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Preface

This report is concerned with both the theory and details associated
with the evaluation of large reflector antennas. The work reported herein
was motivated by this Laboratory's need to both understand and improve
the performance of the 16-foot radio telescope at the Millimeter Wave
Observatory, Mt. Locke. Indeed, the heart of this report, the chapters
on astigmatism, gain measurements, and the case study of the l6-foot
antenna, describe the fundamental properties of the 16-foot antenna, both
before and after improvementg-

The earlier Technical Report on the evaluation of the 16-foot antenna,
TR No. NGL-006-69-1, "Calibration Program for the 16-Foot Antenna,
by J. R. Cogdell, was by its own admission preliminary and incomplete.
The present report, taken as a sequel. presents the complete picture of
the antenna properties. The whole picture is, we feel, very pleasing:
the antenna surely ranks with the best in its peer group.

This report is based upon a dissertation submitted to the Graduate
School of The University of Texas at Austin in partial fulfillment of Ph. D.
degree requirements.

The author wishes to acknowledge the commitment and support of his
supervising professor, Dr. J. R. Cogdell. Thanks also are due to Mr.
Archie M. Croom for his able technical assistance with the experiments
reported herein.

This work is sponsored by the National Aeronautics and Space Ad-

ministration under NASA Grant NGL 44-012-006.
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Abstract

This report concerns the evaluation of large reflector antennas.

The major findings include defining the effects of primary reflector
asitgmatism and its quantitative measurement through diffraction pattern
measurements. A method is also presented which reveals the frequency
dependence of antenna efficiency.

Several basic problems are addressed. One is the focusing of
reflector antennas and the interpretation of reflector errors from the
antenna pattern. The second tupic is the investigation of the effects of
primary reflector astigmatism. Evidence is presented that several of
the largest reflector antennas have astigmatism in their primary re-
flector. The third topic‘ offers 4 method with which the antenna effi-
ciency at one frequency can be inferred from the measured antenna
efficiency at another frequency. The method given here is much less
restrictive f:ha.n the Ruze method and bounds the effects of measurement

errors.
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Chapter I

Introduction

This paper concerns the evaluation of large reflector antennas.
The major findings include the effects of primary reflector astigmatism
and its quantitative measurement. A method is also presented which
provides new insight into the frequency dependence of the antenna
efficiency.

The size and precision of reflector antenna systems have greatly
increased over the last twenty years. Today, the largest reflector antennas
are used in radar, space cpmmunications, and radio and radar astronomy.
Large, highly precise antennas are required for these ‘app-lica.tions because
the received signals are relatively weak.

When reflector antennas began to appear in the late nineteen-forties,
there was no theory available to dictate the required precision of manu-
fagture of such antennas., The criterion which had always been used for
optical reflectors was that the reﬂector[l‘] must be within 1 /8 of the required
shape. However, different criteria are used to judge antennas than are used
to judge optical instruments, so a reassessment of the problem was in order.

(2]

John Ruze addressed this problem in his doctoral thesis His theory
is now the accepted standard in the field of reflector antenna evaluation and

design. Probably the most widely used part of his theory is the frequency

dependence of the antenna gain which it predicts.



The Ruze theory is basically a statistical theory and thus is based
on certain ma.the;matical assumptions. These assumptions specify the
behavior of an antenna.by implication. Only recently have antenna engi-
neers come to realize that the Ruze theory is sometimes inadequate to
describe all of the performance characteristics of large antennas.

The Millimeter Wave Sciences Laboratory at The University of
Texas at Austin operates a 16-foot radio telescope. This instrument
is used in observations of radio sources, especially the planets at fre-
quencies up to 140 GHz. It was first located in Austin and worked well
at 95 GHaz. (3] In the winter of 1966/67 it was installed on Mount Locke
near Fort Davis, Texas to take advantage of the better meteorological
conditions there. However, soon after it was installed on Mount Liocke
it was determined that the performance of the antenna fell considerably
short of what was expected. At 95 GHz no satisfactory focus position
could be found, and the beamwidths were always broad in at least one
of the principle planes. In addition, one sidelobe appeareci at a level of
-7 dB when the antenna was a,-djusted for maximum gain. This paper comes
largely from efforts the laboratory has made to improve the antenna per-
formance.

This dissertation addresses several basic problems. One is the
interpretation. of the reflector errors from the antenna pattern. The
second major topic is the diagnosis of primary reflector astigmatism

and its measurement. The third topic concerns the dependence of the
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antenna efficiency on frequency and offers new insigl"lt into this problem
as well as some useful quantitative results.

Chapter II is a tutorial discussion of the aperture field method of
reflector analysis. The important underlying ideas of the method are
discussed with an emphasis on geometric optics. The Fourier trans-
form relations between the aperture fields and the far zone fields are
then presented. This chapter may be skipped without harming the con-
tinuity of the presentation.

Chapter 11l is a critical review of the current literature on antenna
tolerance theory. Particular emphasis is given to the Ruze statistical
theory, which is widely used by antenna engineers today. In addition,
the interpretation of antenna patterns is discussed.

Chapter 1V is the presentation of a reflector astigmatism model.
Several model properties are presented which relate to the far zone
radiation pattern. These properties are useful in determining whether
astigmatism is present in a given antenna and also in measuring it
quantitatively, Evidence is presented through one of these properties
that astigmatism appears in at least two other large reflector antennas.

Chapter V gives a method of inferring antenna efficiency at one
frequency from a measured efficiency at another frequency. If the
measurement frequency is the higher of the two, the error bars on the
inferred efficiency are usually less than the measurement error bars.

Thus, a single antenna efficiency measurement usually serves to define

the efficiency at all lower frequencies. This method is then extended so



that two antenna efficiency measurements can be used to infer the
efficiency at the third frequency. The proofs for these two methods
are given in Appendix B.

Chapter VI is a report of the latest work done in the calibration
program for The University of Texas l6-foot antenna. It provides a
concrete example of the use of the astigmatic phase error model in
Chapter III. A careful efficiency measurement at 134 GHz is reported.
The efficiency of the antenna at other frequencies of interest is then

inferred from a method given in Chapter V.



Chapter 11
Analysis of Reflector Antennas

A. Introduction

At microwave frequencies and above, wavelengths become so short
that conventional array antennas become impractical. However, short
wavelength is a desirable feature for reflector antennas, so reflectors
are more widely used at shorter wavelengths. A reflector antenna system,
which consists of a small antenna and a reflector, is a simple device that
focuses electromagnetic radiation in a particular direction. The purpose
of the small antenna, called a feed, is to launch a wave in the direction of
the reflector, as shown in Figure 1. The feed usually exhibits a broad
radiation pattern. At the reflector the shape and direction of the waves
from the feed are transformed. In particular, they are focused so that the
radiation of the system is much more concentrated.

The following section states the general philosophy behind the aperture
field method of reflector analysis. This is followed by a discussion of geo-
metric optics. In the final section the Fourier transform relations between
the far zone fields and the aperture fields are presented.

B, The Aperture Field Method

One might analyze a reflector antenna as a boundary value problem.

However, this is a general mathematical method that yields little insight

into the actual operation of the antenna. Engineers have traditionally used

what is called the ""aperture field n.aethod“[4} for analyzing reflector antennas.
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This approach is no less rigorous than the boundary value problem approach;
at least in principle. However, the aperture field method yields a great deal
of ingight into the operation of a reflector antenna.

The aperture field method may be thought of as a solution to the boundary
value problem with an infinite sum of partial solutions. One begins by calcu-
lating the fields that would be produced by the feed in free space. However,
the feed is not in free space. Its fields propagate to the reflector where they
set up currents and secondary fields. These secondary fields in turn affect
the feed, so the solution for its fields and currents must be medified. This
effect is called feed reaction. The perturbation caused by the feed reaction
then affects the reflector currents and fields. This iterative procedure could
- be continued until sufficient accuracy were attained.

At first glance this procedure might seem more complicated than the
general boundary value approach. However one can usually ignore the feed
reaction in the case of a prime focus antenna. In addition, the feed reaction
is of only minor importance in a Cassegrain fed antenna,

The neglect of the feed reaction can be seen for a prime focus instru-
ment from simple power considerations. Sup.pose the feed radiates power
Pr as shown in Figure 1. The Pointing vector decreases according to the
1/1-2 law until the wave strikes the reflector. As will be shown later the

reflector will columate this power into a plane wave. The power -density

D

of the reflected wave on the axis is thus > Pr where Df is the direc-
4nF

tivity of the feed and F is the feed to reflector distance. The fraction of

A2
the radiated power absorbed by the feed will be approximately f-é\) )



where Af is the effective area of the feed. For ordinary feed dimensions
and distances F this ratio is less than 10

Since the feed reaction is ordinarily so small the analysis of a large
reflector antenna is a simple two step procedure. The first step is to
analyze the feed as an antenna in feed space. The second step is to calcu-
late the secondary fields from the reflector treating the feed fields as
gources. The analysis E;.nd design of feeds is an art in itself, and has

(51,063,071

been discussed extensively Feeds will be given a minimum
of attention in this paper.

There have been two approaches to calculating the secondary fields
of the reflector. One method, discussed by Silver[S], calculates the
secondary fields from the currents indiced in the reflector. In the other
method, Silver[9 , assumes the waves which are incident from the feed
bounce off the reflector according to geometric optics. The far fields may
then be calculated using an equivalence theorem. Both of these methods
give essentially the same results. The latter viewpoint is the one that will

be followed here.

C. Geometric Optics

The geometric optics approach is a simple way of determining the
result of a wave striking a reflector. This method takes advantage of the
fact that reflectors are typically hundreds of wavelengths across. The wave

[io]

launched by the feed may be considered a scalar wave of the form

8(r) = Blr) e ST, (1)



The function & must satisfy the wave equation

vZ e +x° 5 =0, 2)

If one substitutes Equation (1) into Equation (2) he obtains the equation

2
E

E

ivw]z =kz + (3)

In order to gain some insight into the implications of Equation {3),
suppose the y and z derivations are zero. Then Equation (3) may be re-

written

2

P 2 2 1 3 )
=5 ¥ = @m s —— (v). . (4)
3(x/}) E s/

From Equation (4) one can see that for k2 to dominate the right hand side
of Equation (3} the per unit change in amplitude grading must be small on
a wavelength scale.

This condition is readily satisfied near the reflector of a large re-
flector antenna. This obtains because the amplitude is determined by the
feed gain function which is a broad slowly changing function. It typically
changes by a factor of three from the center to the edge of the reflector,
but this is over a distance of several hundred wavelengths.

From this discussion one can see that the kz term in Equation (3)
dominates in the region near the reflector. In this case the phase change
of ¥ comes solely from the distance traveled. Thus the waves behave as
plane waves in the vicinity of the reflector. Consequently the waves striking
the reflector are reflected with their angle of incidence and reflection equal.

One calls this kind of wave propagation geometric or ray optics.
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D. The Fourier Transform Relations

Geometric optics applies to the local regions near the reflector, but
as the waves travel away from the antenna they must suffer diffraction.
Thus, geometric optics applies only in the region near the reflector.

{11}

Silver makes use of an equivalence theorem to account for the
diffraction phenomena that must occur for any electromagnetic antenna.
The theorem requires one to draw a closed surface around the antenna.
On this surface one places electric and magnetic charges and currents to
account for the sources inside. In this' case the sources are the fields
produced by the antenna. The uniqueness theorem, then, tells us that the
fields calculated from these '"equivalent' sources will be the same as those
calculated by analyzing the antenna as a boundary value problem.

The surface for the equivalence theor‘em is traditionally drawn in a
particular way. Part of it is a plane perpendicular to the axis of the antenna.

' The surface is then closed around

This plane is called the ""aperture plane.'’
the back of the antenna.

The equivalent sources that are placed on the surface are calculated
from the fields that can be calculated by geometric optics. A slight problem
arises in treating the fields near the edge of the reflector. In this region
the amplitude of the fields are changing rapidly and hence do not obey geo-

(12]

metric optics. Silver's solution to this problem is to let the geometric

optics fields continue on to the edge of the antenna where they end on a line
charge in the aperture plane. This convention simplifies the mathematical

(1]

expressions because it makes the aperture plane electrically charge neutral.
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In any case the error caused by edge diffraction is small.

Under Silver's convention there are no charges or currents on the
equivalent source surface except for the aperture plane. Thus the part
of the surface outside the aperture plane can be ignored. In p‘ractice the
electric and magnetic .equivalent charges and currents are not calculated.
This intermediate step is elir:rlinated and the far zone electric field is
written directly in terms of the electric field in the aperture.

[14]

This relatively simple relationship may be written as

-jkr . jka - x
.k e JkL(x) —r -
B =-0g, =5 2, % [(Ez t2,) xj Ex) e e dx]

(5)
In this equation Eff(ir) is the far zone electric field at a field point in the
direction of the unit vector, a. k is the wavenumber which is 2n/\, r is
the distance to the far field point, a is the unit normal to the aperture
plane, E(x) is the magnitude of the electric field in the aperture plane,
and kL{x} is the phase of the electric field in the aperture. These quantities
are shown pictorially in Figure 2. Throughout this paper integrals will be
assumed to be infinite over the whole plane, with E(x) falling to zero for x
outside the reflector area. This convention has the advantage that the inte-
gral in Equation (5) can be thought of as the Fourier inverse transform. In
addition, linear polarization in the Xy d:irection will always be assumed. This

is really no loss in gemerality since the analysis can be done twice if linear

polarization cannot be assumed. Thus Equation (5} becomes
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-jkr . jka_ -« x
_ .k e r 1 kL) T3
E:ff(ir) J 47 ar ¥ I_{az * ar) *a IJI Elx) e © dx.
x

(6}

For large antennas Equation {6) can be simplified since the vector ex-

pression is very nearly —Zax near the axis. Thus, the far electric field has

—1

the same polarization as the aperture fields near the axis. The vector dot
product in Equation (6) can be expanded into a scalar dot product. Let us

define the angular components in the x, and x_ direction to be u, and u, with

1 2 1

sin u, ¥ cos g sin @

sin u, = sin ¢ sin 6.

Now the dot product becomes

a -x=sinu. x. +sinu_x_.
r - 171 2 2

The angles 6 and ¢ are shown in Figure 2. The angular components uy and

u, are almost always so small that sin (u) can be replaced by its argument,

With these simplifications the gain can be written as

2

Glu) = 4_1.1_T]._1.E.._..

o | B JEE IR 22
o in

|~

x
where Pin is the antenna input power and z, is the characteristic impedance
of free space, This eqﬁation states that the far zone gain is the square of

the Fourier transform of the aperture electric field.’ Equation (7) can also

be rewritten in the correlation integral form:

Glu) = - dr, (8)
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where

A‘(I.) = JE(Z) E(.}E + 1) ejk{L(?_{) - Lix + I)} dx. (9)

x
Equation (8) states that the antenna gain pattern is the Fourier trans-
form of the field autocorrelation in%:egral, given in (9). The vector T is the
correlation distance between two points, Figure 2 shows the vectors x and
T in the aperture plane.
Equations (8) and (9) can be rewritten in terms of the gain of the feed.
The feed gain is usually better known than the electric field on the aperture.

This form is

2 .
Glu) =k? j Al sHn T (10)
T
where
A7) = J‘T(E) T#(x + 1) ejk{L(E) - Lix + ;r_)}
=
where
G (6", @) .
T(EE) :f f 5 > e.}k'{'(ﬁ)’
4 {f + v /4f)
and

r=|x|.
The angles 8/ and ¢ are the angles of a ray from the feed to the point x

in the aperture. The phase function 4{x) is the phase error caused by the
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feed system, while L{x) is the phase error caused by the reflector surface.
Equations (7) and (10) are of central importance to this study. 1Itis
through these equations that the far field gain patterns will be related to
phasing errors. Phase errors are expressed in the function L(x} since
this function represents the phase of the electric field in the-aperture
plane. A paraboloid reflector has the property that it transforms a
spherical wave from its focus to a plane wave. Thus, if the reflector is
a perfect paraboloid and the phase surface of the feed is spherical, the
phase error function, L(x}, will be zero. However, any physical surface
must suffer imperfections on some scale. These surface imperfections
are the chief limitation on the performance of a reflector antenna. Various
models for phase errors caused by surface imperfections will be presented
in subsequent chapters. The implications of these models for the important
antenna parameters such as gain, main beam efficiency, sidelobe level,

and beamwidth will also be discussed.



Chapter III
A Critical Review of the Literature

There are many articles in the literature related to the limitations
of reflector antennas. This literature survey will include (A) a discussion
of general antenna tolerance concepts, (B) a review of two papers dealing
with specific phase errors, (C) a discussion and critique of the classical
statistical tolerance model, and (D) a discussion of phase errors seen in
practice. Section{E)shows a useful decomposition of errors.

A. General Reflector Tolerance Theory

[15]

Bracewell showed that the aperture efficiency of a perfect re-
flector is unity when the power from the feed is uniformly distributed

over the aperture plane. In addition, he showed that any other distribution
of energy produces an efficiency less than unity. Thus, the best feed
pattern is one which illuminates the reflector uniformly and falls abruptly
to zero outside the reflector area. In practice, of course, it is impossible
to achieve such a pattern. Some of the feed power will 1inevitably miss the
edge of the reflector. This power is called spillover. Thus, the feed de-
signer must strike a compromise between illuminating the reflector uni-
[16]

formly and having too much spillover power. Ludwig had defined

spillover and tapering efficiencies that separate these two effects for
: - e L1T] . :
comparison. In some receiving applications the spillover is very

important because it contributes to the total noise figure as well as de-

creasing the efficiency of the antennas.

16
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The efficiency of a uniform phase aperture with the spillover, tapering,
and blockage losses considered will be called the design efficiency in this
paper. It is so called because it is fixed by the design of the feed system.
The efficiency of an actual antenna system will fall short of the design
efficiency because the reflector will not produce a true uniform phase front.
The amount that the true effi;::iency falls below the design efficiency is called
tolerance loss and may be expressed as a percentage loss or in decibels.

B. The Effect of Specific Phase Errors

A few authors have calculated antenna radiation patterns for specific
phase error forms. However, most of the discussed phase error forms

-
are too restricted to be used in practice.

[18]

Dragone and Hogg have calculated antenna patterns for antennas

with phase errors of the form;

M
L({x) =EZ:? Z a_ cos (27 mr) (11)
m—"-O

where
r = |x|.
This is a circularly symmetric phase error. Of course, any circularly
symmetric function L{x) may be expanded in such a series since it is a
Fourier decomposition,
They worked two examples which had only a single Fourier com-

ponent. In both of these examples the sidelobe level was enhanced in
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a single angular direction. The enhancement was also further from the
main beam for larger m.
[19]

Silver has investigated circularly symmetric quadratic phase

errors where

2\ L2
T
L =p - (3) -
(x) =p
The constant B is the phase error at the edge of the aperture in radians.
: . . : [20]
This work was based on an asymptotic expansion derived by Spencer
. f21] . s
which was later corrected by Fago . Silver showed that this kind of
error causes the antenna beam to be broadened and raises the level of
the near sidelobes. In Chapter III the quadratic type phase error will be
considered in 2 much more general context. In particular it will be shown
that moving the antenna feed will introduce an error much like the error
given in the equation above. Thus, if an error like this were actually
present in an antenna it could be substantially cancelied by merely moving

the feed.

C. The Classical Statistical Model

Many of the papers on antenna tolerance theory are based on a
statistical model for the phasing errors in antennas. This model was
first proposed by John Ruze in his doctoral dissertation. Ruze's model
requires that one postulate a large number ¢r ensemble of antennas. Each
of these antennas is assumed to be identical except for "random' errors
made in manufacturing the reflector. These manufacturing errors lead

to a different phase error function L(x) for each antenna of the ensemble.
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“Thus, L{x) is a2 two dimensional random process. In addition, Ruze
assumed L(x) was wide sense stationary and Gaussian with a correlation
function given by

R_ (1) = (2¢)° o lal e
The parameter ¢ is interpreted to be the rms deviation of the reflector
surface from a true paraboloid while ¢ expresses the distance over which
the phase errors are correlated.

Since the function L(_}S) is a random process in this model the gain
pattern, G(u} is a random process. This conclusion follows from the fact
that integrals of random processes, if they exist, are random variables.

The fact that G(u) is a random process poses a problem since the
results of the theory must be applied to a single antenna., The solution
adopted by Ruze[zz]. Ba:o[23], Shifrin[24], and others is to calculate
the ensemble average ra:dia.tion pattern. This is accomplished by taking
the statistical expectation of the gain function. In this case one is aver-
aging C‘(E) over all the antennas in the ensemble for each value of u. The

average radiation pattern may be written from Equation (10} as

2 . .
E G(u) =-1%—f j‘E {e‘]k[L(z) - Lix +'T')]} T(x) T(x + 1) e_Jk}1 "L,
Ix

(12)

where E stands for statistical expection,
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In Equation (12) the expectation has been brought inside the integral.
This is permissible since the integral of T(x) is bounded. Taking advantage

of the stationarity of L(x) one can rewrite Equation (10} as

E G(u) =—l—:;— j' £(1) A(1) ejkll— "X dr (13a)
X
where
and
A = [ TE TE+ 1) (13¢)

W

The function A(r) is the autocorrelation of the aperture field and is inde-
pendent of any phasing errors.

Another consequence of the stationarity of L(x} is that L(x) may be
assumed to have zero mean. If it does not have zero mean then another

randorn process say L'(E) may be defined as

L'{x} = L(x) - m,
where
m = E Lx}.
Consequently one can easily see
JELL(o) - L(r)] _ ejk[L'(O) - L(7)]

The function f(r) in Equation (13b) is a characteristic function.
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A characteristic function of a2 random vector y is in general

., t
flw) = E /= L,
If one lets the y-vector be [L(o), L(7)] then the expression given by
Equation (1Bb) is f(k, -k). Since L is by assumption a Gaussian random

process with zero mean its characteristic function is given as

t
-1
f(lw) = e /2"_" _E’l",

where B is a matrix given by b_j = Eyiyj. Thus
- i

2, 2
, e-]1| /e
B = (2¢)

R

This is actually the definition of a Gaussian random process given in many

[25]

texts Thus, by simple manipulation one has

. 2
E eJk[L(E) - L(;f_)] = e"k [R(E) = R(i)]_ (14)

Substituting the form of R{g) into Equation (14), Equation (13) becomes

TIRGONERL

E G == e Afg) & KB D g

—— —

T

(15)
. Equation (15) is of fundamental importance since it is a completely

general expression for the average gain pattern under the Ruze statistical
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model. Most authors who have dealt with this statistical model have
derived their results under some condition which restricts the para-
meters ¢ and ¢ or the angular variable u.
1. Small Correlation Regions
Ruze in his original work on the subject restricted himself

to the case where ¢ << D, where D is the diameter of the antenna. Ruze's

result[26] may be stated as
2
- _lwe w)
2 : 2 2.2n 2
- -{o) C?-Trc - (o) z (o) . nA
E G(u) = G_(u) e +H(= )e T e (16)
n=}

where;

u = sin @

Go = phase error free gain

o _4ne

e

The first term in Equation (15) has the same anguiar dependence as the
phase error free or design pattern Go' The second term is broader in
angular extent. Its beamwidth is determined by the correlation distance,
c.

Equation (16) is interpreted to mean that energy is taken out of the
main beam of the antenna and scattered into the sidelobe regions. Figure
3 is a normalized radiation pattern graph for ¢ = 0. 05D with (4n 6/7\)2 as

[26

a plotting parameter. Figure 3 is borrowed from Ruze. ] As one can

see from this figure, the first term in Equation (16) dominates on the axis



0.1

POWER
o
2

0.00i

0.0001

llrllll ; 1 ITTIIIl 1 ! lllllll | i IIII—[II

2.0

4.0

DIFFRACTION PATTERNS

v

C=0.05D-

SCATTER PATTERNS

¢

Fig. 3

23

20

dB



24

for e<< ). Thus for axial gain considerations Equation {14) is often

shortened to the form

_(4‘”6‘\2
g8, N (17)

Equation (17) is often used to extrapolate the measured peak gain
of particular antennas, to different Wavelengths[27]’ [28]. For this pur-

pose Equation (17) is usually written in decibel form with the expectation

being ignored, i.e.

N, = 680 (e/n)2, (17a)

2
where Nt is the tolerance loss in decibels. If Nt is plotted against (1/n)",
a straight line should be formed if the tolerance loss follows Equation (17a).

This graph has been called a Ruze diagram[zg] .

The usual procedure is

to plot several measured values of the tolerance loss on the Ruze diagram

and fit a line to the data. Then the tolerance loss is estimated by the line.
The procedure outlined above suffers from three shortcomings.

First, it is a misapplication of Equation (17a). Since Equation (17a) applies

to an ensemble average of antennas, the axial gain of a particular antenna

cannot be expected to follow the law that Equation (172} predicts, because

the experimental outcomes of a statistical sampling scatter about the en~

semble average. Secondly, Equation (17a) was derived under the assumption

of a small correlation distance. As discussed in Chapter IV and pointed

[30]

out by Ruze , errors often have large correlation distances in a practical

case.
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The third shortcoming relates to the mathematical interpretation
of the Ruze model. The experimentally measured "gain' of an antenna
is always the peak gain. Thus the measured peak gain should be com-~
pared with the ensemble average of the peak gain. The average of the
peak gain is greater than the peak of the average gain function given in
Equation (16). This happens because the peak gain may appear off the
axis for some of the sample functions of G(u). The ensemble average

peak gain should be written

2 . o
ZEsup {f [ T Tt SR LX) - Lix + 1)] -jkw- 3, ]
233 u — —
- x

I=

This effect will come into play most strongly for large ¢. This occurs
because long correlation distance errors are most likely to change the
pointing of the beam.

In order to illustrate these three points an example has been con-
structed. The antenna for this example is a square with NZ independent
regions as shown in Figure 4. Each region in this example may be thought

- [31]

of as an individual reflector panel as discussed by Bao. The phase
in each region is given by a Gaussian random variable, Lij' from a random

number generator. The formula for the tolerance loss of the peak gain as

a function of frequency is

NN osimer. 2 2
_ sinx sinyo¢ 37 ij 3 S A
1,00 = sup [SHEE) ) e S

3

m=lrel
The variance of Lij is chosen equal to c¢/4n. Thus, the antenna gain maxi-

“mum (4.3 dB loss)} should occur when f = 1 according to the Ruze formulation.
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Figure 5 shows six experimental outcomes or sample functions on
a Ruze diagram. The antenna for this example has nine independent re-
gions. It is felt that nine is a realistic number of regions for a practical
antenna. As one can see the tolerance loss does not follow.any definite
rule for large losses. In particular the losses deviate significantly from
the line predicted by Equation (17a) in the large loss region. This is
caused partly by leaving out the scattering term of Equation (16). How-
ever, it is clear that the individual sample antennas not only fail to behave
as Equation (17a) predicts but fail to follow any definite law.

Figures 6 and 7 are corresponding figures for antennas with 36 and
100 independent regions respectively. It is clear that Equation {172) gives
betfer results as the number of independent regions on the aperture is
increased, 1i.e. -c decreased. In ithis case the pain integral, Equation {7},
is actually an average of a large number of independent random variables.
Thus, the variance of 'ﬂt(f) becomes small by the Central Limit Theorem.
In this case a particular sample function 'qt(f) should agree with the ensemble
average, E ‘nt(f).

It should be noted that small correlation distance phase errors do
not guarantee that the antenna will follow the law given by Equation (17a).
The assumption of Gaussian phase errors plays an important role. For
example, if uniformly distributed phase errors are assumed instead of
Gaussian errors, the ensemble average of the tolerance loss will increase
faster than Equation (17a) predicts until the scattering term takes effect.
Figure 8 shows six sample functions from an antenna with 1(‘)O correlation

regions and uniformly distributed errors.
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2. Larger Errors and Correlation Regions
{ 32] . . e -
Zucker derived a form for the axial gain similar to

Equation (16) where he considered larger correlation radiuses. This

result may be stated as

-q ® Zn
o G (o) te 21 c:) oo 7
= o 1 - 1
EGlo)=e K A L n!n L AnJ (18)
n=1
h all of th bols ha th a anin before and A = 2¢

eyl I, - .

where e sy ve the same meaning as be v

The parameter ¢ must be such that

D\Z.
("g) >> 2
In the limiting case when ¢ = 0 this form agrees with the Ruze expression
given in Equation (16). This form for the axial gain has not been widely
used.

Bao[ 33] has turned to numerical calculations to see the effects
of larger c on the radiation pattern. Some of the patterns which he calculated
are shown in Figure 9. For small correlatio'n distances compared to
the antenna diameter Bao's results compare favorably with Ruze. For
large correlation distance phase errors the sidelobes become very indis-
tinct and merged with the main beam. For c comparable with D the relative
power became quite high at the angular position of the first sidelobes in the-
design pattern. In addition there begins to be considerable beam broadening.
This does not happen for short correlation dista.r_;c‘;-‘: errors unless the rms

phase errors are so large that the main defraction beam disappears.
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[34]

Schefiler has given an asymptotic form of Equation (16)

for large rms errors. This is

2
2 2 <8
2ncy [l-e° 1 "\des
1
r / o2 © ’ (19)

o
G(o) =

where all of the symbols have the same meaning as before. The corre-
lation radius and rms phase error determines the beamwidth here rather
than the diameter to wavelength ratio. This simply means that the level

of the main defraction pattern has sunk below the level of the scattered

3
energy. For even larger values of ¢ Equation (19) becomes{,[ >
, _(si)z
7 C™ de
G{e) =3/ © . (20)

Now both the peak gain and beamwidth are independent of wavelength and
antenna diameter. The ratio e/c has been interpreted as the average slope

of the phase error function.

3. General Discussion of the Statistical Model

Many of these results‘c:an be sveen in an intuitive way by con-

- sidering Equation (15) as a Fourier transform. Specifically the autocorre-
lation function A(t) and the design gain pattern are a Fourier transform pair.
These are shown side by 'side at the top of Figure 10.

The effect of the Ruze I'nod-_el is to multiply the autocorrelation

. function by the function f(y) where
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2, 2
f(r) = 8_02[1 - erlal e 1

This function is complicated in form, but it is almost equal
to the simpler form

2/2
fr)=a+(l-a)e Xl /e (21)

where

2
a=‘-epc

This simpler form has the same first three taylor series terms as well

as the same asymptotic value as {rrl — ®. Actually the form given implieitly
for the decor‘rela.tion of L(x) by Equation (36) is just as valid as the form Ruze
assumed. The advantage of this new form is that it may be easily Fourier
transformed. Its transform is an impulse of heighth a plus a Gaussian of
width /4/n/c and height (1 - a)% cz.

Four examples of the function f(7) with various values of ¢, and ¢
are given under A(7). Their Fourier transforms are shown to their right
under GO(E). The product of A{r) (1) is the function actually transformed
in Equation (13). However, multiplication in the correlation domain corres-
ponds to convolution in the angular power spectrum domain. For this
discussion it is easy to see the results of the convolution,

The first example is the casé of small o and small €. The trang-

form is a relatively high impulse and a broad Gaussian under the impulse.

The convolution of the error free pattern with the impulse merely replicates
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and reduces the error free pattern. The convolution of the pattern with
the broad Gaussian essentially replicates the broad Gaussian since the
pattern is nearly an impulse with respect to it. The net result is a pattern
like those shown in Figure 3. It has the main diffraction beam essentially
unchanged and a broad skirt in the sidelobe region. This is the case con-
sidered by Ruze.[36:l

In the second example the ¢ is large but ¢ is still small. In
this case the main diffraction beam sinks down below the scattering level
and pattern is determined entirely by ¢ and e[ 37].

In the third example one has large o and ¢ comparable with D.
This is the case considered by Bao. The resulting pattern is like those of
Figure 8. Here the Gaussian convolver is comparable in width to the main
diffraction beam. Thus, it smears dut the patterns and broadens them.

The last example is that of large ¢ and ¢ larger than D. In this
example both the impulse and Gaussian beam are narrow with respect to
the pattern so the error free pattern is merely replicated. This case is
of only academic interest since a correlation distance much larger than the
antenna means that there is no phase error.

D. Phase Errors in Practice

The relationship between the characteristic function, f(_q_-_), in the
previous section and the resulting average antenna pattern is fundamental.

This relationship may be stated from Equation (13) as

12
Glu/n) =— F LA (1) {(x)] (22)
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where F represents the Fourier transform. The fact that f(r} was derived

under a statistical model and G(u) was an average pattern is incidental. The

function (1) may be defined in a completely general way as

” Te) Tl + 1) SFL LX) = Ll 1)) g

f(r) = —=
J' T(x) T(x + v} dx
x
The pattern G(u) is now the observed pattern of the antenna rather than an
average pattern. If there were no errors on the reflector then f(7) would
be unity. If any decorrelation takes place between points 71 apart in the

aperture then f(r) falls.below unity in magnitude.

Equation (22) may be rewritten as

2
Glu/n) =— F [A (r)] * Fl£(r}]

e

where * stands for convolution. Since f(r} représents the decorrelation
of the fields on the aperture, one can classify the various kinds of decorre-
lation from this equation and the pattern.

The relationships shown in the previous section are still valid for
this discussion if the pattern G(u) is interpreted as the observed antenna
pattern instead of the average pattern. If the decorrelation of the fields
takes place over a distance small with respect.to the diameter of the
antenna, then the far zone pattern will have broad skirts. If the decorre-
lation takes place over a distance comparable to the diameter of the
antenna, the main beam will be broadened and the sidelobe structure

generally less distinct.
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This latter kind of antenna pattern is the one most often reported
. . {38]
in the evaluation of large reflector antennas. J. Schraml reports
that the beamwidths of the NRAO - 36 -foot antenna are about 10% different
in the two principle planes. . This effect probably comes from a long

correlation radius phase error smearing out the pattern in one of the

planes.

[39] [40

Cogdell and Bathker ] report almost identical phenomena

in The University of Texas 16-foot antem;a and the JPL 85-foot antenna. -
Both note that in one plane the pattern can be corrected by axially moving
the focus. However, the pattern in the other plane is always broad.

Ja,cobsl:dllJ notes that at least one of the patterns of the Aerospace
Corporation 15-foot antenna is always broad. He attributes the effect to
the atmospheric scintillations. However, it should be noted that the
broadness of the pattern could well arise from phase errors in the
reflector.

Bathker[42] Zives a mechanically measured error contour map for
the JPL 200 foot antenna. This map shows that the reflector is divided
into six pie sections with each section having an error of the opposite
sign from the two adjacent sections. This is clearly a 1C$ng correlation
distance error.

Thus, many of the phasing errors usually seen in practice have the

characteristic in common that they cause decorrelation over distances

comparable to the diameter of the antenna. This effect seems to occur
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because the dominant error producing effects, such as thermal and
gravity loading affect the antenna structure as a whole.

E. A Natural Decomposition of Errors

As discussed above long correlation distance errors scatter
energy into the main beam and broaden it. This broadening can be
used to separate the effects of long correlation distance errors from
the short correlation distance "random' errors,

It might at first seem artificial to classify errors as either of
long correlation distance, comparable to antenna size, or of short corre-
lation distance, much smaller than antenna size. One tends to exclude
the intermediate case through a consideration of the sources of antenna
errors. In the literature the following sources of error are identified:
(1) gravity loading, (2) thermal distortion, (3) initial rigging or adjust-
ment bias, caused for example by master template error or error in
optical alignment instrument, and (4) manufacturing error or residuals.
The first three sources affect the entire antenna structure and hence will
produce errors which are correlated over the entire antenna.

The fourth source will produce errors that tend to randomize over
a small distance. In the case of a rigged antenna, in which the antenna
figure is fixed by many mechanical adjustments, errors would decorrelate
in a region controlled by a few adjustment bolts at most. If optical targets
are placed on the surface to monitor adjustments, a similar situation would

obtain. For a machined surface, errors would be determined by digitizing
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residuals and deflections of the surface under the force of the machining
tool. In all these instances, the correlation distance will be comparable
to the microstructure of the antenna.

The tolerance loss of an antenna is defined as the ratio of the
true efficiency to the design efficiency, 'I]/’no. Let us break the tolerance

loss into two factors, i.e.

A 1
’ﬂo—ﬂsﬂ ’
1l

where T| 1is the tolerance loss from ''random' errors and —% is the tolerance
5

f

o
loss from long correlation distance errors. The parameter T]‘r) is the effi-

ciency of the antenna if only the long correlation distance phase errors
were present.

43)

If the main lobe is modeled by a Gaussian function then one can
easily show that the efficiency is inversely proportional to the product of
the beamwidths. This proportionality holds because the integral of the
pattern must be a constant. The appropriate efficiency for this discussion
is 'n{’ since it is assumed that the long correlation distance phase errors
cause broadening of the beam, i.e.

i

T, o .
L 8162

If there were no phase errors, then 'I']’t should become T]O, SO

1
N o= >
g dg ok
o 8%,

where 81* and 6,% are the design beamwidths.
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The expression ior the tolerance loss can now be written

. el'.cez-s
no S e].92

il

The parameter ’ns is the loss from random errors, so it should be

[44]

given by the factor derived by Ruze , i.e

2
~4drreN,

e“\h)

'n =

s

where € is now interpreted as the short correlation distance manufacturing

error. Thus, one has

"4116\2
o () 81 %e*
no 8192

Rewriting this expression in decibel form, one obtains

e
P

1~ 62“ 7€ 2
+1 —_— — = -
N, + 10 1°g10‘\el='s) * 1°g10<92*J 680 \A) ’ (23)

where N’c is the total tolerance loss in decibels.

If one plots the left hand side of Equation (23} against fz, then one
should sense the losses caused by the short cor?elation distance manu-
facturing errors. The graph which has been described is plotted in
Figure 11 for The University of Texas 16-foot antenna. The value of ¢
obtained is .07 mm which compares favorably :With the value of . 06 mm

that the manufacturer quoted. This later value was measured relative

to a template under ideal conditions when the antenna was being constructed.
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Chapter IV
An Astigmatic Phase Error Model

A, Introduction

The dominant phase errors in reflector antennas are often errors
which have a large correlation distance. Direct surface measurement by
optical or mechanical methods usually reveal only a few correction re-

[45],[46]

gions on the reflector . In addition, antennas with f.significa.nt
tolerance loss usually have broad beamwidths and high sidelobe levels .[47]’[48]
In Chapter III it was pointed out that broad beamwidths and high sidelobes
are evidence for large correlation radius errors.

Often the phase errors in a reflector antenna system vary with the
antenna pointing[49]' [50]. This effect is thought to arise from gravity.
The gravity vector loads the antenna backup structure in different ways
depending upon the orientation of the antenna structure. One might expect
gravity loading to effect the structure as a whole and thus produce slow
systematic errors. Such errors have been borne out by a structural
analysis done with a digital computer on the Haystack antenna. [51] The
calculated error was in the form of a four leaf clover with opposite leaves
having the same sign error. The purpose of this chapter is to give a
realistic model to this four-leaf-clover-type phase error, which is called
astigmatism in optics. Several properties of the antenna pattern of an
astigmatic reflector will be shown. In addition special emphasis will be
given to determining the model parameters from experimental data.

Both pattern range measurements and astronomical measurements will be

considered.

44
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Astigmatism is a w‘ell known phenomenon in optics. However,
different parameters are of interest in antenna theory than in optics.
Most antenna systems have only a single detector at the focus, as opposed
to a photographic plate which is actually an array of deteclors. An object
must be observed in such a system by scanning the beam through it. Thus,
the parameters of interest for an antenna system are the gain and the beam-~
width. In the case of an optical telescope one is interested in the extension
of a star image caused by the astigmatism.
B. The Model

The model that will be considered is a model for phase errors in

the aperture plane. This model may be stated as

2 2
_ v
Lr(-:f-) - L Zamn R m+n ((24)

The symbol Lr means a phase error caused by the reflector. The co-
efficients a_,are model parameters and have units of length of phase
error at the edge of the aperture. This expression may be thought of as
a Taylor's series expansion of the actual phase error function. All the
terms of less than third order are included.

Only the second order coefficients of Equation {(24) are significant
to the far zone gain pattern. The coefficient a__ does not appear in the

00

expression for the far field radiation pattern while 241 and 20 represent

linear phase gradings. As shown in Chapter II, the far zone electric field
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is the Fourier transform of the aperture electric field. Thus, the linear

phase grading on the aperture represents translation of the beam in angle
[52] . . . s

space. However, antenna properties such as peak gain, efficiency,

main beam efficiency, beamwidths, and sidelobe levels remain the same

when the beam is translated. Thus translation of the beam is unimportant

and will be ignored.

C. Phase Errors Introduced by Moving the Feed

The position of the feed is one of the fundamental parameters of a
reflector antenna system. The feed position affects the phase front that
will appear in the aperture plane. Thus, all of the important antenna
parameters depend significantly on the feed position.

The absolute position of the feed is seldom accurately known. More
often, however, one has available a method of moving and measuring the
feed position on an incremental basis. In the following an expression will
be derived for the phase error caused by such an incremental displacement
of the feed.

Let the feed be moved in a coordinate system (A, B, C) as shown in
Figure 12. The origin of this coordinate systerm is taken to be at the focus,
but the final result would be unchanged so long as the origin were anywhere
in the region of the focus. The length of a ray from the feed to the aperture

plane is approximately

2
_ Db 1 2 2 2 1 2.2
Lf(-"}s)_16F-4fr +J(x1-A) +(x2-B) +(F+C-4fr),

where
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For the discussion of this model lateral focus movement will be
ignored, so A and B will be set to zero. However, it must be pointed
out that lateral focus corrections should be an important part of any
‘focusing procedure. ILateral focusing will be discussed as it relates
to this model in the next section.

Assuming C << ¥ and using the binomial exp’ansion of the square
root one can show that

L(x)= - co =y te C—lf->4+ e
= 4 \2F 4 \2F

where all of the constant terms have been neglected. The quadratic term
is by far the dominant term here. For F/D = 0.5 the quartic term is only
1/4 of the quadratic term at the edge of the aperture. In the interior of
the aperture where the field Ji.ntensity is greater the guartic term vanishes
comparatively. Thus, only the quadratic term will be retained in this dis-
cussion, Thig assumption is consistent wi.th the dropping of the third and
higher order terms from the reflector error function.

D. Total Phase Error

The total phase error is.the sum of the error caused by moving the

focus and the error arising from the reflector. This may be written

Lix) = Lf(f) + Lr(g)-

Substituting the appropriate expressions for Lf and Lr' one has
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r 2 2 5 2 2.0 2
Lix)=ja.,.x, +a . x,x +a. . x, +C— [x, +x, )|/R ".
e 2071 11 7172 2.2 2 1 2
L 0 64(F /D) 1%
The constants a__, a__, and C are redundant so it will prove convenient

20" 02

to eliminate one of them. Let the new set of constants be o, g, ' where

Lix}) = [cr xlz +Boxx, - xzz +I'K (xlz + xZZ}J/ROZ (25)
where
" - %20 " %02
2
- 250 T 202
2K
P =2y
2
_5 D
and K=%3 \&/

The constants ¢ and B depend only upon reflector errors while I' is directly
proportional to the focus position. T also depends on the reflector errors.
However since the reflector errors do not change I' can be thought of as
the focus position variable,

L53]

An interesting special case of Equation {25), given by Silver , has

been discussed in'Chapter IIl. He considered a quadratic reflector error of

the form
Lix) = Cf-:t.‘2
where C is a constant.
Thus in Equation (24) 29y T 8y and a;; = 0. The phase error given by

Equation (25) can now be made identically zero by moving the feed so that
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L= 0. Thus, since this kind of phase error can be corrected by simply
moving the focus position, the quadratic reflector error given by Silver
is degenerate. Of course, it should be kept in mind that moving the feed
introduces higher than second order phase terms.

E. Model Properties

As discussed in Chapter IIl phase errors most often cause decorre-
lation over distances comparable to the diameter of the antenna. Hence,
the astigmatic phase error model which has been discussed has a certain
infuitive appeal. In this section several model properties concerning the
far zone radiation pattern will be siven, Through these properties, one
can determine whether this model is a reasonable representation of tﬁe
phase error function.

In order to state some of these properties in their most general form,
the concept of an antenna pattern contour map must be introduced. A contour
map is a two dimensional representa;tion of the radiation pattern of an
antenna. It has two rectangular coordinates u, and u_ which correspond

1 2
to angular directions uy and u, - Lines are drawn in these coordinates
which describe the locus of a specific pattern level.
For this discussion it will prove convenient to define two symmetry
concepts. One is symmetry about a line through the origin at an angle .
The angle g is an angle measured counterclockwise: from the u, coordinate.

Symmetry about this line means that the mirror image of a locus on one

side of the line appears on the other side of the line. Another concept that

Z &
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must be defined is symmetry of the map about the origin. This will mean
that all of the contour loci are symmetric about the origin and that the gain
function is even, 1i.e.

G(u) = G(-u).

These five properties may be thought of as symmetry properties of
the far zone pattern. Some symmetries can be seen at any focus position
while others require focus movement. The proofs of these properties are
given in Appendix A,

The first two properties are symmetries which can be seen at any feed
position. Thg first of these may be stated as follows:
Property 1. 1If the illumination function E(x) is symmetric about the origin,
i.e. E(x) = E(-x), then any contour map is symmetric about the origin for all

feed positions and reflector errors. That is

Gfu} = G(-u), for all w, B, and r.
.This property also implies that a pattern cut taken in any direction will be
symmetric.

The condition E{x} = E(-x) is a very mild one. It is difficult to imagine
any feed system for which the illumination function would not be even, since
most feed systems are symmetrically constructed.

Figure 13 is an example of a contour map of the pattern of a reflector
with astigmatism. This figure illustrates property 1 holds in the finest
detail. Figure 13 and several figures that follow in this chapter were cal-

culated in a digital computer with a program that will be discussed in



52

Appendix A. The illumination function is the illumination of a horn feed
of dimensions 1.25 X x 0.9 A on a paraboloid with an F/D = 0. 5.

The converse of this simple property is perhaps more useful, since
if the contour map is not symmetric the model does not hold. In an actual
antenna evaluation, of course, one does not expect property 1 to hold with
arbitrary accuracy.

Pattern asymmetries can sometimes be corrected by moving the feed
laterally. It is easy to show that the pattern assymmetry is caused by an

odd phase error function, that is a phase error such that

Li{x) = -L({-x).
Moving the feed laterally prociuces an incremental phase error that also
has the odd property. This incremental phase error can sometimes be
used to cancel the odd error in the refiector. The. focus position can be
moved laterally until the level of the first two sidelobes are equal in each

[54]

of the two principle planes. It is easy to show that the feed should be
moved in the direction of the lower sidelobe. For example, if the lower
sidelobe is East of the main beam, then the feed should be moved East.

If the patterns are still asymmetric after the sidelobe levels.are
made equal then there is a large odd phase error. In this case the
astigmatic phase error model is clearly inappropriate.

The second property shows that the contour map should be symmetric

about two perpendicular lines., Property Z may be stated as follows:

Property 2. If the illumination function E(x) is only a function of r, the
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the radius from the center of the aperture, then a contour map of the
pattern is symmetric about the lines

tan Zg =-;—%

for all feed positions.

Property 2 gives a further fact that can be used to determine
whether a given reflector has astigmatism. If the property is satisfied
then the relationship between o and 8 is easy to establish. One need only
plot a contour map of the antenna and draw the ¢ direction on it. Then a
linear relationship between o and B is established by the equation given
above.

Figures 13 and 14 illustrate this property. In the first case the
¢ directions are aligned with the axes. In Figure 14, however, the ¢
direction is inclined to the axis by about -9°. As one can see property 2
is not rigorously satisfied in Figure 14. This occurs because the illumi-
nation function is not quite circularly symmetric. The illumination,
however, is chosen to be realistic. It is the illurnination produced by
the horn feed discussed above.

Property 3 shows that the radiation pattern produced by a phase
error of @ and g for some T is the same radiation pattern that would be
produced by -o, -8, and -T'. Property 3 may be stated as follows:
Property 3. If the illumination function E(x) is symmetric about the origin,
i.e. E(x) = E(-x), then the gain is an even function of ¢, 8, and T taken

together. That is
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G(ul, u,, o, g, N = G(ul, u_, -, =B, -T).

2 2’
Figures 13 and 15 illustrate this prolgierty. These two contour maps are
identical while Figure 13 was calculated with the negative of the parameters
used in Figure 15,

In a subsequent section a technique will be presented that predicts
the model parameters by matching the predicted radiation pattern of this
model to the observed pattern. Property 3 makes the results of any such
technique ambiguous. Specifically, it is impossible by this method alone
to determine whether a certain reflector error ¢ and g or its negative -o
and -g is present in the reflector.

Property 4 states that changing the sign of the reflector errors ozla.nd 8
exchangesthe role of the patterns taken in the ¢ direction. The vy pattern
becomes the u, pattern and: the u.'2 pattern becomes the vy pattern. Property

4 may be stated as follows:

Property 4. If the illumination function E{x) is only a function of r, then

the angular coordinates which are aligned with the ¢ direction, tan 2¢ = 2

, BX-~

change roles when o and B change sign. That is

G(u ! u ’: o, Bl F) =G(uzli u ’: -o, -8B, 1-‘)

17 72 1
where
"t .
ul ~ cos ¢ - sing wy
[ .
u, sin @ cos u2

This property will be useful in a subsequent section,



-10

-20

--20

CONTOUR MAP

.3 dB
— =10 dB

. ———204B
0 es, f 30 dB
PN
et g N ka =-2.0
/ \ :

e A NN e /% = 0.2

0 an? I'4 . .s
C. \ ..
: ;g ! AN .
: % ;) ) :
< \ - ! :
- A Y \ / ,I . '.o

\
- A Y S
.'. a® N / POTTR—
TN sy

AN

. ~ H

a... ..o

“n -~
: ?

~i5 -0 -5 0 5 10 15 20

Ls



58

Property 5 gives the most detectable consequence of primary
reflector astigmatism. It may be stated as follows: _
Property 5. If the illumination function E{x} is only a function of r, then
the angular coordinates which are aligned with the g direction, tan Z¢ =:2-S- \

change roles when T changes sign. That is

Glu,’, uz’, o, B, T) =G(u2’, ul', o, B, =T}

where

cos @ - sing u,y

u sin ¢ cOs ¢ u

2 2

One immediately correlary of property 5 is that the axis gain is an

1T " 0. Figure

even function of T'/A. The axis gain is the case where u
16 shows the axis gain plotted against I’ with ¢ as a plotting parameter (g = 0).
This graph shows that the axis gain suffers little when o is small, but deter-
io'ra.tes rapidly as ¢ is increased. The axial gain is also much less sensitive
to the feed position when ¢ is large.

Property 5 also requires the radiation patterns in the g directions to

exchange rolés when T' changes sign. This is perhaps the most striking quality

of the model. As the feed is moved from -T to I, the ul ! coordinate should

7

! pattern should become the uy

become the v’ coordinate, and the u

2 2

coordinate. Figures 15 and 17 illustrate this behavior. The illumination
function for these maps was calculated for a horn feed as mentioned above,
so the illumination is not quite circularly symmetric. That property 5

is not satisfied exactly can be seen in the 30 dB contour.
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Suppose the uy ! pattern is broad while the uz' pattern is narrow
at some focus position. Then there should be another focus position
where the u, ! pattern is broad while the uy ! pattern is narrow. Figures
18 and 19 illustrate this fact. Figure 18 shows the principle cuts of the
pattern with ko = 2, g = 0, and T'/x = +0.2, while Figure 19 shows the

pattern cuts withkv=2, p =0, and I'/A = -0.2. The u, pattern of Figure

1

18 is the u, pattern of Figure 19 and vice versa.

This kind of pattern behavior has been noted by several authors.

L55]

Bathker in his evaluation of the JPL 85-foot Ground Antenna states,

The hyperboloid was set 0.500 in. toward the apex which approxi-
mates the high elevation angle focus for maximum gain. Figures
29 and 30 show the resultant patterns. The azimuth cut is seen to
have a narrower main beam while the elevation cut is broader. ...
Although a corresponding hyperboloid position toward the vertex
.was not tried it is suspected the inverse would be true, i.e. the
elevation would be nearer an optimum focus and the azimuth plane
would be defocused. ...

Bathker later confirmed that the paraboloid had a surface error that would
fit the astigmatic phase error of Equation {25) very well by making mechanical

measurements of the reflector figure.

[56]

Bathker is not alone in reporting this effect. Jacobs and King
in reporting on the characteristics of the Aerospace 15-foot antenna state:

...0On rare accasions only moderate beamwidth broadening in the two
orthogonal patterns occurred. However, on most occasions there was
modest broadening in one plane and considerable broadening in the
orthogonal plane. Sometimes this large amount of broadening occurred
in the declination cut, and on other occasions it occurred in the hour-
angle cut. On no occasion did extensive broadening occur in both
planes during one measurement period.. ..
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Jacobs and King interpreted this effect as arising from the atmosphere.
However, it seems strange that the atmosphere could somehow scatter
energy in the declination direction and not in the polar direction. Instead,
this effect could quite possibly have come from slight movement of the
secondary reflector and astigmatism in the primary reflector.

F. Measurement of Model Parameters

If adjustments are to be made based on this phase error model it
is important to know the model parameters. Three methods will be given
for determining these parameters. The first method depends upon the use
of a pattern range facility to make a contour map and beamwidth measure-
ments. The second is a method for measuring beamwidths astronomically
by observing solar limb crossings. The third technique is a digital com-
puter algorithm. It matches a predicted map of the antenna pattern to an
ocbserved map.

1. Pattern Range Method

The model parameters can easily be measured if a pattern range

is available. The first step is finding the line of symmetry on the contour
map. The line of symmetry can usually be found from a single pattern
contour. A 10 dB level has been found to be convenient, because it is sensitive
to the ¢ direction yet it is not usually complicated by sidelobes. If one
identifies the symmetry directions on the contour map, then a linear

relation between o and B is established by Property 2, This is

-2¢ tan 29 = B. (26)
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It is possible that the contour map will be circular. However, at
another axial focus posifion the eccentricity of the contour map should
appear. If the contour map were circular at each axial focus position
no astigmatism is present in the antenna.

The parameter o can be determined by observing the beamwidth
change in the ¢ direction with the axial feed position. Figure 20 is a graph
of the beamwidth in the ¢ direction vs focus position. The abscissa scale
is I'/A. The ordinate scale is the fractional widening of the beam over
the design pattern beamwidth. The plotting parameter is ko', where k

is the wavenumber. The relation between o', @ and @ is given by

o =a’ cos 2. 27)
The parameter o’ is the value o takes on when the (xl,xz} - coordinates
are rotated so that the center term in the model, Equation (25), is elimi-
nated.

The value of ¢’ can be determined by plotting the observed beam-
widths in the ¢ direction vs focus position on Figure 20. The parameter
o’ is then estimated by eye. This task is relatively simple because for
phase errors greater than one radian at the edge of the aperture the ber;\.m-
widths are very sensitive to axial focus position changes.

if the measured beamwidths match the predicted beamwidths but with
the coordinate labels reversed, then the sign of o’ is negative. This fact
follows from Property 3.

With ¢ and ¢ determined, the parameters ¢ and g can be calculated

from Equation (27) and (26).
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The parameters o and B were estimated by this method for
The University of Texas 16-foot antenna as discussed in Chapter VI. A
contour map was plotted and the ¢ direction was taken to be -18°. The
¢ direction beamwidths were then plotted, and the value of o’ was esti-
mated as 1.5, The values Equations (27) and (26) give for ¢ and g are
@ =1.21 and g = 1.75. This compares favorably witho =1.13 and g = 0.73,
given by the more objective computer minimization method. The discrepancy
in B can be explained by the fact that the‘angle @ was clearly taken too large,
see Figure 26, Chapter VI.

Z. Astronomical Method

The method given above depends upon measuring the beamwidth
change as a function of focus position in order to estimate the magnifude
of the astigmatism. Beamwidths can also be measured astronomically if
a pattern range is not available by observing solar limb crossings. This,
method has been used by Jacobs and King[57] with good results. Also a
solar limb crossing experiment is reported in Chapter VI. The beamwidths
that were determined from this experiment compare favorably with the
beamwidths measured on the pattern range.

The passing of the solar limb through the antenna beam produces
a record proportional to the integral of the antenna pattern. Thus, is is
expedient to choose a model for the antenna beam. Almost any model
would suffice since one is interested in only the gross pattern features,
so a Gaussian pattern will be chosen for analytical convenience, In the

(xl, xz)-—coordinates of Figure 21, the antenna pattern model may be written,
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1 2
Gix,»%,) = G_ e (28)

where Go is the peak gain, 6, and 92 are the semi-beamwidths, K is the

1

solar rate, and t is time.

The sun is a thermal source, so the antenna smoothing

equation applies. The antenna response is thus,

ow

— 1 Ff' '
Ty =g )] Gleprag) Theyooy) dxy (29)

-
where Ta is the antenna temperature, and T(xl,xz) is the equivalent
temperature at the point (}c1 ) xz). Substituting the form given in Equation

(28) for G into Equation (29) and assuming the sun has’'a linear edge, one

obtains
1 ~ - B
T =--<T + T +}-(T -T )erf (Kt ) . (30)
a 2 sky su 2 sun sky~/ f
81 inld
T is the equivalent temperature of the sky, T is the equivalent tem-
sky sun

perature of the sun, and erf(x) is the error function. Equation (30) states
that the antenna temperature increases from the sky temperature to the
solar temperature as the antenna beam crossed the limb of the sun. The
scale of this transition is proportional to the half power beamwidth in the
direction that the antenna is driven across the solar limb.

The procedure for measuring 81 is to let the antenna tempera-

ture during the limb crossing be the data set, i.e. ’
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-:.:1:2:--- .
Ta{1) i n

Then one estirmates 91 by minimizing the rms error between the data
and Bquation (30) with a digital computer.

The experiment that has been outlined gives the equivalent
beamwidth in the direction the antenna crosses the solar limb. Thus,
in order to obtain a contour map one must take the beamwidth in a
number of directions. This will determine the ¢ direction just as before.
One can then determine the parameters by plotting the beamwidths in
the ¢ direction vs axial focus position.

This method is much more tedious than the patiern range
method and requires the use of a digital computer.” However, it does
not require the availability of a pattern range. This is important because
some antennas do not have a pattern range.

3. Computer Algorithm —

The computer algorithm method of estimating the model
parameters depends upon matching a predicted pattern map with the
measured radiation pattern of the antenna. The radiation pattern of a
reflector antenna is sensitive to long correlation radius phase errors in
the angular region near the main beam. Thus, even with only a small
dynamic range there should be little difficulty in obtaining a relatively
noise free measurement of any astigmatism present.

This algorithm calculates the antenna radiation pattern using
the Fast Fourier Transform method presented in Appendix A. The pre-

dicted radiation pattern can be computed to slide rule accuracy in less
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than one second on the CDC 6600 computer. This high speed operation
makes the iterative prediction of the model parameters possible since
the predicted radiation pattern must be calculated hundreds of times
in such an iterative method.

The data for this experiment is a map of the antenna pattern
near the main beam digitized at an N x N grid of points. The map is
normalized to unity power level on the axis, This data set may be

expressed as

D{E, i) =G (u.,u.)
)
where

u, = [i-n/2 + 1] pu
i 1 (31)

uj = [j-n/2 + 1] A, .

G’ is the measured normalized pattern of the antenna in dB units. The
normalized axis gain G’{0, 0) appears one point to the right and above the

center of the array. The sampling intervals Au a.nd'AuZ should be chosen

(58]

smaller than the maximum dictated by the sampling theorem , i.e

1

A .
& e
Aul,Auz 5D radians.

The sampling intervals in the two directions need not be equal.
The algorithm minimizes the objective function, ¥, over the

four parameters a, b, o, B, I where

nn
F=y 3 [DGJ) - P i’
j=1 i=1
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The predicted antenna pattern, P(i,j}, is calculated by the program of

Appendix A. P(i,j) is an approximation to the integral

2

£

P, ) =

Tl . .

{® =

where uy and uj’ are defined by Equation (31).

'The phase error function L(x) is given by

2

2 2 2
-ax, -i-l"K(x1 +x2 )}/Ro

L(§)=ax1+bx +{crxz

> 1 +Bxlx

2
The linear phase grading terms are included so that the predicted pattern
can be translated to agree with the observed pattern as much as possible.

To test the method and the program, the data array was set
to the pattern of a uniformly illuminated constant phase aperture. This
data pattern was calculated analytically from the form given in Silver[5g:| .
The;.n all of the phase error parameters were each initialized at 2/k where
k is the wavenumber. All five parameters converged toward zero as
expected. When the program ran out of time each parameter was less
than 0. 01/k.

The program was then tried with real data. The pattern map
was taken by J. R, Cogdell on January 30, 1969. The results of this is
shown in Figures 22 through 24. Figure 22 shows the predicted and ob-
served radiation patterns on the same scale. Figure 23 shows the observed

radiation contour map while Figure 24 shows the best fit map. The observed

rmap shows a considerable amount of beam squint which cannot be taken
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into account by this model. However this kind of error can sometimes
be corrected by simply moving the feed laterally.

It should be remembered, of course, that the results of this
minimization procedure are ambiguous. Property 3 guarantees that the
predicted pattern for ¢, B, and T will be the same as the predicted pattern
for -a, -B, and -T. This ambiguity can be resolved by plotting the beam-
widths against feed position as shown in the previous section.

Both a conjugant gradient iterative method and a simplex
method were tried with almost identical results. The conjugant gradient
method, however, was somewhat faster.

The c;omputer algorithm method for determining the maodel
parameters is the most objective of the three methods and probably is
the best. However it is also the most time consuming because of the
programming effort required. In addition, it requires both a pattern
range facility and a large digital computer.

G. Conclusions

An astigmatic phase error model has been presented. It has been
shown that the axial feed position plays an important role in determining
the character of the total phase error at the aperture plane. Five model
properties have been presented with examples. Property 5 is particularly
interesting since it has been seen in at least three large reflector antennas.
If astigmatism is identified in the reflector then one is interested in measuring

it quantitatively, Three methods are given for doing this. The first and
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third methods depend upon pattern range measurements. The former is
a field method; the later uses a computer minimization technique. The

second method is an astronomical method which can be used if no pattern

range is available.



Chapter V
Reflector Efficiency Evaluation By Frequency Scaling*

A. Introduction

The useful bandwidth of a parabolic reflector antenna is limited by
the precision of its surface and the integrity of its supporting structure.
Surface deviations from a true parabolic degrade performance as the
frequency of operation is raised {60]. The number of antennas in which
such effects have been observed over a wide range of frequencies is con-
tinually increasing.

Most applications involving reflector type antennas require only a
knowledge of the antenna properties as a function of frequency. However,
there is an increased class of problems where precise knowledge of
antenna characteristics is required. Space communications and radio
astronomy provide significant examples where large antennas are used at
many frequencies. The Ruze tolerance theory [61] is currentiy used to
predict antenna efficiency at frequencies where performance has not been

evaluated by direct methods.

*A large portion of this chapter is taken from a paper of the same title
submitted to the IEEE Transactions on Antennas and Propagation. This
paper was co-authored by J. R. Cogdell and the author.

78
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The Ruze tolerance model has successfully described the variation
of small tolerance losses with frequency in several antenna evaluation
programs [62], [63]. The wide success of this model is somewhat sur-
prising in view of the strict sta.ti.stic‘a.l assumptions which underlie the
theory. As duscussed in Chapter IIL the model assumes that the phase
fronts in the antenna aperture may be described by a two dimensional
Gaussian random process. It also requires fhat tI';e random proéess be
stationary and decorrelate over distances larger than ¢, where ¢ is much
less than the diameter of the antenna [647].

As discussed in Chapter III, a number of large reflector antennas
have been subjected to extensive mechanical error evaluations [65], [66].
The results are usually displayed in the form of error contour maps. Exam-
ination of these maps confirm the impression that errors tend to be corre-
lated over large regions of the antenna, with the result that only a few
independent correlation regions exist in the antenna surface. There are
further reasons to suspect that errors should correlate over large fractions
of the antenna surface. Error pro:iucing effects such as gravitational
loading a.nd thermal expansion act on the structure as a whole, producing
systematic deformation in the structure. As shown in Chapter II, the
tolerance loss of an antenna will not follow any precise law if there are
only a few correlation regions on the aperture.

The purpose of this chapter is to describe the tolerance loss in reflec-

tor antennas as a function of frequency without the statistical assumptions.
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The theory is based upon measurements and estimates of peak to peak
error. The major points of the theory may be summarized as follows:

1. An efficiency measurement and error estimate at one frequency
implies firm bounds on the efficiency at other irequencies.
These bounds can be used with confidence because nothing
about the statistics of the phase errors is assumgd.

2. Measurement errors scale down with frequency. Thus, a
moderately accurate measurement of the fficiency at a high
frequency can be used to yield a highly accurate inferred
efficiency at a lower frequency, This approach has the added
advantage that gain measurements at higher frequencies are
less subject to multi-path interference.

In the following section tolerance loss is discussed generally. A
series form for the telerance loss is presented and discussed with reference
to the Ruze theory. In th-e fourth section the theory of efficiency measure-
ment by frequency scaling is presented in the form of two theorems. The
first theorem gives a method for predicting the efficiency at one frequency
given a measurement at another frequency with an electrically scaled-feed
system. The second theorem extends the first theorem to include gain
measurements at two frequencies, which are used to predict the efficiency
at a third frequency. These two theorems are rigorously true only for

prime-focus instruments with electrically scaled feed systems.
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This assumption is required to make the illumination of the reflector
the same at all the frequencies. The first theorem, however, is extended
by an approximate method to cases whe‘re small changes in the illumination
takes place from frequency to frequency. Cassegrain antennas are also
considered by this approximate method. The use of these methods will be
illustrated by published data.

B, Tolerance Loss

As shown in Chapter II, the efficiency of a reflector antenna, at a

frequency f, may be expressed as

N =F | B(n)ar

T

where
B(y) = I E(l{.) E(.}.{.'[‘.I) ejk [L(E'E) - L(_’E"‘ '_l'__)] d.}.c.
x
and
..
F=zpa
or g

The function E(x) is the magnitude of the electric field at point x in the
aperture plane and is assumed known. The phase length function, L(x), is
usually unknown and contains the phase deviations caused by reflector
defects. B(p) is the autocorrelation function of the fields in th; aperture
plane. The other symbols are n(f), the aperture efficiency as a function

of frequency; k = 2nf/c; 1 = ohmic efficiency of the antenna, Z°=,/ﬁol €}
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Pr the radiated power; and Ag’ the geometric antenna area. ZFor the rigor-
ous results it is assumed that the antenna is illuminated the same at all fre-
quencies, such that E(x) does not depend on frequency.

It is well known that the autocorrelation function G(7) is Hermitian,

C(r) = C¥ {-7)
Thus, when the integral over 1 is performed the imaginary part of the
integral will vanish, and we may work simply with the real part. Hence,
nif)y = F I I E(x) BE(x+ 1) cos k[L(x) - L{x+71)] dx dr.
x

One can define the sequency of coefficients AZn as

AZn gzl)), ¥ ‘U E(x) E{(x+ 1) {-——- [ L{x) - L{x+ 1‘)]} dﬁ T .

TX

such that one obtains an infinite series in.even powers of frequency:

nif) = Z £2 A, {32)

In this expansion the first term is clearly the phase error free efficiency,
which can be calculated without knowledge of reflector errors. The
second term will describe a loss in efficiency which is quadratic in fre-
quency and will show the beginning effects of tolerance loss. The quartic

term will be important as tolerance loss.gets substantial and so forth.
t
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Other aspects of Equation (32) should be noted. The first is tha.tlthe
series can be terminated after a few terms and the remainder bounded. In
cases where peak phase errors are not unreasonably large the higher order
terms are of rapidly decreasing importance. With one or two measure-
ments one can estimate the important coefficients and bound the efficiency
characteristics in the useful region of the antemna, This procedure will be
quantified and illustrated in the final section of this paper. Spencer[67]
gave a form equivalent to the first two terms of this series., He made no
effort to bound the error of approximation, and did not deal with the effects
of measurement errors. Equation (32) can also be related to the statistical
resulis of Ruzer‘es]. The Ruze theory is applicable to the average of
Equation (32) over a large number of similar antennas. The effect of the
statistical assumptions is to determine all of the coefficients of the aver-
aged equation in terms of two parameters, the rms surface deviation and
the decorrelation distance.

The Ruze tolerance loss factor is of the same form as Equation (32)
when expanded in a power series in frequency. The first effects of tolex-
ance loss, which are always quadratic in frequency by Equation (32), can
This might explain
the fact that the Ruze factor is useful in the small tolerance loss region,
say less than 6 dB tolerance .1oss, for some value of ¢, which is often

called the 'electrical tolerance. " It is relevant to consider that the

"electrical tolerance' is often significantly different from the measured
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(69, 70, 711

mechanical folerance » while the Ruze theory requires that

they be the same. Thus, our conclusion is that the wide success of the
Ruze tolerance loss equation is due more to the functional form of the equa-
ti01‘1 than to the validity of the model.

C. Nota.t:lon

Before stating the theorems, we shall define the notation used in the

two theorems. These quantities are as follows:

'T]O = design efficiency (the efficiency with no phase errors)
M(f) = true overall efficiency at f{unknown)

n'{f) = measured overall efficiency at f

Bi = peak measurement error bar at fi

K{f) = peak-to-peak phase error at frequency {

fm = measurement frequency

fl = first measuring frequency

f2 =z second measurement frequency

fe = frequency of estimation (frequency for which

efficiency estimate is desired)
8(f, x)= phase error function = kL(x)
D. Theorems
Theorem 1 gives a method of predicting the gain at frequency f, based
on the gain measured at another frequency, fm, and an estimate of the peak-~

to-peak phase errors. The error made in estimating the gain is from two
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sources., One is the error in the measurement at frequency fm; the other
is the mathematical error made in the estimation. Theorem 1 may be
stated as follows:
Theorem 1
If the feed system of a prime focus reflector antenna at frequency
fe is a scale model of the feed system at fm, and
! -

In*(€ ) - niE < B
and

E (fm, x) - 6(fm’l)| iK(fm)’ all x and y

then the relations

f £
, o _e e Y
n(£,)<n -Pln - n'(_)] (me +n sup S+ P BCme , for all P
and
fe 2 ) fe
- - 4 ¥ — 1 - —_—
n(E,) >~ P - n4E_)] (fm> +n infS-P B(fm>z‘, for all P

hold true. The set S is defined as
fe fe 2
S= z:z=U(¥;x)-P<—f;> U{x); Og_x_g_K(fm)}

The function U(x) is given by

U(x) = cos (x) ~ 1
The proofs of the theorems will be given in Appendix C.
In the bounds for the efficiency given above, the terms Ty SUP S and

o inf S bound the mathematical error caused by approximating cosine
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while the terms + ¢ (_f_e_) result from the measurement error. The qua.n?:ity
P is a free parameter, so the method is most effective if the bounds are
appropriately minimized or maximized over P, which is normally different
for the upper and lower bounds.

In the case where fe < fm very good results may be obtained using

P =1 for the upper bound and

; .
U (i K(fm D (fm

2
P= GIKE_) \£e>

for the lower bound. In that case one has the simple expressions

f
e )
o xe )
T}(fe) = 110 - U(K(fm)) ['ﬂo - 'ﬂ'(fm) - e]

and
. fe 2
) =g - (£ ) tng - W)+ <l
m

Theorem 1 may be applied to predict the efficiency of a prime-focus
reflector antenna with a scaled feed system at either a higher or lower
frequency, but it is most useful in the latter case. This is true since the
factor (;‘i )2 scales down the measurement error in the case where fe
is less tha.rl? fm. The University of Texas 16-foot antenna is a good example.

The required data is as follows: Cogdell [72]
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67.5

Mo

n'(134} 45% % 5% (peak)

K(134}) < 2 radians.

The effieicney at several different frequencies has been calculated from the

data set, The results are given in Table L

fe(GHz) n(fe Y% % peak

15 67.15 % .13

35 63.73 & .67

70 60.1 % 2.3

94 55.0 % 3.6

100 53.6 = 4.0
Table 1

Theorem 1 works very well so long as the peak-to-peak phase error
does not get too large., For peak-to-peak phase errors above 3 radians at
the measurement frequency the mathematical error of approximation
increases sc; rapidly that the method becomes useless. It is interesting
that this breakdown occurs at about 3/5 of the gain maximum frequency for
a reflector governed by the Ruze model. The gain maximum occurs when
the rms phase error is about 1 radian or when'the peak-to-peak error is
about 5 radians. Thus the theorem a,‘pplies throughout what is considered
the useful banfiwidth of 'l:he-a.ntenna'.. On the othexj hand, the bound on the

mathematical error is rather conservative since it bounds a weighted
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average by its peak-to-peak value. One could actually perform the integral
that this term bounds if the function L(x) were available from a STAIR pro-
gram or a field measurement. Extreme accuracy would not be required
since this integral represents only a small correction. If the appropriate
integral were performed the method could probably be used with an efficiency
measurement above the frequency of the gain maximum.

Theorem 1 may be extended to the Cassegrain antenna case by con-
sidering only the most significant terms. A rigorous result seems impossible
because of amplitude and phase of the electric field on the primary reflector
will inevitably be functions of frequency. The usual practice is to scale the

d [73]. We can

primary feed horn and leave the subreflector unchange
modify Theorem 1 to apply to a Cassegrain antenna by the following proce-
dure.
Let us define the per unit change in electric field from the measure-
ment frequency to the estimation frequency as e(x) i.e.,
E(f,,x) = B, x) [1 + e(0)].
Also let us define the phase error produced by the feed system as (£, x).
it is important to distinguish this type of phase error from the phase errors
caused by reflector surface deviations, §{x}, because L(f, x) will not scale
- with frequency. Furthermore, suppose that the design efficiency which
includes t-type phase errors is defined as 'no(f).

With these definitions bounds similar to the ones given in Theorem 1

are derived in Appendix C. This is done undetr the assumption that terms
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up to third order in e(x), {(x), and 5(x) are retained. The only fourth order
terms retained are 64(5) terms since the surface tolerance, 6(_:_:_), is small
but more significant than e{x) or £L(x). In addition several terms were
evaluated uhder the Ruze statistical model ¥, These bounds on the efficiency
are given by

i f

i) < (f) - Pin () - nte )1 (FE Fente sup s+pB(E )
e o' e o e f oV m f
m m
2N ) -1 (£)] 07 ), forallP
H¥m! 7 MoV e’

and

f
' e N2 .
T‘I(fe) = Tlo(fe) -P [-qo(fm) - 'Tl (fm)] (—;;1) * 7y inf S

f
28 (£ Y+ In () - n ()] 0%(5,), for all P
m
where G(fe) is the rms phase error in the aperture plane.
As an example, suppose one wanted to estimate the efficiency of the
JPL 85-foot antennag at S-band (2. 388 GHz) using X-band (8. 448 GHz)} data.

The necessary information is given by

0. 166 radians[74]
[757

o{S)

K(X) 2.9 radians

*The statistical model is used to make the problem tractable., However, it
ig felt that the terms on which the statistical analysis is used will always be
small. In fact, the only non-zero term is [Tlo(fm)“ﬂo(fe)]oz(fe)s which is
usually quite negligible. Thus, the method is only weakly dependent on the
statistical model.
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n(s) . =63, 09l 761
n(X) =64, 7977 ]
n'{(X) = 44,7 = 4.9% (30)[78]

The efficiency estimate from the above bounds is 60.4 % 1.4%30g). This
compares favorably with the measured value of 59,8 % 8, 9%(30)[79].

This data assumes that the error in the measurement is a random
variable. The error bars are given as a percentage. Then the number of
sigma units that this percentage represents is given in parenthesis. This
procedure is probably the one most commonly used for efficiency measure-
ments. The error is usua.lls'r assumed to be Gaussian gso the number of
sigma units represents the confidence level for the measurement. For
example, a 2¢g measurement means that the probability is 95% that the
true value lies within the stated error bars.

The error bars, stated in this way, may be used as peak errors as
required by Theorem 1 and Theorem 2, Theorem 2 will be presented in
the following section. Then, the probability that the true efficiency lies
between the inferred bounds is the greater than or equal to the probability
that the measured efficiency iies between its error bars.

Theorem 2 is a generalization of Theorem 1. It gives a method of
predicting the efficiency of a prime focus reflector antenna at frequency fe
based on measurements at two other frequencies. Here again one source
of error is the error in the original measurements, but the mathematical

error is considerably less since three terms of the cosine series are used.
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Thus, it is possible to use a measurement well beyond the gain maximum
frequency and obtain more leverage in reducing the measurement errors
below gain maximum frequency.
Theorem 2

If the feed system of a prime focus reflector antenna is scaled at

frequencies fe, fl, and fZ’ and,
t - =
(g - )] = By,
1 -

‘b(fe, f_) - 6(fes __Y_)I = K(fe) all X and ¥

and A‘Z" and AZ are roots of the simultaneous eqguations

2 4
A” n
Mo A5 TALL

11

n'(fl)

2 4
1 1 1
no + Azfz + A4:f2 n (fz).

Then,
2 4
141 n

'n(fe) £ 1, + PA.Z fe 4 QA4fe + lFliBl+ ‘FZIBZ + n,, Sup S, alPand Q
and

(£)on +PAM Y e QA |F |B - |F |B, +n infS, all P and Q

e o 27e 4 e 171 2172 T g ? ?
where

S= {z:z =F2’I‘[;24- u]- FlT[-i—l-u]+T[u] - (1-P) vt /2! + (1-Q)u" /4l
e e

0O<ug K(fe)}

and
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2 z 2
AP L - Qf )

Frj
il

1 > 2
0 - 1)
f2i? - Qi ?

o= e 1 e

2 Z 7 .2
£, -4

The remainder function T[x] is
2 4
T{x]=cos (x) - [1~x /2! +x [4!].

This Theorem is useful when the peak-to-peak phasing er¥or is
large. Consider the case of The University of Texas 16-foot antenna as
delivered by the contractor. It had an astigmatic phasing error as dis-
cussed in Chapter III. This will be discussed in Chapter VI. Suppose one
v.fanted to predict the efficiency at 35 GHz based on measurement at 70

GHz and 94 GHz. The data is repeated as follows, Cogdel].]zgoz1

n, = 65.0
n'(94) = 44.0% 7% (30)“
n'(70) = 58.0% 7% {30)
K(94) = 4,3

With this data the predicted efficiency at 35 GHz is 61.58 = 3,11% (3¢). The
measured value is 62 & 9% (30)[813. This measurement is based on an
astronomical measurement and assumes a disk temperature of 151° for

Jupiter[_82] at 35 GHz.
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The advantage of Theorem 2 over Theorem 1 is that the mathematical
error of approximation is considerably less for a given peak-to-peak phase
error. Thus, the method is appropriate at higher frequencies where there
is significant {olerance loss, The‘ disadvantage of this method is that two
measgurerments of the efficiency must be made. The method does, however,
modestly improve the accuracy of the inferred efficiency.

If the measurement errors have the same sign, the errors in the
inferred efficiency tend to cancel. This fact can be exploited to obtain
even more accurate inferred efficiencies. Whether or not there will be
common errors in both measurements depends, of course, on how the
efficiency is measured. However, if the same equipment and calibration
techniques are used at both measurement frequencies some errors should
appear in common.

For example, in the efficiency measurement method used by Bathker[83 ],
the uncertainty in the directivity of the standard éain horn is the dominant
error. The directivity of this horn was calculated by integrating the experi-
mentally measured pattern. If this procedure were repeated at two fre-
quencies, the error in the horn calibration would t:e_znd to have the same
sign. If the standard gain horns for the two measurements were scale models
of each other, the error in horn calibration should be the same in both cases,

One possible way of dealing with the common error is to assume that

the measurement errors are correlated random variables. This assump-

tion will be avoided, however, since these measurement errors are not
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random variables, as pointed out by Cogde11[84] and Ludwigtgsj. If they
were true random variables, repeating the measurement should increase
the accuracy. However, it is known from experience and intuition that
this averaging effect does not occur. Instead, errors tend to bé systematic
and bias the results,

Instead of assuming that the measurement errors are correlated
random variables, let us define the cornl‘non error to be c.

Thus,

MME) - nlE)) = ek

'n'(fz) - 'n(fz) ctr

2
where Ty and r, are the remainder errors which are not common to both
measurements, Bounds for the efficiency can now be derived in terms of

the peak values of c, Ty and T which will be denoted by C, Rl’ and Rz.

With this notation the bounds in Theorem 2 become

LLI 8
nME) < + PAé’f: tQA L+ [P Ry + |F, R, + |[F,|C 4+ sup S,

all P and Q,
and
(£)sn +PANEZ xQaut® |F R - |F IR, - |F,|C+n infS
il =M, 2 e 4% 115 2172 3 o ’
all P and Q,

where all of the symbols are the same as before and

£
F, = (f];?. )2 (e 7 + fzz) - Qfez ]
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Suppose that 5% of the 7% error in the example considered before was

in common, It should be emphasized that this is a hypothetical example.

Mo = 65.0%
n(94) = 44, 0%
n{70) = 58.0%

Rl = 2%

Rz = 2%

C = 50

K(94) = 4,3 radians.

The bounds at several frequencies were optimized on a digital computer,
The results are shown in Table 2.

This table has two interesting features. The first is that the bounds
at the measurement frequencies, 70 and 94 G Hz, are much better than the
original measurements. This happens because more information is used
than is contained in the single measurement. The second interasging
feature of this table is that Theorem Z predicts a negative upper bound at
200 GHz. The efficiency of an antenna is always positive, so a negative
upper bound is a contradiction. It simply means that the data is inconsis-
tent., In particular, this inconsistency can be traced to the fact that the
measured efficiency at 94 G Hz is too far below the measured value at 70 G Hz.
Thus, the parameter A4 is negative while it should be positive.

This contradiction is not surprising since there is no reason to

believe that these two measurements had any errors in common. The
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Frequency Lower Bound Upper Bound
G Hz of Efficiency P Q of Efficiency P Q
s %

35 60,17 1,32 1,36 . f)l.él 1,23 14,02
70 51.00 1.00 1,00 51.79 1. 10 3.10
94 40,50 0.94 . 52 41.73 1.09 1.70
134 18. 63 0.80 .22 21.76 0.99  0.94

200 -22.03 0.58 .07 - 5.98 0.93 0.73

Table 2

dominant error in these measurement is the uncertainty in the gain of a
standard gain horn. The gain fox t:.he horn was measured at 94 GHz while a
calculated value was used for the 70 GHz efficiency measurement. This
example makes it clear that Theorem 2 can be used to check the consistency
of antenna efficiency data.

E. The Design Efficiency U

In the above it was assumed that the design efficiency, My is not a func-
tion of frequency. In practice the design efficiency includes ohmic losses,
which are proportional to the square root of the frequency. However, these
effects usually are small. For example, at 100 GHz an aluminum reflector .

absorbs only 0.1% of the incident power. Thus, the assumed constancy of

n, with frequency will introduce negligible errors in the results.
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Clearly the accurate (;alculation of T, is crucial to this method of
scaling. The uncertainty in n, was not included since it is typically much
less than the uncertainty in the efficiency measurement. For a prime-
focus instrument with solid supporting spars M, T2y be calculated within
+ 0.2% see Ludwig[SG]’ [87]. It would be a simple matter however to
account for uncertainty in Ty in the error bounds.

F, GConclusion

Two methods for predicting the efficiency at frequencies different
from the one at which it was measured have been presented. The first
method is based on a single efficiency measurement; the second uses two
measurements. It has been shown that the error made in predicting the
gain at a lower frequency is often considerably less than the measurement
error. In fact is possible to achieve much better gain measurements by
this method than any other known to the author. In addition, the theorems
offer an easy way to check the consistency of antenna efficiency data.
Unlike many antenna tolerance results, the method is independent of any
statistical modeling in the case of prime-focus instruments, and is only

weakly dependent upon it in the case of a Cassegrain antenna.



Chapter Vi
Calibration Program for the 16-Foot Antenna

In 1963 The University of Texas acquired a 16-foot reflector antenna
designed to operate up to 140 GHz. it was first located in Austin, Texas,
but in 1967 it was moved to Mount Locke, near Fort Davis, Texas. In
Austin the antenna worked well at 95 GHz; however, after moving the
antenna performance was unsatisfactory at this frequency. At 95 GHz
no satisfactory focus position could be found, and the beamwidths were
always broad in at least one 6f the principle planes. In addition, one side-
lobe appeared at a level of -7 dB when the antenna was adjusted for maxi-
mum gain,

This chapter is an account of how the performance of this antenna
was improved and a report of the subsequent careful evaluation. The
antenna evaluation work reported here provides concrete examples of
the methods presented in Chapters IV and V. In addition, this chapter
is meant to be a sequel to an earlier antenna evaluation report by Cogdell

The section A contains a detailed account of the measurement and
correction of astigmatism in the reflector. The section B is a discussion
of the patterns of the antenna. The patterns before the reflector adjust-
ment are compared with the patterns after the adjustment. Both sets of
patterns are compared with the theoretical patterns. Section C.is a dis-
cussion of a careful antenna efficiency measurement at 134 GHz. A table _
is also presented which shows the inferred efficiencies at other frequencies

of interest. Section D is a discussion of two antenna stability tests.

98
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A. Adjustment of the Reflector

The 16-foot antenna was known to exhibit astigmatism because it
satisiied.all of the properties given in Chapter IV. Thus, in June of
1969 it was decided to adjust the figure of the reflector by shimming the
backup structure:

The positions of the shims that were used are adjacent to the eight
bolts shown in Figure 25. The shim positions were numbered as Wl
through W4 and El through E4 as shown in Figure 25. This figure also
shows a top view of the antenna and the reference coordinates in the aperture
plane. The coordinates %, and u, are in the declination plane while X, and
u, are in the polar plane. Driving the antenna south increases the angular
coordinate uy while driving the antenna east increases u,-

The adjustment was carried out by a two step procedure. The first
step was making the ¢ direction agree with the servo coordinates; the
second was reducing the magnitude of the astigmatism. The astigmatism
was measured by observing the ¢ direction beamwidths., Thus, the o di-
rection was first made to correspond with the servo coordinates so that
the® direction beamwidths could be observed more easily,

In each of the two steps outlined above the quantity of interest was
first measured. Then, an arbitrary adjustment was made and the quantity
of interest remeasured in order to get a feeling for the scale of the change
produced by the added shims. This iterative procedure was continued

until satisfactory results were obtained. ¥or the ¢ direction adjustment

of two different shim positions excluding the original state were tried.
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The magnitude of the astigmatism was luckily reduced to an insignificantly
small value by the first shim change.

The initial ¢~direction was known because it was calculated care-
fully through the computer minimization procedure discussed as an
example in Chapter III. However, it was decided to plot a contour map
to see whether any difficulty was encountered in inferring the symmetry
direction directly from a contour map. This first contour map is shown
in Figure 26. The symmetry direction that was inferred from this was
@ = -18°, This compares favorably with the value of ¢ = -9.0° which was
obtained from the computer minimization.

In order to bring the major.axis of the elipse closer to the polar
direction a shim of 0!'020 was put in positions Wl and E3. Subsequently,
another contour map was taken at approximately 10 dB down from the
beam peak. The results of this are shown in Figure 27. The major
axis of the best fitting elipse, drawn by eye, was taken to be +31°, It
is apparent that the error was overcorrected with the 0!'020 shim.

Having removed the 0020 shim a 0!'008 shim was put under W1l and
E3. This value was chosen by linear interpolation between the -18° and
+31° values. The resulting contour map is shown in Figure 28, Frcm
Figure 28 it is apparent that the ¢ direction agrees with the servo co-
ordinate direction, so the first step was complete.

The magnitude of the astigmatism was then measured. The polar

and declination beamwidths were taken at five different feed positions.
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The results are shown in Figure 29. From this figure it is apparent
that most of the astigmatic phase error still remains as might be ex-
pected. The error was estimated as @ = 1, 3.

The action taken was to insert a shim of 01010 under W4, W1, E2,
and E3. The astigmatism was then remeasured by taking beamwidths at
four different shim positions. Since the beamwidths did not change signi-
ficantly it was concluded that fortunately the astigmatic phase error was
substantially corrected. Figure 30 shows a contour map taken after this
adjustment was completed. It shows no significant dire;ctional preference.

B. Patterns of the Antenna

The method used for taking the patterns of the antenna has been

discussed in detail by Cogdelitsg] .

The antenna servo drives the antenna
through the direction of the transmitter sight. At the same time the re-
cording chart is marked every 0. 010 degrees by a trigger placed in the
servo display network.

Figure 31 shows a contour map of the error free pattern. The horn
feed has the dimensions that correspond to the maximum forward gain for
an antenna of F/D = 0.5. These dimensions 1.25 %A x 0.9 A. The efficiency
achieved by the feed design is 65. 02%.

Figures 32 and 33 show the antenna patterns reported by Cogdell. L90]
These were taken prior to the reflector surface adjustment discussed in the
previous section. These figures show the design pattern or phase error

free pattern drawn on the same scale. Figure 29 shows the 35 GHz pattern.

It is very close to the theoretical pattern although one can see the beginnings
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of pattern degeneration. Figure 31 shows the 95 GHz pattern. It is

clear that from this figure that the observed pattern is much broader

than it should be. The first sidelobes are greatly enhanced while the
sidelobes after the first are relatively lower. As discussed in Chapter

111 this sidelobe arrangement is evidence that the phase errors decorrelate
over distances comparable to the diameter of the antenna.

Figures 34, 35, and 36 show the antenna patterns after the adjust-
ment discussed in the previous section. Figure 34 is the observed pattern
at 35 GHz plotted in the same scale with the predicted pattern. These two
patterns agree very well. This means that there is very little phase
error at 35 GHz. In addition, the excellent agreement of the observe;:l
and predicted pattern in the sidelobe regions at a frequency where there
is little phase error means that the feed theory describes the illum.ina.tion
function very well, Figure 35 is the observed and predicted patterns at
94 GHz. In comparison to Figure 33 this pattern shows that the phase
error was much reduced by the adjustment.

Figure 36 ig the observed and predicted pattern at 134 GHz, At 134
GHgz the performance has deteriorated but the antenna is still very good.
For some applications the overall efficiency of the radioc telescope is not
as important as the main beam efficiency. Since the‘z beamwidths are
broader than the design beamwidths by about ten percent in each plane,
the energy that is lost from the peak direction is scattered near the main
lobe. Consequently, the main beam efficiency is still quite high at this

frequency.
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C. Efficiency Measurement

The efficiency of the antenna has been measured at 134 GHz,
which is near the highest frequency of operation at the present time.
As was shown in Chapter V this one measurement is sufficient to define
the efficiency at all lower frequencies. Since the error bars scale
down with the frequency squared, the inferred efficiencies at 15 and
35 GHz have extremely close tolerances. This opens the possibility
of making extremely accurate radio astronomical measurements at
these frequencies.

1. Measurement Technique

The efficiency measurement was carried out by comparing
the gain of the 16~foot antenna to a conical standard gain horn. The
comparison was accomplished by disconnecting the feed from the
radiometer input flange and connecting the standard gain horn to it.
Thus, the measured gain is relative to the receiver input flange.
The circuit that was used for the comparison is shown in

Figure 37. One begins by finding the peak radiation level of the conical
horn by taking the pattern of the horn in two orthogonal planes. Then
with the horn pointed in the peak direction, a level was establi;hed on
the recorder. After 2 few minutes, the receiver was switched to the
16-foot antenna. Sufficient attenuation was then inserted on the precision
IF attenuator to make the levels agree. The reading of the IF attenuator
is the difference in gain between the horn and the 16-foot antenna. Sub-

sequently the standard gain horn was reconnected to check for drift.
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This circuit and procedure is believed by the author to be
the best available for the gain comparison measurements. The principle
advantage of this method is that the gain difference between the standard
gain horn and the large antenna is determined very accurately through
the precision IF attenuator. The only disadvantage to this circuit is
that it assumes linearity of the mixer over a 40 dB range. However,
the mixer has been checked experimentally for saturation with negative
results. The saturation effects begin at least 20 dB higher than the
highest level encountered in the gain comparison measurements.

The only reasonable alternative to this circuit is to use RF
attenuation at the transmitter sight. This method also requires some
mixer linearity because the RF attenuator must be calibrated by the IF
substitution method. In addition, it has proved impossible to repeat
calibrations of the RF attemuator at 134 GHz., This is f:onsistent with
a history of unreasonable efficiency mea;.surements given by the RF
attenuator method. Thus, the RF attenuation method was discarded
as unuseable.

The calibration of the standard gain horn is another crucial
consideration in the overall accuracy of the measurement. The value
used for the directivity is a value calculated by a method given by
Cogdell[gl:| . This method gives values which are in excellent agreement
with several horns of varying dimensions n;easure.d experimenta.'lly by

King. Loz Some had considerably larger flare angles than standard gain

horn used for this measurement. The major shortcomings of Cogdell's
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method is in accounting for the effects of the non-zero horn flare angle
Thus, it is felt that the calculated value for the horn gain is very close to
the actual value since Cogdell's theory seems to work well under con-
siderably more demanding circumstances.

It is difficult to put error bars on a measurement of this kind
because all errors tend to be systematic, so repreating the measurement
does not increase accuracy. The procedure that has been adopted is to
give the accuracy of each step in the measurement. Then the total error
is computed by assuming the errors are random variables and the error
limits given are values of 2o(¢) where ¢ is the error. This procedure is

£94]

not really justifiable as pointed out by Ludwig , but it is the customary
procedure. [95]
2. Results

The results of the efficiency measurements are given in
Table 3. All of the values are given in dB, The 16-foot antenna gain is
simply the gain of the horn plus the difference in gain registered on the
IF attenuator. The gain of the standard horn at the receiver input flange
is the directivity of the horn minus the omic loss in the horn and the loss
in the 2 foot waveguide connecting section.

The efficiency is the gain of the 16-foot antenna minus the
gain for 100% efficiency. The tolerance loss which is the loss from phase

errors is the directivity of the antenna minus the design directivity. The

directivity is higher than the design gain by the omic loss in the feed.
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Table 4 gives the efficiencies at other frequencies calculated
from the Cassegrain antenna version of Theorem 1 given in Chapter V.
It is necessary to use this extended version of Theorem 1 hecause the
actual feeds whi;:h are used are not perfectly scaled. The theoretical
efficiencies were calculated with the program given in Appendix A using
the feed dimensions given in the table. The feed omic loss factor be-
comes apprecia.‘tl)le at higher frequencies. Since this loss does not scale
with frequency, it was taken out before the scaling was done. Subsequently,
the feed omic loss was reinserted to calculate the total efficiency which is
relative to the receiver input flange.

D. Antenna Stability

The observed patferns and gain measu‘rement in the previous sections
were taken in the hours from 2 a.m. until sunrise. This time period has
been found to be best because the atmospheric induced signal fluctuations
are smallest during these hours. Since these measurements were done
under more or less ideal thermal conditions, it is mandatory that the
antenna stability.be tested under less favorable conditions.

There are two main effects that might occur. One of these is
differential gravity loading. The antenna is always pointed in the direction
of the transmitter site to make gain and pattern measurements. Thus as
pointed out before gravity loading might cause astigmatism in the antenna
when it is pointed in another direction.[ 96]

Temperature effects are the other possible source of instability.

Strong temperature gradients, especially, might affect the antenna
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Item Value (dB) 2o (dB)
A, Gain Difference . 40.55 0.10
B. Gain of Conical Horn 32.55 0.27
1. Directivity of Horn 34. 98 0.25
2. Omic Lioss in Horn 0.1 0.1
3. Lwoss in ‘.«’$.Tr:1.\.rezgm’.deX 2.33 0.05
C, Gain of 16-Foot Antenna
at 134 GHz 73.10 0.28
D. Gain for 100% Efficiency
at 134 GH=z 76.71 ————
"E. Efficiency of Antenna -3.61 0.27
at 134 GHz {43. 6%) (2. 8%)
F. Design Gain 74.55 0.1
1. Design Directivity (65. 02%) 74.85 ————
2. Feed Omic Loss 0.3 0.1
G. Tolerance Loss ~1.45 0.29

+Ca1cu1ated by Cogdell's miethod as discussed in text.
"Estimated

X . .
Measured radiometrically

Table 3
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TABLE 4.

JANUARY 1969
FEED DIMENSIONS EFFICIENCY TOTAL
WITHOUT
FREQUENCY FEED DESIGN Feenp | TOTAL TOTAL [ grFECTIVE
(GHz ) L b by LOSS EFFICIENCY LOSS |EFFICIENCY | GAIN AREA
(inches)| 7\ | (inches)| /A (d8) (%) (%) (%) (dB) (m?)
r— ‘::F —— ——r T
15.0° 0.986| 1.25| 0.709 }0.900 0.0l 66.02 164732003 |64.58+0.09 |5579t 001 | 12.06£0.02
35.0° 0.422}1.25| 0.304| 0.900 | 0.03 65.02 |6350t048]63.06% 0.46 {63.04t003|11.78 £ 0.09
350R o.400|Lis| 0285} 0.844 | 0.03 64.57 |6305t 0476261 £ 0.46 |63.01£003|11.70 £ 009
700° 0.21i{125] 0.152 | 0.900 | 0.10 65. 02 502+ ).7*57.8 + 1.6 |6869£0.11 |10.80 +0.30
940R 1s4fz30! 0.113 | 0.899 | 0.15 64.92 55.0%25 |53.1 * 2.4 |70.88%049) 992 +0.44
X
100.0R 0.164 {1391 0.113 | 0.957 | O.I7 64.06 53.0+26 [509 & 25 |7123+02i| 95! + 047
»
134.0%  |o.104|1.18| 0.076 | 0. 862 0.30 64.68 466 3.1 {436 + 29 173.10+028]{ 8.13 + 053
X
140.0%R lo.104{1.24| 0.076 | 0. 90! 0. 30 65.02 457 £3.6 (426 * 33 | 73381033 7.96 £ 0.62
All confidence leveis are 2o levels in the same unils as the quantity,
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structure. A strong temperature gradient is produced, for example,
by the sun shining on part of the antenna and the other part is in shadow.

The first experiment performed was an experiment to check for
temperature gradient effects. Just before sunrise the antenna was
pointed at the transmitter with the chart recorder calibrated on a rather
sensitive scale., Then the system was left untouched for about an hour.
During this time the sun shone on more of the antenna. The experiment
was terminated when the sun shone on about half the antenna. The record
showed no evidence of gain deterioration.

This experiment is significant because it exposes the antenna to the
worst possible conditions of differential heating. The first effects of
differential thermal loading of the structure is to steer the beam away
from the equilibrium position. Since no significant gain reduction occurred
there is apparently no significant thermal loading.

As mentioned earlier differential gravity loading should produce
astigmatism. It was known that there was no astigmatism when the
antenna was pointed toward the transmitter sight, but there could well be
astigmatism at some other pointing., Thus, the second experiment was
designed to detect astigmatism at other pointings., This was done by the
solar limb crossing experiment discussed in Chapter IV. From this data
one can deduce the beamwidth of the antenna in the direction the antenna
crosses the limb. Then as discussed in Chapter IV the astigmatism can

be determined from plotting the beamwidth vs focus position.
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For this experiment, thirty-six polar and thirty-six declination
scans were made of the sun. Figure 38 shows a typical scan. The
experimental procedure was to make two polar and two declination
scans. Then, the axial feed position was changed and another set of
scans were taken., Three feed positions were used, with twelve scans
in each direction for each feed position.

Table 5 shows the results of this study. This table shows no
significant astigmatism. In addition, the beamwidths at the shim
position nearest the optimmum agree very well with the value measured
on the pattern range. This occurs even at an hour angle of +42° and a
declination of -20°., This is a very different pointing from the trans-
mitter site which is at an hour-angle of -69° and a declination of -34°
From this data it was concluded that there was no significant gravity
loading of the antenna structure.

E. Summary

This chapter illustrates the theory that has been developed in
Chapters IV and V, It is a detailed account of how this theory was put
into practice. The work was successful in substantially improving the
performance of the 16-foot antenna and establishing its stability in all
pointing directions. In addition, the efficiency of the antenna has been
accurately measured at 134 GHz, and the efficiencies at other frequencies

of interest inferred by the method given in Chapter V.
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Declination and Hour Angle Beamwidths in Milli-Degrees

Hour Angle in Degrees {(x 10~ 3}

335 12 42 Pattern
BHA 33.2 33.0 32.3 33.5-
DEC 34.5 33.3 34.5 32.5

/A =0.23

Hour Angle in Degrees (x 107 3.)

312 354 21 Pattern
HA 37.6  36.0 36.0 ----.
DEC 38.4 357. 0 34.6  -=w-

T/x =0.68

Hour Angle in Degrees (x 10~ 3)

320 p 31 Pattern
HA ~———— 46.8 45.0 ----
DEC 40.2 43,9 46.0 ----

Declination of sun -20°

r/a=1.13

125

All values except the pattern range measgurements are 1.5 milli-degrees

(20}

Table 5



Appendix A
An Antenna Radiation Pattern Program
Using the Fast Fourier Transform

A. Introduction

Calculating the far field radiation pattern of a reflector antenna
from the aperture fields is a problem which has attracted considerable
interest. With ordinary analytical methods one is restricted to a very
small class of aperture illuminations and phase functions. For example,
one can calculate the radiation pattern of a circular uniformn phase

97]

aperture[ with illumination proportional to

~ 2 "1p

-G
o
where r is the radius of the aperture. This form is convenient because
its Fourier transform is a Bessel function. This aperture distribution is
also useful for tutorial studies of the general effects of tapering on reflector
antennas[ 98] '

The engineer involved in the evaluation.of a large reflector antenna

has a need to calculate the radiation pattern in a much more general con-

text. Spt—:zncer[99:| has given an infinite series expression (later corrected
[100] s :
by Fagot )} for the radiation pattern of an antenna with phase errors.

However, this series has two disadvantages. The first is that it requires
one to calculate the derivatives of the design pattern with respect to the
angular coordinates. The second is that no convergence criterion is given

. ., 1ot
for the series. In order to treat realistic problems Ludwig ],

126
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102 10
Dion[ ], Bao[ 3], and others have turned to numerical methods. By

calculating the radiation pattern numerically one is not restricted to any
specific tapering or phase error function

104 105
( ] and Bao[ ] have pointed out the computation required

As Dion
is enpormous. Suppose one wanted the radiation pattern calculated at an
(NXN) grid of points. This requires the calculation of N2 two dimensional
integrals. If each integral is approximated by an NXN sum then one must
carry out approximately N4 addifions and multiplications. This is too
large to be practical. For example, with N = 128 on the CDC 6600 this
procedure would take over one hour.

In this Appendix a computer program will be presented that takes
advantage of the efficiency of the Fast Fourier Transform (FFT)[106].
The FFT can be used to perform the same calculation as outlined above
by using the FFT 2N times. The FFT itself requires approximately

[107]

N 1og2 N additions and multiplications Thus, the time savings

factor is

2
ZN-NlogzNzlogzN
N4 N2

T =

If N.= 128 then r < 10_3. Thus the FFT method is more than a factor of
one thousand more efficient than the direct method. This efficiency makes
possible the model fitting discussed in Chapter III. This method also uses
storage very efficiently because only a single N x N complex array is

required.
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A program similar to this one has been developed by Pratt and
Andrews[ 108] . Their program calculates the defraction pattern of
light from an arbitrarily shaped aperture in a plane screen. However,
it would be difficult to use this program to calculate an antenna pattern
because of the blockage problem which will be discussed later. In addi-
tion, the prograrm given here allows more flexibility in choosing the grid
size for both the aperture plane and the far zone angular coordinates.

in the following section the mathematical development of the program
is given. In Section C the program itself is discussed and a listing is
given. In Section D the computed results for a uniformly illuminated
aperture are compared with the exact results. This program will calcu-
late the radiation pattern of a circular aperture excited by electric field
with arbitrary amplitude and phase. It assumes linear polarization of
the aperture fields. The program allc;ws one to account for central cir-
cular blockage and the blockage of two spars at arbitrary angles to the
reference coordinate system. The spars are, however, assumed to pass
through the origin of the reference coordinate system. This assumption
and the assumption of a circular aperture are not required by the mathe-
matical development, but they are reasonable assumptions and simplify
the program coding.

B. Mathematical Development

As shown in Chapter 1 the far field gain function can be written as
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2

_k 2
Glu,,w,) == [I{u;,u,)] (A1)
where
JRL(x. ,x ) jk{u,x, +u_ ,x))
_ 1’ %2 1% T %
I(ul.uz) = ‘”‘T(xl,xz) e e d:sclfi:’c2
(AZ)

The tapering function T(xl, xz) is defined as the electric field in the aperture
plane normalized by the square root of the input power and the free space

impedance, i.e.

] f 7 .
T w ) Elxy,x,) eJk«f,(xl,xz) G687, 07) ejk{,(xl,xz)
3 - = - =
172 ‘/-Pin z (e 1 i_f_{"—)z

Equation {(A2) is particularly convenient for computer calculation
because the feed characieristics can be thought of as an input and the far
field gain pattern of the reflector as the output. In the case where the feed
is an extended source, as it is in a Cassegrain feed, one must take explicit
account of the phase shift,k{’,(xl, xz), caused by the feed system. For a
point source feed there is no phase shift caused by the feed, so £ may be
set to zero,

A typical tapering function is shown in Figure Al. These functions
are gradually changing, well behaved functions, except where the antenna
feed system blocks the aperture. In these blocked areas the functional
value is zero. The blocked regions are characterized by having at least

one dimension much smaller than the diameter of the antenna.
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Fig. A.
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This latter fact leads to a rather fundamental problem in choosing
the integration grid size for the integral, I. If the grid size is chosen
appropriate to an unblocked antenna, it will be much too course to account
for the blocked areas effectively. On the other hand if the grid size is
chosen small enough for the smallest blocked area, then the core storage
and time required to calculate the integral is exorbitantly large,

A solution to this problem is to break the tapering function into
several parts so that it is written as the unblocked tapering function plus
several corrections. Then the contribution of each component is calcu~
lated separately and the results totaled. This method takes advantage of
the linearity of the integral, and it may be thought of as the engineering

t

method of "superposition." The tapering function is written

%)

T = Tub(f)" Tc(?—c) ) ‘Tsl(-}-{-) B TsZ(—-

The function Tub is the tapering function the antenna would have without
blockage. The functions Tc, Tsl’ TSZ are the blockage functions to account
for the central blockage and the blockage of two spars. These functions
have a value of zero outside the area to which they refer and the value

of Tub inside this area. This process of decomposition is illustrated

in Figure Al,

The components of the integral I that correspond to each of the

tapering functions will be written I

., 1,1 , andl . after their
ub’ ¢’ Tsl s

2

respective tapering functions. The fechnique used in the program is to

calcuate the unblocked integral, Iu , which is by far the dominant

b
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contribution. The others are accumulated as corrections. This is a
standard digital computer technique and conserves a great deal of
storage.

Calculation of the Unblocked Integral

The three basic steps in calculating the unblocked integral, Iub’
are the calculation of the tapering function on an array of points, the
introduction of a linear phase grading, and the performance of a row-
wise and column-wise transformation of the array with the FFT. The
resulf of this tra.nsforma.t.ion is that Iub (ul, uz) appears in the array at
a grid of points. ‘The tapering f‘unction is an input to the program and
may be put in as a table of laboratory measurements. It may also be
calculated from a theory for the feed system. The introduction of linear
phase grading merely translates the points in the transformed array.
This is done for cc;nvenience so the axial gain will be in the center of
the array. The remainder of this section is devoted to the mathematical
development of the FFT method of calculating this integral.

The integral that must be calculated is

© jkL(x.,x )} jkl{u,x. +u x )
P 1772 171 272
Iub(ul,uz) = JI T(xl,xz) e e dxldxz.

The (xl, XZ) ~ coordinate system is the natural coordinate system for the
reflector, but it proves inconvenient for Fortran programming, Thus,

let us introduce a (y_,v,) - coordinate system as
Yi'Y2
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The purpose of this translation is to shift all of the non-zero values of
T into the first quadrant. Figure A2 shows these two coordinate systems.

In (yl, yz) - coordinates the integrall above can be written

—‘]k(u.lh1 + uZhZ)

@ -
) - J-T( . Y JkL(Yl - hl,Yz - hz)

I . (u e

ub 2

-0
ko, vy, +u,y,) o a
e Yl. Vo
The computer calculation of an integral requires that’it be approxi-

mated by a sum. A uniform grid of point‘s that are Ay, and Ay, apart in

the two coordinates are used, so that the integral may be approximated as

-.]k(ulh1 + uzhz)
I (ul,uz) = e

ub T(may, - h), ndy, - b))

2
1

5T R

K

Lt}

Ay i AYZ /.
m=1

JkL(mAyl - hl’ mAVz - hz) egk(ulmi\.yl + uan\.Yz) (ad)

e
In the following, the explicit form of T and L will not be written out,
but will be written as T{m, n) and L{m,n). It will be understood that the

indices (m,n) stand for the appropriate place on the aperture plane. Thus,

Equation (A4) can be written as
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~jk{(u.h, +u h_) kK K
I. fa,u)=ce 171 22 A ZZT( )
wb 01 Y2 Ay, 8Y, m,n) e

m= n=}

jkL{m, n)

jk(u,mAy. + u_nAy,)
- 1 1
e 272 {A5)

All of the non-zero values of T(m, n) ejkL(m’ ») are placed in an
N x N complex array which is stored as a real array, PR, and an imag-
inary array, PI, in PAT. N and K are unequal in genéral with N< K. It
will usually prove convenient to choose K a factor of two to four larger
than N. For the FFT routine used here N and K must alsoc be po.wers of
two. The reason for this will become apparent later.

It is convenient to choose hl and h2 so that the value of T and L at

the center of the aperture appear in the center of the array. This may

be accomplished by choosing h, = N/2 Ay, and b = N/2 BY,-

2

The u-variables in Equation A5 are continuous variables, so they

must be rewritten as discrete indexed variables. Letu, and u., be defined

1 2
as
u, = Au, s s =12, ....
1 1 (A6)
= £ = .
u2 Auz t=41,2,
where
Au. = 21
1 Kk Ayl

and



AL = 2m
2 Kkﬁyz'

The grid size for the u-array is chosen so that the integration grid
size and the wavenumber fall out of the second phase term in Equation
(A5). This normalized form is required by the FFT. Substituting the

and u,, in Equation A5, one has

values discussed for hl’ hz, ul, 5

-j-I:Iﬁ(s + t) B K . j‘z—ﬁ-(ms + nt)
I1_{s,t)=e K AV, AV z Z T (m, n) eJkL(m' n) e K
ub '’ 1772 !
m=1 n=1

(AT)
the indices s and t represent a point in the angular coordinates uy and
u, just as m and 'n represent a point on the aperture plane.

Half of the s and t indices are negative, and since negative

subscripts are not allowed in Fortran programming, s and t must

be biased so that the only positive indices are used. This may be done

135

by introducing a linear phase grading into the input which shifts the axial

direction {s = t= 0} to the middle of the array. Let

ol

and
'

N
t" =t 4=,
2

With these translations‘Equation AT becomes
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Aaesey K E
ooty
Iub(s )Y =e AYIAYZ z z T{m,n

m=ln=1

) JEL(m, n)

-jﬂg (m + n) JEI'{E(ms' + nt’) .
e e (A8)

Equation {(A8) may be regrouped as follows:

Nots? + 19 » K 'y%l—(‘lnt’

-j= K JE'E ms
K K 7 4
o (35T (L e}
m=1 n=

1

{A9)

where

-an {m + n)
P(m, n) = T{m, n) eJkL(m' =) e K

The Fast Fourier Transform is a program that replaces an array,

say B(n),with its discrete transform, i.e.,

K 2T
jo-mn

B(n) - z B(m) e

m=i
One can see that the calculations indicated in Equation (A9) can be done
by first applying the FFT to each row of P(m, n) and replacing the results
in that row. This procedure gives an array P(m,t’). Then the ~FF'I' is
applied to each column of P(m, t’) and the result replaced in that column.

The result of this is the desired integral except for a phase shift factor.
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Correction for Central Circular Blockage

The central blockage correction can be written

L e - J‘ J_ T o) e‘]kL(Xl’XZ) e‘]k(ulxl +u2x2) o
cb' 1’ 2 ub 1" 72 1
central
region

2

The region of the central blockage is small compared with the variations

in T and L, so T and L will be assumed constant for this calculation.

. jk{fu. x. + u x.}

. - jk1{0, 0) J‘ 171 2 2

ch(ul,uz) T({0,0) & f e dx. dx._.
central

region

Changing variables to r and g such that

xl =r cos §

X, =1 sin g
and

u, = 8 cos g

u, = B sin g,
one has

RbZTr
I, u)=T0,0 KL(0.0) Jj KOs (o~ B) L4 ge

00
where er is the radius of the blocked area. The integral in g is just the

zero order Bessel function, so one can write
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1
I TGO R 2) z da.
0

- jkL{0, 0}
ch(ul,uz) T{0,0 e 2

This last integral is also a Bessel function, i.e,

, T,k R,_6)

1T e
b kae

ikI(0, ®
JEI( 5

ch(ul,uz) = T(0, 0) e {AYD)

where 8 may be calculated as the Pathagorian sum of uy and u2

When written in terms of the indices s’ and t’, Equation (A}_Q)becomes

, J.(F)
;e jkL(0. 0) 21
ch(s Y= T(0,0 e TR, —— (All)

where

eal [ GG D @YY

Spar Blockage

The spar blockage correction may be written, using vector notation, as

jkL(xl,xz) . uT
L(eyup) = H‘ Tuplepo %) e ¢ T T (al2)
spar
Let us transform coordinates so that the primed coordinates agree with

the direction of the spar as shown in Figure AZ. The primed coordinates

are given by
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where

cos & =~ s5in §
E =
sin & cos §

Also let us define the primed angular coordinates as

1
u’ =Ru

jkLix,,x.) jk{u, ‘x
I,y = [ [T x.x)e 12 :
e ) ab 1" %2 ©
gpar

- The xz' integration is now trivial since I and L do not vary much over

the small extent of x_’. Thus Equation (Al3) may be written

2

<o
) 2 = N
Is(u1 ,u2 Y= w I Tub(xl’xg) e e

[
X, = ,

JkL(xl , XZ) jk u

1

4 7 r
+u. x
2 )

"x
1
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dx, ‘dx_ ‘.

Now we need to change variables to y so that all of the non-zero values of

Tub are to the right of the origin. Let

* =y =-h,

so Equation (Al4) becomes

-jkul'h = jku
Is(ul',uz') = we J z{y) e

-

where z(y) is a complex quantity given by

'
y

dy
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jkL(xl, xz)
zly) = Tub(xl,xz) e

where
%, =y - h) cos 8

x, = (y - h) sin's.

Approximating the integral by a sum of k terms one has

~jku, " h = jku,’ may
IS(ul',uz') =w Ay e Z z{mAy) e (Al5)
m=1

Let

ul"—'vAul" v=+1,2,3, ... (Al6)
where

Au 7 _ 21

I Kk Ay

Substituting Equation (Al6) into Equation {Al5) and letting h = I-ZS Ay, one

obtains
. K WAL
~)nv i J—-f{—-mv
Is(v) =wAY e Z z{m) e , (A17)

m=l

"= v Au '.- In

where it is understood that I (v)is I (u, ’,u,’) where u
8 s 1 2 1 1

addition, z{m) stands for z(mAy).
Some of the v's of interest are negative. This is inconvenient for

Fortran programming so let
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vi=v +K/2.

Thus Equation Al7 becomes

i v 'I‘i") iy J-Z—TT mv’
-j - s
Is(v') =w Ay e 2 z z{m) e o e K {A18)
m=l}

The sum in Equation (Al8) may be calculated with a single appli-
cation of the FFT. The array z(m) is calculated first. Second one
s . . . ~jTm . .
modifies z(m) with the linear phase grading e Third, z(m) is
transformed with FFT, and finally the transformed array is multiplied
by the required constant factors and linear phase grading.

The value of v/ that corresponds to s’ and t’ will now be calcu-

lated. The angles u, and u, are given by

w, =20
1 Kkﬁyl -

2T

=<0 ¢
Y2 Kk A,

The value of u, ’ is then

1
¢ 2m 2 R
ul -_KkAYl Scosa-Kksz t sin §.

Substituting Equations (Al6) for u, / into the equation above and cancellin
g g q g

1

the common terms, one obtains

v=s-—Ax cosﬁ-E-—él sin &.
! A2
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Now substituting v/, s’, and t’ for v, s,t, one obtains

’

vi=(s’ - H)—QE- cos § - (t' - H) Ay sin § + K/2.
Ayl Ayz

A slight problem arises in that the values of v/ needed for the
blockage correction are not necessarily integers, However since this
correction is a small one, it is felt that interpolating linearly between
integer values is sufficiently accurate.

C. The Program

The first input to the program is a card that has the diameter of
the antenna in feet in the first field and the wavelength in meters in the
second. All fields are E 10.3. The next card specifies the angle between
the far field pattern grid points in degrees. If this card is left blank
the program calculates its own increment to optimize accuracy. Thisg
latter mode of operation is recommended unless the grid interval must
be specified, as when it is being compared to measured data. The third
card specifies the radius of the- central blockage circle in inches. The
fourth card specifies the width of the two spars_in the first field in inches.
It also specifies the angle the two spars make with the (xl, xz)-coordina.tes
in the second and third fields.

The subroutine MAG(X1,X2) calculates the magnitude of the tapering
function. The tapering function is assumed to be real in this program.

The subroutine PHASE X1,X2, Z, NX, PH) calculates the phase

function kl.{x}. The phase in radians is returned as PH. The Z vector
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is a parameter vector. The number NX is the maximum number of
parameters.

The internal program parameters KEXP and NEXP determine the
grid spacings, accuracy, and storage requirements of the program.
The unblocked integral is carried out over an N X N array of points

with spacing Ay, and [_\;yz, where

N = ZNEX]?.

The grid spacing of the points in angle space is given by Equation (A6) as

vy = 'K“"E'Tg‘z‘ (A19)
and
an
Auz =m .
where
K = ZKEXP

If the grid spacing in angle space are leit un;apecified, then Ay, and Ayz
are calculated to just fill up the N X N array. If Aul.and Au, are specified,
on the other hand, Ayl and Ayz are calculated from Equation (Al9). Since
K and N may be different, the grid intervals may be adjusted somewhat

for the particular application. Increasing N makes the program more
accurate while increasing K makes the grid in angle space finer. In-

creasing N, however, increases the program storage requirements.
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One detail of the coding differs from the mathematical development

given in the previous sections. The FFT routine used here actually shifts

one grid spacing as well as transforming. That is, if B{m) is a complex

array being transformed, then

K
B(K) - }: B(m) e

m=1

B - 1) (%1

D. Verification

The calculation of the unblocked integral was checked by setting
the blockage con.-ections to zero and calculating the pattern of a uniformly
illuminated constant phase aperture. This was done by substituting another
subroutine for FEED. FEED normally calculates the gain of the horn feed.
This subroutine calculates the gain of the point source feed required to

[109]_

give a uniform aperture illumination, Silver For this test N = 128,
K =512, D=16 feet, A = 3.2 mm, and f = 8 feet. The result was an
efficiency of unity to more than five significant figures and a normalized
pattern given in Table Al.

The central blockage and spar blockage corre_:ctions were checked

by setting the tapering function to uﬁity everywhere and printing out these

corrections separately. Then several points were checked by hand.



Paiterns (dB)

angle
°(x10-3 ) Ca.l\culated Exact
0 0.00 0.00
10 -0.77 -0.77
20 -3.23 -3.23
30 -8.06 -8.06
40 -18, 32 ~-18.31
50 ~24,05 -23.98
60 -17. 64 ~-17.59
70 -19.68 -19.61
80 -30.50 -30.27
90 -28.56 -28.72
100 -23.83 -23.91
110 -26.45 -26.56
120 -30.96 -30.74
130 ~27.98 -27.86
140 -31.87 ~31.81

Table Adl

Verification of Program
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aQan

aaon

PROGRAM PAT(INPUT, OQUTPUT)
DIMENSION PR AND PI TO NXN.
DIMENSION PR(128, 128), P1(128, 128)

DIMENSION A AND B TO K.
DIMENSION A(1024), B(1024)

DIMENSION D AND E TO N.
DIMENSION D{128), E(128)
DIMENSION Z({15)

DIMENSION SIG(2)

DIMENSION MM({2), IDEC(2)
DIMENSION IX(5), JX{(5), MX(5)

DIMENSION XX AND YY TO 2K. .

COMMON/ SCRFFT/ XX(2048)/FFF/YY(2048)
INTEGER H

INTEGER HK

REAL LAMDA

REAL MAG

RESL = 0,5

RES2 = -0. 5%%

RES3 = 0, 5%%7/3,

RES4 = -0.5%x7 /3, [z, [4. /3. /2.
I0=3H 0

15 = 3H -5

110 = 3H-10

115 = 3H-15

120 = 3H~20

125 = 3H-25

130 = 3H-30

135 = 3H-35

IX(1) = 10HTICK MARKS
IX(2) = 10H ARE 5PI*D
IX(3) = 10H/LAMDA
MM(l) = :0HCONTOUR MA

LI VR T |

[ LI VI T |

MM(2) = 1HP
13DB = 4H 3DB
I10DB = 4H10DB

120DB = 4H20DB
130DB = 4H30DB
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IPOL = 5H U2

IPAT = THPATTERN
IDEC(1) = 10H Ul

PIE = 3.1415926535897932384
NEXP = 7

KEXP = 10

N = Z*ENEXP

K = 2%*KEXP

H=N/2+1

READ 28, DIAMF, LAMDA
DIAM = DIAMF %0, 0254%12,
SCALE = PIE#DIAM/LAMDA
WAVENR = 2. *PIE/LAMDA
READ 28, DDl, DD2

IF DDl IS ZERO THE PROGRAM
CALCULATES ITS OWN DDl AND DD2.

IF (DD1.NE. 0.0) GO TO 1

DUl = 2. *PIE/K/WAVENR/DIAM *(N-2)

DUZ = DUL

DDl = DU1#*180, /PIE

DD2 = DUz*180, /PIE
CONTINUE

DUl = DD1*PIE/180.

DUZ = DD2*PIE /180,

READ 28, RB

READ 28, W, SIG(l), SIG(2)
PRINT 29

PRINT 30, DIAMF, LAMDA
PRINT 31, NEXP, KEXP
PRINT 32, DD1, DDz
PRINT 33, DUl, DU2
PRINT 34, RB

RB = RB*0. 0254

PRINT 35, SIG{1l), SIG(2)
DOzi=1, 2

SIG{I) = SIG(I}*PIE /180,
PRINT 36, W

W = W*0. 0254

DY! = 2. ¥*PIE/K/WAVENR/DUL
DY2 = 2. *PIE/K/WAVENR/DU2
EXT1 = DIAM/DY1

EXTZ2 = DIAM/DYZ

PRINT 37, EXT1

1]

1
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PRINT 38, EXT 2
IF (EXT! .GR. (N-1)} STOP 1
IF (EXT2 .GT. (N-1)) STOP 2

THIS COMPLETES THE INITILIZATION PROCEDURE,

CALCULATION OF THE UNBLOCKED INTEGRAL FOLLOWS,

CALL SECOND {QT)

CONST = PIEN/K

DO3I=1, N

DO3JF=1, N

X1 = (I-H)*DYIL

X2 = {J-H)*DY2

TMAG = MAG(X1, X2)

CALL PHASE (X1, X2, Z, NX, PH)
PH = PH-(I-H+J-H)*CONST

PR{I, J) = TMAG*COS(PH)

PKI, J) = TMAG#*SIN(PH)
CONTINUE

CALL SECOND (QT1)

Q = QT1 - QT

QT = QT1

PRINT 51

PRINT 39, Q

CALL XTD (PR, PI, NEXP, KEXP)
FACTOR = DY1%DYZ

DO4I=1, N

DO4J=1, N

PH = - (I-H+J-H)*CONST

COSINE = COS({PH)

SINE = SIN(PH)

RE = PR{I, J)*COSINE-PI(I, J)*SINE
XM - PR(I, J)*SINE+PLI, J)}*COSINE
PRI, J) = REX¥FACTOR

PYI, J) = XM*FACTOR

CONTINUE

CALL SECOND (QT1)

Q=QTL-QT

QT = QTL

PRINT 40, Q

THIS COMPLETES THE CALCULATION OF THE UNBLOCXED
INTEGRAL.

CAILCULATE THE CENTRAL BLOCKAGE CORRECTION.
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CALL PHASE (0., 0., Z, NX, PH)

TMAG = 2. 0¥PIE*MAG(0., 0.)*RB*RB

RE = TMAG*COS(PH)

XM= TMAG*SIN(PH)}

FACl = RB/DY1

FACZ = RB/DY2

DO51=1, N

DO5J7=1, N

F = 2, 0*%PIE/K*SQRT{{FACL*(I-H)¥*2+{FAC2%{J-H))%*2)
F = F%F

FACTOR = ((BES4*F+BES3}*F+BES2)*F+BES!
PR{I, J) + PR(I, J)-RE*FACTOR

PII, J) = PYI, J)}-XM*FACTOR

CONTINUE

CALL SECOND (QT1)

Q =QT1-QT

QT =QT1

PRINT 41,

THIS COMPLETES THE CENTRAL BLOCKAGE CALCULATION.

CALCULATE THE SPAR CORRECTIONS
Ji=1 FOR FIRST SPAR, AND
Ji=2 FOR SECOND SPAR.

DO9JI=1, 2
DUP = DUl

IF (DUP.GT. DUZ2) DUP = DU2
FACL = COS(SIG(JT))

FACZ = SIN(SIG(JT))

DY = 2. *PIE/K/WAVENR/DUP
CONST = PIE

HK = K/2+1

DO6I=1, K

X1P = (I-HK)*DY

X1 = X1P¥FAC1

X2 = X1P*FAC2

CALL PHASE (X1, X2, Z, NX, PH)
PH = PH-(I-HK)*CONST '

A(I) = MAG(X1, X2)*COS(PH)

B(I) = MAG(X], X2)*SIN(PH)
CONTINUE

CALL FETR (A, B, K, D)
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APPLY PHASE TERM

DO7I=1, K

PH = -COST*{I-HK)

COSINE = COS(PH)

SINE = SIN(PH)

RE = A{I)*COSINE-B(I)*SINE
XM = A(I)*SINE+B(I)*COSINE
A(I) = RE¥W*DY

B(I) = XM*W*DY

CONTINUE

THIS COMPLETES THE SPAR CORRECTION
IN THE PRIMED CORDINATES, ~

APPLY SPAR CORRECTION.

DO8I=1, N

DOS8J=1, N

COSINE = COS(SIG(JJT)}

SINE = SIN(SIG(JT))

S=1I-H

T =J-H

XV = 8¥DY/DY1%COSINE-T*DY/DYZ*SINE+HK

IV = XV

IVPL = IV+1

RE = (A(IVP1)-A{IV))FXV+A(IVP1)-(A(IVP1)- A{(IV))*IVP1
XM = (BIVPL)-BIV)*XV+B(IVP1)-{B(IVP1)}-B(IV))*IVPl
PR{I, J) = PR(l, J)-RE

PI{(I, J) = PI{I, J)-XM

CONTINUE

CONTINUE

CALL SECOND (QT1)

Q= QT1-QT

PRINT 42, Q

THIS COMPLETES THE SPAR CORRECTION.

CALCULATE THE FAR FIELD GAIN,
AGEQ = PIEZDIAM *DIAM /4,
FACTOR = WAVENR*WAVENR/PIE
DOl0I=1 N
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DO10JF=1, N

PR{I, J) = FACTOR¥*(PR(I, J)*¥2+PI(I, J)**2)

CONTINUE

GAIN = PR(H, H)

F = 10. *ALOG10{GAIN)

AF = LAMDA*LAMDAXGAIN/4. /PIE
EFF = AF%100. f[AGEQ

PRINT AXIAL GAIN PARAMETERS,

PRINT 29

PRINT 43, GAIN

PRINT 44, AE

PRINT 45, F

PRINT 46, EFF

DOlzI=1, N

DO12J=1, N

IF (PR{I, J) .NE. 0.0) GO TO 11
PR(L, J) = -40.

GO TO 12

PR(I, T) = 10. *ALOGL0(PR{I, J))-F
CONTINUE

DO131=1, N

DO13J=1, N

IF (PR(I, J).LE. -40.) PR{I, J) = -40.

CONTINUE

THIS COMPLETES THE CALCULATION OF

THE FAR FIELD.GAIN.

IN THE FOLLOWING A CONTAINS THE Ul PATTERN
AND B CONTAINS THE Uz PATTERN.

DO14i=1, N

A{I) = PR(I, H)

B(I) = PR(H, I)

D(I) = (I-H)*DUL%SCALE
E(I) = {I-H)*DU2%SCALE
CONTINUE

CALCULATE BEAM WIDTHS,

D1 = bD1#1000,
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15

16

CALL WIDTH (A,
CALL WIDTH (A,
CALL WIDTH (A,
CALL WIDTH (A,
CALL WIDTH (A,

.CALL WIDTH (A,

DT = DD2#%1000,

CALL WIDTH (B,
CALL WIDTH (B,
CALL WIDTH (B,
CALL WIDTH (B,
CALL WIDTH (B,
CALL WIDTH (B,

-03.,
-10.,
-15,,
-20.,
-25.,
-30.,

-03.,
-10.,
-15.,
-20.,
-25.,
-30.,

Dl,
DL,
DI,
D1,
DI,
Dl,

DT,
DT,
DT,
DT,
DT,
DT,

D3, N)
DLO, N)
D15, N)
D20, N)
DZ5, N)
D30, N)

P3, N)
P10, N)
P15, N)
P20, N)
P25, N)
P30, N)

PRINT BEAM WIDTHS.

PRINT 51
PRINT 47
PRINT 48

PRINT 49, D3, D10, D15, D20, D25, D30

PRINT 48

PRINT 50, P3, P10, P15, P20, P25, P30

PRINT PATTERNS.

PRINT 51
PRINT 52

PRINT 54, (A1), I=1, N)

PRINT 51
PRINT 53

PRINT 54, (B(I), I =1, N}

PRINT PATTERN MAP.

PRINT 29
PRINT 55

JJ = -15

JF = JJ+16

KK = JJ+15
DO16IT=1, N
II=N-J+1

PRINT 54, (PR(I, II), I = JJ, KK}

CONTINUE
PRINT 29

IF (KK .NE. N) GO TO 15
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PLOT PATTERNS.

XPLUS = H¥DUL%SCALE
YPLUS = H¥DU2%SCALE
XMINUS = -XPLUS
YMINUS = -YPLUS
GCALL AXES {6., XMINUS, XPLUS, -1., 4., -40., 0., 5., 5.,
132, 50)
CALL PLOTITL {JX, 26, 4, 2, 0., ~0.5)
CALL PLOTITL {I0, 3, 0, 2, -.395, 3.94)
CALL PLOTITL {i5, 3, 0, 2, -.395, 3.44)
CALL PLOTITL (110, 3, 0, 2, -.395, 2.94)
CALL PLOTITL (Il5, 3, 0, 2, -.395, 2.44)
CALL PLOTITL (120, 3, 0, 2, -.395, 1.94)
3,
3,
3,

-

CALL PLOTITL (I25, 2, -.395, 1.44)
CALL PLOTITL (130, 2, -.395, 0.94)
CALL PLOTITL (I35, , 2, -.395, 0.44)
CALL PLOTITL (IDEC, 6, 0, 2, 4.625, 3.69)
CALL PLOTITL (IPAT, 7, 0, 2, 4.805, 3,44)
CALL PLOT (D, A, N, -8)
CALL AXTERM (1)
CALL AXES (6., YMINUS, YPLUS, -1., 4., -40., 0., 5., 5.,
132, 50)
CALL PLOTITL (JX, 26, 4, 2, 0., -0.5)
CALL PLOTITL (I35, 3, 0, 2, -.395, 0.44)
CALL PLOTITL (I30, 3, -.395, 0.94)
CALL PLOTITL (125, 3, -.395, 1.44)
3
3

OOPOOO

]

™

-

OOPOO
N NNNNWN

CALL PLOTITL (120, , -.395, 1,94)
CALL PLOTITL (I15, 3, , -.395, Z.44)
CALL PLOTITL (110, 3, 0, 2, -.395, 2.94)
CALL PLOTITL (15, 3, 0, 2, ~-.395, 3,44)
CALL PLOTITL (I0, 3, 0, 2, -.395, 3.94)
CALL PLOTITL (IPAT, 7, 0, 2, 4.805, 3,44)
CALL PLOTITL (IPOL, 5, 0, 2, 4.95, 3.69)
CALL PLOT (E, B, N, -8)

CALL AXTERM (1)

IF {(YPLUS .GT. XPLUS) XPLUS = YPLUS
XMINUS = -XPLUS

-

PLOT MAP.

CALL AXES (6., XMINUS, XPLUS, -1., 6., XMINUS, XPLUS, 5.,
15., 32, 1000)

CALL PLOTITL (JX, 26, 4, 2, 0., -0.5)

CALL PLOTITL (MM, 11, 0, 2, 4.5, 5.75)
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CALL PLOTITL (I3DB, 4, 0, 2, 4.86, 5.50)
CALL PLOTITL (I10DB, 4, 0, 2, 4.86, 5.25)
CALL PLOTITL (Iz0DB, 4, 0, 2, 4.86, 5.0)
CALL PLOTITL (I30DB, 4, 0, 2, 4.86, 4.75)
DO27IT=1, 4

GO TO (17, 18, 19, 20), JJ

C = -3.

GO TO z1

C = -10.

GO TO 21

G = -20.

GO TO 21

C = -30.

NN = 0

KUP = N-1

DO251=1, KUP"

XI=1I

DO 25 J = 1, KUP

XJ=J ,
IF ((PR{I, J).GT. C).AND. {(PR(I, J+1).LT. C).OR. (PR{I, J).LT.
1C) . AND. (PR(IL, J+1).GT. C)) GO TO 22
GO TO 23

XTI =17

XJ1 = J+1

M = PR{I, J+1)-PR(I, J)

P = PR(I, J)-XM*XJ

NN = NN+1 _

IF (NN . GE. 2045) GO TO 26

YY(NN) = {(C-B)/XM-H)*DUZ*SCALE
XX(NN) = (XI-H)*DU1*SCALE

CONTINUE

IF((PR(I, J)} .GT. C).AND. (PR(I+l, J).LT. C).OR. (PR(I, J).LT.
1C) .AND. (PR(I+l, J) .GT. C)) GO TO 24
GO TO 25

Xil = X1+l

M = PR{I+1, J)-PR(L, J)

B = PR(I, J)-XM*XJ]

NN = NN+1

IF (NN .GE. 2045) GO TO 26

XX(NN) = ((C-B)/XM-H)*DUL1*%SCALE
YY(NN) = (XT-H)*DU2#SCALE

25
26

27

CONTINUE
CONTINUE

CALL PLOT (XX, YY, NN, JJ)

CONTINUE
CALL AXTERM (1)
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29
30

31
32

33

34

35

36
37

38

39
40
41

42

43
44
45
46
47
48
49
50
51
52
53
54
55

156

CALL AXTERM (0)

FORMAT (8F10, 3)

FORMAT (1H1)

FORMAT (//10X. *THE DIAMETER OF THE ANTENNA=*F6, 5%
IFEET*//10X*LAMDA=%F10. 3% METERS¥)

FORMAT (//10X, *NEXP=%I3, 5X, *KEXP=%I3)

FORMAT (//10X, *DELTA Ul=%F8, 6% DEGREES*5X*DELTA U2=
1%F8, 6% DEGREES#*)

FORMAT (//10X, *DELTA Ul=*E10, 3% RADIANS%*5X*DELTA U2=
1¥E10. 3% RADIANSH)

FORMAT (//10X, #*THE RADIUS OF THE BLOCKED AREA=%F8, 3%
1INCHES%)

FORMAT (//10X%*THE ANGLE OF SPAR 1l=%F6, 1%* DEGREES*//
110X*THE ANGLE OF SPAR 2=%F6. 1% DEGREES%)

FORMAT (//10X%THE WIDTH OF THE SPARS=%F8. 6% INCHES#*)
FORMAT (//10X%THE EXTENT OF THE NONZERO APERTURE IN
1THE Y1 DIRECTION=%F6. 1% POINTS*)

FORMAT (//10X%THE EXTENT OF THE NONZERO APERTURE IN
1THE Y2 DIRECTION=*F6. 1% POINTS¥)

FORMAT (10X*THE TIME FOR INITILIZING ARRAY=%F16,7%* SECONDS¥)

FORMAT (10X*THE TIME FOR FFT=*F16.7% SECCONDS%)
FORMAT (10X*THE TIME FOR THE BLOCKAGE CORRECTION=
1%E16, 7% SECONDS¥)

FORMAT (10X*THE TIME FOR THE SPAR CORRECTION=%*E16, 7%
1 SECONDS*)

FORMAT (//10X*GAIN=*E16.7)

FORMAT {//10X*THE EFFECTIVE AREA=%F8,3% SQ. METERS%)
FORMAT (//10X*GAIN=%F8. 3% DB%)

FORMAT (//10X#EFFICIENCY=%F8. 3% PERCENT*)

FORMAT {*WIDTHS (M-DEG) 3DB 10DRB 15DB 20DB 25DB 30DB%)
FORMAT (/)

FORMAT (* Ul *¥6F7. 1)

FORMAT (¥ Uz  *F7.1)

FORMAT ([///1)

FORMAT {* THE UIPATTERN FOLLOWS%)

FORMAT (¥ THE U2PATTERN FOLLOWS#*)

FORMAT (2X16F7.1)

FORMAT (* PRINT MAP OF PATTERN¥)

END



SUBROUTINE XTD (PR, PI, NEXP, KEXP)

SUBROUTINE XTD (PR, PI, NEXP, KEXP)
DIMENSION PR(128, 128), PI(128,128)
DIMENSION A(1024), B(1024)
IF (NEXP .GE, KEXP) STOP
N = 2#4NEXP

K = 2%¥KEXP

JH = N+1

DO31=1, N

DOlJ=1, N

A(J) = PR{J, 1)

B(J) = PI{J, 1)

DOZ J =JH, K

A{J) = 0.0

B(J) = 0.0

CALL FFTR (A, B, K, 0)
DO3J=1, N

PR(J, I) = A(J)

PIJ, I} = B(J)

DO6I=1, N

DO4J=1, N

A(T) = PR(L, J)

B(J) = PYL, J)

DOS5 J = JH, K

A(T) = 0.0

B(J) = 0.0

CALL FFTR (A, B, K, 0)
DO6JT=1, N

PR(I, T) = A(J)

PI(I, J) = B(J)

RETURN

END
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SUBROUTINE FFTR (X, Y, N, IFWD)

SUBROUTINE FFTR (X, Y, N, IFWD)
DIMENSION X(1}, ¥(1)
COMMON/SCRFFT/ F(1024), . G(L024)/FFF¥/S5(512), C(512), IBR(1024)
MASK = 00007777777777777777B
NREM = NREM.AND. MASK
IF (NREM-N) 1,7,1
1 PI = 3,1415926535897932384
N2 = N/z
RN = N$PIR = 2. ¥*PI/RN
NEXP = ALOGLO(RN)/ALOGIO0(2.)
NEXPl = NEXP-1
C GENERATE SIN COS ARRAY §,C
N4 = N/4$S5(N4+1) = C(1) = 1. $C(N4+1) = 5{1) = 0.0
N42 = N4+2§N22 = N2+2
DO2zI=2, N4
CGC = COS(PIR*I-1))
C(I) = CC$C(N22-1I} = ~CC$S(N42-1) = CGC
2 S(N4+I) = CC
C GENERATE BIT REVERSAL ARRAY IBR
Nl = N-1$N21 = N2-7
DO41I=1, N21, 8
J = I-1$11I = 0$ISH = -NEXP-1$MASK = 1
DO 3 L =1, NEXP
ISH = ISH+2
NEW = LSHIFT(J, ISH)
NEW = NEW, AND, MASK
II = II+NEW
3 MASK = LSHIFT(MASK, 1)
IBR(I) = 141
4 IBR(I+N2) = IBR(I)+1
IBR(3) = N4+1$IBR(5) = N4/2+1$IBR(7) = 3%¥N4/2+1
N7 = N-7
DO5I=9, N7, 8
IDIF = IBR(I)~IBR(I-8)
DO5J=2, 6, 2

5 IBR(I+J) = IBR(I+J - 8)+IDIF
DO6I=1, N1, 2
JJ = N-I+l

6 IBR(JJ) = N-IBR{I}+1

C ADD UP 15T ROW

7 NREM = N

IF (IFWD) 8, 8, 10
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DO9I=1, Nz

INZ = I+N2Z$F(I) = X(I)+X(IN2)

G{I) = Y{I)+¥(INZ)$G(INZ) = Y(I}- Y(IN2)
F(IN2) = X(I)-X(INZ)

GO TO 12

DO 11I=1, N2

INZ = HNZ$F(I) = X(I)+X(IN2)

G(I) = -Y(I) - Y{INZ)$G(IN2Z) = - Y{I}+Y(INZ)
F(INZ) = X(I}-X(IN2)

COMPUTE TREE

12

13

14
15

IN=2

IF (N-4) 16, 16, 13

DO 15 K = 2, NEXPI1

IE = N2 /IN$NIN = N/IN$KK = -1

DO14J=1, JN

KK = KK+2$IA = IBR(KK)$ISL = (J-1)*NIN
DO41=1, IE

IS = ISI+I

ISS = IS+IE

SAVE = F(IS)$SAVER = G(IS)

SAVEM = F{ISS)*C{IA)-G(ISS)*S(1A)$SAVES = F(ISS)*S(IA)+G(ISS)*C(IAl)
F(IS) = SAVEM+SAVES$G(IS) = SAVES+SAVER
F(ISS) = - SAVEM+SAVE$G(ISS) = -SAVES+SAVER
CONTINUE

IN = JN#2

C BIT REVERSE AND LAST ROW

16
17

18

19

20

IF (IFWD) 17, 17, 19

DO181=1, NIl, 2

II = I+1$7 = IBR(I)$JJ = IBR(II)

SAVE = F(II)*C(J)-G(II)*S(T)$SAVER = F(I1)%5(T )+G(I1)*C(T)
X(J) = F(I+SAVESX(IT) = F(I})-SAVE

Y(J) = G(I)+SAVER

Y(JT} = G(I)-SAVER

RETURN

DO20I=1, NI, 2

11 = I+1$J = IBR{I)$JJ = IBR(II)

SAVE = F(II)*C(J)-G(I1)*S(T)$SAVER = F(IL)*S{T+G(II}*C(T)
X(J) = (FIMSAVE)/RN$X(IT) = (F(I)-SAVE)/RN )
Y(J) = (-G{I)-SAVER)/RN

Y(IT) = (-G(I+SAVER)}/RN

RETURN

END
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SUBROUTINE WIDTH (A, C, DT, W, N)
SUBROUTINE WIDTH (A, C, DT, W, N)

THIS ROUTINE CALCULATES THE WIDTH AT
LEVEL C OF A WITH DISTANCE DT BETWEEN POINTS.

DIMENSION A{128)
INTEGER H

H= N/2+1

DOZI=H, N

IF ((A{I) .GT. C) .AND. (A(I4l) .LE. C))GOTO
GO TO 2

XM = A(I+1)-AL)

B = A{I}-XM=*I

HW = {({C-B)/XM-H)*¥DT
GO TO3

CONTINUE

CONTINUE
DO51=1, H

IF ((A(I) . LE. C).AND. (A{I+1) .GT. C)) GO TO 4
GO TOS5

XM = A{I+1)-A(1)

B = A(I)-XM*I

HW2 = (H-(C-B}/XM)}*DT
CONTINUE

W = HW+HW2

RETURN

END
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FUNCTION MAG (X, Y)
FUNCTION MAG (X, Y}

THIS ROUTINE CALCULATES THE TAPERING

FUNCTION FOR A ZRO METER ANTENNA WITH A FOCAL
LENGTH FO.

GAIN IS THE GAIN OF THE FEED SYSTEM,

COMPLEX G

REAL MAG

G = {0., 0.)

PIE = 3. 1415926535

FO = 8. %12, %2, 54/100,

RO = ¥FO

RSQ = X#3¥2+Y*42

R = SQRT(RSQ)

IF {R.GT.RQO) GO TO 1

Z1 = RSQ/4. /FO

PS = ATAN(R/(FO-Z1)

SC = -3, 1415926535/2.

iF (Y .GE. 0.0) XC = 3. 1415926535/2.
IF (X ,NE, 0.0) XC = ATAN(Y/X)
A=1.0

B =0.66

CALL FEED (GAIN, PS, XC, A, B, G)
MAG = GAIN/4. /PIE/(FO+R*R /4. [FO)*%2
MAG = SQRT(MAG)

RETURN

CONTINUE

MAG = 0.0

RETURN

END

161



aacaaan

162

SUBROUTINE FEED (GAIN, TH, PH, A, B, G)
SUBROUTINE FEED (GAIN, TH, PH, A, B, G)

THIS ROUTINE CALCULATES THE DIRECTIVITY OF A
HORN ANTENNA IN DIRECTION TH=THETA
AND PH=-PHI, THE DIMENSIONS OF THE HORN ARE
A/LAMDA AND B/1LAMDA,

COMPLEX CTl, CT2, CT3, CT4, G

PI = 3. 1415926535

G2 = 1. 0-CABS(G)*CABS(G)

X = PIxPI#PI/2, /G2

U = SQRT(L.-.25/A/A}

S = SIN({TH)

P COS(PH)

T1 = PI*A*S*P

Fl = COS(T1}/(T1*T1-PI*PI*, 25)

Fl = F1%F1

SP = SIN(PH)

T2 = PI*B%S*SP

Fz = 1.0

IF (T2 .NE. 0.0) F2 = SIN(T2)/T2
F2z = F2%F2

CT = COS(TH)

T1 = 1, +UCT

CT1 = Ti%(1,0, 0.0)
CTZ = CT1+G*CTl
T3 = CABS(CT2)

T4 = SP4SP#T3%T3

LI

T1 = CT+U
CT1 = T1%{1.0, 0, 0)
TZ = CT-U

CT2 = T2#(1.0, 0.0)

CT3 = CT1+G*CT2

T3 = CABS(CT3)

F3 = T4+P*P*T3%T3

GAIN = X#A*B*F1%F2%F3/U
RETURN

END
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SUBROUTINE PHASE (X1, X2, Z, N¥X, BPH)

SUBROUTINE PHASE (X1, X2, Z, NX, PH)
PH=0,0

RETURN

END



APPENDIX B

A, Intr-oduction
This Appendix gives the proofs of the astigmatic phase error
properties. The phase error in the aperture plane under this model

is given by Equation (25),

2 YA
L(E) = [01 xl + B ¥, - o *, + I‘K(x? + xi]/Roz.

All of these properties take advantage of the fact that L(x) is even, i.e.
L(x) = L({-x).
B, Property l
if the illumination function E(x) is symmetric about the origin, i.e.
E(x) = E(-x), then any contour map is symmetric about the origin for all

feed positions and reflector errors, That is

G(u) = G(-u). for all @, B, andT.

Proof of Property 1

The gain is given by Equation (7) as

2
_ 0k r JkLE jku x . 2
G(ulo uzs o, B, 1-‘) - ATtz P. ‘ ‘] E(E_{) e e dzs .
o 11 %

Now by the assumptions of the property

E(x) = E(-x)
and

L{x) = L{-x).

164
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Making use of these assumptions and changing variables to Y Y =- %,
one has
1 K iR LEy) jk (0 y 2
N 1. N -u)-
Glay, u,, o, B T) =5~ | [ Elp) e e dy|
o in
¥
= G(-ul, -u,, @, B, T).

This completes the proof of property 1.
C. Property 2

If the illumination function E(x} is only a function.of r, the radius
from the center of the aperture, when a contour map of the pattern is

symmetric about the lines

-8

tan 29 = o

for all feed positions.

Proof of property 2

In order to prove this property it is sufficient to show that

G(ul’, uz’, o, 8, T} = G(-ul‘, uz', o, 8, T)

and

L4

G(ul

’ - - ’ '
D, B, F)—G(ul pomu, . g, T)

in a coordinate system _1.1' which is at an angle ¢ to the u coordinates.
Only the first of these equalities will be shown.
The u’ coordinates are related to the u coordinates by the well

known rotation
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u’ = Ru,
where
cos @ -~ sing
}__{ =
sin ¢ cos @

Also let us define the _}5' coordinates by the same rotation

!
% = Rx.

Substituting v ’ into Equation (7), one has

2

T k . . -1 ,,T
‘ ’ - r Lk LEx) JR[R T ul o 2
G(ul y Uy 8. T) o | } E(r) e e dx|
o in
X
Changing variables to x ’ in the above, one has
n kz 2 2
c ) ki’ (x 7 - x,"%)
G(u1 » 0y @ By r) = PRy | E(r)é 1 2
¢} in )
x
;2 /2 2 ) ‘I ‘
+T(x +x, "R jk fu, 'x. " +u) 'x, ']
1 1 o 17 2 "2 1. 112
re dx, "dx | ,
1 2
where ¢’ = o sec 29.
Changing variables once again so that y = =%y, it follows that:
. 2 2 2 2.
_— f k{ly” - xz' YHTly +x, )R
¢ ) . -
Glu "y u, "y @, B/ T) =p——5— | | _[E(r) e
o in L 5
2

jk{{-u ')y+u'x} 2
e l 2 2 dY dle =G{-u1,’ uzfn &, Bl F)

This completes the proof of property 2.
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D. Property 3
If the illumination function E(x) is symmetric about the origin, i.e.
Ex) = E(".?E)' then the gain is an even function of &, g, and T" taken together.

That is

G(ul, u 23 -0, "'B! -F)'

2: a’,ﬁ; F) = G(‘ul, u

Proof of Property 3

The gain function may be written by Equation (7) as:

2
2 ikfox,~ +ex,%x, - ox
_ 1k r 3 | 172 2
G(ul, u.,. o, B’ F) - 4112;0 Pinl 'J E(_}_{-) e

2
X

2 2 2 .
IO tx, )}/Ro ik {ulxl + uzxz} 2
e dxl .

The magnitude of a complex number is the magnitude of its complex con-

jugant, so

2 2
1 kz jk{{=er X, - BXIXZ - (--r:w)x2

| j E(x) e
in

G(ul’ v 41120 P

2: o, B: F):

X

=

2 2 2 .
+ (-1 (xl +x, )}/Ro jk {-ulx1 -uzxz]
e dx

2
I

= Gl~u,, ~u,, -, -8, -T) =G(ul. u

1 2 -, -B» "'I.‘)'

2!
The last equality follows from property 1. This completes the proof of

property 3.
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If the illumination functidn E(x) is only a function of r, then the

angular coordinates which are aligned with the ¢ direction, tan 2¢ =

change roles when o and g change sign. That is

Glu, ’ uz', o, B, T) =G(u2f', ul', -o, =B, I,

where

u cos @

in u
s @

uz' sin ¢ cos gl | u

Proof of Property 4

From property 3, one has

Glu,’, u,’s @ 8, ) =Gl ', v, ~a, -8, -T).

Then from property 5 to be proved subsequently, it follows that:

' 4 - Fd
G(ul , u2 , =@, -8, -T) —G(uz ,

1
This completes the proof of property 4.

F. Property 5

', -, -Bs +F)-

il

2a’

If the illumination function E(x) is only a function of r, then the

angular coordinates which are aligned with the ¢ direction, tan 2¢ = -Z;Q’

change roles when I' changes sign. That is

G(ul', u " o, B, F) = G(uzls u J'- o, B, "F)-

2 1

Proof of Property 5

Referring to the proof of property 2, one has

o
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2 o ‘
Tk jkigf (x1,2 - xz'z)
' 3 —
G(u1 ;U » o, B, ) ey | E(r)e
o in ’
X
2

'2 2 . ? ’ ? t
+
+ X, }/R Jk{ul e u, %, 1

+T{x !
1 ; 2
e dx, dxz}i .

Once again observing that the magnitude of a complex number is the
magnitude of its complex conjugant, one can rewrite the above equation

as

il K2 jkia! (xz"2 - %, '2)
i ‘ _
Gla)’, u,’ @, 8, T) == | | Elx)e
o in .,
pa
’z Iz 2 . ! I Fl f
Phep ™ 4 " OHR 7 -giefey Ty T, )y
e d}-:l dx, | .
2 .
Now changing variables to
Yl = -xz
Yz = -xl’
it follows that:
. 2
o 1 Ke . efa’ {y,” - YZZ)
G(u1 Pu, @ g, T} “Te B I JE(r)e
. o in

X

2 2 2 . ' ’
e A

= G(uz': u ’s CY, Br "'1-‘)-

1

This completes the proof of property 5.



APPENDIX C

This appendix gives two theorems which concern the frequency
dependence of reflector antenna efficiency. Theorem 1 and 2 concern
prime focus instruments with simple point source feed systéms. Theorem
1, however, is extended to apply to a Cassegrain antenna system.

Theorem 1 requires as input data the design efficiency, 'T]o, the
measured efficiency at some frequency, ﬂ'(fm) + Bm, and an estimate
of the peak reflector phase error in radians, K(fm). From this infor-
mation Theorem 1 predicts both an upper and lower bound at another
frequency, fe.

Theorem 1 may be stated as follows:
Theorem 1

If the feed system of a prime focus reflector antenna at a frequency

fe is a scale model of the feed system at fm, and

PR ) - WE MW <B_
and

|8(f_» %) - 8f_, y)| <K( ), allxandy,
then the bounds

2 £ 2

f
- -9 I : &
W) < - BN - N )| &) +1pews e, () foran®

and
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2 2
f
- Py - e - - e,
MEI2 N, - Py = MUE Y (7 ) + 0, inf S Psmumj,foraup
m

hold. The set § is defined as

2
£ £
=foen = e | p/en . 1
s ={z:2 -U<fm/ P<fm) UG 0 <x <KiE_) |-

The function U (x) is given by

U(x) = cos (x) - 1.

Proof of Theorem 1

Recall from the text that the efficiency of a reflector antenna can be
expanded into an infinite series in even powers of frequency. This series

is given in Equation (31} as

2]

=)

n=0

2n
A
Zn

Denote by Az’ the estimate of Az based upon the true efficiency at

2

1
A, -'*“"f 5 LNE ) - 1]
Fad
Let us define the estimate of the efficiency at frequency fe as
I f 2
e

ne(fe) N Tlo tP AZ

where P is a free parameter. Now one has
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[ £ 2
T 2 N

T](fe} - Tle(fe) = L AZn fe § h TlO - P[T‘(fm) - “0] _9_ &
n=0 m

Substituting of the series expression for 'ﬂ(fm) into the ‘above equation and

using straightforward manipulation, one obtains

o

2 ©
E)-16)=Y A £+ 0-P)a 2 P(I-f-‘-’-'\ VoA £ P
ﬂe TIee)~z 2n e (-)Ze- m)z. Zn m
n=2

n=2

Making use of a remainder function R[{[x] defined as R{x]= cos (x) + lez -1,

one has
§ A
) = - Pl - wE)I(F) +F [
e o o m J
- Tx
f 2 i
1 2 e Tm N
E(x) E{x + 7) Rul«{l1 -P)u /2-P/— "' R|=—u dx dr,
1 N £ J}
where

u= 6(fe,§) - G(fe,§_ + 1),

and § is the reflector phase error function. The proportionality factor, F,
is defined in the text.

The integral above is the mathematical error of approximation, It
may be possible to actually perform the integral with §(x} being obtained
from a STAIR pr;)gram or mechanical measurement of the reflector surface.
The result of this calculation would be a small correction to the efficiency

estimate. The purpose here, however, is to bound this error.
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Using the mean value theorem, one has
fe \2
< - - HE _—
ﬂ(fe) =1, P['ﬂo ¢ rn)] ) tm supS

fus)

and
fe \2
WY >N - P LM - ME )] (i—/ +1_ inf S
m
where S is a set defined as

2
: £ £
[ 2 e i m .
s={zz=R[u]- 1-P)u/2-P(3) R |7 u]i0<u<KE )}

This definition for S is equivalent to the one given in the text. One must now
take the measurement errors into account, Thus,

2 2
£ £
I ooe™ e

)< - P -1 (fm)}\?n) +1_sup S + P(—f;> B_, for all P

and
2 2
f
MWI>N -PIG -n6E (=S ) +1 infS-P==) B , forall P
e =~ o 0 m- &/ e} N J m’
m m
This completes the proof of Theorem 1.

Theorem 2 is similar to Theorem 1. It uses a measurement at two
frequencies to imply bounds at a third frequency. Theorem 2 may be stated
as follows:

Theorem 2
If the feed system of a prime focus reflector antenna is scaled at

frequencies fe, fl, and fZ’ and
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[n(E,) - 1)) < By
| 0745, - L) < B,

| é(fe, x) - a(fe, ¥ = K(fe) all x and y,

and AZ” and A 4” are roots of the equations

" 2 " 4_ I
'I]O-E-Az fl +A4 fZ —'T](fl)

4
+ L f = r
Then,

2 4
+ ” " + +
MM +PAT £ 7 +QA £ "+ |F | B +|F| B, +7 sups§,

for al1 P and Q

and
n 2 u” 4 .
- - +
T](fe)>1]o+]?—}A2 fe +QA4 fe |1=‘1| B, |F21 B, + 1M, inf S,

for all P and Q,
where

5 n f 7 2,5,
S=iz:z=F2T[?—uJ-FIT[—f—uJ-!‘T[u]-(l-P)u 21
e e

+{1 - Q) u4/4!; 0<u< K(fe)}

Proof of Theorem 2

The proof of Theorem 2 differs from that of Theorem 1 in that three

terms of the cosine series are used instead of two. Define (fe) as
e
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2 4

= + P i TN
ne(fe) no AZ fe +Q'A4 fé ?

where P and Q are free parameters. Now one has

o

- v Zn ‘ # 2 u 4
mfe) - 'ne(fe) - L fe AZn - no - P AZ fe - Q Aé fe )

n=0

Let us define AZ' and A4' as the values AZ” and A4” would have were there

no measurement errors. A sequence of straightforward manipulations yields

_ e 2 R
”ﬂ(fe)«118(fe)-P(1’\-2—A2 )fe +Q(A4 A4)fe
2 4 o 2n
HL-P)A £ +(1-Q A, f +2_‘fe A,
=3
+PA -A Y EP+ A - A et (cl)
2 27 4 4 'e © .

The first five terms are errors in approximation while the last two are

caused by measurement errors. Clearly the summation term is

Zn _
28 A, =F [ {16t + 1) Tlot %) - 66 x + 1] dx dr,
n=3 ‘

T X
where

T{x] =cosx-1 +x2/21 x4/4!.

One can now obtain expressions for AZ - A "and A, - A '. The definitions

2 4 4

for A_' and A, ' may be written as

2 4

r . 2 PR
‘ﬂo-l-Az :f:'1 +A4 f1

i

)
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n A, fz2 +a, f24 = ,)-

Rewriting this set of equations in matrix form, one has

i 2 z;f—1 1T 2 J- A - 2 )
' n
f) fl ) Az fl fl Az Z £ AZn
n=3
= +
(=)
2 4 , 2 .4 s~ 2n
£, 5 Ay R 2y L % A
. S B e L - L. - L n=3 )

By inverting the square matrix above, it can be seen that A

zandA4 are
A ' and A’

2 4 respectively, plus error times. Thus
— — — . —
' 4 4 E" 2n
AZ - AZ fz - f1 -fl AZn
n=3
- 1
- 2,2 2 -
(£,£,) (£, - £}
‘ 172 2 1 2 2 T Zn
Ay T By 2 4 L2 P
L L n=3
and calculating at each error term individually one has
<0 o
P . 1 42 2n 4 2 2n y
I PRI S [f; B A h B2 A
12" Y2 T n=3 n=3
. and
@ <o
' 3 1 e 2 ¥ 2n 2 - Zn 7
A4“A4‘(H)2(fa_fz) 7L 2 Pant % LT Al
12 2 1 n=3 n=3
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4
£
. Cf%) TLo(E%) - 8(6. % + D)1} dx dy (C2)
and
Ag- A, = B [ [ B B + 1) {TU6(,,5) - 806, % + 1)1
£46,% - £
2 2 1 T X
;2
- (f-?-) TL6(f), % +i)]} dx dr. (C3)

. i
Now one needs an expression for the measurement errors Az' - AZ

¥ "
and A4 - A4 .

relations for AZ” , and A4” from the defining equations for AZ' and A4', i.e.

This may be accomplished by subtracting the defining

(AZ' - _A.Z”) flz + (A4' - A4") f14 = ;) - n’(fl) =&y

#

¥ o 2- I 4 - 1 -
where €, and ez are the measurement errors. Inverting this pair of

equations one obtains

fz e f 2 €
1
A I_Aﬂ'=/_:\ 1 - ;AN 2 (G4)
2 2 gl 27 2%
2 1 2 1
and
e 24
’ "o 2 1
Ay By “fz(fz fz)"fz(fz f2) - (C5)
2 Y2 71 1 V2 1

Substitution of Equations {C2), (C3), (C4), and (C5) into Equation (Cl) gives
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- ] £ )
WE) - (e = F | [ B B+ ) { F, Tz o]~ Py T v

2 T 4 l-‘
+Tle] - (1-P)u"/2!+(1-Qu /4fdedr+F ¢ -F, ¢,
where

u = 5(f ,X) '6(f lx+ 'T'),
e — e — -

and

2 2 2 2
f2 (f2 -fl)
fZ(PfZ-Qf 2)
F. o= e 2 e
1 2 2 2
fl (fe -fl)

Thus, since [el‘ _<_B1 and |€,2| _<_B2

ﬂ(fe)f 'ﬂe(fe) + T]O sup S + | Fll B, + IFZI BZ, for all P and Q
and

MEY 2N E) +M inf S~ [F | B, - [F,| B,, for all P and Q.

This completes the proof of Theorem 2.

Theorem 1, Cassegrain Antenna Version

The extension of Theorem l to the case of a Cassegrain antenna
depends upon considering only the most significant terms in an expansion
of the efficiency. A Cassegrain system in general has a slightly different

illumination function at two different frequencies. The fractional change
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in the illumination at the two frequencies will be given by el(x), i.e.

B, x} = B(E_, x+7)[1+ex)].

where fe is the frequency of estimation and fm is the frequency of
measurement, ! In addition the feed system of a Cassegrain antenna
system usually introduces 'a, small phase error. This error will be
denoted by k&(x).
With these definitions and the assumptions listed in the text the
stated bounds can be derived. These added assumptions are as follows:
1. Integrals involving the sine of the reflector phase
error differences between two points in the aperture
are negligible. The Ruze model for the reflector error
predicts that the expectation of these integrals are
identically zero. In addition the Ruze model wil.l be
;lsed e'xplicitly to evaluate one term.
2. Fourth order terms and above in e(x), 4(x}, and 6(x)
can be eliminated. The 64(35) terms are retained,
however.

The efficiency at frequency fe is

NE) = F I j‘ E(f_, x) B(f_, x+1)cos [S_+T Jdxdr

TX
where E(fe, f) is the magnitude of the electric field in the aperture plane

at the frequency fe. The functions S“3 and Te are
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s = «l’,(fe, x) - %(fe, x+T)

e
and
T =6(f, %)= 8(f, x+7).
o TOE L X) -8, x4t 7)
Expanding the cosine of a sum factor, the above expression
becomes

M) = F J[' JE(fe.}_i_) Ef,x+1)cosS_cos T dxdr

T X

l—'!c_.

JE(:E y X} Bif , x+ 1) sin 8 sin T dx dy.
e e — — e e — -
x

The second integral in this expression is zero under assumption 2 above.

It is felt that this term should be very small for any reasonable phase

function §.

One can now expand the cosine of T term in the first integral so
e

that

T\(f)' F{'J ,X)E(f,x+=r)T2/2.3dxdT
dJ - e — - e - =
T X

,X)E( ,§+I)R[Te]d_}5d=r

+F ]

[ c_—-—;

where R[x] is defined as

Rix] =cosx -~ 14 x2/2! .
The cos Se term has been eliminated from the second integral by assumption

2. The leading term is by definition the design efficiency, T\o(fe), the
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efficiency without phase errors in the primary reflector.
Inserting the free parameter P and taking advantage of the fact
that the reflector errors scale, one has
2

f
- ;e rot 2.,
'ﬂ(fe) = 'ﬂo(fe) - P\\f—-—mD F| E{f_, %) E(fe, x+ 1) Tm /2! dx dr

T X

F[ [ B¢, 0 B(_, x+o {(®- 1T */2! + RIT ]} ax dr.
T X

Substituting the fractional change in illumination into this expression,

it follows that

WE) =1 (f)-P(f) [ [=e_0Be_, x+0T /2! ax dr
X

As

[e(x) + e{x + 1) + elx) e(x + 7)] E(fm, ) E(fm, x+ 1)

N
b}
(-1 e—s
1% ey

A
T “/2'dx dy
m - -

P B B0, 20 {®- 0T 2RI )] axar
Tx

The second integral is now evaluated by the Ruze model after fourth

and higher order terms are dropped so that the expansion becomes
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2
i
- (2 I 250
M) = M(E) = P~ FlJBE 0B, x+0) T “/2tdxdr
g

2
f
+2(32) 0% (5 ) [N () - 1 ()]

m

v [l 2 : ~
+F[ [ Be, 0 BE_ 2+ 0 {®- 1T /2t + RIT I dx dr.

T X

The task now is to determine an expression for the first integral
above in terms of the efficiency at the measurement frequency. This can
be done by taking the difference between the true efficiency, 'ﬂ(fm}, at :Em

th i ffici tf :
and the design efficiency a - ‘T]O(fm)
£ )1t F | | B £ T
'ﬂ(m)"'ﬂo(m)-. JJ (m’E)E(m’f'{'I)COSSmCOS -
TX

-F Eif ,zx)BE{f ,x+¢)cos S .
m = m = - m

——
[ —

{=

In the first integral the sin Tm terms were eliminated by assumption 1
as before. Expanding the cosine terms in a power series and applying

assumption 2, one cobtfains

N ) - )=-F [ [ Ble , 0BG, x+1)T_%/2ldxdr

X

v &

+F [ [ Bl 0 B, x4 1 RIT, ] ax dr.
T X
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Solving for the first integral and substituting the result into Equation
ae has
7 fe A i
WY =0 E) - P(5) DO (€ )~ T o))

m

2
+Po” (£ ) [n (€} - Tlo(fe)]

-l { (= 1
F, B , x)BE . x+5) P R[T_Jjdxdr
I.
S - 2 . Bl
+ FJ J E(fe, X) E(fe, x * 1) L(P - 1) Te fat + R[Te]f dx dr.
ix
Once again making use of the fractional change in illumination and elimi-

nating fourth and. higher terms, one has

2
/f =
W) =1 () - Py (M) - M )]
m

+o?(E) IR (E_) -1 ()]
[4
7 RIT]

m

7

oy [ 20,
tF B, OB, x+t1){F-1T, /2! +R[T ] - P
T X

dx dr.

The bounds given in the text now follow from the mean value theorem:

2 2
f f
T e ’ e ™
M) 2 i) - PFE) [ple) - 10+ P(;I; ) B
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+ 02 (fe) ['ﬂo(fm) - 'ﬂo(fe)] + 'ﬂo(fm) sup S, for all P

and
£ 2 ) f 2
W20 PG () - 2(R) »
m m

+ cztfe) [no(fm)‘— 'ﬂo(fe)] + no(fm) inf 8, for all P.

The set S is given by

f 2

< :{z:z - (P - 1) w22 + R[u] - p(:c?-) Rful; Of_uS_K(fm)} :
— .

This definition for S is equivalent to the one given in the text.
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