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A]SSTRACT 

This investigation is concerned with attomatically making an array 

space when unknown in­of detectors form a beam in a desired direction in 

to maximize the output signal-to-noise ratioterfering noise is present so as 

(SNR) subject to a constraint on the super-gain ratio (Q-factor). Tapped 

delay line structures combined with iterative gradient techniques to adjust 

the tap weights are used to do this. 

First, we investigate the relationship between viewing the detectors 

as a "detector array" and viewing the detectors as a "multichannel filter. " 

Next, starting from the multichannel filter point of view we investi­

gate the sensitivity of the SNR to random errors in the tap weight settings 

and random errors in our knowledge of the detector locations. Because this 

calculation is exceedingly difficult from the multichanned filter approach, we 

will use the previously derived relationship to show that this sensitivity is 

essentially given by the super-gain ratio. We show that when we use linear 

arrays of detectors separated byone-half wavelength or less, this sensitivity 

factor may become very large when we use those currents and phases (or 

tap weights)which maximize the SNR, thus indicating that we should not try 

to design our detector pattern or multichannel filter coefficients on the basis 

of maximizing the SNR alone, but rather on the basis of maximizing the SNR 

subject to a constraint on the super-gain ratio. 

We then develop a computationally fast numerical method of finding 

the optimum excitations which maximize the SNR subject to a super-gain 

ratio constraint when the interfering noise is known. 

Next, we try to analytically consider adaptive algorithms which maz­

imize the SNR subject to a constraint on the super-gain ratio when unknown 

interfering noise is present, but because the SNR and super-gain ratio are 

nonlinear quantities, it turns out to be exceedingly difficult to prove conver­

gence of the algorithms to the optimal solution, or to find the algorithms' 

rates of convergence. Thus, solely for the purpose of mathematical tract­

ability, we consider adaptive algorithms which minimize the mean square 

error (MSE) subject to a linear constraint. 

ii 



Finally we present the results of computer simulations of algorithms 

which maximize the SNR subject to a constraint on the super-gain ratio when 

unknown interfering noise is present. 
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CHAPTER I
 

INTRODUCTION 

This investigation is concerned with the optimal design of a detector 

array and signal processor to maximize the output signal-to-noise ratio 

(SNR) subject to a constraint on the super-gain ratio (Q-factor). We will 

present and analyze an iterative gradient projection technique'to achieve 

this optimal design even when the noise statistics are unknown to the de­

signer a priori. 

Some of the motivations for undertaking our study at the present 

time are: 

1. The recent ability to approximate the sophisticated process­

ing required through the use of fast,, special-purpose digital computers. 

2. The recent use bf channels, such as are present in space­

craft and' underwater commrunications, where the additive noise from spa­

tially distributed noise sources predominates over the additive, receiver 

noise., ­

3. The receht use of acoustic and seismic channels where the 

low signal frequencies used result in long signal and noise wavelengths 

(relative to array size), 'thus to'high correlatibns between-the'noise .at thie 

array elements-, wHich .inturn implies that we-might achieve improved 

performance through the use of array processing techniques. 

4. The limited ability of design procedures based upon the class­

ical concept of an antenna pattern to adequately satisfy the criteria of min­

imum probability of error or minimum mean squared error or maximum 

SNR
 

The first three factors are self-explanatory. The last one deserves 

some comment. Some of the advantages (and limitations) of the classical 

antenna pattern approach to the design of array processors are: 

1. .The-pproach subdivides the system design problem into two 

separate pieces. An antenna engineer designs the array (spatial processor) 

and independently,, a communications engineer takes the single channel antenna 

output and designs the termporal processor to give, for example, the best, in 

some sense, estimate of the transmitted signal.­



This would seem to be an advantage, however, Gaarder(l)()has 

shown that this factoring of the optimum processor into spatial and temporal 

processors is, in general, impossible, and consequently, processors de­

signed on this principle are suboptimum. 

2. The concept of an antenna pattern assumes that we are deal­

ing with monochromatic or quasi-monochromatic fields. For the wideband 

signals coming into use, there is no easy way of combining the various fre­

quency components together. 

Previous researchers ()-(l)have considered the design of -detector 

arrays to maximize some criterion without constraints, both from the "de­

tector pattern" point of view and from the "multichannel filter" point of 

view. More recently (12)-(18) investigators have devised adaptive algorithms 

to enable processing structure composed of tapped delay lines (such as that 

shown in Fig. 6. 2. 1) to converge to an optimal structure even when the noise 

statistics are unknown to the designer a priori. These algorithms are sim­

ilar to those used to adaptivity equalize telephone and other dispersive com­

munication channels. 

These previous authors have designed adaptive algorithms which 

minimized the MSE, or maximized the SNR, by using iterative gradient 

techniques to make the tap weights converge to values which optimize-the 

MSE or .SNR in the steady state. Any individual tap weight usually con- ­

verges to its. steady-state value in a manner similar to that shown in Fig. 

1. 1 below 

Wi 

STEADY-

STATE
 
VALUE
 

ITERATION 
NUMBER
 

Fig. 1. 1 Convergence of an arbitrary tap weight to 
its steady-state value 
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In-the steady state, each tap weight can be viewed as having a nominal 

value plus a random variation about -this.nominal value. If we use the un­

biased algor-ithms of Widrow, (12. 13)Griffiths ( "),and Somin (14) the nominal 

value is' the same as the optimal-value of the tap weight. How'ever a question 

that immediately 'arises is the.following: How sensitive is the SNR to the small 

random variations' in-the.tap-weights about their nominal values? 

In chaptei three-we will show'that, depending upon the geometry of 

the detector array, the SNR tan by very sensitive to these small random 

vaiiations, and we will derive an expression for this sensitivity. 

In order to derive the expression for the sensitivity, some reformula­

tion of what previous investigatbrs have don&, both from the "detector pattern" 

point of view and fron the 'multichanned filter" point of view, will be nec­

essary. This will be covered in chapter two where we will also-demonstrate 

that both approaches lead to the same results under a monochromatic assump­

tion, which is to be exp'ected, s'ifice there'4s only one physical problem. The 

reason for our reformulatibn is asfollows: We will be able to express the 
Z pz I" cI 

SNR in the form zP QZ or lI Al 
where the vector Z represents 

the complex gains-(or Tap weights-T in the multichannel filter approach and the 

vector I represents the excitation currents in the detector pattern. By the 

sensitivity of the SNR to random errors in the tap weights. we mean that if we 

replace Z by ZN + ZR where N denotes the nomi{nal value and R denotes the 
I ZINPZ 

random fluctuations about this nominal value, the expected .valuei of -
Z*7Q Z 

may turn out to be of'the form E + an additional(Z'QZ Z' Q Z 
-~ - -N 

term, and we then define the ratio of the additional term to the nominal term 

.as our sensitiyity factor. However, using this approach, the calculation of 

because we showed in chapter 
ln

E is exceedingly complex°. ,Instead, uQ 
Z 

two that The detedtor pattern and-multichannel filter approaches we.re inter­

changeable, we'will use the detector pattern approach and rewrite the SNR 

expres'sion above in: termg" 'of-the power pattern, w/hich in turn depends upon 

the excitation currents, and then-by examining a picture of a typical power 

pattern, we will be lead by physical-reasoning to approximate the sensitivity 

of the SNR to random variations in the tap weights, by the super-gain ratio, 
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which is -a measure of the sensitivity of the power at the peak of the beam 

to random errors in the detector excitations. In other words, instead of 

saying that changes in the tapweights cause changes in the SNR, we are 

now saying that changes in the tap weights cause changes in the peak of 

the main reason the SNR changes. Thusthe power pattern which in turn is 

in the peak of the power pattern we will also auto­
if we constrain changes 

matically constrain changes in the SNR. The advantage is that we can easily 

the peak of the power pattern duederive an expression for changes in to 

changes in the tap weights (or detector currents), whereas we cannot easily 

due to changes in the tap weights.derive an expression for changes in the SNR 

chapter three that although, for
*As mentioned before, we will show in 

a particular array geometry (specifically a linear array of detectors sepa­

werated by half a wavelength, where the signal is impinging from endfire), 

can achieve very good performancemight initially be lead to believe that we 

by setting (usually by means of an adaptive algorithm) the tap weights equal 

also look at the super-gainto those values which maximize the SNR, if we 

that in practice we will not get this good performance be­ratio, we will see 

cause of the extreme sensitivity of the SNR to the small deviations in the 

tap weights from their optimal values. 

the questionAfter demonstrating this, section 3. 2 goes on to answer 

of how high a SNR can we get if we constrain the super-gain ratio to equal 

In order will extend the work of Lo, Lee some reasonable value. to do this we 


and Lee, (19)who recently developed a numerical method of solving this Aproblem.
 

us toOur contribution makes use of a state variable technique which enables 

reduce the numerical problem from one of finding the complex roots of a 

high order polynomial with complex coefficients (in all the specific numerical 

Lee and Lee the coefficients of the poly­cases treated in the paper by Lo, 


nomials were real, but this is not necessarily true in general) to one of find­

ing eigenvalues of a real matrix which is considerably faster and easier to do.
 

Next, we tried to analytically .consider adaptive algorithms which 

would maximize the SNR subject to a constraint on the super-gain ratio when 

and super-gain ratiounknown interfering noise is present. Because the SNR 

are nonlinear quantities, it turned out to be exceedingly difficult to prove con­

the optimum solution, or to find the algorithms'vergence of the algorithms to 

solely for the purpose of mathematical tracta­rates of convergence. Thus, 


bility (the actual nonlinear problem will be simulated on a computer in
 



chapter six to -obtain some numerical indication of convergence and conver­

gence rates); chapter four analyzes an adaptive projection algorithm which 

minimizes the mean square error (MSE) subject to a linear constraint: We 

prove that an algorithm of the form 

-J kPVWW-1~j+1i = W - - j (MSE) 

converges to the Lagrange solution in real-time, with an easily expressible 

bound on the convergence rate. Here k is the step size, P is a matrix pro­

jection operator (20)-(2l) and V. is the gradient of the MSE with respect--J 

to W.. We also proved convergence and found bounds on the rate of conver­

gence when . (MSE) was (1) known exactly (2) estimated, and (3) estimated-J 

by a noisy estimate. Physicallythese cases correspond to (1)knowing the in­

terfering noise field exactly (2) using the instantaneous values of the noise 

that are present at the outputs of the detectors (or at the outputs of each of 

the delay elements comprising our tapped delay lines) as estimates of the 

noise correlation matrix, e.g. replacing E {ni(t)n.(t)} by n (tk)n (tk) at 

iteration k, and (3) accounting for self-noise in the detectors and tapped 

delay lines by replacing E {ni(t)n.(t) } by ni(tk)n.(tk) + k at iteration k where 

k is additive white gaussian noise. 

Chapter five is an investigation of an adaptive penalty algorithm 

to minimize the MSE subject to a linear constraint. Specifically we prove 

that algorithms of the form 

.W W - k T a
 

.J~lk -w (Msz 1Kl T 1 1 
 3) 
where W T . n I - a is the equation defining the linear constraint, coverge to 

the Lagrange solution of chapter four if K is infinite. For K I finite, a bias 

is found to exist, and is investigated, along with bounds on the rates of con­

vergence of these algorithms to their steady-state values. Again we consid­

ered the same three ways of evaluating VW. (MSE). 

In chapter six, we set up and present the results of a computer sim­

ulation of the gradient projection algorithm which adaptively maximizes the 

SNR subject to a constraint on the super-gain ratio. We then conclude that 

when designing adaptive array processors one should either 

1. Calculate the super-gain ratio for the geometry under consid­

eration for all possible incident signal directions and if we are sure that the 
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super-gain ratio can never become intolerably high feel free to use the 

adaptive gradient algorithms proposed by previous authors, or 

2. Use the constrained adaptive algorithms developed in this 

investigation, which will assure us that we get the highest SNR possible 

subject to a constraint on the super-gain ratio should the value of the super­

gain ratio exceed some preset value we have chosen. 
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CHAPTER 72
 

Equivalence Between "Detector Pattern" and "Multichannel Filter"
 

Viewpoints in Designing Optimum Arrays
 

In this chapter, we will consider the following problem: Given an 

array of point detectors at known locations in space, how should we "design" 

the array so as to maximize the output SNR ? This problem has been solved 

before-as a matter of fact, it has been solved twice before, once by antenna 

engineers, who solved for those detector current excitations which maximiz­

ed the SNR through the use of the "detector pattern" concept, and again by 

communication engineers who viewed the array as a multichannel filter and 

solved for those filter coefficients which maximized the SNR, through the use 

of statistical quantities such as the covariances of the signal and noise fields. 

As explained in more detail in the first chapter, we will reformulate 

what these previous investigations have done, and show that the two approaches 

are equivalent (i.e. lead to the same optimum value of the SNR under a mono­

chromatic noise assumption) in order that we may, in chapter three, easily 

switch from the multichannel filter point of view to the detector pattern view­

point when evaluating the sensitivity of the SNR to small random variations 

in the tap weighs. 

In section 2. 1 we derive the optimum currents and the resulting 

value of the SNR when these currents are used to excite the detector array. 

All our results will be a function of the assumed incident noise power. In 

section 2. 2 we derive the optimum filter coefficients and the resulting 

value of the SNR when these filter coefficients are used in the multichannel 

filter. These results will be a function of the assumed noise space-time 

correlation function. In section 2. 3 we will express the space-time correla­

tion function used in section 2. 2 as a direct function of the incident noise 

power used in section 2.1 and then show that under the monochromatic noise as ­

sumption, the detector patternapproach and the multichannel filter approach, 

yield exactly the same value of the SNR, and moreover, we will be able to 

see that the currents of section 2, 1 correspond to the filter coefficients of 

section 2. 2, This analogy will be used in the following chapter to construct 

a quantity which is defined in terms of communication theory quantities (e. g. 

convariance), and corresponds to the super-gain ratio of antenna theory. 
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Section 2. 1 "Detector Pattern" Approach 

The material in this section follows the approach of Lo, Lee and Lee.(19) 

Assume we have N isotropic detectors located at arbitrary positions 

in space, specified by Cartesian coordinates r = (xn,yn, z n) as shown in 

Fig. 2. 1.1. 

z 

0 
Y 

Fig.2... Deetrsra e 

th 
.:The current in the n - detector will be denoted by I . Let us 

define 

where the asterisk denotesadjoint. The detector pattern is given by 

N jkr • r 
p((, f= z Ine-n (Z. 1. 2) 

n= n 

where the r L's are given by 

r0 = sin ( cos OX0o+ sin e sin ,y 0 + cos z 0 

th 
= x = the position of the n- elementx + YnYoo
 

2w 
Since k - we have 

xy z 
0r -n 
 x -sin e coskr *r --x -sinn P ,+ 7- sinS sin 0 81C0
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We will definerx 

Ik r "r 27T sinecos+ sinG sints-x cos (2.1.3) 

- Equation (2. 

p( 

1.Z)becomes 

In eM I V (2. 1.4) 

where V is given by 

e 

e 

+J' (2.1. 5) 

If we assume the normalized signal is incident from direction, (0o 

then the received signal power is given by 

S= 44 p(0,q 118 (8 -.00, 0)d 

), 

I' V1 - (2. 1.6) 

where 

V1 [ 
o 

1 e .1. 7) 

and LP 0 2? sin 0 Cos o + Yn sin0 in 00 Zn -. Cos 0 (Z, . 8) 

Define the matrix C by 

e¢ 

-1 
e on 
e 

.Uo1 

et1... 

-jib 

e 

0 

(2.1.9) 

Note that C is 

Proof: 

Thus 

a Hermitian positive definite 

x CT x = x VV I = 

S= I C1 

matrix (dyadic)
x"V > o if 

VI1 

(2.1. 10) 



Let us assume that the spatial distribution of the noise power is given by 

T (E, 0). Then the noise power received is: 

- N= ff Jp(6Ee)12 T(Gp)dr (2,111 
64' 

= ff ?* V*i T(e,() dQ 

06 

Since the currents I-n arenot functions of 6 or 

)da
N [ffV T(0, QI 
NI EIP I 

Define the matrix A by' 

'V 

(2.121z)
N ='IA 


where the elements of the matrix A are given by a.. 

+ Jtlk "-j
 

= ffe e T(6,4q)d2
64' 

The matrixA is positive definite 

Proof: xAx" = x ffVV T(E ) d2 x 

ff[x_*v [ x T (E,q)d 2 

Because T (8, 4P) is always positive, we may write it as 

T(6,4) g(E,))((8,(0) g where g and g are scalars 

Thus 
xAx" = gx 

@0 



= ff 

Since the integrandis positive 

x*A x > oifx 1 o 

QED 

The signal-to-noise ratio (SNR) is then 

IC' 
SNR = (2.1. 13) 

. I "A I 

We may use the calculus of variations to find the value of I which maximizes 

the SNR. From Appendix A 

S= A-V 1 (2.1.14)optimum 

The value of the SNR when I = I is-- -opt 

I* C I 
- opt -opt * -

SNR = = V 

I' At 1 A V 
-opt -opt 

The best SNR that we can achieve by using the "detector pattern" 

approach to the problem of optimizing the SNR is thus 

SNR = V* A-I (2 15) 

We will now find an expression for the best SNR we can achieve 

by using the multichannel filter approach to the problem of optimizing 

the SNR and then show under what conditions the two approaches yield 

the same value for the best SNR. 



Section 2. 2 Multichannel Filter Approach 

Assuming that we know the noise space-time corelation function, 

let us now find the optimum multichannel filter, optimum in the sense that 

we will find the z s (see Fig. 2.2.1 ) which maximize the SNR. Once the 

coefficients of the optimum filter have been found, we wil be able to write 

an expression for the best SNR we can achieve through the use of the multi­

channel filter approach. 

The material in,this section follows the approach of Edelblute, Fisk 

and Kinnison (8 ) . 

A xN(t)-XZN 

Fig. 2. Z. 1 Multichannel filter structure 

The SNR at the multichannel filter output when Ii i(t) = si(t) + ni(t) 

is received is given (under the assumption that the signal and noise are 

complex uncorrelated random waveforms) by 

N N 

S Z. zp zizjizp-- (P2.2 iSR-i=l j=l 

i= 5lj=l z z.c.z13i 

where E { s (t) n.(t)} = E {n.(t)s.(t) } = o V. .2) 

p- E { si (t) s. (t) } (2. 23) 

q qij3 E { n (t) n (t)} (2. 2.4) 
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z 	 (2. Z. 5) 

zN
[t: 
Note that P and Q are correlation matrices and thus are Hermitian 

positive semidefinite (we will assume that Q is positive definite, which is 

generally true inpractice - the Q matrix is usually of the form Q = %I+ Q 

where the aL term is due to additive self-noise at each detector, thus 

existence of Q
guaranteeing the 	 1 

Note the similarity between equation (2. 2. 1) and equation (2. 1. 13). 

Also note that the SNR is independent of the magnitude of Z. Let us now 

find the value of Z that maximizes the SNR by using the calculus of varia­

tions, i, e. 

Z PZ 
maximize L= (2.2. 6) 

This equation is of the same formas equation (Al) of.Appendix A. 

By the 	same reasoning as in section 2.1 (see equation 2. 1. 15) we have 

PZ ZoQ - P o (2..2.7) 

where 	Z 0 optimum Z
-QO 

Z PZ
 
ON =--0 

scalar 

(z0 P Z0) 
(2.2.8)Let Go 

-- 0 -­_Z0 

Thus 

0 QZ 	 (2.. 9)PZ-0 	 =G -O0 
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Equation (29 2.9) is an equation which Z must satisfy, it is not however,-O
 

an explicit expression for Z . Motivated by this need, and seeing from
-O
 

section 2. 1 that one way to find such an explicit expression for Z is by
*--o 

letting the P mattix be written as P =U 1UV (i.e. let P be of rank 1) let 

us do the following: 

Assume the signal field;is produced by a sihgle source-located at 

(C which fs generating statistically known random0 , co) in the far field, a 

output.
 

z * U "INCIDENTz 

SIGNAL 

0 I 
-~Y
 

rii" " 
iTH HYDROPHONE'
 

Fig. 2. 2. 2 Incident Signal Field 

The signal may be represented in the form (where we have suppressed 

the e+ j Wo t time dependence) 

x-- 2-it 
-j
s(x,t) = s (t) e where k = - ­

0c -0 X 

At the various hydrophone locations, the received signal is 
•iaDu r.
 

s e 0 -is(r. t) (t) 
-1.j )

= S (t) e j 2 0 c 

U ° r.letri- -o -i
ltc (2. 2, 10) 



Thus 
s(r., t)==s (t) e 

-j 
(.. 

2.11) 

The average signal power present in 

signal is 

S - E s (ri t) s r 

any hydrophone due to this 

- E( e s(t) e 

s \ (t)s(t)} Rs(O) 

The normali~ed signal correlation matrix elements 

Pi C F E s*(r t) s (r ) 

are 

-

1 
E s 

, 
(t)e\ 

j-io 
s (t) e 

rj 

1. 
R(O) 

jw (Tir. 
e E ) (t) 

Define 

ejW(T< ) (2.12. 12) 

-1 
e 

U S-j = 1 - r ] 

e (2. 2.13) 

Thus 

P =.U U (2.2.14) 
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We can repeat the steps leading to equation (A3) of Appendix A, 

to get 

z (Z*Q z°) -u (2.2. 15) 
-o (Zo-) 

Since the SNR is independent of the magnitude of Z, we see that 

-o"= -Iu0 -oI (2.2. 16) 

is the solution for the optimum Z. 

Using this value of Z, the optimum value of the SNR is 

SNR = _U*Qu (2.2. 17) 

This expression represents the best SNR that we can achieve by 

using the multichannel filter approach to the problem of optimizing the 

SNR. 

'In the next section we will investigate under what conditions this 

expression and the expression derived in section 2. 1 for the best SNR we 

can achieve by using the detector pattern approach yield the same values 

for the optimum SNR. 
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Section 2. 3 	 Relationships between the "detector pattern" and nultichannel 

filter approaches 

In section 2. I we found an expression for the best SNR we can achieve 

by using the "detector pattern" approach. In section 2. 2 we found an express­

ion for the best SNIR we can achieve by using the multichannel filtei approach. 

We will now show that these two expressions for the optimum SNR are 

equivalent if the noise is monochromatic. The monochromatic assumption 

must be added to the multichanrel filter approach because it is already inher­

ently contained in the detector pattern approach, i. e. in deriving equation 

(2. 1. 2) the detector excitations were assumed to be monochromatic. 

Showing that the two SNR expressions are equivalent entails express­

ing the space-time correlation functions $n(T,3xk, H ,) used in section 2. 2 (i. e 

used in the sense that qk - E In k (t) n,(t) tn(O, xk - x, )) as direct 

functions of the incident noise power T (0, 4) used in section 2. 1 In order to 

do this we will first find the space-time correlation functions between the 

point detectors in the array as functions of the incident noise field. Next we 

will find the incident noise power as a function of the incident noise field. 

Finally we will be able to express the space-time correlation functions as 

direct functions of the incident noise power. 

We will then apply the general theory to certain special noise power 

distributions and a particular afrray configuration. We will show, that -under 

a monochromatic noise assumption, for these noise-power distributions and 

this array configuration, the detector pattern approach and the multichannel 

filter approach yield exactly the same SNR results. Although we have used 

particular noise power distributions and a particular array configuration, 

this was only done to simplify the evaluation of certain integrals, and the 

equivalence does not depend upon the incident noise field, or the array 

geometry. 

Some of the material in this section makes use of the work of Qaarder. 



z /iPOINT SOURCE OF 

'NOISE LOCATED 
IN THE FAR FIELD 

ARNRAY 
 Y
 

XA 

N. 

Fig. 2.3. 1 Incident Noise Field 

For s implicity, let us initially as sume that the total incident nois e 

field consists of one plane wave emanating from one source located on the 

surface of a sphere of infinite radius as shown in Fig 2. 3. 1. We will de ­

note this plane wave.by k (00, 4 o' x, t) where 00 and o are spherical coor­

dinates specifyingthe direction of propagation, which is also denoted by u .o -


In complex notation 

- j k• (00, o3 X t) P e- •x e+ W t. (2.3. 

where P =P (00$ ) .As a complex scalar random variable (for electromagnetic 

fields P would have to be a complex vector random variable, but we are con­

sidering acoustic fields) and 

= k wavenumber = W u (e8, 0)
 

--'C -- -0 0
 

U 0 -- - sin e)"'cos x -- sin E) sin o - --Cos e z 
O
0 O-0 0 4- -0-O 



An alternate way of writing p (B-;,, ,x,,,t-) is, ­

0 0 

-~~~ -~.j 
 fk *x) 

--


j3l it-K .x
 

-(2.3.2)epe ­

where -- " 0" - u (6 o) is independent of frequency..K-
 ' (2,3. 3) 

Since the actual noise sources we wish to investigate do not emit monochro­

matic waveforms but rather superpositions of monochromatic waveforms, 

let us change the assumption of one plane wave emanating from 6ne source 

to an arbitrary superposition of plane waves emanating from one source. 

In this case
 

k k (e,. W) - __ 

K 1u (0,e) is still independent of frequency
Cc 0 0 

-- (t ---- x 

j
(0o,<o, x, t) f p (0, 4, w ) e ( - ) dco (2.3.4) 
0 0 

Noting that (t- K x is independent of frequency, we may define 

R- (o ? -i- t),.= - (0 o t - K. - (2.33 5) 

where q (E)0 t - K • x ) for fixed 00 and o is a sample function of 

a stationary, zero-mean random process, with space-time covariance 

function 

C(o, o, .tlt 2, x-k 2 )=--E g2(eo,@6'.l K Xl) 2 (eo,.ot-.K;x 2 )( 

(2,3,6) 

mailto:2(eo,@6'.l
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Let us now drop the assumption of there being only one source lo­

cated at coordinates (O o , o) and instead assume that the noise field is 

generated by one point source on the infinite sphere corresponding to every 

different value of (6,4'). Thus the total noise field is given by 

n (X,t) f f (E, ', t-K • x) d Q (2.3.7) 

We will assume that the sources are statistically independent of 

one anotlher, implyihg that 2 (q1,' I , t -K (ei, i) .x) is independdnt of 

q (e2,, t -K (62) • X) if (e, s)I / (e2, Z, i.e. 

S(E 1,. t -- K'- ) K .( 
8)

for (E ,-1) j (Oe, ) 

We may combine equations (2.3, 6) and (2.3.8) to give 

4', ti - 2 q (E) GZ ti - - 2t2 86(01-02 41-))-22C q (0ki 41l 02 1 , 0 x 1 

(-2.3.9) 

where 

f f s(Eo-e) , 4l-42) sin .6d 6 d'41 = 1 (2.3.10) 
0 0 

Thus, the total noise field is stationary, with zero mean and space-time 

covariance
 

C 2)n1 *t n(
Cn(t I - 2, x x 2)--l n.-t~ 2 , t21 

Z 3 1f .t f C 0 t_ Q 

f (e,,t 1 - t 2 , x - x 2 )d - (2.3.11) 

Note thatif the number of statistically independent noise sources is large, 

the resulting-total noise field is gaussian, aid the mean and covariance C 

completely describe the noise field. 



Two 'simple special cases of the.above general noise field (evaluated 

for the special case x= x - we will later show that this .is the only case 

we must considei explicitly, all other cases follow from this one by equation 

2.3. 16) are: 

-Monochromatic Noise 

-+j 2irfo - .' 

SC' (8, 4 i, x x O) = C (0, tO) e (2.3. 12a)
q - -2 - q 

White Noise 

(E,4,o) (2.3.C (0, 4, T, X- X 2 ) =C ,(r) 12b) 

q *q. I 

Let us now find the correlation between any two detector locations x 1 and 

x in the x - y plane. 

The noise incident upon a receiver located at x I is 

n t) = f f q (0, ), t -K • x 2.3. 13) 

We will now let x I be the origin.of our coordinate system, since 

only the magnitude and direction of the difference x_2 -x 1 is of importance 

(this is because the noise sources are in the far field). 

Z' 
PLANE WAVE 

Uo INCIDENT 
- FROM (e,#) 

Fig. 2. 3. 2 Correlation between two defectors 

http:origin.of


We*assume there is no. attenuation as each plane "wave comprising 

the noise field travels between.the detectors at positions x I and x 2 .' All 

plane -waves, no matter what their frequency, move at the same velocity 

because the medium is assumed to be homogeneous and isotropic. 

xl), i.e. a = a (0,t)Let a be the angle between (6, q) and(x 2 	 ­

- x I and the -direction ofis measured in the plane formed by the line x 

the incident plane wave u.0 . As we have the coordinates set up, with the 

noise field incident from the first octant'and x2 in the first quadrant, the 

noise wave hits x2 before x in time. Thus if the noise hits x at time 

a wheret, ithits x at time t - T 1 2 cos 

u • (x -x) 

(2.3. 14)TIz cos C__-Q 

On the other hand, if the noise is at x 	 at time t, it is at x at 

time t+ TIz cos a 

Thus 

n ( t) = n (x 2 , t - T 1 2 cos a) (2.3. 15a) 

n(x2 ,) n (xi, t + T,2 cos a) 	 (Z.3. l5b) 

The space-time correlation function of the noise process is 

(n(T, X 1 - 2z) -xE n 1, t) n(x 2 , t T). 

= (x.l t) n (x 1 , t -T+ T1 2 cos 

C (T T cos a, x -x ) 

ff f c q(0, (b,T'-T2 cos a, o)d (2.3.16) 
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Under the monochromatic noise assumption of equation (2.3. IZa) 

r j*rf iT -T coS LI 
+n (r, x 1 2 ) 0 jj (G,4 0 .~e 012 df Q (2.3. 17a) 

Under the white noise assumption of equation (2.3. 12b) 

4) (T, 	 x ) f ffC (e,,o) 6 [ T - T cos al d. (2.3. 17b) 
n22 

2 
E q 12 

Equations (Z.3. 17) will be used in the multichannel filter point of 
view when we have to evaluate qij E n.*Ct) n "(t) x -- -x. 

The total noise power incident at the origin (or at any detector) is 

given by n(o., o ). This follows by analogy with the power contained in a 

one demensional random process whose autocorrelation function is Rx(T 

i.e. total power f Sx(wM) dw Rx(o), 

= Noting that x 1 - x 2 = o implies T 1 2 cos a o, we have, under 

both the mona6hromatic noise assumption and the white noise assumption 

4n(oo) ffcq(et0)dQ 	 18) 

Thus the spatial distribution of the noise power under either the 

monochromatic or white noise assumptions is 

T(E,4) 	 = C ( 0,,O) (2.3. 19) 

In general, the equations we must use to transform between the 

detector pattern and multichannel filter viewpoints are, from equations 

(2. 3. 17) and (2.3. 19): 

Under the monochromatic noise assumption 

[ 
cn n-) -k ffT e,4) edj 2 7r f0 T - Tk I COS d] (2,3.20a) 
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Under the white noise assumption 

(2.3. 20b)'n(T, xk -xi ff 
e(tk 

T (E,) 6 [, - T
ki.

cos a] d 0 

we have been striving for inEquations (2.3. 20) are the results 

this section. They express'the spae-time Correlation functions 4n used 

in section 2. 2 as direct functions of the incident noise power T(6, 4) used 

in'section 2. 1. 

use these equations to show that under a monochtomaticWe will now 

noise assumption (i. e. we will use equation (2.3.2Oa)), the detector pattern 

appro'ach'and the multichann'el filtei approach yield'&xactly the same -values 

for the optimum SNR. Wecannot show this is true for'all possible spatial 

noise power distributions and all possible -array configuration, because there 

is no general way of evaluating the integral in equation (2.3._20a). Because 

of this w'e will applythe theory developed above'to three particular s-patial 

noise power distributions and one particular array geometry. Wewill show, 

for these noise power distri­that under a, monochromatic noise assumption, 

butions and this array configirition, the. detector pattern approach and the 

results.- Although .multichannel filt-er approach yield' exactly the same SNR 

we have used a particular array configuration and particular spatial noise 

only done to simplify the evaluation of thepower distributions, this was 

integrals, and the equivalence can be seen to be independent of'the incident 

spatial noise field and the array geometry. 

The three'spatial noise power distributions ve will consider'are: 

1. T (e,4) T(e,4) 6 (e-en.) ­

2. T (e, 4) T isotropic noise 

T for (, 4)) in the first octant .3. T (0, ) =: 

0 otherwise 

We will assume that the point detectors are equally spaced along 

the z axis, separated by a distance d. 



Z
 

N 
!jd 

2 T 

X
 

Fig. 2.3.3 Detector Array 

In Appendix B we evaluate 4) (T, Xk - x ) for the three spatial 

k -I. 

noise power distributions assuming the noise is temporally monochromatic 

and white. In Appendix C we evaluate the elements of the Amatrix of sec­

tion Z. 1 In Appendix D we evaluate the elements of the Q matrix of sec­

tion 2.20 - I 

Using the results of the appendices, let us compare the results of 

sections 2. 1 and 2.2. From sectiofn Z. 1 we have as our expression for the.. 

optimum SNR achievable by using the detector pattern approach 

* -1 
SNRV A V 

*'1 e-1 -l (d­2(N-Tcos-jz2 r oose -0z o 
where V_ e o ... 

()(i- i)cos e because of our assumed array 

geometry. 
Note that we set 

-

Oi
0 

2 ,r 
d 

o 

Summarizing section 2. 2, we have as our expression for the optimum 

SNR achievable by using the multichannel filter -approach 
* O-1_ 1
 

SNR = U1 U 

r[ cos E6] +jw[ - (N-1) coseK] 
..where U - 1e c 
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r . - - (i-l1) cos E@o 

Note that we set T. 0 - because of our assumed 
I c c 

array geometry. 

2f I 2Zrf 2Tr' 
Since c- -= c f -X----.- , andU are equal. 

we for all three spatial noiseBy comparing appendices C and D, see that, 

fields considered, the A matrix of.section 2.l and the Q matrix of section 

2, 2 are equal, thus demonstratingthat for monochromatic noise, we can 

optimize the SNR by using either the detector pattern ot multichannel filter 

16) the optimalapproach. Also note that from equations (2. i. 14) and(2. 2. 

and the optimal filter weights are equal, implying thatcurrent excitations 

the current excitations in the detector pattern approach correspond to the 

filter weights in the nulticharinel filter approiSi. 

In conclusion, we have: shown in thig chapter; that under the mono­

chromatic noise assunption,' the detector pattern approach and the multi-­

channel filter approach, are equivalent. Mbreover,- we saw"that the current 

excitations of the detector pattern approach correspond to the filter vreights.. 

. Again let us point out that although weof the multichannel filter approach. 


have used a; paricular array-configuration and particular spatial noise power
 

distributions, this was only done to -simplify the evaluation of certain integrals,
 

and the equivalence can be seen to be independent of the array geometry and
 

the incident spatial noise field. .
 

In the next chapter, we will investigate the sensitivity of the SNR 

to small randoffi changes in the detector locations and tap weights. We will 

an expressionhave to use the equivalence developed in this chapter to derive 

for this sensitivity. We will then show that when designing linear arrays 

a wavelength, one.wherb the spacingbetween detectors-is less than one-half 

should use tap weight values which maximize the SNR subject to a constraint 

on the above mentioned sensitivity, in order to keep this sensitivity within 

reasonable bounds. 
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Appendix A Maximization of the SNR 

Maximize L = * with respect to I. 
I A 	 I 

Using 	the calculus of variations we get 

(I* A) [ (61'*C01) + (1*0; 1) 1 C I)[jsI'Ar) + _A* 

(I*A 	 I) 

implying 

51 	 Gl (IA I) -AI (T. u±CI)1 + A I )I I C- ) I'*A I= 0 

Since A and C are Hermitian 

(_ A 61)= (aI*A I) * 

we have 

ATI) I'C - C I IA 61 

Let G C(1l AI) -AI17C1)
 

thus 61 6 + 1II G =0'
 

* 	 *]*.
 

Since both of these terms are complex scalars and the second is 
the complex conjugate of the first, the real part of the complex scalar 
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must be zero, i. e. 

'Re G 0 

The only way this can be true for arbitrary 51 is if G- 0. 

Thus 

CGI (I AI)--AI(I C I) = 0 

By definition 

c = V 1 

-... t aX. _ - ." i ) ) ­

(V £_v.XA I AI (I 

(I*A I) 
A I V (i ) 

I = qA-iV 

Where the complex scalar q is given by 

(I"A I) 

(tI ,V 1) 

But the SNR is independent of the magnitude of I , so when finding 

the value of I which maximizes the SNR, we can drop the scalar q. 

The direction of the optimum vector I whibh maximizes the SNR, 

is given by
 

- optimum A- IV 
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Appendix B Eviluation of (-r, x - x- ) for Temporally- Monochromatic. 

and White Noise. 

Note that, for the array geometry of Fig 2.4. 1, equation (2.3. 14) 
becomes Tk Cos a cos -k)d because U (0,4)) = - sin'6-cos 0x 

- sine sin 4 y - cos 6 z and (x - k ( -k) d z0 

If the noise is temporally monochromatic, for the three spatial 

noise power distributions under consideration, we have from equation 

(Z.3. Z0a) ['r d (I -k)Co 
-j2 . trf cos e 

6 c-Xl = T (e ,t ) ej 27:-f case 1. -n-r,; k 

. 2 j - f T d1- cos 

case 2. (n(T, Xk-X, = ff T e 0 c sinOdOd4 
0 0 

letting y 2w od (1:-k-)- cos 0 and replacing.---- by: k gives 
0 

oefc
 o
 

4)(T,Xk - x 2Te sin 2 ir
 

( A-) .
k)

kn/ I(d-1-k 2 Z f 


case 3. x/22Yf=(1ksinedOd 

=.f.fTecn(Txkx I) 

proceeding as in case 2, we get 

n _'k-X ) = T 7rjZ7nf 0T -jT (I (-k) sinLjrC (I -k)]d 

r(j- (IA-k) 

If the noise is cneporcdly white, for the three spatial noise power
 

distr'ibutions under consideration, we have from equation (2.3.20b)
 



0(-)cos 

case 1. n(T, X =T ( ,.p) L c(k 

jr 1jcase 2. (T,xk:x ) Tf fd cos5 sinGdd 

(I-k) co gie
 
letting y -os gives
c
 

-ZrTc if I T < (I-k)d 
(i-k)d c 

n (r, xk x ) 

S " 0 .otherwise 

n/Z w/ 2 (1~-k-) dco8sndd 

case 3. n (T,xkxI) =.T f f fT-. C co .- sineded 
O 0 

proceeding as in case 2, we get 

-Tc-r < I1-k)d 
2 1 o0<Tr<k)a-if 

n rXk -xl) 

o - otherwise 
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Appendix C Evaluation of the A matrix 

From equation (2. 1. 12) 

akA ff e+I @kWI) T(0, 4d Q 

where 
=Zi 	 . 6 4 6'an= 	 2n Z jr sin E cos n+. sin 8 sin + n cos 0 and 

(Xn y, Zn) is the position of the nt h detector. 

thFor our array geometry the i detector is located on the z axis, 

at a distance z. = d (i-1) from the origin, the above general expression 

becomes Wn = -- (n-1) cos 0, thus 

j 2 1-T (k-I) cos 6 
a = e T (6,4) d Q 

For the three spatial noise power distributions under consideration, 

we have 

j 2 (€1 (k-1) cos 	0 T 

case l. ak = e 	 7)T (d3 4 ) 

2w (€)(k-I) cos62 

case 2. a - T 	 f f e sin Odd4
 
0 0
 

d- ) (k-I
sin 12 
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r/ 2 -r/ 2 j 2 ) (k-A) os , 

case 3. akl = T f f e sinededc 
0 0 

= e-' d (k1)Ts 
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Appendix D Evaluation of the Q matrix 

From equations (2.2.4) and (2.3. 16) 

q E nk (t) n- (t) = n(° 3Sk -x 

In particular, when the noise is temporally monochromatic, for 

the three spatial noise power distributions under consideration, we have 
f - 1

from Appendix B (remember c - -) 

-
case 1. -j 2w ( -)(I-k)cos e 

kA n -k - = T(6, e 

4-w T sin fir (d-) (I-k)1 
case 2. qk 

w (1)-k) 

Tire i-irt) (I-k) sin[ir (--) (I-k)] 
=- 2 case 3. q k 

7r-- (I-k) 
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CHAPTER 3 

Error Analysis of Point Detector Arrays 

If we were to design a point detectot array or a multichannel 

filte'r to 'extract a signal, incident from direction ( E, o), from back­

ground noise, using the criterion of maximizing the SNR, as developed 

in chapter two, the following types of errors might affect the performance 

of our systern: 

I. Small r'andom errors in the antenna excitations or filter coeffi­

cients (po'ssibly due in part to -round-off errors if we use a digital system 

to determine the filter coefficients). 

2-. Imperfect knowledge of the noise field. 

That error type two is of importance is self-evident. However, the 

reader may ask if error type one is very important. It turns out that error 

type one can be of major importance'as can be seen by considering the follow­

ing problem: 

Assume we wish to receive a signal propagating in the z direction, 

k =-- by using a linear array of N isotropic pointhaving wavenumber 

detectors located along theZz axis. Because of the sampling theorem, our 

first inclination would be to space the N detectors one-half wavelength apart 

X
(-2), and then proceed to optimize the excitations so as to maximize the 

how much does error type, one affect us if we useSNR. The question is, 

It will be shown that for spacings between detectors of lessthis spacing? 

than about one-half wavelength, the super-gain ratio, which is a measure of 

how much type one errors affect the detector pattern and thus the STIR, begins 

to get very large. This mans that very small rrors in the antenna excita­

tions cause large variations inthe received SNR. A' bdttdr approach to use 

when the detectors ar s'ep~rated by less than a #t'elengt, 'Would be to 

maximize the SNR subject to a constraint on the.super-gain,,or type one, 

error. This is one of the things we will investigate in this dhapter. 

Because the above mentioned types of errors are presert in our
 

systeih, the following questions arise:
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1. If we optimize the processor as in chapter two, what arc the 

effects of error type ont' oil the SNR? 

Z. What iis the optiniuf SNR we can achieve if we optimize thi' 

processor subjectto a constraint on error type one? 

3. Can we develop an adaptive algorithm which maximizes the 

SNI" subject to.'acohstraint on error type one? 

The reasbi for undertaking this entire investigation is to answer 

question three - Ibecause the development of this- type of algprithin w'ill 

iiable us to:di sign-array preccssors which will no longr significantl 

stufe r from the deleterious eftfects of error types one and two that, vts'ni 

lay arrays stiffer fromii. 

Ill this chapter we wilt answer questions one and two. We will an­

swilr (jluestion, ihrce in. chapters four, five and six. 

Section 3. 1 Sensitivity of the SNR to landom Errors in thle Detector 

xqitations and Locations. 

Consider an array of N isotropic detectors placed at some prescrib­

ed positions in space whose Cartesian coordinates are given by x i , i= 1, ... , N. 

Let ( 0o ,0 P ) be the angular coordi'nates of the main bnam, and Ii be the 

current excitation in the i t h detector. Frorn equation (2. 1. 13) the SNR is 

given by 

SNR= I'¢ (3. 1. 1) 
I*SA I 

where all quantities' haveen dmedfi'n.d previously in sectio n 2. ]. 

By the sensitivity of the SNR to random (,rrors in the detector ex­

citations and locations we nuean the fo ILowing: if we let the. dtector cu rents 

and positions be composed of a nominal term plus a random term, i.e. 

. - I + I and x- x. I- . the SNR is now. defined as the expected 
a_-,z r -i< -i n i r, I- ._ 

value of equatibn (3. 1. 1,). This expectation might fiurn out to be of the form 

I'I ,n = _l *.f-an additional ter in, and we would 

I A I A­
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then define the ratio of the additional term to the nominal term as our sensi­

tivity factor; The calculation of this expected val e', as it stands, is exceed­

ingly cdmplex. However, the SNR in equation (3. 1. 1) may also be expressed 

as 

(u . (3. 1.2) 
SNR = 

f (u) T (u) de 

2
where i(u) is the array power pattern 1(u)= II*VI, e(u ) i 1 12 

)is the value of the power pattern at (60 I, o , and T (u) is the incident noise 

power. Again, if we let the detector currents and locations be random, the 

calculation of the expected value of equation (3. 1. 2) is exceedingly complex. 

However, equation (3. 1. 2) indicates to us that we can use the super­

gain ratio, which is a measure of the sensitivity of the power pattern (b(u) 

to random errors in the defditor excitations and positions, as an alternate 

measure of the sensitivity of the SNR to random errors in the detector exci­

tations and positions. 

An intuitive justification for this is as follows: I (u) is the power 
.pattern. Since the signal is incident from direction u 0 , the power pattern 

is usually designed so as to peak up in the 	u direction, e. g.
 
-O
 

- - - go (SIGNAL) 
B ,DISTRIBUTED 

7 -r-." 	 "NO NOISESOURCES
 

Fig. 3. 1.i "TypicalPower Pattern-' 

The solid line in Fig 3. 1. 1 represents the theoretical power pattern 

while the dashed line represents the actual pattern we may get due to random 
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errors in current excitations and detector locations. Small changes in the 

power pattern affect the numerator of the SNI much more than the denom­

inator because the numerator is proportional to the pattern while the de­

nominator is proportional to the integral of the power pattern over all space, 

which doesn't change 'as much. Put another way, if the power pattern changes 

slightly, the main reason for the change in the SNR is because the signal 

power received by the array drops from level A to level B. While the noise 

power received by the array changes, it does not change to as great an ex­

tent as did the signal power received. Thus our premise is that 

The super-gain ratio Q is derived in Appendix A and is given by 

equation (A 15) 

(3. 1.3) 

where BE V d Q 

Q is a function of the spacing between detectors through V, and 

also a function of the signal location (or main beam direction)through I is 

and the noise field (i. e. assuming we. use that value of I which maximizes 

the SNR). 

asTo investigate how the SNR and Q factor behave a function of 

array geometry, we shall focus on the special case of Fig 3. 1. 2, consist­

ing of a linear array of four isotropic detectors embedded in a uniform 

noisefield (i.e. T(6, 4) = 1 for o < G< r, o<4<Zw), whosemain 
= o), and whosebeam is at broadside (0 =o) or endfire (o -, o= 


we found in chapter
current excitation is given by the optimum value of I 

two (i. e. that value of I which maximizes the SNR)o 



-38-

Y
 

-3d -d d 3d' X 

Fig. 3. 1. 2 Four element linear array 

Before we can obtain numerical results, we need the explicit form 

of th A matrix in the SNR expression for the case where T (6, 4)= 1 for 

all values of 6 and p, and of the matrix fVV d 0 in the Q factor ,expres ­

sion. Because of our choice of an isotropic noise field, these matrices 

become identical, and, in this case, the elements of A, denoted by aklA 

canbe integrated out in closed form for planar arrays of isotropic elements. 

Assuming the detectors are in xy plane, the elements of A are given by 

* rr jk -j1P
 
akA = a; = if e e
 

ju2) sine0cos t~ 'I- In~i 
f fr e - [X X Jsin 0-&0dt 
0 0 

(31. 4) 

We may rewrite the integrand by noting the following identity 

j (i -r/2)]
Alcos A zsin Re Al1e +A 2 
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A eJ +A e J+ e- jw/ - A1 e _-A 2 eJ =[Al+j (-A,)] e j 

(4-tan2
j4)

j tan-

' 
A 2 ++A e 1 e = A1 +A e 

Taking the real part gives the result 

4= 12 A, cos (-tan -I 1 
A cos 4+ A2 sin 

thus 

ak= f f e j sin ded (3.,1. 5) 
0 0 

where 

(3. 1.6)Pk4(xkY) 2+ Y&Y, 

(3. 1.7)
Yk s--=.tan- 1 Yk-Y 1 0< Yk <ir 

appears in the integrand,
Note that Xk is a multivalued function, and since it 


< How­
it must be restricted. We will restrict XkI to the range o XkI <r. 


when we do this, if kk appears explicitly in the resulting formula we
 
ever, 


get for ak we can not use the formula to calculate both akl and ak because
 

we will not satisfy the requirement that akI = aI kdue to the restriction on y.
 

If'y appears in the formula for akl use
The procedure to use is as follows: 


strictly less than I, and evaluate akI for

the formula to evaluate akA for k 


kIycoptngaik> not appear in the formula for a, (this is

k >I by computing ak. If -ydoes 


the result we will obtain in our problem, but we get this only because of the
 

there is no problem. In either case, to

particular way we defined V and I ), 


evaluate a kk ' Ykk is indeterminate and hence we must evaluate the diagonal
 

terms separately.
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2-r jx Cos ( -Ykl)
 d 

Since 21 f e d= J0 
0 

7r 

a = w f sin 8 sine) d (3.1.8) 
0 

But w 

f J (x sin 0) sin Od 0 2 sin x 
0 x 

0 

sin (27r Pk 1 (3.1.9) 

akI = 4)' for k-

Z' PkI 

If k = I we have 

akk= f Tsin d dp#w .- (3.1.10) 

o o 

For the special case of the four element linear arr.ay shown in 

Fig 3. 1.2, the elements of the A matrix are given by, 

4 s ZiTd 47 d 2 n 6 d. 

w sin dS-- -d- ­-s--

2 si 2ir d 4 ir .2?.. sin 2 w d k si 4n d 
d sin -T sin sin zX 27 7 2 i X d X47d 

A=
 

. 
4 w d 2 X s Zi d 4 r 2 k sn 2'i d

sin - -d sin --- -- -­

2 s 6 r d X 4 r d 2 X 2ir d' 4 
-d--sin K d.sin - -F sin r 

(3. 1. 11) 
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The optimum (with respect to maximum SNR) value of I is given 

by equation (2. 1. 18) 

• -l 
I opt -

Using this value of I , we found in chapter 2 that the SNR is given 

by 

(3.1. 1Z)
SNR = V A-4 V 

SNR 1 -1
 

Again using this Value of I, the Q factor is given by
 

(3.1.13)* i v2 [A-]v-­

= _Ai 
 V1 A V, 

(0 0 o) then, in our example
If the main beam is at broadside 

e 

e (3.1.14)1V-v. = jW¢3 0 

e 

° j J 4 1 

-e
 

o) then, in our example
If the main beam is at endfire (=- -, 4o 

ee Co j (-3- d-dqIJ 

(3° io15)eXl=e 

ee 

J~j4j (3 d 

e e 
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Similar results can be obtained for the ten element linear array 

shown below in Fig 3. 1. 3 

-9d -7d -5d -3d -d d 3d 5d 7d 9.d
 
2 2 2 2 22 2 2
 

Fig 3. 1. 3 Ten element linear array 

The following graphs of SNR and Q vs d were obtained for four 

and ten element linear arrays, in isotropic noise, when the main beam was 

at broadside and endfire, using the optimum excitation: 
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SNR
 

0.4
 

0.3 

0.2­

0.1-


I- I I I I I
 
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 d/X 

Fig. 3. 1.4 Four Element Array , Broadside Signal 
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TO 3.4 AT d/ =.1 

20­

.15 

.10 

.05 

0 .2 .4 .6 .8 . 12 1.4 1.6 d/X
 

Fig. 3. 1. 5 Four Element Array, - Broadside Signal 
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SNR
 

1:6 

14 

1.2 

1.0
 

.8 

.6 

4 

.2 

II *I 1I I. . .. -.. 

.2 .4 .6 .8% L 1.2 d/X 

Fig. 3.:1. 6 Ten Elemnent Array- Broadside Signal 
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TO 3.4 ATd/X=.3
 

.16 

.14­

.12­

.10 

.08 

.06 

.04 

.02 ­

! I II I 
.2 .4 .6 .8 1.0 . [2 d/X 

Fig. 3. 1. 7 Ten Element Array - Broadside Signal 
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1.2 

I.0
 

0.8 

0.6 

0.4 

0.2 

I I I I I -

.2 .4 .6 .8 1.0 1.2 d/X 

Fig. 3. 1. 8 Four Element Array - Endfir'e Signal 
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=
TO 0.74 AT d/X .3
 

'10
 

i I. I I .
 

0 .2 4 .6 .8 1.o 1.2 d/;
 

Fig. 3. 1. 9 Four Element Array - Endfire Signal 

.05 
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SNR 

TO 5.4 AT d/X=.3 

3.0­

1.0 

0.6 
F 1 I I I I d/
 

.2 .4 .6 S 1.0 12' d/X
 

Fig. 3. 1. 10 Ten Element Arra.y - Endfire, Signal 



TO 556.1 AT d/X -.3 
.40­

.30 

.20 

.06.
 

.2 .4 .6 .8 1.0 1.2 d/X 

Fig. 3. 1. 11 Ten Element Array Endfire Signal 

.10 



By comparing Figs. 3. 1.4 and 3. 1.6,3. 1. 5 and 3. 1.7, 3. 1.8 and 

3. 	 1.10, 3. 1.9 and 3. 1.11 we see that the general shape of the curves and 

curve is independent of the
the ratios of the maxima to the minima of each 

number of elements (four vs ten) in the array. Hence in our future work 

in order to conserve computerwe will 	only consider four element arrays 

time. 

to Figs. 3. 1. 4 and 3. 1. 5 notice that if we use those,With reference 

the SNR and Q factor that we 
current excitations which maximize the SNR, 

will get when the ,signal impinges from broadside can vary between 0. 2 and 

15 (a ratio of 1:3) respectively, depend­
0. 5 ( a ratio of 1:2. 5) and 0. 05 to 0. 


ing upon what spacing we use between detectors as long as it is greater than
 

00 2X 

Aside: 	 Note that the graphs only cover the region up to d= 1. 8X 

the region of interest to us; however, if we extended, for
because 	this is 

example, Fig 3. 1.4, it looks as follows 

SNR 

1.0 	 2.0 3.0 4.0 5.0 d/X 

Fig. 3. 1.12 Extension of Fig. 3. 1.4 

and all the other graphs behave similarly. Note tlso that our graphs don't 

mutual coupling
cover the region d = o to d = 0.2 X because in this region, 


effedts between detectors come. into play, and our analysis does not take this
 

into account,
 

This means that for this array geometry, when the signal impinges 

from broadside, it is relatively unimportant what spacing between detectors 

(i. e. 
we use and furthermore, it is acceptable for us 	to design the array 



choose the current excitations or tap weights) by maximizing the SNR alone­

rather than designing the array by maximizing the SNR subject to a constraint 

on the Q factor - because the Q factor which results from the use of the first 

design procedure will never be excessive. 

However,. with reference to Figs. 3. 1. 8 and 3. 1. 9 notice that if we 

use those current excitations which maximize the SNR, the SNR and Q factor 
we will get when the signal impinges from endftre caA vary between 0. 2 and 

1o0 (a ratio of 1:5) and 0. 06 to a number well exceeding 0. 74'(a ratio very 

much greater than 1:12) respectively, depending upon what spacing 've use 

between detectors as long as it is greater than 0. 2 X. This means that for 

this same array geometry, when the signal'impinges from endfire, the 

spacing between detectors that we use is relatively important, i.e. we. 

would prefer- to space the detectors as close together as possible; how­

ever'if we do this, the Q factor, which is a measure of the sensitivity-of 

the SNR to the random fluctuations in' the tap weights will be so lirge as 

to make the array processor useless. 

The conclusion we draw from these graphs is that if we are going to 

use a certain detector array and we-are not sure a priori that for all possible 

incident signal directions the Q factor never gets too large wheri we use those 

current excitations (or tap weights) which maximize-the-SNR, we must instead 

use those excitations which maximize the SNR (equation 3. 1. 1) subject to a 

constraint on the super-gain ratio (equation 3. 1. 3). We will see how to find 

these excitations in the next section. 
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Section 3. 2 	 Myaxirnizatipn of the SNR subject to a constraint on the super­

gain ratio, . ,- I . -I- V IV 	I I". 

subject to the 	constraintThe problein is to maximize 

IA I
 

'Appendix sumrhfarze the woik of Lo, Lee, 'and Le(19) 

B I 
recen-tly diveloped a numerical technique of solving this problem. How­

ever, their work yields a (sometimes complex) polynomial equation whose 

roots (when found numerically) can then be u'sed to calculate the value of I 

Our contribution rm~akes use of a statewhich is the solution to the problem. 

L Lee and Lee's numericalvariable technique 	which enables us to reduce , 

of finding the complex roots of a high order.polynomialproblem from one 

with complex coefficients (in all the specific numerical cases treated in their 

of the polynomials were- real, but this is not -necessarilypaper the coefficients 

wetrue in.general and is not true in the second example will consider in this 

section) to one of finding the eigenvalues of a real matrix, which is consider­

ably faster to do. 

Since we can only get numerical results for particular examples, we 

will consider 	the following two specific problems:. 

1. 	 Solve for that value of I which, vill maximize the SNR subject to the 

for a linear array of-four isotropic detectors spacedco'nstraint Q = .08 

d = 0.8 X apart, embedded in a uniform-noise field (T (0, ' ) = 1 for­

o< e < T, o < S < 27u), whose main beam is at broadside (0 = o). From 

Fig 3. 1. 5 we see that if we did not constrain Q, but instead used that value 

would get a value of Q equal to approx­of I which maximized the SNR, we 

imately 0. 12. 

2. 	 Solve for that value of I which will maximize the SNR subject to the 

11 for a linear array of four isotropic detectors spacedconstraint Q . 

a uniform noise field whose main-beam is at­d = 0.4X apart, embedded in 

see that if we did not constrainendfire (6 = 	 ir/ 2, o). From Fig 3. 1. 9 we 
00 

0, but instead used that value of I which maximized the SINR, we would get 

a value of Q equal to approximately 0. 18. 

Lee's method 	to do the first example, andWe will use Lo, Lee and 

our method to do the second. As far as the first example is concdrned, 

V 1 = col [i 1 	1 1] and we may 



-54­

choose for our complete set (see Appendix 'B) the following vectors: 

. -1 -1 

0 0 
a =1 a 1 a4 0 (3.2. 1)

0 0 -

The W matrix (equation BS) has vectors a- W2 , W3 ' W4 as columns, 

where 

1W. = 08A-I) a. s 2 + 2A a. s +A (0. 08A - Aa ;i= 2,3,4 (3.2.2)-1 -1 -. 

The elements of this matiix are real polynomials ins of degree two, 

except'for the first column-whbse elements are all equai to one.. Setting the 

determinant of this W matrix equal to zero results in a polynomial of sixth 

degree in s-being equal to zero. After solving for the six roots, we take 

the real roots '(since we know s is real) and substitute them into equation 

(B5) to determine the possible values of I, i.e. 

1= [A - sI + 0.08s A]-1 (3.2.3) 

We now take these values of I and substitute them into the expressions 

for Q and SNR. The solution-we are looking for is given by the I which satisfies 

Q = , = 0. 08 and-gives the highest yalue of the SNR 
I'AI 

Numerically, we found the following six roots of the polynomial, the real rodts 

being. allowable' values of s; corresponding to these four allowable values of s 

we found the values of the Q factor, corresponding to the two values-of s for 

08 we found the two values of the SNRo
which the Q factor is equal to 0. 

S Q SNR 

121. 0 + j 0. 198 
. . .. . . ..12 1. 0 - j 0. 198 

0. 080 0.058-112.7 
0. 080 0. 187-52' 2 
0.070 0.084-61.8 
0°071 0.090
-61. 1 
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i. that value of I which maximizesThe solution to the first problem, e. 

the SNR subject to the constraint Q = 0. 08 for a broadside array is the value, 

= - 52. 160. For this value of s, I is given by
of I corresponding to s 

0.086 

0.007 

0. 007 
0 086 

and the maximum SINE we can achieve subject to the constraint Q 0. 08 is 

SNR = 0. 187o 

The second, example is more complicated, because the vector space 

consists of complex vectors. (e.g. a ) over a complexwe are working in 


scalar field .(e. g.-the scalar r in equation B3).
 

j -3ir(.4)e 
-Tr3 (. 4) 

Here V- e 

j 3T (.4)
 
e
 

may choose foi our complete set the following vectors
and we 

ej- 3 ('4) e-3,.4) e 37r 4 ) - 3• 4 

a-3 " -4= . .. (3.2.4)aj= e- a4) - (.4 ) ,4.4)o 

ee. (4 
ej1(4

0 .o 
ej3T (. 4) 
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The W matrix (equation B8) has vectors, a', _WyWW as columns,, where 

21 2 -3 

W. =-(O.lIA - I) a, s2 +2Aa. s +A (0.11A -I) "Aa:; i=2,3,4 (3.2.5) 

-The elements of'this matrix are complex polynomials in s of degree two; 

except for the first 'colmn"whose"elements 'are just complex scalars. •In ­

this case, 'equation-(BS) can ble rewritten ifi'tetms of real and imaginary 

parts as followg (consider a 2x2 W'inatrix for simplicity): . ­

(W 1 r +j Wi) (Wl 2 r + jW1 Zi) hr + h o+jo 

(3.2.6) 

.(WZIr (W22r + Wz2i h r +-j o'+ j+ j W l. - hzi 

This may be rearranged into the following 4x4 matrix equation 

r wWli Wll r -W li hir o 

Wlli Wllr WIli Wll r h1 i o 

WZir _W2ll WzZr - W22i h0r 0 

0LW1i WZI r W22 i W2 r h22i 

(3.2.7)or W H = o 

where the new W matrix and H vector have twice the dimension indicated 

by equation (B8.) and are now real. 
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From AppendixB we know thath = -1 and hl. o, thus the H
 

vector is not null, and hence the determinant of the W matrix must vanish.
 

Setting the determinent of this W matrix equal to -zero results in a polynomial
 

being equal to zero. can theoretically pro­of twelfth degree in s Now we 


ceed as before. - However the numerical computation of the twelfth degree
 

We will now dem­polynomial coefficients is exceedingly time consuming. 


a twelfth
ogstrate that instead of having to-form and solve for -the roots of 


one -of find­
degree polynomial, we can instead transform the problem into 


far easier to do numerically.
ing the eigenvalues of a 16 x16 matrix, which is 

We may rewrite equation (3.2. 7) in the form 

= .$2 +A 2 s +A 3 )h o(3.(A1 

- where A and A 2 are-8x8 singular matrices (their first two columns are 

zero), and A 3 is an 8x8 invertible natrix,_ when we consider-the four 

element array of example two. The problem is to find the twelve values 
an multiplyingby 3 gie 

= and by A givesof s for which (3. 2. 8) holds. Letting y 

(y 2 +A-I A 2 Y+ AA - 3 h= o (3.2. 9)
1 

state variables -In terms of the two 

x h (3. 2. 10a) 

(3.2. 1Ob)x y h 

into two first order (in y) equationsequation (3. 2. 9) transforms 

(3.Z. Ila) 
yx I = Ix 

Y2 = y h A11 i3l -IAZ2 (3.2. ib) 

Letting x =[ ' I2 gives 



----
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o 1 

yx = x .(t.. 12) 

Define the 16 x1 6 matrix G by G j 

yx'= Gx - (3.Z. 13) 

Thus if s satisfies equation (3.2. 7), .y will satisfy equation (32. 13)
S. 

or 

(G- yI) x o - (3.2.14) 

Therefore, insted of solving for thos'e valuesof s f6r which equation 

(3. 2. 7) holds, we may solve for the eigenvalues y -I-of the matrix G.- This 
s 

is much simpler. 

'Using this approach, we found numerically 

1 Q SNR 

-0. Q457 0. 0644
 
-0. 0457 0. 0644 ---­

-0. 0463 0. 0636 ---­

-0. 0464 0. 0642
 

-0. 0461 0. 0638 


-0. 0973 0. 110 0.438
 
0. 009-0.0077 0. 110 

The remaining solutions were complex. 
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The best SNR we can get when the 0 factor is.constrained to 0. 11, 

is SNR = 0.438. For this value of SNR, the complex vector I is given by: 

-0.096 + 5 0.059 
0.037 - j 0. 100 

0.037 + j 0.100 

-0. 096 - 50. 059 

Thus we have de'eloped a very fast numerical technique to solve 

for the maximum SNR an array processor can achieve subject to a con­

straint on the super-gain ratio. Our next major problem is to develop 

an adaptive algorithm which will automatically adjust the tap weights of 

our array processor in such a way as to maximize the SNR subject to a 

constraint on the super-gain ratio. 'For the special cases where we have 

a linear array of four isotropic detectors spaced d = 0. 8 k ( d = 0.4 X) 

apart, embedded in a uniform noise field, with the signal impinging from 

broadside (endfire), and with Q constrained to be equal'to or less than 0. 08 

(0. 11), we expect our adaptive array processor, in the steady state to have 
an output SNR which is equal to (or very close to) 0. 187 (0. 438). We will 

begin considering the design of adaptive algorithms in the next chapter. 
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Apppendix A Super-Gain Ratio 

It is, well known that for, any givei aperture with a sufficiently large 

number of degrees of freedom (e. g. for any given detector array aperture ­

with a sufficiently large number of array elements 'init), it is possible, in 

theory, to obtain very high, gain by using those excitations which maximize 

the array signal-to-noise ratio (SNR) or some similar quantity. However, 

this high gainis obtained at the expense of having a very large super-gain 

ratio (i.e. the sensitivity of the array power pattern,,or gain, or SNR to 

small variations in the array excitations and element positions ,is very high). 

In practice therefore, since the excitations and element positions can only 

be controlled to within certain tolerances, it is almost impossible to actually 

construct super-gain arrays. To find out"how well-we can do in practice, we 

should use those excitations which are derived by maximizing the array SNR 

subject to a constraint on the super-gain ratio. -

In this derivation of the super-gain ratio, taken from Gilbert and 

Morgan, (ZO)wewillletthe positions of the.array elements and the element exci­

tations vary randomly about their nominal values, with the restriction that. 

the position randdm displacements have a -slherically symm-etrical probabil­

ity distribution. It will then be shown that the expected value of the power 

pattern equals the nominal power pattern plus a background power level. 

The ratio of background power level to the nominal power pattern is directly 

proportional to the super-gain ratio'. . . 

Statistical Formulation of the Super-Gain'Ratio 

Consider an antenna array of N elements. Each element has the
 
same directivity pattern s (r ), where oris a unit vector representing
 

'some spatial direction, and s (r ) is a complex-valued vector function 

giving the amplitude, phase, and polarization of the radiation field over 

a large sphere centered at the element. For acdustic fields, s (r ) is a 

scalar function. 

The overall array directivity pattern is giveh by 

- - N N+j k Rk ' ro 

P'r ) - "Zk e - -k (Al)k= I 
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where Jk is the complex excitation (amplitude an.d phase) , k is the wave­

number, and Rk is a position vector from the origin to the location-'of the' 

kth element in the array. As usual for arrays, the pattern may be split 

into th6 elemerit dir6ctivity pattern times the array factot f (r )whete 

Nj k_kR 0 

(A2)(r' Jk e0 k= 1k 

Note that the? electric field E (r .) is proportional to the array diiectivity' 

pattern, i. eo the electric iield strength at a point R r is, for large R,'-*O
 

proportional to -" 

Ls fIr0 )(r) 

R
 

Consequently the radiated power in proportional to 

js Cro)J ]I ro)i2
 

The power dir.ectivity pattern is:defined as 

0) s (ro)j2 JfCr 0)]z (A
-,C(r 

Note that for isotropic radiators s ro) 1. 

We will now assume that the excitation coefficients and the positions of 

the elements have'some randon variations about their mean or nominal 

values. Let 

(A4)
k I k +: k 

(A 5)Rk r k +P k 

where I is the nominal value of the excitation current, the a s are 
kk 

independent random complex variables with zero mean, r k is the nominal 

value of the position vector, the Pk s are independent random vectors 
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with mean (o, o, o), and all the _P k s have the same statistical distribution. 

We can now find the expected values of the field and power patterns 

as follows: 

N jkr kr °k 
E e -0 e

E {s(r) f (r )} = s(r ) Z EfIk+C} 

k= k 

N jkr r jk 

I e O0 e --o ,'"s (r 0) Z 
k= 1 

jk 0Jk0r 

e s (r ) f (r ( 6) 
0 

where p is a random vector having the same distribution as the p k s, and 

f (r--o) is the nominal array factor which results when the excitation co-. 

efficients and positions equal their nominal values. 

The norm of the array factor may be written 

N N
JfC rlj Z Jk i, 2 j ekto 

k=l e= ejk~Rk +r" k, -jkR +P") r0 

N N * * jk(rk+Pr 

k=l 1=1 

k# !
 
N 

k= 

Taking expected values and recalling that the random variables are independent 

2 

El Jf(r -k' j2rJk_- rI)" r jk - r.I l -k0 -1 e E e 
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N 	 N 

+2 1 '12 +Z EaIA
k= L., - k= I 

' of the double
If we now add and substract the terms with k=1 which were left out 

sum we get 

]f(~o)! \EI e~k \\2 FfoI -Fk'l IkI\" 

jkp . Nr° 2 

+ J1j- - o IIk) 	 (A7)IE 	 I2 
k= I 

2 
I s (r - of a single element gives

Multiplying through by the power pattern 

pattern of the array, namelythe expression for the expected power 

, - *k0 	 Z 

k= El ek 2ocr_)+ 	IS(ro)Ij (--o 	 93-0--- -0 k=l 

+ 1e 	
rNA. ¢i)I Ik 2 

' I e 0o k=1 Ik 

where the power pattern of the nominal array is 

if_r )IZ
9:5( ) Is(t-)12 

0 0­0-0 

are known
Note that in the special case where 	the positions of the elements 


pkare all identically iero, the general

exactly, -implying that the vectors 


result (A8)-reduc es to
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r _Cro) + Js(r 0) 1 E I I. I}A
k= l-


Equation (A,91 has a simple physical-interpretation. -It asserts that the 

expected powbr pattern is the power pattern of the nominal array, plus a 

"background" power level which has the same dependence on direction as 

the pattern of an individual radiator, and is proportional to the sum of the 

mean-squar6 errors of the excitation coefficients. In order to have the 

over-allpattern be a good approximation to the nominal pattern To(r ­

it is necessary to hold the expected value of the background power well 

below the maximum value of o (r ) 

If the displacements are not identically zero, Gilbert and Morgan 

evaluate E le by assuming that the statistical distribution 6f 
p is spherically symmetric, i. e. if we denote the spherical coordinates 

of p by (p, e,4) then the joint probability distribution function p (p, 6, ) 
c jk p.r 

depends only uponp. In this case the value of E e 0 turns out 

to be independent of r', and we can define- a.paraneter 6 (independent 

of u,) by 

- 62= E e, -- - (Ab) 

From equations (AS) and (A 10) we obtain the expected power pattern 

for a spherically symmetric distribution of element displacements, namely 

N N 

(I1+ EE) cr4 (1.(r0)+ Is (r ) [E+8) Z~ JI' k' '2IkjI' k. k= i
 

Again the expected pattern turns out to be tlhe nominal pattern plus 

a background level with the same 'distributionas the pattern of a single 

element. 

The problem is next idealized somewhat by assuming that the excita­

tion coefficients Jk can all be controlled to the same relative accuracy, e.'i. 


we suppose there exists a small number E such that 
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E= E2 IIk12 , k 1,2,..., N (A2) 

Then (B 11) becoimes 

(1482)E (r) = o (r°) + s (r )12 (1+62) &2]82 E IIk (A13) 

This expression includes the effects of both excitation and position errors. 

If we define [ (1+62) r +8 2 ,then the ratio of background 

power level to the average nominal power level is 

N N 
S1_ Z I1 k1' 2 1s( o)IZ k's(r_)1 I
 

k= 1 k= 1 (A14) 

N " j~kr r
. 2 

ff (r I A 2 e k-. dQ 
-- - -- k= I 

For isotropic radiators I s (r_) 1 2 = 1, so that the ratio becomes 

N 
22 
 I k 
k=l 1 42 

N jkr k r 2 

d
f l k e 

where
 

k= 1 

N jkrk r r 
f I' edQ 

~2 k=1I 

Using the vector notation of section 2. 1 (see equations (2. 1, 1) and 

(2. 1.4)) we may rewrite Q as 
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III
 

Q is a positive real number, known as the super-gain ratio, and 

is a measure of' the sensitivity of the pattern to random errors in the ex­

citations and positions of the array elements. Since in practice A 2 is never 

zero, an array with too large a value of Q is unacceptable. 

Although Q has been derived as a result of statistical considerations, 

it can also be interpreted in terms of the efficiency of the array as an energy 

radiator, If we imagine the array elements to have a certain ohmic resis­

tance, and the excitation coefficients to correspond to the element currents, 

then I I is a measure of the power which is lost in the form of heat, and 

Q is the ratio of dissipated power to average nominal power. Thus a large 

value of Q corresponds to high ohmic losses for a given amount of radiated 

power. 
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Appendix B Maximization of SNR Subject to acConstraint 

.xf x 

SWe, willfind the, value of x that maximizes . subject to, 
. 

the constraint = q = a real constant, where A, B, and C are 
x B x 

HerAitian positive definite matrices "ana -- a a This appendix , 

represents work done by Lo, Lee, and Lee (19). . - - -

Introducing a real sc'lar'Lagrange multiplier X the s'olutiof can 

be obtained by differentiating L with re'spedt to x , and setting the result 

equal to zero, where 

x -C - "xx 
L- A +. (B 1) 

x A x Bx 

Thus ... . 

CCx (xAx -A x (x*C x x(xBfx)-Bx (x'x) k 

-:, (X'.A x) , k B x 

(Ax) C - ( Cx) x'A X (x Bx)-* A (xx)x B 
(x ' 6x+ _XA x)2 -, .. + .x (x ,B x)i . 

0 -

Since A, B, and C are Hermitian " 

.(x A.6 x) =.(6 x* A )* 

x B, 6x) 8(6x Bx) 

(x*C )5 ( -* C x)* 
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Making this substitution in the second term of the last equation results in 

the second term becoming 

, ; x (xVA_x Ax (x*CG x x(x Bx) X-* Bx "(-x *x)X 
6 r* A 2 


L (f Ax) +(~xxBxf) X
 

Note that the terms inside the braces are equal to the terms inside the 

braces in the first term of the last equation. Thus, the overall equation 

is of the form 

6x j+ (Sx y) =0 

Since this equation must be true for all possible values of the real 

= oand imaginary parts of 5 x, this implies y 

Thus 

Cx (x*Ax) -Ax (x*C x) x(x'1Bx) X Bx(x*x)X 

_ ++ (x B x)22 0­

(x*A )2 
(BZ) 

ButC- ala I and we can assume xis normalized to 1, i.e. x = 1 

xG-x 
maximizing and the constraintbecause both the function we are , 

x Ax 

x x are independent of the magnitude of x. Multiplying equation (B2) 

x Bx 

a? in the first term, and multiplying the thirdby (x A x ), letting C = a 

and fourth terms by x x = i, gives 

A x (x C x) X x (x'x)(x*Ax) X B x(x*x)Z (x*A x) 
+ ( (x *B x-) 2 ' ­x- (x"B x)a --a-- - ( *A x) 
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since q -
X X. 

x Bx 
we have 

al(a 
xAx( Cx) 

x)- X A+ - (xA x)-- X q'(.xAx),-- -
2 

X q (x Ax) Bx'",o 

Combining terms 

(a x(xAx) A X q (x Ax) I Xq( x) B 

Multiplying by the real scalar 

(x A x) 

---
(x C x)" 

gives 

(a x)(x A x) 
S Ial 

(x Cx) 
A -X q 

(x*A x) I 

(x c x) 
+x+Xq 2 

(xA x ) 

(x cx) 
B x 

Define r=-

(a1'x) (x'Ax) 

a 
(x C x) 

a .complex scalar (B 3) 

s 
Xq (x*. x) 

-
(x'C x) 

• 
a real scalar (B 4) 

thus ra = [A- sI + qs B ]x 

The s-olution for x is 

x = rK -1 a 

where, r is a complex scalar, depending upon x, and K = - [ A-s I+q s 

is a Hermitian matrix which also depends upon x. 

B] 

(B5) 
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In addition to equation (B 5), the constraint equation must also be 

satisfied, thus 

x x
 
(B 6)q 

x B x 

Since only the direction of x and not its magnitude (we showed its 

could be assumed equal to unity) is of interest, the scalar rmagnitude 
may be disregarded. The only un­which multiplies all components of x 

known; then, in the simultaneous solution of equations (B5) and (B6) is the 

real scalar s, which-is proportional to the Lagrange multiplier X. In­

s.serting (B5) into (B6) one obtains a characteristic equation for 

ai "K- Il 

this may be rewritten in the form 

K-ll
*- K-1 K-1 a* K-1 

I a =0a K qBK a 1 -a 

(B 7)K-I K a 

Because the unknown s is contained in K, a direct numerical 

solution of (B7) is very difficult. However, Lo,: Lee and Lee observed 

states that the vector a 1 is orthogonal to the vector
that equation (B7) 


XI- [ qB - I] K - 1 a Thus the vector K-1[ q B - I] K-1 a 1 must
 

A complete set
lie in the space orthogonal to the space spanned by a 1 . 

one of its elements can be easily constructed, e.g. if,
{a with a as 

a = we may choose 

1 a na 0a in3 

0:0 
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The vector K-I[ qB - I] K- 1 a must be a'linear combination 

of the vectors a 2 , a 3 , . aN. Let it be 

N 

K-l[qB-Ij K- a = ha
 
n=2 n n
 

which yields
 

N
 

a, h K [qB- I] K a

n=2 n -n 

rearranging gives
 

N
 

n [ A+s(qB-I)] qB-I]j-[As(qB-I)] n - a
 
n= 2 

n= 2 --n -n -n n I 

N
 

a +-1z+SIs2(qD-I) a +ZsA a +A(qB-I)-1A anhn,=0
n= 2n n n n ­

a W +h =or -1 +h 2 V2 3 3 3 . +hNWN 0 

in matrix form 

WH= o (B8) 

where W is a matrix with in general, complex vectors a, W-Z' W3 

VN as columns, ioe. Wn = s 2(qB-I) a + 2sAa + A(qB-I)- IAa-N-nn-n -n 

n--2,3,..., N 

v 1 =a, 
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and -1 

H = h 

hN 

Since H is not a null vector, the determinant, of Win equation (B8) 

must vanish, i.e. 

(B 9)' ' " W-N ] = odet I 1 - 2 

This results in a (sometimes 	complex)-polynomial of degree 2 (N-I) 

can be numerically determined. Onein the unknown s, and thus the roots 

x x 

,of them will give the absolute maximum of -#-g because once~the 
x Ax 

possible value of s have been found, the direction of x can be found from 

equation (B I and the problem is solved, 
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CHAPTER 4' 

Minimization of the Mean-.Squared-Error (MSE) 

Subject to One Linear Constraint 

Our objective is to conpider an adaptive algorithm which will maximize 

the SNR subject to a constraint on the super-gain ratio when unknown interfer­
0ing noise is present. Because the SNR and super-gain ratio are nonlinear 

quantities, it is difficult to prove convergence of'-our algortlir to the optimal* 
solution, or to analytically find the algorithm's rate of convergence. Thus, 

for the purpose- of mnatlematical ttactabfilitY'(trli6rilire~i algorithi -willbe 
simulated o'di a'ni piter 'to-obain "sotnenkimeirical indication of c6viiergehde 

and convergence rate in chapter six), and because (l-) the criterion of mini­

mizing :the MS.' id' iimportant in itb oWn right ( ) Iinear-constraiits m :appe ' 
in similar problems (3) nonlinear constraints are approximately linear near 
the solution polt &d'(4) ih6projeton inethod used in the'linear caWe'is--aio': 

applicable to the nonlinear case, we will consi&er'in thfschapter an--ada fie 
algorithm which minimizes the MSE subject to a linear constraint. Specifi­

cally, we will find the Lagrange solution to the problem of minimizing the 

MSE subject to a linear constraint and then prove that an-algorithm of the form 

W11= W - k P7 (MSE) converges to the Lagrange solution, when the 

gradient 7W. (MSE) is (1) known exactly, '(2) estimated, and (3) estimated*by' 

an estimate-j which contains additive noise. 



-74-


Section 4. 1 Derivation of Mean Squared Error and Constraint Equation 

The processor configuration is shown in Fig 4. 1. 1 where A repre­

sents a time delay, s- col (s] j, s .. , Sn.) is the stochastic signal 

at the outputs of the tapped dlay lines at time (iteration) j, the W t s are 

the multiplicative tap weights, and di is some known scalar function of 

the vector. s., i.e. d. represents the desired array output at time j, 

S--j Sj Snj 

F1. 1 w 

TT 

=*(4 . sj
.+- W 

E. =d. d W- TW 

. = d. -Wds 
 (4.1.2)
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-When the input signal can he regarded as ,a stationary, -ergodic .
 

random process, then
 

= s- and E'{d.} - d 

Our problei-n is to devise"an, algdrith'rn.that will -adjust th'eweights 

to their LMS value subject to-a'.linear 'constraint; Toward this end we have.' 

already found 'an expression (equation 4. 1. 2) for the IvSE, and the remainder 

of this section will be devoted t6 finding expressions for the minimum value 

of the MSE when we have no constraint, mention ofan adaptve\4algorithm 

that will automatically adjust the tap weights to their unconstrained LMS, 

values, and writing an expression for any arbitrar'y linear, constraint on, W. 

Taking the expected value of equation (4. 1. 2) gives 

E. = - 2T (s, d-)W. + .T s, s)W (4.1.3)
- 3j, 3 .'. '.3. 3. . . 

where 
Elj djE s di 

(s, d)= E {s. d. }-= (4.1.4)
-- -- -J 3 

E n[,s_d.j } ..­

4(s, s)- E{s. sT. (4.1.5)
 
-j -3 

Taking the gradient of E. yields3 

(V. ) = 24)(s, d) + 2W T (s, s) 

To find the least-mean-square (LMS) s.et-of weights, WLMStLMthat 

minimizes E. when there is no constraint, we set Vc = o. Thus 
.3 h.3 
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(s,sd) =_)
T (s (4.1.7a) 
-LMS 4' -s) 

_VLMT = -T (s, d) @-(s , s) (4. 1.7b)S T2 -s
 

The LM-S error is achietred by-choosing the optimal weight vector given
 

by equation (4. 1. 7b). An expression for the minimum mean-square error
 

may be obtained by substituting (4. 1. 7a) into (4. 1.3)
 

2 = in 2 d.2: T WM (4.1.8)min -LMS c(s, S) 4LMS
 

Note that min (Cj ) is independent of j (d. is independent of j ). 

Widrow, Lucky and others (12)-(18)have investigated adaptive 

algorithms which automatically adjust the tap weights to their uncon­

strained LMS values. One such algorithm is given by 

W= W. - kV(7. 2 ) (4.1.9) 

Substituting (4.1. 6) into (4.1. 9) gives 

W. =W.+ 2Zk(s, d) - 2k (s, s) W. (4.1.10)
-j + 1 -J - -- J 

Note that equation (4. 1. 10) is a linear equation in W. This means we can 

easily solve for lim W. and other quantities -of intdrest, and it is the main 
Zo-cj _ 


reason we are using minimum mean-square error as our criterion. The 

abovementioned researchers have proven that by using the algorithm of 

equation (4.1. 9) W.j converges to WLMSO 

Any arbitrary linear constraint on W can be written in the form 

T 
w . n -a >o (.01 
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where n is a unit normal to the hyperplane W T1 - a = o. 

Our problem now is to (1) find the optimum value of the 

weights, W-opt , which yields the minimum MSE (equation 4. 1.2) subject 

to the constraint (4.1. 11) and (2)'divise an adaptive algorithm, similar to 

(4. 1. 9) which will make the tap weights W converge to this W 0p. The next 

section attacks the first problem. 

Section 4. 2 Analytic (Lagrange) Solution 

In this section we will use a Lagrange multiplier technique to find 

the optimum value of the weights Wopt' which yields the minimum mean­

square-error subject to the linear constraint (4. 1. 11). 

Let us first rewrite equation (4.1.3) for E as follows. 

Substituting (4. 1. 7a) and (4. 1.8) into (4. 1.3) gives 

J = min +--LMS 41sss)WLMS](, sws, 

But 

SLMS%(s, s-) W = w (s,.s) WLMS 

Thus 

2 2 + T T T (s)(W(4.2.1 ) 
S min (W- LMS -LMS 

The problem is to maximize (4.o2. 1) subject to (4. 1. 11). Let us 
investigate what the solution looks like both graphically and analytically. 

Graphically we have 



W2 	 SOLUTION
 

Fig. 4. 2. 1 Typical MSE level curves and constraint 

Since the objective function is quadratic, the solution is either:. 

1. 	 W=WLMs or 

2. W = the solution to the Lagrange multiplier problem 

when(4.1.1l) holds as an equality, i.e. W .n - a = o. 

We are only interested in case (2) in this section, because the 

algorithms of Widrow and Lucky will work in case (1). 

Analytically 	we must minimize
 

.2 2T T
 

C.2 C . + (W-W T (W-W
J = m -LMS - LMS 

subject to the constraint 

T
Wn -a= o 

The Lagrange technique yields 

T 
min- Y-LM S )4-~ - W-LM S) + cI !Y- 1 a] 

http:when(4.1.1l
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Taking differentials with respect to Wwe have 

6W T )6L= ( W) + WT 4 (6W) _ W T 4(W) 
_ __ LMS -LMS ( 

+ .(6W T ) n1 = 0 (4.2.3) 

But 

TT T T 
f(6W) [4W 4WzMsi '[ ( W LMS4 (6W) 

(4. 2. 3) may be rewritten as 

6W 

WTT 

Which must be true for all 6 W, giving 

anT + 2 [ W T WMT ] 0 (4.2.4) 

equation (4. Z. 4) together with the constraint equation (4. 2. 1) must be 

solved simultaneously for a and W. Doing this yields 

wT = (a-(-WLMsT -1) T I- + WTs (4.2z.5) 
-optimum -1 ) -T1 ± LMS(nlin_ £I 

This is the analytic solution for the least mean square value of the 

tap weights subject to an arbitrary linear constraint. In the next section 

we will present an adaptive algorithm, which will, in the steady state, make 

the tap weights converge to this optimum value we have just found in equatipn 

(4. 2.5). 
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Section 4. 3 	 Use of the Projected Gradient Algorithm to Adaptively 
Adjust the Tap Weights 

The projected gradient algorithm that we iill use is a modified 

version of Rosen's algorithm which is discussedtbhefly in Appendix B. 

It is advisable to read Appendix B before the following sections. The 

algorithm we will use to minimize the MSE subject to a linear constraint 

may be thought of intuitively as follows: We want to converge to the vector 

W which minimizes the MSE, which is a function of W,subject to a linear- opt 

constraint on the vector W. Looking at Fig 4.3.1 we see intuitively that 

w2 

• OPT 

P wT 
Wj 

Fig. 4.3. 1 Intuitive idea behind projected gradient algorithm 

we can start at a point which satisfies the linear constraint, denote it by 

point one; fine the gradient of the MSE with respect to W at point one and 

"project" 'this gradient Vector, which lies in an n dimensional vector 

space (in Fig 4. 3. 1 the n dimensional W vector space is of dimension 2), 

onto the n-I (one dimensional in the diagram) dimensional subspace 

which is orthogonal to the one dimensional subspace spanned by the normal 

nI to the constraint surface, call this point two; and repeat the procedure 
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indefinitely. This procedure may converge to the constrained optimum 

denoted by W under certain conditions. 
-opt
 

Analytically, the projected gr.adient algorithm is given by
 

+ _'-JW I. k.W.t (MSE)W AW kPVwc~E 

where P is the projection operator P = I - n n1 if we have only one con­

straint (see Appendix B for the more general case), n 1 is- a unit vector 

normal to the constraint hyperplane, k is a constant which will-be investi­

gated later, and 	V w. (MSE) is the gradient of IvISE at time (iteration) j. 
-3
 

Section 4.3. 1 	 The Algorithm, Proof of Convergence, and Bounds on 
the Rate of Convergence if the Gradient is Known. 

Let us compute the iradient of the MSE, g, and the gradient pro­

jection Pg.. From equation (4. 1.6) 

gT T W* T d)+2W I( 

using (4. 1. 7a) -we get 

g = 2[W- WLMS] 	 (4.3.1.1) 

The projection operator is given by 

PnnTp I -nl~n 1	 (4.3.1.2z) = 	 (43Q02 

thus 

Pg [-n11' [W (4.3. 1.3)I 	 WLMS] 

-Our a-lgorithm is 

W.- k ['I-n n Tj -. (4.3. 1.4) 

Jj~l 	 -LMS 

As discussed before, we'will start-at a point where the constraint. 

is satisfied, and.since at every. iteration we are projecting W onto a sub­

space where the constraiht is satisfied, this implies that the constraint 

http:4.3.1.2z
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equation is always, satisfied, i.e. 

W. T n = a j = 0, 1, 2,. 

Equations (4.3. 1. 4) constitute a set of n simultaneous first order 

In order to solve them, need initial conditialdifference equations. we 

conditions. For our "initial" conditions, we will use the fact that the con­

straint must always be satisfied, and in particular must be satisfied at 

J CO, i.e. 

_WT0 • n =a (4.3.1.5) 

Now equations (4.3. 1. 4) and (4.3. 1. 5) constitute a set of n first 

order deterministic difference equations (since W is of dimension n) with 

initial conditions. We want to investigate whether or not the sequence of 

W's converges to W opt' and if so, what is the rate of convergence? 

To answer the first question, we will solve for the asymptotic value 

of equation (4.3. 1. 4) 

WCo= W 00+ 2k[I- nnT] T [WLMS Wool 

o [ -1 _T] *iJ3[WLMS -wj 

Let x W0o- WLMs (4.3. 1.6) 

then [I-n n T ]3 x= 143 (4.3.1.7) 

Again, since W has n components, equations (4.3. 1.7) constitute 

a set of n simultaneous deterministic homogeneous equations in n unknowns. 

The initial condition (4.3. 1. 5) becomes 

T T (4.3o108) 
- . WLMSnl a n 1 

117 
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Before solving (4. 3. 1. 7) let us consider the following equations. 

Ax= o 

1. A necessary arid sufficient condition'for'the above n equations to 

have a nontrivial solution is that the rank of A be less than n, or equiv­

alently, that the determinant of A be zero. 

2. If the rank of A is r, where r < n, then the system of equations 

has exactly n - r linearlj independent solutions such that every solution 

is a linear combinatidn of these n-r linearly independent solutions and every 

linear combination of the n-r linearly independent solutions is a solution. 

Let us now investigate the rank of [ I - n in I T 4). By definition, 

the rank of an operator is the dimension of the range space of the operator, 

thus 

rank[I-n n IT = n 11 

For arbitrary matrices B and C 

rank (BC) < min (rank B, rank G) 

From.this we mayconclude that 

1. Because rank [I-nInIT] = n- 1, this implies there exists at 

least one (possibly nonunique) solution to equations (4.3. 1. 7) 

nlnl T ]  2. If we know that the rank of [I- equals n- I, this implies 
there exists a unique (to within a multiplicative constant-which is unique 

provided the initial condition is satisfied) nontrivial solution to equations 

(4.3.1.7). 

If 4) is invertible , then the rank of [I-n nlT ] = rank [I-n n T 

=n - 1. This follows from Halmos, (23) Theorem 3, partIV, page 92. Since ' 

is a correlation matrix, it is positive semidefinite, and, in practice almost 
always positive definite, which implies that it is invertible. Thus equations 

(4.3. 1. 7), together with the initial conditions of equations (4.3. 1. 8) have a 

unique solution. 
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ifW = W optimum satisfies (4.3.1. 7) and (4.3.1. 8) then it is the 

solution. We will now verify that this is the case. From (4. 2. 5) 
(a­

(WLMS n ) ­

-_o -opt T i_1) n 1 LMS
 

(aW- W T I
 

- 00- WLMS 
 1" -n1 
(n IT I nl) 

Substituting this expression for x into (4.3. 1. 7) and (4.3. 1.8) one sees that 

equa­the equations are satisfied, Thus W = Wopt is the unique solution to 

tions (4.3. 1.7) and (4.3. 1.8). 

Now that we have shown that the sequence of W's does converge to 

of the weight vectors to
WYopt we will investigate the rate of convergence 

-ropt, given by (4.2. 5) 

WLM (a- W S 
) ) -inl+ W--i=n 

-optT -l ) WLMS 

Define 

q ?j=Wj - Wop t (4.3.1.9) 

The algorithm (4.3. 1.4) can be rewritten as 

W)j+) (1-2kn+ )1T+2k n 1k n -l-1 n WLMS 
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Afte r s ome manipulation (and noting that [I .n i. , n_ = o' we have 

(4.3. 1.10)25+1 I2 k (I n2 T 

Sific eq =q . 

the, Wj - Wopt, by looking at Fig. 4.3.1we see that q' always lies 

,in the hyperplane (in the Figure this means lie ilong the constraint line) 

which is orthogona l to -ril, hence 

Pq. = q. for allj (4.3.1.11) 

Thus 

qj+I I-n k (4.3o1. 12)=!-T]( )q 

and­

j + l iI2j 1 I < g H _ H ( 13) 

where 

[ I T ] (x-zq) I(4. 3-.14) 

Let us investigate this norm., The correlation matrix 4 is a 

symmetic-po sitive-'semidefinite, and in practice almostalways positive 

definite, matrix with positive minimum and maximum eigenvalues p 1 and. 

ON respectively; k is chosen to be a positive number; and (I -nlnlT) is 
a projection operator as discussed. previously. To bound the norm, we have 

< i -ln n T II I '- Zk4) I ." , (.4.3.1.15) 

Since I n 1 T is a projection operator, ifs norm is 1, thus 

<II- Zk4 ­

http:4.3.1.15
http:4.3.1.11
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Since ( I - 2k ') is self-adjoint (see Halmos ( 23)page 18o and coiastein( Z8) 

page 24) we may bound 1 as follows 

=-,SUPI - 2k 4)4(4.3.1.16) 

Since 4 is symmetric positive definite 

.Zkp, _ ZkxT x < 2 kPN (4.3.1. 17) 

where p I and PN are the minimum and maximum eigenvalues of. 4 
respectively, and 1x = 1. This implies' 

I - 2kx T x > l-2k PN (4. 3.1.18a) 

and 

1 - 2kxT x < 1 - 2kp 1 (4.3.1.18b) 

thus 
pN<1 -2k - kx_T. x < 1-2kpl (4. 3.1.19) 

and rsup[X -2k ) x nmax. J1-2kpl , j 1-2kpNI (4.3.1.20) 4 

Thus 

= ax I 1 -2kp 1J, I I-2kpj (4.3.1,21) 

j 1- ZkPNIf we plot, on g vs k axes, the two curves = I 1-2k p1 Jand = 1 

we have 

Fsk 
PN PI 

Fig. 4.3. 2 g vs. k 

http:4.3.1.20
http:4)4(4.3.1.16
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A plot of g max) I l~zkpl1, 11-2k @NJ 

PI+PN PN 
Fig. 4. 3. 3 Bounds on kma 

-- PN
...- The maximum value of k that still insures convergence (k max) 

is found by setting 

) <l-2k pN I which implies 

< Ik 
I ZZ) 

'I 2 

Thus in this section wehave proven that our algorithm converges 

to W "for k suff iciently-small. In the next section-we will investigate a 
-opt 

more useful algorithm, i. e. an algorithm which does not require a prioi 

knowvledge of . " " 

toWork ufiietl-mal.Inte ex sci~ w i netgea 

assume the simplest estimate c .Zj Ej - L. e. ..,we are appr6ximating the 
average value f by4.its instantaneous value, which is normally avail­

able: Thus the; i-th" component of the gradient is approximately given by " 

the ii t h  artial derivative Of E.2 with respect to Wagrt c 



2 2
 
a E. SE. - SE.
 

3 , 3 - 2 E.

aW. 3W. i aW. 

1 1 1 

From equation (4, 1. 1) 

ac. 
3 - -S 

aW. 

thus ( j )z Ez=j -2c .s. (4.3.201i) 
(4 3. Z. 1 

We will now use this estimated gradient 9 in our algorithm yielding 

W j-,I, = Wj + 2 k L IE-nn .Sj E 

using equation (4. 1.1) 

W =W.+ 2k I-nn T] sj(d.-s T W.) (4.3.2.2) 
-j+l -J-1 33 j 

The "initial" condition is 

(4.3.2°3) 

W. is now a random vector, and equations, (4. 3.2. 2) represent a set of 
-aJ
 

first-order stochastic difference equations, with forcing stochastic
 

vector s .° 

Let us see what the asymptotic expected value of W. is: 

E {W. E f{W,} + 2k[I-n n ] (s__,d) - 4(s"s)E{W} ]
 
-a+l -j- 1­
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because
 

E ssj _j E{ss. E{W3} 

i.e. W . depends upons 1 ,..., sjbut is independent of s-3 -J 

From equation (4. 1.7a) c(s, d) = . (s, s) WLMS 

E {W+} =E {W.} + 2 k[ I-nnT ]] [nW -E{W}] (4.3.2.4)-jl-3 -1- - LMS -

Taking the expected value of (4.3. 2.3) yields 

E I } n a (4.3. Z.5) 

Equations (4,3. 2. 4) and (4.3. 2. 5) constitute a set.of first order deter­

ministic difference equations, exactly the same as equations (4. 3. 1. 4)
 
and (4. 3. 1. 5). Thus the solution (unique since rank (I-n1n.,T)n-1)
 

n l
E} {Woo optimum (a-W Ts 1~ 

Soptimum LMS - + WLMS (4.3.2.6) 
(nT -l - L 

.We -have shown that the mean of W. converges to W However, since 

equations (4.3. 2. 2) are stochastic, we must also investigate the behavior 

of the variance of the random weight vector W. asymp­• -3 about its expected~-


totic value, given by E { W }- Woptimum-


Let q W -W o (4.3.2.7) 
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In terms 	of q, the algorithm (4' 3. 2. 2) becomes 

j + q[ 	 - k 2 I-nln T Ss T qj
 

- k 2[ l-nlnlT s .T
 
_-11. 	 j-3 -00 

+k2[I-n	 1 nlT s.d 

(4.3.2.8)Define 	 T.3 = 2 -3s -3 T 

(4.3.2.9)V. 2d. s.-J -	 9-


H (I-nIn )) (4.3.2. 10) 

thus 

= Tj aj + Ti W--0 v-- ] (4.3. 2.11)
2-j+I q--j - k [ I-nI nIT, T 

This may be rewritten as 

(4.3.2. 12)
j+i qj - ksoj 

where 
(4.3.2. 13)

.Tj Hj 	qj +h. 

(4.3.2.14) (T.Wh. 	 )(-nlnT-V.)
-j 3-. 

Note that E { H.} and E { h. } are independent of j. Also H. and h. 

because we assumedare statistically independent of Hk and hk if j 4 k, 

that sj and s k are statistically independent for k 4 j. 

Noting that 

E{Tj} 2 (s, s) 

http:4.3.2.14
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and
 
E {V-}= (s, d) =2 s s) WLMS 

it is easily shown that 

(4.3.2. 15)E {hj = £ 

(4.3.2.16) Notethat E{H} = 2(1-n nT )(s,s) 

The algorithm is thus 

j+lI qj - k j 

= where j Hqj j +h. 

H.3 is a sequence of random n x n matrices; -Jh. is a sequence of random 

n-tuple vectors; the expected values of H. and h. were shown to be in­

dependent of j ; H. and h . are independent of H and hi for I j: E{h 

=' o; and'the elements of H. and h. have finite variance, with E(H.} a 

Under these conditions, it is shown in appendix A that for k suffici­

ently small, 

lim E1 jj = (4.3. 2. 17:E{qj o 

(4.3. 2.
and lim sup q* 1[ V (k) 18 

* j-,-o -J 

where the norm of a random Vector u is defined as 

E{uTu} (4.3.2.19 

(4.3.2.20 and lim V (k) = o 

k- o
 

http:4.3.2.20
http:4.3.2.19
http:4.3.2.16
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Equation (43. 2. 17) shows again that the weights converge to Wotim 

and equation (4. 3. 2. 18) shows that the variance of the random weight 

vector about its expected valhe is bounded, and the bound can be made as 

small as desired by choosing k sufficiently small. 

The rate of convergence of the mean of the weight vector is shown 

in the proof of the above theorem to be bounded by , where 

=]- I-k (I-_nifI pT ) 24 (4.3.2.21) 

and o < 1 as shownin section 4.3. 1. 

Section 4. 3.3 The Algorithm, proof of Convergence, and Bounds on the 

Rate of Convergence if the Gradient is Estimated, and 

the Estimate is Noisy. 

When our estimated gradient contains noise, wherever we have 

s . in section '4.3. 2 we replace it by sj + n .. To characterizethe quantity -J -J 

the noise we will assume 
= {n.} = o, E{n.n.T} n ands.,S, n , n are statistically
 

jn sj-k -1 -,mnaesttsial
-J 
independent for k f j and n m. 

The algorithm becomes 

VKv+ 2 k - nnT] +n [d.-(sT + n T 1] (4.3.3.1)
-j3 -1+ i -j - J 

with the initial condition the same as before, i. e. 

WT - a (4.3.3.2) 

Equations (4. 3.30 1) represent a set of first-order stbchastic difference 

equations, with forcing stochastic vectors s . and n .. 

Let's find the asymptotic expected value of W.-J 

E{W.j+1 : - + nn [ ' d- ,sE * % 

http:4.3.2.21
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Using (4.1. 7a) and setting E {W + 11 E { W,=. gives
-iO 

I- -nLMS (4.3.3.3) 

Taking the expected value of (4.3.3.2) yields 

ni = a (4..3.3.4) 
-oo - 1 

Define -[c(I+ -1 -_ -LMS (4.3.3. 5) 

nT
thn l-_n oo =oM 

then I n1 1 1 TJ.1 x = o (4.3.3.6) 

By the previous arguments, a solution to (4.3.3.6)exists and is unique 

because 

rank [l-nl1n iT] n- I 

Equation (4.3.3.6)is the same as equation (4.3.1.7), thus the solution
 

is given by
 

x = a 1 (4.3.3.7) 

where the value of a is chosen so as to satisfy the initial condition, 

givenl by equation (4.3. 3. 4), i. e. 

a ,lT (1+ )-WLM sa =n (4°3.3.8) 

T -a - .
) I 1
"l ( + "n) _n
 

The solution for W is thus-00
 

a- n
a 1T.(I-+- -wLS ln
 1
- ) -
(+ WLMS + S+ )n 

-1 4)n1 (4.3.3.9)
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Remembering that 
T 

- n 1TWLM .S-1 

-opt -LMS ( iT 1 T-in 

we see that W-o0 -opt in this case, e. a bias 

the bias approaches zero as the noise matrix 4n approaches the zero 

matrix. 

Again, since the weight vectors are random, before .we can con­

clude that the weight v&ctors converge to Woptimunm' we must examine 

the variations of the weighat vectors about their asymptotic expected value, 

given by (4.3.3.8) 

Define q W. (4.3.3. 10) 

differs from W i. exists, and 

-j= -- -00 

In terms of q , the algorithm (4.3.3. 1) becomes 

q k2 L I-nI (sji + n. (S + qjS-j:+ I qj- nl T ] T n j T ) 

- k[2 1 n T] (sj +n) (sjT +njT TV 
- -00 

-'k2i[I-nl~nlT j (sj-. -s.+n ) 

+dckZ2I-n 1 n-] 6.Id(s. + n) 

Define T 2(s + n )(s T + nj T ) (4.3.3. 11) 

V.- 2 d (sji + n) (4.3.3.12) 
-3 3j -J 

(4.3.3. 13)H. (I-n n )T 

-j+ -J- -k[I-.1n--i T ] [Tq+T.W-- V.] (4.3.3.14) 
1- 13 j i00 -J 

http:4.3.3.14
http:4.3.3.12
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This may be rewritten as 

=qj+I qj - k.j (4.3.3. 15) 

. H q +h. (4;3.3 16)where 

- hnnT )((4.3. - 3. 17)7h. E (I- nini ) (T.W - V.) 433 
-J j- -J 

Note that E frH. } and E {h. } are independent of j. Also H. and h. are 

statistically independent of Hk and hk if j f k because we assumed 

s k n Mare statistically independent for k 4.j and n * m. 

Noting that 

.s 

E {H.}j++ = 


E {V. } = 2 t(s, d) = Z + WLM S
 

it is easy to show that 

((4.3.3. 18)E {h. } = --J 

Also E {H.} = 2 (I-n I nT )+) = (4.3.3.19) 

By the same argument as before, we may show that for k 

sufficiently small, 

lim E {q.} jj o (4.3.3.20) 

and 

lir sup II q. 1I V (k) (4.3.3.21) 

This proves convergence.
 

Again the rate of convergence is bounded by , which depends \upon
 

k, the eigenvalues of (4 + n ), and the constraint.
 

http:4.3.3.21
http:4.3.3.20
http:4.3.3.19
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Section 4.4 Simulation Results 

As a check on the theoretical work we have done in this chapter, 

we programmed the following algorithms on IBM 360/50 in Fbrtran IV. 

Let us first consider the algorithm given by equation (4.3. 1. 4) 

where the gradient is assumed to be known. We let the dimension of 

the vector W be four. 

Let 

d.--- [ 1-i1 11< 8 1 
Slj 

.2j 

s3j 

s4j (4.4. 1) 

1 "0 0 0 

O0 2 0 O0 

0(s, s 	 0 0 3 0 (4.4.2) 

0 0 0 4 

i. e. all components of the vector s. are assumed to be gaussian, zero-j 
mean, and uncorrelated, 

Thus 

1 0 0 0
 
10 00 

- 1 (4.4 3 ) 

00 0 04 

and E j d -1si 

E Szj dj }2 

b(s, d ) = [ . (4.4.4) 

E {s 4 j d } 4 
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The LMS value of the-weights is given by 

g -_ ' d= 4 1 (Es,s1) ( 
(4.4.5)d) 

For our constraifnt we let 

1 

Iz
 

n = 1 anda =3 (4.4.6) 

0 
0 

i. e. the linear constraint equation is 

W1 - W 3 1-Z 

which means that there are no constraints on W3 and W4 . 

37 10+31-­
0 10 

For our initial conditions we W = orW = -o 0 -o 0 

considered two cases: 0 0 

which exactly satisfy the constraint. 

The Lagrange solution is 

1 + 2 - 3.82 

W opt 1 - 21- = -0.41 (4.4.7) 
1 1.0 

1 1.0 

A limit on the values of k which insure convergence is, from 

g< 1, i.e.equation (4.3. 1. 22), given by those values of k for which 
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k<1
 

'The algorithm is (see equation 4.3. 1.4) 

-j+1 Wj - _ -WLMS (4.4°8)2-kJ-nlnlT ] Wj 


where 

-10
0W
W = - 0 0 - 0o 0 

0 

have choseA for n and 4), the algorithmUsing.the values we 


may be rewritten as
 

Wlj+2 Zj-3 

W =W - k Wlj 2 3 (4.4.9)'
 
SjW3 j
-6
 

3j3°

8. 8§W4j 3.2 

-0;41 

In the steady state, W should converge to Wc, 1. 0 

- 1. 0and the asymptotic MSE should be given by 
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E{ 2 } d. 2 T (s,d)W +WT OW 

= W 0 W which isevaluated at W- -oo -opt 

W= W = W (4.4 
- -cc -opt 

We ran the above algorithm for various values of k, with the 

initial condition W = col [ 10 + 3 1/2, 10, 0, 6] and the results are 

shown in Fig 4.4. 1. Note that as k increased from 0.01 to 0. 25 (above 

which we no longer have convergence, theoretically or in the simulation, 

let k= 0. 252) the rate of conver­as demonstrated by Fig 4.4. 1 when we 

gence agrees with the bound given by Fig. 4.3.3. Fig. 4. 4. 2. shows 

how the norm of the vector q (see equation 4.3. 1. 9) converges to 

zero for various values of k. From this graph we can compare 

the actual time constant, for a particular value of k, to the theoretical 

bound on the time constant ( ), e.g. for k = 0.01, q I decreased from 

15.82to 12.26 in teniterations. Setting 12.26 = 
- 10

0 (15.82) implies =.975 

which is in agregment with Fig. 4.3.3, which bounds the rate of conver­

gence for this value of k by 1-2kp 1 = 0.98. 
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k=0.252 
50.00 IkI20 

0.00 10 20 30 40 50 60 70 80 90 100 

ITERATION NO. 

Fig. 4. 4. 1 Gradient Known , No Additive Noise 



25.00 

Iql 

30.00­

20.00­

15.00 k=0.01 
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If the gradient. must be estimated from the incoming data, the 

algorfthm (see equation 4.3. 2.2) is 

W. W + 2k[I-n n ls[ d. - sT W. (4.4.11)-j"'+1 -J -1--1 -j -J 

Ufsinfg ±he values we have chosen for n 1 and d. the algorithm may be 

rewritten in the form 

(sj 1 +sj 2) uj 
(s + s2) u 

W• j l -jW 2 s3s3 (4.4. 12)j 

2 s4u 

were-. (s +s +-s +s.) W +S. W +s W . W.
I i 2 j3 4 ( lsj lWj 2Wj 23j j3 j 4 j 4 ) 

(4.4.13) 

In the steady-state, W. should converge to the same values 

as beorle, and the asymptotid MSE should be 12. 0. 

1-0 + 3 12 

The results of the 'simulation for k = 0. 01 and W ­

are, shown in Figs. 4.4.3 and 4.4.4 and agree with the 

the6r'etibal values above. 
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Finally if the gradient must be estimated from the incoming data, 

and the incoming data is noisy, the algorithm (see equation 4.3.3. 1) 

becomes 

LW = k3 [ - 3 (s. d - (s.T +nT ) W ] (4.4.14)W.+2k[I-nfl -3 +nj[ d -I -Js+nW.++3 

Using our specific values for the above quantities, the algorithm may 

be rewritten as 

sj I +njl + sj2 +n3 

Sj +nj +s s +nj
5 n15 1 55+sj2 J2 

wj+ 1 W +ku. (s + n (4.4. 15) 

2 (sj4+nj 4 ) 

where 

(4.4.16)+ n-'Tu. d._(s.T+n T) W.T-

Let the noise correlation matrix be 

4n =0.11 (4.4.17) 

In this case, see equation (4.3.3.9), the average asymptotic value 

W should be-00 

3.72
 

-0. 515
 
(4.4.18)Wo = 0.967 

0. 975 
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and the asymptotic MSE should be n 11. 9. The results of this 

simulation,~ 	 1 ~ 12ad+o 3=O 

simulation, for k=0. 0 1 and W = are shown in Figs. 4.4. 5 
° 

and 4.4.6 Li 
Fig. 4.4. 7 - 4. 4. 10 indicate how the convergence rate and 

asymptotic MSE change as the additive noise in the incoming data increases. 

= Figs. 4.4.7 and 4.4.8 correspond to n 1. 0 1, W = col [ 3. 17 -1. 12 
n -0 

0. 	 747 0.80], and asymptotic MSE 14. 0. Figs. 4.4. 9 and 4.4. 10 corres­

=pond to 4) 10.0 1, W 0= col [ 2.34 -1.90 0.28 0.29], and asymptotic 

MSE 0 28. 

Comparing Figs. 4.4. 5, 4. 4. 7, 4.4. 9, and 4.4.3 we see that it took 

longer to converge when we had additive noise than when we did not have 

additive noise in the incoming data. 

In Figs. 4o4.1land 4,4.12we kept everything the same as in Figs. 

4.4. 5 and 4.4.6 except that we started at W = col [3 12, 0, 0, 0] which 

is much closer to the steady-state value, W o, arid expanded the vertical 

scale. From these figures we notice that the MSE is somewhat sensitive 

to the occasional noise sample whose value is greater than three or four 

standard deviations away from the mean value of the noise which in our 

case is zero. This suggests that one might achieve a smaller value for 

the steady state variance if the algorithm were 

WJ+ 1 - W.j - k f [V(MSE) ] 

V (MSE) if7T(MSE)< K 0 

where f [V (MSE) ] 

K if V (MSE) > K 
o 	 0 

However, 	 this approach was not investigated further, 
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Appendix A Proof of Convergence and Bounds on the-Asyrn]totic 

Variance. 

This theorem is essentially the same as Appendix C of Gershols(18 )
 

paper,
 

Theorem: Let Hk be a sequence of random N x N matrices and 

hk a sequence of random N-tuple vectors. Suppose E {Hk} and E {h 0 

re independent of k ; H k and hk are independent of Hj and h. for k 

E {hk = o; the elements of H k and hk have finite variance;E(H.}_sd, 

I - k a 11 - k c where c > o.
 

Define the random sequence qj by:
 

j+l= qj - k Tj (Al) 

_9j = H. qj +h (A 2) 

for j = 0, 1, 2, ... and q is an arbitrary deterministic vector. Then for 

k positive and sufficiently small 

lim {q.} fl = f0 (A 3) 

and
 

lim sup q.jIs5 V (k) (A 4) 

-O
J 

with V (k) satisfying 

lim V (k) o (A 5)
k-- o 

Note that the norm of a random vector u is defined as 

u ;E{ u Tu.} (A6) 
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Proof: Combining. equations,-(A 1) and. (A2) yields 

S(I-,-k,-Hj)_.q ,-.ii -'i k-h.-i (A 7) 

Since q. is independent of H., 

(A7) gives"' 

taking the expected value of equation 

-l E. '3 (A 8) 

Thus 

i .} < fl E{q}EI *(A 9) 

Since < 1 by hypothesis, equation (A3) follows. 

To prove equation (A4), observe that 

E (TkT T -kH 

E-q7 1 q.+1I {q j(I- kE) (I-k ). 

Y)}-E{qT(I-kH.T) kh.} 

-

-E{khT (I-kH)q }+k 2zE{hTh.) (Ai) 

But since j.is independent of H., 

may be bounded by 

the first term in equation (Al0) 

E {q.T (I-kU. ) (I-kH.) q. E{q. E {(I-kH. ) (T-kH.)} q. 

<lie {(I-kHjT) (I-kH) I IIq11a2 = ll qj 1Iz 

where 

Note 

p. .11E { (I -k HT) (I-kH.)} 

TAX< ixi II 

IJ (A12) 
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Combining -the second and third terms and using the Schwarz, 

inequality gives 

- ZkE {qjT (I-kHj)hj} 

S_2k[E{q jT } E { } {q T}E 2k EHhi h}-kE j {Hhj E{q T} 


2kZf 1J E{qj 
 (A 13) 

where f- fE {Hj hj} (A14)
 

and f is finite.
 

Using (A9) we get
 

-2kE {qT (I-kH.) h.} < 2k 2 f j JIfE{q III 
 (Al5)
 
_.3 '-.3 0 

Applying the.bounds (All) and (A5)to (A10) yields 

ZII a-jl 1 2 =E {_,j+lq~l < LII Z + Zk2 f J E {qo0} II+kI11hj 
(A16) 

Ifwe now define the bounding sequence of positive numbers Qk accord­

ing to 

Q = If E(q}JJ 2 (AI?) 

and 

Qj+I = Qj + 2k 2 f j 1E {q,} I +k 2 ih. 112 (A18) 

then it follows from (A16) that 

IIq l III-< 0 k (Al9)
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But the difference equation (Al8) has the asymptotic solution. 

k2jjh. 112 
lir Q. k2 (A20) 

because 

Thus 

.< . 

lirn sup 
j_ oo 

11 qj 12 < 
- -

k2Jh I. 

l-C -(A21) 

where 

Let us 

if 

then 

jfhj jjis independent of j by hypothesis. 

investigate the positive constant II: 

G. =H. -
3 T 

(l-k H. T ) (l-kHj = (I-ka T -k G) (I-kO?-kG) 

(A22) 

En (I-kH. ) -k E (I-kaT) (I-k).+k- E{G T' 

E { (1-kaH ) (-kk ) = (II-) kG) + k 2 E {G IT GJ - (A3) 

where 

< 

= 

2Z+ k 2 y'YA24) 

3 

G-k) 112 is finite. 

3 

Futherrnore, in all cases is of the form 1 k c where c > o. 
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k k
 
i-[ (1-k c)2 + ky ] 

k_ _ 

2 kc 

__ _ __ _ 
2 2 2 

-kc 2 ky 

_k 

2 c - k,(c + Y) (A5) 

Equations (A4) and (A5) are satisfied if we 

V (k) -- 2k 
2c - k(c +y) 

define 

(A26) 

QED 



Appendix B Rosen's (21)-(?2 )Gradient Projection Algorithm 

In this investigation, we indicated that our gradient projection 

algorithm which .adaptively adjusted the tap gains could be thought of 

as a modification of Rosen' s algorithm. Therefore, let us now sum­

marize some well-known linear.( and nonlinear) programming methods 

of optimizing functions subject to linear (and nonlinear) constraints 

when no noise is present; explain why Rosen' s method is applicable 

to the problem of optimizing functions subject to both constraints and 

noise; and illustrate, for those unfamiliar with Rosen! s algorithm, 

how it would be used to locate the maximum of a concave function 

subject to linear constraints. 

We restrict our discussion to gradient methods of linear and 

nonlinear programming because other methods of optimizing convex 

functions (e. g. Simplex) work essentially by examining the vertices 

of the feasible region, and testing whether or not the conditions for 

optimality are satisfied at the vertex being tested. If the conditions 

are not satisfied we jump to the next vertex. However, since the ­

vertices may be far away from one another, jumping from one vertex 

to another is not what we want in an adaptive algorithm, which must 

have the property that if we are not at the exact optimum we must 

still be "close to" the exact optimum, not at the next vertex which 

may be a considerable distance away. Another point to consider is 

that at any single iteration you don'lt want to move too great a distarice 

because we will sometimes be moving in the wrong direction due to 

the presence of noise. This is another reason why we don't want to 

consider just vertices, but rather all points on the boundary of the 

feasible domain. 

All gradient procedures work by moving from an .iteration point
 
k
 in the direction of the gradient or, if this is not possible because of 

the constraints, in the direction of a vector s which makes an acute angle 

with the gradient, i. e. s F ( > o. We move in this direction until 

either F reaches its maximum in this direction or until we cannot go further. 

without leaving the feasible domain The end point gives the next iteration 
k+l

value x . We never leave the feasible domain thoughout the entire iteration. 

x 



(24)
zoutendijk's method chooses s so that, after a suitable normalization, 

its scalar product with the gradient is maximized under the condition 

that we do riot immediately leave the feasible domain when moving from 

x in the direction s. We will not use this algorithn because the max­

imization step uses the abovementioned linear programming methods which 

are advdrsely affected by roise. Anotherprocedure is tb restrict the vectdr 

s to lie in a certaini linear manifold of dimension snialler than n. This ap­

proach is used by Rosen., These two methods -are somevhat similir,. We... 

will use Rosen's method because! the iteration-steps appear to be simpler 

and should use less computer-time. 

We will abstract pp 163-170 from Kunzi, Krelle, and Oettli(2 5 )and 

some numerical examples from Hadley[26 ) For more details and proofs as 

well as a discussion of how the algorithm may be modified to account for 

nonlinear constraints, see Rosen's original papers. 

The problem is to maximize the concave function F(x) subject to 

the linear constraints (nonlinear constraints are discussed in Rosen's 

second paper). 

h.(x)- a. x- b.< o j= 1,,...,m (Bl) 

where x is an n dimensional vector. 

00
If a point x O of .the feasible domain (i.e. x satisfies all the con­

straints) is not the constrained maximum, then we. may look for another 

feasible point-with a higher function value by proceeding from x in the 

direction of,the gradient of the, objective function. . This is,always possibJe 

if x is an interior point. However, the method can fail if x is a boundary 

point, because the gradient vector may point toward the exterior of thefeasible 

domain. Rosen's method is to project the gradient onto the boundary of the 

feasible domain and then proceed in the direction of the projection rather 

than in the direction of th1 gradient itself. More precisely, the gradient is 

projected onto a linear submanifold of the boundary, i. e. on the submani­

fold of least dimension that c3ntains x . In three dimensional space, for 

instance, the feasible domain is a polyhedron whose boundary consists of 

manifolds of dimension two (faces), dimension one (edges), and dimension 



zero (vertices). If x lies on a face but. not on an edge, the gradient is pro­
° jected onto this face; if x lies on an edge, we project on the edge. Rosen's 

method coincides with the usual gradient method if the point x lies in the 

interior of the feasible domain. 

We denote the (n-i) dimensional manifold (boundary hyperplane) de­

fined byh. (x) = o by H., i.e. 

xHi- { j h. (x) = o} j = 1,2,...,m (B 2) 

The boundary of the feasible domain consists of all feasible points 

h. (x) < o for all j] with h. (x) = o for at'least one j. The (non-normalized) 

normal vector a . is perpendicular to H. and 'points outward from the feasible-- 3 3 
domain. A number of hyperplanes H. are linearly independent if the corres­3 
ponding a. are linearly independent. The intersection of k hyperplanes is-1 
the set of points which lie simultaniously on all k hyperplanes. The intersec­

tion of k linearly'independent hyperplanes forms an (n-k) dimensionallinear 

manifold in the n dimensional space of the x vectors. 

Let us now consider the projection of the gradient vector. Say x 0 lies 

on r hyperplanes. We pick out q linearly independent hyperplanes from among 

these r, which, after a suitable reordering of the indices we may assume to be 

H,...., H . Let D denote the (n-q) dimensional intersection of these hyper­

planes. The normals a I' ... , a are perpendicular to the linear manifold D. 

The q dimensional linear manifold spanned by a' ' a will be denoted by 
- . -q 

D. D and D are mutually perpendicular and together span the whole space. 

The projection of a vector y on the linear manifold D is denoted by XD and is 

given by , 

ID-M Pqy (B 3) 

where P I -A (A T Aq)-I A T (B 4)
q q q q q 

and A (a I a aq) (B 5) 

Note thatP = I and P = zero matrix. 



Rosen proves that the point x is the unique constrained maximum 

for concave 6bjective functions if and only if x satisfies 

(B 6)pqg (xk)= o 

and 

(A A)I AT g(x > (B 7)
q q q g > 

k k
where g (x) is the gradient vector at point x 

Condition (B6) states that the gradient vector is orthogonal to the manifold 

D, and thus lies in D. Hence 

q 

g (x) u.a.= A u (B)
q ­

j= l 3--

Substituting (BS) into (B7) we see that (.B,7) may be rewritten as 

U >0 

Equations (B6) and (B7) together imply that a necessary and sufficient 

condition for the point x to be a constrained maximum is that the grad­

ient ,of the objective function be expressible as a non-negative linear com­

bination of the exterior normals to the hyperplanes on which the point lies. 
ST (27) o k 

This is equivalent to the well-known Kuhn- condition. If x is an 

interior point of the feasible domain, the optimality criterion simplifies to 

P g (xk) g (x k ) =o. 

Whenever the conditions for optimality are not satisfied Rosen 
k + l shows there exists a feasible point x which yields a higher objective 

function value. There are two possibilities (we'avoid discussing degen­

eracies).which we consider separately. Denote g (x k ) by gk" 

Case I Pq gk 1 o. 

This means that x is not a vertex of'the feasible domain, i..e. 

q < n, and D has at least the dimension of a straight line. We move in 
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the direction given by the vector s k= Pq -k (B9). We will not discuss here 

how far to move in this direction because this part of Rosen's algorithm does 

not apply to our modification of Rosen's algorithm. 

Case II P g 0 

but u.3 < o for at least one j. We then choose one of the indices for which 

u. < o, e.g. the one for which I j u. is most negative, and then disre­

gard the corresponding hyperplane H.. Suppose this is the hyperplane Hq, 

Then uq < o, and we proceed as if x k lies only on H1 to Hq-,, i.e. we raise 

the dimension of D by one. The associated projection matrix is now Pq I* 

We have Pq- 1 a q o because a is independent of a to a This im­-q -1 -q-V* 
plies that 

q 

Pq-1 k= Pql (z + ua. a. = q a q # o 

where z belongs to D. Consequently, in the new D, which has one dimen­

sion more, we have the same situation as in case I, and we can proceed as 

in that case by setting 

k 
q-lk (BI0) 

These are the main steps involved in Rosen's algorithm. We add 

that nonlinear constraints, can also be-handled, but we will not discuss that 

algorithm (see Rosen's papers, and chapter six of this investigation) here. 

Finally we present two examples, taken from Hadley, to illustrate 

how'the algorithm works. Consider Fig BI 
gk
 

X2j 

Fig. B1 Diagram for example one 
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Assume that the current feasible solution is xk We cannot move in the 

direction of the gradient without violating constraint 1. The vector s is 

given by (B9) 
T 

l iT kP.!.k 

a k 

k -- k 

This is nothing more than the perpendicular projection of g onto the bound­

ary of the set of feasible solutions, as shown. 

Consider next the situation illustrated in Fig B2 

2k I 2 

XX 

Fig. B2 Diagram for example two 

Both constraints will be violated if we move in the direction of the gradientk ' k 
vector. Also P 2 g = o indicating that it is not possible to move from x 

in any direction such that both constraints hold as strict equalities. Note. 

that when g is expressed as a linear combination of a 1 and a2, g2k. k 

a a ' a we see that a 2 is negative. We cal find a feasible direc­

tion in which to move (case II) by allowing constraint 2 to hold as a strict 

inequality, while constraint 1 holds as a, strict equality, If we do this, the 

problem is reduced to the previous i'llustration. 
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CHAPTER 5 

Soft Constraints 

Se'cti6n 5. 1 Introduction 

,In the last chapter we devised an algorithm that minimizes an objec­

tive function subject to constraints which were never to be violated. In this 

chapter, we will devise an algorithm that differs from the gradient projec­

tion algorithm of the previous chapter in that this algorithm-minimizes an 

objective function subject to constraints' Which may'be "slightly" violated, 

but which cannot be violated "too much." This type of constraint is known 

in the literature as a "soft" constraint as opposed to the "hard" constraint 

dealt with in chapter four. 

Again, our final objective is to design an adaptive' ilgoiithni which 

will maximize the SNR subject to a constraint on the super-gain ratio when 

unknown interfering noise is present. Again because the SNR and super-gain 

ratios are nonlinear quantities, it is difficult to prove convergence of our 

algorithm or to analytically find the algorithm's rate of convergence. Again, 

for the purpose of mathematical tractability add becaus'e it is ueffil'iri its own 

right, we will consider. an adaptive algorithm which minimizes the MSE subject 

to a linear constraint. 

The algorithms of this chapter are simply a gradient minimization of 

a convex modified objective function, the modified objective function consist­

ing of our original objective function plus a convex penalty function which 

serves to increase the value of our modified objective function whenever the 

constraints are violated, i.e. we will minimize the convex function 

f(W)=E _ T LM 1.1)
min- -T--LMS ) W-WIMS )
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subject to the "soft" linear constraint, shown in Fig 5, 1. 1 below 

W2 

fl (-)lCC2= W1 

f1 (W)=c 1c2 >c,
 

wT"nl-a=O
 

Fig, 5. 1. 1 Constraint and Penalty Function Level Curves 

The constraint equation is of the form 

WT" -a=o (5.1.2) 

The convex penalty function we will use is given by 

f 1 (w) = I Iw i -a]2 (5.1.3) 

The level curves of this penalty function are also shown in Fig 5. 1. 1. 

We should note that if K is "large enough" we will always be very "close" 

T = 
1 
o which then may be interpreted as a linear approx­to the line W . -a 

a Taylor expansion) at point Wto any arbitrary
imation (i.e. the first terms of 


nonlinear constraint (e. g. the super-gain ratio) provided that as the algorithm
 

in the W space, we keep replacing the nonlinear
 moves from pointto point 


constraint by the best linear approximation to it at each point.
 

Assuming we have only one constraint in the problem, as given by 

equation (5, 1. 2) we will present three algorithms, corresponding to the 
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three cases studied in chapter four, i.e. when the gradient is known, when 

we have a noise-free estimate of the gradient, and when we have a noisy 

estimate of the gradient, and for each of these algorithms we will investi­

gate convergence (convergence of the expected value of the weight vectors 

and bounds on the variance of the weight vectors in cases two and three), 

the rate of convergence, and the bias between what our "soft" constraint 

algorithms converge to and the optimum weight -ector when we have a 

"hard" constraint, which was found in section 4. 2 to be 

(a---WLMs "-- I .­
= WLM + ¢ (5.1o4) 

Wopt awLMS n 
1 ( 1T4) 

All three algorithms seek to minimize the modified convex objec­

tive (j indicates the iteration number) 

2 +(T T = min + (W - WLMS ) CYJj-_WLMs) +KI [w T n -a] 2 (S. 1.5) 

In case 1, the gradient of equation (5. 1. 5) is 

T(W : 2 (Wj-WLMS ) + 2K 1 [W n.-a ] n 1 (5.1.6) 

In case 2, we assume kis not available and must be'estimated by 

sj,, d. and W. which are available3 -3J 

.(W. -2s.g(W_) (d- sT .W)+ 2K LW.T n 1 -a] n (5.1.7) 

In case 3, we assume s. is not availabe, but a noisy estimate of s 

is available 

g(Wj - 2(s. +n) d- (s T + n.T)W] + 2KI[W T nI-a n 

--­ 3 "3-3-3-.-.8) 
(5. 1.8) 
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Section 5. 3. 1 	 The Algorithm, Proof of Co nvergence, and Bounds 
on the Rate of Convergence if the Gradient i's Known. 

Using equation (5. 1. 6) the algorithm is 

W + = W. Tk 24 (W _W ,s + 2K 1 [-.. . _ - a ] n 1 . (5.2.1.1) 

The above equations are a set of first order deterministic difference 

equations. Let us first solve for the asymptotic value of W, denoted 

byI. Settingw l= W_W. W gives 
oc -j+1 -J -00 

W=WL -K [WW n - a ]4n, (.2.1.2) 
oo -LMS 1-c -11 

(5.2, 1,3)Let Wo= c + dn 

where cT n T = o 	 (5.2.1.4)= c 

T 

Remembering that n = I- we have 

.c+ d- -WLMS-K [d -a ,-in 	 (5. 2.1. 5) 

Multiplying by n 	Il on the left yields 

1 [ n WLM S +[n1 a ( _l) (52.1,6) 
1+KI(nlT -nl 1 --- LM. 

Substituting (5. 2. 1. 6) into (5. 2. 1. 5) yields 

[ 	 + K 1 c= - dn-1 +WLMS J n.I W-vLMS a 	 - -]InILS+ K , (n i - n l) 
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and 

WVO __WLM S 
K 1 1 r a IT. S 1 n-LMW--~~ Y!LMS 1 +Kn 1 ) I -[ (5.2.1 .7) 

If we let KI- co, which means that the penalty function is infinite unless 

the weight vector li4s exa.ctly on the line W T n 1 - a I = o, Wcbecomes 

+W --WM - a n_ WN (A-1n 
00 LS (n*T1-V ) [anw 1-M• L- ] 

which is the optimum solution in the "hard" constraint case (see equation 

(5.1.4)). 

By comparing equation (5. 2. 1. 7) which tells us %thesteady state 

value of W that our algorithm converges to, and equation (5. 1.4) which 

tells us what the optimum value that we want to converge to is, we can 

get an idea of how to choose K, , i. e. in the steady state our penalty 
+algorithm converges to WO = W LMS x where the direction of the vector 

x is the same as the direction of x-opt whereW opt = WLMS + x op t how­

ever the magnitude of x is less--then the magnitude of x pt' If -we want this--opt" 
bias to be less than, say 1 % , we must choose K to satisfy 

K1- T -1 .99T
 

1+KIn 1( -i ) -1
 

which implies 

K> 99 99( n I1n,) 

where p 1 is the minimum eigenvalue of 4-1 



We will now investigate how fast our algorithm converges toWoo 

Define qj a Wj - W00 (5.2.1.8) 

In terms of q, the algorithm is 

aj+l Clq k 2 4)(qj +W .- WLS +ZK1 T- +W T'n-a-o nl 

" (5. . .9) 

q j -qj+1 2koj - ZkK,(q n1)n. I 

- 2 k 4p(Wo - WLMS ) -2k K1 n1 (n I W0- a (5. 2. 1. 10) 

-aBut W-o -ws=l-LMS T -1 a-ii~-1nt' . '-.LMS I 
1l+.K 1 (nl I nP1) 

-2kK 1(-o ---ELMS ),M @-in " -"-I[ nkMl+K(nT l a- nLMS 

and 
---n WTL K ( a T.­

+ IlT~ I Y!LMS)C -1 
-1 -o -1 -LMS K I
 

i +K(nT­

1T -LMS +K,(niT, n 1 a
 
1-1-1 
it - n_ 11 + K 1 (n 

Equation (5. 2. 1. 9) then becomes 

TI qj') (5.2.1.11) J+l - (n1 . 

http:5.2.1.11


-132­

thus 

I qj+l < j+l 11q 0 (5. 2. 1. 12) 

where 

II- 2kc+K n Ty (5.2. 1.13) 

Note that 4.+Kin I n T is positive definite symmetric 

Pf: xT (+KlnTnl T ) x T (xTnT (_nlTx 

xT. nl12 

From Goldstein (28)page 24 

rnpn Lj I 1 2kpl(5.2.1.14) - 2 

where p and p are the min and max eigenvalues of (P + K1 nln 1 

respectively. For k small enough 

0< a< 1 (5.2.1.15) 

Equation (5. 2. 1. 12) shows that the rate of convergence is given 
by the number g , which for k small enough is between zero and one (thus 
guaranteeing convergence), and I-1 as k- o (i.e the rate of conve'r 
gence becomes slower as k- o). 

In this section we have proven that our algorithm converges to 
Wo for k sufficiently small. In the next section we will investigate a more 
useful algorithm, i. e. an algorithm that does not require a priori knowledge 

of q. 

http:5.2.1.15
http:2kpl(5.2.1.14
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Section 5. 2. 2 The Algorithm, Proof of Convergence, and Bounds 
on the Rate of Convergence of the Gradient is Estimated. 

Using equation (5. 1. 7) the algorithm is 

w - W. - k P2 s. (d R 1W) + zK~w a] n (5.2.2. 1) 

These equations constitute a set of first-order stochastic difference
 

equations. We will first solve for the asymptotic expected value of W,
 

denoted by w0 -


Taking the expected value of equation (5. 2. 2. 1) yields 

Etl W = Ejw.j-k -2Eljd. 1 +2Efjs Tw. 

t 2 K1 [E W.Ti n -Ej +iT, W. "Emialmn 

Noting that El s s T. TI;Ej T w (s, s)EW.YI1asin 

chapter four, we may rewrite this equation as 

E I-W.+ 1 1= EIW-1 - k -2 ¢ (s, d) + 2 (P (s, s )Elw. 

+ 2K 1 [EI w.Tw ._nl- ]n 

Using equation (4. 1. 7a) 

_(s, d)= .(s, s)wLMs 

E$w+ = EjI +2k KMs- t . 2kK1 [EIWi n a 3 
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We now have'a set of deterministic first-order difference equations whose 
asymptotic value E {WIS W0o, can be found by setting E {W. I E{WI 

= wo, giving 

.- T. 
Wo-WLMS -K 1 W0 - - a f 1 25.2..Z)3 

This is the same as equation (5. 2. i. 2) and the solution is given by 

equation (5. 2. 1. 7)' 

WIw+K T LM i nTl (5. 2.2.3)-00 = LMS + 1+K 1_ T[1 an - 1 " 5LMS 4 

Because our difference equations describing the behavior of the weight 

vectors are stochastic, the above result is not sufficient to :prove con­

vergence of the weight vectors to W_/,, we must also show that the vari­

ance of the stochastic vectors qj-- W00 is bounded. To do this 

Define q.- W. - W (5.2.2.4)
3-J ­

the algorithm (5. 2. 2. 1) may be rewritten in terms of q as 

qj+l qj - k[Zs' s T + ZKn n
1 T ] 

k [ 2 s. s T + 2Klnln Tlw0 0 

+ [2s d + 2K 1 a n 

Define TTI-.-- 2s. s +2Klnln (5.2.2.5)1 

V.-- Z s d. + 2K a nl. '(5. 2.206) 

Thus qj+l = -qj k j (5.2.2.7) 
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where j-- Hj qj + h. (5. 2. 2.8) 

H.Wr (5.2.2.9)and h:= -V. 

Note that E {H, } and E {h,. are independent of j. Also H. and h. are 

statistically independent of H k and h k if j f k, because we assumed that 

sj ' sk are statistically independent for k t j 

Noting that 

E{ H} = )+ ZKI n IT 

2 + 2K,an, ZPfLMS+ 2k nB{vj} = (s,.d) 2 an 
.- J.-j . ­

we may show that 

E{hj} =0 (5.2.2. 10) 

T 

Note thatE{H.} = 24)+ 2Kln I n, T d is a symmetric positive 

definite matrix. 

The algorithm is thus 

qj-j -3~ 

where j=H.ajqj +h. 

and H. is a sequence of randomnxnmatrices; h. is a sequence of random 

n- tnple vectors; the expected values of Hj and hj were. shown to be inde -2

pendent of j; H. and h. are independent of H, and h for j t 1; E{hj o; 

and the elements of H. and h. have finite variance, with E{H.} --2,where 

t. is a symmetric positive definite matrix. 

Under these conditions, it is shown in Appendix A of chapter four 

that for k sufficiently small 

lim " E{qj} fj = 0 (5.2.2. 11) 
j- oo 
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and lim sup j qj 11: Vi(k) (5.2.2.12) 
j.-co
 

where the norm of a random vector u is defined as 

ilullE- E T u} 

and lim V (k) =o (5.2.2.13) 
k--. o 

Equation (5. 2. Z. 11) slows again that the random weight vectors con­

verge, in the mean, to . and (5. 2. Z.. 12) shows that the variance
-optimum 

of the random weight vectors about their expected value is bounded, and 

the bound can be made as small as desired by choosing k sufficiently small 

as shown by (5. 2, 2. 13). 

The rate of convergence of the mean of the random weight vectors 

is shown in the proof of the above theorem to be bounded by , where 

Tll-kI= ( 2 + 2Klnln l T ) (5.2. Z. 14) 

TSince a - ( 2 c+ 2 K nln ) is positive definite symmetric, 
we have 

= max 1- -kpj , -kpn (5.2.2.15) 

where p 1 and pn are both positive, and represent the minimum and max­

imum eigenvalues of a respectively, as shown by Goldstein(2 8)page 24. 

Thus o < < 1, and this again proves convergence of the algorithm 

of this section. In the next section we will investigate what happens when 

the estimate of the gradient used in this section, contains additive noise. 

http:5.2.2.15
http:5.2.2.13
http:5.2.2.12
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Section 5. 2. 3 	 The Algroithm, Proof of Convergence, and Bounds on
 
the Rate of Convergence if the Gradient is Estimated,
 
and the Estimate is Noisy.
 

Using (5. 1. 8) the algorithm is 

Wi.- Mr k 	 T T1 T.K[k-2(s.+n. [d.-Cs§ 

(5.2.3.1) 

These equations constitute a set of first-order stochastic differ­

ence equatiQns. We will first solve for the asymptotic expected value of
 

W, which we will denote by W
 

Taking the expected value of (5. 2. 3. 1), under the 'assumption that 

nEn. _°' E.,nn.T,	 and sJ s n nr are statistically 

independent for k Jj aid n f m, we have 

E{W+I = EfW.j k 2_r (s,d) + 2 (s,s) E{_-j} +24n E wJ } 

+ 2Kl[E{w T} n, - a] nil 

Using (4. 1. 7a) yields 

E {WI = EW.} +.2 k[wLMS -E,{w} - _ E {WJ] 

We now have a set of deterministic first-order difference equations 

whose asymptotic value E{W S -Wo, can be found by setting E{W.}= E{W.+ 1 } 

=Wo; giving 

qnoEWLMS -0oo- 1 = K[ _ nl- a ] nlI	 (5.2.3.2)1 
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let 

where 

Remembering 

WLMSI-

that 

(+ 

w00 ac 

cn 
-

n T. n 
1 

0- 1 O 

+ d n 

=n c = o
1 

= 1, (5. 2. 3. 2) becomes 

(c +dn 1 ) = K 1 [d- a n 

(5.2,3.3) 

(5.2.3.4) 

(5.2'35) 

Multiplying by n T (1+ 0-1 - on the left, and manipulating, gives 

d = 
£1 CI+4-q~) 

1 + K l 

[WLMs + K(1 a 
-1 

n T IT + 0 -1 ) 1 

-­1 ] 

-1n 
(5.2.3.6) 

From (5.,2. 3. 5) 

Cdo--

Using (5. 

I+-

2. 3. 6), 

-n) W LMS -i 

'after 'some algebra, we get 

[a-a] f-n 1 

NC T+ T 1 -1 
S n+Knl(1+0- P) -

I+Kn 1 T (j+4-1On)-

-1 1+K 1 a 4, n I 

1 
n 

n I- K 1 0- 1 nl nIT (I+0-1On)- 1LMS 

(5.2.3.7) 
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If we let K- oowe should get the same solution as equation (4. 4. 3.9), be­

cause the penalty function is infinite unless the weight vector lies exactly 

n 1 a. o. Under these coriditions, we get'on the line W T 

l+-1n)]-LS+Ka--iKln 7C1+InlI -lin-n 
'( 'P)4 - 1-1 -1 

l n--nl IT 14) . LMS + a n1 

= ( ++VLM T 1 _ 
) 

IO) s 
n l1 1 + ( n 0 -- nI 

-n (I f I On, f 1 

WO-O ( +jYVLMS + - ' I . i 1 

(5.2.3.8) 

This is exactly the same as equation (4.3.3.9). 
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Again, because our difference equations describing the behavior of 

the weight vectors are stochastic, the above result is not sufficient to prove 

convergence of the weight vectors to ,O ,we must also show that the vari­

ance of the stocht-stic,vectors q. = W, -Ww is bounded. To do this 
-3 -3 -CO 

define q- W. - W (5.2.3.9)
-3 -00 

the algorithm, (5. 2.3. 1) may. be rewritten in the form 

q. -k 2(s. +n.) (sT +n T)+ 2KTnnj+l 

+ k[2Cs+n d +21 a 

Define 

H.-- 2(s jn.) sT +n.T)+%K' nn T (5.2,3.10) J.-- .7'J, -. 1
 

V. 2 (s- .) +, k an 1 (5.2.3.11) 

qj+l o qj kCj (5.2.3.12) 

where 

Tj-- Hj qj +h (5.2.3.13) 

and 

h.-- H. W - v. (5.2.3.14) -3 3 -0 -3 

http:5.2.3.14
http:5.2.3.13
http:5.2.3.12
http:5.2.3.11
http:5.2,3.10
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Note that E (H. I.and E (h .I are independent of j. Also H. and h. are 
.. -3' . I I - 3 . -J 

statistically independent of Hk and hk if, j 4 k because we assumed 

s.. $s n I , n are statistically indep6ndent for k, and n m. 

Again, as in the last section, it can be shown that 

E { h. } = o (5.2.3.15) 
-3r
 

Note thatESf{ H. = Z (0+ on) + Z nK n 5 t is-a symmetric posi­

tive definite matrix. 

The algi6rithm is thus 

-aj+l = qj - k O. 

where 

-Tj = Hrjqj +, hj 

and H. is a sequence of random n x n matrices; h is a sequence of random3 -3J 
n-tuple vectors; the expected values of H. and h. were shown to be independent

-J3 
of j; H. and h. are independent of H and h,.Ifor j 1;= o ; and the 

elemehts of H. and h. have finite variance, with E{H. } =L, where C is a' 

symmetric positive definite matrix. 

Under these conditions, it is shown in Appendix A of chapter four, that 

for k sufficiently small 

lim jE { q. } jj = o (5.2.3. 16) 

and 

lim sup 1 qj 1< V (k) -, (523.17) 

where the, norm of a random vector u is defined as 

1 = u E u Tu " 

http:5.2.3.15


and lir V (k) = o 
k--o (5.2.3.18) 

again that the random weight vectors converge, inEquation (5. 2. 3. 16) shows 

the mean, to W and (5. 2. 3. 17) shows that the variance of the random weight
-00 

vectors about their expected value is bounded, and the bound can be made as 

small as desired by choosing k sufficiently small as shown by (5. 2. 3. 18). 

The rate of convergence of the mean of the random weight vectors is 

shown in the proof of the above theorem to be bounded by a, where 

2 n iT) (5.2.3.19 I - k (ZO+ 2IKK 1 

Since 1 = + n + 2K )nniTpositive definite.symmetric,2) 2 is 

we have 

= maxII 1-kp 11 ,I 1kPn] (5.2.3.20 

where p 1 and p are both positive, and represent the minimum and maximum
 

eigenvalues of a respectively, as shown by Goldstein page 24.,
 

Thus o < < .
 

In looking at the two approaches we have developed for adaptively 

optimizing the MSE subject to a constraint, the approach in chapter four 

represents an entirely new approach to the problem, whereas the approach 

in this chapter is essentially one of replacing the constrained problem by 

an unconstrained problem. Since stochastic unconstrained problems have 

already been well researched, we will not run computer simulations of the 

algorithm of this chapter, but will rather concentrate our efforts on the 

new algorithm developed in chapter four. 

http:5.2.3.20
http:5.2.3.19
http:5.2.3.18


CHAPTER 6 

- Computer Simulations 

In chapter three, we found the optimum SNR that we could achieve 

subject to a constraint on the super-gain rati6 . Specifically, we showed 

a linear array of four isotropic detectors spaced d = 0. 8 X (0.4x)that for 

apart, subject to the super-gain constraint Q = 0.08 (0. 11), embedded in 

a uniform noise field, with a normalized signal impinging from broadside 

we could get at the array output was 0. 187 (0.438).(endfire), the best SNR 

In this chapter we will simulate a projected gradi&nt algorithm which 

an array of four isotropic detectors spaced d = 0,8 Xautomatically makes 

(0,4 X) apart maximize the average output SNR, subject to the constraint. 

< 0.08 (0. 11) when the signal impinges fromthat the super-gain ratio Q is 


broadside (endfire) and the noise is isotropic.
 

We will again (as in chapter three) assume that the signal and noise 

are sufficiently temporally narrowband so that the filter following each de­

tector can be implemented by only two taps (or attenuators) separated by a 

Fig. 2. 1 when using the multichannelquarter period delay as shown in 6. 


filter point of view. This corresponds to Fig. 3. 1. 2 when using the antenna
 

point of view.
 

We will formulate the problem first from the antenna 	point of view, 

terms of thei. e. we will write the SNR and super-gain ratio (Q-factor) in 


real and imaginary parts of the detector currents Ilr' Ili' I2r IZi, . ..
 

'4r' 	 I4., and second from the multichannel filter point of view, i. e. we
 

° °
 w2 , . w 7, w 8 " In agreement with thewill write the SNR in terms of w1 , 

results of chapter two, we will observe that Il -is equivalent to w, Ili is 

We will then use this equiva­equivalent to w 2 I2r is equivalent to w 3 , etc. 


lence to write the expression for the super-gain ratio in terms of w 1 , . .. , w 8 .
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Section 6. 1 Antenna Theory Approach 

When the ,signa%:is impinging from br.oad~side, the time average signal 

power coming out of the array is given by equation (2. 1. 10) 

s 1 V lV 

where V is giyen by equation (3. 1. 14) 

V1=col L[I 1 i I] 

Writingl as -col I lr -Ii' 2r+ J'12 i 13r +j1 3 i' [4r+jt4i] 

expanding and then rearranging gives 

1 0 1 0 1 0 1 0
 
0 1 0 1 0 1 0 1 

1 0 1 0 ,1 0 1 0 

S= _1T 0 1 0 1 0 1 0 1 _ (6.1.1) 
1 0 1 0 1 0 110
 

1 0 i 0 1 0 1 C
 

0 1 0 1 0 1 0 1 

where nowl col IlrIiIzr 2i £3r I3i 14r 4i] (6. 1. 2) 

the timeAssuming the nois.e field is uniform ,as in chapter three, 

average noise power coming out of the array is given by equation (2. 1. 1Z) 

N= I I A I 

where A is given by (3, 1.11). 

This expression can be manipulated into 

N= 1TE (6.1.3) 

where I is given by (6. 1. 2) and 



4o 0 2Xsn 
d si 

2Td 0 
d 

x sin 4r d 0 
c T.n d

Xsin x 
0 

o- 0 z . 2rd x.47d 2k .67d 

-­ 0 4 T-i--0 .nd si x 3Uo sin 

d kx 
osn K 2k0 

--
.2nrd 

K-
0 4 n 0 2X 2k 

-
s.n 2nd 

--­
0 
0 

d X0 
s 

4nd 
--­

-

x . 4ndU sin 
2k .
d si 

2nrd 0 
7 0 k sin 2d 0 

Ul 

0 xsin ± d 0 2k .n2nd 0 41T 0 2k s nd 
d x d 

2 k * 6rd 0 in 4d 0 zk .s2nd 0 4-r 0 
0Tk6r d -0.0­

0 2 X 6 d. s- -n- 0 -sin 41d 0 2x 21Z d sin 0 4Tr (6 1. 4 
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In terms of this eight dimensional I vector, the Q factor is given
 

by (see equation (3. 1. 13))
 

T 
I I 

(6. .)T 


If the signal impinges from endfire the only quantity that changes
 

in the above formulation is the time average signalfpower S (the noise power
 

and the Q factor are the same as for the broadside signal case). Now
 

S_ IV vv I 

where from (3. 1. 15), " 

[ d) j d e (w---) j(3,
 
V = col e e e e
 

This expression may be manipulated into 

(6. 1. 6)S - IT 

where I is given by (6. 1. 2) and: 



1 0Cos Znd sin 27d cos 41d sin 4rd cos 6,rd sin 6nd 

-sin2nd C nd -i 4d 4rd in 6nd 6nd 

2r cosd -sin 47rd 

x sin-x Cosx x 

sin 2ddCOco x 1 
' 

0 -si 2d d S2-x i 4,rd i 4nd 

Cos 
41rwd2d 

-sin c s 
2rd 

1 -siin,n 
20n 

0 
Asd 

Cxs 
7nd 
x 

4 n1T 4nd 
sinCo s-

2d d 2d 
-sn--- -sin-

2d sin2d 
Cos 

6nd 6nd cosnd .24d 0 1.n n 
in- -sS-n-- cosx 

6"nd 6Trd s4nd 
s-

44wd 
sin 

Znd 
-­i--n-1 

2nd 0 

(6. 1. 7). 
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Section 6. 2 Multichannel Filter Approach 

Let us now find the time average output signal power due to a deter­

ministic signal generated by a far field point source (see Fig. 6. 2. 1). 

At each detector, the signal is given by 

S27
-Z-r u r. j~t
 

Re e e
 

cos (wt--2--o •0.) -(6.2.1) 

The output y (t) due to the signal is 

y(t)=[ w w w w w w 7 w 8 ] cos(Wt -- -u r)_wTa
1 2 3 4 5 6 7 -ok -1 W 

2'r 

cos (t T1 u r-)- -0 -1) 

Cos (Wt - u- 0.ror ! - i Ls) 
Gas~c~ -o -2 

2)W(6.2.Cos
Cos (ct - 0.ur) 

cos (cot - r20 r-

Gas (cot - a .4 
- -o 4) 

-cos (Wt - 27 u * r - ot) 
--- o -4 
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,SI(t)+nl(t) TIME DELAY S2 (t)'+6-2(t) 

Wl Wp 

S3(t)+n 3 (t) TIME DELAY S4(t)+n4(t) 

S I T IZMl E- j -S5(t) +n 5 (t), DEL AY S6 (t)+ n 6 (t)"(---'t) 
 " " +
 

x4­

4fo 

W7 8 

Fig. 6. 2. 1 Processor Structure 
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The signal output power is S (t) = w Ta 1 a w (6.2.3) 

For the case of a boradside signal, u " o 2 =-o " 3 -- r4=o. 

Letting d = cos wt, e cos (utr6w), the 
T..

aatrix-aa is given by 

d de d2 de d2 de d 2 de 

ed e ed e ed e2 ed e2 

42 de d2 de d de de 

ed e2 ed ez ed e2 ed e2 

a a T 

d de d12 de d2 de d de 

ed e2 ed e ed e2 ed e2 

d2 de d2 de d2 de 

ed e -ed e ed e ed e2 



Sin•e f costdt= and fcos wto ccpsW­
f co (wt . )d 

2r 0 - 0 

the time average signal power output is given by T R V where the matrix 

R is 

1 1 1 1 1 1 1 
-f

I' 
Cos Wo A Cos W 4, Cos Wo A Cos Wo A 

Cos W C WCos Cos WW ) 

cos Co z os CoA W 6 2 2 cos w AoA 

1 1 1 1 1 

Wcos costa W2 4 cosco ­2cost 

1 1 1 1 1 

coso o S W cos A Co cosCoo 7 a A Acs 

Cos WA o A) Cos 6 Co W Cos Wo 6oA cs 

cos os L Co (0 L o oA Co W cst 

1 1 1 1 1 1 1 1 

1 1 21 1 1 1 o 1 o w- cos AcoscoA 2-cos 

(6. 2.4)
 



Since cos w,6 cos - o, this expression for the average signal 

power becomes identical to equation (6. 1. 1) with the vector W replacing 

the-vector I of equation (6, 1. 2). Sinfilarly we can show that the eOkpressions 

representing the time average noise power in ternis of I and W are identical
 

if we replace I by W, i.e.
 

N=W- EW (6.2.5) 

where E is given by (6. 1. 4) 

T 
W W 

0 (6. 2.6) 

W TEW 

and, if the signal impinges from endfire 

s w Fw (6.2.7) 

where F is given by (6. 1. 7) 
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Section 6.3 Maximization of SNR Subject to Q5 q 

The reason we went through two separate formulations of the same 

physical problem in sections 6. 1 and 6.2 is as follows: In the W formulation 

the numerator matrix in the expression for the SNR is of rank two, and this 

makes it impossible for us to conciude from thi's formulation that the S-NR 

is a concave function of the WI s, and hence possesses a unique maximum. 

However by using the complex I formulation, we will be able to show that 

there exists one unique value of I (and hence by our analogy, one unique 

value of W) which maximizes the SNR. The proof is as follows: 

By equation (2..1. 1'3) 

I V V II
 
SNR - (6.3.1) 

I ALI 

Let us take the fir.§t variation of the SNR with respect to the complex 

vector I and set it equal to zero to find the possible extreme points. 

= 
Q(AI)[ V VV (6&1) + (6I YY"I]_J
 

6 (SNR) 

(I*A I )
 

(.I*VYV 1 *f4IA(6I) + (6I*A] = 632 

- (6.3.2) 

(I A I)
 

Letting y - *(ITA I) I V V I)_IA (6.3.3) 

equation (6. -3. 2) becomes after rearranging 

y 61 + 61 = o (6.3.4) 
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Since this equation must hold for arbitrary 6 I where I is complex, 

(6.3.4) implies that y = o, which implies 

(ICA I) V 1 (V 'I) = (I> V -I) A I 

(VA ) V ( Iy)A 1 (6.3.5) 

This equation is satisfied if (IV 1 ) = o, which would mean that equation 

(6.3. 1) was zero, obviously a minimum value, or if 

(frA ) -
-- A 1VI (6,3.6) 

(I*V 

This value of I gives the unique maximum of the SNR. 

There is also only one unique minimum. Corresponding to these 

two values of I, there is a unique value of W which maximizes the SNR, 

and one unique value which minimizes the SNR.. 

It is easy to prove that the set of points W-wyhich satisfy Q (W)<_ q 

is star connected about Wo = o, by observing that if Q (W) < q, then 

Q (x) where x (l-X)Wo, <X =X= X W+ o <l- W also s tisfies 

Q (x) < q. This star connectedness is a consequence of the fact that the 

Q factor is independent of the magnitude of W. 

Because the region Q (W) < q is connected and the objective 

function SNR (W) is concave, our projection algorithm will converge 

to the constra.ined maximum, which occurs at the unconstrained maximur 

of the SNR, or on the boundary of the feasible region ( in the broadside and 

endfire cases under study, we know that the unconstrained maximum of the 

SNR lies outside the feasible region by the graphs in chapter three ). 

Since the solution to the problem of maximizing the SNR subject to the con­

straint Q < q, lies on the boundry (i. e. Q = q), the Lagrangie solution we 

found in chapter three is also the solution we should wind up with in this 

chapter. 
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S'ection 6. 4 ' The Gradient Projection Algorithm 

SW	 T FW 
The function to be maximized is SNR =-,-T- subject tdthe con 

WTEW 

<qo" Note that since the signal direction isconstraint Q - as­
0WTAW 


sumed known to us (i. e. F is known), we never need to know the signal it­

self (as opposed to needing d. when we used a MSE criterion in chapter four). 

We-will investigate three cases: 

'. known a e. 	 the elementsThe spatial distribution of the noise is priori (i. 

of the matrix -E are known) and there'is no additive self -noise associated with 

each detector. 

2. 	 The spatial distribution of the noise is unknown (i.e. E must be esti­

no signal pre­mated from observations of the detector outputs when there is 

sent) and there is no additive self-noise associated with each detector. 

unknown and there is additive3. The spatial distribution of the noise is 

self-noise associated'with each detector. 

* - •-Before we. describe the algorithm, note that the gradient of the SNR 

is giveh"by 

M Ew (w TEw) 26F4W-(wT FW) ­

_ T EW)Z
 

Also note that the normal to the hyperplane tangent to the surface 
wTw
 

WTW 
-. qo-qis given by

WA 

(WTw)AW - (WT AW) 2W 
(6.4.2
n = (

(WTwAW)2 



Our algorithm works as follows: We start at any arbitrary value 

wo (Wo = col [ 11111111]. We check to see if HW satisfies the constraint 

(if it does not, we keep moving in the direction -n, i.e. Wi+ 1 = Wi - kn, 

value of wwhich does satisfy the constraint). In caseuntil we arrive at a 

in the direction given by the *radient, i.e.1, we try to move 

(6.4.3)W. W- + k VW(SNR) 

where Vw (SNR) is given by (6. 4. 1). We next check WJ+1 to malce sure 

givenit satisfies the constraint. If it does, we continue our iterations as 

by equation (6.4.3) indefinitely. If, on the othSr hand does not satisfy 

the constraint, we form a different Wj+ 1 given by 

W.+ 1 = W. + k PVw(SNR) (6.4.4) 

T
where P, the projection matrix, is given by I - n n and n is given by 

(6.4. 2). Provided k is "small enough, " this VAlue of Wh+l will always 

satisfy the constraint and give a higher value of SNR than W., because we 

are projecting the gradient int6 the hyperplane tangent to the constraint as 

shown in Fig. 6.4. 1. 

FORBIDDEN 
REGION 

Fig. 6.4. 1 Gradient Projection Operation 
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The reason k must be "small enough" is intuitively clear from the 

same figure. If we move too far along the hyperplane tangent to the con­

straint at Wi, we may not satisfy the constraint at wj+I In order to re­

solve this problem in'our simulations, we chose k so as to make the square 

of the norm of k VW (SNR) equal to 0. 001 times the square of the norm of 

W i.e. 

-m 11w. II 
k = 4 0.001 - (6.4. 5)

Ivw(SNR lI 

In case 2 where the noise correlation matrix E is unknown, for 

each element E.. = E { n (t)n.(t) } of the matrix E we substituted the 

- instantaneous value of the correlation, I. e. E - E where E.. at iteration 

k is given by (t) n. (tk)(see Fig. 6. 2. 1). In chapter four we proved thatn i 


we would get convergence by using this substitutuon if our criterion was
 

to minimize the MSE subject to a linear constraint.
 

In case 3 we substituted the matrix E for the matrix E in (6.4. 1)
 

where E ij at iteration k is given by E. = [ni (tk) + i (tk)
 

n. (tk) + g. (tk) ] where (t,) is white gaussian noise of variance 0. 1. 

To generate the vector random variables nk such that E{nknkT} 

a positive definite matrix so that it possesses-E, we did the following: E is 1 1 1
 

a sqdare root, call the square root matrix E , where EfE2 = E. We
 

a vector random variable V, all of whose components were zero
generated 

one. Then
mean independent gaussian random variables with variance 

1 
(6.4.6)Nk = E 2 V 

n Ez B2 }
and nk satisfies E in kn 

1I T 
T 

E 
E E{V } ?- E 2 - E as required. 



We simulated the aforementioned three cases "or a signal imping­

ing from both broadbide and endfire and obtained the, results shown in 

case 1 where- the E matrix,-- andFigures 6.4. 2 - 6.4. 7. Note that in 

hence the gradient, was known we used k = 0., and we did not normalize 

k by equation (6.4. 5). 

6.4.7, it can be
By comparing Figs. 6.4.3 to 6.4.4 and 6.4.6 to 

the algorithm converges to the constrained optimal
seen that, as expected, 


Value faster, and there is less variance about the optimal value, when
 

there is no additive detector noise present.
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Section 6. 5 Conclusions 

We have presented and analyzed two stochastic gradient algorithms, 

which can be used to find a constrained optimum point for a concave or 

convex objective function subject to constraints which form a connedted 

region, even when we do not have the objective function available, but 

only have a noisy estimate of the objective function. When the constraints 

consisted of only one linear constraint, we proved convergence to the 

constrained optimum value and bounded the rate of convergence of the 

algorithms to the constrained optimum value. 
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