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" ABSTRACT

This investigation is concerned with adtomaticelly making an array
of detectors form a beam in a desired direction in space when unknown in-
terfering noise is present so as to maximize the output signal-to-noise ratio
(SNR) subject to a constraint on the super-gain ratio {Q-factor). Tapped
delay line structures combined with iterative gradient techniques to adjust

the tap weights are used to do this, k ‘

First, we investigate the relationship between viewing the detectors

as a "detector array" and viewing the detectors as a "multichannel filter, "

Next, starting from the multichannel filter point of view we investi-
gate the sensitivity of the SNR to random errors in the tap weight seftings
and random errors in our knowledge of the detector locations. Because this
calculation is exceedingly difficult from the multichanned filter a.pproach we
will use the previously derived relationship to show that this sensltwﬂ:y is
essentially given by the super-gain ratio, We show that when we use linear
arrays of detectors separated byone-half wavelength or less, this sensitivity
factor may become very large when we use those currents and phases (or
tap weights) which maximize the SNR, thus indicating that we should not try
to design our detector pattern or multichannel filter coefficients on the basis
of maximizing the SNR alone, but rather on the basis of maximizing the SNR

subject to a constraint on the super-gain ratio.’

We then develop a computationally fast numerical method of finding
the optimum excitations which maximize the SNR subject to a super-gain

ratio constraint when the interfering noise is known.

Next, we try to analytically consider adaptive algorithms which maz-
imize the SNR subject to a constraint on the super-gain ratio when unknown
interfering noise is present, but because the SNR and super-gain ratio are
nonlinear quantities, it turns out to be exceedingly difficult to prove conver-
gence of the algorithms to the optimal solution, or to find the algorithms’
rates of convergence, Thus, solely for the purpose of mathematical tract-
ability, we consider adaptive algorithms which minimize the mean square

error {MSE) subject to a linear constraint,

ii



Finally we present the results of computer simulations of algorithms
which maximize the SNR subject to a constraint on the super -gain ratio when

unknown interfering noise is present,
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CHAPTER 1’

.

INTRODUCTION

Thls 1nvest1gat10n is concerned with the optimal des1.gn of a detector
array and 51gnal processor to maxunlze the output mgnal to-noise ratio
(SNR) subject to a constramt on the super ga.m ratlo (Q factor) We w111
present and analyze an iterative gradlent prOJectlon techm.que to achieve
this optimal demgn even when the noise statistics are unknown to the de-

signer a pr1or1. o ' . -

Some of the motwatlons for undertalung our study at the’ present

time are

- 1. The recent ability to approximate the sophisticated process-

ing required through the use of fast,. special-purpose digital computers,

2. The recent use of channels, such as are present in space-
craft and underwater communications, where the additive noise from spa-
tially distributed noise sources predominates over the additive receiver

noise.. L e -

3. The recent use of acoustic and seismic channels where the
low signal frequencies used result in long signal and noise wavelengths
(relative to array size), 'thus to high correlations between the noise .at the
array elements, which in turn implies that we might achieve improved

performance through the use of array processing techniques.

4. The limited ability of design procedures based upon the class-
ical concept of an antenna pattern to adequately satisfy the criteria of min-
imum probability of error or minimum mean squared error or maximum

SNR, . .

u -, e B

The first three factors are self-explanatory. The last one deserves
some comment., Some of the advantages (and 11m1ta.t10ns) of 'the classical

antenna pattern approach to the design of array processors are:

LR

1. _,'I_'he'a.:pproé.ch subdivides the system design problem into two
separate pieces., " An antenna engineer designs the array (spatial processor)
and independently,, a communications engineer takes the single channel antenna
output and designs the temporal processor to'give, for example, the best, in

some sense, estimate of the transmitted signal.-



This would seem to be an advantage, however, Gaarder '~ Flhhag

shown that this factoring of the optimum processor into spatial and temporal
processors is, in general, impossible, and consequently, processors de-

signed on this principle are suboptimum.

2. The concept of an antenna pattern assumes that we are deal-
ing with monochromatic or guasi-monochromatic fields, For the wideband
signals coming into use, there is no easy way of combining the various fre-

quency compo nents tOgether

Previous researchers (1)~ (ll)have considered the design of -detector
arrays to maximize some criterion without constraints, both from’the ''de~
tector pattern” point of view and from the "multichannel filter" point of
view. More recently (12)-Q1 )1nvest1gators have devised adaptive algorithms
to enable processing structure composed of tapped delay lines {such as that
shown in Fig, 6. 2.1) to converge to an optimal structure even when the noise
statistics are unknown to the designer a priori, These algorithms are sim-
ilar to those used to adaptivity equalize telephone and other dispersive com-

munication channels,

These previous authors have designed adaptive algorithms which
minimized the MSE, or maximized the SNR, by using iterative gradient
techniques to make the tap weights converge to values which optimize-the
MSE or SNR in the steady state, Any individual tap weight usually con- -
verges to its.steady-state value in a manner similar to that shown in Fig.

1. 1 below,

STEADY~
STATE
VALUE
> [TERATION
NUMBER

Fig. 1.1 Convergence of an arbitrary tap weight to
its steady-state value



In-the steady state, each tap weight can be viewed as having a nominal
value plus a random variation about this.nominal value. If we use the un-
biased algorithms of Widrow, (12, 13)Griffiths (15) (14)

value is the same as the optimal value of the tap weight. However a question

and Somin the nominal
that immediately arises is the.following: How sensitive is the SNR tothe small

random variations in.the.tap-weights about their nominal values?

In chapter three we will show that, depending upon the geometry of
the detector array, the SNR ¢an by very sensitive to these small random

variations, and we will derive an expression for this sensitivity,

In order to derive the express;ion for the sensitivity, some reformula-
tion of Wﬁat piev{ous iﬂvest{gatbrs have doné, both from the ''detector pattern'
point of view and from the 'multichanned filter" point of view, will be nec-
essary. This Will be 'c:ove:;ea in chapter two where we will also-demonstrate
that both approa.ches lead to the same results under a monochromatic assump-
tion, whith is to be expected since there is only one physical problem, The

reason for our reformulatmn is as, follows: We will be able to express the
Z¥PZ : I Gl )

SNR in the form ——— or ————— where the vector Z represents
zFQz 1%A1 ) -

the complex gains (or tap weights) in the multichannel filter approach and the

vector I represents the excitation currents in the detector pattern, By the
sensitivity of the SNR to random errors in the tap weights we mean that if we

repla.ce Zbyr Z + Z_, where N denotes the nominal value and R denoteg the

1 —R : ZPz
random fluctuations about this nominal value, the expected value of =
y ” Z°QZ
Z P Z ZN P ZN - -
ma.y tfurn out to be of the form E;-———-——t = ——————— + an additional
Z°Q Z z"‘ QZ

<

term, a.nd we then deflne the ratio of the a.dd1t10na1 term to the nominal term

.as our sensitivity factor However, uszng this approach the calculatlon of
ZFpP 7, - ot

E;—-_—% is exceedingly complexo Instead, because we showed in chapter
2. QZ

two that the detector pattern and- multichannel fllter approa.ches were inter-

changeable, we will use the detector pattern approach and rewrite the SNR
expression a.bove in termé of-the pgx‘ver. pattern, which in turn depends upon
the excitation currents, and thenby examining a picture of a typical power
pattern, we will be lead by physical-reasoning to approximate the sensitivity

of the SNR to random variations in the tap weights, by the super-gain ratio,



which is -a measure o:é the sensitivity of the power at the peak of the beam

to random errors in the detector excitations. In other words, instead of

saying that changes in the tap weights cause changes in the SNR, we are

now saying that changes in the tap weights cause changes in the peak of

the power pattern which in turn is the main reason the SNR changes. Thus

if we constrain changes in the peak of the power pattern we will also auto-

matically constrain changes in the SNR. The advantage is that we can easily

derive an expression for changes in the pea.k of the power pattern due to
changes in the tap weights (or detector currents), whereas we cannot easily

derive an expressmn for changes in the SNR due to changes in the tap weights,

.As mentioned before, we will show in chapter three that although, for

a particular array geometry (specrflcally a linear array of detectors sepa-
rated by half a wavelength, where the signal is impinging from endfire), we
might initially be lead to believe that we can achieve very good performance
by setting (usually by means of an adaptive algorithm) the tap weights equal
o0 those values which maximize the SNR, if we also look at the super-gain
ratio, we will see that in practice we will not get this good performance be-
cause of the extreme sensitivity of the SNR to the small deviations in the

tap weights from their optimal values.

After demonstrating this, section 3.2 goes on to answer the question
of how high a SNR can we get if we constrain the super-gain ratio to equal
some reasonable value. In order to do this we will extend the work of Lo, Lee
and Lee, (lg)who recently developed anumerical method of solving this d‘i){roblem,
Our contribution makes use of a state variable technique which enables us to
reduce the numerical problem from one of finding the complex roots of a
high order lz;olynomial with complex coefficients {in 2ll the specific numerical
cases treated in the paper by Lo, Lee and Lee the coeificients of the poly-
nomials were real, but this is not necessarily true in general) to one of find-

ing eigenvalues of a real matiix which is considerably faster and easier to do,

Next, we tried to analytically consider adaptive algorithms which
would maximize the SNR subject to a constraint on the super-gain ratio when
unknown interfering noise is present; Because the SNR and super-gain ratio
are nonlinear quantities, it turned out to be exceedingly difficult to prove con-
vergence of the algorithms to the optimum solution, or to find the algorithms'
rates of convergence. Thus, solely for the purpose of mathematical tracta-

bility (the actual nonlinear problem will be simulated on a computer in



chapter six to-obtain some numerical indication of convergence and conver-
gence rates), chapter four analyzes an adaptive projection algorithm which
minimizes the mean square error (MSE) subject to 2 linear constraint. We

prove that an algorithm of the form
Y_v*..+ 1= grj -k PVW_ {(MSE)

: —J
converges to the Lagrange solution in real-time, with an easily expressible
bound on the convergence rate, Here k is the step size, P is a matrix pro-
jection operator (20)-(21) .14 VW is the gradient of the MSE with respect

—J

to W.. We also proved convergence and found bounds on the rate of conver-

gence when VW (MSE) was (1) known exactly (2) estimated, and (3) estimated

by 2 noisy estimate. Physicallythese cases correspond to {1)knowing the in-
terfering noise field exactly (2) using the instantaneous values of the noise
that are present at the outputs of the detectors (or at the outputs of each of
the delay elements comprising our tapped delay lines) as estimates of the
noise correlation matrix, e.g. replacing E {ni(t)nj (t)} by ni(tk)nj(tk) at
iteration k, and (3) accounting for self-noise in the detectors and tapped
delay lines by replacing E {ni_(t)nj (t)} by ni(tk)nj (tk) + E%k at iteration k where

gk is additive white gaussian noise.

Chapter five is an investigation of an adaptive penalty algorithm
to minimize the MSE subject to a linear constraint, Specifically we prove

that algorithn_ls of the form

. - T 2
Ei"l'l—‘ﬁ-rj”kv?_fj MSE+K1 Ejill_a .
where ET'E:L — a 1is the equation defining the linear constraint, coverge to
the Lagrange solution of chapter four if K, is infinite. For K, finite, a bias

1 1
is found to exist, and is investigated, along with bounds on the rates of con-

vergence of these algorithms to their steady-state values, Again we consid-
ered the same three ways of evaluating VW (MSE).
~]
In chapter six, we set up and present the results of a computer sim-
ulation of the gradient projection algorithm which adaptively maximizes the
SNR subject to a constraint on the super-gain ratio. We then conclude that

when designing adaptive array processors one should either

1. Calculate the super-gain ratio for the geometry under consid-

eration for all possible incident signal directions and if we are sure that the



super-gain ratio can never become intolerably high feel free to use the

adaptive gradient algorithms proposed by previous authors, or

2, Use the constrained adaptive algorithms developed in this
investigation, which will assure us that we get the highest SNR possible
subject to a constraint on the super-gain ratio should the value of the super-

gain ratio exceed some preset value we have chosen,



CHAPTER 2
Equivalence Between "Detector Pattern! and "Multichannel Filter!

Viewpoints in Designing Optimum Arrays

In this chapter, we will consider the following problem: Given an
array of point detectors at known locations in space, how should we ''design'
the array so as to maximize the output SNR ? This problem has been solved
before-as a matter of fact, it has been solved twice before, once by antenna
engineers, who solved for those detector current excitations which maximiz-
ed the SNR through the use of the "detector pattern' concept, and again by
communication engineers who viewed the array as a multichannel filter and
solved for those filter coefficients which maximized the SNR, through the use

of statistical quantities such as the covariances of the signal and noise fields.

As explained in more detail in the first chapter, we will reformulate
what these previous investigations have done, and show that the two approaches
are equivalent (i.e,lead to the same optimum value of the SNR under a mono-
chromatic noise assumption) in order that we may, in chapter three, easily
switch from the multichannel filter point of view to the detector patiern view-
point when evaluating the sensitivity of the SNR to small random variations

in the tap weighs.,

In section 2. 1 we derive the optimum currents and the resulting
value of the SNR when these currents are used to excite the detector array,
All our results will be a function of the assumed incident noise power. In
section 2, 2 we derive the optimum filter coefficients and the resulting
value of the SNR when these filter coefficients are used in the multichannel
filter., These results will be a function of the assumed noise space-time
correlation function. In section 2.3 we will express the space-time correla-
tion function used in section 2, 2 as a direct function of the incident noise
power used in section 2.1 and then show that under the monochromatic noise as-
sumption, the detector patternapproachandthe multichannelfilter approach,
yield exactly the same value of the SNR, and moreover, we will be able to
see that the currents of section 2.1 correspond to the filter coefficients of
section 2, 2. This analogy will be used in the following chapter to construct
a quantity which is defined in terms of communication theory qué.ntities (e.g.

convariance), and corresponds fo the super~gain ratio of antenna theory.
1



Section 2.1 ""Detector Pattern' Approach

The material in this section follows the approach of Lo, Lee and Lee.(lg)
" Assume we have N isotropic detectors located at arbitrary positions
in space, specified by Cartesian coordinates = (xn, Y, zn) as shown in
Fig.2.1.1,

1.
1

4
° ° o 'y
@ .
/. L% nth DETECTOR
.. e

Fig,2.1,1 Detector Array

‘ ~The current in the n P—}}- detector will be denoted by In*' Let us
define

L
I-=(;, 1, ..."1
— ‘(1’ 2, ] N)

(2.1.1)
whezre the asterisk deno.tes'a_.djoint. The detector pattern is given by-'
. . .
. jkr - r
p(6,0)="), Ie ° ~n ) (2.1.2)
’ ' "n=1 ;

where the r ¥s are given By

Eo = 5in O cos qb:;:o + sin B8 Sm.‘PXo"' cos:ef_

) + P th
n¥o + 5 2,07 the position of the n— element

Since k = 2—?;“'— we hawve

kKt o r =
2o Zn

)
2
r—
™

¥ . .
——}\E -%in B cos ¢ 4 _Kr.l... sin @ sin ¢4 h—n ‘cos 6



We will define

x v 2 <}
. n N n N . i3
lpna kio cr_=2m l-—-—}\ gin 6 cos c,b-}-——--)\ sin @ sing+—y— cos 0| (2.1.3)

- Equation (2. 1. 2) becomes

v %
p(0, ¢} = I e B=1 v
L. =1 © - -

(2.1.4)
where V is given by ]
- # Y9
e
ve |
s (2. 1. 5)
n -
e+
b= - . -
If we assume the normalized signal is incident from direction_(eo, (j())),
then the received signal power is given by .
‘ 2
5 = J% fpte, )1 %18 (0 -0, ¢~ ¢) d@
(v s v, v (2.1.6)
~ —1 = =1 -1 =
where i 0 )
v, = [e ! e 7'n ] (2.1.7)
t4
and U %= 20 |2 sin 6 u::osqb-l*yn in 8 sin @ +——Z’n 9 ’ (2. 1. 8)
N ey A b v sin 6 )+ —— cos 9, « Lo
Define the matrix C by
“bl ., O ., © .
i -1y Sy : '
_-V_-]_ lrl = :jwo € so00 € = C (201.9)
n
e
L -

Note that G is a Hermitian positive definite matrix {dyadic)

alha

ale
B -
Proof: x-Cx= x V

% % 12 : '
. 1 ¥V, 2= ]flﬁ_i >°ﬂ§%°
Thus

' S=1CI (2. 1.10)
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Let us assume that the spatial distribution of the noise power is given by

T (8, ¢). Then the noise power, received is:

- N

f{)lp(e,mz T(8,¢) 4 @ (2.1.11)
) |

= ff IVYL T(0. ) d &
R
Since the currents In are.not functions of 8 or ¢

N=1" ffglr*T(e,@dn I
8¢,

Define the matrix A by
N=T1AI ' (2. 1, 12)

~ where the elements of the matrix A are given by aij

i, U
P ffe l\e iT(e,qb)dS'Z
O¢

The matrix A is positive definite

Proof: x Ax-=x ) [VV T(6,¢) dex

O¢
- efd)f[g“\_r] [g"‘;}_]. T (6, p)d Q

Because T (6, ¢} is always positive, we may write it as |

T(B,0) = g{6,¢) g:" (8, &) where g and g are scalars

Thus

o,
()

saxt s [f[exv] [ ] as
0
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ff1 E_ﬂ
8¢

Since the integrand is positive
sk
XA x >0ifx §o0

QED

The signal-to-noise ratio (SNR) is then

*
1CI

SNR = = (2.1.13)
. e
rat

We may use the calculus of variations to find the value of I which maximizes

the SNR, From Appendix A

_ a1
L optimam =& Y1 (2.1.14)

The value of the SNR when £= _I_ o is

&
L opt C £op‘tz * -1
SNR = = Vl AV
% - -
1 opt A —I—opt

The best SNR that we can achieve by using the '"detector pattern'
. approach to the problem of optimizing the SNR is thus

SNR = V, ATV, (2,1,15)
We will now find an expression for the best SNR we can achieve

by using the multichannel filter approach to the problem of optimizing

the SNR and then show under what conditions the two approaches yield

the same value for the best SNR,
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Section 2, 2 Multichannel Filter Approach

Assuming that we know the noise space-time corelation function,
let us now find the optlmum multichannel f111:e1', optimum in the sense that
we will £ind the z. s (see Fig. 2.2, 1) which max1m1ze the SNR., Once the
coeff1c1ents of the OPtn'num filter have been found we will be able to write
an expression for the best SNR we can achieve through the use of the multi-
channel filter approach, ‘ ’

The material in,this sectmn follows the approach of Edelblute, Fisk

(8}

and Kinnison' "/,

2,(1) X Zy
. | ~ OUTPUT
]

Lpyt) X— ZN

Fig, 2. 2. 1 Multichannel filter structure

The SNR at the multichannel filter output when { i(t) = _si(t) + ni(t)
is received is given (under the assumption that the signal and noise are

complex uncorrela.ted random Waveforms) by

N N
i*ZIl 'Z:l Zi* Z.P. é Pz - (2.2.1)
SNR = “m—%° UL = —
_ 26 2
iz=lj=1 "%
where E { si*{t) nj(t)} = E {n t)s (t) } = ° Vij {2, 2. 2)
P;; = E{s s (t)} (2.2.3)
q.. = E{n (t) (’C)} (2.2, 4)

i]
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(2. 2, 5)

1N
il
N v

N

Note;that P and Q are correlation matrices and thus are Hermitian
p051t1ve sem1def1mte (we will assume that Q is pos1t1ve definite, which is
‘generally true in practice -. the O matrlx is usually of the form Q= al+Q "

"where the al term is due to additive self-noise at each detector, thus

guaranteemg the existence of Q 1)

Note the similarity between equa.tmn (2.2,1) and equation (2. 1. 13)
Also note that the SNR is independent of the magnitude of Z. Let us now

find the value of Z that maximizes the SNR by using the calculus of varia-

tions, i, e.

Z'PZ
maximize L = = (2. 2, 6)
Y
This equation is of the same form as equation {Al) of Appendix A,
By the same reasoning as in section 2,1 (see equation 2,1.15) we have
pz {z a0z )\ - Qz [z Pz \=o (2.2.7)
~o| ~0 T =o —o{—o0 ~ —o
where Z = optimum Z
z, Pz,
Pz, = [ =%—| ez,
(Z. QZ
—o “=o
scalar
(Z, PZ,) ‘
Let G = 7 (2. 2,8)
(2, 22%,)

Thus
on = GOQZO (2.2, 9)
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FEquation (2. 2.9) is an equation which Eo must satisfy, it is notbhowever,
an explicit expression for Z,- Motivated by this need, and seeing from
section 2, 1 that one way to fmd such an exp11c1t expression for Z is by
letting the P mat#ix be written as P = U1 Ul (i.e. let P be of ra.nk 1) let
us do the following: '
Assume the signal field is produced by a sih;gle source-located at

(6,2 ¢,) in the far field, which is generating a statistically known random

output, o
r4
INCIDENT
Yo SIGNAL
8o
y

e ™ HYDROPHONE

Fig. 2. 2.2 Incident Signal Field

The signal may be represented in the form {where we have suppressed

the 679 © % time dependence)

Jeoox

- -j— = oy @ 2
s{x,t) = s {t) e WhereE-Eo el

At the various hydrophone locations, the received signalis

. W
iz, LI
c— -1

s@i t) s (t) e

fl
)
o
ot
[¢:]
o)

let TS T (2. 2. 10



-1

5_

Thus .
=) w 1'i

S(ii t) = r§(1:)e

The average signal power present in any hydrophone due to this

-jw T,
s (t} e *

signal is
S = E] s (‘_z_'_i,t) .s (f_i_,t)
= K 5 {t) e
S DR
= E{s (t)s{)] =R_lo)
The

T B

Pij T BTOT >l

4

jw

. 1 jw (Ti —.'rj)
RS(O)
"Define
+jw Tl
e .
g1 : 5
+jw Ty
e
- -
Thus
P04

T

1

normalized signal correlation matrix elements are

i,t) s {z. thY"

Js

-jw T,
s(t) e J

1

E 35;*(1:) s (t)f

(2.2.11)

(2.2.13)

(2.2,14)
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We can repeat the steps leading to equation (A 3) of Appendix A,

to get
z *0z
z ﬂ(—l%——-ﬂl Q"lUl (2.2, 15)
—o. -1 .

Since the SNR is independent of the magnitude of -—2‘:0’ we see that

. = oL
Z Q U, (2.2.16)
is the solution for the optimum Z.
Using this value of Z, the optimum value of the SNR is
® -1
SNR =U," QU {2.2.17)

This expression represents the best SNR that we can achieve by
using the multichannel filter approach to the problem of optimizing the
SNR.

‘In the next section we will investigate under what conditions this
expression and the expression derived in section 2.1 for the best SNR we
can achieve by using the detector pattern approach yield the same values

for the optimum SNR.
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Section 2,3 Relationships between the ""detector pattern" and multichannel

filter approaches

In section 2, 1 we found an expression for the best SNR we can achieve
by using the '"detector pattern' approach, In section 2,2 we found an express-
ion for the best SNR we can achieve by.using the multichannel filter approach,

We will now show that these two expressions for the optimum SNR are
equivalent if the noise is monochromatic., The monochromatic assumption
must be added to the multichannel filter approach because it is already inher—
ently contained in the detector pattern approach, i.e. in deriving equation
(2. 1. 2) the detector excitations were assumed to be monoéhromatic.

Showing that the two SNR expressions are equivalent entails express-

ing the space-time correlation functions cbn(T’}—Ek,z{- F ) used in section 2, 2 (1'.., o

used in the sense that Uy g = E§ nk*(t) nl(t) i = ¢n(0, X - %, )) as direct
functions of the incident noise power T (6, ¢} used in section 2.1 In order to
do this we will first find the spa‘ce'—time correlation functions between the
point detectors in the array as functions of the incident noise field. Next we
will find the incident ndise power as a function of the incident rioise field.
Finally we will be able to express the space-time correlation functions as
direct functions of the incident noise power,

We will then apply the gen-eral theory to certain special noise pow:er
distributions and a particular array configuration. We will show, that under
a monochromatic noise assumption, for these noise power distributions and
this array configuration, the detector pattern approach and the multichannel
filter approach yield exactly the same SNR results. Althoilgh we have used
particular noise power distributions and a particular array configuration,
this was only done to simplify the evaluation of certain integrals, and the
equivalence does not depend upon the incident noise field, or the array
geometry,

(2)-(3)

Some of the material in this section makes use of the work of Gaarder.
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~1POINT SOURCE OF
)\/ tNOISE LOCATED
_ 1IN THE FAR FIELD

ARRAY 2L

-5-
/
. /
/
/
/
/
A FC

/

Fig. 2.3.1 Incident Noise Field

For simplicity, let us initially assume thait the total incident noise
field consists of one plane wave emanating from one source located on the
surface of a sphere of infinite radius as shown in Fig 2.3.1, We will de-
note this plan'e wave.by P (80, d)o, x, t) where 90 and ¢O- .are‘-spherical coox -
dinates specifying the direction of propagation, which is also denoted by u o°

In complex notation
RO b x, f) mpeIETE HIUE (2.3.1)

where P = P (60, cbo).is a complex scalar random variable {for electromagnetic
fields P would have to be a complex vector random variable, but we are con-
sidering acoustic fields) and
= £ .
k = wavenumber = -— u (60, 4)0)

X=X X ; z
= - Eo+¥ ¥+ 25,

ie .

= — sin 9 cos X — s8in 6 sin — coS 6 z
o d)o =0 o ¢'o -Yo

0 o —0
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5y e

An alternate way of writing p (.9'0‘,‘ c})?o, X t) .. is
Kl

At 3

s S ".djt.;'k,'"xi‘
(0,8, 1.7 petd BTz

zPer(’c-E'.-zi) T T ©2.3.2)

wOLE ) SRR
—_—— .= —— u ; (0:,¢ ) is independent.of frequency. .
o - .. e =0 Vot To! ) mpPEREE AR s, 3

it

where K

I

. -

-

Since the actual noise sources we wish to investigate do not emit monochro-

» ' + . - J
matic waveforms but rather superpositions of monochromatic wavelorms,
let us change the assumption of one plane wave emanating from one source

to an arbitrary superposition of plane waves emanating from one source.

L] T " *

In this case

k=k (0 ,¢,0) = = u (8,¢)

1
=—u
C_—-

=

,(8,:¢_) is still independent of frequency o

:I.? (eo’cpo’ X t) = f E) (eo’d)o’ w } ejw (¢ —.I_§° E) ;im (2.3.4)

€

Noting that t - § > X ) is inciependent of fréq{uehcy, ‘we may define

PO b s tr= g (0,0, t-K.X) - -~ . (235

where 4 (90, b t-K-X ) for fixed 6 and ¢ is a sample function of
a stationary, zero-mean random process, with space-time covariance

function

Cap : . 5 =" * 4., = - t, - K
Gy lBgs bgr tyotys X=X )& E i g (0 &g By K X1) 9 (85,8058, KF 55)
' 7 (2.3.6)
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Let us now drop the assumption of there being only one source lo-
cated at coordinates (90, q;o) and instead assume that the noise field is

generated by one point source on the infinite sphere corresponding to every

different value of (8, ). Thus the total noise field is given by

n (xt) = [[a (6,6tK:x)da (2.3.7)
-)A '. e ¢
We will assume that the sources are s;catistically independent of
one anotHer, implyihg that q (ela‘q’is t-K(0,:9,) -x) is independent of
2(92,¢2,t -K(0,:9,) 0 x) if (0,5 4,) # (6,: 9,), i.e.
Efg (0., € K- x ) q (8¢, t; - K- xgl(=o
. .o {2.3.8)

‘ for (0,,%,) # (85, 9,)

We may combine “equat{ons‘ (2.3.6) and (2.3.8) to give

= Gy (0ys0, by —ty =y - x,)16(8,-0,5 ¢, -¢))

Cq(el,¢ll 62’ 4)2’ tl _t21 El '—52)
(2.3.9)
where ’
™ 27 . o . v

I J §(0,-6,, ¢,-9,)sin0,d 0, d ¢, = 1 (2.3, 10)

o o “. ' .
Thus, the total noise field is stationary, with zero mean and space-time
covariance ‘ o ' a ‘ )

Colty - tpa %y -x,) & Ejnfx,ot)nlxy, H)

T (2.3.11)

= g [b'cq (0:8.8) - t0 xy - 2008

Note that,if the number of statistically independent noise sources is large,

the resulting total noise field is gaussian, and the mean and covariance Cn

completely describe the noise field.
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Two ’signple special cases of the.above. general noise field (evalaated

for the special case x — we will later show that this.is the only cdse

= X
-1 =2
we must consider explicitly, all other cases follow from this one by equation

2.3. 16) are:

-Monochromatic Noise

) ) ' : +j 2.1'rf0'r ST

Cyl® 4y my-x,7=0) = C (8 ¢, 0) e ' (2.3, 12a)
White Noise

Cy (807, x) -3, =0) =_f3q{9,4§,0) s(t) . (2. 3. 12b)

Let us now find the correlation between any two detector locations x 1 and
X, in the x - y plane, _
The noise incident upon a receiver located at X, 18

n(x
=

=00 = [ [a@et-K- x40 2.3.13)

9 ¢

We will now let x , be the origin.of our coordinate system, since
only the magnitude and direction of the difference XomX, is of imporiance

(this is because the noise sources are in the far field).

PLANE WAVE
bo X" INCIDENT

- FROM (8, )

Fig. 2.3.2 Correlation between two defectors


http:origin.of

- 2:2_

We agsume therg is no. attenuation as each plane wave comprising
the noise field travels between.the detectors at positions ) and X e All
plane waves, no matter what their frequency, move at the same velocity

hecause the medium is assumed to be homogeneous and isotropic.

Let o be the angle between (6, ¢} and(_;_c_z - 3;_1), i.e. & = a (8, d)
is measured in the plane formed by the line X, - X, and the-direction of
the incident plane wave u . As we have the coordinates set up, with the

noise field incident from the first octant and _3_1_2 in the first quadrant, the

noise wave hits X5 before 3:_1 in time., - Thus if the noise hits x . at time

t, it hits x 2 at time t - T'IZ cos a where

ISP RS
le cos A= (2. 3. 14)
C
On the other hand, if the noise is at %X at time t, it is at x, at
time 1 -F le cos a
Thus
2(_}&1', ‘t):l"}' (EZ’t-T-IZCOS a) (2.3.15?.)
E(Ez,f)ég(il,t-!-'l‘lzcos a) (2.3, 15b}

- T
-

The space-time correlation function of the noise process is

@n(T) 51-.}5-2)=E 1‘3_ (_}_{.-l’t)a(zz"t’_'r)'

= Ej n (Elll,t)ri(gil 12 o8 a)

st-17+ 71

= C (r-T

A 12 cos 0, X —xl)>

-1 -

= _{;fﬁ) C_q(9= @, T'—‘le cos a, 0) dR (2.3, 16)
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Under the monochromatic noise assumption of equation (2.3, 12a)

J2mw fo[‘r - le c?os o]

o (r, 2, -x,) = _g{ Cyl® o) e A2 53 178
Under the white noise assumption of equation {2. 3., 12b)
b (7o x, -%,) = éécq (6,4, 0)8[ 1 - Ty, cos al drz"_ (2. 3. 17b)

Equations (2.3.17) will be used in the multichannel filter point of
view when we have to evaluate qij =K { n, (t) nj(t)} = cbh( 0 X, - -}_;_j).

The total noise power incident at the origin (or at any detector) is
given by c}:n(ov, © ). This follows by analogy with the power contained in a
one demensional random process whose autocorrelation function is RX(T),

i, e, total power = [! Sx(m) do = Rx(o),

Noting that x . - x , = o implies T, ., cos o = o, we have, under

1 =2 12
both the monachromatic noise assumption and the white noise assumption

¢ {o,0) = [[fc (e, 4,0)aq : “(2.3.18)
n — 5 ¢ - . ‘

Thus the spatial distribution of the noise power under either the

monochromatic or white noise assumptions is
T{6, ) = Cq (6 4,2 ) - (2.3.19)

In general, the equations we must use to transform between the
detector pattern and multichannel filter viewpoints are, from equations
{2.3.17) and (2.3.19):

Under the monochromatic noise assumption

jZerf [+ -T cos a]
bTs 2y - xp) = Q{T(euﬂ e k4 ag (2. 3. 20a)
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Under the white noise assumption

¢;l(fs LI T gf@T(?ﬂb)ﬁ[f =~ T 4 cos ul] dﬂl N .(293,20b)

Equations (2.3, 20) are the results we have been striving for in
this section. They express‘the space-time correlation functions ¢n used -
in section 2.2 as direct functions of the incident noise power T(S, ¢) used

in'section 2. 1.

We will now use these equations to show that under a rmonochiomatic
noise assumption {i.e. we will use equai.:ion (2.3.20a)), the detector pattern
approach'and the multichannel filter approach yield éxactly the samée values
for the optimum SNR. We-cannot show this is true for all possible spatial
noise power distributions and all possible array configuration, because there
is no general way of evaluating the integral in equation (2,3.20a). Because
of this we will apply'the theory developed above-to three pa.rtmular 'spatial
noise power distributions and one particular array geometry. We. will show,
that under a monochromatic noise assumption, for these noise power distri-
butions and this array configurdtion, the detector pattern approach and the
multichannel filter approach yield exactly the same SNR results. Although .-
we have used a particular array configuration and particular spatial noise
power distributions, this was only done to simplify the evaluation of the
integrals, and the equivalence can iae seen J;:0 be i];ldepencient of ‘the incident

spatial noise field and the array geometry.

The three spatial noise power distributions we will consider’are:

e

1. T_(9:<i>)= T(6,d) & (9-95: ¢-¢5)

2, T(8,¢)= T isotropic noise
T for (é, ci)) in the first octant
3. T(6,¢)= : : E

0 otherwise

-

»

We will assume that the point detectors are equally spaced along

the z axis, separated by a distance d.,

i
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X
Fig. 2.3.3 Detector Array

In Appendix B we evaluate ¢n (7, X ~ X, ) for the three s:patial

noise power distributions assuming the noise is temporally monochromatic
and white. In Appendix C We evaluate the elements of the Amatrix of sec-
tion 2.1 In Appendix D we evaluate the elements of the Q matrix of sec-

tion 2.2,

Using the results of the appendices, let us compare the results of
sections 2,1 and 2.2. From section 2,1 we have as our expression for the..

optimum SNR achievable by using the detector pattern approach .

R |
SNR=V ATl Y,
sj2m{-Eycos 8 Gz -1 cos @
% x o) A o

where \l = 1 e ces &

Note that we set ¢io = 2@ (._%) (i~ 1) cos 60 because of our assurned array

geometry.

Summearizing section 2.2, we have as our expression for the optimum

SNR achievable by using the multichannel filter ‘approach

® -
sNR=US Q7' U,

*
where U, = veo €

. d
. d +jw[ -—=(N-1) cos 8 ]
+ -
X [1 er[ p cose‘o] c o
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u ot rs -dfi-1) cos R
Note that we set TS = < 2 S because of our assumed
array geometry,
w 2w _ 2wf _ 2w :
Since -— =2 = 3 = ey y and El are equal,

By comparing appendices C and D, we see jchai’f:, for all three spatial noise
fields considered, the A mat;rix c-}f.Section 21 and the Q matrix of section
2,2 are equal, thus demonstrating-that for monochromatic noise, we can
optimize the SNR by using either the detector pattern o# maultichannel filter
approach, Also note that from equat:.ons (2.1.14) and (2. 2. 16} the optimal
current excitations and the optimal filter weights are equal, implying that
the current excitations in the detector pattern approach correspond to the

filter Welghts in the multlchannel filter approacf'l Co.

'In conclusion, we have shown in this chapter; that under the mono-.
chromatic noise as sumption, the detector pattern approach dand the multi- -
channel filter 'app'roa.c-ﬁ', ;:‘re equivalent., Moreover, we saw-that the current
excitations of the detector pattern approach correspond to the filter weights.
of the rultichannel filter approach. ; Again let us point out that although we
have used a paricular array-configuration and particular spatial noise power
distributions, this was only done to simplify the evaluation of certain integ:;ials,

and the equivalence can be seen to be independent of the array geometry and

~

the incident spatial noise field.

In the next cha.pter, we will investigate the sensitivity of the SNR
to small randord changes in the detector locations and tap Welghts,, We will
have to use the equivalence develdped in this chapter to derive an expressmn
_ for this sensitivity., We will then show that when designing linear arrays
where the spacing between detectors-is less than one-half a wavelength, one.
should use tap weight values which maximize the SNR subject to a E:onstrain;c
on the above mentioned sensitivity, in order to keep this sensitivity within '

reasonable bounds.
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Appendix A Maximization of the SNR
L
1 C1 _
Maximize L = —g————— with respectto .
ra:

1

Using the calculus of variations we get

(" a1y [(s1%c1y + (e 61)]—-H*CI)[(6I*AI)-P(I%A&I)]
- - —_ — _ i - _ _ T

§L =
(I"A 1 ) 2

implying

+

* ue F
61 }cg (1°a1)-a1 (1¥CIy

Since A and C are Hermitian

st}
-
3
L
on
-
L
]
——
o
|~
*
O
|
taat®
EH]

we have

Since both of these terms are complex scalars and the second is

the complex conjugate of the first, the real part of the complex scalar
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must be zero, i.e.
"‘Re z a__I_f'g_'i = 0

The only way this can be true for arbitrary 61 is if G= 0.

Thus

By definition

-._\_!'.1('\_7. )(I AI)—AI(IV)(_Y 1)

i
zlo

Where the complex scalar g is given by

(I"A 1)

0
Ll

(I v,

But the SNR is independent of the magnitude of I, so when finding

the value of I which ma.x1m1zes the SNR, we can drop the scalar q.

r

The direction of the optlmum Vector I, Whlch maximizes the SNR,

is given by

1 optimurmn = A Y].
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Appendix B Ev:aluatidn of ¢ (T, -}ik -x 1“1) for' Temporally' Monochromatic.
and White Noise.

Note that, for the array geometry of Fig 2. 4: i, equa.tlon (2. 3. 14)

becomes Tk.Q cos ‘a cos GC(I “k)d because u (8 $) = - sin'® cos ¢ x

— sin 6 sin ciazo - cos eio and {x

X, —i{-k) = (-’-:k-)d_?_o

Y

4

If the noise is temporally monochromatic, for the three spatial

noise power distributions under consideration, we have from eguation
(2. 3.20a)

.o . jZ'n-f.o T-vd—(éE;E)— cos ©
case 1, ¢n(T;fk'3{_1) = T{Bﬁ,q)ﬁ) e .-
S T am j2wi _[T;_______d(i—k) costﬂ
case 2. ¢ {7, %y f Te © : sin6d6dd
o
letting y = 2'-rr JEO d—({:ﬁ)— coSs =9 and replacing-?c—: by A g'i:ves
. el
jewf T
_2Te . 24 ( d (£-k)
¢ (mx, -x,)= 2 sin| 2w () {£-
(S (k)

S

w225, [ d(sx) cose]
case 3, q> (T, XX ).-f fTe ' sin08d6d ¢
proceeding as in case 2, we get

j2wf T - (———-)u -k) 4y (2-k
gy Tz ST i (11

d

7 () (£-k)

If the noise is teraporaily white, for the three spatial noise power

distributions under consideraiion, we have from equation (2.3.20b)
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-?os eﬁ(z -k) d :|

case 1. ¢ (7, x-x,) =T (05 dg) 8 [.—r _ L

) . . N
case 2. ¢n(T,xk:}g£)?Tf fa T—iz-—”—ék—)—-g— cos 8 |sinBdBdae
: T = o © -
letting v =-(£—"cl§-)——d— cos § giyes
.o <

. - . £-k)d
fjrdec }fll T:].< ( c)
CI) (Tﬂ i{'k = zﬁ =
. .‘j - NI ' otherwise
SYERRYF:

: - (£-k)d :
case 3. ¢n(T,§_k—x£) -_'I'.{ £ .6_[7- A c?ge smedE))c.lqb'
proceeding as in case 2, we get
: . - {2-k)d
TlT-& ifo< T < B a—

o i otherwise
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Appendix C  Evaluation of the A matrix

From equation (2.1.12)

. .
J (Y v
a, = J[ e K 1(e,5)140
8 ¢
where x 'y .
Y =2 -—xx-l- sin 6 cos ¢+ hn sin@sinc{u-!*—):r}— cos O and

t

(xn, Vo2 zn) is the position of the nth detector,

4
For our array geometry the ith detector is located on the z axis,
at a distance z; = d (i-1) from the origin, the above general expression

becomes z,bn = 2w (-—df) {(n-1) cos B8, thus

j2m () (k-2) cos 9

a, = Jf e T(0,4)d
¢ )
For the three spatial noise power distributions under consideration,
we have
. d
ji2w (T-) (k-2) cos E)i3
case L. a5 = T(Bﬁ, ¢ﬁ)

,2“ 27 {%) (k-2) cos 6

m
case 2. ak£=Tf fe
o o

sin 6d6d ¢

sin [2 T (—%) (k-2 )]

2w () (c-2)
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/2 w2 j2m (—%—) (k—i) cos 6 . .
case 3. T T fo j(‘) e ’ sin 6d6d ¢
. d . . d
o ow JTE e sinfw (1) Ge-2)]
- 2

w () (k-2)
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Appendix D Evaluation of the Q matrix
From equations {2. 2, 4) and (2.3, 16)
g © Ei e (B neg (8) i = by los 2 - %,)

In particular, when the noise is temporally monochromatic, for
the three spatial noise power distributions under consideration, we have
. 0 1
from Appendix B (remember < = T)
-j2w (—d—) (2-k)cos 6
A p

case 1,
qk£= ¢h(—o’ _]"_c__k“?_{'-e) = T(eﬁ, ¢B) €

4-17 T si.n{z'rr (%) (£-x)]

it

case 2. Yy
2 (5-) (k)

., d
AT R e () (e
case 3. qkﬂ. = Tge [w : ]

w () (2-k)
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CHAPTER 3

Error Analysis of Point Detector Arrays
If we were to design a point defector array or a multichannel
filter toextract-a signal, incident from direction (80, 4:0) s from back-
ground noise, using the criterion of maximizing the SNR, as developed
in chapter two, the following types of errors might affect the performance

of our system:
xSy C

1. Small random errors in the antenna excitations or. filter coeffi-
". cients {possibly due in part to round-off errors if we use a digital system

to determine the filter coefficients).
2v Imperfect knowledge of the noise field.

That error type two is of importance is sélf-evident. - However, the
reader may ask if error type one is very important. It turns out that erzor
type one can be of major 1mportance as can be seen by considering the follow-

ing problem:

x

Assuie we wish to receive a signdl propagating in the 2 direction,
1

having wavenumber k = -7—?-1-7— » by using a linear arrayr of N iseti'oi:ic point

‘detectors located along the’z axis. Because of the sampling theorem, our
first mchnatmn would be to space the N detectors one-half wavelength apart
(z\—z—'-z), and then proceed to optimize the excitations so as to maximize the
SNR. The question is, how much does error type one affect us if we use
this spacing? It will be shown that for spacings between detectors of less
than about one-half wavelength, the supex- gain ratio, j:vhlch is a measure of
how much type one errors affect the detector pattern and thus the SNR, begins
to get very large. This meéans that very small errors in the antenna excita-
t1ons cause large variations in'the received SNR. A bétter approach to use
when the detectors aré Separated by less than a wavelength, Wwould bé to

’ maxunlze the SNR subJect to a constraint 'on the.super-gain,ox type one,

error., This is one of the things we will investigate in this chapter,

Because the above mentioned types of errors are present in our

systetn, the following questions arise:
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1. If we optimize the processor as in chapter two, what are the

cffects of error type one on the SNR?
2. Whatis the optimum SNR we can achieve if we optimize the

processor subject.lo a constraint on error type one?
. LT,
©+ 3, Gan we develop an adaptive algorithm which maximizes the

SNK subject to-a’ dohstraint on error type one?

[y

The redson for underiaking this entire investigation is to answor
question three — because the development of this type of algorithm will
;:nahlc us to'désign -array processors which will no longer significantly
sulfer from the deleterious cffects of error types one and two that,present

day arvays sulfer [rom, - . . NN
In this chapler we will andwer questions one and two, We will an-
4 " - Y v "
swor question three in chapters four, five and six,
r o ' 1

Y T . ., ..

Soction 3,1 Scensitivity of the SNR to Random kirro 1':-:) in tha Detlector

Ixcitalions and Locations,

Consider an array of N isotropic detectors placed at some prescrib-
vd positions in space whose Cartesian coordingtes are given by X, i=l,..., N,

fat 0, 4)0) be the angular coordinates of the main beam, and IL.be ithe
current excitation in the ith detector, From cquation (2.1, 13) the SNR is

given by

! f ?-; x"® b
A A
; SNR ” i 3.1..1)
: - . -ll A.E- '
~where all qua.nt.ltu"-. have been dvhnvd prvkusly in section 2, 1, Lo

By the s ons1t1v1ty of the SNR to l..mdut'n crrors in ‘l.hc dt,tucfor ‘o -
citations and locations we mean the following: il we let the _dc.tuc:tor currenls

and positions he com oscd of a nomlnﬂ term plus A relndom torm, i. ¢,
P P

1 — In + Ir and _3_‘1;._‘ Xin + Xie the SNR 15 now. dc*['uwd as 'lhv expocic_,d
valuc of equation (3.1, 1), This oxpuc,fa.tmn mngH {urn out o bt' of tho (orm

-Enzl.\—fl Iy o '
T = = 1 - -} an additional term, and we would
1AL - I A1 ' -

! ) —n —n

=
]
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then define the ratio of the additional term to the nominal term as our sensi-
tivity £act6r; The calculation of this expected valte, as it stands, is exceed-
ingly domplex, However, the SNR in equation (3. 1. 1) may also be expressed
as' - L . -

B{u )

SNR = . (3.1.2)

[ 2(u) T (w)an
£ \

1

where ®(u) is the array power pattern &(u) = ]I%_YI,

2 % 2
(u )= L }{1’

1s the value of the power pattern at (Go , c[:o }; and T {u) is the incident noise
power. Again, if we let the detector currents and locations be random, the

calculation of the expected value of equation (3, 1. 2} is exceedingly complex,

However, equation (3.1, 2) indicates to us that we can use the super -
gain ratio, which is a measure of the sensitivity of the power pattern &{u)
to random errors in the defeétor excitations and positions, as an alternate
measure of the sensitivity of the SNR fto random errors in i:he; detector exci-

tations and positions.

An intuitive justification for this is as follows: I {(u) is the power
‘pattern., Since the signal is incident from direction u s the i)ower pattern

is usually designed so as to peak up in the u, direction, e.g.

T

Uo (SIGNAL)

H

DISTRIBUTED .
NOISE SOURCES

Fig. 3. 1.1 Typical Power Pattern-‘

The solid line in Fig 3, 1.1 represents the theoretical power pattern

while the dashed line represents the actual pattern we may get due to random
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errors in current excitations and detector locations. . Small changes .in the
power pattern affect the numerator of the SNR much more than the denom-
inator because the numerator is proportional to the pattern while the de-
pominator is proportional to the integral of the power pattern over all space,
which doesn't change as much, Put another way, if the power pattern changes
slightly, the main reason for the change in the SNR is because the signal
power received by the array drops from level A to level B. While the noise
power received by the array changes, it does not change to as great an ex-

tent as did the signal power received, Thus our premise is that

o

AlsNR] <X A [1(u)]

The super-gain ratio Q is derived in Appendix A and is given by

equation (A15)

11 11

Q = . = —_— (3. 1.3)
JI'yv'iaa 1" B1
g 1"B1

where BZ [VV dQ

Q is a function of the spacing between detectors through V, and
through I is also a function of the signal location {or main beam direction)

and the noise field {i.e. assuming we, use that value of I which maximizes

the SNR).

To investigate how the SNR and Q factor behave as a function of
array geometry, we shall focus on the special case of Fig 3. 1.2, consist-
ing of a linear array of four isotropic detectors embedded in a uniform
noise field {i.e. T(0, ¢} =1 for 0 <8< w, 0< <2 7), whose main
beam is at broadside (eo=o) or endfire (Boz %—~, ¢O= o}, and whose
current excitation is given by the optimum value ofﬁl we found in chapter

two (i.e. that value of I which maximizes the SNR}.
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'Ay'

o- . ——————— P
34 -4 | 4 3d X
2 2 2 2 :

Fig.3.1l.2 Four element linear array

Before we can obtain numerical results, we need the explicit form
of th A matrix in the SNR expression for the case where T (8, ¢).= 1 for
all values of ® and ¢, and of the matrix f_\_f X* d @ in the Q factor -expres-
sion. Because of our choice of an isotrogic noise field, these matrices
become identical, and, in this case, the elements of A, denoted by 2y g°
canbe integrated out in closed form for planar arrays of isotropic elements,

Assuming the detectors are in xy plane, the elements of A are given by

N - a* - f e-!"] ‘pk e-J tab! \
k2 £k d

- V= ¥
T j2w (—u) sin 6 cos ¢+(——1§X-—-2€—) 5in O sin ¢
- . sin@d0d¢

{3.1.4)

We may rewrite the integran:d by noting the following identity

‘ id - /2)
Alcos ¢+ AZ sin ¢ = Re Al e, -!:AZ
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jP i¢ -im/a _ it _: id _ - Jé
Ale +A2e e = Ale -—JAze . .-I:AI-I-J(—AZ)]e

-Az A

-1 . ] -1 2
: £ —K-- -t —
A %+a eJ - 1 leb = |A %34 % e Al)
= 1 2 = 1 2 °©

Taking the real part gives the result

1 A

. 2 2 -1 72
Alcos¢+ Azsmc}) =J_A1 —}-Az cos ($ - tan I-l-)
thus
Zmw
- jZw sin 8 p cos {&-V, ,)
g T of£ e ki k2" sine deds (3..1. 5)
where
F
w-x,\ o VY 2
Pl o= LI I e S 3 (3. 1. 6)
A A
-1 Tk
ki %) =%y ke

Note ‘that )Lk g is a multivalued function, and since it appears in the integrand,
it must be restricted. We will restrict }\kl to the range o < Kki <. How-
ever, when we do this, if }"k.e appears explicitly in the resulting formula we
get for ay We can not use the formula to calcul:i;te both 2 ¢ and a1 because
we will not satisfy the requirement that a, , = a'; k due to the restriction on v.
The procedure to use is as follows: If yappears in the formula for ék,{ ; use
the formula to evalu%?e 2 g for k strictly less than £, and evaluate 2, , ‘ft_ar

k > £ by computing a;k. If v does not appear in the formula for a, , (this is
the result we will obtain in our problem, but we get this only because of the
particular way we defined Vand 1), there is no problem, In either case, 1o

evaluate 2 1 s Yy is indeterminate and hence we must evaluate the diagonal

terms separately.
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L 2T jmcos (boy,)
Since 5 E,f e dd= J"O(X)
w
34 T Zwof 51n6J'0 2x Pi g Sin 8) 46 (3.1.8)
But 'n"
[ T (xsin@)sinedg=2 Z0X
A
sin (2% Pic ¢ (3. 1. 9)
2y g = 4 - > > for k-%.!
T Pry
¥ k = £ we have
VA T .
akk.-:(_)[ { sin 8d0dé=4r . (3.1, 10)

For the special case of the four element linear array shown in

Fig 3, 1. 2, the elements of the A matrix are givén by

A . 2m 4 AN, 4y 4 - 2 A 67 d

dm 2-3 sin T - Tsie T mg s

A . 2w d 4 2 M 2w d A 4q d

o W ~ g S B

A=
A . 4 d 2N 2w d A 2 A . 2w d
- T W e W - B
2 A 6w d A 47 4 2 X . 27 d 40
3 g " x qtm T .
(3, 1.11)
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The optimum (with respect to maximum SNR) value of 1 is given

by equation (2. 1. 18)

-l
Eopf:"A Xl’

Using this value of 1, we found in chapter 2 that the SNR is given

by
® -1
SNR =V, ATV, (3. 1. 12)
Again using this value of 1, the Q factor is given by
* ¥ -
1 vy a7y,
Q = —*'_'_"" = 3 _1 (30 lo 13)
I AL v, A XY ‘
If the main beam is at broadside (90= o) then, in our example
- 7 r
iy;0
e
h] wzo 1
e
Xl' = = {3.1.14)
J ¢30 1
1=]
j qb4o 1
If the main beam is at endfire (Soz —g—, ¢, = o} then, in our example
- T. a
[ iwpe] | iE3m)
e e
. . d
J WZO J {'“T )
e e .
V. = . - .o (3. 1. 15)
-1 . . d .
J g0 e )
e : e
§ ¥g0 o d
o & o BT )
. L A
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Similar results can be obtained for the ten element linear array

shown below in Fig 3.1.3
}

& @ @ -2~ o— 9 € @ e -
-9d -7d ~-5d -34d -d d 3d 5d 74 9.d
Z 2 2 2 2 Z Z 2 T2 Tz

Fig 3.1.3 Ten element linear array

The following graphs of SNR and Q vs -%— were obtained for four
and ten element linear arrays, in isotropic noise, when the main beam was

at broadside and endfire, using the optimum excitation:
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SNR

04 -

03

02

Ol |-

Fig.3.1.4 Four Element Array.- Broadside Signal
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F"ig. 3.1.5 Four Element Array - Broadside Signal
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4 6 8- * 1O

Fig.3.1.6 Ten Element Array - Broadside Signal
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Fig. 3.1.7 Ten Element Array - Broadside Signal
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SNR

06
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02}

2 4 6 8 0 12 d/N

Fig.3.1.8 Four Element Arz:ay - Endfire Signal
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Fig.3.1.9 Four Element Array - Endfire Signal
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TO 54 AT d/A=.3

%

4 Y 8 10

Fig.3.1.10 Ten Element Array - Endfire Signal
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Fig.3,1,11 Ten Element Array - Endfire Signal
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) By comparing Figs. 3.1.4 and 3. 1 6,3.1.,5and 3, 1.7, 3. 1. 8 and
3,1.10, 3.1.9 and 3, 1. 11 we see that the g.ez.m.ra.l shape of the curves and
t'he ratios of the maxima to the minima of each curve is independent of the
nurber of elements (four vs ten) in the array. Henc._e in our future work

we will only consider four element arrays in order to conseérve computer

time,

With reference to Figs, 3.1. 4 and 3. 1.5 noizice that if we use those
current excitations which maximize the SNR, the SNR ‘and Q factor that we
will get when the signal impinges from broadside can vary between 0, 2 and
0. 5 ( a ratio of 1:2. 5) and 0. 05 to 0.15 {a ratio of 1:3) respectively, depend-
ing upon what spacing we use between detectors as fong as it is greater than

0. 2x

Aside: Note that the graphs only cover the region up to d=1,8)x
because this is the region of interest to us; however, if we extended, for

example, Fig 3. 1.4, it looks as follows

SNR

H 1 I | [l
i

1.0 50 30 40 50 d/A

Fig.3.1,12 Extension of Fig,3.1.4

and all the other graphs behave similarly, Note also that our graphs don't
cover the region d = o to d = 0,2\ because in this region, mutual coupling
effects between detectors come. into play, and our analysis does not take this '
into account.

This means that for this array geometry, when the signal impinges

from broadside, it is relatively unimportant what spacing between detectors

we use and furthermore, it is acceptable for us to design the array (i.e.
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choose the current excitations ox tap weights) by maximizing the SNR alone-
rather than designing the array by maximizing the SNR 'subject to a constraint
on the Q factor - because the Q factor which results from the use of the first

design procedure will never be excessive,

However, with reference to Figs. 3. 1.8 and 3. 1. 9 notice that if we
use those current excitations Whlch maximize the SNR, the SNR a.nd Q factor

we will get when the signal impinges from endflre can vary between 0, 2 and

1.0 (a ratio of 1: 5) and 0,06 to a nurnber well exceedmg 0, 74 (a ratio very

Z &

much greater than 1:12) respectwely, dependmg upon what spacmg Wwe use
between detectors as long as it is gr_eater than 0.2 A. This means that for

this same array geometry, when the signal impinges from endfire, the -
spac‘ing between detectors that we use is relatively important, i.e. we. .
would prefer to space the detectors as close together as’ possible,’ how -
ever if we do this, the Q factor, which is a measure of the sensitivity of
the SNR to the random fluctuations in the tap weights will be so large as

to make the array processor useless,

The conclusion we draw from these graphs is that if we are going to
use a certain detector array and we are not sure a priori that for all possible
incident signal directions the Q factor never gets too large whern we use those
current excitations (or t"a.p,weights} which maximize the - SNR, we must instead
use those excitations which ma?ci;cnize the SNR ({equation 3, 1.1} subject to a
constraint on the super-gain ratio {equation 3. 1.3). We will see how to find

these excitations in the next section.
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Section 3. 2 Maximization of the SNR subject to a constramt on the super-

ga.1n ratm o o -
' BN - 5
s The Problem is to maximize — - subject to the constraint
. ST AL B -
1T S . Lo (19)
Qx —m—. Appendix B summarizes the work of Lo, Lee, ‘and Lee

I BI1 -
recently c'féveloped a numerma.l technlque of solv1ng this problem How- '

ever, then: work yields a (sometlmes complex) polynomial equation Whose
roots (when found numerlcally) can then be us ed to calculate 'the va.lue of I

which is the 'solution to the problem. Qur contribution makes use of a state

varlable technigue which enables us to reduce L , Lee and Lee's numencal
problem from one of finding the complex roots of a high.order.polynomial

with complex coefficients (in all the spec1f1c: numerical cases treated in their
paper the coefficients of the polynomials were: real, but this is not necessarily
true in. general and is not true in the‘ second example we will consider in this
section) to one of finding the eigenvalues of a real matrix, which is cor.ls'i_.der-

ably faster to do,

Since we can only get numerical results for particular examples, we

will consider the following two specific problems:

1. Solve for that value of I which will maximize the SNR subject to the
constraint Q = .08 for a linear array of-four isotropic detectors spaced
d = 0.8\ apart, embedded in a uniférm-noise field (T(6, ¢) =1 for.
o< <o, 0< 0 < 27), whose main beam is at broadside (GO =z o). From
Fig 3.1. 5 we see that if we did not constrain Q, but instead used that value
of I which maximized the SNR, we would get a value of Q equal to approx-
imately 0. 12,

2. Solve for that value of I which will maximize the SNR subject to the
constraint Q = . 11 for a linear array of four isotropic detectors spaced
d =0,4\ apart, embedded in a uniform noise field whose main-beam is at
endfire (80 = /2, 4)0 = 0). From Fig 3.1.9 we see that if we did not constrain
Q, but instead used that value of I which maximized the SNR, we would get

a value of Q equal to approximately 0. 18,

We will use Lo, Lee and Lee's method to do the first example, and
our method to do the second. As far as the first example is concerned,

v,= col [1 11 1) and we may
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choose for our complete set (see Appendix B) the foltowing vectors:

The W matrix (equation B8} has vectors ays

1. -1
- 11 il
21% 11 227 1o
1 0
- -
where

W.= (0.08A-I)a,s?
—1 —1

A g

it

O= Ol

S

w

w

-2 =3

(3.2.1)

W, as columns,

+2A31s+AUL%A;ifiAifiJ?Jﬁ4 (.2.2)

" The elements of this matrix are real polynomials in-s of degree two,

except for the fifst column whose elements are all equal to one.. Setting the

determinant of this W matrix equal to zero results’in a polynomial of sixth

degree in s-being equal to zero. After solving for the six roots, we take

the real roots {since we know s is real) and substitute them into equation

(B'5) to determine the possible values of I, i.e.

—]_'_z

*

[A-sT+0.08sA]?

[P

" (3.2.3)

We now take these values of I and substitute them into the expressions

for Q and SNR. The solution we are looking for is given by the I which satisfies

I o E*Vlyfﬁ
Q= ——5— .= 0,08 and-gives the highést value of the SNR = — .
1Al 1AL

Numerically, we found the following six roots of the polynomial, the real roots

being.allowable values of s; corresponding to these four allowable values of s

i
we found the values of the Q factor, corresponding to the two values.of s for

which the Q factor is equal to 0. 08 we found the two values of the Sl\lf{ei

5 Q SNR
121, 0+ j 0,198 ———— e
121.0 - j 0.198 c——- -
-112.7 0. 080 0. 058
-52.2 0. 080 0. 187
-61.8 0. 070 0, 084
-61.1 0. 071 0. 090
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The solution to the first problem, i.e. that value ofli which maximizes

the SNR subject to the constraint Q = 0. 08 for a broadside array is the value.

of I corresponding to s = . 52,160, For this value of s, 1. is given by

[
n

0. osg
0. 007
0. 007
0, 086

— —

and the maximum SNR we can achieve subject to the constraint Q = 0. 08 is

SNR = 0. 187,

The second example is more complicated, because the yector space

we are working in consists of complex vectoxs (e.g. al) over g complex

scalar field (e. g.- the scalar r in equation B3).

Here E =

and we may choose for our complete se

- . “
s "4
o) 3m (. 4)

AL (. 4}
IR

?j31r(- 4)

L _

———

3w (. 4)
- (. 4)
o (. 4)

37 (.4}

r

o my

~ej-3ﬂ {. 4)

eJ - (' 4:)

o e

-3l 4)

t the following vectors

ol . —y

RECLANON

Tl (3.2.4)
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The W matrix {equation B8). has vect,or's_'_'l, Wi W, W, as columns, where
W, =(0.11A -0 a, 5%+ 2Aa s +A (0 1IA - "&a;;i=23,4  (3.2.5)

. g . 7

The elements of this matrix are complex polynomials in s of degree two, . -

exce1;t for the first column whose’ elements ‘are just complex scalars; - In -~

this case, equation (B8} can be rewritten ifi'tetms of real and imaginary

parts as follows {consider a 2x2 W inatrix for simplicity):

d . - o 'r-' . e P o v
(Wypp FiW5) (W o ¥iWy5) hyp Tiby, o+jo
= k (3..2. 6)
AWy F W) W FIWo | By R Ry otjo
Elu- oyl L- M a—— - —
This may be rearranged into the following 4x4 matrix equation -
s — s — ™ ™
s
Hr  -Wop Wi Wi L °
Win Wie M Vi ! ©
Wair “Wori Wooo ~Wooi by °
Wou - Woir Wop Woor hos °
. . - e - bt -

or WH=o (3. 2.7}

where the new W matrix and H vector have twice the dimension indicated

by equation (B8) and are now real,
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" From Appendix B we know that hlr = -1 EI..I?.d hli = 0, thus the H
vector is not null, and hence_the determinant of the W matrix must vanish.
Setting the determinent of this W matrix equal to-zero results in a polynomial
of twelfth degree in s being equal to zero, Now we can theoreticaily =pr0“
ceed as before. - However the numerical computation of the twelfth degree
polynomial coefficients is exceedingly time consuming. We will now dem-
onstrate that instead of having to-form and solve for the roots of a twelfth
degree ﬁolynomial, we can instead transform the problem into one -of find -

ing the eigenvalues of 2 16 x16 matrix, which is far easier to do numerically.

We may rewrite equation (3.2.7) in the form

(A, s%+A, s +A )b = o ' . (3.2.8)

1 2

- where A and AZ are 8x8 singular matrices (their first two columns are
zZero), a.nd A3 is an 8x8 invertible matfix, when we consider.the four
element array of example two. The problem is to {ind the twelve values

of s for which (3. 2.8) holds. Lettingy = Tl and multiplying by AS gwes

-1

wreala,yea A R0 o 629
In terms of the two state variables-
%, = h C - . {3.2.10a)
X, = Y.ﬂh (3. 2. IOb))

£

yx, = Ix : (3. 2. 11a)

YB{_Z = yZE == A "_lA % - A “IA X (3.2;1113)

i™
=

Letting x =| , gives
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yEo= Gx

Thus if s satisfies equation (3.2.7), y =

or

1

— wi
- S.

L

{3.2.12)

(3. 2. 13)

11 satisfy equation (3.2, 13)

.

(3. 2. 14)

Therefore, ihstedd of solving for those values of s for which equation

(3. 2. 7)'.hoids, we may solve for the eigenvaiueé y = —E_l’— of the matrix G.. This

is much simpler.

- Using this approach, we found numerically

y =+ Q SNR
~-0. 0457 0. 0644 -
-0, 0457 0, 0644 ————
-0, 0463 0. 0636 ————
-0, 0464 0, 0642 ———
-0, 0461 0, 0638 ————
-0, 0973 0.110 0,438
-0, 0077 0.110 0,009

The remaining solutions were complex,
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The best SNR we can get when the Q2 factor is.constrained to 0, 11,
is SNR = 0.438, For this value of SNR, the complex vector 1 is given by:

. 1

~0.096 + j 0,059
0.037 - j 0. 100
0.037 + 3 0. 100
20,096 - j 0.059

L -

Thus we have- developed a very fast numerical technique to solve
for the maximum SNR an array proc'essor can achieve subject to a con-
straint on the super-gain ratio, Owur next major problem is to develop
an adaptive algorithm which will automatically adjust the tap weights of ..
our array processor in such a way as to maximize the SNR subject to 2
constraint on the super - gam ratio. For the speclal cases Where we have
a linear array of four isotropic detectors spaced d = 0, 8 A(ds= 0. 4)\) )
apart, embedded in 2 uniform noise field, with the signal impinging from
broadside (endfire), and with Q constrained to be .equal'to or less than 0, 08
(0.11), we expect our adaptive array processor, in the steady state to have
an output SNR Wh1ch is equal to {or very close to) 0. 187 (0. 438) We.will

" begin con31der1ng the de51gn of adaptwe algorlthms in the next chapter. .
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Appendix A super -Gain Ratio
‘-"""‘—'—"'_‘""—""'—' s et . 2t L 3 ..

It is well known ;:h;'s.t for any givei ape-zrture v’viﬂlgh a sufficiently large
number of degrees of freedom' ie. g, for any given detec:cor arrasr apérture )
with a sufficiently large number of array elements ‘in, it), it is possible, in
theory, to obtain very high,gain by using those excitations which maximize
the array signal-to-noise ratio (SNR) or some similar quantity, However,
this high gain.is obtained at the expense of having a very large super-gain
ratio (i.e. the sensitivity of the array power pattexn, or gain, or SNR to N
small variations in the array excitations and element positions 1s ver;r high).
In practice therefore, since the excitations and element positions can only -
be controlled to within certain tolerances, it is almost impossible to actually
construct super-gain arrays. To find out how _x.;vell-\‘;ve can do in practice, ‘we
should use those excitations which are derived by maximizing the array SNR
subject to a constraint on the super-gain ratio.

In this derivation of the super-gain ratio, taken from Gilbert and

(20)

Morgan, we will let the positions of the array elements and the element exci-
tations vary randomly about their nominal values, with the restriction that.
the position randdm displacements have a spherically syminetrical probabil-
ity distribution., It will then be shown that the expected value of the power
pattern equals the nominal power pattern plus 2 background power level,

The ratio of background power level to the nominal power pattern is directly
pz:‘0portional to the super-gain ratio, , . ~ 7 .. SRR

LI

Statistical Formulation of the Super-Gain Ratio

Consider an antenna array of N elements, Each element has the ‘ )
same directivity pattern s (E‘o) » Where T is a unit vector representing
"some spatial direction, and s (r o ) is a complex-valued vector function
giving the amplitude, phase, and polarization of the radiation field over
a large sphere centered at the elemént, For acoustic fields, s (_:_t;o) is a

scalar function.
The overall ‘array directivity pattern is given by -

ji{R ° T
> =k o (A1)

.
g'(50)=§(30)k2=1-.1ke
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where J, is the complex excitation (amplitude and phase), k is the wave-

, k
number, and Bk is a position vector from the origin to the location: of the’

kth element in the array, As usual for arrays, the pattern may be split

into the element dir éctiv:ity pattern times the array factof f (r c))Whef';e
N . .
o -« ¥jkR, ‘T ! -
f(r )= ), I, e k =o (A 2)
o k=1 = s S .

w

Note that thé’ electric field E (3'0) is proportional to the array directivity’
pattern, i.e. the électric field strength at a point R T, is, for large R,’

PT oportional to

s {x ) )

R

2

Consequently the radiated power in proportional to
SRR : -
Is(z )% e(z) l

The power directivity pattern is:defined as

i

o{r )

|stz M2 etz )12 (a3)

Note that for isotropic radiators 3(50) = 1,

We will now assume that the excitation coefficients and the positions of
the elements have some randoin variations about their mean or nominal

values, Let
(A 4)

(A 5)

where Ik is the nominal value of the excitation current, the 8, s are

independent random complex variables with zero mean, r x is the nominal

-

L]
value of the position vector, the Py s are independent random vectors
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) !
with mean (o, 0, 0), and all the p kS have the same statistical distribution.

We can now find the expected values of the field and power patterns

as follows:

N jkrox, dkepr
E{s{r)f(xr )} = s(x) kZ_)l E{i+a }E] e e
N . .
jkr T ikp, " r
=s(ro) E I e k=0 gl "4k o
- k=1
ikprz, L

=Ele sx.) fo (z ) (A 6)

i
where p is a random vector having the same distribution as the p K 5 and

fo (50) is the nominal array factor which results when the excitation co-.

efficients and positions equal their nominal values,

The norm of the array factor may be written

L

. LN .
2 - JRRp "z, x« TIRRycI,
|£(x )" = I, e Y o1l e
—0 kE=l k =1 ¢

w JR(z,tpil-x *jk(iz+'£1)‘£

N N
. sk -~ [8]
=Z E (I, +a . } (I, %a,)e ° e
Kml =1 k" Tk LR
-y
N
* (1. + a ) (I, +a,)
WD k' Tk k k

Taking expected values and recalling that the random variables are independent
2

Jelzy-zylzg ikp oz,

E -]f(ao')lz E{ e

[
e 2
"
NS
o

o]

w
—
%

(1]
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N N
\ 12 L2
-!.'Ig.-l..«[-lk-[ ' kz=1 E,;Iakl. ‘

If we now add and substract the terms with k=¢ which were left out of the‘double
sum we get ’ S

N 2 N
. 21 jk-p-'io o2 2
El €z )] {(=|Eje EREN] +‘k2 (B} e
N
jkp -t 2
i sle T b Y Il (A7)
lx=1 *

Tz
Multiplying through by the power pattern I sz o)|

of a single element gives
the expression for the expected power pattern of the array, namely

2 - . .. -.
: Jkprrof }- 2 O 2
Eje(z )t = | Efe e (x )+ |s ()] kzzl El ol

i

o jk.p-rl 27 2 N 2
Sr-qele T T | stz L 1 (a8)
. . k=1 -

where the power pattern of the nominal array is

o (x) = lstzol? le,(z)”

Note that in the special case where the positions of the elements are known
exactly, -implying that the vectors p,

.are all identically zero, the general
result (A8} reduces to - '
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} o(r ){ e (r )+ |s(z, )] 3 [a,l % a9

- Equation (A9) has a simple physmal interpretation. It asserts that the
expected power pattern is the power pattern of the nominal array, plus a
"background"” power level which has the same dependence on direction as
the pattern of an individual rad1at0r, and is proportmnal to the sum of the
mean-sguare errors of the excitation coefficients., In order to have the
over- a.ll ‘pattern be a good approximation to the nominal pattern & (x: ),
it is necessary to hold the expected value of the background power well

below the maximum value of @0 (r o)‘°

If the displacements are not identically zero, Gilbert and Morgan

ikp:-zx,
evaluate E1e

] by as suminé that the statistical distribution Sf )

p is spherically symmetric, 1. e. i ;;ve dexiote the sﬁherical coordinates

of p by {p, 0, ¢) then the joint probability distribution function p {(p, 8, ¢}
ikp-z,

depends only upon p. In this case the value of EJe . turns out

to be independent of o and we can define a.parameter 62 (independent

of u ) by

-2

Jkp-x
E i e - i\ .=l ‘ (A 10)

From equations (A8) and (A10) we obtain the expected power pattern

2

- 8c=

for a spherically symmetric distribution of element displacements, namely
N
: 2 2 2y j1 12
(1 + 62 E;@{E_O)f:: e _(r_ Y s (z ) 7| C1es )Z 3 kl £+a >, lIk]
k=1

Again the expected pattern turns out to be the nominal pattern plus
a background level with the same distribution as the pattern of a single

element,

The problem is nextidealized somewhat by as sum1ng that the exc1ta—-

tion coefficients J, can all be controlled to the same relatlve accuracy, e,

k
we suppose there exists a small number ¢ such that
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E%Iaklzk = Sl l? . k=1,2...,N; (A12)

Then (B1l} becomes
N

(14-'52)}33@(;_0)% = @ (x,)+ ]i(io)fz[(lfﬁzi e2+62L§=)1 ES NS €

This expression includes the effects of both excitation and position errors,

If we define AZ =] (1+6_2) 62—!-_62] » then the ratio of background

power level to the average nominal power level is

N ' N
p2lsiz )% Y 11 l? Als )12 Y In,l?
—= - 2 a14)
jkr, 1 2
S{Io(zo)dﬂ gf |i‘£o)]2 Ikzllke L' Zo | 50

For isotropic radiators |s (_r_o)l . 1, so that the ratio becomes

N
A2 Y 1 l?
k=1 »
. = A“Q
N Serg oz 2
J D 1 e do
g |k=1
where
' 2
Z, I
0=
_.N jkr, - r 2.
Sl hie ~ °l aq
Q2 k=1

Using the vector notation of section 2.1 (see equations {2.1.1) and

(2. 1..4)) ~we may rewrite Q as
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0
"

(A15)

Q is a positive real number, known as the super-gain ratio, and
is a measure of the sensitivity of the pattern to random errors in the ex-
citations and positions of the array elements. Since in practice 152 is never

zero, an array with too large a value of Q is unacceptable.

Although Q has been derived as a result of statistical considerations,
it can also be interpreted in terms of the efficiency of the array as an energy
radiator., If we imagine the array elements to have a certain ohmic resis-
tance, and the excitation coefficients to correspond to the element currents,
theni*}. is a measure of the power which is lost in the form of heat, and
(2 is the ratio of dissipated power to average nominal power. Thus a large
value of Q corresponds to high ohmic losses for a given amount of radiated

power,
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Appendix B Maximization of SNR Subject to a:Constraint
- C x" € x .
.We will find the value of x that maximizes —p————. subject to.
. XX - T = S
the constraint __.'._*._“:_....._._. = q = a real constant, where A, B, and C are
x B x

* 4
Hermitian positive definite matrices, and €5 a2 ,. 'This appendix

(19),

represents work done by Lo, Lee:and Lee

Introducing a real scalar Lagrange multiplier X; ‘the solution can -
be obtained by differentiating I. with respect to x , and setting the result

equal to zero, where

* %
x Cx. - L o= . .
L= — — N -— = (B 1)
- = A
x A x x Bx -
Thus * . ) )
x Cx (xAx)-Ax(x Cx) x{xBx)MA -Bx (xx)}X\
6x > — # ——% i
. A x) L g Bx)
"% * . % % . % ., % e
(x Ax)x C-(x Cx)x A © A{x Bxyx — A {xx)x B
+ = > — + e ,2““ —} 6 x
Ax A xR {x B x)°
= 0

Since A, B, and C are Hermitian

i

S w* *
(xAbx) = (8x Ax)
3 &

(X' Box)= (6x Bx)

(x Cox )= (6x Cx)
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Making this substitution in the second term of the last equation results in

the second term becoming

i

- % *
5 Cx (E*A x) - Ax (x Cx) x(x Bx)\ - Bx (-X*x) A
& x - > + — Sadtos
h x Ax)

B
(x ng)z

Note that the terms inside the braces are equal to the terms inside the
braces in the first term of the last equation. Thus, the overall equation

is of the form

als

= = B
8x y+ (8x y) ‘=0

Since this equation must be true for all possible values of the real

and imaginary parts of & X, this implies y = 0.

Thus
% * 3 * o,
Cx(xAx)-Ax (XCx) ({x Bx):h - Bx(xx)h
* 2 + 3 Z =0
(x A x) (x B x)
(B2)
But C= 31?;; and we can assume x is normalized to 1, i.e. E'Pé =1
. ) 3?(3-3:_
because both the function we are maximizing —g——— and the ¢onstraint
' xAx
x =
= - are independent of the magnitude of x. Multiplying equation (B2)

|

Bx
' s

by ( ?_{."'A x), letting C= 2 1 a; in the first term, and multiplying the third

and fourth terms by x x = 1, gives

Ax {xGC x) A x {3:_*5) (E*A.’E) A Bi(_:;"x}z (Z‘_*A x)
x= % + ¥ - ¥ =) —
{x A x) (x B x) 7 (x Bx)

=0
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%
X X
since q = _':‘; we have
X Bx
' % A?i(.’imc_’i) ] * 2, % .
a2z x) -— FAQxAX)x-Nq  (x Ax)Bxko

{x A x)

Combining terms

% (x Cx) * - e
(al_}_c.)a = e A-lg(xAx)I+rqg (xAx)B | x
B - (x A x) ‘ SR E
(X:FA X)
Multiplying by the real scalar —g——  gives
(= Cx)
% s 2 *.2
(25 %) (x A x) (x Ax)71 5 (xAx)
(x Cx) (x Cx) {x cx)
(El x) {x Ax)
Define = — a complex scalar (B 3)
: (x C x) )
g (x Ax) )
s = — a real scalar . (B 4)
) (x Cx)
thus T a =[A—sI+qu]_§

The solution for x is

-1

x = TK (B 5)

2r
where r is a complex scalar, depending upon x, and K= [ A-sI+gs B]

is a Hermitian matrix which also depends upon x.
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In addition to equation (B 5), the constraint equation must also be

satisfied, thus

3

| ¥
1%

q = —F (B 6)
X

I ™
w

Since only the direction of x and not its magnitude (we showed its
magnitude could be as sumed equal to unity) is of interest, the scalar r
which multiplies all components of x may be disregarded. The only: U.n‘—
known, then, in the s‘,imul'taneous'solution of equations (B5) and(B6) is the
real scalar s, which’'is proportional to the Lagrange multiplier A, In-

serting (B5) into (B6) one obtains a characteristic equation for s,

I G | -
: g kR e
g =
L -1
2, K "BK "2,
this may be rewritten in the form ,
* -1 -1 ¥ -1 -1
ElK gB X al_ilK IK a, =09
% -1 1
a; K lgB—I]K a2, =0 (B7)

Because the unknown s is conta.inedlin K, a direct numerical
solution of (B7) is very difficult, However, Lo,  Lee and Lee observed
that equation (B7) states that th'e vector a is orthogonal to the vector
K[ ¢B — I k1! a,. Thus the vector K™ qB -1I] K'lgl must

iie in the space orthogonal to the space spanned by 2, A complete set

{a } with a, as one of its: elements can be easily constructed, e.g. if
n _ T —1 i

1
a; = l we may choose

I ] - ~ -

L -1 [1] L1

1 0 0

_a._2= l? 33_ 1 o e an= .

. 0 .

0 : )

| LO 1
- - Lo
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The vector K V[ aB -~ I] K1 a, must be a linear combination
of the vectors -53-'-2’ 3._3, e e EN' Let it be

k' gB—1] K'a, = J, h_

which yields

rearranging gives
N

L

[A+s(aB-1)]1{qB-1]" [ A+s(qB—1)] a h -
n= 2

it

2, =2

)

-1 2 '
L, A{qB ~1) A3n+As§_n+sA§_n+s (qB-I)_a._n h

n"&1%2
N

a,(~1) +Z sz(qB—I)a. +2s Aa -I—A(qB—I)"lAa h =0

=1 ne 2 —n —1n T =n n g -

or —131+h2‘£2+h3ﬂ3+”.+hN\EN = o

in matrix form

WH= o {B8)

where W is a matrix with in general, complex vectors E’-l’ 11'2, “173, roo3
'\_ﬂ_TN as columns, i.e. W=

sZ(qB-I)g_n—!- ZSAin+ A(qB-I)_lAE

n=2,35,..5 N
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and : -1

e -

Since H is not a null vector, the determinant of Win equa‘ti:on (B8)

must vanish, i,e.

det L 2p2 Waseees Wyl =0 o (B 9)

This results in a (sometimes complex)-polynomial of degree 2 {N-1})

in the unknown s, and thus the roots can be nurn_eriéally determined, One
zi_‘p C x

of them will give the absolute maximum of —g— > because once-the
x Ax

possible value of s have been found, the direction of x can be found from

equation (B 5 and the problem is solved,
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T
CHAPTER 4 °

Minimization of the Mean—ESciua.z.iegi-Error (MSE)
Subject to One Linear Constraint

g b - ‘o -

Our ob_]ectwe is to conSlder an adaptwe algorlthm whlch W111 maximize

the SNR subject to a constraint on the super-gain ratio when unknowré 1nterf.er-
ng noise is present. Because the SNR and super- ga1n ratio are nonlinear
quantltles, it is difficult to prove converéence of-our algorlthm to the optlmal
SOluthn, or to analytically find the algorithm's rate of convergence. Thus,
for the purpose of mathematical tractability (the® vonlinedr algorithm will be
simulated on a- computer to obtdin soime nurnetical indication of conver‘gence ;
and convergence rate in chapter six), and becauoe (1) the criterion of mini-
mizing the MSE i§ if’nportao't in its own right (2) linear’constraints rmay’ appedr
in similar problems (3} nonlinear constraints are apprommately linear near
the solutlon po1nt and (4) the pro_}ectlon rethod used in the llnear case is-also"
applicable to the nonlinear case, we will consider in thisichapter an- adaptlve .
algorithm which minimizes the MSE subject to a linear constraint, Speci_fi-,_
cally, we will find the Lagrange solution to the problem of minimizing the
MSE subject to a linear constraint and then prove that an algorithm of the form

V_\_’_‘J 31 WJ -k P \7 (MSE) converges to ’che Lagrange solution, when the

gradient VW (MSE) is {1) known exactly, (2) est1mated and (3} est1mated by

—J
an estimate which contains additive noise.
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Section 4,1 Derivation of Mean Squared Error and Constraint Equation

The processor configurationis shown in Fig 4, 1.1 where A repre~

sents a time delay, §_-j_——_- col (s]j, s'zj, ceey S

at the outputs of the tapped délay lines at time (iteration) j, the W's are
the multiplicative tap weights, and dj is some known scalar function of

the vector sj s L.eo dj represents the desired array output at time j.

L

Sij 32j Ssj

Shj

Sn-2j. Snj

9

Wo-z L Wn-i LIWa

Fig.4.1.1 Processor Configuration

From Fig 4,1, 1 we have

€ =d.—WoTS.
i SIT =
ef=d’-2da.s. TW+W

nj) is the stochastic signal

l(..ﬂ—i

4.1.1)

(4. 1. 2)
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‘When the input signal can be regarded as .a stationary, -ergodic

D T I R

random process, then

E{EJ} =‘§;‘and_E'{aj}{ = d

Our probleimn is to devise an algorithm that will:adjust the: weights
to their LMS value subject to a“linear -constraint; Toward this end we have-’
already found :an expression (equation 4, 1. 2) for the MSE, and the remainder
of this section will be devoted to finding expressions for the minimum value B
of the MSE when we have no constraint, mention of.an. ‘ad‘alt;tivé‘ aigﬁxzif;hm . '
that will automatically adjust the tap weights to thelr unconstralned LMS:

values, and writing an expression for any a.rbltrary linear constra1nt on W
" e P,

Fope

Taking the expected value of equation (4. 1. 2) gives ;"

2y _Z _ T2 . T T
E {€j }= €. = dj»-‘ “23 (s, d“).y_fjf*'.‘f_fj ¢(§_’_S_)Y,Vj o (4. 1.3)
where — - -
E{slj dj}
$(s, A)= E{s.q,} = : (4,1, 4)
Blog; 4ot

T
s, 8)= Eis
$(s, s) {s;s 557}
Taking the gradient of sz yields
T 2 T v - .-
(%) = —2¢T(s, a) + 2WT ¢(s) s) _’ 81,6

To find the least-mean-square (LMS) set-of weights, WLMS’ that

minimizes Gj - when there is no constraint, we set V(sz) = o, Thus

“(4. 1. 5)
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T (s, a) = W o dls, s (4. 1.7a)
u!‘{LrII;/IS = ﬂi‘T (5. )87 (s, s) (4. 1. b)

The LMS error is achieved by.choosing the optimal weight vector given
by equation (4. 1.7b). An expression for the minimum mean-square error

may be obtained by substituting (4. 1. 7a) into (4. 1. 3)

)y = 4.7 — W

= T
min i i - T Wivms 9085 8) Wy (4. 1. 8)

Note that min (612 ) is independent of j (di2 is independent of j).

(12)-{18) have investigated adaptive

Widrow, Lucky and others
algorithms which automatically adjust the tap weights to their uncon-

strained LMS values, One such algorithm is given by

2
W. = W. — kV(€, 4. 1.
Wiop = W, (e, %) (4.1.9)

Substituting (4. 1, 6) into (4. 1. 9) gives

Wy, = Wor2ke(s, d)-2kéls, s) W, (4. 1. 10)

Note that equation (4.1,10) is a linear equation in W. This means we can

easily solve for lim W. and other quantities of inteérest, and it is the main
j—= o ]

reason we are using minimum mean-square error as our criterion. The

abovementioned researchers have proven that by using the algorithm of

LMS®

Any arbitrary linear constraint on Wcan be written in the form

equation (4. 1. 9) Y\Ij converges to W

T
Won, —a>o (4.1.11)
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where n oy is a unit norma.l to the hy’perplane W T n, —as=o.

Our problem now is to (1) find the optimum value of the

weights, W ___, which yields the minimum MSE (equation 4. 1. 2) subject

opt
to the constramt (4.1, 11) and (2).devise an adaptive algorithm, similar to
(4.1, 9) which will mek¥ the tap we1ghts W converge to this W opt® The next

section attacks the first problem.

Section 4.2  Analytic (.Légrange) Solution

In this section we will use a Laigrange multiplier technique to find
the optimum value of the weights ‘Eopt’ which yields the minimum mean-

square-error subject to the linear constraint (4. 1. 11},
et us first rewrite equation (4. 1.3) for €. as follows,

Substituting (4. 1. 7a) and (4. 1. 8) into (4. 1. 3) gives

2 2 T T T
©; ‘[Emm * ¥rms ¢(E’E)YELMS] "2 Wims ¢80 2) WHW (s, 5)W
But
T T
'WLMS-"#(E’ sSIW = W~ ¢(s,5) V._.ILMS
Thus
zZ _ 2 T . T '

The problem is to maximize (4. 2. i) subject to {4.1.11}), Let us
investigate what the solution looks like both graphically and analytically,
Graphically we have
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Fig.,4.2,1 Typicdl MSE level curves and constraint

Since the objective function is quadratic, the solution is either:,

1. VI: "ELMS or

2. W = the solution to the Lagrange multiplier problem
when (4.1.11) holds as an equality, i.e. \L\TT n,-as=o,

We are only interested in case (2) in this section, because the

algorithms of Widrow and Lucky Wiil work in case {1).

Analytically we must minimize

2 _ 2 T T
e,j= €].'nin * (W_\-—YLMS} CP(W_‘E

LMS )

subject to the constraint

W

n, —a=~o

1

The Lagrange technique yields

- 2 T T
L= ¢ in H(¥ _VILMS)¢(E_WLMS)+G‘I:W°_I’:l‘“a:I

(4, 2, 2)


http:when(4.1.1l
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Taking differentials with respect to Wwe have

(6W )¢W+W ¢(6W)-—(5W )@WLMS

+a(8W) n, = o

But

(W (oW W el = TWho -

(4. 2. 3) may be rewritten as

nT
-1

+2[W & ~ WEMS 91 | 6w =

Which must be true for all § W, ’ giving

T
|

T

+2[.W ¢_ LMSq)]

equation (4. 2. 4) together with the constraint equation {4. 2. 1) must be

T

Wims ® (6 W)

T
Wy ms ¢

solved simultaneously for o and W, I‘)o@ng this yields

T

T (@-Wr1 vs 27) T -1
. = n. " + W
—optimum —1
T -1
2,7 ¢ n,)

—LMS

(5 W)

(4. 2.3)

(4. 2. 4)

(4. 2. 5)

This is the analytic solution for the least mean square valué of the

tap weights subject to an arbitrary linear constraint,

In the next section

we will present an adaptwe algorithm, which will, in the steady state, make

the tap weights converge to this optimum value we have just found 1n equation

4. 2. 5)-
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Section 4.3 Use of the Projected Gradient Algori’chm to Adaptively
Adjust the Tap Weights '

The projected gradient algorithm that we will use is a modified
version of Rosen's algorithm which is discussed<briefly in Appendix B,
" It is advisable to read Appendix B before the following sections. The
algorithm we will use to minimize the MSE subject to a linear constraint
may be thought of intuitively as follows: We want to converge to the vector
w which minimizes the MSE, which is a function of W,subject to a linear

—opt
constraint on the vector W. Looking at Fig 4.3.1 we see intuitively that

e

Fig.4.3.1 Intuitive idea behind projected gradient algorithm

we can start at a point which satisfies the linear constraint; denote it by
point one; fine the gradient of the MSE with respect to W at point one and
”project"’ ‘this gradient vector, which lies inan n dimensional vector
space {in Fig 4, 3.1 the n dimensional W vector space is of dimension 2),
onto the n-1 (one dimensional in the diagram) dimensional subspace

which is orthogonal to the one dimensional subspace spanned by the normal

Ry to the constraint surface, call this point two; and repeat the procedure
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indefinitely. This procedure may converge to the constrained optimum

denoted by W__, under certain conditions.
—opt

Analytically, the projected gradient algorithm is given by

. ‘EJ + 1 = 'E/_\Ij - kpy‘fj (MSE)

# -

where P is the pro;ectmn oPerator P =1~ E—lfl-l if we have only' one con-

straint (see Appendlx B for the mote general case), n, is- a unit vector ”’
normal to the constraint hyperplane, k is a constant which will be investi-

gated later, and VW (MSE) is the gradient of MSE at time (iteration) j.
—J , : .

Section 4,3, 1 The Algorithrn, Proof of Convergence, and Bounds on
the Rate of Convergence if the Gradient is Known.

I.et us compute the gradient of the MSE, g, and the gradient pro-
jection Pg. . From equation (4. 1. 6)

7= VI - 26T s, 2w 05, 5)

using (4. 1.7a)we get

&= zqa[w WLMS]

The projection operator is given by
P=zI-n.,n

thus

Pg [l'——glgilT]‘Zd)[V_V—"\f

Our algorithm is

o . T . ..
Wiy = Wy-5lTnn, 7] 200 W, = ¥\

. As discussed before, we'will start-at a point where the constraint.

is satisfied, and since at every-iteration we are projecting W onto a sub-

space where the constraint is satisfied, this implies that the constraint

(4.3, 1. 1)

(40 30 10 2)

(4.3.1.3)

{(4.3.1.4)
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equation is always, satisfied, 1i.e.

Equations (4.3, 1.4) constitute a set of n simultaneous first order
difference equations. In order to solve them, we need initial conditial
conditions. For our "initial" conditions, we will use the fact that the con-
straint must always be satisfied, ?,nd in particular must be satisfieﬁ aj:

j =0, i,e.

T

-— 00

'Elza (4-30105)
Now egquations (4.3. 1,4} and (4,3, 1. 5) constitute a set of n first

order deterministic difference equations (since W is of dirmension n) with

initial conditions. We want to investigate whether or not the sequence’of

Wis converges to Wo , and if so, what is the rate of convergence?

pt
To answer the first question, we will solve for the asymptotic value

of equation (4. 3. 1.4)

T
W= Wt 2klI-ngn, ] ¢ [Wy g - W,

o= [1-nn;"] ¢ [Wyyg -W,]

W

W~ Wias (4.3.1.6)

Let X

W

then [I"ElﬂlT] b x=o0 (4.3. 1.7}

Again, since W has n components, equations (4, 3. 1.7) constitute
a set of n simultaneous deterministic homogeneous equations in n unknowns.

The initial condition (4. 3. 1. 5) becomes

n -3<_=a-nT-W {(4.3.1.8)
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Before solving {4.3. 1. 7} let us consider the following equations,
A X =0

1, A necessary and sufficient condition for the above n equations to
have a nontrivial solution is that the rank of A be less than n, or equiv-

alently, that the determinant of A be zero,

2, If the rank of A is r, where r < n, then the system of equations
has exactly n -~ r linearly independent solutions such that every solution
is a linear combinatidn of these n-r linearly independent solutions and every

linear combination of the n-r linearly independent solutions is a solution.

Let us now investigate the rank of [I -n.n lT] ¢. By definition,
the rank of an operator is the dimension of the range space of the operator, '

thus

rank[l—glgl

For arbitrary matrices B and C
rank (BC) < min (rank B, rank G)

From, this we may conclude that

1, Because rank [1”213 T] = n—1, this implies there exists at

1
least one {possibly nonunique)} solution to equations (4.3.1.7) .

2, If we know that the rank of [I- n . IT] ¢ equals n - 1, this implies

there exists a unique (to within a multiplicative constant-which is unique

n

provided the initial condition is satisfied) nontrivial solution to equations

(4.3. 1. 7).

If ¢ is invertible , then the rank of [I"'E ElT], ¢ = rank [1 'ElﬂlT]
=n -~ 1, This foliov;fs from Halmos, (23) Theorem 3, partIV, page 92, Since b
is a correlation matrix, it is positive semidefinite, and, in practice almost
always positive definite, which implies that it is invertible. Thus equations
(4.3.1.7), together with the initial conditions of equations {4.3, 1,8) have a

unigue solution.
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If W = W optimum satisfies (4.3.1.7) and (4.3.1,8) then it is the

solution., We will now verify that this is the case, From (4. 2. B)
-9

T
(a-W )
Zims 21 -1

‘ﬁ-roo_‘f—ropt_ T -1 : ¢ I—1-1+."—;‘£I.¢MS

(2, -9 )

T
e W - W - Wivs 2y o
2% Lo~ SLMS T 1 21
(n,7¢ "n,)

Substituting this expression for x into (4.3, 1.7) and (4.3.1,8) one sees that
the equations are satisfied. Thus Y__fw = W is the unique solution to equa-

—opt
tions (4.3.1.7) and (4,3.1.8).

Now that we have shown that the sequence of W's does converge to

W ., we will investigate the rate of convergence of the weight vectors to

—opt
_\Eopt , given by (4. 2, 5)
(a-Ww n )
-—LMS —
Wopt = . nyt Wovs
( 1 ¢z )
Define
= W.-W 4.3, 1.9
352 257 Zopt ( }

The algorithm (4.3.1.4) can be rewritten as

- T : T|
Wj+1_[(1-2k¢)1+2k3131 ¢] Wj+2k[l—3131 & Wiass
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After some manipulation {and noting that [1= =00, ] c};. q; ny =9 ‘_v)'we have

- T .
e ) : 4.3.1,10
4541 “_[I 2k{l-n,2, H’]i;j;_ ( )

'Si'fme-qj = Vlfj - Wopt’ by looking at Fig. 4.3.1 we see that qrj always lies

.in the hyperplane (in the F1gure this means lie along the constramt line}

which is orthogona.l to o s? hence .

PgJ.:gj for all j (4.'3.1.11}
Thus
' T . : Lo
95 41 -_-[1—51:15._1 ](1_21§¢)gj | (4.3.1. 12)
" and- Co .
31 e
e,y < &% 11 g, | (4.3.1.13)
where
T .
‘iE‘”[I*EIEl ](I-2k¢)[] (4. 3.1.14)

Let us investigate this norm. . The correlation matrix ¢ is a
" symmetric-positivesemidefinite, and in practice almost always positive

definite, matrix with positive minimum and maximum eigenvalues p , and ~ °

respectively; k is chosen to be a positive number; and (I —7n . 0 T) is

P
N T -
a projection operator as dlscussed_ previously. To bound the norm, we have

o

e<ilton ™Il [r-zxell o0 7 wsaas)

. T. . . Lot T,
Since I —-n nyn n 1 is a projection operator, its norm is 1, thus
. . ) h e .

t< |l1-2k¢|]= 8
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Since {I ~ 2k ¢} is self-adjoint (see I—Ialmos(23 )page 180 and Goldstein(28]
page 24) we may bound E’l as follows i
T . ‘
g1= sup |x {I- 2k cb)z\ (4.3.1.16)
Hxl[=1
Since ¢ is symmetric positive definite
T .
- kali 2kx" ¢x £ kaN (4.3.1. 17)
where p. and p__ are the minimum and maximum eigenvalues of ¢
respectively, and H x H = 1, This implies’
T .
1-2kx" ¢x > 1-2kpy (4.3.1.18a)
and
1~ 2kxT ¢x < 1~ 2kp, (4.3.1. 18b)
thus -
l—kaNil—ZkET.qJEi l-2kp, (4.3.1.19)
and
sup -ET(I_2k¢)§ f}ﬁmL)IIHZRplb |1u2ng|% (4.3.1. 20)
[z|[=1 '

Thus
§i§1=1pm{¥ l1-2%0,], ]1~2kpNjg {4.3.1.21)

If we plot, on £ vs k axes, the two curves § = ] 1-2k pll and £ = I 1- kaNl

we have £
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i | R E- R .
A plot of £ & max ] 1-2k p;[, | 1-2kpy| | looks like
3 ' ' "

P*Py Py

Fig. 4.3.3 Bounds on kmax

v+ .= The maximum value of k that still insures convetgence (k

max
is found by setting
- (l-2kp )< which implies
Tk < pL 1 (4.3.1, 22)

Thus in this sectlon we have proven that our algorlthm converges
to W P for k sufficiently small, In the next section we will investigate a
more useful algorithm, i.e. an algorlthm which does not requlre a prlorl.

knowledge of ¢ .

Section 4.3.2 The Algorithm, Proof of Convergence, and Bounds on

the Rate of.:Convér'gence if the Gradient is Estimated

4

In practice, the mean-square error e, is normally not.available,
There are various methods available for estimating ejz\:. Here we will
assume the simplest estimate ejz"m Ej?"ﬂ i, e, dve are 'al‘)_pré;ximating the
2 . L e . <o .
average value of. Ej by its instantaneousvalue, which is normally avail-

. ) .th 5 R -
able., Thus the i— component of the gradient is approximately given by

the i—tE partial derivative of ejz with respect to W..



-88-

de. . de, : oe
i .

From equation (4, 1.1)

€,
J = _g
oW, i)
1
thus
2 s 2
V (. ~V e = -2¢, 8,
(EJ ) J J—J]

We will now use this estimated gradient _§_ in our algorithni yielding

T
Py = [I-n,ny ] - 2e.8

=]

T
T‘Ej-;-l = V_Vj“" 2kl I-n;n, ] 25 ¢

using eqgiation {4, 1.71)

T
T
(d.-s, * W,
n1]§_J(J__ )

W =W.+2k[I-n
—J - J —J

251 1

The "initial" condition is

T
Voo "Dy =2

W. is now a random vector, and equations: (4.3.72, 2) represent a set of
first-order stochastic difference eqﬁatj.ons, with forcing stochastic
vector s 5° .

»
H

Let us see what the asymptotic expected value of \L{j is:

B (W, ) =B (W) +2klI-n0,7] (205, )~ ¢z, 2) B{W;))

(4.3,2,1)

(4.3.2.2)

(4.3, 2.3}
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because

T ' T
E{s:58,” W.}] = E {s.s. .

i. e. \_’\_Tj depends upon s s but is independent of s . .

—1’...’——':]'—].

From equation (4.1.72) ¢(s,d) = ¢(s, s) WLMS

'E{W

+1}-—E{W}+2k[l n,n, ]qb[WLMS E{W}] ) (4.3, 2, 4)

Taking the expected value of (4. 3, 2.3) yields
E{W T} n, =a ' S (4. 3.2, 5)
Tl 2 - Ve Jo &

.Equations (4,3, 2. 4) and (4, 3, 2, 5) constitute a set of first order deter-
ministic difference equations, exactly the same as equations (4. 3.1, 4)

and (4.3, 1. 5). Thus the solution {unique since rank (I-El_x}_,lT) ¢=n-1) is.

@-¥ivs 21 -1
E{We} = optlmum = T 1 ¢ ny +Wius (4.3, 2, 6)
n;" ¢ "ny) )

We have shown that the mean of ‘L\Fj converges to W However, since

) —opt® )
equations (4.3, 2. 2} are stochastic, we must also investigate the behavior

of the variance of the random weight vector WJ about its expected asymp—

totic value, glven by E {W o = optirnum - ‘Eoo“

Let g. = W, - W, (4.3.2.7)
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In terms of q, the algorithm (4. 3. 2. 2) becomes

q.
255l = ~k2f1- non s .
! 2 ]—-J~—J 2;
~k2[1I- n,n, ]s T 3
2= L
¢
T
+1<z[1—51_131 ]sjdj
Define T,= 2s.s,°
j —~Jj—]
= 2d.
—J J=J
_ T
thus
q. =q.-k [I-n,n T][T.q.+T.W' ~-v.]
=j+l =) —11 N e

This may be rewritten as

where

8
H
.
0
+
=2

_ e T w
Ej = (1'5121 ) (Tj\iw—yj)

Note that & {HJ} and E {hj} are independent of j, Also H,
. - . . J

are statistically independent of Hk and Zl_k if j 4 k, because we assumed

that 55 and sk are statistically independent for k # j.

Noting that
E{Tj} = 2¢(s,s)

4.3. 2. 8)

(4.3.2.9)

(4.3, 2, 10)

(4.3.2,11}

{(4.3.2,12)

(4.3. 2. 13)

(4.3. 2, 14)
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E{YV;} =280, d) = 28054 8) Wiy

13

it is easily shown that
‘E{n.} =0’
T

 Note that E{I—Ij} =2(I-n,n,")é(s,8) =

The algorithm is thus

where _’cgj=H.q +h.

a

(4.3, 2.15)

(4.3, 2.16)

Hj is a sequence of random n x n matrices; hj is a sequence of random .

n-tuple vectors; the expected values of H, and h, were shown to be in-
for £ # j: E{.Iij}

dependent of j ;H_’j and Ej are independent of H, and h
= 0; and the elements of Hj and Ej heve finite variance, with E{HJ} =0

£

Under these conditions, it is shown in appendix A that for k suffici-

ently small,

lim || E{gj} || = o

o

and lim supllgjl[‘- vV (k)

. Je o

where the norm of a random vector u is defined as

ll}},HEJE{ETg}I

and IlimV (k) = o
le—=o0

(4.3.2,17,

(4.3.2,18

(4.3.2.19

(4.3.2,20
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Equation (4.3. 2.17) shows again that the weights converge to W __ .
~—opiimun

and equation {4, 3, 2. 18) shows that the variance of the random weight
vector about its expected value is bounded, and the bound can be made as

small as desired by choosing k sufficiently small,

The rate of convergence of the mean of the weight vector is shown

in the proof of the above theorem to be bounded by £, where
T.
t=|]I-k(I-n;n;")2¢]] (¢.3.2.21)
and o < £ « 1 as shown in section 4.3, 1,

Section 4. 3.3 The Algorithm, proof of Convergence, and Bounds on the

Rate of Convergence if the Gradient is Estimated, and

the Estimate is Noisy.

When our estimated gradient contains noise, wherever we have
the quanftity ij in section’4. 3. 2 we replace it by f—j + Ej' To characterize

the noise we will assume .

T, _ o
E{Ej} = 0, E{Ejgj } =9 andij’ik’f}-z’am are statistically

independent for k § j and n # m,

The algorithm becomes

: T T, T
W, = W.+2Kk|[I-n.n s.+n. )fd.—(s., +a.] )W, 4,3.3.1)
—j+1 =] [ —1=1 ](—J -3)[ ] (-J =] ) -—J] (

with the initial condition the same as before, i.e.

W n.=a (4.3.3.2)

7

Equations (4.3.3.1) represent a set of first-order stochastic difference

equations, with forcing stochastic vectors ij and P—j'

Let!s find the asymptotic expected value of ?_‘_fj

B(W,, )=E{w) +2x[t-n;n, "][e(e, a)-0(e, 2)BAW,) -4, AW, 3]
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Using (4.1, 7a) and setting E {x_z‘_zerr 1} = E{\gj} = W_gives .
o=|I-n.n T]'c]) (I:-l-d:—l-é; YW - W ]
— ._.1.._.1 i . . - T n -.—:UO '—LMS'

Taking the expected value of (4, 3. 3. 2) yields
T
Wo 21 =2

Pefine £ E[ AL+ g7 o Wy - YLMS]

1%

then [I'“nlﬂlT] $x =o0

.> By the previous arguments, a solution to (4, 3. 3.6) exists and is unique

because

rank | I—P_IEIT] $ = n-1
Equation (4.3.3.6) is the same as equation (4.'3. 1.7), thus the solution
is given by ,

X = o¢ n,

where the value of o is chosen so as to satisfy the initial conditions

given by equation {4.3.3.4), i.e.

T S

a=

n T ete) e

The 'solution for V__V » is thus

-1

—LMS . : .
E.IT (I+ 4’“1%}-14’_121

r

(4.3.3.3)

a 1

4.3.3.4)

(4,3.3,5)

PO S

(4.3.3.6)

(4.3.3.7)

(4. 3.3, 8)

{4.3.3,9)
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Remembering that

T
1 Wims)
.0 E'-l_

{a~—n
W =W " o
-~0pt —~LMS T ,-1

(n," ¢ "n»y)

3

we see that \—f»}”oo differs from Wo in this case, i.e. a bias exists, and

pt
the bias approaches zero as the noise matrix c]:n approaches the zero

matrix,

Again, since the weight vectors are random, before we can con-

clude that the weight vectors converge to W » we must examine

optimum
the variations of the weight vectors about their asymptotic expected value,

" given by (4.3.3.8)

Define q.= W, ~ W - (4.3.3.10)

2jT =i~

In terms of ¢ , the algorithm (4.3.3.1) becomes

]

_ T T T
Gy =gk lI-nyny T ey hns) ey +nst) gy
T T T, =
"kz[l"ﬂlf}.l ] (ij+2j)(_5_j +Ej YW
+k2[I~n n-T]d.(s.+n.)
—1=1 AR S
. ' _ T T
Define T.= 2(s,+n.)(s, +n.7} (4.3.3.11)
j SSURHEE R B
V.= 2d. (s, +n, 4,3,3.12
~j j g5 t2y) ¢ 2
HE {(Ifn. a2, 0)T (4.3.3.13)
J _1_1 j -. - L]
, T ~
. =q.-k[I-n. g, + T, -~ ‘
95419 ~kbI-2y 0 " I Td e T, W -V ] - (4.3.3.14)
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This may be rewritten as

q.. =q'—k . 40303015
where 52_] = Hj gj + 1_1J (4:3,3,16)

hE (I-n.n, ){T.W_-V.) (4.3.3.17)

=j 2312 j e X _ s 3.3

Note that E {H } and E {hJ } are independent of j. Also I-IJ and hJ are
statistically mdependent of Hy and h, if j ¥ k because we assumed -

8., 5
—J

8, Bys B are statistically 1ndependent for k #.j and n # m.

Noting that

E{H}=20¢+¢]

E{V;} =28(s,d)=2¢ Wy
it is easy to show that

E{p_j} =0 | {4.3.3.18)
Also E{I—Ij} =2(l-n;n, )(¢>+¢ =4 (4¢.3.3.19)

By the same argument as before, we may show that for k

sufficiently small,

lim || E {a.} |] = o (4. 3.3, 20)
j—e 0 —J

and
lim sup || a [|$ Vv (k) (4.3,3.21)
j=eo

This proves convergence,

Again the rate of convergence is bounded by £, which depends\upon

k, the eigenvalues of (¢ + ¢n), and the constraint.
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Section 4.4 Simulation Results

As a check on the theoretical work we have done in this chapter,

we programmed the foliowing algorithms on IBM 360/50 in Fortran IV,

Let us first consider the algorithm given by equation {4.3. 1. 4)
where the gradient is assumed to be known. We let the dimension of

the vector '\E be four.

Let
R
d.-= 1111 |s,.
- : ] RN
s_Zj
533
%4 | (4.4, 1)
10 0 0
0 2 0 O
o(s, s )= 0 0 3 0 4,4, 2)
0 0 0 4
i.e, all components of the vector s . are assumed to be gaussian, zero
mean, and uncorrelated,
Thus _ _l
1 6 0 0
1 03 0 0
¢ (s,s) = 0 0 Lo (4.4.3)
0 0 0 %
and _E s,.d.} | 1|
e ¢ 1j J}
E {s .d.} 2
2 :
$(s, d) = y st . (4.4,4)
"35%5} 3
E P 4
| E{sy,d } 4
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The LMS value of the weights is given by

1
. -1 1
Y{LMS=¢ﬁ (f_’i)g(f_ld) = 1 (4o4.5)
' 1
For our constraint we let
[~ m &
1
vy2
n, = L 1 and a = 3 4.4, 6)
V2
0
i.e. the linear constraint equation is
- >
W+ W,2 3 V2
‘which means that there are no constFaints on W3 and W4.
3V2 10+ 3v2
0 ) 10
For our initial conditions we W = or W =
) -0 0 —0 0
considered two cases: 0 0
i - .
"which exactly satisfy the constraint.
The Lagrange solution is
~ 7 i ]
N 1+ 2v2 3.82
w 1-2v2 | = -0.41 (4.4.7)
—OoP 1 1.0
1 1,0

A limit on the values of k which insure convergence is, from

equation (4.3, 1. 22), given by those values of k for which £< 1, i.e.
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k< 7

—

"The algorithm is (see equation 4.3. 1. 4).

[

- T -
‘f_rj.g.l = T‘_Vj ~ 2kl I-n,n, 1 ¢ [‘EJ - T"l‘.ir}d,l\/is]‘ o

where
B 7 i 7
342 10 +3 V2
= 0 W o= 10
—° 0 —° 0
0 ‘0
_ 1 L

Using -the values we have choses for n, and ¢, the algqlzji_{.:hm_ ,

may be rewritten as

— . 7
, Wy H2W, =3
h ‘ W..+2W.. -3
I I 1 <2 i
~Jjtl =]
; 6W3.j-—6
8W4j—8 .

In the steady state, W should converge to W _ =

and the asymptotic MSE should be given by

[3.82

1,0
1.0

~0.41 ¢

(4. 4. 8)

(4.4.9)
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B’} =a® -29T (s, )W W W
evaluated at W =W = W which is
- —00 -opt
E{ ejz} ' = 12,0
W=W =W (4. 4:10)
— —w —opt

We ran the above algorithm for various values of k, with the
initial condition W_ = col[ 10 +3v2, 10,0,0] and the results are
shown in Fig 4.4.1. Note that as k increased from 0. 01 to 0. 25 (above
which we no longer have convergence, theoretically or in the simulation,
as demonstrated by Fig 4. 4. 1 when we let k=0. 252) the rate of conver-
gence a.grees: with the bound g‘i:v-en by Fig. 4.3.3. Fig. 4. 4 2. shows
how the norm of the vector g ({see equation 4.3.1.9) convérges to
zero for wvarious values of k. From this graph we can compare
the actual time constant, for a particular value of k, to the theoretical
bound on the time constant (£), e.g. for k = 0.01, [g | decreased from
15.82to 12,26 in ten iterations, Setting 12.26 = glo (15.82) implies £=.975
which is in agreément with Fig. 4. 3.3, which bounds the rate of conver-

gence for this value of k by 1-2k py = 0. 98.
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Fig.4.4.1 Gradient Known, No Additive Noise
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Fig.4.4.2 Gradient Known, No Additive Noise
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, If the gr.adient, must be estimated from the incoming data, the

algorithm {see equation 4.3, 2, 2) is

‘ ' T T
“. = W. + Zk I n 5. d.""s. * W. 47:14‘11

Usulg the valués we have chosen for n . and d the algorithm may be

rewritten in the form
HI 5 .

- }
(sj ¥ 2) uj
R (551 %552 %
:;-“—-]:j'i"}_ .T". -‘—M-:j + k 2 5311. (40 40 12)
Y i h]
2 s4uj
8 -
Coe oA . .
i\ﬁfbgz\_re‘znuj._ (s]. 1:!- sj 5 + Sj 3+ sj 4) - (sj le 1—I- Sj ij 2+S3jwj3 +Sj4Wj4)
(4.4.13)
- In the steady -state, W, should converge to the same values
as before, and the asymptotm MSE should be 12,0,
I T . ]
. . ' 10 + 3 V2

¢

':’T:‘he results of the simulation for k = 0, 01 and Vlfo 10

[}

ot

are shown in Figs., 4.4.3 and 4,4, 4 and agree with the

theor etlcal values above.
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Fig,4,4,4 Gradient Estimated , No Additive Noise
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Finally if the g'radient must be estimated from the incoming data,
and the incoming data is noisy, the algorithm (see equation 4.3.3.1)

becomes

T, T T
W. =W.+ 2kl I- n .+t n. d, - {(s. +n, W. 4,4, 14
Wir1 = W5 { 31~J.] (33 *J)[ j (_J EJ )_ﬂ] (4. 4. 14)

Using our specific values for the above quantities, the algorithm may

be rewritten as

Sj1+njl +sj2+nj2.l-

s, . + n. + 5. + 1.
j il iz Tj2

‘f_fj+1=v_\fj+ku. ' {(4.4.15)

where

T T
.= d.—(s.  +n, W . 4.4,16
4 s sy T W ( )

ILet the noise correlation matrix be

¢ =0.11 (4.4, 17)

In this case, see equation (4.3.3.9), the average asymptotic value

W should be
0

]
3.72

N -0, 515
Wo= " | 0.967 (%. 4. 18)

0.975
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and the asymptotic MSE should be & 11,9, The results of this
10 + 32 ’
simulation, for k=0, 01 and \_«\_To = 18 are shown in Figs., 4.4, 5
0

and 4.4.6

Fig. 4.4.7 - 4.4.10 indicate how the convergence rate and
asymptotic MSE change as the additive noise in the incoming data increases.
Figs. 4.4.7 and 4.4.8 correspond oy = 1.0I, W_ = col[3.17 -1.12
0.747 0.80], and asymptotic MSE 14.0. Figs. 4.4.9 and 4. 4. 10 corres-
pond to ¢ = 10.0I, W = col[ 2.34 -1.90 0.28 0. 29], and asymptotic
MSE & 28.

Comparing Figs. 4.4.5, 4.4,7, 4.4.9, and 4.4.3 we see that it took
longer to converge when we had additive noise than when we did not have

additive noise in the incoming data.

In Figs. 4.4.11and 4.4.12we kept everything the same as in Figs.
4.4, 5and 4.4, 6 except that we started at V_\fo = col[3+2, 0,0, 0] which
is much closer to the steady-state value, W _, and exganded the vertical
scale., From these figures we notice that the MSE is somewhat sensitive
to the occasional noise sample whose value is greater than three or four
standard deviations away from the mean value of the noise which in our
case is zero. This suggests that one might achieve a smaller value for

the steady state variance if the algorithm were

Wepr = W, -k f[V(MSE) ]

V(MSE) if V (MSE) $ K_

i

where f [V (MSE) ]

K if V(MSE)> K
o] o]

However, this approach was not investigated further.,
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Appendix A Proof of Convergence and Bounds on the Asymptotic

Variance,

This theorem is essentially the Ssame as Appendix C of Gersho?st!8)

paper,
Theorem: Let Hk be a sequence of random N x N matrices and

h, a sequence of random N-tuple vectors, Suppose E {Hk} and E {.b:k} “
are independent of k; H, and h, are independent of H, and b, for k $3;

E {Ek} = 0; the elements of H, and h, have finite variance;E{Hj}Ea )
&= HI-x@]|| =1-%c wherec> o.

Define the random sequence q. by:

gj-[-l = f‘l_j -k .(23 (A 1)
szHj fl,j'l'ﬁj (A 2)

for j =0,1,2,... and is an arbitrary deterministic vector. Then for
J 9, y

k positive and sufficiently small

im || E {q.} [ =0 (A 3)
< :’ 17 ‘ja_’w . ‘
and
lim sup || g.|l¢ V &) (A 4)
. J—‘"m =] .

with V (k) satisfying

im V{k) = o (A 5)
k—= o ’

Note that the norm of a random vector u is defined as

I HE_JE{ETE.} (& 6)
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Proof: Combining. equations-(Al) and (A2) yields

s ~kH , = kh,

S1nce q is independent of HJ , taking the expected value of equatmn

(A7) glves

B {q3+1} =AI-&0) Elq;} : (A 8)
Thus T
I & £a;) IPEERIEAC: N A (A 9)

Since £ < 1 by hypothesis, equation (A3) follows,

To prove equation (A4), observe that

E{gtfﬂgm} _E{q‘(l kH] ) (1-kH g }-E{a] (-kH xR}

wel M

- Bk (I-kH,)g;} +k*E{n 1)) (A10)

But since 'ij'is independent of I-Ij, the first term in equation {A10)

may be bounded by
E {g;.r (I-kHjT) (1-kH) q.} = E{g’ £ { (- kH Ty (- kI-I BT
T 2 2
$|IE (s @eaE) ] [la 1% = wll g

. where pn= ]| E{ (I kI—I ) (I~ kH)} I (A12)

Note  xTax<|[Al Ilxl?
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Combining the second and third terms and using the Schwarz

inequality gives

T
-2kE{q, (I-kH.}h.}

=] } =3
= -2x[E(g,") = {n) -xE{g,"} & (5,1 3] = 2’m{q Ty E (0
2

< 2% || BLg;} I
where £= || E{Hj Ej}”
and £ is finite,
Using {A9} we get

T 2..3 1t
~2kE{g; " (I-kH) b} < 2kt ¢) | £{q} ||

Applying the bounds (All) and (Al5) to (A10) yields

. 2 T 2 2.0.] 2 2
541 112 B{g 5y 9541 7 S e lagll™ + 2eeed | BLg 3 1 +x711 25l
If we now define the bounding sequence of positive numbers Qk accord-

ing'to‘
e = || E{g }I?

and

r I 2 a
Q= 1O, + 2K tg |E{g Yl +x HEJ-”

then it follows from (A 16) that

2
g, 112< 9,

i

(A13)

(A14)

(a15)

(A16)

(A1)

(A18)

(A19)
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But the difference equation (A18) has the asymptotic solution,

2 2
_ K|l
lim Q, = (A4 20)
j—eowo 1 -p
becduse £ < 1. N
Thus ' i > ” Hz -
lim sup |la % ¢ ———
j—- 0 I-p ) _(a21)

where ” h ” is independent of j by hypothesis,

Let us investlgate the positive constant u:

if Gj = I—Ij - ' (A22)

.

then (- k H, Ty u- kH) - Q- kaT_kG )(1 i @ - kGJ)

1l

(I-k @7T) (I—k(t)—(l—”kaT)ij T 1~ ka)+k G G

t o,

I > .
H -
¢ .

E { (I—kHJ.T) (-kH) } = E{ -k ATy T-r@)}+ k2 E{GjT Gé}

r - - -

£

E{ (-kH, Ty - kH)} = (I-kd) @-ka) + X% E {c;jT G, } | (AEZ’?»)
w= || @-kd) @-xd) + x°E {GjT G} ‘H | ,

< Pty (A2

where - o SRR

v= | G, [|% is finite.

. . : *
Futhermore, in 2ll cases § is of the form £ = 1 - k ¢ where ¢ > o,
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kz_ kZ
1 - p < 2 2
1 =] (1-k )" +K"y]
2
= -k N— - k . (A25)
Z2kec ~k'c” - k'y 2c —k{c"+vy)
Equations (A4) and (A5) are satisfied if we define
k
V (k) = >
2c — k({c™+y) (A26)

QED
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Appendix B Rosen's(#1)-(22)G  aqient Projection Algorithm

In this investigation, we indicated that our gradient projection
algorithm which.adaptively adjusted the tap gains could be thought of
as a modification of Rosen's algorithm, Therefore, let us now sum-
marize some well-known linear.( and nonlinear) programming methods
of optimizing functions subject to linear (and nonlinear) constraints
when no noise is present; explain why Rosen's method is applicable
to the problem of optimizing functions subject to both constraints and
neise; and illustrate, for those unfamiliar with Rosen's algo'rithm,
how it would be used to locate the maximum of a concave function

subject to llnear constralnts

We restrict our discussion to gradient methods of linear and
nonlinear programming because other methods of optimizing convex
functions (e.g.Simplex) work essentially by examining the vertices
of the feasible region, and testing whether or not the conditions for'-
optimality are satisfied at the vertex being tested. If the conditions
are not satisfied we jump to the next vertex, However, since the .
vertices may be far away from one another, jumping from one vertex
to another is not what we want in an adaptive algorithm, which must
have the property that if we are not at the exact optimum we must
still be '"close to'' the exact optimum, not at the next(vertex which
may be a considerable distance away. Another point to consider is
that at any single iteration you dontt want to move too great a distance
because we will sometimes be moving in the wrong direction due to
the presence of noise. This is another reason why we don't want to
consider just vertices, but rather all points on the boundary of the

feasible domain,

All gradient procedures work by movin.g from an iteration point
Ek in the direction of the gradient or, if this is not possible because of
the constraints, in the direction of a vector s which makes an acute angle
with the gradient, i.e. f__TVF .(Ek) > 0. We move in this direction until
either F reaches its maximum in this direction or until we cannot go further
without leaving the feasible domain, The end point gives the next iteration

value x k+1., We never leave the feasible domain thoughout the entire iteration,
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(24)

Zoutendijk's method chooses s so that, after'a suitable hormalization,

its scalar product with the gradient is maximized under the condition

that we do not iﬁirﬁeﬁiatelji leave the feasible domain when moving from

Ek in the directi'on‘f_.' We will not use this algorith:ri'n because the max-
imization step uses the abovementioned linear programming methods which
are advérsely affected by noise. Another procedure is to restrict the vector’
s to lie in a certain linear manifold of dimension smaller than n, This ap~
;roach is used by Rosen, ‘These two methods -aré somewhat similar. We"
will use Rosen's method because the iteration-steps appear to be simpler

and should use less compute'r‘time. .

(25),q

)For more details and proofs as

We will abstract pp 163- 170 from Kunzi, Krelle, and Oettli
(2

some numerical examples from Hadley.

well as a discus sion of how the algofithm may be modified to account for

nonlinear constraints, see Rosen s orlglnal pa.pers.

-

The problem is to max1m1ze the concave £unct10n F(x) subJect to
the linear constraints {nonlinear c_onstra1nts are dlscussed in Rosen's

second paper).

_hj.,(i)s.ij.T‘.E“bjio j= 1, 2,....m (B 1)

where x is a't_nun dim‘ensiog'a_l vector, _‘
If a point 3;_0: of the feasible domain (i.e. 3{_0 satisfies all the con-

straints) is not the constrained maximum, then we may look for another

feasible point-with a higher function value by proceeding from _350 in the |

direction of the gradient of the, objective function. This is always posgible

if 50 is an interior point., However, the method can fail if 50 is a boundary

point, because the gradient vector may point toward the exterior of the feasible

doma1n. Rosen! s method 1.s to project the grad1ent onto the bou_ndary of the

feamble domain and then proceed in the direction of the projection rather

than in the d1rect10n of the gradlent itself. More pre01s ely, the gradient is

pro_]ected onto a 11near submam.fold of the boundary, i.e. on the submam-

fold of least dlmenSlon that cantalns xo. In three dlmensmnal spa.ce, for

1nsta.nce, the fea.sfble domaln is a polyhedron Whose boundary cons1.sts of

-

manifolds of d1mens1on two (faces), d1men51on one (edges) a.nd d1rnens1.on
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zero {vertices), If EO lies on a face but not on an edge, the gradient is pro-
jected onto this face; if 35_0 lies on an edge, we project on the edge, 'Rosen"s
method coincides with the usual gradient method if the point x° lies in the

interior of the feasible domain.

We denote the (n-1) dimensional manifold (boundary hyperplane) de-
fined by hj (x) = o by I—Ij s l.e,

H = {zlhj(gz_)=o} i=1,2...,m (B 2)

The boundary of the feasible domain consists of all feasible points

[hj {(x) < o for all j] with hj {(x) = o for at'least one j. The (non-normalized)

normal vector ?—j is perpendicular to Hj and points ocutward from the feasi‘t;le B
domain., A number of hyperplanes H. are linearly independent if the corres-
ponding E—j are linearly independent. The intersection of k hyperplanes is

the set of points which lie simultaniously on all k hyperplanes, The intersec-
tion of k linearly independent hyperplanes forms an (n-k} dimensional'linear

manifold in the n dimensional space of the x vectors,

Let us now consider the projection of the gradient vector., Say EO li.es
on r hyperplanes, We pickout q linearly independenthyperplanesirom among
these r, which, after a suitable reordering of the indices we may assume to be
I—I1 3eses Hq. Let D denote the {n-g) dimensional intersection of these hyper’—'

planes, The normals a s ?Lq are perpendicular to the linear manijfold D.

1 F
The q dimensional linear manifold spanned by Byreeer @ will be denoted by
D. Dand D are mutuvally perpendicular and together span the whole space,

The projection of a vector y on the linear manifold D is denoted by p and is

given by .
Ips Pg¥ (B 3)
where P =1-A (A A laT (B 4)
q q q q q
and A= (a. a, ...a ) B 5
q (2, 2, —q) (B 5)

Note thatP_= Iand P = zero matrix,
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T

v

' k., . .
Rosen proves that the pomt X is the unique constrained maximum

for concave obJectlve £unct1ons if and only if xk satisfies

p glxN=o0 (B 6)

and

ala Al g )20 (B 7)

k, . . .
where g (x7) is the gradient vector at point x

i
Condition (B6) states t'hat the gradient vector is orthogonal to the manifold

D, and thus lies in D. Hence

q
) = ; = Agm 1 (B 8)

Substituting (B8) into (B7) we see that (B7) may be rewritten as
uzo

Equatmns (B6) and (B?) together imply that a necessary and sufficient
cond1t10n for the pom.t xk to be a constrained maximum is that the grad-
ient of the objective functlon be expressible as a non.- negative linear com-
bination of the extermr normals to the hyperplanes on which the point lies.
This is equwa.lent 1:0 the well-known Kuhn- Tucker(27)00nd1t10ns. If Xk'.LS an
interior point of th.c-T feasible domain, the optlmahty criterion simplifies to

&E5=gﬁk

) =o.

Whenever the conditions for optimality are not satisfied Rosen
shows there exists a feasible point _:Ek_H which yielc'i‘s a higher objective
function value. There are two possibilities (we avoid discussing degen-
eracies) which we consider separately. Denote g (Ek) by g2y

Case 1 P g1 # o.

This means that EO is not a vertex of the feasible domain, i..e.

q < n, and D has at least the dimension of a straight line, We move in
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the direction given by the vector E_k= Pq -g‘-k (B9). We will not discuss here
how far to move in this direction because this part of Rosen's algorithm does

not apply to our modification of Rosen's algorithm,

Case I Pq_g_kz o

but uj < o for at least one j. We then choose one of the indices for which
uj < 0, e,g. the one for which | f'—j | uj is most negative, and then disre-
gard the corresponding hyperplane Hj' Suppose this is the hyperplane Hq’

Then u_ < o, and we proceed as if Ek lies only on H, to Hq-l’ i,e, we raise

1
the dimension of D by one, The associated projection matrix is now Pq— 1°
We have P a + o because a _is independent of a, to a . This im-
gq-1—q ' = - —~1 " =qg-1
plies that
q
P =P z + u a.| = u a o
q-18k 7 “g-1 (2 _;1 52 qPq-12q 72

where z belongs to D. Consequently, in the new D, which has one dimen-
sion more, we have the same situation as in case I, and we can proceed as

in that case by setting

s =Py 18k . (B10)

These are the main steps involved in Rosen's algorithm. We add
that nonlinear constraints' can also be handled, but we will not discuss that

algorithm (see Rosen's papers, and chapter six of this investigation) here,

Finally we present two examples, taken from Hadley, to illustrate

how the algorithm works, Consider Fig Bl

:--xl

Fig.Bl Diagram for example one
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Assume that the current feasible solution is Ek' We cannot move in the
direction of the gradient without violating constraint 1, The vector s k is

given by (B9)

a a
Kep g = | 1. =izl oK
= 121 2 =
=N
T k
k 21 & N
Zg — ettt *
= lalz —1
bl [

This 15;1 nothing more than the perpendicular projection of gk onto the bound-

ary of the set of feasible solutions, as shown.

Consider next the situation illustrated in Fig B2

X

/11100

Fig. B2 Diagram for example two

Both constraints will be violated if we move in the direc¢tion of the gradient
vector. Also P, _g_k = o indicating that it is not possib-le to move from x
in any direction such that both constraints hold as strict equalities. Note-
that when _g_k is expressed as a linear combination of élland 2,0 8

= a2, ta,2, we see that a, is negative, .We can find a feasible direc-

tion in which to move (case II} by allowing constraint 2 to hold as a strict
inequality, while constraint 1 hélds as a s_’cri;:t equaiity, If we do this, the

problem is reduced to the previous jllustration,
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CHAPTER 5

Soft Constraints
Section 5, 1 Introduction

In the last ch-a.pize;:i we devised an algorithm that minimizes an objec-
tive function subject to constrainte which were never to be violated, In this
chapter, we will devise an algorithm that differs from the gradient projec-
tion algonthrn of the previous chapter in that this algorithm -minimijizes an
objective function subject to constraints which may be ”sl1ghtly” violated,
but which cannot be viclated 'too much.' This type of constraint is known
in the literature as a ''soft" constraint as oéposed to the "hard" constraint

dealt with in chapter four.

Again, our final objective is to design an adaptive algorithm which
will maximize the SNR subject to a constraint on the super-gain ratio when
unknown interfering noise is present. Apgain because the SNR and super-gain
ratios are nonlinear quantities, it is difficult to prove convergence of our '
algorithm or to analytically find the algorlthm s rate of convergence., Again,
for the purpose of mathematical tractability and because it is useful id its own
right, we will consider. an adaptive algorithm which minimizes the MSE subject

to a linear constraint,

The algorithms of this chapter are simply a gradient m1n1m1zat10n of
a convex modified objective function, the modified objective functlon con51st—
_ing of our original objective function plus a convex penalty function which
serves to increase the value of our modified objéctive function whenever the

constraints are violated, i.e. we will minimize the convex function

£(W) = &,

min

'I‘

+ Wt Wi Ms

) ¢ (W-W (5. 1. 1)

LMS)
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subject to the "soft! linear constraint, shown in Fig 5, 1.1 below
W2

A

Fig, 5. 1.1 Constraint and Penalty Function Level Curves

The constraint equation is of the form

WY . n —a=o (5. 1. 2)
The convex penali:y function we will use is given by

f.w) = Kl[wT-gl—aJZ - (5. 1.3)
The level curves of this penalty function are also shown in Fig 5.1. 1.

We should note that if Kl is "large enough' we wil_l always be very "close!

to the line WT- n,—a=o which then may be intei'rpreted as a linear approx-
imation (i.e. the first terms of a Taylor expansion) at point Wto any arbitrary
nonlinear constraint (e.g. the super-gain ratio) provided that as the algorithm
moves from pointto point in the W space, we keep replacing the nonlinear

constraint by the best linear approximation to it at each point,

Assuming we have only one constraint in the problem, as given by

equation {5, 1. 2) we will present three algox":i;_thms, corresponding to the
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three cases studied in chapter four, i,e. when the gradient is known, when
we have a noise-free estimate of the gradient, and when we have a noisy
estimate of the gradient, and for each of these algorithms we will investi-
gate convergence (convergence of the expected value of the weight vectors
and bounds on the variance of the weight vectors i'n cases two and thrée), ’
the rate of convergence, and the bias between what our "soft" constraint
algorithms converge to and the optimum weight vector when we have a
Yhard" constraint, which was found in section 4, 2 to be

T
- (a_W s I ) -

_ Mims 21! 1 o
Eopt = Wy Ms + . ¢ 21 ‘(5' L. 4)

(ng Cﬁ"]‘gl_l )

All three algorithms seek to minimize the modified convex objec-

tive (j indicates the iteration number)

2 T T
FAW) = ¢ in TN - Wiys) ¢ (W) - Wy ys) + K, [u_ro- n, ~al%  (5.1.5)
In case 1, the gradient of equation (5. 1. 5) is
. T )

g (gzj)_ng(y_vj—-x_vLMS)Jrle[xgj n, -2 ] n ‘ (5. 1. 6)
In case 2, we assume (is not available and must be’estimated by
s 5 dj and ‘Ej which are available

g(W.)=-2s.(d.-sX+W)+2K,[W.,+n, ~aln (5. 1. 7)

=] R B 1" =7 =1 -

In case 3, we assume Sj is not availabe, but a noisy estimate of sj

is available

T, T T
W.)= -2(s,+n.)[d ~ (s, +n, J+2r[w. +n, -a
g (W) (s; EJ)[ LT )WJ] 1[__J n, In,
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Section 5.2.1 The Algorithm, _Proof of Cdnvergence, and Bounds
on the Rate of Convergence if the Gradient is Known.

Using equation (5,1 6) the algorithm is: o
W.,.=W. -k -qu(“N—‘Wn. b+ 2K [w.T.n
Ty T o Wom Xpps #7451 5y 7 By

- - . -
4
<3 M -

—aln

The above equations are a set of first order deterministic difference

equations, Let us first solve for the z;.sy'mptotic value of W, denoted

by’ ‘-Yoo' Settlng Ej‘*‘llz W‘] = }ym gives

_ -1
We=Winms - ¥ Wy, -ny-2a 1¢n,
Let W =¢ +dn
. - = -1
T T
where c ' mn = n, s+ C=O0
= 21 =1 = )
Remembering that ET- n. = 1- we have

15 =1

etdn, = Wims -k, [d-al ¢''n,

Multiplying by n 1T on the left yields

T

1

T ,-1
14K (o, " ¢ 3_1)

d =

e
v

Substituting (5. 2. 1. 6) into (5. 2. 1. 5) yields

T " ol
n_ W +K1a(_r£1gb n

—1 —LMS

-1

1)

T .1
14Ky @y ¢ ny)

gy

T : T -1
[El'WLMS tKp 2oy ¢ ny)

(5.2.1.1)

. (5. 2. 1. 2)

(5. 2. 1.3)

(5. 2. 1. 4)

(5. 2. 1. 5)

(5. 2. 1.6)
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and

K

1 T -1

T 7T
1+K,(ny¢ "n,)

Vo ¥ims t

RANY)

-1 —LMS

If we let Kl—- ©, which means that the penalty function is infinite unless

the weight vector liés exactly on the line w T Dy -3 =0, Xfm becomes

_ 1 - T -1
W = WimMs T 71 a-n; - Wims| ¢ 2y
‘ ni ¢ "n,)

which is the optimum solution in the "hard' constraint case (see equation
(5.1.4)).

By comparing equation (5. 2, 1. 7) which tells us.the steady state
value of W that our algorithm converges to, and equation (5. 1.4) which
tells us what the optimum value that we want to converge to is, we can
get an idea of how to choose Kl s i.e., in the steady state our penalty
algorithm converges to V_}_TOO = Y-ILMS + x where the direction of the vector
; how-

x 18 the same as the direction of x__, where ?—'To

= W
pt = rmMs T Eopt
. If we want this
opt

bias to be less than, say 1%, we must choose Kl to satisfy

) opt
ever the magnitude of x is less then the magnitude of x

K .99
T -1 - T -1
14K, (.111 ¢ n,) (311 ¢ "n,;)

~ which implies

99 \ 99
Klz T -1 P
{n;" ¢ "n,) 1

iv

where p, is the minimum eigenvalue of ¢ .

a —n,; W $ n (5.2.1.7)
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We will now investigate how fast our algorithm converges toW .
Define g.= W, -W . {5, 2.1, 8)

In terms of 9, the algorithm is

| . . .
Li+1 T L -k 2‘¢((—1-j W -Woms) Tt ZK]_[Ej | +W 'El"'a] 21%
- ! (5-2-la9)
q =q—2‘k¢aq-—2kK (qT-n)n )
541 = 4 4; 1445 -2yl
. . - T . "y . =
— 2k QW ~Wypg) - 2k Ky ny(ny - W -2) (5. 2.1, 10)
K
: o 1 . _J\I'. -1
But = W ~Wims = T -1 a-nf Wims | ¢ 2,
1+K, {n ¢ -n . .
1'—1 1
: T— ZkK.l : T .
"2k ~Wims) T g e wanel B WLMS}EI
, S1{zy ¢ 2y
and
T T -1
T oeaTe g oty Wivs )z 672
=1 = =1 —LMS T -1 3
1+K1(I_’:]_ ¢ .1.1_1)'
T T -1
_ 21 Wiys TKy Ry 6700
T ,-1
1 +K,(ny ¢ "ny)
Equation (5, 2. 1. 9) then becomes
9...=q.-2kpa, —2kK, n. (n L q‘.) (5.2, 1. 11)
L5+1 = &3 g 12182 - 450 o 2o de
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thus

a5y, IS e g |l (5.2.1.12)
where ] ;
e= |[1-2x(¢p+K 0, Ty (5.2, 1.13)

Note that ¢ + Ky n,;n IT is positive definite symmetric

T T T T . T
P& xT{p+Kyn n,")x = x"¢x +K (x n,){(n, x)
O ——r
EXENk
E |
From Goldstein(zs)page 24
£ = max ]1_2kpn],|1—2kp1] (5. 2,1, 14)
where P4 and P, are the min and max eigenvalues of (¢ + Kl EI'ElT )
respectively, For k small enough
o<fE<1 (5.2.1,15)

Equation (5. 2, 1. 12) shows that the rate of convergence is given
by the number £, which for k small enough is between zero and one {thus
guaranteeing convergence), and £ —» 1 as k== o (i, e. the rate of conver-

gence becomes slower as k—e o).

In this section we have proven that our algorithm converges to
W, for k sufficiently small, In the next section we will investigate a more

useful algorithm, i.e. an algorithm that does not require a priori knowledge

of ¢,
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Section 5. 2. 2 The Algorithm, Proof of Convergence, and Bounds
on the Rate of Convergence of the Gradient is Estimated,

Using equation (5. 1. 7) the algorithm is o
T T
—2s.{d.-s.% W, K[W_. -
V_VJ_H W -k ZE_J(dJ 5_] _J)+2 112 n, a]Els (5.2,2.1)

These equations constitute a set of first-order stochastic difference
equations. We will first solve for the asymptotic expected value of W,

denoted by Eoo . ) 4

Taking the expected value of equation (5. 2. 2. 1) yields

— T
E{E{j.u} = E{\fj}—k —ZE!_S_J' dj} +2E{_S_J'§.j YJ}

T, -
"{'ZKl[E{Wj }'El—a]EI!

NotingthatE{s }E{%}:qb(i,_s‘_)E{V_fj} as in

=j= 252
chapter four, we may rewrite this equation as

}*E{s

g

E{W b= EiWh-xl-29(s.a)+29(s,5) E{W]

! T
w . -
+2K1[E]_j } n, a]__z}_l
Using equation (4. 1. 7a)

E(i’ d) = ¢(S,S LMS

£ wy, ! - E{wt+ 2k ¢{wy - ’E.,{E/”J,})_-_-‘ZkKl[E{TEjT} . 5;-1 - a:] 2.1
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We now have a set of deterministic first-order difference equations whose
asymptotic value E {W 1= W oo’ can be found by setting E{W } o= E{W }
= woo’ giving

T
_ N o
Vo ™ l"’LMS"Kl[le"El* a } ¢ "n, (5. 2. 2. 2)

This is the same as equation (5. 2. 1.2} and the solution is given by
equation (5.2.1.7) )

W =w + 1 a —nl.Ww . ~<1>’1 ' (5.223)
o | —IMS R | 21 " Z1MS 21 i
1+K1(5c_1_1 ¢ n.)

Because our difference equations describing the behavior of the welght
vectors are stochastic, the dbove result is not sufficient to prove con~
vergence of the weight vectors to -—Woo’ we must also show that the vari-

ance of the stochastic vectors 9‘~j£ E/'w is bounded. To do this

Define gq.z=z W, - W ' (5.2.2.4)

=J - =) -

the algorithm (5. 2, 2. 1) may be rewritten in terms of -‘ij as

T T
a0 = - k|28 v2Knyn, ],

T T ]—-
- k[zijij +2K13151 Vo
+ k‘[Zs.d.—!-ZK a n ]
=Jj 1 —1
Define . T T ]
H= 2s. 2K
: 55 3 + 131_151 (5. 2. 2, B)
E .- ) .2020
V,E 25,4 t2K; 2 n. (5 6)
Thus . =g, — ko. (5,2, 2. 7
9541 = 9 25 ( .)
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where . -. w H.qg.+h, Be 2. 2. 8

Ly= 4373 ( )

and h.= H W -V, ) {5.2.2.9)
- =) j—e =]

Note that E {HJ } and E {h } are independent of j. Also H. and hJ are
statistically 1ndependent of Hk and h if j :’: k, because we assumed that

s., s, are statistically independent for k$ij.

-k
Noting that

n

' T
2¢+2K, n,n,

1k

E{I—Ij} )

T

IZ_q!_):(E,.d)_fZI’{laEl = Z(p_WLM +21¢:1a.nJL

E(Y;)

we may show that
E{h,} =0 (5. 2. 2. 10)

Note that E {Hj} =2¢+ 2K, n, EIT = (1 is a symmetric positive

definite matrix. ,

The algorithm is thus . .

where @.=H,q +h,

and HJ is a sequence of randomn xnmatrices; _1_'1_j is a sequence of random
n- tuple vectors; the expected values of H and h Were shown to be inde- ™
pendent of j; HJ and hJ are independent of HJE and hg for j#1; E{h.}=0;
and the elements of Hj and Ej have finite variance, with E{I—IJ} =@, where

¢t. is a symmetric positive definite matrix. : -
Under these conditions, it is shown in Appendix A of chapter four

that for k sufficiently small
im | E{q,} ] =0 (5. 2. 2. 11)

j m—e= 00
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and lim sup HgJ e v (k) (5. 2. 2, 12)

j.—ooo

where the norm of a random vector u is defined as

lall= 2T

and lim V(k)=o (5. 2.2, 13)

kw0

Equation (5. 2. 2.11) shows again that the random weight vectors con-

verge, in the mean, to W and (5. 2. 2..12) shows that the variance
~optimum .

of the random weight vectors about their expected value is bounded, and

the bound can be made as small as desired by choosing k sufficiently small

as shown by (5. 2. 2. 13).

The rate of convergence of the mean of the random weight vectors

is shown in the proof of the above theorem to be bounded by £, where
§_=|]I—k(2¢+2K13131T)|| (5. 2. 2. 14)

SincellE (2 o+ 2 Kl EIEIT) is positive definite symmetric,

we have

g=max{ | l-kp |, |1-kp | - (5. 2.2.15)

where and are both positive, and represent the minimum and max-
P Pn P P

imum eigenvalues of a respectively, as shown by Goldstein(zs)page 24,

Thus o < £ < 1, and this again proves convergence of the algorithm
of this section. In the next section we will investigate what happens when

the estimate of the gradient used in this section, contains additive noise,
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1

Section 5. 2. 3 The Algroithm, Proof of Convergence, and Bounds on
the Rate of Convergence if the Gradient is Estimated,
and the Estimate is Noisy,

Using (5. 1. 8} the algorithm is

T T
. )WJ]-!— ZKl[Wj -El—a]gl f

T
C-k)-2(s.+n. ) [d-(s. T+
¥ (2 33)[3 (25 * 2

Wi = ¥y

These equatio‘rfs constitute a set of first-order stochastic differ-
ence equations., We will first solve for the asymptotic expected value of
W, which we will denote by \Zfoo . .

Taking the expected value of (5, 2. 3, 1), under the assumption that

T . e
E {_x}.j.} =0, E{,EJEJ } = qbn, and ij’ ik’ 21_5 B-Z‘L'I;. are statistically

independent for k # j'and n § m, we have

By, ) = Ely) - k; ~2¢ (s,d) + 2§ (s, 3) B} +28, Eiw,)

+

ZKl.[-E{WjT}- n, -»a] El}

Using (4. 1. 7a) yields

it

E{w;,,)

'Zklfl[E {WjT} 2y - a]'n.l

We now have a set of deterministic first-order differénce equations
whose asymptotic value E{w } = E”oo » ¢an be found by setting E{Wj} = E{lvj_l_l }

= ‘ZtTooi giving

o -1, = _ -1
Wins ~ W, - qbnlvw:Kl[le cn - a]q{)._z}.l (5.2.3.2)
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let ) ?yoo =c+dn, {5.2,3.3)
where _9_? n, = _r_l_ir “c =0 ('5,2.,3,,4)
Remembering that Eir' n, = 1, (5. 2.3.2) becomes
-1 -1 .
Wimg ~ I+ ¢ "¢ )le +dn,) = Kl[d-a].(p n (5.2.3.5)
T -1, 7t
Multiplying by n, (I+9 ¢,) on the left, and manipulating, gives
T 1, 7t -1 ]
n"(I+¢ @) | W + K, 2a¢ n
el n - —LMS SR (5.2.3.6)
b -1

14K, n {(I+¢™'¢) ¢ 'n,

From (5.2, 3, 5)

-1
tdn, = (1+07'0) {Wiys— K ld-21 ¢7'n,

Using (5. 2. 3. 6), after some algebra, we get

-1 -1
— (It¢ "¢ )
sz

-1
T -1 -1
HE o/ (I+0 @) ¢ 'n 1

-1,-1 ) =1 q
[I+K1£1T(I+¢_l¢n) P a1k, (1r Ty ]‘—AILMS

- {5.2,.3.7
+K. a ¢ 11_1_1 )
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If we let K. —e oo we should get the same solution as gquation (4,4. 3.9}, be-

1
cause the penalty function is infinite unless the weight vector lies exactly
on the line W nova. =o. Under these cornditions, we get’
=
1 -1 P
k)
o L, -l 1 -

1=t

n;T(I+¢5ﬂ1¢n) & —él

5

_ _ . ' ,
[Kl&lT(H(ﬁl%) gb'lg_ll-K1¢“13151T(1+¢'1¢n) ]WLMS+K1a¢_1E1
¢ Turele,) B ¢
- -1 - n I+ W +a n
= @ h) | st == 1
Tasele) ¢'n,
-1 [ | ‘(I-!-gi) qb ) lﬁ ]¢'1n
={I+¢'_l¢n? Wrms ¥ 1L?‘vlls: _1 S
(I+¢> <f> ¢ "n,y
(5.2.3.8)

This is exactly the same as equation (4.3. 3, 9).
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Again, because our difference equations descrlbmg the behavior of

the weight vectors are stochastic, the a.bove result is not sufficient to prove

convergence Of the weight vectors to

ance of the stoché:stic,vector's g_j = Wj —

define . = . -
9= W,

=)
1=

Woo is bounded,

the algorithm, (5. 2. 3.1) may.be rewritten in the form

_ f T, T
3j+l—gj —k[Z(_s_j-l-Ej)(ij )+2K‘.lr).1.1_1‘1
T, T T
—k[z 5.+ n. . +Z2ZK.n.n
(gt n5) ey +25) 1=1~1
k[z F]
(§_J.+3j)dj+2K1a51_1
Define
- T
P.Ij': 2‘ 3‘+n)(s -I-n )+2K1n1n1
= d
E_]"‘ 2.( J+n } + 2K 128,
9“. L] k -
17 ;T
where
.= H.q.+h.
S2.] JSl‘J —J
and
= H. - V.
=3 J—w -]

]
]

¥

e

=1
IS

W, 2 We must also show that the vari-
"To do this

(5.2.3.9)

{5.2.3,10)

(5.2.3,11)

(5.2.3.12)

(5.2.3.13)

(5.2.3.14)
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Note that E {H } and E {h } are 1ndependent of j. Also HJ and hJ are
statlstlcally 1ndependent of Hk and h Lﬁ j ¥ k because we assumed
are statlstlcally 1ndependent for k% i and n :r‘ m.,
#;
Again, as in the last sectlon, ‘J.t C:an be shown that

-S-.j —k’ nﬂ,n

E {_1_1_3. '} =o . {5.2.3.15}

rro- T_; f e . e, -
Note that E { Hj b= 2 (b4 ¢, }+2K, n;n,"=@ is-a symmetric posi-
tive definite matrix,
The ga.'lg:ﬁ:r'i:thﬁl is thus
T

85017 85 - k@

where

and Hj is a sequence of random n X n matrices; _1'_1_J is a sequence of _randCfrh
n-tuple vectors; the expected values of H. and h. were shown to be independent
of j; H, and b are independent of H) and h.for j § £3 E{h } = o; and the
elements of HJ and hg have finite variance, with E{H } =d, whered is a’

'S

) symmetrlc positive definite matrix.

Under these conditions, it is shown in Appendix A of chapter four, that

for k sufficiently small

lim || B {gj YUl =o (5.2.3. 16)
j—e o0 .

and ) :
lim sup || —%j [l < V (k) «{5.2:3,17)
j—e o0

whezre the norm of a random vector u is defined as

e ll= = (s
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and Hm Vi{k)=o0
k—e0 (5.2.3.18)

Equation (5. 2. 3. 16) shows again that the random weight vectors converge, in
the mean, to —VEOO and (5. 2, 3, 17) shows that the variance of the random weight
vectors about their expected value is bounded, and the bound can be made as

small as desired by choosing k sufficiently small as shown by {5.2.3.18),

The rate of convergence of the mean of the random weight vectors is

shown in the proof of the above theorem to be bounded by £, where

- T .
g=|lI-k{(2¢+2¢ +2K n 0, ") | (5.2.3.19

Since = (2¢+2 (j’)n + 2 Kl n, E]T) is. positive definite.symmetric,

we have

g=max)|1-kp |, |1-kp | " (5.2.3.20

where Py and p, are both positive, and represent the minimum and maximum

(28)

eigenvalues of (! respectively, as shown by Goldstein page 24,

Thus o< £ < 1.

In looking at the two approaches we have developed for adaptively
optimizing the MSE subject to a constraint, the approach in chapter fouxn
represents an entirely new approach to the problem, whereas the approach
in this chapter is essentially one of replacing the constrained problem by
an unconstrained problem. Since stochastic unconstrained problems have
already been well researched, we will not run computer simulations of the
algorithm of this chapter, but will rather concentrate our efforts on the

new algorithm developed in chapter four.
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CHAPTER 6

. Computer Simulations

In chapter three, we found the.o;;timum SNR that we could achieve
subject to a constraint on the super-gain ratio. Specifically, we showed
that for a linear array of four isotropic detectors spaced d = 0.8) (0.4))
apart, subject to the super-gain constraint Q = 0.08 (0. 11), eémbedded in
a uniform noise field, with a normalized signal impinging from broadside

(endfire), the best SNR we could get at the array output was 0. 187 (0.438).

In this chapter we will simulate a projected gradiéent algorithm which
automatically makes an array of four isotropic detectors spaced d = 0.8\
(0,4 )} apart maximize the average output SNR, subject to the constraint.
that the super-gain ratio Q is < 0. 08 (0. 11) when the signal impinges from

broadside {endfire) and the noise is isotropic.

We will again {(as in chapter three) assume that the signal and noise
are sufficiently temporally narrowband so that the filter following each de-
tector can be implemented by only two taps (or attenuators) separated by a
quarter period delay as shown in Fig. 6. 2.1 when using the multichannel
filter point of view, This corresponds to Fig. 3. 1.2 when using the antenna

point of view.

We will formulate the problem first from the antenna point of view,
i.e. we will write the SNR and super-gain ratio {Q-factor) in terms of the
real and imaginary parts of the detector currents Ilr’ Ili’ IZr’ 121, oo

I
4r?
will write the SNR in terms of Wis Wos eoeWas Wq. In agreement with the

43° and second from the multichannel filter point of view,; i.e. we

results of chapter two, we will observe that Ilr-is equivalent to W Ili is
equivalent to w,, IZr is equivalent to w,, etc. We will then use this equiva-

lence to write the expression for the super-gain ratio in terms of WiaeeeaWoe
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Section 6.1 Antenna Theory Approach
When the aSlgna:l is 1mp1ng1ng from broads1de, the time average signal

power comm.g out of the array is gwen by equatlon (2 1.10}
H"?

s=51Vv,v 1

where 21 is given by equation (3. 1. 14)_
] V,y=col{1111]

e
Writing' I -as -col [ I, #il Lo+ 510 L, +ilgs 14r+j14i] R

expanding and then rearranging gives

1r:71i "2r "21 3r 31 T4r "4i

e ) ) ...'a';é‘
10101010
01010101
10101010
S:%-]:..T 01010101 I (6.1‘01)
10101010 -
01010101 |
‘1 61ro1010 |
| 0101010 1_|
Wherenowizcol[l 1.1, 1.1, 1.1, 1,.] (6.1.2)

Assuming the noise field is uniform ,as in chapter three, the time
average noise power coming out of the array is given by equatlon (2. 1. 12)

N=211"A1

where A is given by (3. L. 11},

This expression can be manipulated into

N=31TEI (6. 1.3)

where 1 is given by (6.1, 2) and



4 0 27 . 2md N . 4rd 2\ . bxd e
—g sin —— 0 q sin X 0 7g sin— 0
0 dq 0 Z2x . 2nd N . 4qd 2 X 6d
g sin=y 0 gsm—~yv O 33 SPx
2?\. . Z'Tl'd 0
sin 47 0 2\ . 27d A . 4wd 0
J: B g sie=—x— 0 3o x
0 %l in—TzTrd 0 4 0 % sin —Zid 0 %sin——éc'{d
‘ H
-
X . 4xd 0 2N . 2wd 0 )
sin =2 sin - 4 ‘ 2N . 2ud
a N d K ¢ -a—- Sln-—-}:—- 0
N, 4dard
0 . .
0 Fsin—r % sin Zxd 0 4 “ 0 .. % sin ZTrKd
2\ ., bxwd A . 4nd 0 2N . 2ud dq :
ga— Sln---x——- 0 . 'a' Sln-—-x—— —ESIHT 0 0
0 %%sinéid‘ 0 %sin —--—--4”’;;d 0 g-l sin-—-x-----z'”'d 0 4y (6.1.4
]
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In terms of this eight dimensional I vector, the Q factor is given
by (see equation (3. 1.13)}

ad
e
pe)

171

(6.1, 5)
1TEl

If the signal impinges from endfire the only quantity that changes
in the above formulation is the time average signalpower S (the noise power

and the Q factor are the same as for the broadside sigﬁal case). Now

S =317V, V"1

where from (3.1, 15),

. 3mwd, . d . d . d
J(-T)J(-WT) b (m5—) J(3'1TT)
1=col e e e

e

1<

This expression may be manipulated into

(6.1, 6)
where I is given by (6. 1. 2) and



1 0
0 1
cos 27;6‘ ~-sin 2-;;\(1
sin 21;;6‘ cos 2"?‘;‘1
cos 47;6 -sin 4"):(1
sin}—;}f—i— cosi"%é-
os 61;;& —sin—é’-%-i
S'-"-l’l—é—'l;;i—(i cosi"ii

cos 21;d

. 2md
~81in Y

2nd

cos
A

A

sin
A

cos

sin

sin ZKd

(.ZOS ZT{d

. 2uwd
=S 11), X ,

cos ng

dqd

4qd

~-sin
A

' 2nd

cos
: A

2mrd

-gin

[afa] ]

sin

21

d

2vd

sin 41;;{:1 cos 61;6' sin 6;:‘:1
cos 4‘?\& -sin 67;;6' cos 61{(1
sin 21;d cos 4;:& sin 4;:d
cos Zid -sin '4T{d coél 4;:(:1
0 ’cos 2';‘1 n 21{&
1 _sin z;zd o8 2;d
—sin—g%_ 1 0
| cos X4 0 .
(6.1.7).

~L¥1-
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Section 6,2  Multichannel Filter Approach

Let us now find the time average output signal power due fo a deter-

ministic signal generated by a far field point source (see Fig. 6.2.1).

At each detector, the sigﬁal is given by

..J.__.... - j(.dt
Re e A —o toe
2
= cos(mt-————)\ _U;O-Ei) {6, 2, 1)

The output y (t) due to the signal is

_ » 2% _.T
y(t)—[W1W2W3W4W5W6W7W8] cos(mt—T Eo‘-]il) =W a2,
. 2
cos(wt—u-;—r EO-El—wA)
2T
cos (wt—T u, - _1;2)
cos(wt—ﬁu e T -w A)
A —0o ~2
929
<:.os(mt--2‘—'r-r T, ¢ 2)'
LN =0 =3
COS(mt-—-—2-—1-T e -w A)
A —o =3
20
cos(wt-T_0°£4)
'-cos(mt—%'—'ru s T, -w A)
X Lo’ Ig®
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TIME DELAY

So (t)+n2(t)

'

34(\‘)+n4 {t)

e

Sglt)+ ns(ﬂ

P

P

Sy (1) +nyt) |
x Ler A=4fo K
Dw
xss(f)+n_3 (ﬂ T|ME DELAY
- -
VT
Wz
Sg(t)+ng(t) | TIME DELAY
X—= - )
FA T
. 41o
P
87(f)+n7(t) . TIME DELAY
x A:-..I..._
4fo

Sg (1) +ng(t)

g

Fig.6,2.1 Processor Structure
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T

2
For the case of a boradside signal, u r

Tw

&, ¥

1"-‘io'£z=

u

—

o E.—3

(6.2.3) "

= 1u *%xr - 0,
—0 =4

Letting d = cos wt, e = cos (wt-wh), the matrifx__:'a:_ 1fa_.lT is given by

ed

ed

ed

ed

de

de

de

ed

ed

ed

-ed

de

de

de

de

ed

ed

ed

ed

"de

de

ed

ed

ed

ed

de

de

de
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- N Y

"o

cosw A

L]

cosw A

[

bojr

cosw A

. 2 1T/(.02 ) _l. ] Z'n'/:w ,
Since 5 f cos“wtdt = 3 and - f coswt cos (wt-wA)dt = 3 cos w-A
o ) o
the time average signal power output is given by R W where the matrix
R is
s i 1 1 1 1 1 1
5 z casw A 2 FCosw A 5 T CoOs5w A z 5
*
1 i 1 1 1 1 1
5 Cosw A ) FCcosw A 2 S Ccosw d ) FCcosw A
1 - 1 1 1 1 1
5 2 coshm A + zCosSw A ) zcosw A z z
- 1 1 1 i 1 .
Fcosw A 3 $cosw A z 3 cosw A 5 sz cosm A
1 1 1 1 1 1 1 1
5 3 Cos w A 3 scosw A E) Fcos wA 5 5
. ] 1
%cosmA L 3 coswA 3 Fcosw A 3 3 cosw A
1 1 1 1 1 1 1
5 5 CosSw A -?,f scosw A 5 scosw A £ =
1 1 1 1
%cosmA i fcosw A 3z s cosw A 3 scosw A

=

(6. 2.4)
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Since cos w A = cos lz = 0, this expression for the average signal

power becomes identical to equation (6. 1. 1) with the vector W replacing
the vector I of equation (6, 1.2). Similarly we can show that the ekpressions

representing the time average noise power in terms of I and w are 1dent1ca1

3

if we replace 1 by W, i.e.

N = %WTEv_f (6.2.5)
where E is given by (6: 1.4)
T
w W
Q = (6.2.6)
T
WOEW
and, if the signal impinges from endfire
s =iwirw (6.2.7)

where F is given by (6. 1.7)
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Section 6.3 Maximization of SNR Subject to Q< g

The reason we went through two separate formulations of the same
physical problem in sections 6.1 and 6, 2 is as foilo.ws: In the W formulation
the numerator matrix in the expression for the SNR is of rank two, and this
makes it impossible for us to conclude from this formulation that the SNR
is a concave function of the W's, and hence possesses a unique maximum.
However by using the complex I formulation, we will be able to show that
there exists one unique value of I {and hence by our analogy,one unique
value of W} which maximizes the SNR., The proof is as follows;

By equation (2..1. 1‘3)

o

I'v,v, 1

1 ¥

I A

—

SNR = {6.3.1)

|

Let us take the first variation of the SNR with respect to the complex

vector I and set it equal to zero to find the possible extreme points.

e anfsy v e+ o1 v, v, ")

(r'a1)?

@V, v A0 a 1) + (s T A ]
- : - = =0 (6.3.2)
(s 1)
Letting y = (1A 1)I'V 1-21*! - (@YY A (6.3.3)

equation {6, 3. 2) becomes after rearranging

ale
pd

y 81+ 81y =o (6. 3. 4)
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Since this eguation must hold for arbitrary 6_1_ where E is complex,

{6.3.4) implies that y = o, which implies

¥ % % % W
(TAanvV, (V;1) = (IV,V, I} AT
(FAI)V, = (I'V]) AL (6.3. 5)

This equation is satisfied if (f‘_'\[l } = o, which Wo_y{ld mean that equation

{6.3. 1) was zero, obviously a minimum value, or if

(1A 1)
1= — = Ay (6.3.6)

(1" v

1)

This value of I gives the unique maximum of the SNR.

There is also only one unique minimum, Corresponding to these
two values of I, there is a unique value of W which maximizes the SNR,

and one unique value which minimizes the SNR.,

It is easy to prove that the set of points W which satisfy Q (W)< q
is star connected about WO = 0, by observirfg that if Q (W)< q, then
ik = _!s
‘Q (_}E)where x = N W+ {1-x) W_A_TO, o< A< le=p = AW also satisfies
Q (E) < q. This star connectedness is a consequence of the fact that the

Q factor is independent of the magnitude of W.

Because the region Q (W)} < q is connected and the objective
function SNR (W) is concave, our projection algo??ﬁthm wili converge
to the constrained maximum, which occurs at the unconstrained maximum
of the SNR, or on the boundary of the feasible region ( in the broadside and
endfire cases under study, we know that the unconstrained maximum of the
SNR lies outside the feasible region by the graphs in chapter three).
Since the solution to the problem of maximizing the SNR subject te the con-
straint (2 < g, lies on the boundry (i.e. Q = q), the Lagrange solution we
found in chapter three is also the solution we should wind up with in this

chapter.
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Section 6.4 ' The Gradient Projection Algorithm

: wlirFrw
. The function to be maximized is SNR = --::—-,I,——- subject td the con-.
CL . o EW
Tw o
] WW - . . . . . . .
constraint Q = =—= =€ g . Note that since the signal direction is as-
WEAW °

sumed known to us (i.e. F is known), we never need to know the signal it-
self (as opposed to needing dj when we used a MSE criterion in chapter four).

We will investigate three cases:

-l_. The spatlal dlstrlbutlon of the nois€ is known a priori (i. e, the elements
of the matrix E are known) and there is no additive self-noise assoclated with

each detector.

2. ‘The spatial distribution of the noise is unknown (i.e. E must be esti-
mated from observations of the deteétor outputs when there is no signal pre-

sent) and there is no additive self-noise associated with each detector,

]

3. The spatlal d1str1but10n of the noise is unknown and there is additive

self no1se assoc1ated w1th each de‘cector.

Before we, describe the algorithm, note that the gradient of the SNR
is gwe‘n‘by—
g,

e _-(JE,TF}E),ZEW + (WETEE) 2FW
Vi (SNR) = —— — : (6. 4. 1)
— .7 . . st T 2
' W EW)

-

Also note that the normal to the hyperplane tangerit to the surface
WoW ' o

Q= — e =g "is giw:rt_an by
Taw © L

=

o
-

~wTw iAW + (wraw) 2w
n = - — = (6.4.2
;o aw)?
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Our algorithm works as follows: We start at any arbitrary value
‘Eo (\EO = col [ 11111111]. We check to see if W satisfies the consiraint ,
(if it does not, we keep moving in the direction -n, i. e. Wip1 =W~ kn,
until we arrive at a value of wwhich does satisfy the constraint), In case

1, we try to move in the direction given by the %@radien’c, i. e,

E—'Tj-l-l = ‘Ej +k VW(SNR) . (6.4.3)
where Vi (SNR) is given by (6.4.1), We next check Wit to make sure

it satisfies the constraint, If it does, we continue our iterations as given

by equation (6.4.3) indefinitely. If, on the other hand Wip1 does not sa:l:iéfy_

the constraint, we form a different Wipy given by

‘Ej-i-l = '\Ej +k PV“W(SNR) (6.4,4)
where P, the projection matrix, is given by I - P_ET and n is given by

(6.4.2). Provided k is "small enough, " this gilue of Wj-!-l will always

satisfy the constraint and give a higher value of SNR than W, because we

are projecting the gradient intd the hyperplane tangent to the constraint as

shown in Fig, 6.4.1.

~1/ FORBIDDEN
REGION

Fig. 6.4.1 Gradient Projection Operation
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The reason k must be small enough!' is intuitively clear from the
same figure, If we move too far along the hyperplane tangent to the con-
straint at WJ s We may not satisfy the constraint at WJ+1 In order to re-
solve thls problem in our simulations, we chose k so as to make the square
of the norm of k VW (SNR) equal to 0, 001 times the square of the norm of
Wj s l.e,

— |l |l
k =4 0.001 (6. 4. 5)
|| Vi (SNR )} ||

In case 2 where the noise correlation matrix E is unknown, for
each element Eij =K {ni(t) nJ. (t) } of the matrixf: we subitituted the
_instantaneous value of the correlation, i.e. E—~eE where Ei' at iteration
k is given by n, () n (tk) (see Fig. 6.2.1). In chapter four we proved that
we would get convergence by using this substitutuon if our criterion was

_to minimize the MSE subject to a linear constraint.

In case 3 we substituted the matrix E for the matrix E in (6.4.1)

iy = oy ly)+ &y (e ) ]

{ nj {tk) + éj (tk) ] where & (tl) is white ga.uss1an noise of variance 0. 1.

where Ei' at iteration k is given by o

To generate the vector random variables Dy such that E{n n T}
=E, we did the following: E is a positive deﬁnlte ma.trlxlso that it possesses
a square root, call the square root matrix E 3, where E2E2 = E, We

‘ genera.ted a vector random variable V, all of whose components were zero

mean independent gaussian random variables with variance one. Then

tofp

N =K

e = v (6.4, 8)

Wl

{(Efyy’

!

. g T
and n, satisfies E {Ek By } =

i

1
I1E2 = E as required,
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We simulated the aforementioned three cases for a siénal imping-.
ing from both broadside and endfire and obtained the. results shown in
Figures 6.4.2 - 6.4.17. Note that in case 1‘where- the E matrix,-and

hence the gradie-nt, was known we used k = 05 ‘and we did not normali‘ze-

k by equation (6. 4.5).

By comparing Figs. 6.4.3 to 6.4.4 and 6.4.6 10 6.4.7, it can be
seen that, as expected, the algorithm converges to the constrained optimal

value faster, and there is less variance about the optimal value, when

there is no additive detector noise present.
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Section 6.5 Conclusions

We have presented and analyzed two stochastic gradient algorithms,
which can be used to find a constrained optimum point for a concave or
convex objective function subject to constraints which form a connected
region, even when we do not have the objective function available, but
only have a noisy estimate of the objective function. When the constraints
consisted of only one linear constraint, we proved convergence to the
constrained optimum value and bounded the rate of convergence of the

algorithms to the constrained optimum value.
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