m) 5' 5' 5' 5' 

Coverage Deg. 

13,. ERP/Channel (Sum of 10, 11, 12) 	 DbW 62.6 67.3 69.2 71.2 

14. Propagation Loss 	 -db
 
(37.81 + 20 Log dn.mi + 20 Log fHz) 215.5 -220.2 -222.1 -224.1
 

15. Polarization and Multipath Losses -db -0.3 -0.3 -0.3 -0.3
 

16. Atmos. Att. and Misc. Losses 	 -db - ­

17. 	 Xmit. Antenna Pointing Loss -db 

[LoSS dB =12(eOf )2 ] -0.5 -0.5 -0.5 -0.5 
\ 70.C
 

18. Rev. Antenna Pointing Loss 	 -db -0.5 -0.5 -0.5 -0.5
 

-19. Up Link Noise Contribution 	 -db - ­

20. 	 Transmission Losses (14 + ... +17 dB -216.8 -221.5 -223.4 -225.4
 

21. 	 Rcv. Ant. Gain (Pk) dB 56.0 56.0 56.0 556.0
 

22. Rcv. System Line & Feed Losses dB -2.0 -2.0 -2.0 -2.0
 

23. Rcv. System Temp. Factor 	 °K-db -33.1 -33.1 -33.1 -33.1
 

24. Receiving System G/T 	 dB +20.9 +20.9 +20.9 +20.9
 

25. 	 Boltzmann's Constant dEW/Hz/°K 228.6 228.6 228.6 228.6
 

26. Net C/No (13 + 20 + 24 + 25) dB-Hz 95.3 95.3 95.3 95.3
 

27. 	 10 Log Data Rate bits/sec 80.0 80.0 80.0 80.0
 

28. 	 Equip. Variance from Theoretical dB 2.5 2.5 2.5 2.5
 

12.8
 
29, 	Eb/n/No (26 - 27 - 28) dB-Hz/bits/sec 12.8 12.8 12.8 


30. 	Required Eb/n/No for BEP=10 5 dB-Hz/bits/sec 9.8 9.8 9.8 9.8
 

dB 3.0 3.0 3.0 3.0
31. 	NET LINK MARGIN (29 - 30) 
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Figure 7-2 Antenna Gain versus Antenna Diameter
 

7-7
 

SPACE & RE-ENTRY SYSTEMS oIVISION 
PI-ILCO4 Ck Philco-Ford Corporation 



240 

c 

TR-DA2180
 

230
 

S 220
 

60z~ 

210 S5 G11z
 

200
 

190
 

180
 

0 5000 10000 15000 20000 25000
 

DISTANCE BETWEEN SENSOR SATELLITE AND RELAY SATELLITE 

Figure 7-3 Space Loss versus Distance at Millimeter Waves
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Figures 7-8 and 7-9 identify the transmitter power potential in this
 

frequency range for both solid state and electron tube devices, showing
 

that for transmitter powers up to 1-watt, the solid state device has the
 

greatest potential, while for power outputs (and high gain) from 20 watts
 

into the kilowatts, electron tube devices such as traveling wave tubes
 

have the best capability. At a time point, Circa January 1970, a solid
 

state transmitter is capable of developing in the vicinity of 100-150
 

m, while electron tube technology can provide power levels at the 20
 

to 	100 watt saturated power levels.
 

7.3.1 Millimeter Wave Transmitters For High Data Rates
 

Electron tube amplifiers such as TWT have the features of high gain
 

(>35 dB) and flat gain and minimm phase distortion suitable for high
 

data rate PSK transmission and can serve as pre-amplifiers and modulator
 

drivers operating at the 1-10 milliwatt level. Such tubes are scaled
 

from microwave frequency electron tubes which have an enviable record
 

of 	long-life high-efficiency operation in space.
 

Solid state devices can perform as low power transmitters or as TWT
 

drivers and can have many configurations using semiconductor diodes of
 

the Gunn, LSA, or avalanche varieties, i.e.,
 

* 	Diode oscillator plus diode phase shifter
 

" 	Diode oscillator driving a diode modulator and a
 
diode amplifier
 

" 	Varactor diode parametric up-converter from a lower
 
frequency
 

* 	Harmonically related lower frequency diode oscillator
 
driving a data modulator followed by a parametric
 
multiplier to the transmit frequency
 

Each of these techniques must provide gain, modulator and power generation
 

such that channel requirements relative to gain flatness, AM-to-PM
 

conversion, and phase and group-delay distortion are met at the data
 

rates used.
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7.3.1.1 Group-Delay Distortion in Millimeter Wave Amplifiers
 

A unique problem which exists in millimeter wave amplifiers and
 

transmission systems is one of determining group delay distortion
 

in devices in which the time of passage is extremely short.
 

At microwave frequencies, linear and parabolic group delay distortion
 

is measured in nanoseconds. In a 60 GHz amplifier, however, the total
 

time of passage may be less than 40 wavelength and total 'group delay
 

may be less than 800 picoseconds, with the group delay distortion then
 

being measured in picosecond increments. Techniques of measurement
 

must be developed for these particular frequency ranges to serve
 

these short transit times.
 

In the present 4/6 GHz COMSAT and ATS receive/transmit bands and the
 

7/8 GHz 	DCS receive/transmit bands, group delay and phase linearity
 

specifications for the receive or transmit chains are already tight 

over 500 MHz bands, requiring the following.
 

o Group Delay (COMSAT): Linear: Any 40 MHz band, better 
than 0.1 nsec/MHz
 

Parabolic: Better than 0.05 nsec/MHz
 

Ripple: 	Better than 0.6 nsec peak-to­
peak
 

o DSCS Phase Linearity: + 0.1 radian over any 40 MHz band
 

+ 0.25 radian over 125 MHz band
 

Similar 	and more stringent specifications must be specified for 

millimeter wave tube systems designed to handle bit rates above 50 Mbps. 

Group delay distortion in the TWT amplifier, or any link component,
 

is a critical link parameter upon which the efficiency of the trans­

mission depends. It is implicitly discussed in terms of intersymbol
 

interference due to the filter-characteristics of the component in
 

5.7.3.1 of Section 5, and will be specifically addressed in the Final
 

Report as a key' limiting characteristic in the transmission of image
 

type data.
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7.3.1.2 AM-PM Conversion Effects
 

In this part, the AM-PM conversion loss mechanism of the traveling
 

wave tube amplifier is detailed. Data of many microwave power TWT
 

were analyzed with respect to degrees of phase advance with respect
 

to mid-pulse saturated phase as a function of input drive level. A
 

piece-wise linear (2 lines) saturating TWTA power-out versus power-in
 

characteristic was assumed with peak drive level 2 dB aboVe that
 

necessary to provide saturation.
 

The worst-case total system loss was determined for a) TWTA input
 

drive level, b) TWTA output power, and c) phase error as a function
 

of time. These variables are plotted in Figures 7-10, 7-11 and 7-12
 

respectively, as a function of normalized time (t/trl) where trl is
 

the rise-time prior to the TWTA.
 

The total worst-case theoretical AM-PM loss can be determined by
 

evaluating the degradation in the output voltage of an ideal matched­

filter at the sampling instant. This sampled voltage is given by
 

V = f IV (t) cos Q(t) + V (t) sin 0(t)l dt
 

0
 

where Vx(t) and Vy(t) are independent bandwidth-distorted (+1, -1)
 

pulse waveforms and Q(t) is the phase error function. If there were
 

no AM-FM distortion, 0(t) = 0. An equation analogous to the above
 

equation holds for the quadrature channel.
 

It suffices to consider only the in-phase channel,
 

t t /2 

X0 T- + (Vt) cos 0(t) + Vy(t) sin 9(t)J dt 

T 

+ f V(t) CoS 9(t) + V (t) sin 0(t)) dt (2-7) 

T-(tr/2)
 

and the degradation in dB is given by
 

DT - -20 logl0 (Vxo) 
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Fig.7-10 	 TWTA drive power as a function of normalized
 
time for: a) a 00 phase shift, b) a 900 phase
 
shift, and c) an 1800 phase shift.
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Inspection of the equation for V indicates that the worst-case
xo
 

degradation occurs when the integrals in this equation are minimized.
 

This occurs when Vx(t) and Vy(t) have opposite signs permitting
 

destructive cross-talk between the two channels.
 

There are 64 transition patterns for the in-phase (or x) channel
 

when leading and trailing edge and initial phase possibilities are
 

included. Table 7-2 which was generated from phasor diagrams, presents
 

the sign of cross-talk from the quadrature channel for leading and
 

lagging pulse edges, respectively. For example, an entry of 00
 

corresponds to no degradation while an entry of -+ corresponds to
 

destructive cross-talk on the leading edge and constructive cross­

talk on the trailing edge.
 

The potential worst-case consists of a 900 shift (x change) on both
 

the leading and lagging edges. However, Table 7-2 shows that it is
 

not possible to get destructive cross-talk on both leading and lagging
 

edges in this case. Consequently, the worst-case is given by a 900
 

phase shift (x change) on the leading edge and a 1800 phase shift
 

on the lagging edge (or vice versa). For this worst case, it is
 

seen that the net contribution of the integrals is essentially zero
 

and the worst case degradation is given by
 

wc = -20 logo
10 -]
 

A modulator rise time of less than 10 nanoseconds yields a worst­

case degradation under 1 dB. A rise time of 5 nanoseconds yields a
 

0.45 dB worst-case loss. The rise time of the modulator is defined
 

for bi-polar pulses and not from the zero crossing to full magnitude.
 

The average theoretical degradation due to modulator rise time could
 

be evaluated by averaging the probabilities of error for each of the
 

cases entered in Table 7-2. The probability of error for each case
 

(note that several entries appear more than once) can be evaluated
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Table 7-2 Cross-Talk Sign
 

Transition Initial Phase Positio 

Leading Lagging 0 1 2 3 

o o 00 00 00 00 

0 90y 0- 0+ 0- 0+ 

0 90x 0- 0+ 0- 0+ 

0 180 0- 0+ 0- 0+ 

180 0 -0 +0 -0 +0 

180 90y -- ++ -- -H­

180 90x -- -- +-+­

180 180 -- ++ -- +4­

90y 0 -0 +0 -0 +0 

90y 90y -+ +- -+ +­

90y 90x -+ +- -+ +­

90y 1801i8 -+ + +­

90x 0 -0 +0 -0 +0
 

90x 90y -+ +- -+ +­

90x 90x -+ +- -+ +­

90x 180 -+ +- -+ +-

Entries are signs of leading and lagging
 

edge cross-talk, respectively.
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from the degradations determined from the table. The worst-case
 

degradation only occurs twice out of 64 chances and there are
 

only six cases of destructive cross-talk interference on both leading
 

and lagging edges. Thus, the cases giving the worst losses are
 

reduced in effectiveness by a factor of 6/64. Consequently, the
 

average degradation is more strongly influenced by the more average
 

cases such as no transition on leading edge and a 900 (in-phase
 

channel change) on the lagging edge (or vice versa).
 

Basing the estimate of the average bit error rate loss on this
 

typical case, the average degradation is found to be
 

Dave 1-20 ­log10 
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7.4 RF RECEIVER
 

The RF receiver, with the antenna and feed, determines the final
 

sensitivity or G/T of the receiving system. The receiver noise
 

temperature, in combination with the antenna noise temperature and
 

the feed loss temperature determine the system noise temperature T
 

upon which the G/T is based.
 

7.4.1 Low Noise Millimeter Wave Amplifiers
 

Low noise amplifier technology has been highly developed at microwave
 

frequencies due to COMSAT and Unified S-band requirements. However,
 

comparable developments have not occurred at millimeter waves, and'only
 

a 70 GHz maser due to Hughes and Kremenack and a tunnel diode due to
 
2
 

Burrus and Trambarulo at BTL have provided noise figures to compare
 
with the millimeter wave mixer which has been widely used for mare than
 

a decade in radiometer applications.
 

Table 7-3 lists the principal candidate low noise amplifiers for
 

millimeter wave amplifications. As shown, the maser requires both
 

cryogenic cooling and a high magnetic field and is not a suitable
 

candidate for space applications.
 

Standard parametric amplifier techniques and design, based on lower
 

frequency paramps, require varactor diodes with cut-off frequencies
 

well above 1000 GHz, and paramp power at frequencies in excess of
 

150 GHz. Such varactors are beyond the state of the art, and long­

life reliable pump power generation above 150 GHz in the space
 

environment is unrealistic at this time. A possible candidate is the
 

lower-frequency pumped (40-90 GHz) paramp of which there are several
 

species and which can produce noise figures in the 5-10 dB range.
 

1. W. Hughes and C. Kremenack, Proc IEEE, pg. 856, May 1963.
 

2. C. Burrus and R. Trambarulo, Proc IRE, pg. 1075, June 1961.
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rTABLE 7-3 a
D MILLIMETER WAVE LOW NOISE AMPLIFIERS 

Medium Low Medium Low 
Noise . Noise 

Maser 
Ultra Low 
Noise 
Paramp 

Low Noise 
Paramp 
(Conventional) 

Paramp 
Idler Freq Above 
Signal Freq 

Paramp 
Idler Freq Below 
Signal Freq 

Mixer 

Semi- iron doped fc k 2400 GHz fc 1400 GHz fc 300-600 GHz fc 300-600 GHz fc>500 GHz 
conductor rutile in f f C 
Require- 40K environ. fp 360 0Hz f 180 GHz f 130-160 0Hz fp 75-00 0Hz zL.0. 5O-55 
ments 

Special magnetic extremely high varactor and waveguide mounted waveguide mounted low noise 
Reqmts field of pump frequency pump extreme varactor chip varactor chip IF 

5000 gauss beyond state state of art 
120 GHz fp of art 

Typical 
Noise 1.5 dB 3 dB 4-6 dB 7-9 dB 10-13 dB 
Figures 
at 3000k 

'0 
D 

0 
Key 
AMAspects 

noise figure 
capability 
1/2 dB 

requires major 
technological 
advance 

requires very 
high pump 
frequency 

requires high 
pump frequency 
is in research 

highly feasible 
needs moderate 
pump development 

low L.O. 
power 
wide-band 

m 

9 <
to) 

requires 
spaceborne 
refrigeration 

major 
reliability 
barrier 

stage simple circuit highest 
reliability 

cO 

f = varactor cut-off frequency measured at minus 0.5 volt bias 
fp pump frequency 

lam 
? Z 



TR-DA2180
 

The mixer, with a low noise post amplifier, is the key candidate for
 

10 dB noise figure operation and has the advantage of low local oscillator
 

power, simplicity, and high reliability.
 

7,4.2 Millimeter Wave Mixer Noise Figures 

Currently the status of millimeter wave mixers is such that mixer noise 

figures as low as approximately 10 dB are achievable. Conversion losses 

run from 8 dB to 10 dB and excess noise ratio is approximately 1.4 for
 

silicon Schottky-barrier balanced mixers. The actual achievable overall
 

receiver noise figure will be dependent upon the IF amplifier noise
 

figure. Solid state S-band IF amplifiers have noise figures inqthe
 

range of 4.5 dB to 6 dB depending upon bandwidth. Thus, with a 4.5 

dB IF, and 8 dB mixer conversion loss and an excess noise ratio of 1.4, 

the overall receiver noise figure is 13 dB. 

Recent research at MIT by Dr. D. H. Steinbrecher has led to a modified 

design theory for balanced mixer diodes which is especially suited to 

the millimeter wave region. Steinbrecher maintains that the optimum 

design criteria for a balanced mixer is to operate the diodes as 

switches, e.g., design for a minimum switch time and to reactively
 

terminate the image frequency and higher harmonics. The effects of 

the approach are to reduce the excess noise ratio to unity since the
 

diodes are driven relatively hard to theoretically reduce the conversion 

loss to zero dB. A V-band mixer has been constructed utilizing this 

technique and has produced a 6 dB noise figure, on a highly experimental 

basis.
 

7.4.2.1 Mixer IF Amplifiers
 

The IF frequency for a data relay (or ground receiver) can be located
 

in a wide choice of frequency bands, in the 1.5 to 1.5 GHz band. At 

frequencies from 1.5 to 4 GHz low noise figures are achieved with 

reliable transistor amplifiers. Above 4.0 GHz tunnel diode amplifiers 

(TDA's) provide lower noise figures than do transistors. 
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Uncooled IF parametric post amplifiers can now be considered for wide
 

band amplification, providing lower noise figures than the transistor 

amplifier or bandwidths up to 500 MHz at 26 Hz and 26 Hz at 20 GHz 

are now possible, and new integrated circuit techniques and the use 

of Gunn or avalanche diode oscillators make such amplifiers attractive 

post amplifiers. 

7-27
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHILCO 0 Philco-Ford Corporation 



TR-DA2180
 

SECTION 8
 

DATA RECORDING TECHNOLOGY
 

8.1 WIDEBAND RECORDING
 

The status of t-ideband recorder technology presented in Tables 8-1, 8-2,
 

and 8-3 is of interest to sensor satellite imagery transmission from the
 

dual aspects of ground station data recording and on-board satellite
 

recording.
 

Satellite recording may be required either for back-up or store-and­

forward in the event that the sensor satellite is not in view of a
 

relay satellite or ground station at the time of data acquisition. The
 

application of wideband recorder technology for satellite borne recorders
 

is dictated by the mission requirements, specifically the orbit network
 

in which the satellite recorder is to function.
 

A typical satellite store-and-forward system requirement would most probably
 

be: "The store-and-foiward system shall record satellite sensor data while
 

the satellite is over remote areas and shall play back the data on command.
 

The system shall record data at rates compatible with the satellite sensor
 

systems with minimum degradation of signal quality caused by the record/
 

playback cycle. The system shall operate on a duty cycle of 5 minutes
 

read-in per revolution and shall be capable of storing up to 6 revolutions
 

worth of data. The system shall be designed for an on-orbit operational
 

lifetime of 3 years."
 

8.2 MISSION CONSIDERATIONS IN DATA RECORDING
 

The data in the tables are presented to illustrate how satellite operations
 

tend to constrain or dictate store-and-forward system configurations.
 

These mission dictated constraints, when evaluated with the current state­

of-the-art recording technology, indicate the areas where further develop­

ment is necessary.
 

8-1
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHILCO 0 Philco-Ford Corporation 



TR-DA2180
 

The mission network described in this section is a basic model that
 

utilizes one sensor satellite at a 400 mile altitude and a relay
 

satellite or ground readout terminal for receiving the satellite data.
 

The mission example described below considers the store-and-forward
 

of sensor data from the sensor satellite to a ground terminal. Another
 

possible mission configuration is store-and-forward from the sensor
 

satellite to the relay satellite. Since the readout to a ground
 

station generally involves a shorter readout interval, that case is
 

considered here to establish typical mission parameters.
 

The readout rate of a store-and-forward system should be high enough
 

to play back all the stored data during a pass in which the relay
 

satellite or ground station is visible. For the assumed orbit altitude
 

of 400 miles and one readout station, an average readout time of 22
 

minutes per day is available, but the time is divided into nominally
 

2 contact periods of 11 minutes each. The duration of the station
 

contact and the recorder playback rate then establishes the amount
 

of data that can be readout. High performance recorders normally
 

record and play back at the same speed which establishes the amount
 

of data that can be accumulated on the store-and-forward recorder
 

and completely readout during any given station contact period.
 

8.2.1 System Lifetime
 

Current satellite technology for this class of satellite gives expected
 

lifetimes on the order of 2 to 3 years. This lifetime is also needed
 

to provide an economic data gathering satellite considering the satellite,
 

booster and launch base costs.
 

For scaling and technique selection purposes, it is assumed that a
 

nominal duty cycle for a store-and-forward system would record for
 

5 minutes every revolution, and readout all ?ecorded data during every
 

available station contact. A linear recording speed of 15 ips was
 

selected as typical.
 

8-2
 

SPACE & RE-ENTRY SYSTEMS 1vISJON
PHILCO 4 Philco-Ford Corporaton 



TR-DA2180
 

TABLE 8-1 

WIDEBAND RECORDING 

CURRENT MAGNETIC TAPE TECHNOLOGY 

Longitudinal Recording 

Analog Response 1.4 MHz at 120 ips per track 

Digital Rate 2.0 Mbps at 120 ips 

Number of Tracks 7 to 9 maximum on 1/2 inch wide tape 

Time Base Error + 0.5 microseconds at 120 ips 

Dynamic Skew + 0.5 microseconds at 120 ips 

Tape Capacity 4800' of I mil tape on 10 inch reel 

Record/Playback Time 8 minutes at 120 ips 

Bit Error Rate, I x 10-5 on specially tested tape 

SNR Nominally 25 dB RMS/RMS 

Head Life 1000 hour nominal 

TABLE 8-2
 

CURRENT MAGNETIC TAPE TECHNOLOGY
 

Rotary Head Recording
 

Analog Response 6 to 8 MHz at 1600 in/sec head to tape speed
 

Digital Rate 5 to 10 Mbps NRZ data
 

Number of Channels 1 or 2
 

Tape Width 2 inch wide
 

Tape Speed-Longitudinal 15 ips (I channel recording)
 

Tape Capacity 4500' of I mil tape on 10 inch reel
 

Record/Playback Time 1 hour (1 channel)
 
-5
Bit Error Rate I x 10 on specially tested tape
 

SNR Nominally 25 dB RMS/RMS
 

Time Base Error + 15 nanoseconds peak-to-peak
 

Head Life 200 hour nominal
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TABLE 8-3 

CURRENT FILM RECORDING TECHNOLOGY 

Laser 

Electron Beam 

CRT Line Scan 

These systems are characterized by 

scanning photographic film on a line 

by line basis with the beam intensity 
varied to expose the film. The film 

must be processed before the data can 

be read out. Current development status 

is in the recording of photographic 

imagery using wide video bandwidths. 

The use of these techniques for digital 

recording presents no problems. 

Response 25 to 100 MHz video bandwidth up to 

100/200 Mbps digital 

Film 16im to 5 inch wide 

Access Time Within 30 minutes after recording 

Storage Permanent data - high packing density 

Development Status 

(Ground Only) 

Analog Systems - in operation 

Digital Systems - require modulator 

development 
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SECTION 1 

NANOSECOND SWITCHING TECHNOLOGY
 

1.1 THE ROLE OF NANOSECOND SWITCHING TECHNOLOGY IN DIGITAL COMMUNICATIONS 

The processing of analog information into digitai bit streams and vice
 

versa will; in general, depend upon the technology of switching circuits
 

and fast rise time pulse devices, providing a sequence of switching or
 

gating operations controlled by a timing signal known as the clock. A
 

sequence of "logic levels" which imply the sequence of decisions or
 

actions are necessary to develop the digital signal.
 

Memory, too, is one of the requirements of an analog-to-digital system,
 

particularly if storage or counting is required, and bi-stable circuits
 

having either of two discrete states - such as in a multivibrator - such
 

as on-off or present or not-present must be used. These states can be
 

described in terms of voltage levels such as are used for low data rate
 

logic circuits; either of two phases of a carrier; either of two frequencies;
 

the presence or the absence of a carrier; or the direction of a magnetic
 

field.
 

A series of "logic levels" or circuit actions is required in any processing
 

of digital information, and for data rates in the 40 to 400 Mbps range,
 

nanosecond and subnanosecond pulse or switching technology is required.
 

Four hundred Mbps data rate requires two nanosecond switching to handle
 

the first harmonics of switching pulses at this rate, and subnanosecond
 

switching to include higher harmonics of the pulse waveforms. As many
 

as eight to ten logic levels may be required to convert analog information;
 

it is, therefore, necessary that the switching, gating and storage elements
 

of microwave digital circuitry be.capable of switching at much higher
 

rates corresponding to speeds-from 100 to 300 picoseconds. The technology
 

of super-high rate digital communication, therefore, must rely on micro­

wave components capable of such speeds.
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1.2 PULSE RISE TIMES
 

Figure 1-1 relates typical candidate switching devices to rise time and
 

switching voltage.
 

For fastest rise-time pulses, the favorite device is a tunnel diode.
 

TD generators available today have rise times of about 20 ps. This is a
 

best-guess figure, for the rise time of the 28 ps sampler used to observe
 

it increases the observed rise time to about 35 ps (rise times combine
 

approximately in rms fashion).
 

Exactly how fast a tunnel diode can switch is open to some question.
 

The fastest unpackaged tunnel diodes run around 7 to 10 ps, but the
 

effect of the parasitic elements associated with them and their enivron­

ment raises that figure to about 15 ps.
 

The speed of the voltage step generated by a tunnel diode is an intrinsic
 

property of the diode itself, so does not depend on the speed of the
 

input trigger waveform. Less fortunate is the intrinsic maximum amplitude
 

of that step, which is limited to about 500 mV.
 

Another type of diode that can switch in the subnanosecond region is
 

the step-recovery (also called Boff or snap-off) diode. These can give
 

100 to 500 ps rise time and output of several volts.
 

Subnanosecond rise time pulses can be generated with a charged line and
 

a tunnel diode or step recovery diode switch. Approximately 100 ps rise
 

time pulses of up to kilovolt amplitude can be generated by charging a
 

length of transmission line, then shorting it with a switch.
 

Transistors, too can be used to generate fast rise time pulses provided
 

that the transistor is not switched into saturation, and can be clamped
 

to prevent overshoot on turn-on or turn-off. Transistors in integrated
 

circuits can now be switched with nanosecond rise times and are presently
 

the principle devices of modern high speed digital communications.
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TYPICAL MEASUREMENT PARAMETERS 
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Figure 1-1 	 Switching Times and Voltage Levels
 
of Modern Switching Devices
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Regardless of type of switch, care must be taken with the overall switch
 

circuit otherwise the fast rise time pulse will be degraded. To illustrate,
 

consider a tunnel diode generator with specified rise time of 20 ps. By
 

adding a fast sampler so that the pulse can be viewed on a sampling scope
 

typically will increase the observed rise time to 35 ps.
 

The shorter the distance and the fewer the fittings or connections, the
 

less altered will be the pulse characteristics.
 

The principle devices mentioned above will be discussed in the following
 

paragraphs.
 

1.3 TRANSISTORS
 

Figure 1-2 shows a range of different transistor logic circuits which
 
are in present use. Transistors can now be designed for fT's well into
 

the microwave frequencies and high logic or switching rates are possible
 

up to 1.5 nanoseconds with the current mode logic - also known as emitter­

coupled logic.
 

The most commonly used arrangement in computers, TTL or transistor­

transistor logic is not a good candidate for gigahertz-rate systems
 

because of low propagation delays of around 10 nsec due to these elements
 

being driven between saturated states thereby requiring time for charge
 

to drain or change. Current mode logic, on the other hand, uses transistors
 

in linear operation and the present speeds now involve one nanosecond
 

delays.
 

As the speed increases, the transistor equivalent circuit becomes complex
 

and the propagation and delay intervals will be limited by the reactances,
 

stray capacitors, and inductive wiring of the circuit.
 

The rise time tr of a typical basic transistor switch shown in Figure
 

1-3 can be found using the following parameters:
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Figure 1-3 	 Simplified Transistor Switching Circuit and
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WT = 2w fT where fT = gain-bandwidth product 

I = Collector current
 
c 

= Base current
Ib 


C = Collector capacitancec 

= Collector load resistor
 

0 = Current gain at the edge of saturation 
so
 

,According to J. Kuno 


(b) 1 
1 

t c wT( c, Ve on) 
tr 1~ cA
 

s tb on/
 

Similarly, KLio has described an equation expressing the fall time tf*
 

However, in this case the reverse driving current does not drive the
 

transistor in the same way as- the forward driving current. Thus the
 

expression for the voltage fall time must be modified to take \ Cc
 

fall time into consideration. Then the fall time is expressed by

1 

tf = -T(Ic' V0 Ofl + 2.3 ELCC 

2~c (/4b0ff)f 

where the last term is R Cc In I = 2 .3RtdC; that is, the 
0.1I~
 c
 

fall time if Ic falls to zero very quickly.
 

Ia
 
J. Kuno, "Rise and Fall Time Calculations of Junction Transistors",
 

IEEE Transactions on Electron Devices, pp 151 - 153, April 1964.
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1.4 TUNNEL DIODES
 

2 3
 , ,

Tunnel diodes have had wide application to digital logic 

circuits.1
 

As shown in Figure 1-4, the shape of the tunnel diode current-voltage
 

curve is ideal for switching between two states when used with the
 

proper resistive loadline; a balanced tunnel diode pair referred to as
 

the Goto-pair can be operated as a flip-flop.
 

Tunnel diodes are now available with resistive cutoff frequencies
 

30 GHz from companies such as KMC Semiconductors and are packed in
 

PILL-type cartridges which have minimum series inductance.
 

Tunnel diodes ate also ideally adapted to integrated circuits techniques.
 

In general, the 100-300 picosecond switching speeds required of one-half
 

gigahertz-rate bit streams are well within the capability of the present­

day tunnel diode.
 

1.5 SNAP BACK DIODES
 

5
Snap-back or step recovery diodes have voltage waveforms,4 , as shown
 

in Figure 1-5a. In the snap-back region, excellent pulses can be
 

developed. The charge storage rates of a snap-back diode have been
 

shown by B. Sear to generate rise times of less than 100 picoseconds
 

at repetition rates exceeding 200 MHz and future rates have been
 

predicted in excess of one gigahertz.
 

1 R. C. Sims, E. R. Beck and V. C. Kamm, "A Survey of Tunnel Diode
 

Digital Techniques", Proc. IRE, pp 136-146; January, 1961.
 

2 E. Goto, et. al., "Esaki Dilde High Speed Logic Circuits", IRE
 

Trans. on Electronic Computers, pp 25-29; March,1960.
 

V. F. Chow, "Tunnel Diode Digital Circuitry", Digest of 1960
 
International Solid-State Circuits Conference, pp 32-33.
 

J. Moll, S. K. Rakaner, and R. Shen, "P-n Junction Charge Storage
 
Diodes", Proc. IRE, pp 43-53; January, 1962.
 

B. E. Sear, "Charge Controlled Nanosecond Logic Circuitry", Proc.
 
IEEE, pp 1215-1227; September, 1963.
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Ti. OUTPUT 

INPUT ± T2 

Figure 1-4 Tunnel Diode Balanced Pair (GOTO Fair)
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Figure 1-Sa Simplified Snap-Diode Pulse Generator
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Figure 1-5b Typical Waveforms of Pulse Generator
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1.6 PHASE LOCKED OSCILLATORS
 

The phase locked oscillator (PLO) was the first solid-state two-state
 

device considered for high speed computers. The basic parametric phase­
1


locked oscillator, due to Sterzer and Beam is shown in Figure 1-6. It
 

consists of a tank circuit which is forced to provide parametric
 

oscillations by a pump operating at twice pump frequency. Sustained
 

oscillations can occur in either of two possible phases 1800 apart.
 

The circuit can be caused to change phase states by "Locking" the
 

oscillations to the phase state of a locking signal.
 

Computer logic systems using phase-locked oscillators were built in
 

1958-1959 using clock rates above one gigahertz, performing logic at
 

rates as high as 1.85 GHz. However, the advent of the tunnel diode
 

and the inherent complexity of a PLO computer caused interest in this
 

technology to wane.
 

1.7 BALANCED BODULATORS 

The use of the balanced modulator as a logic element was suggested in.
 
2


1959 by Eckhardt and Sterzer . Such circuits are now in use in 

microwave frequency applications and are readily adaptable for logic 

or switching functions at gigahertz rates. 

Balanced modulator circuits can be used to develop most logic functions.
 

An AND circuit, for example, is formed by two modulators in series;
 

the modulator transmits an rf signal only if a baseband signal is applied
 

to it. 

F. Sterzer and W. Beam, "Parametric Subharmonic Oscillators", Digest 

of 1959 Solid-Stages Circuits Conference; February, 1959. 

2 W. Eckhardt and F. Sterzer, "A Modulation - Demodulation Scheme for 

Ultra-High-Speed Computing and Wideband Amplification", Digest of 
1960 InternationalrSolid-Stage Circuits Conference; February, 1960. 
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Figure 1-6 i-Parametric phase-locked oscillator circuits (a) one possible,
 
lumped-parameter variable-capacitance PLO circuits, (b) one
 
possible microwave PLO (in microstrip), (c) symbolic reonprsntr­
tion of PLO. - after L. Onyshkevych et. al.
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1.8 GUNN DIODE SWITCHING CIRCUITS
 

Two similar Gunn diodes can be connected in a Goto pair arrangement,
 

with an input and an output resistor connected to the common node.
 

The bias voltages are adjusted so that there is sufficient current
 

through the diodes, in the absence of high-field domains, to cause the
 

internal fields of both devices to be just above the threshold value.
 

For devices with a large low-field to high-field mobility ratio and a
 

low-contact resistance, the above bias conditions will insure that when
 

a domain is propagating in one device, the internal field in the other
 

device will be below the sustaining value.
 

If the above constraints are satisfied, the polarity of the current
 

in the input resistor at the time of the nucleation of a domain will
 

determine in which device a domain will form. Once a domain has formed,
 

no other domains will nucleate (for reasonable levels of input current)
 

during the transit time of the domain. When the domain collapses at
 

the anode, the polarity of the input current will again determine the
 

device in which the new domain will nucleate.
 

2-GHz operation has been demonstrated at Bell Telephone Laboratories
 

by the reversal of the mode for a single Gunn domain transit time by a
 

negative input spike of 1.4 volts (node potential) and 250 ps duration.
 

1.9 MICROWAVE-RATE STORAGE AND CODING CIRCUITS
 

Microwave-rate logic elements must be combined in circuit complexes
 

which provide the primary functions of storage, A/D conversion and
 

D/A conversion.
 

The principle type of storage circuit is the shift register whose
 

basic circuit at microwave frequencies is shown in Figure 1-7. As
 

indicated, the shift register is a series of flip-flops connected
 

by a clock or timing circuit.
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A series of bits is applied to the input in synchronization with a
 

clock which actuates all flip-flops simultaneously so that a given
 

series of bits moves or progresses through the shift register and
 

occupies the shift register - one bit per flip-flop at a rate determined
 

by the clock. Once the shift register is occupied, the serial input
 

is removed. Application of the clock again to the flip-flop will read
 

out the stored bits as a serial bit stream output. If during the
 

readout the clock is very fast, the bit stream will comprise a bit burst.
 

For gigahertz data rates, the shift register should be capable of
 

moving bits from flip-flop to flip-flop in time intervals equal to or
 

less than a nanosecond; the serial burst reading can be at a much lower
 

rate.
 

The shift register circuit of Figure 1-7 shows the clock routing
 

circuit and the interconnects of the flip-flop circuits in the form
 

of delay lines. Assuming fast flip-flop propagation times using,
 

for example, the tunnel diode shift registers-shown in Figure 1-8
 

due to B Sear or using CML circuits, the clock routing, interconnect
 

and bit stream distribution circuits become the limiting circuit of
 

the system.
 

If the speed goal is to be at least 4 to 5 logic levels per nanosecond,
 

relative problems of packing density, wiring propagation delays and
 

cross-talk must be solved. If a velocity factor of about 0.5 is
 

assumed, an interconnecting transmission line of 1 1/2 inch in length
 

will represent a delay of one logic level since light travels around
 

one foot in a nanosecond in such circuits.
 

1 B. Sear, "Research for High-Speed Analog-to-Digital Conversion
 
Techniques," WPAFB Technical Documentary Report No. AL TDR-64-154.
 

1-15
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHELCOPhlo-Fod Corporaton 



TR-DA2180
 

SET CLOCK 

0-=V DC 

, SA554 

( _Dss R3
 
IFSJ R,1 


DD1 D 3 


HPA2010 05095 HPA201O 

SMT0562 

HPA2010 D5095 HPA2010 R44 T 50D2 6i-
SSA554 

IFR4 R2 Ds­

m J~f DCW
RESET CLOCK 

Circuit Diagram of a one-gigahertz Shift Register
Figure 1-8 

Stage Due to B. Sear. Tunnel Diodes are Used.
 

1-16
 

SPACE & RE-ENTRY SYSTEMS OIVISION 
Philoo-Ford CorporationPHELCo * ' 



TR-DA2180
 

0. G. Gabbard has investigated the problems of signal distribution
 

in high-speed circuits recommending a stable ground reference in
 

microstrip with signal interconnects designed such that ground return
 

currents can flow immediately below the signal interconnect, thus
 

providing low impedance and minimizing cross-talk when the interconnect
 

is used by several signals. Fairly large transient currents and
 

Ldi/dt voltages can exist during switching to drive wiring and circuit
 

input capacity. Reducing Ldi/dt effects is'one of the most important
 

considerations for achieving good performance at high speed.
 

As the rise times become shorter and shorter, as will be the case in
 

gigahertz rate circuits, the lengths-of unterminated inter-connects
 

must be very short in the digital circuit complex, otherwise reflections
 

and ringing effects will degrade circuit operation.
 

0. G. Gabbard, "High-Speed Digital Logic for Satellite Communications,
 

Electro-Technology, pp 59-65; April, 1969.
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SECTION 2
 

DIGITAL MODULATION TECHNIQUES
 

2.1 DIGITAL MODULATION TECHNIQUES
 

In an ideal system, transmission of digitized data can be accomplished
 

using conventional binary techniques such as FSK or PSK, or the more
 

efficient M-ary signaling techniques. Binary or M-ary signaling techniques
 

can be combined with forward error control encoding td detect or correct
 

transmission errors.
 

Various binary and M-ary signaling techniques which are candidates for
 

high speed data transmission are compared on the basis of bit ,error rate
 

(BER) versus energy-per-bit-to-noise-power-density ratio (E /N ) j'and­
b o 

required RF bandwidth in Table 2-1.
 

2.2 	 COMPARISON OF CHANNEL EFFICIENCY OF DIFFEREN MODULATION- METHODS 
-. ON THE BASIS VF BER VERSUS Eb/No 

A comparative evaluation of the channel efficiency of digital modulation
 

methods is based on the average probability of bit error rate (BER): as
 

a function-of the energy-per-bit-to-noise-spectral-density ratio, Eb/N
o.
 

2.2.1 FSK and MFSK (Non-Coherent) 

Frequency shift keying is a digital modulation method in which each trans­

mitted data symbol is represented by one of:H possible frequencies. For
 

FSK there are two possible frequencies each representing one data bit.
 

For MFSK, M frequencies are used and each of the M-ary symbols represen
 

1082 X bits of data.
 

Non-coherent detection is normally used in FSK and MFSK systems to avoid
 

the requirement for generating a coherent phase reference for each fre­

quency. The optimum non-coherent receiver consists of a bank of matched
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filters feeding a greatest-of comparator. The matched filters are high-Q
 

bandpass integrate and dump filters followed by envelope detectors. Eaqh 

filter is tuned to a particular symbol frequency. The energy in each 

filter is dumped immediately after each symbol decision to prevent inter­

symbol interference caused by residual energy.
 

In general FSK and MFSK are listed here to provide reference against
 

phase shift keying techniques. The difficulties in building 

practical band pass integrate and dump filters for data rates above 10
 

Mbps, aid the sheer impracticality of building such filters for handling
 

the multiple frequency bands for data rates above 100 Mbps make such a
 

modulation technique a poor candidate for high speed imagery data trans­

mission.
 

2.2.1.1 P0I/FM (Discriminator detection) 

Frequency modulation (FM) of a carrier by binary pulse-code-modulation 

(PCK) is widely used for telemetry and data transmission. In this technique,
 

the frequency of the carrier oscillator is deviated to one of two possible 

discrete amounts corresponding to the binary data. The receiver consists
 

of a frequency discriminator followed by a video matched-filter and a 

decision threshold. The post-discriminator matched-filter intgrates over
 

a bit duration after which it is sampled and its energy is dumped. The 

sample is compared with the decision threshold and a choice made as to 

which binary symbol was received. PC0/FM is somewhat similar to FSK (MESK 

with X - 2) with the distinction that FSK consists of gating on one of two 

independent oscillators with the binary data. A further distinction is 

made here in that MFSK (or FSK) is received with K noncoherent matched­

filters, whereas, a discriminator and post-discriminator matched-filter 

are assumed for PCM/FM reception. 

2.2.1.2 PSK (Coherent)
 

PSK refers to phase shift keying by a binary message. The phase of the
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carrier is shifted by 1800 each time the binary data changes. Coherent
 
detection requires that the receiver have knowledge of the phase of the
 

carrier with an uncertainty of exactly 1800. This phase information must
 

be derived at the receiver and complicates the receiver implementation.
 

PSK and PCM/FM are identical when + 900 phase deviation is used in 1CM/FM.
 

Phase reversal keying (PRK) and PSK are also identical.
 

In the transmitted power spectrum of PSK, the bandwidth between the prin­

cipal nulls is 2/Tb Hz. However, it is conmn practice to band-limit
 

the spectrum to I/Tb Hz. This corresponds to the -4 db bandwidth. The
 
required transmission bandwidth for PSK is thus taken to be Bw - I/Tb.
 

2.2.1.3 PSK (Differentially Coherent)
 

In this technique, the binary data is detected by comparing the carrier
 

phase of a received bit with the carrier phase of the preceding bit. The
 

receiver, therefore, can take advantage of the differential phase coherence 

of. successive bits to detect a phase change without requiring knowledge 

of the absolute carrier phase. 

Since the detection process involves a noisy phase reference (the preceding
 

bit) the error probability for differentially coherent PSK is higher
 

than for PSK using phase coherent detection.
 

2.2.1.4 MPSK (Coherent)
 

In multiple phase shift keying (MPSK), the signaling alphabet consists of
 
M equally spaced carrier phase shifts. For example, for M - 4, the
 

°
possible phase shifts are 00, 90 , 1800, and 2700.
 

The Pr (symbol error) given above for MPSK is an upper bound that becomes 

quite accurate for large M. MPSK for M = 4 is referred to as 4-phase PSK 

or quadriphase modulation. 
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2.2.1.5 M-ary Coded PSK (Orthogonal Coding) 

The performance of any binary signaling technique can be, improved by 

encoding the data into binary code words. This coding can take many
 

forms but can be categorized by its intended purpose. Coding schemes
 

are available for correcting or detecting errors in the reception process
 

while other schemes are used to minimize detection errors. The techniques
 

described in this section utilize coding to minimize detection errors.
 

Just as in MFSK, the signaling performance of PSK can be improved if
 

the binary data, k bits at a time, is encoded into an alphabet of X
 

orthogonal symbols. In M-ary coded PSK with orthogonal coding, the
 

signaling alphabet consists of M a 2k mutually orthogonal binary words 

each consisting of n binary digits (n)k). Code words can be readily
 

generated which have n -M, if the system can accomodate the additional
 

speed required.
 
2.2.1-6 M-ary Coded PSK (Bi-Orthogonal Coding)
 

A bi-orthogonal signaling alphabet for M-ary coded PSK can be constructed
 

by simply taking the complement or negative of each code word in an 

orthogonal alphabet. Thus, the number of available symbols is doubled
 

and the average symbol correlation coefficient is -1/(M-I) instead of
 

zero as in the case of orthogonal coding. Thus, the performance using
 

bi-orthogonal coding should be better than that of orthogonal coding,
 

though the improvement becomes negligible for large M.
 

2.2.2 Comparison Curves and Discussion
 

The performance of NFSK based on probability of error is plotted and
 

compared with other signaling techniques in Fig. 2-3. The probability
 

of bit error for MFSK for various values of X is plotted as a function of
 

Eb/N . For a specified error rate, the reduction in required energy
 

per bit is quite significant for a moderate increase in M. Beyond M - 16, 

the improvement is less dramatic while the complexity of the system
 

increases considerably and emphasizes the point made earlier; i.e. that
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Fig. 2-1 Binary error probabilities for MFSK
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MFSK is impractical for the data rates used in this study.
 

Fig. 2-4 compares 16-ary MFSK and QPSK with -respect -to other techniques. 

2.2.3 	Comparison of Digital Modulation Techniques on the Basis of
 
Required Bandwidth
 

Transmission bandwidth becomes an important criterion when channel
 

bandwidth is limited or when transmitter and receiver components are
 

significantly bandwidth limited.
 

For data relay satellite links using millimeter wave carriers, power
 

efficiency may prove to be more important than bandwidth efficiency.
 

However, any practical link will experience some bandwidth limiting due
 

to component band-limiting and intentional filtering to avoid interference
 

with other links. 

The bandwidth characteristics of each of the modulation methods covered
 

in paragraphs 2.2.2 above will be considered. The bandwidths are expressed
 

as functions of Rb, the equivalent data rate over each link in bits per
 

second, and are listed in Table 2-1.
 

2.2.3.1 FSK and MFSK (Non-Coherent)
 

The frequency spacing between each of the N frequencies in an MFSK signal
 
1
is chosen as T- (reciprocal of the signalling rate). This choice of
 

spacing provides an orthogonal set of signal waveforms for the minimiza­

tion of BEU as well as minimizing transmission bandwidth and symbol
 

cross-talk.
 

For binary FSEK, X a 2 and k - 1 so that:
 

BWFSK 2Rbb . 

The spacing of FSK signallfi frequencies is sometimes increased (with
 

a corresponding increase in bandwidth) to permit the utilization of sii­

pler receiver data filters without causing symbol crosstalk.
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2.2.3.2 PClJll
 

The optimum peak-to-peak deviation for coherently detected PC/FM is
 

0.707 %. However, almost all practical PCO/FM links employ discriminator 

detection. Depending upon the amount of premodulation filtering and the 

type of post-discriminator data filter, the peak-to-peak deviation is 

normally chosen between 0.75% and 0.9%. Bennett and Rice 

determined that the required transmission bandwidth for a peak-to-peak 

deviation of 0.8 % is approximately equal to %. Thus: 

-PCM/FM
 

2.2.3.3 PSK (Coherent)
 

The unfiltered output power spectrum from an ideal biphase PSK modulator 

is a sin X/X spectrum with 2/T b between principal nulls. 

This ideal spectrum will be modified in an actual data link because of
 

modulator pulse response (switching time), transmitter and receiver filter­

ing, and ionospheric phase distortion. Transmitter filtering is required
 

to reduce the interference by the signal sidelobes with adjacent channels
 

and other services. The filtering, however, will introduce demodulator
 

degradation because of loss of the energy in the removed sidelobes and
 

phase distortion introduced by the filter. Therefore, the choice of
 

bandwidth restrictive filtering must include an analysis of the resulting
 

demodulator degradation.
 

2.2.3.4 PSK (Differentially Coherent)
 

If the same signaling rate is used for both coherent and differentially
 

coherent PSK the required transmission bandwidths are identical; i.e.,
 

2Rb.
 

2.2.3.5 MPSK (Coherent)
 

In MPSK, each transmitted symbol carries log 2M data bits. The actual 

signaling rate is, therefore, lower than the data rate R. by this factor
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of log2. 	 Thus, the required transmission bandwidth forMPSK is:
 

BWMPsK W 	BWpsK 2Rb
 
log2M loga
 

The principal conunications advantage of MPSK over PSK is the reduced
 

transmission bandwidth. Beyond M-4 (QPSK), however, the BER performance
 

is reduced 	for increasing M. Thus MPSK trades power efficiency for band­

width efficiency.
 

2.2.3.6 M-ary Coded PSK
 

The transmission bandwidth for coded PSK is n/K times the bandwidth required
 

by biphase 	PSK having the same information data rate Rb since each data
 

bit is essentially encoded into nK transmitted bits. For orthogonally
 

coded PSK,n-M and k>l so that:
 

BWORTH. CODED PsK ­ 2 
 2 b
 
k log2M
 

For bi-orthogonally coded PSK, n-M/2 and k>l so that:
 

BWBI-ORTH. 	CODED PSK - M
 
log2M
 

2.2.4 Bit 	Error Rate Degradation of BPSK and QPSK Due to Filtering
 

A computer 	program has been developed at Philco-Ford that determines the
 

degradation introduced by filtering . A five-pole, 0.1 dB ripple Chebychev
 

filter provides good, low-loss, side lobe rejection. More poles in the
 

filter make the filter larger without significantly increasing sidelobe
 

rejection; 	fewer poles do not give adequate sidelobe rejection.
 

The filter can simulate the entire channel through which the data is
 

transmitted as long as limiters are not used.
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Other filter types considered were Bessel filters (because of their linear
 

phase characteristics) and Butterworth filters (because of- their simplicity).
 

The Chebychev filters were selected because of their excellent skirt
 

selectivity, low ripple and reasonably good phase response. Odd-order
 

filters were found to be preferable to even-order for both biphase and
 

quadriphase because odd-order filters cause less quadratic phase distortion.
 

Fig. 2-3 is a plot of the degradation introduced in PSK signalling by
 

the filter for 0.1 dB Chebychev filters having 3, 5, 7, and 9 poles.
 

In Fig. 2-4 the BER degradation for BPSK is indicated for various filter
 

bandwidths. The filter type is a five-pole, 0.1 dB Chebychev filter. The
 
-4
 

bandwidths indicated are 3 dB bandwidths. Note that at a BER of 10

only about 1 dB degradation is introduced by filtering at the first spec­

tral nulls (BW - 2%). Filtering at the bit rate Rb, introduces 4.4 

dB degradation. It is concluded from this analysis that the practical 

transmission bandwidth for PSK is: 

BWPSK m 2Rb. 

The signalling rate for QPSK is one-half the signalling rate (bit rate)
 

for biphase PSK. Thus, all filter bandwidths can be reduced by a factor
 

of two for QPSK. Fig. 2.5 is a replot of Fig. 2-4 for QPSK and narrower
 

filter bandwidths.
 

2.3 COMPARISON OF ANALOG AND DIGITAL MEDULATION TECHNIQUES 

Analog video signals can be transmitted from their point of collection
 

(sensor aircraft) to a data recovery point (surface terminal) using
 

either an analog or a digital data link. The basic elements of these
 

two types of data links are shown in Fig. 2-5. 

Analog data links are more commonly used at present because of the avail­

ability of equipment. However, for high data rate image transmission
 

applications, digital data links have important advantages over analog
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SECTION 3
 

SENSORS AND SENSOR MTF
 

3.1 SENSORS AND SENSOR RESOLUTION
 

Any image-data system will be dependent on one or more sensors to ptovide 

image information, and upon the MTF (modulation transfer function) to 
determine the limiting resolution and therefore the videobandwidth 

capabilities of the sensors.
 

3.2. TYPES OF SENSORS
 

The various types of sensors,which are candidates for spacecraft use,
 

and which were discussed in Section 3 of Volume 1 will be discussed in
 

the following paragraphs.
 

3.2.1 Vidicons
 

The vidicon (Figure 3-1a) is a scanning image tube operating on the
 

photoconductive principle.
 

A transparent conducting film is deposited on the inside of a glass
 

face plate which is scanned by an electron beam. A thin layer of the
 

photoconductive material is deposited over the conducting film. The
 

local variations in resistance of the photoconductor corresponds to
 

the image intensity distribution on the face plate. The electron beam
 

sweeps the photoconductor and deposits a charge so that the instantaneous
 

voltage across the photoconductor is equal to the cathode-signal plate
 

voltage. The charge leaks through the photoconductor at a rate pro­

portional to the photorresistance at that point. The following electron
 

scan deposits charges to replace the leakage. The signal voltage is
 

developed across a load resistor which is connected to the conducting
 

film. This signal voltage is proportional to the deposited charge.
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The vidicon acts as a constant current generator for the output resistor. 

The signal current does not increase linearly with illumination. The
 

signal current is usually less than one micro-ampere so that the principal
 

source of noise is the video amplifier.
 

For the visible spectrum vidicons the minimum tube face illumination is
 
.of the order of 0.1 to 0.01 lumen ft - 2 With 400 line resolution of a 

0.3 inch diameter face plate, the minimum signal power per element is 
-
of the order of 10"12 to 10 13 watts.
 

The illumination range is approximately three decades from noise level 

to saturation. Fast image motions blur the electrical image since the
 

time constant of the photoconductor is usually longer than the conventional 

frame rate of 1/30 secoid. The signal stability of the vidicon is
 

better than that of the image orthicon because of the simpler electron
 

tube construction with fewer elements.
 

Figure 3-4 shows the scanning philosophy of the vidicon; Figure 3-5
 

shows the wavelengths served by various vidicons using different
 

photoconductive surfaces.
 

The infrared vidicon - also known as the Iricon is substantially 

identical to the vidicon with the exception of the use of a lead
 

sulphide target which extends the wavelength range of the imagery
 

beyond 10 microns. This type of tube is particularly useful for space
 

applications which address the earth since more than 607.of the direct 

radiation from the earth takes place in the 0.6 to 10 radiation band.
 

3.2.2 The Image Orthicon
 

The image orthicon is analogous to a vidicon. As shown in 

Figure 3-3b it uses a photoemissive target rather than a photoconductive
 

target and includes a built-in image intensifier and very low-noise
 

signal preamplifier. Therefore, the image orthicon is a more sensitive
 

device than the vidicon, while the image intensifier orthicon is still
 

more sensitive. The image orthicon pays a penalty in physical size
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and in the added complexity of the necessary electrical circuitry to
 

maintain its focussing, image intensifying, beam deflecting, and
 

amplifying elements.
 

Although the operation of the image orthicon is fundamentally different
 

from that of the vidicon, both devices are functionally alike. Each
 

has an image transducing section where a light image is transformed
 

into an electrical image in the form of a voltage pattern. Also, each
 

has a readout section, consisting of a scanning electron beam. These
 

electrons interact with the target which contains the stored electrical
 

image, producing an electronic signal which may be amplified and then
 

displayed.
 

The image orthicon contains its own amplifier for this purpose (an
 

electron multiplier), while the vidicon must utilize an external
 

preamplifier. The image orthicon also incorporates part of a single­

stage image intensifier in its image transducing section while the
 

vidicon may not.
 

The image orthicon can perform the same functions as the image dissector;
 

the internal process is quite different however. A charge distribution
 

corresponding to the image intensity distribution is accumulated during
 

the frame interval. A four hundred line resolution picture would
 

have 160,000 elements to sample each frame. The integration interval
 

is then 160,000 times as long as the sample interval. The integration
 

procedure should theoretically improve the minimum detectable signal
 

over that of the image dissector by about the same ratio as the frame
 

period to the element sample period; however, the beam current noise
 

and target ohmic leakage decreases the expected improvement in detectivity
 

from the integration procedure.
 

To compare the image orthicon to other detectors, the minimum detectable
 

irradiance must be estimated. One of the more sensitive image orthicons
 
-5 


had a minimum illumination level corresponding to 1 x 10 lumens/ft2 

incident on the S-l0 photocathode. The S-10 conversion of lumens to 

watts at the spectral peak is 400 lumens - 1 watt at 0.45 micron. 
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The equivalent radiance is then approximately 2.7 x 10 
11 watts cm72
 

on the photocathode. The typical thermonic emission from the S-10
 
"14 2
photocathode is 10"13 to 10 amperes cm , equivalent to a radiance
 

.
level of 6 x 10 to 6 x 10 watts cm As mentioned above, the
 

image orthicon is limited by the beam current and factors other than
 

the photocathode thermonic emission. At 400 line resolution each
 
-5 2 .
element has an area of 6.2 x 10 cm The irradiance from a point
 

source when focused by an optical system would have to produce a power
 

level of 1.7 x 10-15 watts per element to match the minimum radiance
 

level of the sample image orthicon.
 

3.2.2.1 Intensifier Image Orthicon
 

As a means of providing more gain prior to the target, an additional
 

image section is added to the image orthicon in the intensifier image
 

orthicon. Electrons from the photocathode of the intensifier image
 

section are accelerated onto the first screen. The screen consists
 

of glass coated with fluorescent material on one side and photocathode
 

on the other side. The spectral response of the photocathodematches
 

the response of the fluorescent material. The accelerated electrons
 

hitting the phosphor produce fluorescence which in turn starts photo­

emission from the photocathode. Emitted electrons from this photo­

cathode are accelerated towards the target and stored there. The
 

scanning and multiplier section of this tube are similar to the one
 

of the image orthicon.
 

The additional gain obtained from the intensifier section is enough
 

to raise the stored signal level to a point where the fundamental
 

noise from the primary photocathode can exceed the beam noise. Although
 

such a video signal obtained at very low light levels is inherently
 

noisy and limited in resolution, the intensifier image orthicon approaches
 

the performance of the ideal tube.
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3.2.2.2 Isocon
 

One of the serious disadvantages in the use of the Image Orthicon is the
 

low signal to noise ratio of the tube, especially at low light levels.
 

The low ratio is primarily due to the poor percentage of modulation
 

(35%) of the return beam.
 

In the Isocon tube, which is similar to the Image Orthicon, the diffusely
 

scattered electrons produced by the target instead of specularly reflected
 

electrons dispersed by bright areas are collected by the multiplier section.
 

This type of technique can give modulation that approaches 100%.
 

3.2.2.3 The Image-Dissector
 

The image dissector is a photomultiplier with a scanning system for
 

deflecting the electrons emitted from the photosurface. The deflection 

system systematically scans the electron image of the light pattern on 

the photocathode past a mechanical aperture, and transforms a two­

dimensional light pattern into a time-dependent electronic signal. 

The scene is imaged on the photocathode. The photo-emissive cathode
 

emits electrons whose local density varies directly with the number
 

and energy of the incident quanta. The aperture intercepts only a
 

small section of the electron -image. The multiplier structure then
 

amplifies the signal by secondary emission. The vertical and horizontal
 

deflection coils bend the focus field and scan the electron image over
 

the aperture (Figure 3-3c).
 

Some image dissectors are capable of resolving more than 1,000 television 

lines per frame corresponding to more than one million elements sampled 

each frame. However, the electron flow during the sampling interval
 

becomes very small and difficult to amplify and detect. Under the above
 

conditions, an electron flow of 106 electrons per second would yield
 

only one electron per sampling interval, corresponding to approximately
 

3 x 10"12 watts incident per element of the photocathode. 
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3.2.3 Solid State Sensor Imagery
 

Sensitive solid state discrete-point sensors now exist for use in
 

the visible, near infrared and 	long wavelength infrared spectral
 

regions. Photo-conductive diodes, photo-transistors, and photo­

emissive diodes (photo-electric cells) are included.
 

In general, these photo-conductive and photo-emissive cells can be
 

considered as discrete element 	equivalents of portions of the targets
 

of vidicons and image orthicons; a vidicon can be considered to be
 

an LSI (large scale integration) version of the photo-conductive
 

cell with the scanning electron beam considered as a switching or
 

commutating mechanism. In like fashion, an image orthicon can be
 

considered as an LSI version of the photo-emissive cell using a
 

scanning-electron beam comiutator.
 

.Actually, the use of discrete 	cells of either type for imagery
 

information poses significant constraints on the design of imagery
 

apparatus which requires that a-scanning function be included to
 

allow photo-interrogation of all sections of a surface being photographed.
 

Either of two types of apparatus are then considered:
 

* Self-Scanned Mosaic: This represents an array of elements
 

which are electrically scanned to
 

produce an output signal comprising
 

an image representation of a viewed
 

surface.
 

* 	Spin Camera System: The spin camera uses the spining
 

motion of a satellite to direct
 

narrow angle scanning-line views
 

of a surface to one or more point
 

sensors. The overall scanning
 

which changes the scanning-line
 

view from scan to scan to produce
 

a raster is accomplished by optical
 

means under electronic command.
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The basic elements of these two systems will be discussed in the next
 

paragraphs.
 

3.2.3.1 Classes of Radiation Detectors
 

Radiation detectors can be divided into two classes, thermal detectors
 

and quantum detectors. The thermal detector operates by the measurement
 

of some characteristic that changes when heat is absorbed or lost.
 

The simplest example would be the common mercury thermometer. In
 

the quantum detectors, the absorbed quantum directly changes the
 

electrical characteristics of the detector. This may be the emission
 

of an electron from the surface of a photo-emitter or photo-cathode
 

or the production of a free electron or hole in-a semi-conductor crystal.
 

3.2.3.2 Photoconductors
 

The photoconductive detectors are made from the semi-conductor elements
 

and compounds and are of the same technology as in vidicon targets.
 

The detectors may be crystalline solids or amorphous solids. A
 

photon can release an electron from the valence band and raise it to
 

the conduction band. The migration of the electron and the "hole"
 

(missing electron) through the material under the influence of an
 

electric field constitutes an electric current. A small fraction of
 

impurities in the crystal structure can aid the sensitivity of the
 

detector. The impurity or donor element has a different valence.
 

The crystal structure then has either a hole or electron available
 

at the impurity site that is loosely bound to the atom. The energy
 

of a photon can ionize the site and produce a migrating hole or
 

electron.
 

Although photoconductivity was first discovered in 1873 by Willoughby
 

Smith while investigating selenium as a resistor in underwater cables,
 

actual progress in understanding and material development has awaited
 

the recent leap forward in all solid-state physics which was activated
 

by the development of the transistor. Photoconducting cells were made
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only of selenium, copper oxide, or thallous sulfide up to 1940; today,
 

commercial cells use none of these, but are based almost exclusively
 

on germanium, silicon, cadmium sulfide, cadmium selenide, lead sulfide,
 

lead selenide, or lead telluride, all resulting from recent developments.
 

It was not until the end of World War II that detection of infrared
 

radiation by the lead-sulfide-type photoconductors provided superior
 

to former thermoelectric or bolometric methods. Figure 3-6 shows the
 

intrinsic photoconductivity response as a function of incident wavelength
 

for a number of typical photoconductors.
 

In many cases, photoconducting cells today perform the same functions
 

previously performed by photoemissive cells, with the advantages of
 

decreased size and cost, and increased ease of operation. The solid­

state photoconductor cell bears the same relationship to the photo­

emissive vacuum phototube as the solid-state diode bears to the 'thermionic­

emissive vacuum diode.
 

3.2.3.3 The Photo Transistor
 

The photo transistor, by virtue of its current gain, offers the
 

possibility for higher sensitivity than does a simple photodiode.
 

Its reverse-biased collector junction acts as the photosensor and
 

the emitter junction provides the switching function. The collector
 

junction must have a much larger area than the emitter to provide 

adequate storage capacitance with a small switch capacitance. 

To a first approximation, the total charge that flows through the emitter­

collector circuit during the sampling pulse is proportional to the
 

accumulated charge on the base multiplied by the current gain of the
 

transistor. This relationship, however, does not hold at all light
 

levels and nonlinear transfer characteristics and sluggish transient
 

response may limit the application of the photo transistor for low-light
 

performance.
 

3-11
 

SPACE & RE-ENTRY SYSTEMS DIVISIONPHIL-CO C0 Phdco-Ford Corporation 



TR-DA2180
 

PHOTON ENERGY, ev 

40 3025 2.0 1,5 12 1.0 05 02 
100 '" 

.s-I JJzs-IPbTe Izns - I 9O9 so I PbS 9K PbS 

a­
(0 

920 i ji 

N / II ,
 

I 
 iCdSI.r i 1 I 

013 05 0 2.0 5.0 .0 

WAVELENGTH, tticrons 

-Ilntrinik pho!oconduclivity response of typical photoconductors vs. wavelength, 
where "infrinsic' means response of the material itself without incorporated impurities. 
Impurities extend response to longer wavelength than the intrinsic response. Intrinsic 
responses extend from the ultraviolet (<0.4p) through the visible (0.4 to 0.44= into theinfrared (>0.7). 

Figure 3-4 
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3.2.3.4 Photo-emissive Cells
 

The photo-electric cell or photo-emissive cell consists of a photo­

cathode in a vacuum tube whose output is passed through one or more
 

secondary emitter amplifiers - called dynodes. Such tubes as photo­

emissive tubes-can address any part of the visible, UV or IR spectrum
 

depending on the photo-cathode material used, and the use of many
 

dynodes (up to 12) makes such devices among the most sensitive and
 

quietest (from the noise standpoint) sensor devices available.
 

3.2.3.5 Mosaics
 

Mosaics of large numbers of elements are very difficult to fabricate.
 

The main difficulty arises from making electrical contact by wire to
 

each individual cell. The fabrication of the cells themselves, by
 

contrast, is quite simple. These are deposited as thin films on a
 

suitable substrate. The present state-of-the-art in cell size is
 

about 0.0015 inch, with a separation from its nearest neighbors of
 

about 0.001 inch. Variation in sensitivity of + 10 percent are
 

typical from cell to cell. The largest mosaic fabricated to date
 

is in the neighborhood of 125,000 elements.
 

The problem of fabrication is compounded by the problem of readout
 

of the mosaic. The use of an individual preamplifier for each cell
 

with sequential sampling of the outputs is attractive as it allows
 

the use of a narrow bandwidth for each individual detector. Generally,
 

the output of the cells or individual preamplifiers is multiplexed
 

sequentially, into one, or several preamplifiers. This technique
 

appears to be developed to the point where readout of 106 elements
 

in less than a second poses no problem. The cell wiring problem in
 

large mosaics is so formidable that some manufacturers are going to
 

electron beam readout techniques, thus eliminating the need for individual
 

cells, and turning the mosaic into a continuous detector surface.
 

Detectors are usually photo-voltaic for this mode of readout and can
 

incorporate a limited amount of image storage capability.
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3.3 MODULATION TRANSFER FUNCTION
 

Optical system performance is quantitatively expressed in terms of a
 

modulation transfer function. The concepts and mathematical formulism
 

used in evaluating this function, or optical system index of performance,
 

have their origins in linear filter analysis of communications theory.
 

Mathematical techniques and theories of the transform calculus are util­

ized, especially those of Fourier integral theory. Where communications
 

theory wakes use of the Laplace single-ended transform to relate func­

tions of time and frequency, linear optical systems theory applies the
 

double-ended Fourier transform to relate 	functions of space and frequency.
 

Approximate optical analogs of communications theory concepts -arepre­

sented below in Table 3-1.
 

TABLE 3-1 

Electrical Optical Analogs
 

Communications Theory Terms Optical Analog
 

(a) 	Voltage as a function of time Brightness as a function of
 

linear dimension
 

(b) 	Rotational Frequency in Hz Spatial frequency in cycles
 

per MM
 

(c) Unit Impulse 	 Point Source
 

(d) Impulse Response 	 Point Spread Function
 

3.3.1 Modulation Transfer Function and 	Limiting Resolution
 

The Modulation Transfer Function, or MTF, of a sensor is analagous to
 

the amplitude transfer function of linear electrical networks. It gives
 

the amplitude response of the sensor as a function of spatial frequency.
 

The MTF can be generated experimentally by scanning a test target with
 

a sinusoidally weighted grid of alternating black and white bars normal
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to the scan line. The magnitude of the voltage at the sensor output
 

would then be plotted as a function of scan position. If the distance
 

between the black and white bars (period of the spatial frequency test
 

input) is large relative to the scanner spot size then maximum amplitude
 

response should appear at the sensor output. As the spacing of the
 

bars becomes closer (increasing spatial frequency) the sensor output
 

response will decrease as shown in Figure 3-5(a). The wTF of a sensor
 

is, therefore, a direct measure of the response bandwidth of the sensor.
 

The MTF is normally expressed as a normalized (zero to one)-response
 

plotted as a function of spatial frequency. The most common units
 

of spatial frequency are line pairs per millimeter (lp/rm). Multiply­

ing the spatial frequency by scan velocity gives the sensor output re­

sponse in electrical frequency.
 

The concept of limiting resolution is illustrated in Figure 3-5. As
 

the lines per millimeter increase, that is, the number of scanning lines
 

increase, under condition of constant illumination, then as the output
 

decreases, the output signal level will approach the noise level which
 

is independent of the line pairs per millimeter and the output of the
 

sensor will become unusable.
 

Thus a vidicon which has a useful scanning rate of, say, 1700 lines,
 

may require a limiting resolution of 4000 lines (converted from lines
 

per millimeter by multiplying lp/m by the scan distance in millimeters)
 

to assure adequate resolution with proper signal to noise ratio at the
 

light levels being observed.
 

Consider., for example, the limiting resolution spatial frequency at the 

center-field resolution of the vidicon. This spatial frequency is 
flmiting -N/50.L. 

= 1500 - 26.4 LP/IMH 
50.8 x 1.12
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Figure 3-5 The Geometry of a Scanning Beam Traversing a Scanning Line
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From typical 5140 vidicon characteristics, the tube response at 26.4
 

LP/MW is 0.52.
 

3.3.2 Resolution Notation
 

There may be a difference of a factor of two between two individuals'
 

interpretation of a resolution. Figure 3-5 illustrates the distinction.
 

The source of this misinterpretation is avoided if the term "line-pairs
 

per millimeter" or, preferably, "cycles per millimeter" is used.
 

There is a divergence of definition of the term "lines per millimeter"
 

between those concerned principally with optics and those concerned
 

principally with electro-optical (for example, television).
 

The optical definition developed from consideration of resolution in
 

terms of two close point images, then of the resolution of two close
 

lines, and finally of the resolution of equally spaced lines; therefore,
 

to the optical scientist, a "line" is the spacing between two black
 

(or white) lines, separated by a space of equal width. In television,
 

the principal concern is the scan line on the camera or kinescope tube,
 

and resolving two black (or white) lines separated by a space of equal
 

width requires two scan lines on the tube. Thus, to imagery applications
 

a "line" is the distance between the black line and the intermediate
 

space.
 

3.3.3 Convolution Analysis Basis of MTF
 

As shown in Figure 3-5(b), E represents the intensity distribution in
 

the image plane for a point source anywhere in the object plane, and is
 

a result of applying the scalar wave (Kirchhoff) approach to Fraunhofer
 

diffraction.
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Any object imaged by an optical system such as a scanning spot will have
 

a distribution of intensity which can be expressed by some function
 

O(xly1 ) where x1 and Y2 are the coordinates in the object plane. The
 

image will have an intensity distribution given by multiplying the
 

value of O(x1 , y) for each point in the scene by E(xl, yl) and summing
 

the result.
 

The image intensity function can be expressed as:
 

I(x', y') . f E 0 (X, yl) E (Xl-x, y-y') dx1 dyI
 

This equation represents an intensity function derived by convolving
 

E(xl, yl) with O(xl, yl), and can be recognized as a convolution or
 

"faultung" integral.
 

The convolution of E with an object intensity distribution function 0
 
1
 

yields an image intensity function I. Symbolically, then,
 

I - E * 0 

E describes how an aperture (or optical system) responds at the image
 

(or system output) to a point source. It describes how an aperture
 

responds to an arbitrary object intensity distribution in terms of
 

its response to a point source, The parallel with linear sstems analysis
 

is strikingly evident. In linear'system analysis, the system response
 

function is the response to a unit impulse (Dirac delta) excitation.
 

The response to some arbitrary excitation in the convolution of the
 

system impulse response (also called "Green's" function in mathematical
 

physics) and the given excitation function (Borel's theorem).
 

Let FI J represent the Fourier transform of a function in the bracket. 

1. H. P. Hau, 'Outline of Fourier Analysis", Unitech Outlines, 1967.
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If F [0 (x1 , yl)I - 0 (u, v) 

and F [E (X,. Yl) ]  = (u, v) 

then, the following convolution theorem holds:
 

F [o(xi' yl) * E(xI, Y)] - O(u, v) E(u, v) 

i.e., the Fourier transform of the convolution of two functions equals
 

the simple product of the Fourier Transform of the functions. In the 

previous section E (xl, yl) was defined as the optical transfer function. 

If only the modulus, IE (u v ) I , is considered, IE (u, v) is 

called the 'nodulation transfer function." The Fourier transform of 

functions of space are transformed into functions of frequency. As an
 

example, the Fourier-transformed object intensity function, F 10(xl, Yl)] 

is called the spatial intensity spectrum and represents the object 

as being composed of a set of sinusoidally varying intensity patterns 

of different magnitudes and positions, superimposed upon each other. 

Analogously, the Fourier transform of the image intensity function, 

F[H(xjl Yl] , is its spatial intensity spectrum expressed in lines 

per millimeter. 

The Fourier transform techniques permit a simple derivation of the 

transfer function. Recalling that U (a, b) = F IT (x, Y)I , i.e., 

the complex amplitude function is the Fourier transform of the aperture 

function, and that E (x1 , y1 ) - uu*, i.e., the point spread function is 

the square of the modulus of the amplitude function, then: 

E (x 1 y1 ) - F [T(x ly) I F *~ y 

or E (xlyl) a T(xy) * T*(xly) 
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by applying the Fourier convolution theorem. This means that the optical
 
transfer function is the convolution of the aperture function with its
 

complex conjugate, i.e., the transfer function is the auto correlation
 

function of the aperture (pupil) function.
 

3.3.4 The Concept of Spatial Frequency
 

For the sake of simplicity and without loss of generality, a normalized,
 

one-dimensional Fourier transform of a point spread function E(x) can
 

be written as:
 

H ( w) E(x) e dx 

S E(x)dx 

where w now has the dimension of radian per unit distance. Since w = 

2 TT X, then the MTF for the point spread function is given by
 

H (X) H 
2n I
 

Now, in an evaluation of above,the limits on the integral are generally
 

finite, explicitly determined by the spread function boundary condition. 

Suppose there exists an idealized synetrical point spread function of 
unity amplitude between x - -d/2 and x - +d/2, zero elsewhere. Then, 

d/2
 
2 o (1) e - x
H (X) - d/2 

2 Jo (1) dx 

= Sin Tr X d 
TT X d 

'
and H (X) = in I - TF 
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Note that the zeros of H (K) occurs for X - n/d, i.e., for integral
 

multiple of I/d.
 

The limiting spatial frequency is given by
 

1

k Limit 	 d 

It can be shown that an approximate relation for the resolving power
 

of a lens is given by:
 

=
d/f D 

Where 	 d - minimum separation resolvable in the image
 

f = focal length
 

D - aperture
 

X= wavelength
 

Combining the two above expressions yields
 

1 	 DD 1
 

Limit D
 

where F is 	lens F-number.
 

This last relationship implies that the faster a lens (smaller the f­

number) the higher the limiting spatial frequency, or the better the
 

resolution, which is generally true.
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3.3.5 Use of the Modulation Transfer Function for a System
 

For the usually-encountered case of non-coherent illumination, the MTF
 

described earlier is the item of interest. In linear system analysis
 

if there is a chain of n successive independent operations performed on
 

some excitation, each operation represented by its representative transfer
 

function, then the overall system transfer function can be represented
 

by the product of all '" individual transfer functions.
 

In optical systems analysis using the transfer function approach, the
 

overall MTF for the final image can be given by
 

n
 

Hi (W Ho(XWn Tn
 
n-i 

MTF's have been computed for
 

* Film 

* Image tubes 

* Human eye 

* Atmospheric turbulance 

* Image motion 

* Atmospheric transmission 

* Cathode Ray Tubes
 

The object or target itself can be treated as if it has its own MTF.
 

Transfer functions are usually presented in log-log coordinates, nor­

malized.
 

The techniques of linear system analysis can be applied to derive an
 

overall optical system MTF or "System Index of Performance." Using the
 

transfer function approach allows the overall MTF for the final image to
 

be calculated by taking the product of the MTF's of the individual
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system components. Figure 3.10 which depicts the linear system model
 

applicable to the total image system is being discussed in this report.
 

The various MTF's developed for the imagery system of Figure 3-6 are
 

discussed as follows:
 

3.3.5.1 1MTF and Scene Statistics
 

A very critical factor in determining optimum data encoding is the MTF
 

(modulation transfer function) of the system coupled with valid des­

criptions of scene statistics. This information will determine the
 

electrical spectrum of the output signal. The most valid scene statis­

tics are the probability distributions of radiance difference between
 

adjacent regions as a function of the size of the regions. This data
 

is more appropriate than the scene power spectrum since the latter
 

represents an average, and the processor must be able to handle data
 

at the limits of the.distribution curve in order to make optimum use
 

of the information gathering capabilities of the sensor.
 

In the visible and near infrared it is rather easy to construct situations
 

where the earth radiance will change over its full potential range in
 

a distance of 100 feet.
 

In the intermediate infrared, where the dynamic range may represent
 

temperature extremes, in the range of 250 to 3500K, a radiance difference
 

caused by a 1000K temperature gradient in 100 feet is not very likely.
 

Maximum changes of 250K would be more representative of the tail of
 

the distribution curve.
 

In general, it is observed that the output signal characteristics are
 

primarily determined by the sensor MTF, as shown in Figure 3-7. For
 

a rectangular field stop in the image plane, this is simply the sin x/x
1 
function which has its first zero at I cycles/ft on the ground, where D
 

is the subtense of the stop or detector element.
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Figure 3-7, Spatial Frequency in Cycles/Foot Versus MTF 
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A circular stop would of course be represented by a Bessel function with
 

a similar shape. When these aperture functions are convolved with dif­

fraction and image motion effects, further attenuation occurs. If it
 

is assumed that there will be at least 4 samples/dwell time, and that
 

the resolution is within the diffraction limit, then the sin x/x function
 

is still representative (although somewhat optimistically) of the system
 

MTF.
 

3.3.5.2 Lens MTF
 

T (k) is derived by taking the convolution of a circular aperture with
 

itself. The lens cutoff frequency is the reciprocal of 5500 1 times 

the lens F-number. Lens F-number, or relative aperture, is a trade-off
 

between a physically realistic aperture size and the vidicon tube mini­

mum exposure requirement which is the image plane illumination multiplied
 

by the exposure time.
 

3.3.5.3 Fiber Optics 1TF
 

The MTF's for a 7-micron fiber optics array are computed by consider­

ing a 7-micron fiber to be the equivalent of a circular aperture (ex­

cluding transmission losses) having a uniform intensity distribution.
 

The MTF for this aperture is the convolution of the aperture with itself,
 

with a limiting (cut-off) frequency of 1/.007 M or 143 LP/M4. The 14TF
 

in terms of spatial frequencies is found to be:
 

T(k) 2 cos k k k
 

where k is a varying spatial frequency, and k is the limiting frequency.
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Consider two spatial frequencies of interest, namely 26.4 LP/mM and
 

49.2 LP/!. Evaluation of the above equations at these k's yields 14TF's
 

of .76 at 26.4 LP/MA and .57 at 49.2 LP/MM. A rough plot of T (k) is
 

presented on Figure 3-8. The equation can also be applied to calculate
 

the response of a "perfect" lens. The k for the lens is gotten from
 
0 

k 0 4 where F is the lens F-number. 
.5.5xIO F 

3.3.5.4 Vidicon MTF
 

A value for T (k) is most readily acquired from the data sheets for
 

the selected vidicon. The MTF for an image tube can be calculated by
 

taking the Fourier transform of the spread function of the tube. The
 

spread function generally depends on the size of the scanning beam
 

and on the construction and characteristics of the sensitive surface.
 

The scanning spot is assumed to have a Gaussian shape so that the spread
 

function is of the form:
 

2
[x]~) - -1/2 


The Fourier transform is thus
 

G (k) - e "1/2(s/ ik 
.e dx 

Letting U - x + ik
 
)2
 

G(k) = e -1/2 (2nk a 2 -1/2 u 2du 

e -1/2 (2n k a) 2 S (u) du
 

T (k) -
But 


IS (u) du 
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which is the MTF for a point spread function. 

Thus, T (k) a -2 (rk a)2 

This function is plotted in Figure 3-9 along with the MTF for the 

diffraction limited spot.
 

Schade has made an extensive study of point image definition and has
 

evaluated the effect of various image intensity distributions on image 

definition. He has pointed out that a succession of aperturing pro­

cesses seems always to cause the final image intensity to tend toward 

a Gaussian distribution. He has also pointed out that for an imaging 

process involving a series of apertures each having a Gaussian aperture 

transmittance (and thus Gaussian sine wave response functions) the over­

all system sine wave response function is Gaussian. Finally, his numeri­

cal calculations with different apertures have shown that round apertures
2 

with cos and Gaussian transmittance functions have essentially the same
 

aperture response. This indicates that any symmetric, round aperture
 

transmittance function having a smoothly varying transmittance over the
 

central area of the aperture but falling off exponentially from the
 

aperture center, will have essentially the same response function.
 

Table 3-2 presents a useful set of computations for a vidicon or image
 

orthical system with a Gaussian-shaped MTF. The unit length has been
 

arbitrarily chosen to contain 100 cycles of the spatial frequency which
 

has a 17 sine wave response. Other columns give the sine- and square­

wave response. Ne is the equivalent rectangular passband.
 

3.3.5.5 Step Response of a Scanning Sensor to a Knife Edge Target
 

The transient response of scanning sensors to a knife edge target is
 

of interest since this defines the maximum possible slew rate of the
 

sensor output. This information is of particular importance when the
 

sensor output is to be processed by a system element that is capable­

3-29
 

SPACE & RE-ENTRY SYSTEMS DIVISION
PHILCO C Philco-Ford Corporation 



TR-DA2180
 

1.0 

.8 

z 

.6 

en 

z 

.2 
GAUSSIAN 

DIFFRACTION LIMITED 

0 

0 .2 .4 .6 

NORMALIZED SPATIAL FREQUENCY (ak) 

.8 1.0 

Figure 3-91 Modulation Transfer Function for Laser Scanner 
on Axis with Diffraction Limited Optics (Symmetrical 
Aperture) and with a Gaussian Point Spread Function 

3-30 

SPACE & RE-ENTRY SYSTEMS DIVISION 
Phco-'Ford Corporaton 



TR-DA2180
 

TABLE 3-2
 

GAUSSIAN SHAPED MO0DUIATION TRANSFER FUNCTION
 

NORMALIZED 
SPATIAL 14TF 

FREQUENCY 
N 

(SINE WAVE)
(RESPONSE) 

(LINE PAIRS ) 
(UNIT LENGTH) 

0 100 

2 99.6 

5 98.5 

10 95.2 

20 83.1 

29.1 67.5 

30 66.0 

40 48.0 

50 31.2 

60 19.0 

70 10.5 

80 5.2 

80.5 5.0 

83.5 3.0 

92.4 2.0 

100 1.0 

-4 N )*(lTF) - exp (-4.59 x 10 
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of producing slope overloading distortion. All differential PCM and
 

delta modulation encoders are slope limited, when adjusted for optimum
 

noise performance. In general, a delta modulator or differential PCM
 

encoder is optimized and gives minimum quantization error consistent with
 

no slope overloading distortion, when the slew rate of the encoder is
 

adjusted to just equal or exceed the maximum output data slew rate.
 

(This rate should be determined by the overall system modulation trans­

fer function including the MTF of the source if known.)
 

High frequency circuits, such as very wideband video amplifiers, also
 

can produce slope overloading distortion when the input data slew rate
 

exceeds the capability of the circuit. The slew rate of many ampli­

fiers is limited by the ability of the output stage maximum current
 

to charge its internal shunt capacitance and the external load capaci­

tance. In feedback application, the resultant nonlinear phase shift
 

can cause the system to become unstable.
 

High voltage wideband amplifiers such as those used for driving wide­

band (20-50 MHz) optical modulators, which are typical in laser recorders,
 

are particularly sensitive to the maximum data slew rate. Accurate
 

knowledge of maximum data slew rate can result in considerable design
 

simplifications.
 

The step response to a knife edge may be determined for a known point
 

spread function, s (x, y), by scanning the function with a knife edge.
 

Consider a Gaussian shaped spot with the two dimensional point spread
 

function:
 

2 exp (x +y
a (x, y) ­

22 a2
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Let the knife edge be oriented vertically so that it is opaque for
 

x < o. Then the response as a function of spot center position x, is:
 

R (x1I)x s (x, y) ds dy 

I erf for x < o 

1 + erf () for xI1 >o,
 

where eff I r exp _ 2 dx.

d
e2 a 2 

-xI
 

This step response function is plotted in Figure 3-10 as a function of
 

the normalized beam location. The 0%-to-90% rise time is approximately
 

2.6 or 1.3 times the spot diameter 2 c. 
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3.3.5.6 Contribution of Image Motion to MTF
 

To calculate the contribution to the overall MTF caused by image motion
 

during frame time, the following data are required:
 

a. 	Speed of longitudinal image plane dimension during frame time.
 

b. 	Distance traveled by longitudinal image plane dimension during
 

exposure time.
 

c. 	Normalized one-dimensional Fourier transform of a pulse of
 

amplitude A and space dimension equal to uncompensated distance 

traveled by longitudinal image plane dimension during exposure 

time. Consider a swath width in the focal plane is with.a 

speed of approximately 90 MM per second. During a .01 second 

exposure time this length will move .9 MM. Assuming a 99% 

effective image motion compensation, the effective image 

motion will be approximately .009 MM. This .009 MM is the 

width T of the pulse shown in Figure 3-11a used as the 

model for determining image motion contribution to the 

optics system response. 

T4 (k) is derived by taking the Fourier transform of a pulse of amplitude
 

A and duration T where:
 
p
 

T - __..2Z_ (1- IME)
 
TP P tfn)ifram
e
 

y a longitudinal dimension of image plane, 

tframe - frame time, seconds 

and INE - image motion compensation efficiency, %. 

The result is the function
 

gSin ('T T)
 
T P
ATp n kT 

where k is the limiting spatial frequency of the associated vidicon,
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But w - 2,r f., so that the foregoing equation becomes
 

Z~fl = Sin ( T fT)
aT p Tr fTp 

A plot of this last equation is depicted on Figure 3-11b. The first zero
 

of the above function occurs at
 

TrfTp
p 

TT 

_I 
or f - T 

p 

Let T - .009 ,M so that f - l/T - Ill LP/M 
p p
 

The response of 26.4 LP/MM is computed from above, i.e.,
 

UfL Sin (3.14 x 26.4 x .009) . 0.91
 
AT 3.14 x 26.4 x .009
 

p 

3.3.5.7 Cathode Ray Tube MTF 

The deri,ation of the MTF for a CRT depends on the definition of the
 

spot diameter. If, as is generally done, the spot is assumed to have
 

a Gaussian distribution, then we define the given diameter, D, as the
 

spot width between the half-amplitude points. However, the 1TF
 

calculation is based on the one-sigma (.7) points. Therefore, the
 

sigma width value must be calculated. A high resolution CRT having
 

a spot diameter of .0006" or .01524 M is assumed. Using
 

e-1/2 (x)2

a(X) 


the spread function defining spot luminance,
 

where X - .01524/2 . .00762 

and a (X) - .5 

3-37 

SPACE & RE-ENTRY SYSTEMS DIVISION 
Phico-Ford CorporationPIILCO 49& 



TR-DA2180
 

(10o 4x .580 644)-Then .5 - e 1/2 

or Log .5 - -1/2 (io-4x .580644) 

so that a2 . lO'4x .580644
 
a2 

a .00552 MM 

and 2a = .011 M, which being the width between the .7 points on
 

a Gaussian curve, is less than .01524 M, defined as the width between
 

the .5 points.
 

This value is now substituted into
 

/2

T(k) - elf (2 Trk a)2 

which is the 1MTF expression for this Gaussian spread function.
 

-Hence, T(k) e 1/2(TT k.011) 2 

-.0012 k2 

= e 

This expression is now to be evaluated at the two illustrative frequencies 

of 26.4 LP/MM and 49.2 LP/MM, i.e., 

. -.836 s.0012 (26.4)2 A 

T(26.4) e e .43
 

T(49.2) - e-.0012 (49.2) 
2 

- -2.9 .06 T4.) ee 


A plot of T(k) is presented on Figure 3-12.
 

3.3.5.8 Image Dissector
 

The major exception to the Gaussian shaped aperture in TV sensors is
 

the Image Dissector. In the Image Dissector the aperture is a mechanical
 

hole in a metal disc and theoretically can be of any shape. Practical
 

resolving aperture diameters range from 0.0005" to 0.060". Circular
 

or square apertures are normally used. Image Dissectors are capable
 

of very high resolution at low scan speeds (at high speeds the aperture
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must be made larger to emit more photoelectrons to retain adequate
 

signal-to-noise ratio). At low speeds limiting resolution of 3200
 

TV lines/inch (63 lp/imm) can be obtained.
 

The point spread function for an image dissector with a rectangular
 

aperture is defined as follows:
 

Ji/a for x between -2/2 and a/2

S(W) - 0 for all other x 

where a - aperture width 

Since the aperture is symmetrical the I4TF can be determined by 

evaluation of: 

T(k) f : S(X) cos 2 T kx dx 

s(x)ds 

For the rectangular spread function, the integral in the numerator becomes:
 

a/2 
2/a a/ cos 2nT kx dx
 

= sin 7Tka
 
1 ka
 

The integral in the denominator becomes by inspection:
 

L x(x) dx = I 

The MTF is, therefore:
 

ka . sin r
T(k) 
­

n ka
 

;which is plotted in Figure 3-13. 
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3.3.5.9 MTF of Side Looking Radars
 

Side-looking radars* fall into two general classes: noncoherent and
 

coherent. The noncoherent radars are essentially conventional pulsed
 

radars with the look angle normal to the vehicle track. Range resolution
 

is dependent upon the pulse width while azimuthal resolution is proportional
 

to antenna beamwidth.
 

Coherent side-looking radars maintain phase coherence between the transmitted
 

and received RF signals. -This coherence makes possible improved azimuthal
 

resolution using synthetic aperture processing. The synthetic aperture
 

technique utilizes the motion of the vehicle and the doppler history of
 

the target returns to- compress the azimuthal resolution down to a value
 

nearly equal to the real antenna along-track dimension. The range
 

resolution is determined by the effective pulse width of the radar.
 

Either conventional short pulses can be used or pulse compression can
 

be employed to reduce transmitter peak power.
 

.A radar transmitting ideal rectangular pulses of width T has an MTF
 

expressed by:
 

T(k) sin nkT /nkT 

This MTF is identical to the MTF given earlier for the image dissector
 

and plotted in Figure 3-13. The pulse widthT corresponds to the image
 

dissector aperture width a.
 

The above MTF is normalized for some maximum target reflectance. For
 

a lower target reflection coefficient the magnitude of the radar receiver
 

output will be reduced. Thus, the effective MTF for a radar is scaled
 

by the target reflectance. The position of the target in range and
 

azimuth will also scale the MTF. Nonetheless, the MTF is a useful
 

parameter for determining the relative frequency content in the return
 

signal.
 

,*Side looking radar has been discussed in Section 3 of Volume 1.
 

There, it is used as a surface imaging or mapping technique (JPL Space
 
Programs Summary 37-55, Vol. III, pp 78-89) and is discussed here in terms
 
of its mTF to further extend the range of this report.
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In most practical radars the pulse is not an ideal rectangle. Practical
 

limitations on rise time and filtering will modify the MTF. Also, the
 

side lobe response in the ideal sin x/x signal spectrum is undesirable
 

and is usually minimized by careful pulse shaping. The MTF for an
 

actual radar may very well look somewhat different from that shown
 

above. However, the sin x/x model and possibly the Gaussian model
 

are quite suitable for use in determining A-to-D converter techniques.
 

If conventional short pulses are used in the synthetic aperture radar
 

then the radar MIT is essentially the same as that given above for
 

the noncoherent radar.
 

However, most synthetic aperture radars use pulse compression or chirp
 

to allow longer transmitted pulse width and, hence, lower peak power.
 

Pulse compression also permits two-dimensional matched-filter receiver
 

processing using an optical correlation.
 

The MTF for a pulse compression radar measured in the, receiver prior
 

to compression or de-chirping is quite different from the MTF for
 

conventional short pulse radar.
 

For linear FM pulse compression, which is commonly known as chirp,
 

a linearity swept RF modulation is transmitted on each pulse, where T
 

is the transmitted pulse duration, fc is the RF center frequency and
 

f is the frequency deviation of the linear sweep. The product f1 T
 
is called the pulse compression ratio since the compressed pulse
 

after receiver processing will be approximately T/ (fI T).
 

The amplitude spectrum for a chirp radar can be shown to have an
 

envelope described by:
 

2i exp
p(f)j T 1 [in y2/23 

U2 
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where i = 2IT + (f. - f) 27 1 

f )
 A2 =(f -


The above integral can be evaluated as the difference of two Fresnel
 

integrals, Z(M) - Z(A2), where
 

Z() = f exp 22 dy 

0
 

The norma-lized amplitude spectrum IPCf )' /tI = 1) - Z(.2)T/ IC/. j 


is plotted in Figure 3-14 for several values of the compression ratio
 

fT. The absicissa is the normalized one-sided frequency off-set
 

relative to the RF center frequency, (f - f)/fl. The spectrum is
 

symmetrical relative to (f - fc)/fl = 0.
 

The amplitude spectrum for the ideal rectangular pulse is also plotted
 

for comparison.
 

Examination of Figure 3-14 indicates that there is considerable high
 

frequency content in the chirp pulses, significantly more than in the
 

other sensor MTF's considered earlier. This distinction is important
 

in determining A-to-D conversion characteristics.
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Section 4
 

HIGH SPEED A/D CONVERTER TECHNOLOGY
 

4.1 HIGH SPEED A/D CONVERTERS
 

A/D converts operating in the 40 to 400 Mbps rate range, ust use high 

speed components and a minimum number of successive logic levels. The 

switching technology which related to these speeds has been discussed 

in Section 1 of this volume; this section will discuss the various 

converters which can be used at these speeds, and related to Section 4 

of Volume 1.
 

4.2 TYPES OF HIGH SPEED A/D CONVERTERS
 

At the 40-400 Mbps bit-stream speeds, few A/D converter circuits can meet
 

the requirement of speed, low noise and with accuracy. The following
 

paragraphs will discuss the basic aspects of several candidate ultra
 

high speed A/D converter techniques which can operate at these speeds, i.e.
 

o Cyclic conversion encoder
 

o Phase-plane conversion encoding
 

o Threshold encoders
 

o Scanning tube-encoder
 

o Delta modulation method of feedback encoding (redundancy removal).
 

Delta modulation technology is particularly suited to the transmission of
 

high speed sensor data, and a computer analysis will be provided at the
 

end of this section.
 

4.2.1 Folding Converter A/D Conversion
 

In 1956, B. D. Smith published a novel analog-to-digital conversion method
 

which has been adopted for use in many modern systems including the Bell
 

Telephone 224 Megabit PCM system.
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This system employs the "folding" or cyclic technique employing a series of
 

identical stages as shown in Fig. 4-1a. Each stage provides one digit of
 

the binary code corresponding to the sample. Each stage has the same
 

inverted 'T ' input-output characteristic such that it has a slope of +2 for
 

negative input signals and a slope of -2 for positive input signals. The
 

coder operates directly in the Gray code. The digits are obtained from each
 

stage; if the input to a stage is less than half the maximum amplitude, the
 

digital output is zero; if it is greater than half the maximum, then the
 

digit output is one. As each stage develops its output, it yields a "residue"
 

which is used to drive the next stage. The digit outputs of each of the
 

stages are passed through delay lines to provide the serial bit stream. (Fig.4-1b)
 

If, in the circuit of Fig. 4-la, the operation of Stage 1 is such that
 

if E1 > 0
$1 

(0 if E1 < 0
 

then the residue output, E2, to Stage 2 is related to input voltage, E1 by
 

E2 =ref - 21E 11


where Eref is a dc reference voltage which is related to the bit being deter­

mined. In a pure binary system, for example, the reference voltage would 

refer to the 2° , 21, 22 , . . . , 2n levels, respectively. 

4.2.1.1 Fisher High Speed Folding Encoder. R. E. Fisher of Bell Telephone
 

has developed a 1200-megabit-per-second analog-to-digital converter which
 

provides 5-bit coding and which utilizes microwave equivalents of low­

frequency logic circuits, using the folding techniques described in connec­

tion with Fig. 4-la using phase domain technology which is discussed in the
 

following paragraphs.
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Stage 1 of this circuit is shown in Fig.4-2; it was designed to sample and
 

hold at a 240-MHz rate and encode the sampled analog signal into 5-bit words
 

(32 quantization levels) in the Gray code. This sample and hold rate,
 

combined with 5-bit accuracy makes such a system attractive for the trans­

mission of high speed image data.
 

In this circuit, the baseband analog signal amplitude is replaced by the
 

amplitude of a 9-GHz microwave carrier while the baseband signal polarity
 

is described by microwave carrier phase.
 

In the circuit of Fig. 4-2, the balanced modulator output, E2 , has either
 

T1phase or zero phase. If E2 has TIphase,. then the stage must emit -E in
 

the form of the digit 1 and shift E3 to zero phase. On the other hand, if
 

E2 has zero phase, the system must emit E in the form of a digit zero and
 

maintain E3 at zero phase. A CW carrier of correct magnitude and phase
 

(Eref) is added to E3 to provide the output signal to drive the next stage.
 
The implementation of the phase domain will be discussed in the next para­

graphs.
 

4.2.2 Phase Domain Encoders
 

Phase-domain encoding is capable of highest speeds, using balanced-modulator
 

techniques introduced in the Fisher A/D converter of Fig. 4-2. Phase domain
 

encoding, using the phase-locked oscillator was the first approach considered
 

for high-speed computers. The phase-locked oscillator, consists of a tank
 

circuit which is forced to provide parametric oscillations by a pump operat­

ing at twice pump frequency. Sustained oscillations can occur in either of
 

two possible phases 180 apart. The circuit can be caused to change phase
 

states by 'Locking" the oscillations to the phase state of a locking signal.
 

Computer logic systems using phase-locked oscillators were built in 1958-1959
 

using clock rates above one gigahertz, performing logic at rates as high as
 

1.85 GHz. However, the advent of the tunnel diode and the inherent complexity
 

of a PLO computer caused interest in this technology to wane until the present
 

era of high-speed bit stream requirements.
 

4-4
 

SPACE & RE-ENTRY SYSTEMS DIVISiON 
PIIILCO C* Philco-Ford Corporation 



20dB 

+10 dfm 
L.O. C 

COS 

(oct+ 

t tip 

m 
9) 

E =ANALOGSIG. 

20 LOG E2 

< -nai 
zm__ 

o n 

m 
0PHAE 

0 <I 

60 Fig. 4-2. 

AAMPLIFIR 

40d4 LIMITER 

ELo-COS (WCt+ 

SYNC 
OET 

a) 

ED 

-­" 
S4IFMW 

) 

El 

FLRREFflENtE 

ZtED) 

BASEBAND 

PHA S Ep
SHIFTER 

PHASE DIGIT OU T 

Eref 

VOLTAGE 

t " 
P D 

E2 3 OUTPUT 

dBm 

0 
WPHASE 

DICISION AT-20 LOG 16 -24 d~m 

CIRCULATOR 

dBm 

Em E1 

dm 

n 

Co 

Five-bit microwave coder, schematic diagram of stage 1. 

Details of One Stage of the Fisher Microwave Analog/Digital 
Converter to Gray Code Including Microwave Circuit Equivalent 
of One Stage for 5-bit 1200 Megabit Transmission 



TR-DA2180
 

Many basic limitations to speed can be removed by at least an order of magni­

tude by transformation of the voltage variable into the phase domain.
 

By operating the phase domain, it is no longer necessary to amplify, rectify,
 

compare, or otherwise operate upon the amplitude of a voltage analog signal.
 

Instead, these operations are performed upon the phase of a carrier, where
 

the amplitude of the carrier is not of primary importance but need only be
 

sufficiently greater than noise.
 

All analog-to-digital converters generate a binary code or some other code
 

made up of a sequence of only two digit value. By way of definition, the
 

term "binary" will refer to-the natura-l binary number system specified by
 

the series:
 

N BN- n = 0, 1, 2,...., N
E n 
n-0
 

Let the analog variable, f(t), be represented by a proportional phase vari­
2
able, 9 (t), having the range 0 ! Ao < r. Let en = 2n0 (mod 2,r) where
 

n - 0, 1, 2.--. Then the (n+l)th most significant bit, Bn, is determined
 

by the formula:
 

B 0 for 0 :g 0 < r 

B = I for r !5 < 2r n n 

Given any-o, one can find the corresponding.Bn from the transfer and deci­

sion functions illustrated in Fig. 4-3. The transfer function has a slope
 

of two and is modulu - 217. The decision function has the value zero or one,
 

depending upon en. The relationship between 0, the input phase variable,
 
and the resulting sequence of binary bits is given by the formula:
 

N
 

2T N -
B 2N n radians

0 -- EN+ n2 na0
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twice the phase variation. This is shown in the following derivation of
 
th
 

the output of the n encoder stage.
 

Let the input to the first encoding stage be e (t) - sin(wt + P ). If we 

take the second harmonic of e (t) and mix it with the third harmonic, 

cos 3tut, of the carrier by means of a balanced modulator, we have: 

sin(2wt + 20) cos 3wt = - sin(wt - 200) + k sin(5wt + 2 0) 

The second of the modulation products is filtered out. The first is ampli­

fied by minus two and becomes the input to the second encoding stage:
 

e1 (t) - sin(wDt - 2P )
 

Similary, we have as an input to the third encoding stage:
 

e2(t) - sin(wt + 490o
 

th
 
Therefore the output of the n encoding stage is
 

en(t) = sinFwt + (-2n 
e 1
 

or, since we have defined =2n
n 


e (t) - sinfwt + (-1)n n]
 

It will be noticed that the sign of the phase reverses in each succeeding
 

stage. In the stages of odd n this results in merely generating the com­

pliment of B •
 
n 

The first encoder stage produces the most significant bit, Bo0, by comparing
 

the phase of the phase modulated signal, sin(wt + 0),
 

where n = 0, 1, 2, "', N 

and N+l = number of bits/word. 
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The encoding scheme described in the preceding section can be implemented
 

in the following manner. The binary number is derived by feeding the analog
 

signal, f(t), to a voltage-to-phase converter, or phase modulator, the
 

output of which is the phase modulated signal, sin[wt + R (t)], whose phase,
 

0 (t), compared with a reference phase, 8, of the carrier, sin(ot + 6),
 

varies in proportion to the applied input voltage, f(t). The phase modulated
 

output is sensed by a phase comparator which compares the phase, e (t), of
 

the modulated signal with a reference phase, 6, of the carrier. In all the
 

following definitions of phase relationships we shall assume 8 - 0. The
 

output of the phase comparator is one of two voltage levels representing a
 

one or zero, indicating whether the phase of the modulated signal was greater
 

or less than the reference phase. By this means, the first most signifi­

.cant bit, Bo, in the natural binary system is obtained.
 

Successively lesser significant bits are obtained from cascaded encoding
 

stages having the transfer and decision functions illustrated in Fig. 4-3/
 

The transfer function is implemented as follows: The phase modulated signal
 

is applied to a doubler circuit which multiplies the frequency and phase by
 

a factor of two. The multiplied signal is then mixed with the third har­

monic of the carrier and the difference frequency obtained by filtering.
 

The output of the filter is amplified by minus two. The output of the ampli­

fier, then, is a phase modulated signal having the same amplitude as the
 

input to the encoding stage but having with the phase of the carrier having
 

a fixed phase shift, p. This comparison is easily accomplished by first
 

(a), generating a narrow pulse, u'(sin wt + 90) - u(9 ) at the time of the 

positive going zero crossing of the phase modulated signal, and (b), generat­

ing the function, F'(sin wt + T) - F(p). F(cp) is a simple limiting operation 

defined as: 

o


F(p)- 0 for sin(wt +c)< 0
 

P()= 1 for sin(wt +-cp) 2 0 
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Now, if we letcp = r, then B will be obtained at the output of an "and" 

gate having the inputs u(An) and F(r). In general, Bn will be obtained
 

at the output of an "and" gate having the inputs u(n) and F(r). Fig. 4-4
 

is a waveform diagram showing the relationship between u(pn) and F(r).
 

A block diagram of three cascaded encoding stages corresponding to the imple­

mentation described in this section is shown in Fig. 4-5.
 

4.2.3 Fast Shift Register Encoders
 

Fast shift registers can be used for storage or encoding using the shift
 

register whose basic circuit at microwave frequencies is a-series of flip­

flops triggered by a clock or timing circuit. This unit encodes the output
 

of the quantizer..
 

A series of bits is applied to the input in synchronization with a clock
 

which actuates all flip-flops simultaneously so that a given series of
 

bits moves or progresses through the shift register and occupies the shift
 

register - one bit per flip-flop at a rate determined by the clock. Once
 

the shift register is occupied, the serial input is removed. Application
 

of the clock again to the flip-flop will read out the stored bits as a
 

serial bit stream output. If during the readout the clock is very fast,
 

the bit stream will comprise a series of bit bursts. For gigahertz data
 

rates, the shift register should be capable of moving bits from flip-flop
 

to flip-flop in time intervals equal to or less than a nanosecond; the
 

serial bit stream read-in can be at a much lower rate.
 

Present shift registers can now shift state data from stage to stage at
 

rates up to one gigahertz using, for example, tunnel diode shift registers
 

shown in Fig. 4-6 (due to B. Sear)*or using emitter coupled logic with
 

clock routing, interconnect and bit stream distribution circuits designed to
 

accommodate these high speeds.
 

*B. Sear, "Research for High-Speed Analog-to-Digital Conversion Techniques,"
 

WPAFB Technical Documentary Report, No. AL TDR-64-154.
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Diffuse threshold encoders and decoders can use ultra fast shift registers
 

to perform at very high data rates.
 

The threshold decoder Fig. 4-7 has been built which can correct up to
 

two random errors or an error burst of up to 8 bits received in a block
 

of 11 bits. Rate one-half convolutional encoding is employed; that is,
 

a parity bit is generated by the convolutional encoder and interleaved
 

between each data bit.
 

The convolutional encoder-sequential decoder has been tested at the U.S.
 

Army SATCOM Agency with a QPSK modem and has provided gains in error perfor­
-
mance of from 4.3 to 5-.2- dB over straight QFSK at a Pe of 10 5 . Coding
 

gain is primarily a function of decoder memory length and search depth.
 

4.2.4 Cathode-ray-tube A/D Converters
 

The cathode-ray-tube (CRT) converter was yesterday's answer to high-speed
 

encoding. Today, with high-speed integrated circuits and other high-speed
 

semiconductor components, much higher conversion speeds are obtainable at
 

smaller size, weight and cost.
 

Essentially, the CRT A/D converter is a special type of cathode ray tube,
 

in which an aperture and a segmented output plate have been added to the
 

conventional electron gun and deflection plates (Fig. 4-8). The openings
 

in the aperture plate are arranged in several columns, with each column
 

representing one binary digit. The length of the apertures is one increment
 
0 1

high for the least-significant bit, 2 , two increments high for 2 , four for 

2 2, etc. The openings in the aperture plate thus conform to a standard binary 

pattern. 

With new advances in high speed scanning-beam technology, as for example, used
 

in the fastest vidicons, the potentialities of the fast-scanned CRT A/D
 

converter bear careful consideration as a candidate for space applications;
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to take advantage of the inherent circuit simplicity involved, and to take
 

advantage of the excellent reliability and long life being demonstrated in
 

space by the vidicons of Tiros, Nimbus, and other sensor satellites.
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APERTURE PLATE 23 

X-DEFLECTION PLATES ' 22. 

Y DEFLECTION ' 

Figure 4-8. Cathode-Ray Tube A/D Converter 
produces a digital output as the
 
electron beam is moved across the
 
aperture plate by the analog voltage
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4.3 Redundancy-Removal Encoders
 

It is the nature of all practical sensors that their output voltage does
 

not change from minimum to maximum response within one sample interval,
 

provided, of course, that the sampling rate is equal to or faster than the
 

Nyquist rate. Another way of saying this is that adjacent sample values are
 

dependent. It, therefore, seems appropriate to take advantage of this
 

dependence in devising an A-to-D conversion technique. Note that conven­

tional PCM treats each sample value independently.
 

There are two basic methods for taking advantage of sample-to-sample depen­

dence and thus removing redundancy from the coded data. The -firtmethod
 

is commonly referred to as data compression. It involves digital processing
 

of a P64 data stream according to some algorithm that uses past data samples
 

to predict future sample values and transmits only that data necessary to
 

update the prediction. There are many types of data compression ranging
 

from relatively simple run length encoding to more complex polynomial pre­

diction algorithms. Data compression techniques will not be explored further
 

here because of the hardware complexity normally required and its doubtful
 

value in adequately handling complex scene imagery.
 

The second basic method for redundancy removal is known as feedback encoding.
 

Two well known types of feedback encoding are differential PCM* and delta
 

modulation. Feedback encoding methods compare each sample value against
 

some form of reference signal derived from previous samples. The resultant
 

error voltage is quantized, digitally encoded and transmitted. Thus, only
 

changes from sample to sample are transmitted.
 

Since only changes are transmitted the precision of quantization can be
 

reduced. Thus, for the same sampling rate, two-bit precision in the feed­

back encoder will permit a 3-to-l reduction in required data rate relative
 

to 6-bit PCM for typical imagery-type sensors. Another advantage of feed­

back encoders is that they are not as dependent upon sensor dynamic range
 

*J. B. O'Neal, "Predictive Quantizing Systems for the Transmission of
 

Television Signals," BSTJ, May-June, 1966.
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variations as are PCM encoders. When PCM is used, the quantization levels
 

must be chosen to accommodate the maximum expected signal values, and
 

accuracy and/or data rate are often wasted on seldom reached peak signal
 

levels. Feedback encoding, on the other hand, transmits only changes* in.
 

signal level and is not constrained by maximum signal level.
 

Considerable work has been performed at Philco-Ford with the transmission
 

of imagery using delta modulation. Laser scanner and vidicon signals have
 

been handled using two-bit delta modulation. The parameters of the delta
 

modulator were optimized for the transmission of high resolution aerial
 

reconnaissance pictures with excellent results. Other sensors and other
 

data applications may require a different feedbackencoder configuration
 

and optimization of parameters. For example, weather photographs require
 

accurate edge response and fine gray scale resolution for the analysis of
 

cloud motion and density.
 

A major advantage of delta modulation when compared to low precision PCM
 

such as 3- or 4-bit PCM is that contouring** is not dominant as is the case
 

for both 3- and 4-bit PCM. Pseudo-noise coding can be used with 3- or 4-bit
 

PCM to dither the analog level and eliminate contouring. However, dither
 

does not decrease the variance of quantizing noise.*** Four bit PCM with
 

*Typical rms prediction error ae in signal level when using a 2-sample
 
=
linear predictor are from 10 log a/a 7 to 12 dB below that of the
 

a 

input signal for typical scenes, and they have a probability density
 
which is approximately Laplacian. This differential quantization pro­
vides an output signal-to-noise ratio 7 to 12 dB higher than a PCM quan­
tizer using no feedback. The output signal-to-noise ratio of the n bit
 
predictive quantizer is
 

2
 
2 (2n/3)2 (a/e)
SNRou t 

**Delta modulation noise is exhibited in 4 forms: grainy noise, slope
 
overload, contouring, and edge busyness. The fact that quantizing error
 
is split into 4 visually distinguishable categories suggests that a given
 
rms quantizing noise is subjectively less objectionable than the same
 
rms noise in PCM. See J. B. O'Neal, BSTJ, January, 1966.
 

***L. Schuchman, "Dither Signalsand Their Effect on Quantizing Noise," IEEE
 
Trans. Comm. Technology, December, 1964.
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pseudo-noise at twice the bit rate is thus inferior or equal to 2-bit delta
 

modulation when optimally matched to the input data.*
 

4.3.1 Introduction to Delta Modulation. Delta modulation is a data encoding
 

technique for the imagery system which has the required high precision of five
 

or six bit PCM but which makes use of the inherent redundancy or limited
 

slew rate of the information. Delta modulation has been used by Philco-Ford
 

in the "Compass Link" program and the "Quick-Look" demonstrations and has
 

resulted in encoding efficiency three times better than six bit PCM producing
 

output images which cannot be discriminated from images where sensor and re­

corder are connected back-to-back in the analog mode. In addition, delta
 

modulation can be made to operate in noisy environments producing error rates
 
" 
as poor as 10 and can produce image information of useful content although
 

of degraded quality.
 

Delta modulation is essentially a type of analog-to-digital conversion
 

technique in which the changes in the analog signal input in succeeding
 

sample intervals are transmitted. In the delta modulator, the instantaneous
 

analog video input is compared at each digitizing sample time to determine
 

whether a potential on an analog integrator (which holds a value representing
 

the previous sample) should be incremented or decremented in order to reduce
 

the difference. The increments or decrements applied are discrete and are
 

determined by digitally quantizing the error difference with sometimes
 

one-bit, or more usually, with two-bit precision.
 

These bits are then transmitted to the delta demodulator where they are
 

utilized to produce a series of like charge increments (or decrements) which
 

are applied to a like integrator. Since the same pattern of charge incre­

ments is applied to similar integrators in both the delta modulator and
 

demodulator, the integrator signals track identically. By a suitable choice
 

of parameters, the error between the integrator voltages and the current
 

video input level can be kept small; thus, the video input is reproduced
 

accurately in the delta demodulator.
 

*Ref. O'Neal, op cit, Fig. 7.
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4.3.2 One-Bit Delta Modulation. The simplest delta modulator shown in
 

Fig. 4-9, employs only one-bit quantizing of the error between the integrator
 

and the analog input levels. Thus, a fixed quantity of potential is added
 

or subtracted during each sample time. This quantity then represents a
 

peak-to-peak hunting oscillation or noise. To keep this noise low,* the
 

potential step change may be reduced to a small value, e.g., 1/100 of the
 

maximum peak-to-peak analog level. However, the integrator would then re­

quire o00
and more samples to slew the entire dynamic range in response to
 

a video step, which is impractially'slow for most video systems. Thus, the
 

one-bit delta modulator is not most useful for video systems where a prac­

tical limit on sampling rate exists; multi-bit operation is shown in Fig.4-10.
 

A very simple type of delta modulator is shown in Fig. 44-1. This circuit
 

was producing video information at a 100 megabit rate in 1961.
 

*De Jager ("Delta Modulation," in Communication Theory, Butterworth Scientific
 
Publication, 1953) and Van de Weg (Quantizing Noise in a Single Integration
 
Delta Modulation System, Philips Research Report, 1953) have shown that the
 
output SNR for a n bit delta-modulator with a sinusoidal input of fm sampling
 
rate fa, and output bandwidth fo is 3 

SNR - (2n-l)2 (0.04) 
f 2f 
m 0 

Thus increasing sampling rate by 2 increases output SNR by 9 dB, whereas
 
increasing from 1 to 2 bit AM increases output SNR by 10 dB.
 

Band limited Gaussian noise of bandwidth f the corresponding ratio is
 

- 9(2n_1)2 f S3 
128T2 fm 

behavior in a similar manner with respect to n bits/sample and sampling
 
frequency fs"
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4.4 THE ACCURACY OF DELTA MODULATION
 

It was pointed out that a single-bit delta modulator cannot meet the
 

accuracy and transient recuirements simultaneously. Therefore,two-bit,
 

three-bit, and a four-bit delta modulator technique with exponentially
 

increasing quantization levels were investigated by simulation with a
 

digital computer.
 

The input signal used in the simulation is a ramp function which repre­

sents the output of the radiometer scanning a sharp black-to-white
 

transition. The sampling rate used in the simulation is representative
 

of actual link design. The sampling rate in the 2-bit delta modulator is
 

twice as high as the 4-bit delta modulator to make the output bit rate
 

constant.
 

The advantages of a 4-bit delta modulator over a 2-bit delta modulator 

will be clearly demonstrated as far as accuracy is concerned, with 3-bit 

delta modulator pioviding a: goodcompromise between peiformance and 

complexity. 

4.4.1 N-Bit Delta Modulator
 

In order to evaluate the response of an n-bit delta modulator to specific
 

input functions, a computer model of the encoder was developed. The
 

model shown in Figure 4-12 simulates 1, 2, 3 or 4-bit delta modulators
 

with the capability of adjusting the several significant parameters
 

in the loop.
 

The integrator has a time constant of N1 samples, while G and A are the 

gains on the quantizer output R and the integrator output Z, respectively. 

It can be shown that only the product AG need be varied to obtain the 

complete set of responses to the system. Thus, we may normalize by set­

ting A = 1 and vary just G. 
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Figure 4-12 Delta Modulator Model
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The quantizer is an M-bit exponential device, so that it has 2M quanti­

zation levels. In this case, we shall consider M - 2 and 4. The
 

quantity q is the minimum step size, which can be arbitrarily chosen.
 

The cuantizer's exponential character here is in contrast to the nuantizer
 

with uniform step size, where all the steps are of the same size, for the
 

ratio of each step to its predecessor is the quantity kept constant and is
 

larger than unity.
 

The choice of quantization levels is constrained by several factors, the
 

most critical being the choice of "break values"; i.e., the values of E
 

for which R changes levels, and the stability requirements. In this simu­

lation we have chosen to fix quantization levels and then pick those
 

values which yield optimum response.
 

4.4.1.1 The 2-Bit Delta Modulator. Consider a 2-bit delta modulator
 

having the characteristic shown in Figure 4-13. Assume an integrator time
 

constant NI = 10, and that the higher quantization level (Q2) is 8 times
 

the lower level, with the break values at E = +1(1). For some fixed gain
 

G, the quantity L (1) can be varied over a suitable range of values and
 

both 1MS error and mean error can be calculated over an appropriate set
 

of input step functions. From this calculation, we may choose that L(l)
 

that minimizes the RMS or mean error and repeat the same process but with
 

a variable G, and so forth, hopefully converging to some absolute minimum
 

error.
 

The computer program which accomplished this calculation used two sets of
 

computations, one using the minimum RMS error criterion, the other the
 

minimum error criterion. The inputs are all step functions which equal 0 at
 

t - 0 and thereafter equal S where S - 0, .25, .50, ..., 8.0. The results 
o o 

are shown in Table 4-2.
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Figure. 4-13 Typical 2-Bit Exponential Quantizer Characteristic (4 levels).
 
An infinite time constant for the integrator is assumed.
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G Minimum Error
 

Case 1 (minimum RMS error): 2.8 0.7 1.51 (RMS)
 

Case 2 (minimum mean error): 3.1 1.0 0.62 (mean)
 

TABLE 4-1 Optimized Values for L(l), G for 2-Bit Delta Modulator
 

It is observed that at least for the values computed, the two types of
 

errors do not have their minima at the same parameter values.
 

The response of 2-bit delta modulators with these parameters to a ramp
 

function are shown in Figure 4-14. It is clear that the response of
 

Case 2 is better - the mean error being about half those in Case 1.
 

4.4.1.2 The 4-Bit Delta Modulator. As has been observed from other 

sample runs, when the integrator time constant N < 20 the response to a 

typical step function is unacceptable, while N1 > 200 yields an extremely 

good response. Such-a large figure is unacceptable for purposes of 

smoothing out bits that are erroneously transmitted. In the 4-bit case, 

therefore, a compromise figure N = 50 samples is used. Also assume a 

minimum step size q = 1. 

With a quantizer characteristic as given in Figure 4-15, a program was
 

constructed to count the number of times the cuantized error R was = + 1
 

for an entire set of step functions. These functions equal 0 initially and
 

equal S thereafter, where So . 128, -126, ..., 0.2, ..., 126, 128, from the
 

2nd through the 41st samples. The maximum count is therefore 40 x 129 or
 

5,160. The result is shown in Table 4-2.
 

Gain G No. Times R = 1 

0.5 1,398
 
0.7 2,087
 
0.9 2,942
 
1.1 3,336
 
1.3 3,682
 
1.5 3,802
 
1.7 3,467
 
1.9 2,144
 

TABLE 4-2 4-Bit Delta Modulator Response for A=l, N = 50 
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The best performance occurs at G = 1.5, which figure is used in an optimi­

zation of the quantizer characteristic. The result of this effort yielded
 

the following values as an optimum set of break values with the levels.
 

2. 2.7, 9, 21, 40, 77, 126.
 

= 
As a check, the number of times JRj 1 was computed using this configura­

tion, while G was varied from 1 through 2, inclusive. Again G seemed to
 

be optimum at 1.5.
 

One response of the optimized system to a ramp of height 256 and a ramp
 

portion with width 1.25 times the sampling period,is shown in Figure 4-16.
 

4.4.1.3 Optimization of 3-Bit Delta Modulator. 3-bit delta modulation is
 

the best compromise between accuracy and circuit complexity, and is given
 

the following detailed analysis:
 

A computer program ("DM3") was written to calculate the following 
quantities: 

32 40 

AMNER = 100 =i= /2 E ( J S° B I B2 ,B 3 
G) (35x32) 

S0=t12 J-60 23 

32 5 ] 

RMS = 100 2 , (j,S ,BI,B,B 3 ,G) //(5x32 
j =1 

where
 

S /2 = height of step function (=.5,l.O,l.5,...,16)
 
E(j,SoBB,,Bol 2,B3,G) = error of delta modulator in jth sample when input is
 

step function of height So/2, with break-values
 

B1B2',B3 gain G.
 

RMS is a measure of how well the initial rise in the step functions is
 

approximated.
 

AMNER is a measure of how well the "steady state" portion is approximated.
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A quantizer characteristic with levels 1, 4, 8, 16 is assumed. The division by
 

S /2 in the above sums is a normalization procedure, so that multiplication
 

by 100 yields a percentage error type figure. Figures 4-17 and 4-18
 

display two interesting runs of DM3.
 

To assist visualization and categorization, the concept of the "median
 

slope" of a quantizer characteristic is introduced. This cuantity is
 

roughly a measure of the steepness of the characteristic (the median slope
 

of the uniform step quantizer characteristic is 1). For a typical
 

characteristic, let I be a straight line drawn through the origin, cutting
 

the levels of the characteristic-into segments. Then the median slope of
 

the characteristic is defined as the slope of that I for which
 

FI2+ + = G24G3+G4 

Figure 4-17 is a plot of the most interesting part of the run for the case
 

G=1.0 (no gain). In this run, each case for which the quantizer errorin
 

the 21st sample (for any S ) is not +1 is defined as unstable and is dis­o 

carded for optimization purposes. The ouantities plotted are AMNER, the
 

mean % error for the 32 step functions from the 6th to 40th samples,
 

inclusive, and the median slope. In general the mean % error tends to
 

increase with decreasing median slope and with an increasing value of BI,
 

the smallest break value, for BI L 3. The minimum mean % error, 2.6%,
 

was found for the case B=3, B2=7 B3=11.
, 


Figure 4-18 results from a much more extensive run, for G=0.1, 0.2,
 

2.0 and the same break values as above. To concentrate on only the most
 

interesting figures, the output was restricted to those cases for which
 

AMNER S 2.6%. Table 4-3 is a count of the total number of such cases for
 

each value of G.
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G 	 Total No. Cases for
 
which AMNER 2.6%
 

0.1 0
 
0.2 0
 
0.3 21
 
0.4 67
 
0.5 207
 
0.6 91
 
0.7 9
 
0.8 0
 
0.9 0
 
1.0 9
 
1.1 0
 

2.0 0
 

TABLE 4-3 Number of cases for which AMNER 2.6% vs. G.
 

4.5 	QUANTIZING NOISE IN A/D CONVERSION
 

Quantizing is a nonlinear operation which takes an input signal *(t) of
 

arbitrary amplitude distribution and produces an output y(t) whose pos­

sible amplitude is, at most, a countably infinite number of values. The
 

quantizer is used in any system where an analog-to-digital conversion is
 

required. If the input into the quantizer is considered to be an ergodic
 

stochastic process, a knowledge of the statistics of the cuantizer output
 

can be used to minimize the loss of information inherent in the quantizing
 

operation. B. Widrow has shown that, if interest is in just first- and
 

second-order statistics, there are some random functions which, when
 

passed through a quantizer, do not lose first-and second-order statistical
 

information. In such cases, the quantizer operation can be considered
 

as a 	summing operation of the signal and an independent noise source.
 

Ergoticity is a property of a stochastic process which implies that the
 

ensemble statistics of the process will become equal to the time averaged
 

statistics of a single sample function of the stbchastic process as the
 

time-averaging period approaches infinity. This property allows the
 

1 	B. Widrow, "Statistical Analysis of Amplitude-Quantized Sample Data
 
Systems", Applications and Industry, AIEE; January, 1961.
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statistical analysis of ergodic stochastic processes to be carried out
 

with respect to ensemble statistics so that the statistical behavior of
 

a time series can be predicted. However, when the time-averaging period
 

is finite, errors can occur since the equality between ensemble statistics
 

and time-averaged statistics is only true as a limiting relationship. It,
 

therefore, is of interest to see how much information is lost due to
 

quantization when the time-averaging period is finite.
 

It is possible to minimize the loss of statistical information due to
 

quantization for an arbitrary information signal when the quantized signal
 

is observed over a finite interval of time by adding a second signal (known
 

as a dither signal) before the quantizer and subtracting the dither signal
 

after the cuantizer. The function of the dither signal is to change the
 

statistical relationship between the information signal and the quantizer
 

output so that the quantizer operation can be considered a summing opera­

tion of the input signal and a statistically known and independent noise
 

source. However, the case of the use of a dither signal is not considered
 

further here.
 

4.5.1 Quantizer Representation
 

In general, random signals, when passed through a quantizer, lose first­

and second-order statistical information. This loss is a function of the
 

mean, variance, and amplitude range for a number of random inputs.
 

Symbolically, a quantizer may be represented as in Figure 4-19. In
 

Figure 4-20 a typical input-output quantizer characteristic is drawn for
 

a uniform quantizer. There are k negative quantizing levels and a total
 

of X quantizing levels (this includes the zero level). It is assumed
 

that saturation cannot occur.
 

The quantizing noise, as a function of the signal x, has simply a saw­

tooth characteristic as shown in Figure 4-21. (This assumes the input­

output characteristic of Figure 4-20.)
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iinput output 

Fig.4-19 Block diagram of quantizer.
 

output
 

y 
(M-k-I)q I ­

/ 
2q.
 

/ 

/q­

_______________________ /Input
-5q/2-Jq/2- /2Z 2 3j2 5q/2x 

//
 -q
 

-2q 

-- -- - - - - - -kq
 

Fig.4-20 Quantizer input-output characteristic.
 

o. n(x) 

Fig.4-21 Quantizer noise as a function of the input.
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Using Figure 4-20 as the quantizer model, the second-order statistics of
 

the output of the cuantizer can be described in the following manner.
 

E[y(tl)Y(t2)] El [n(tl) - X(tI)] [n(t 2 ) + x(t 2)]1 

Widrow has shown that, if x(t) has a characteristic density function Wx(u)
 

which satisfies the following criteria,
 

W (u) = 0 for all u> , (1)
S q 

then
 

E[x(t,)n (t2)] 0. 

There are not many random signals that can satisfy this criteria, but
 

Widrow has shown that this is a reasonable approximation for many import­

ant random signals.
 

To illustrate the validity of the approximation, an x with a gaussian
 

probability density function with zero mean yields
 

E[n(ti)x(tD] 0 

if the variance of the gaussian distribution is greater than q.
 

Furthermore, for gaussian distributed input signals, the autocorrelation
 

function of the noise is
 
2
 

E'1,n~jq/12 ti t.t 


(0 t ' t. 

even when the correlation coefficient of the input signal is moderately
 

close to one.
 

There is a temptation at this point to consider the quantizer as a summa­

tion of an independent white noise signal and an information signal when
 

interest is only in the first- and second-order statistics of the output.
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In all physical problems, one deals with the observation of a random time
 

function observed over a finite time interval T. The choice of statistics
 

that adequately describe the physical situation is not always simple.
 

The equivalence of ensemble statistics and the time-averaged statistics
 

for an ergodic process is strictly valid when the averaging interval T
 

approaches infinity. If the time interval is finite and the process is
 

ergodic, the use of such statistics may lead to erroneous conclusions.
 

We shall, therefore, treat the finite time average of n(tk)x(tk) as a
 

random variable and define it as
 

k 

M(tk) = g zn(ti)x(ti. 

i-l
 

If the quantizer is to be accurately modeled by a linear operation, one
 

recuires at least the following:
 

E M(tk) =0 (2)
 

12
E(x2) q­

E[M(tk)2]1= - (3)
 

where IE(x 2 )q2/12/k is the variance of the sample mean when n(tk) and 

X(tk) are truly independent and n(t) has a white spectral density.
 

For purposes of comparison, the following random variable is defined.
 

Let
 
k
 

G(tk) = rj ng(ti)x(ti)
 

i=l
 

where n (tk) and x(tk) are independent random variables. n (t ) is 

uniformly distributed with
 

II 2 

and the samples of ng(tk) are independent of one another.
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We now wish to compare the statistics of m(tk) with those of G(tk).
 

4
Table 4 - summarizes results derived for an input signal which either
 

(1) b "bas agssian probability density distribution. It can
sdtisfib'l 


be seen that, if the input samples are independent, the linear model is 

valiC- However','i -x'(t)" s"m-silt'a-ined' e-s~entiailly constanit over the_ 

a summer
attnghestLer to errors.averagitrig' period 

' '..' 4 " ? ",,' - 9' 4 1,7fo'tJ,'3 5 '.t=d.,.3:nrsv¢,' t-:,. io" "'rc'TABLE'4 

Comparison of the first- and second-order statistics
 

, o~ (t -',and G'(t)'tihen the charadteristic function 
-'- -


of xkt) satisAes (1) or has a-gau'ssia'ri:shape;.* tf 'tb'"
 

;__ HE" " - E[ 2 2 (x )EJ-- kx E ) 2E t


-- E(x) - 21. 	Independent 

Samples k 12 k
 

2. 	 x(tk = x hnl?.StE (iy,!01 -L 2 

for all k samples. 

*If x(t) is a gaussian random 'variable with mean m and variance o,
 

then the entries in the tablear'e'valid ,if,
 

2
 
2o, ' 3 
 v 

TABLE 4-5 
-


a:.when;s,-tuniforml'y kd-strbib tedtz e ,o',LEV1luat-ion oXoEM(t 

random variable with mean m and variance * 
3 "
 

M ( ."':.'-)..,." .... -E M(t'w : 

.o o2 

0 q odd integer + ­

+12 
+ 2even integer
0 q 


even 	 si- + 1)q+2 24--positive - rive 

integer 9 it. 1 Z8 

T '~int. 
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TABLE 4-6 

Evaluation of E[M(tk) when f(x) e9 xrn) 

m ILM tk 
less greater
 

than than
 

0 2._e 0.22 +021 02 
q 7 2 

0 qI 
40.164 q2 +0.149 q2 

m P / CL E[M(tk)] 

1 even 1 1 2 1 0z 

? 41 integereven Eq1 1l 2 &±i 
+ integer flq -- 4L 

Many signals of importance cannot be approximated as gaussian random var­

iables. For such signals, a linear analysis of the quantizer, even when
 

the samples are independent, may not be valid. Tables 4-5 and 4-6 sum­

marize 4 results which illustrate the nonlinearity of the quantization opera­

tion for two density functions. When the probability density of the data is
 

f
{. 1x mxcx cm + 

0 Otherwise
 

Then EIM(tk))varies as a function of the mean m and the base 2 , as listed 

in Table 4-5. There exist large values of 5 which can make the character­
istic function of f(x) come arbitrarily close to satisfying (1) and yet the 

value of E(M(tk)j does not approach zero. 

In Table 4-6 the density function studied is taken as
 

f x 'f -COx-m) 
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Here, again, we have a random input into the quantizer whose mean and
 

variance affect the value of E M(tk)
 

4.5.2 	 Linearization of the Quantizer and the Recovery of the Uncuantized
 

Signal Statistics
 

If the time-averaging period to observe a cuantized random signal can be
 

considered infinite, then conditions which allow the cuantizer to be modeled
 

by a summer fed by additive noise also allow the complete recovery of the
 

signal statistical information. More specifically, an infinite level
 

quantizer can be considered linear if the information signal is either a
 

gaussian distributed random variable or has a characteristic function which
 

has the bandlimited property.
 

If the 	time-averaging period to observe a quantized random signal cannot
 

be considered infinite, then conditions which allow the quantizer to be
 

considered linear minimize the loss of information due to cuantization.
 

4.5.3 	Linearization of the Quantizer and the Reconstruction of the
 

Unquantized Information Signal. - A Heuristic Discussion
 

Quantization without the use of a dither signal is an operation that
 

always produces the same noise value whenever the input signal is a given
 

amplitude. Hence, whenever the input signal has some waveform structure,
 

there is a corresponding waveform structure to the noise.
 

If the input is considered as a random signal represented by random samples,
 

then strongly correlated samples observed in an interval T imply that the
 

filtered and continuous waveform represented by these samples has a simple
 

waveform structure. One would characterize such a waveform with words
 

such as; smooth, slowly varying, and predictable. On the other hand, if
 

the samples are independent, then the continuous waveform represented by
 

these samples has a complex waveform and the resulting quantized output
 

will have a complex waveform.
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Section 5
 

THEORY OF QUADRIPHASE MODULATION
 

5.1 PHASE MODULATION TECHNIQUES FOR HIGH SPEED DIGITAL DATA
 

For digital bit stream data rates up to 5 Mbps, many modulation techniques
 

are available, to provide both the modulated RF carrier which represents
 

the bit stream and also demodulate the bit stream from the modulated
 

carrier. -

At the data rates of 40 to 400 Mbps which are being addressed in this
 

study phase-shift-keying techniques conserve bandwidth and provide carrier
 

reconstruction at the receiver which eliminates the need of coherence or
 

the transmission of modulation-synchronization information.
 

This section will deal with the theory of quadriphase modulation and
 

demodulation and include effects of phase unbalance, differential encoding
 

and decoding and the problems associated with the reception of quadriphase
 

modulated carriers by a coherent (phase-lock-oscillator) receiver in the
 

presence of noise and phase ambiguity. In effect, this section provides
 

a theoretical basis of Section 5 of Volume 1.
 

Special mention is made of contributions by Dr. D. T. Magill who developed
 

this theory prior to this study in a Philco Ford Technical Memo #135.
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A quadriphase modulator is essentially two biphase modulators in phase
 

quadrature.
 

5.2 BASIC QUADRIPHASE COMMUNICATION SYSTEM THEORY
 

A quadriphase signal is a phase modulated signal such that it may have one
 

of four possible phase positions (illustrated in Fig.5-1 ) for the duration
 

of two input binary digits. Thus, 1082 4 2 bits are carried by the
 

carrier phase angle. A quadriphase signal may be written as
 

St cos [W t + e(t) ( 7 ) + e)
 

where e(t) is either 0, 1, 2, or 3 (i.e., modulo 4) for the duration of
 

two input binary symbols or one input quarternary symbol. Figure 5-2 presents
 

a possible truth table relating e to two binary input streams, x and y,
 

respectively.
 

5.2.1 Advantages of Quadriphase Signalling
 

Quadriphase signalling when detected by a coherent matched-filter (or
 

correlation) detector in a gaussian noise environment yields the minimum
 

theoretical binary error rate.* Thus, quadriphase offers excellent energy
 

efficiency. Furthermore, quadriphase signalling has twice the bandwidth
 

efficiency of ordinary biphase signalling, i.e., phase-reversal keying.
 

This well-known fact may readily be established by considering a quadri­

phase signal as the resultant of two orthogonal biphase signals. Orthogo­

nality is achieved since the sine and cosine functions are orthogonal to
 

each other. Thus, in some sense quadriphase represents phase-division
 

multiplexing (PDM) of two binary digit streams rather than the more con­

-ventional approaches of frequency-division multiplex (FDM) or time-division
 

multiplex (TDM).
 

*See Section III.
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e=l
 

0 1 
Ie2 	 e=0 


0 0 3 

1 1 2 

e=3 

Fig.5-1. Quadri-phase phasor diagram Fig.5-2 	Quarternary truth table
 
for two inputs (binary)
 

--	 Baseband
 

Digital 

_
V0 LF
received 

signal ~Basebandde 	 a
 

+ Output
X_LFMatched 

-- ' Filter 	 Stream
 

Quasi-Coherent Detector Differential
 
Demodulator Decoder
 

Fig-5-3 	 Quasi-coherent demodulator and differential
 
decoder approach for bi-phase signals.
 

receved
bitdurtionMatahedOutput
signal RF delay line XFilter Sra
 
FilterStream
 

Differential Demodulator Detector
 

Fig 5-4 	Differential demodulation and detection approach
 
for bi-phase signals.
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5.2.2 Problems with Quadriphase
 

The major difficulty with quadriphase signalling is the resolution of phase 

ambiguities of n/2 radians (note that 4 x T/2 - 2r radians). This situation 

is analogous to that of ordinary anti-podal biphase which has phase ambi­

guities of n radians (note that 2 x Tr 2 ). An alternate statement 

(equally valid) of quadriphase ambiguities is that there exists the ordi­

nary sign ambiguity on both the inphase (I) and quadrature (Q) channels 

plus an ambiguity as to which is the I channel and which is the Q channel. 

Conventional anti-podal biphase modulation avoids the sign ambiguity by
 

employing binary differential encoding. Thus, it is desired ta find the
 

quarternary differential encoding analog.
 

5.2.3 Two Fundamental Approaches to Multi-Phase Detection
 

There are two fundamentally different approaches to multi-phase detection.
 

The first, and superior approach (E/N ) derives a quasi-coherent reference
 

from the received signal, uses the quasi-coherent reference to demodulate
 

(to baseband) the received signal, optimally detects the baseband signal(s),
 

e.g., in matched filters, and finally logically decodes the resultant bit
 

stream(s) to resolve ambiguities.
 

The second approach stores the past received analog signal (in a delay line
 

or tuned filter) and uses it to differentially demodulate (to baseband) the
 

present received signal and optimally detects the baseband sfgnal(s). The
 

ambiguities are resolved in the differential demodulation operation. Con­

sequently, no logical decoding is required.
 

,It is well known that for conventional channels and normal error rate re­

quirements the first approach (quasi-coherent demodulation and differential
 

.decoding) is several dB superior to the second approach (differential de­

modulation and detection).
 

Figures 5-3 and 5-4 illustrate these two approaches for biphase modulation.
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5.3 QUADRIPHASE MODULATORS - FUNCTIONAL DESCRIFTION
 

The quadriphase modulator represents an efficient method of transforming
 

two serial bit streams into a phase-shift keyed millimeter wave carrier.
 

Before discussing the various circuit aspects of biphase and quadriphase
 

modulators, consider first a detailed functional description of the quadri­

phase signalling system which will lead to a description of system degrada-­

tion due to phase imbalance.
 

5.3.1 Functional Description of Quadriphase Modulator
 

The function of the transmitter is to generate the following signal
 

s(t) = Cos t + d(t) + e(t-1) + O} 

where d(t) is either 0, 1, 2 or 3 (i.e., modulo 4) for the duration of two
 

binary input symbols, e(t-l) is the previous quarternary information symbol,
 

w0 is the carrier angular frequency, and G is an arbitrary phase.
 

A quadriphase signal is obtained with the realization that
 

e(t) = d(t) + e(t-l).
 

Thus, dffferential quarternary encoding is realized where d(t) represents
 

the quarternary difference (two information bits). Figure 5-2 represents
 

the desired truth table in terms of two input binary digit streams [x(t) and
 

y(t)] and d(t) and the phase difference, 9d(t) = d(t)( /2). A Gray code
 

has been employed since this code minimizes the average bit error rate.
 

It is desired to realize the quadriphase modulator as shown in Fig. 5-5
 

since this approach is superior in the sense that it may be readily imple­

mented at PF frequencies as well as at IF frequenciest Some alternate
 

techniques, e.g., those employing counters, must be accomplished at rela­

tively low, i.e., IF, frequencies. The variables x"(t) and y"(t) represent
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X"i1 Bai-phase 
 mo

Modulator
 

scPcFrator C3rp/2Phsta 

Fig.5-5 Block diagram of quadri-phase modulator.
 
10 0
 

10 00
 

~Cos wet 

ii 01
 

Fig.5-6 Phasor diagram for 0,(t-1) as a function of variables :Eq'and yj".
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appropriately encoded versions of x(t) and y(t), i.e., the differential
 

,encoder outputs.
 

The purpose of the differential encoder is generate the appropriate binary
 

variables x"(t) and y"(t) such that the proper phase difference 0d(t)
 

(given by truth table of Table 5-1) is created by the data streams x(t) and
 

y(t).
 

The validity of this truth table may be established by considering the
 

phasor diagram of Fig. 5-6 which illustrates the four possible phase posi­

tions for the preceding phase, Pe(t-) = tPel = e(t-l)(n/2). 

A method for implementing the truth table of Table 5-2 is now presented.
 

An obvious approach is to implement the rule x2 X" x2 'Y2 = Y GY
1 2 

for the majority of the cases and the rule x2" ' =Y' U Y27=1" 2 , 2 Y2 

(where the superbar denotes complement) for the cases (four) marked by an
 

asterisk. Figure 5-6 is a block diagram of the differential encoder that
 

realizes the truth table. The encoder is shown in Figure 5-7.
 

TABLE 5-1 TRANSMITTER TRUTH TABLE'
 

x y d 0d(rads)
 

0 0 0 0 

0 1 1 n/2 

1 1 2 TT 

1 0 3 (3)/2 
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Flip-Plap 

x(t)" 	 + - > x"(t)
 

0 0 0 

z s-r 

y(t) 	 y"(t) 

Flip-Flop 

Fig. 5 -7 	Block diagram of quarternary differential encoder. 
The symbo I3 G denotes mod-2 addition and T denotes 
analog multiplication or gating (digital). 
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TABLE 5-2 	 TRUTH TABLE FOR DIFFERENTIAL ENCODER OUTPUT
 
VARIABLES x2 " and y2 ".
 
Note that those cases which deviate from the
 
rule x." = x,"1 ( , 2 e=f Y e y2 have 
been identified by an asterisk.
 

0¢(t-l)
 

rr/4 -n/4 -(3T/4) +(3r/4) 

d ( 0IY00 0 1 11 1 0 

0 0 0 0 0 0 1 1 1 1 01 

Tr/2 0 1 1 01 00 01 * 1 1 

1 1 11 1 0 0 0 0 1 

37 2 1 0 0 1 11 1 0* 0 0 

5.3.2 Sensitivity Analysis
 

Four sources of steady-state quadriphase modulator loss are: 1) (I',Q) channel
 

amplitude imbalance, 2) (1,0) amplitude imbalance in each channel, 3) (I,Q
 

channel'phase imbalance, and 4) (1,0) phase imbalance. The losses stemming
 

fron each of these imbalances are evaluated below.
 

5.3.2.i (I,Q) Channel Amplitude Imbalance. - Imbalanced amplitude between
 

the two biphase channels can potentially create an unbalanced power loss
 

and an AM-PM distortion loss.
 

5.3.2.1.1 Unbalanced Power Loss. - The average probability of bit error
 

for the quadriphase signal is given by
 

=IP +IP
 
e 2 ex 	 2 ey
 

where P and P are the error probabilities in the 'in-phase (I) and
 
ex ey
 

quadrature (Q) channels, respectively. For bit error rates on the order of
 

- 7
5.10 , a change in error rate by a factor of two corresponds to a 0.25 dB
 

energy change.
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The channel error probabilities are given by
 

Pex Pe(i + a) Po =0Pe(p) 

where p = (1 +a) P0 

Pe(y p)
 and Pey = PeI - ) Po] = 

where y = (I + a)/(i - a) is the channel power imbalance factor. For a 

1-dB imbalance 

[ l
 Pe1 P -) P - 0.5 dB + 0.25 dB)
tP 

e2ey 2 e 0 en0
 

= PePo - 0.25 dBj 

Thus, a l-dB imbalance produces only a 0.25-dB degradation. Figure 5-8
 

plots the degradation as a function of the channel power imbalance factor.
 

5.3.2.1.2 (1,0) Pulse Amplitude Imbalance (Each Channel). - A (1,0) pulse
 

amplitude imbalance causes the following losses: 1) average power loss in
 

the lower level signal and 2) AM-Ml conversion losses. The magnitudes of
 

these degradations are estimated below.
 

i) Average Power Loss. - The average power loss due to (1,0) amplitude
 

imbalance can be assessed from Fig. 5-9i Consider the probability
 

of bit error in the in-phase channel
 

ex 4 eOO 4 elO 4 ell 4 eOl
 

where Pc00 = e1£Po}
 

P r2 ­

elO = 2el-- Pof
 

Pell =P P o
 

Pe~l2 = el!rj+ 0 PojI 
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0
.A 
41' 

V1g. 5-8 

1.0 

j, Channel Power Imbalance Factor (dB) 

Degradation as a function of channel power 
Abalance factor. 

10 y 00 

y Limiting Circle 

X. 

01 

Fig. 5-9 Phasor diagram illustrating (exaggerated for 
convenience) effect of (1,0) pulse amplitude 
imbalance. Identical imbalances are assumed 
for both channels. 
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For 	the case of l-dB imbalance, i.e., B = 1.26, 

Pex 	= PeIdj P0 + 0.5 dB}
 

= 	e(po0 - 0.53 dB + 0.5 dBj = Pe{po -0.03 dBj
 

Thus, this portion of the loss due to (1,0) imbalance is negligible.
 

Figure 5-10 plots this loss as a function of the (1,0) amplitude
 

imbalance factor, 0.
 

2) 	AM-PM Conversion Loss. - The effect of AM-PM conversion on system
 

performance can be assessed best from the phasor diagram of
 

FWg. 5-11 which also includes the (1,0) pulse amplitude loss
 

effect. Identical imbalances are assumed for each channel.
 

00 Phase Position - In this position there is no phase distortion
 

and, thus, no degradation.
 

Pe00 = Pe(l'Po ]
 

10 Phase Position - The degradation in this position is given by
 
2
 

[N sin (910 + c1 0 )]2 for the x channel and [EAI cos (10 + "i0)]


for the y channel where e0 is the AM-PM phase shift (a function of
 

drive level) and pi0 is the pulse amplitude imbalance phase shift.
 

i0 = tan-1 f T 

Assuming 8 1.26 and an AM-FM conversion characteristic of 150 /dB,
 

one finds pi0 = 41.70 and 010 = 710. Thus, DI0x = 2 cos
2 48.8=
 

0.87 and a degradation of 0.61 dB exists for the y channel.
 

11 Phase Position - The degradation in this position is given by
 

sin (011 + Cii)] 2
 ii]2 for the x channel and [LA/i
[LA/icos (0l , 

= 4 50


for 	the y channel where 811 is defined as before and cpi 


for - 1.26, 0 = 150. Thus, D 2 cos2 600 = 0.5 and a 3-dB 

degradation occurs. Dlly = 2 sin 60 = 1.5 and an enhancement 

of 1.76 dB. 
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Fig. 5-10 

1.0 
2.0 

0, (1,0) Imbalance Factor (B) 

Average power loss due to (1,0) pulse amplitude 

10 

Circle
 

11 0 

11Z7
 
8 o 

Phlco-l~ 
901o 

Fig. 5-11 Phasor diagram illustrating (exaggerated for
 
convenience) (1,0) imbalance effect with AM-PM
 
conversion distortion shown.
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01 Phase Position - The degradation in this position is given by 

[V2 sin (001 + P0 1 ). 2 and [v2 cos (601 + p0 1 )] 2 for x and y 

channels, respectively, where 601 is defined as before and 

0= tan- {43
 

Assuming = 1.26 and 150 /dB AM-PM characteristic, one finds 

= 50.7 and 8 = 7.1. Thus, D0 1 X = 2 sin 2 57.8 = 1.43 and an 

enhancement of 1.56 dB occurs. D01y 2 cos 57.8 = 0.567 and a 

degradation of 2.47 dB occurs. The resultant average probability 

of error is given by
 

Pe 8 I+ 8 P[P + 0.541 + . e Po - 0.611
 

8Ie 0o - 3 4 e + 1.7633i 8P 


+1 pe(p + 1.561 + iP - 2.47)
 

which can be approximated as
 

PeZe Pe[po - 3 + 0.753 + Pet Po - 2.47 + 0.75]
 

SteP[P- 2.3]
 

Figure 5-U plots the degradation as a function of (1,0) pulse 

amplitude imbalance for a 150/dB AM-PM conversion coefficient. In 

practice, the phase-lock loop PCM demodulator adopts an average
 

(compromise) phase reference position such that the dominant
 

degradation terms, DI and D0 1 , are significantly reduced. Curve
 

(b) of Fig. 5-123 illustrates the performance when phase-lock loop
 

compensation is properly accounted.
 

5.3.3 Pulse Width Asymmetry
 

The effect of pulse width asymmetry, i.e., different durations for ones 

and zeros, is to degrade performance as given by 
i--p a+o1pc{( 1 - )Po 

Pe =2 e0 2+ e 0
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3 0I I I I I I I I I I I I I 1 1 
3.0 - --- -- - ­

1 11 Ir 111 f ji 1 l l 1l 
f i l ll l l l l l l 

01
 

(1,0) Pulse 	Amplitude Imbalance (dB)
 

Fig. 5-12 	 Average total steady-state loss due to (1,0) pulse 

amplitude imbalance - includes average power loss, 
AM-PM distortion loss, compensation. Curve (a)
 
ignores the 	compensation provided by the receiver
 
phase-lock ioop. Curve (b) shows the performance
 
when phase-lock loop compensation is properly
 
accounted.
 

5-15
 

SPACE & RE-ENTRY SYSTEMS DiVISION 
Pho-F..rd CorporationPHLCa 	 C 



TR-DA2180
 

For the case of (I+ 8)/(1 - 6) = 1.5
 

Pe PePo + 0.25 - 0.971 = Pe[Po - 0.72]
 

Figure 5-13 plots the average degradation as a function of asymmetry factor.
 

It is to be noted that these results, while derived for rectangular pulses,
 

also apply approximately to trapezoidal pulses (assuming symmetry about the
 

zero-crossing axis).
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cc 

0. 

2 34 5 
Phase Imbalance (Degrees) 

Fig. 5-13 Average loss due to,,(,0) phase imbalance 
under worst-case assumptions. 
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5.4 COHERENT BPSK AND QPSK DEMODULATION AND DETECTION 

The coherent BPSK and QOSK demodulator must perform many functions in order 

to 	recover a bit stream - or two bit streams - from a modulated carrier:
 

o 	generate or reconstruct a quasi-coherent "local oscillator" signal
 

from the received modulated carrier­

o 	matched-filter detect0
 

o 	bit -synchronize
 

o 	logically decode.
 

These functions are discussed in the following paragraphs.
 

5.441 Functional Description of BPSK and QPSK Receivers
 

The function of the receiver is to generate a quasi-coherent reference, 

demodulate the carrier to baseband. The received signal is given by 

r(t) = cosfwlt + e(t-T) • (/2) + 0r 

where T represents the propagation delay between transmitter and receiver,
 

8 8B is an unknown random phase angle which includes path delay and wi is
 

a potentially doppler shifted version of o the transmitted angular fre­

quency. A diagram of the complete receiver is shown in Fig. 5-14.
 

55'4a 1I Quadri-Phase Demodulator. - Several theoretically equivalent quadri­

phase demodulators can be used using different approaches to carrier recon­

struction. The one shown in Fig.5z15 has been selected for its simplicity
 

and is referred to as the x4 or fourth harmonic approach. A carrier is
 

restored for tracking purposes since
 

cosf4a,it+49r + 4e(t-r)(n/2)} = cosf4wit + 4r
 

This and other types of demodulators will be discussed later in this
 

section.
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a(t)i D(t-T-A) 

Low-Noise RF Quadri-phase Quarternary Output

Amplifier and Demodulator Differential
 

Down-Converter Decoder
 

Y(t)=y(t-T-A) 

Conventional
 

Bit 

Synchronizer
 

Fig. 5-14 Block diagram of receiver.
 

Lo-ps Low-pass
 
Int Fl 
 Filter 

X4
 
Voltage-

Control led 

Oscillator 

717/rards phase shift 

TT/2 reds phase shift 

. Low-pass ___ a(t)Fle 

) Low-pass _ _ __ b (t) 

Analog Baseband 

outputs 

Fig. 5-15 Block diagram of one possible quadri-phase demodulator.
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A vector decomposition of quadri-phase signals can be made into in-phase (I)
 

and .quadrature (Q) hi-phase signal channels. Each channel conveys one bit
 

of information per quadri-phase symbol duration and possesses one-half the
 

signal power. Since each channel is transmitting at one-half the total
 

rate, identical performance to bi-phase signalling is achieved so long as
 

the two channels do not produce mutual interference. They do not since
 

the sine and cosine functions, corresponding to the Q and I channels,
 

respectively, are mutually orthogonal. Thus, coherent detection of quadri­

phase signals yields indentical average bit error rate performance to
 

coherent detection of bi-phase signals.
 

Some intuitive arguments might mislead one into believing quadri-phase
 

signalling inferior to bi-phase signalling. For example, quadri-phase
 

possible vector positions are "closer" together, i.e., not anti-podal,
 

than hi-phase possible vector positions. Thus, it might appear that
 

quadri-phase decisions are more difficult for the same signal power and
 

noise density. However, quadri-phase signalling has twice the symbol
 

duration permitting a decision enhancement. It is an interesting fact
 

that these two effects exactly cancel yielding indentical performance for
 

bi-phase and quadri-phase systems in terms of average bit error rate.
 

S5L4l?2 Matched Filter Detector and Differential Decoder. - The function
 

of the matched filters, i.e., finite-time integrators, samplers, and deci­

sion threshold (hard limiter or signum function) is to optimally detect
 

the analog signals a(t) and b(t) and convert them to binary digital streams
 

x'(t) and y'(t). Figure 5-16 is a block diagram of the matched-filter
 

detectors. Note that this portion of the receiver represents conventional
 

design - however, two channels are required in this application.
 

The function of the differential decoder is to unambiguously transform the
 

binary digit streams x'(t) and y'(t) so that the decoder outputs (t) and
 

9(t) satisfy the relation
 

^(t) = x(t - 7 - A) 9(t) y(t-T -A) 

where T is the propagation delay and A is the individual bit duration.
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a Finite-time Intearate Decision Device & Hold x
 
(Dump & Sample) (Signum Function &
 

Flip Flop)
 

Quadri-phase Differential Decoder
 
Demodulator I Clock' famBitSynh) I
 

Inputs
Outputs 


b t Finite-time Integrate Decision Device & Hold
 
(Signum Function &
(Dump & Sample) 


Flip Flop)
 

Fig. 5-16 Block diagram of matched-filter detectors.
 

The desired decoder truth table is now derived. The received signal is
 

given by r(t) and the quasi-coherent reference signals by cos W1+ +a!- (T4)}
r 


and sin [wit + er +a - (/4) where a!= n(T/2) for n = 0, 1, 2, 3, ... , 

i.e., a denotes the potential r/2 radian ambiguity. Thus, the analog out­

puts of the quadri-phase demodulator are given by 

a(t) = cos te(t-T)('/2) - O + (-14)]
 

b(t) - sin fe(t-T)(/2) - a + (r14)]
 

The sampled analog outputs of the finite-time integrators are also given by 

a(t) and b(t) since e(t - T) remains fixed over the period of the finite­

time integration. Note the operation of the finite-time integration is 

defined by 
i 

co(L) = - { ci(t) dt 

0 

where co and ci are the output and input variables, respectively. Thus, the 

hard-bit decisions are given by 

x'(t) = sgn [cos [e(t-T)(7T/2) - a + (r/4)1]
 

y'(t) = sgn fsin [e(t-)(Tr/2) - c + (T/4)J) 

where sgn ['I denotes the signum or hard-limiter function. Similarly,
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x'(t-A) - sgn tcos Ee(t-r-A)(r/2) - a + (r/4)]3 

y'(t-A) - -sgn [sin [e(t--A)(r12) - a + (T/4)]j 

Defining 

41(t-A) = e (t-T-A) (T/2) -a+ (T/4) 

one finds that x'(t) and y'(t) may be expanded using trigonometric identities
 

to yield
 

x'(t) - sgn (cos [d(t-,r-)(n/2)] cos [T(t-A)] 

- sin Cd~t--A)(TT/2)1 sin EY(t-A)1] 

y'(t) = sgn (sin [d(t-'-A)(r/2)J cos [T(t-4)] 

+ COS [d(t--A)(/2)-] sin t(t-A)] 

The desired truth table is now found by evaluating the above for the four 

cases d(t - T - A) = 0, 1, 2, and 3. 

i) Case #1 d(t-r-A) = 0
 

x'(t) = sgn~cos[(t-A>J) = x'(t-A)
 

y'(t) =-sgn[sin[T(t-A)] = y'(t-A)
 

ii) Case #2 d(t- -A) = I 

x'(t) = sgn[-sin[T(t-A)JI = -sgnfsin[T(t-A)]} = y'(t-A) 

y'(t) = sgn~cos tY(t-A)JJ = -x'(t-A) 

iii) Case #3 d = 2 

x'(t) = sgn[-cosLT(t-A)J =-sgn[cos[T(t-A)J = -x'(t-A) 

y'(t) =-sgn[-sin[(t-A)J =+sgn[sin[T(t-A)J] = -y'(t-A) 

iv) Case #4 d = 3
 
=
x'(t) = sgnfsin[(t-A)]} -y'(t-A)
 

y'(t) =-sgn[-cos[Y(t-A)]} = +x'(t-L)
 

The resulting truth table is presented in Table 5-3, the entries of which
 

= 
enable x2 = x2 and Y2 Y2 to be realized.
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The truth table of Table 5-3 may be implemented in several manners. The
 

simplest approach utilizes the quaternary decoder illustrated in Fig. 5-17.
 

Table 5-3 	 Differential decoder truth table. 
Note that X2 = x'(t - r - A) and 
x1 = x'<t - T - 2A) and correspond­
ing for other variables. 

x2 Y2 d -x' Y2
 

0 0 +x{ +y0 

0 i 1 +y{ -x! 

1 2 -x! -y!
 

1 0 3 -y +x,' 

1 1
 

x 2 ' - Flip-Flop +r 

Ambiguity
 

Clock Resolved
 
(from Bit Synchronizer) Bit
 

I 	 Streams
 

y2 II 

Fig. 5-17 Block diagram oftquaternary differential decoder.
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The use of the quaternary differential decoder is based on the fact that
 

true coherent match&d-filter detection of phase-modulated signals is not
 

possible, in general, due to the unknowns of transmitter phase, path length,
 

etc, At best, a quasi-coherent (regeneration of a noisy replica of the
 

carrier) detection is possible. The-result ia that a carrier phase ambi­

guity on n.(r/2) radians exists for quadri-phase signals. In order to
 

resolve the ambiguity, it is necessary to relate the present symbol to
 

previous symbols - thus, propagating the effect of errors. The ambiguity
 

resolution approach can double the average bit error rate. For an
 

.average bit error rate of 10"6 , this corresponds to an increase in
 

thd required energy-per-bit-to-noise-power spectral-density ratio of
 

approxlmately 0.25 dB.
 

By employing the Gray code, a single error in one of the four binary digits
 

(two present and two previous) used in the decoder can produce a single
 

error in one of the two decoded output binary digits. Since there are four
 

possibilities for single errors (by far, the most probable)-, it might
 

appear that the differential encoding and decoding increases the error
 

rate by four. However, each symbol contains two information bits.
 

The effect of quaternary differential coding is identical to bintry differ­

ential coding; the error rate is doubled.
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SECTION 6
 

SEARCH AND TRACKING CALCULATIONS 

6.1 INTRODUCTION 

Section 6 of Volume 1 discussed the basic system parameters and error
 

budgets involved in the determination of the acquisition, search, and
 

tracking action of a data relay satellite system in space. This section
 

will discuss the detailed calculations involved in the development of
 

these error budgets.
 

6 2 SEARCH CALCULATIONS 

Assume an uncertainty region with 20 mr on a side as illustrated in
 

Figure 6-1. 

If acquisition is to occur between a relay and sensor vehicle, Vehicle
 

B must direct its antenna in a given direction at the time the sequence
 

is initiated and Vehicle A must search over the uncertainty region.
 

At the end of the first search period (time for A to cover the search
 

sector), Vehicle B must increment its antenna in angle and A will repeat
 

its sweep over the sector.
 

The search sector is shown in Figure 6-2. Vehicle A antenna beanwidth 

is taken as 3.5 mr and is illustrated in the figure. Search consists
 

of sweeping the antenna across the sector and then back after raising
 

the angle. Overlap is shown to provide full coverage.
 

A scan rate of 10 milliradians per second is now assumed. This rate
 

is considered reasonable from the mechanical standpoint. For seven
 

scans, a minimum of 14 seconds is required. When allowance is made
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Figure 6-2 Search Sector 

6-2
 

SPACE & FE-ENTRY SYSTEMS DIVISION 
phICO-Ford CorporationPHILCO 0 



TR-DA2180
 

for reversing the antenna at the end of the sweep, the time will be more 

on the order of 45 seconds. The number of times the entire sector must 

be searched, and hence total acquisition time, depends on the signal 

strength, i.e., usable beaiwidth of Antenna B. 

Assume a signal strength margin such that the usable beauwidth of 

Vehicle B is 5 mr (approximately lO-dB down). Vehicle B is contained 

in the search sector of Vehicle A. The antenna on B, however, need
 

not be pointing at A since B has the same uncertainty region as A. The
 

uncertainty region of B is divided into 5 mr cells, of which there are
 

16. At the rate of 45 seconds per cell, 12 minutes will be required
 

to cover the complete sector. Thus, the maximum time to acquire is 

12 minutes, although it is highly unlikely that it would ever take
 

this long. Nevertheless, the system must be capable of accepting maximum
 

acquisition time even though it occurs rarely.
 

During the time the search is in progress, the relative position of
 

the two vehicles will change due to the relative motion. Between two
 

relay satellites the change will be negligible.
 

In the worst-case condition, i.e., when the velocity vector of the
 

sensor satellite is perpendicular to the line connecting the two,
 

vehicles, the angle will be as shown in Figure 6-3.
 

- vttanG 
 19.027
 

where v - velocity - 4.1 nm/sec 

t - time - 12 minutes = 720 sec 

9 - 0.15 radians 

Although acquisition will normally take place in less than 12 minutes
 

and at a point in space where the velocity vector is nearly parallel
 

to the line connecting the vehicles, the problem of relative motion 

6-3
 

SPACE & RE-ENTRY SYSTEMS DIVISION 

PHILCO C PhIcD-Ford Corporaton 



TR-DA2180
 

v 

Fig. 6-3 
A 19.027 n.m. B 

P1 Basic Acquifltion Geobetry-­

22767 n.m. eL 

REarthay 

Fig. 64"- Acquisition Geometry, Sensor Satellite in view
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between the two does not vanish. The simplest solution to the.problem
 

is to restrict the region where acquisition can occur and thenprogram
 

in a slew rate, superimposed on the search motion, that will cancel
 

the relative motion error.
 

A similar calculation will now be made for an acquisition which 

occurs when the sens6r satellite comes into view of the relay satellite. 

The geometry is shown in Figure 6-4.' 

Let P1 be the initial position of the sensor and P2 the position 12
 

minutes later. For a 300 n.m. orbit altitude, the earth revolution
 

period is 100 minutes and a - 430, 

tan 9 = 0.165 Gl 

tan 2 - 0.135 0 2
 

A@ - 30 milliradians
 

which exceeds the search width.
 

A phase lock tracking receiver is assumed for this configuration. A
 

frequency search by the loop VCO is required simultaneously with spatial
 

search to detect the signal if it is present in the antenna beam. The
 

width of the search depends on the combined effect of oscillator drift
 

and doppler. At the, frequencies of interest, the doppler shift is much
 

more significant than oscillator drift, hence the search range is
 

essentially defined by doppler considerations.
 

Assume a 300 n.m. orbit for the sensor satellite and link frequency
 

of 50 GHz. Maximum doppler shift will be 1.25 MHz. The sense of
 

the shift (+):depends on the relative motion of the~vehicle - approaching
 

or receding.
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6.3 PHASE-LOCK LOOP BANDWIDTH 

Phase-lock loop bandwidth can be determined from the preceding paragraph
 

that will permit the above search rate and provide a high probability
 

of detection.
 

Assume a signal strength that will provide a signal-to-noise ratio in
 

the loop acquisition bandwidth of 15 dB.
 

A&max 
- 1.05 

2 
wn
 

10 62 - max 2 n x 1.67 x lO x 106 
rn 1.05 - 1.05 ­

wIn 3.16 x 103 - loop matural frequency 

Assume a second-order loop with damping factor of 0.7 

B- M 0.5
 

m 

103
- 1.58 xBL 

2BL M 3.15 x 103 Hz - two-sided loop noise bandwidth 

This represents a minimum value. To insure a high probability of
 

detection, the bandwidth should be increased to at least 5 kHz.
 

6.4 TIME FOR FREQUENCY SEARCH
 

Antenna scan rate has been assumed to be 10 milliradians per second.
 

Time allowed for a frequency search will then be approximately
 

3 mr beanvidth
10 mr/sec velocity
 

t 0 3 sec
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Beamwidth is taken as 3 mr to allow the vehicle to pass through off­

beam center and be detected. Thus, full beauwidth of 3.5 mr only
 

occurs on the beam center as the antenna is swept across the search
 

sector.
 

6.5 FREQUENCY SEARCH RATE
 

Assume a frequency search sector of 0.5 MHz. Frequency search rate
 

is therefore determined by
 

= 5-- - 1.67 MHz/sec
 
s 0.3 sec
 

Increasing the frequency search sector to 2.5 MHz requires an increase
 

in search rate by a factor of 5. The loop bandwidth will increase by
 

a factor of 2.2, i.e., minimum loop bandwidth becomes 7 kHz.
 

6.6 TRACKING ERRORS
 

The Tracking Error Budget of Table 6-2 of Section 6, Volume 1, involves
 

many parameters which contribute to the budget. The following paragraphs
 

discuss in detail the various tracking errors involved.
 

6.6.1 Loop Noise Bandwidth
 

Loop noise bandwidth is determined from the dynamic characteristics
 

of the signal that must be tracked, assuming that the loop is high
 

gain and of order two.
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Dynamic tracking error is defined
 

Ga A .radians
 
n-


For a condition where ea 0.1 radians, then
 

.2 
w . minimum


0.1
 

0.1
 

In a high gain second order loop with damping factor of 0.7, the two
 

sided noise bandwidth is
 

2BL - w n 

6.6.2 IF and Loop Bandwidth vs Doppler Shift
 

IF bandwidth vs frequency is shown in Figure 6-5 to show the effect
 

of doppler shift.based on the relative motion of the sensor satellite
 

with respect to the relay satellite.
 

A plot of maximum doppler rate versus frequency is given in Figure 

6-6 for 300 n and 500 rn altitude orbits. Loop bandwidth versus 

maximum doppler rate is given in Figure 6-7. Loop bandwidth in this 

figure should be interpreted as minimum value for a given doppler rate. 

6.6.3 Tracking Accuracy
 

When in the autotrack mode, it is desirable to maintain the peak of
 

the antenna beam directed at the target at all times to take full
 

advantage of the peak antenna gain. When the tracking antenna is
 

highly directive, small angular errors can cause a significant
 

reduction in antenna gain which, in turn degrades link performance.
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Figure 6-7. Loop Bandwidth versus Maximum Doppler Rate
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A criteria of acceptability for tracking error can, therefore, be
 

established based on the antenna gain degradation that can be tolerated
 

by the systems. For purposes here, a degradation of 0.5 dB maximum
 

will be assumed acceptable.
 

In the following paragraphs, tracking errors are identified and
 

contributions assessed. Total error is then determined to ascertain
 

if a specified allowable error is attainable.
 

6.6.4 	 Tracking Error Due to Thermal Noise
 

Angle tracking error due to the thermal noise in the tracking receiver
 

can be calculated for the phase lock receiver configuration.
 

A plot of the RMS error, 0, versus signal-to-noise ratio in the
 

receiver phase-lock-loop bandwidth is shown in Figure 6-8.
 

6.6.5 	 Tracking Error Due to Pre-Comparator and Post-Comparator
 

Differential Phase Shift
 

Differential phase shifts before and after the comparator, shift the
 

apparent null in antenna angle causing the antenna to track the signal
 

at a point off the peak of the sum channel pattern peak.
 

Tracking error is the antenna angle error from the sum channel peak;
 

in the ideal case, to the null.
 

A simplified block diagram of the tracking antenna and receiver is 

shown in Figure 6-9. For simplicity, two feeds are shown on the 

antenna instead of four; i.e., tracking in one axis instead of two. 

The outputs of the two feeds are combined in the comparator (amplitude 

comparison simultaneous lobing technique) to produce the sum ( E ) 

and difference ( A ) channel. 
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The sum channel signal is amplified and down-converted in the receiver.
 

The local oscillator signal is provided by the receiver VCO, which is
 

phase locked to the carrier component of the signal. Receiver AGC is
 

derived from the sum channel signal and controls the gain in both the
 

sun and difference channels.
 

The difference channel signal is amplified and translated in the same
 

manner as in the sum channel. Note that any phase variation in the
 

sum channel is introduced into the difference channel by the VCO
 

since the VCO is phase locked to the sum channel. The DC error voltage
 

is obtained from the product detector shown in the figure.
 

The signal at the antenna can be written as follows:
 

f(t) A sin[w t + a + 0(t)] 

wC - Radian carrier frequency
 

a - Arbitrary reference phase
 

0(t) - Angle modulation on the carrier 

This signal will be present in each of the feeds. The amplitude in
 

each feed will depend upon the position of the signal source relative
 

to antenna boresight. When autotracking, the two amplitudes will be
 

nearly equal.
 

Feed #1 f1 (t) - A1 sinjwCt + a + p12 + 0(t)] 

Feed #2 f2 (t) - A2 sin[0t + a - S12 + 0(t)] 

where 8 a 	relative phase shift between f1(t) and f2 (t), i.e.,
 

pre-comparator differential phase shift.
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Phase shift 0 can result from differences in feed line lengths to the
 

comparator or from other dissimilar electrical characteristics of the
 

feeds. It can also result from a received wavefront which is not
 

perpendicular to the boresight axis. When autotracking this condition
 

is essentially met so that little, if any, relative phase shift results
 

from a non-perpendicular wavefront.
 

This analysis will be concerned with the relative phase shift between
 

the feeds and between the sum and difference channels. Thus, the
 

arbitrary phase reference, a, can be set equal to zero.
 

At the comparator output the sum channel signal can be expressed as
 

the sum of the two feedI signals:
 

fE (t) - A1 sin [ct + $/2 + 0(t)] + A2 sin [ct - 8/2 + 0(t)] 

and the difference channel:
 

fA (t) - A1 sin [ct + 8/2 + 0(t)] - A2 sin Lwct - B/2 + Q(t)] 

It should be noted, at this point, that a phase shift to the carrier
 

has been introduced instead of a time delay to the overall modulated
 

signal. The reason for this is that the receiver is assumed to
 

track only the carrier component of the signal. That is, the phase­

lock-loop is a carrier tracking loop and the modulation is assumed
 

to be filtered out prior to the difference channel detector.
 

Now, the post detection differential phase shift can be introduced
 

and the error signal at the output of the difference channel detector
 

derived.
 

gZ (t) -G A1 sin [oct /2+y/2 +A sin [act - R/22 


LA (t) * G{Asinflwct + /2 -y/2] -A 2 sin Lw t - R/2 - y/2]} 

whereG n channel gain
 

y = post comparator differential phase shift
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Note the modulation has been dropped for reasons presented above.
 

The error signal is:
 

E(t) - kg (t) X gA (t)­

k - gain constant of the detector.
 

2 2 2 
 AjA
E(t) - k G 1/2 (A -o os +1A 2 2l Cos' (.Y) -Cos +]A 

- 1 Cos (2 ct +) + 2 Cos (2 ct " 
2 2 

The double frequency terms can be ignored since they will be filtered
 

out. The DC component is of concern here and is given by the first
 

two terms of the expression.
 

The final step in the analysis requires the amplitudes A and A2 be
 

expressed as a function of antenna angle. This is done by assuming
 

the individual feed patterns to be Gaussian in form and, as such,
 

can be expressed:
 

1~~- [2.78(9 +0.045)2]11 2 0.13 

21
 
- 0a045-2.780
A (0) - exp

2 '' e 2K 0.13 ) I 

where 9 is the spatial angle in degrees. Sum channel antenna beamwidth
 

is 3.5 mr.
 

Arbitrarily select kG2 - 2, since kG is a constant affecting only
 

the gradient of the output error signal. E (t) now becomes:
 

2
E(t) - (A1 - A2 2) Cos + A1A2 [Cos (y) - Cos (Y4.)j 

Tracking error is obtained from the above expressions when 1;(t) - 0. 
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A plot of track error versus 0 and y is given in Figure 6-10. 

Figure 6-11 is a plot of the error voltage versus angle 9 to 

show the effects of y and 0.
 

It can be seen that when y - 0 no error results even though 0 = 0. 

It should be noted that if either y or is zero the tracking error 
.
will be zero. Curves are also given for -y- 100 and - ± 40 Note 

that the phase reversal in 0 shifts the crossover from positive to 

negative error but that the absolute value of the error remains the 

same. The same result is obtained if the phase of y is reversed
 

instead of 5. Finally, the curves are linear over the range(s) of
 

investigation. Increasing the range introduces non-linearity at the
 

end points; however, this is of little concern since tracking is
 

usually constrained to small angles off boresight.
 

6.6.6 Tracking and Pointing Error Due to Amplitude Unbalance
 

In a two-axis, simultaneous-lobing, amplitude-comparison, tracking
 

antennasfour individual feeds are combined in a comparator to produce
 

the sum and difference of the outputs of the individual feeds. Ideally,
 

when the individual patterns are identical, the difference channel
 

null and electrical axis (each axis) coincides, in angle, with the
 

sum channel; and since the servos track the null, the signal is
 

received on the sum channel pattern peak.
 

An amplitude unbalance between the individual feed patterns will
 

shift angle of the difference channel null and cause the antenna
 

to track the signal at a point off the sum channel patterns peak.
 

The individual beam patterns are assumed Gaussian in form and, as
 

such, can be represented as follows:
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Figure 6-10 Tracking Error versus Post-Comparator Differential 
Phase Shift and Pre-Comparator Differential Phase Shift 
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Figure 6-11 Error Voltage versus AngleY 

6-20
 

IS PACE & RE-ENTR" SYSTERMS [DVISION
PHILCO *M nPho-Ford Corporcmon 



_ __ __ 

TR-DA2180 

p (0) - asp K(0 + 0.0454 
2 

[-2.78 t_;_ ]
 

1 1 0.04504 2 

- 0.04 2
2 exp [ 2.78(G2 ()' 

where B is in degrees.
 

The sum channel is given by:
 

. P1 & P2 

At the crossover (9c), PI . P2" Thus an expression can be written
 

which relates G1, G2 and Bc where GI and G2 are the amplitudes of
 

the individual patterns.
 

2
2 s 2.78 c .4D2.78 ((c+o.o4[-exp 


C - (Gc2-e0.0C5R2o1 1;0V 


2 .13 0..4 
__G2 __ __ _ __ _ __ _ __ 

ec +o.o,045)z
[xp-2.78 


1 
 ,29.6s 

Amplitude unbalance (G1/G2) versus boresight shift Oc is plotted
 

in Figure 6-12. 

6.6.7 Tracking and Pointing Error Due to Unequal Individual Beamwidth
 

Tracking error due to amplitude unbalance, treated previously, considered
 

the effect of varying the individual beam amplitudes while holding the
 

beamwidth constant. In this section the amplitude of the two individual
 

patterns is held constant and the beamwidth of one of the individual
 

patterns is allowed to vary with respect to the other.
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As before, the individual beam patterns are assumed Gaussian in form.
 

+ 0.045 
P1 () a exp [2.78 

2
 

P2 ((9)- exp lJ2.78 ( 0.045)2
 

B2
 

where 9 and B (3 dE beamwidth) are in degrees. 

As before, the null occurs when
 

P I P2
 

exp [2.78 C 9+ 0045 2 ] ex--. 8( 0.045 )2 ] 

For this case the solution is found by letting the computer search
 

for the null. The results are plotted in Figure 6-13.
 

6.6.8 Tracking Error Due to Antenna Temperature
 

Error due to temperature refers to the affect of non-uniform heating
 

of the antenna, and components or cables in the transmission path.
 

Error may be introduced (existing error allocations increased) due to
 

one side of the spacecraft being exposed to the sun for prolonged
 

periods of time. For the purpose of this analysis an error of 0.1 mr
 

is allocated for temperature variations. It is expected that the
 

contribution from the antenna will be the only significant error and
 

that it will be within the allocated value.
 

The mean-square tracking error is given by
 

2 
 n5 *2 k 0 


2 D lu 2 lO10k-0 s 
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Figure 6-13 	 Tracking Error due to Unequal Individual Beamwidth~s 

Sum Channel Antenna Eeamnwidth = 3.4 mr. 
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* - Sum pattern 3 dB beamwidth (radians) 

DBc - Crossover point in dB down from the individual beam
 

pattern peak
 

-- Ratio of sum pattern 3 dB beamwidth to individual 

pattern of 3 dB beamwidth 

in ( ) - Natural logarithm 

- One-sided noise density in difference channel 

Bn - Servo noise bandwidth (one-sided) 

S - Received signal power on boresight
 

Jo ( ) - Zero order Bessel function of first kind 

The factor in the denominator, fiJo (k), accounts for the carrier
 

loss due to modulation. If the signal power is taken as carrier power
 

this term can be ignored. This is done here and Sc will denote carrier
 

power.
 

It can be seen that tracking error is a function of the noise power in
 

the servo bandwidth. It is more convenient to plot error as a function
 

of signal-to-noise ratio in the tracking receiver phase lock loop
 

bandwidth rather than servo bandwidth. The equation can be modified
 

to do this as follows:
 

Sc s BT Sc 

Wn 
 Bn 
 s BT
 

where a. noise density in the sum channel 

B T phase lock loop double sided noise bandwidth 

For this analysis, s - * and the mean square error can be written. 
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2 5 *2 B2 
2Dflc522 21-n10 radians2
 2 DBc ln.2 In 10 
 BT Sc
 

where
 

N BT
 

6.6.9 Servo lag Errors
 

Servo lag is the term applied to the angle tracking error incurred due
 

to the characteristics of the servo system when tracking a moving vehicle.
 

Steady state tracking error is determined as follows:
 

E angular acceleration
 
Ka K
 

K - Servo loop acceleration error constant 

The maximum tracking acceleration requirement for the synchronous relay 

satellite is on the order of 0.023 milliradians/sec 2 . To maintain tracking 

error of 0.1 milliradians or less will require a servo error constant, 

K - 0.023 - 0.23 a 01
 

which should be readily obtained for the antenna under consideration.
 

6.6.10 Servo Bias Error
 

Servo bias error refers to an offset error that commonly occurs with dc
 

amplifiers. For example, the error voltage at the receiver is a dc voltage
 

with positive value for errors of one sense and negative for errors of the
 

opposite sense. Zero voltage corresponds to zero error. A dc offset would
 

introduce a bias error called servo bias error. Errors of this type are
 

minimized by careful design.
 

An allocation of 0.1 mr is usually given to servo bias error.
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SECTION 7
 

MILLIMETER WAVE ANTENNAS
 

7.1 THE HIGH-GAIN MILLIMETER WAVE ANTENNA
 

Antenna gains must be high at millimeter waves - of the order of 60
 

dB, to maximize ERP with existing transmitting tubes and to maximize
 

G/T using existing relatively high noise figure techniques.
 

Therefore, the millimeter wave high gain antenna must be able to (1)
 

provide very high gain while also operating in the changing solar
 

environment without deformation or change in surface accuracy which
 

would greatly reduce gain and distort the antenna pattern, and (2)
 

be capable of being constructed with minimum weight and inertial mass.
 

These requirements which are unique and critical to millimeter wave
 

high gain operation are met by using a cassegrain antenna with high
 

efficiency surfaces, and by using special materials which maintain
 

contour accuracy and minimize structure weight.
 

The following paragraphs address those specific considerations.
 

7.1.1 Antenna Sizes
 

The relationships between antenna diameter, frequency, gain and beam­

width for the frequency and beamwidth range of interest are illustrated
 

in Figure 7-1. For example, at 60 GHz an antenna aperture must be
 

about five feet in diameter to produce a Q.20 beamwidtb.
 

Note from Figure 7-1 that antennas between six to eight feet in diameter
 

are required for the maximum gain to maximize ERP and G/T.
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7.2 HIGH-EFFICIENCY REFLECTOR DESIGN
 

The gain achieved by conventional Cassegrain systems can be substantially
 

improved by using special contoured reflectors (High Efficiency). As dis­

cussed by Galindo1 and Williams2 the energy incident on the subreflector
 

from the feed can be redistributed on the main reflector to yield uniform'
 

illumination and therefore maximum gain from an antenna of specified size.
 

The perturbation in the path length introduced by changing the subreflector
 

contour is corrected by a slight modification in the main reflector surface.
 

This correction is frequency independent. A gain increase of 0.5 dB is
 

typically achieved using this technique.
 

In conventional systems, a 10 dB edge illumination for the subreflector is
 

commonly chosen to optimize the trade-off between illumination and spillover
 

efficiencies. The combination efficiency is typically 80 percent. In the
 

high efficiency antenna, since uniform illumination can be obtained inde­

pendent of the subreflector edge illumination, typically 94 percent can be
 

obtained for the combined efficiencies. This is achieved by lowering the
 

subreflector edge illumination to approximately 17 to 2 dB.
 

High efficiency surfaces are largely standard with large (90-100 ft diamter)
 

Comsat-type antennas all over the world, where the high efficiency technique
 

has provided 60 dB gain from an antenna diameter of 97 feet at 4 GHz where
 

in excess of 120 ft diameter could be required to achieve this gain increase 

using the standard 55% efficient Cassegrain antenna. 

The use of the high-efficiency dual reflector system (Figure 7-2) can 
produce efficiencies approaching 907 for the directive gain. This efficiency
 

includes all loss factors down to the antenna terminals, i.e., aperture
 

illumination, main dish spillover, sub-dish spillover, cross polarization;
 

1Galindo, Victor, "Design of Dual-Reflector Antennas With Arbitrary Phase
 
and Amplitude Distribution," IEEE, Transaction on Antenna and Prop. July,
 
1964.
 

2Williams, William F., "High Efficiency Antenna Reflector," Microwave
 
Journal, June 1964.
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Figure 7-2 	 Comparison of the Illumination Characteristics
 
of a Standard and High Efficiency Cassegrain
 
Antenna System
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1 

0 

Parameter 

Aperture 

Spillover 

Curvature (estimated) 

Cross Polarization 

Phase 

RMS Surface 

Blockage 

Diffraction 

Calculated Efficiency 

> 

m1 

2 
9-

Gain (73.57 GOc) 

3 dB Beamwidth 

Null Width of Main Beam 
E plane Sidelobes 

H plane Sidelobes 

mm 

D01< 

00 
JZ 

TABLE 7-1 

EFFICIENCY COMPARISON 

High-Efficiency 


1.00 

0.973 

b.98 

0.9975 

1.00 

0.975 

0.980 

0,994 

0.903 

Theory Measured 

53.09 52.94 

0.3950 039 

0.9170 0.880 
16.9 17.3 

16.9 16.5 

Conventional 

0.875 

0.903 

0.99 

0.9975 

1.00 

0.975 

0.993 

0.936 

0.707 

Theory Measured 

51.94 51.74 dB 

0.44 

1.2050 
24 

0.450 

1.120 
20 dB 

24 19.5 dB 
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phase, and blockage. This technique achieves the high efficiency by pro­

viding nearly uniform aperture illumination with very low spillover loss
 

and has been demonstrated at 73.57 GHz by John Bowes of Philco-Ford as
 

detailed in the actual comparative performance data of Table 7-1 where
 

1.2 dB increase in gain was achieved.
 

It is evident that this technique is a highly useful one for minimizing
 

antenna size and weight for a given gain.
 

7.3 GAIN VERSUS ANTENNA SURFACE DISTORTION
 

Antenna dish distortion can cause significant gain loss and beam squint,
 

depending on the size and construction of the dish. Figure 7-3 illus­

trates the effect on gain of uniform distortion in terms of edge deflection
 

and paraboloid F/D ratio. It is significant that a total edge deflection
 

of only 0.020" can cause significant gain loss at 60 GHz.
 

For Cassegrain antenna systems, feed and sub-reflector movements resulting
 

from thermal or other effects are of significance in the application. Sub­

reflector movement along the focal axis has approximately the same effect
 

as moving the feed of a focal point paraboloid along the focal axis. This
 

results in a defocusing effect which produces gain loss. Sub-reflector
 

notations and translations off axis also result in gain loss as well as
 

beam squint. Thermal effects in its support structure must therefore be
 

taken into account in the design of the antenna.
 

Surface tolerance effects has been thoroughly investigated by J. Ruze who
 

has shown that the relative loss of gain is -


G=exp, F4 T 
0
 

where G = realized gain
 

G = ideal paraboloid gain
o
 

8 = rms error 

= wavelength
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This relationship is shown in the graph of Figure 7-4. For a 

Cassegrain system ­

= M 2 + S 2
 
rms rms
 

where M ms = main-reflector rms error 

S = sub-reflector rms errorrms
 

The graph shows that for a 0.2 dB gain loss at 60 GHz, 6 = 0.003 inch rms.
 

7.4 BASELINE MATERIAL DESIGN
 

The basic millimeter wave antenna design depends critically on the ability
 

of the structure to maintain accurate contours in the changing solar environ­

ment. Consequently, extensive structure and materials analyses of the main
 

reflector and subsequent preliminary design of antenna structures were made
 

with several candidate materials.
 

Analyses were conducted in Philco-Ford based on a thin shell consisting of
 

two face sheets of the material under consideration separated by an alumi­

num honeycombcore. A number of materials were initially evaluated and
 

discarded because of one or more disallowable properties such as high therm­

al coefficient of expansion, excessive weight, or poor fabricability.
 

Graphite/epoxy, invar, and beryllium were the candidates remaining after
 

this process and they have been studied intensively during the reporting
 

period. Since initial results indicated unacceptably large thermal deflec­

tions for the Be face sheet case, a thin solid shell of Be was investigated
 

as an alternate design.
 

Results for the three primary candidate designs are summarized in Figure 7-5.
 

Graphite/epoxy is the clear choice for both RF performance and weight
 

considerations.
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7.4.1 Analytical Approach 

The antenna was subdivided into three major thermal regions: 1) the main 

reflector, 2) the subreflector, and 3) the struts. For the main reflector, 

it was assumed that the thermal effects of the subreflector and struts were
 

minor and therefore could be neglected. For the subreflector, it was
 

assumed that the thermal effects of the struts were minor and therefore,
 

could be neglected. However, the radiant heat transfer from the main
 

reflector to the subreflector was incorporated into the thermal model. For
 

the struts, it was assumed that at their ends where they are jointed to the
 

main reflector and subreflector the temperature was undisturbed; i.e., the
 

strut did not significantly affect the local temperature distribution on
 

the reflector. This localized,thermal effect appears to be minor but re­

quires further evaluation.
 

For the main reflector and subreflector, heat is conducted through the face
 

sheets as well as the honeycomb core in three directions: normal, circum­

ferential and radial. For a composite structure, the thermal conductance
 

through each component was added to form a single thermal resistance element
 

in the thermal network. For the antenna designs studied, the temperature
 

difference across the reflector wall was calculated to be of the order of
 

1 to 40F. Therefore, thermal resistance in the normal direction was neg­

lected. The struts behave as thermal fins inadvertently and transfer heat
 

either to or from the main reflector or subreflector. There is no signifi­

cant exchange of heat between the main reflector and subreflector through
 

the struts since the effective thermal conductivity of the strut is small,
 

0.60 BTU/hr.ft.°F, compared to the thermal conductivity of reflector mater­

ials. Therefore, relative thermal isolation is afforded at the strut­

reflector interface.
 

For all design studies the antenna was assumed to have a surface coating
 

with an emissivity value of 0.90 and to radiate thermal energy to deep
 

space. For those antenna surfaces that exchange radiant energy with other
 

surfaces as well as deep space, the appropriate view factors were determined.
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The concave surface of the reflector exchanges thermal radiation with
 

itself. Radiant energy from the main reflector to the struts and subre­

flector was approximated based upon mean temperatures and overall view
 

factors. Radiant solar energy was absorbed by that portion of the antenna
 

exposed to solar illumination.
 

7.4.2 Thermal Model
 

Due to thermal symmetry, half the antenna was modelled. The main reflector
 

was subdivided into 85 sections, each section being represented by a node.
 

Nodes in the circumferential and axial (Z) directions are thermally con­

nected by thermal resistances. Each node is thermally connected to deep
 

space by means of a radiant interchange factor which accounts for the radiant
 

transfer of energy from both sides of the reflector. Since the temperature
 

difference across the reflector wall is small, only one node was used to
 

represent the temperature of a given section. The RF package, located on
 

the convex side of the main reflector, was assumed to be thermally isolated
 

from the antenna. Solar energy was absorbed by those nodes that are illumi­

nated. The thermal model also predicted the radiant energy incident upon
 

the subreflector. The subreflector was modelled in a similar manner to that
 

of the main reflector with the two exceptions: 1) the subreflector was sub­

divided into 19 sections and 2) the heat input from the main reflector was
 

uniformly distributed over the convex surface of the subreflector.
 

The maximum (minimum) temperature for all antenna designs occurs at the
 

radial edge at an angle of 00 (1800). The difference between these two
 

temperatures is the maximum temperature difference for the reflector.
 

Results for the three cases considered are shown below:
 

Maximum Temperature Difference (0 F)
 

Case Main Reflector Subreflector 

Graphite/Epoxy 354 178 

Invar 353 158 

Beryllium 306 18 
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The variation of the maximum temperature difference with the thermal
 

conductivity of the face sheet material, at a given face sheet thickness
 

is shown in Figure 7-6 for both the main reflector and the subreflec­

tor. The main reflector temperature difference is primarily established
 

by the exchange of radiant energy on the concave surface of the reflector.
 

Therefore, thermal conductivity and thickness are weak thermal control
 

parameters for this reflector. The results shown in Figure 7-6 are
 

representative of antenna designs which utilize either invar or graphite/
 

epoxy face sheets.
 

The temperature profile around the circumference of a tubular strut has
 

been predicted for the condition of maximum solar illumination when the
 

solar vector and tube center-line are normal. For this condition, the
 

largest temperature difference diametrically across the tube was 360F and
 

represents the maximum expected temperature difference. This result has
 

been taken into account in the structural analyses discussed in the next
 

section.
 

7.4.3 Antenna Pattern Analysis
 

A computer program used to transform the antenna geometry and feed into
 

far-field patterns and gain has been developed by Philco-Ford and is known
 

as SECPAT Secondary Patterns). It transforms a subreflector scatter pat­

tern into an aperture amplitude and phase distribution from which it com­

putes far-field patterns and gain. This computation consists of fitting
 

Fourier series as functions of circumference for annuli in the aperture
 

plane, such that the specific phase errors calculated will be satisfied,
 

the Fourier series then representing phase functions. Integration over
 

the entire surface in polar coordinates results in a radiation pattern
 

and gain. The amplitude function assumed is, of course, included in the
 

integration. Blockage effects, reflector errors, including RMS surface
 

and specified distortions, and spillover, are included. A high degree of
 

accuracy ( 0.01 dB) is achieved out to the third sidelobe; this has been
 

determined by analyzing cases for which closed-form solutions exist and
 

comparing the SECPAT and closed-form results.
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The following assumptions were made for the analysis of the distorted
 

dishes described above:
 

1. 	Parabolic main reflector
 

2. 	Uniform illumination of the main reflector aperture (very closely
 

approximated with high-efficiency surfaces)
 

3. 	No subreflector or feed phase errors (automatically compensated
 

for in the high efficiency design)
 

4. 	0.002" RMS surface error with large correlation internal.
 

Computed radiation patterns in the plane containing the sun for the three 

cases of interest (carbon, invar and beryllium) plus a "no sun" case may 

be found in Figure 7-7 a-d. It is apparent that the graphite/epoxy antenna 

experiences the least gain loss and beam squint of the three cases analyzed. 

7.4.4 Worst Case Thermal Environment Definition
 

Detailed studies of the thermal distortion of parabolic antennas performed
 

by Philco-Ford under contract to NASA/Lewis Research Center (AS 3-11525)
 

have shown that maximum distortion of the antenna reflector occurs at the
 

solar aspect that produces the maximum temperature difference across the
 

surface of the antenna. The temperature difference for a typical parabolic
 

antenna is shown in Figure 7:8 as a function of sun angle, G. S is
 

defined as the angle between the solar vector and the aperture plane of the
 

reflector and has a 24-hour period of revolution at synchronous altitude.
 

The 	maximum temperature difference is shown to occur near 0 = 00 and this
 

orientation has been assumed for all antenna thermal analyses performed
 

for 	this study. The synchronous altitude case was selected because of the
 

obvious utility of this orbit for such an application.
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7.5 TRACKING FEEDS IN HIGH GAIN MILLIMETER WAVE ANTENNAS 

A number of feed configurations have been developed over the years
 

to provide analog error signals simultaneously with main beam patterns 

from a comInn reflector. Figure 7-9 illustrates the feed system used
 

with a multi-mode feed.
 

A summary of severil feed types as regards main beam and side lobe
 

efficiency are listed in Tables 7-2 and 7-3.
 

Multiple horn and miltimode feeds are both rather complex and difficult 

to fabricate at millimeter wavelengths because of the tolerances involved 

in both path lengths and angular alignment. The design of a truly 

optimized millimeter tracking feed for spacecraft use would incorporate
 

c6nsiderations such as these, and would hopefully result in a relatively
 

simple, multi-mode structure-. 

The classic four-horn feed uses four identical horns in a cluster
 

about the antenna focal point; the outputs of these horns are combined
 

with four-port hybrid junctions in such a way that both the sum of
 

all four horns and the difference between elevation and azimuth-pairs
 

are obtained.
 

Four-horn feeds generally suffer from the fact that the arrangement
 

which yields good tracking-information seldom results in the maximum
 

on-axis gain for the sum pattern. For this reason, the newer designs
 

have begun employing separate feed systems for tracking and main-beam 

formation. Thus, for example, a flve-horn 'cluster may be used with 

the center horn optimized for main beam gain by the use of higher order 

modes and the four outer horns designed for the best possible tracking
 

performance. The five-horn feed has an advantage at millimeter wave
 

frequencies of requiring a comparator using minimum waveguide lengths
 

and therefore of minimum loss.
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TABLE 7-2
 

AVERAGE BEAM EFFICIENCY OF FEED HORNS
 

10 dB Beam Main Beam SidelobeFeed Configuration Efficiency Efficiency Efficiency
 

4-Horn 58% 65% 37%
 

5-Horn--- 277. 73%'
 
(Sum outer 4 horns only)
 

5-Horn
 
(Sum 5 horns) 41% 54% 467.
 

Multi-mode
 
(Suppressed sidelobes) 91% 99% 1%
 

Multi-mode
 
(No sidelobe suppression) 807. 977. 3%
 

TABLE 7-3
 

TRACKING FEED CHARACTERISTICS
 

Aperture Tracking Gain
 
Feed Configuration Efficiency* Relative to Main
 

Beam (Typical)
 

4-Horn 50% -5 d
 

5-Horn optimized center horn
 
for main beam, outer 4 horns 787 -15 dB
 
for tracking
 

Multi-mode Tracking Horn 807 -2 dE
 

* Includes Cassegrain efficiency and spillover factors. 
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Tracking feeds employing a single aperture (multi-mode) which would
 

simultaneously afford maximum beam gain and maximum tracking gain have
 

been constructed and have found wide applications, particularly at 2.2
 

and 4 and 6 GHz. Multi-mode feeds have been constructed by Philco-Ford
 

at millimeter wavelengthsof both 24 GHz and 60 GHz, and tracking
 

characteristics comparable to presently used multi-mode tracking feeds
 

in the microwave frequency regions have been achieved. Wile the
 

efficiency characteristics of the multi-mode feed exceed those of
 

multiple-horn feeds, the comparator circuit required can require a
 

large number of waveguide components and thereby be significantly
 

lossy.
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