January 1971

-147

-197

ical Report TR
002

Techn
NGR21

o
4

@\wM
-

i

Evaluation of an Adaptive Approach

10N

e
[1+}
Q
o

—

—

=
4]
Oy
<
.
Q

s

(%]
o~
(«9]

4

G
=3

o0
O

4

Y

b
Sarah Crooke

Jack M

//ww%%w o

inker

S
e

-

o

: x§§9®\ =

o =

.

=

o

e

»

o
i

.
.
. Wu\%\%@
e

-

7

.
o
.

-
.
e
=

. ‘

=

.

o

7
L
e
S5 5

o

-

S

.

.

e

mem\ -

=
.
o

-

Technical Report TR-147

January 1971
NGR21-002-197

Evaluation of an Adaptive Approach
to Buffer Storage Allocation

by
Sarah Crooke
Jack Minker

This research was supported in part by Grant
NGR21-002-197 from the National Aeronautics and Space

Administration to the Computer Science Center of the
University of Maryland.

h
1
'

TABLE OF CONTENTS

Introduction ..oviiiiii it i i it it e
1.1 Scope of Study Reported in This Papercoovvvnnn.
1.2 Adaptive Method Controliiiniiiiiiiiiiiiiiiiaiinnn.
1.3 Side-Effects of Adaptive Strateayccciiveven.
1.4 Evaluation of Allocation Performancecovivvvenn.
Review of Previous Effortsoiiviiiiiiiiiiiiiiiiiiinas,
2.7 Buddy Methodcoviiiiiiiiiiin it iiiiiiiennnnnns
2.2 First-Fit Methodc.oiiiiiiiiiiiiii ittt
2.3 Results from Buddy and First-Fit Modelsc.vnn.
2.4 Adaptive Method .. iiiiiiiiiiiiii it i i iiieiiaenes

Analysis of Adaptive Strategy Implementation and
Performance Evaluationcoiiiiiiiiiiniiiiiennnannaanns

3.1 Parameter Monitoring and Control of the Adaptive
Strategy iiiiiiii i i i i e ittt ettt

3.1.1 Control of Adaptive Methodciviiviinnennnn
3.1.2 Simulation Performedcovveveiiiiiniieiennenns
3.1.3 Simulation Results ...oiiiiiiiiniiniiiiiinennnenns
3.2 Observed Side-Effects in Adaptive Strategy
3.2.1 Adaptive Strategy Model Simulated in [2] (Mod I).

3.2.2 Modified Adaptive Strategy Model (Mod II)
3.2.3 Simulation Results of Mod I and Mod II
3.3 Evaluation of Allocation Performancecvevvennnn.
3.3.1 Memory Fragmentationccviieiiernnecnnnans
3.3.2 Scope of Simulation ... ciiiiiineinnininnnnnnnny
3.3.3 Results of -Simulation N

3.4 Summary of Conclusions Cetaanes S tereiarereaaean

4.

Bib1iography

Appendix

TABLE OF CONTENTS (CONTINUED)

--

1. Introduction

This report investigates an adéptive approach to thé allocation
and release of buffer storage within a system. Specifically, three
techniques are evaluated. These are the buddy method; the first-fit
method, and an adaptive method which uses the buddy system and the first-
fit system depending on the user input statistics. The adaptive apbroach
uses a predictor which determines when statistics change indicating when one
should move from the buddy to the first-fit system and vice-versa. The
approach to using the adaptive method was motivated by the fact that the
buddy system was effective with respect to serving small buffer request
sizes while the first-fit method was most effective for the allocation
of large buffer storage. Investigation, therefore, considers the case
when one is dealing with a system where the statistical characteristic

of the buffer request sizes interchanges between small and large requests.

1.1 Scope of Study Reported in This Paper

This report is a study of an adaptive approach to the dynamic
allocation of buffer storage. Three major facets to the effort are
discussed: a) implementing an adaptive approach which is hontrol1ed
automatically as a function of the user statistical environment, b) re-
ducing inefficiencies caused by the interaction of the individual
strategies used in the adaptive mode, and c) arriving at a measure suit-
able for evaluating the performance of the individual strateaies as well

as the adaptive method.

1.2 Adaptive Method Control

The actual use of an adaptive approach is depéndent on the user

statistical inputs. Depending upon the statistics, one method may be

preferabie to another, and we may desire to change from using one
algorithm to using a different and perhaps more effective algorithm.
Therefore, provision for internal monitoring of the statistical environ-
ment is required to determine when the alternate strategies in the
adaptive method should be interchanged. In the dynahic allocation of
buffer storage, the average buffer request size and the existence of
queued requests are the parameters of interest. In the simulation models,
these parameters are determined at the end of each processing interval.
The criteria for alternating strategies in the adaptive mode are based
on the current average buffer request, the change in the average buffer
request over the last interval, and the existence of queued requests.

For comparison purposes, two simulation models were developed. The
first simulation runs were made with perfect prediction. In this model,
use of the alternate algorithms in the adaptive method was controlled so
that if the request distributions used to generate the buffer requests
in the simulation were interchanged, the allocation algorithms were
interchanged at the same time. Simulation runs were then made using the
second model where the use of the allocation algorithm was controlled
based on the monitored average buffer request and the existence of queued
requests. Here, the decision to interchange algorithms is based on a
threshold value and data obtained from internal monitoring of the alloca-
tion process.

This particular aspect of the study js essential to determine the
practicality and feasibility of employing an adaptive strategy.
Specifically, one must be assured that effective control of the alloca-
tion process can be obtained through the selection and the implementation

of function monitors, and that reliable control of the allocation process

can be maintained through the use of prover control criteria.

1.3 Side Effects of Adaptive Strategy

In considering an adaptive strategy, one of the basic problems is
that of making two independent algorithms compatible. This involves de-
vising a mechanism which will permit transition from either algorithm
to the other as required. If it is found that the individual strategies,
their data structures, and their inherent properties permit interchanging
them, the effect of alternating the strategies must be investigated.

In the simulation of the adaptive strategy for the dynamic alloca-
 tion of buffer storage which is being investigated here, it was noted
that whenever a transition was made from the first-fit method to the
buddy method, there was a significant increase in the number of small
buffers placed on the avaiiab]e buffer lists. Some analysis was under-
taken to determine the factors giving rise to this situation. An attemnt
was then made to modify the transition mechanism in an effort to either
reduce or eliminate this phenomenon. The simulation model was then
modified and the results were compared.

It was clear from the simulation results that the problem had not
been eliminated. Further it could not be eliminated, only reduced. The
problem lay not with the transition mechanism jtself, but rather in the
basic incompatibility of the two allocation methods. The buddy method
requires that every buffer size be a power of two and have a proper
starting location. The first-fit method insures only that any buffer
allocated is a multiple of four. It is clear then that the greatest
number of buffers allocated.by the first-fit method will not be a power

of two. In the release process, prior to use by the buddy method,

buffers if allocated by the first-fit method, must be checked and split
as required to insure a valid size and start address. As a result, an

increase of small available buffers was introduced.

1.4 Evaluation of Allocation Performance

Obtaining a valid measure of performance is essential. One would
like to compare the performance of the individual allocation strategies,
the adaptive strategy, and any modifications to these strategies. Further,
in order to attain one of the objectives of this research, i.e., to
determine the effectiveness of the internal monitoring and the criteria
used to control the use of the individual algorithms in the adantive
strategy, a measure of performance is essential.

Two factors, time and storage utilization, were considered initially.
Since in the simulation process algorithm execution times were not
available, a search was made for a measure of storage utilization. Two
types of memory loss are present - internal and external memory loss. In
either type, the memory loss is that part of memory which is available
but unusable to satisfy a buffer request.

Denning [5] defines these two types of fragmentation in terms of
the conditions under which they occur as follows. External fragmentation
occurs when it is found that for a given buffer request, every available
buffer is too small to be used; or, external fragmentation occurs for
requests of size s with some probability E(s), where E(s) is the proba-
bility that s » max'{xi}, where x, are the available buffer sizes.
Internal fragmentation occurs in cases where the buffer sizes which are
acceptable are restricted because storage requests must be rounded up to
the next acceptable buffer size and the difference between the buffer

size allocated and the buffer size requested is lost. More precisely,

if {Zi} is thé set of acceptable buffer sizes with z, arranged in
ascending order and s is the size of the request, if Z; 1 <s < Z:5
then Z,~S words are wasted inside the buffer allocated.

It was found that internal memory fragmentation can be monitored
and measured quantitatively. Attempts to measure external fragmentation
based on the number of buffers on the available storage Tist or wordé
represented by those buffers were unsuccessful. A large number of small
buffers on the available 1ists is unimportant if it is found that queues
of unhonored requests are never present. The length and duration of
queued requests as a basis for measuring external fragmentation alone
was unsatisfactory since the formation of queued requests may result
from either internal or external fragmentation or more often a combina-
tion of the two in the adaptive method.

The probability that a request for a buffer of size x will be
queued was the measure finally adopted because of difficulties determining
the relative importance of internal and external fragmentation. In this
measure, two factors were used: the probability that theré would be a
request for a buffer of size x and the probability that the request
could not be satisfied. Since the measure reflects the effect of total
fragmentation it is useful in comparing the performance of the allocation
strategies regardless of the type of fragmentation, internal or external,

which is present in the allocation process.

2. Review of Previous Efforts

The concept of an adaptive strategy for dynamic buffer storage
allocation as described in this paper was first introduced in [1], and
explored more extensively in [2]. These two studies were directed toward
analyzing strategies for the dynamic allocation of buffer storage for
temporary, unpredictable, and small buffer requests. The analysis made
use of results obtained from simulation models and used some data which
were obtained from internal monitoring of the EXEC 8 operating system
for the Univac 1108 at the University of Maryland.

Briefly, two basic strategies for handling the dynamic allocation
of buffer storage were modeled. The first strategy modeled was the buddy
method. This method was first used by H. Markowitz in connection with
the SIMSCRIPT programming system [3] in 1963. The second method of
allocation modeled was the first-fit method. Algorithms for these two
basic strategies along with lTimjited results from simulation models are

given in Knuth [4].

2.1 Buddy Method

The characteristic feature of the buddy allocation method is that
regardless of the exact buffer size requested, a buffer of size Zk is
allocated, where k is the least power of 2 which is greater than or equa’
to the buffer size requested plus one word of overhead. A]tﬁough a re-
quest may be made for any size buffer within a specified range, the size
of the allocated buffer is always a power of twb, representing essentially
a restricted nﬁmber of distinct buffer request sizes. As a consequence,
the lists of available storage buffers are maintained by size.

Circular lists, singly linked are used for storing available blocks

of storage, with one word of overhead in each allocated block used for

allocation control. If 2" is the largest buffer size permitted, then
(m-1) Tocations are used to serve respectively as heads of the lists of

available buffer lists of sizes 22, 23,--~2m.

2.2 First-Fit Method

The basic characteristic of this method of allocation is that
allocation is made from the first available buffer found which is greater
than or equal to the size requested. The algorithm modeled for this
study maintains the same number and structure of Tlists as found in the
buddy method. In the allocation process, if the difference between the
buffer size requested and the available buffer from which the allocation
was made is less than four words, the whole block is allocated. This
avoids the possibility of returning a block to the available 1ist which
is so small that it is virtually useless in satisfying future requests.
Further, all buffers allocated and all buffers maintained on the avail-
able Tists are a multiple of four, and if a buffer of size n is available

it is placed on the (i+1)™ 1ist where 21 < n < 211,

2.3 Results from Buddy and First~Fit Models

In the work reported on in [1,2], the performance‘of the two
allocation methods was measured in terms of execution time and memory
utilization. The decision to implement a particular strategy is one
which the system designer, or analyst, must make, based on the premium
placed on time or space.

In order to estimate relative execution times, data were obtained
on the time consuming operations within the allocation processes. These
included the number of searéhes of the available buffer 1lists needed to

honor a request and the number of possible memory collapses upon return

of a buffer. As noted by Knuth [4] and as further shown 1n.[2], time-
wise, the buddy method was found to be faster than the first-fit method.

Efficient memory utilization involves minimizing two types of
memory waste: internal and external fragmentation. Internal fragmen-
tation may be introduced whenever the size of the buffers a]]ocated'is
either fixed or restricted to a limited number of specified sizes. This
type of memory fragmentation is almost unavoidable if the buddy alloca-
tion scheme is used since the size of any buffer allocated must be a
power of two regardless of the actual buffer size needed. The first-
fit method as modeled for this study also introduces some internal frag-
mentation since buffers allocated are always a multiple of four. In the
buddy method the memory loss may be as large as one half Zm, where 2"
is the largest buffer permitted, while the first-fit method insures that
the internal memory loss per allocation will always be less than four.
Based on the simulation models and internal fragmentation only, it was
found that whenever the average request size is greater than four times
the average overhead of the first-fit method, more memory is reauired by
the buddy allocation scheme than by the first-fit method [2].

As noted by Randell [6], external fragmentation is introduced when
the acceptable buffer requests are unrestricted as to size. If external
fragmentation is present, it is highly improbable that all available
space will be used before apparent overflow occurs in the allocation pro-
cess. Apparent overflow results when a request is made for a buffer of
size n and this request cannot be honored; however, the difference
between the total memory reserved and the total memory allocated is
greater than n. In such caées, it is clear that if the allocated buffers

were placed contiguously in the memory pool, n consecutive locations

would be available to satisfy the buffer request.

External fragmentation was not measured quantitatively. From
simulation results and memory maps constructed from EXPOOL in the EXEC 8,
it appears that this type of fragmentation is minimal when using the
buddy method. Knuth [4] notes that in his simulation of the buddy method,
_'in cases where apparent memory overflow occurred, memory was 95%
packed and this reflects a surprisingly good allocation balance'. The
external fragmentation becomes a much more serious problem when using
the first-fit method since the block sizes requested are unrestricted.

The conclusions drawn in [2] based on a study of the above two
methods of allocation may be summarized as follows:

a) If allocation time is the only criterion for selecting an

algorithm, the buddy method is superior to the first-fit
method since the operations involved in the allocation and re-
lease processes are most efficient.

b) Internal fragmentation introduced by the buddy method may be

unacceptable when the average buffer size requested is large.
External fragmentation introduced by the buddy method is mini-
mal. |

c) Internal fragmentation introduced through the use of the first-

fit method may be eliminated or as in this study, have an upper
1imit imposed. External fragmentation caused by the first-fit

method may be a serious problem because of the number of request
sizes permitted and the long term memory checkerboarding effect

produced.

2.4 Adaptive Method

The results presented above indicate that the type and severity

of memory fragmentation in each allocation method differ and are a
function of the user input statistics, in particular, the user request
and release distribution for buffer storage. If the average request
size is large, internal fragmentation introduced by the buddy method may
be unacceptable; however, the buddy method is most efficient if small
buffers are predominant in the request distribution. In view of the
possibility of change in the request distribution‘over time or with
different modes of operation, an adaptive approach was investigated.

The implementation of an adaptive scheme in a real operating system
depends on the solution of two problems. The first involves providing
a mechanism for automatically replacing one algorithm by the other with-
out interruption to the allocation process. The second involves select-
ing criteria which accurately reflect change or rate of change of con-
ditions in the user input environment and providing a monitoring device
which detects and signals the occurrence and direction of any signifi-
cant change.

Using the buddy method and the first-fit method of buffer alloca-
tion, the means of providing for an automatic transition from one
algorithm to the other was found. The adaptive strategy was modeled and
simulation results were obtained. (See Chapter IV [2]). Change from
one algorithm to the other was controlled in the work reported in [2].
Two request distributions were used and requests were generated using
these distributions. When one distribution used to generated buffer
requests was replaced by the other, the allocation algorithms were inter-
changed. The change from one algorithm to the other was in effect based
on perfect knowledge of wheﬁ the user distributions were interchanged.

In a dynamic situation, such knowledge is unrealistic. It is

10

expected that the change from one distribution to another is gradual or
even if abrupt, in general no foreknowledge is available as to the time
of occurrence. For these reasons some monitoring of the request dis-
.tribution is needed which can form the basis for deciding which algorithm

should be used during each time interval.

11

3. Analysis of Adaptive Strategy Impiementation and Performance
Evaluation

In this section a detailed description is given of the ana]ysis
performed in implementing and evaluating an adaptive strategy fof the
dynamic allocation of buffer storage. The total analysis can best be
described in three parts. The first is concerned with selecting para-
meters which could be used to provide reliable control of the use of
the individual allocation algorithms in the adaptive mode. In the second,
the interaction of the individual allocation algorithms when used in the
adaptive strategy is investigated in an effort to improve allocation
performance. The third part of the analysis is concerned with establish-

ing a measure which permits the allocation methods to be compared.

3.1 Parameter Monitoring and Control of the Adaptive Strategy

The objective of this aspect of the analysis was to select para-
.meteré which could be monitored easily during the allocation process and
which could be used to provide a basis for control of the alternative
allocation algorithms in the adaptive mode. In [2] the efficient storage
utilization of the first-fit and buddy methods was found to be a function
of the average buffer request size. Therefore, the monitored value of
the average buffer request size and the change in the average request
size were selected as the basic elements in the formula used to predict
when allocation strategies should be employed.

The general form of the prediction is as follows:

-

(3-1) Predicted Value of X = (xp) =X+ p. X
where X is the average buffer request size, x is the buffer request
change over the processing interval, and p is an'adjustab]e parameter

used to predict change in the succeeding interval based on the change in

12

the current interval.

Two other factors, the existence of queued requests and a thres-
hold value, are used in conjunction with the predicted value. The
existence of unhonored requests was found to be important in the results
reported in [2] and a threshold value used is that average request size
at which one allocation method becomes less efficient while the other
becomes more efficient depending upon the direction of change of the
request size. Therefore, whenever the predicted value exceeds or falls
below the selected threshold value for two successive processing inter-
vals, the allocation algorithms best suited to allocate those average
buffer request sizes is introduced. Two allocation intervals are chosen
so that spurious changes do not require changing strategies.

Specifically, if allocation is being made using the first-fit
method and the predicted value is less than the threshold value for two
successive processing intervals and there are no queued requests, the
buddy allocation method is introduced. If queues exist, no change is
made regardless of the predicted average request size. If the buddy
method of allocation is in use, either of two conditions may cause the
first-fit method to be introduced. Either a queue of unhonored requests
is formed, in which cése a change is made to the first-fit method of
allocation at the end of that processing interval; or no queue exists.
In the Tatter case if the predicted value is greater than the threshold
value for two successive intervals, the first-fit method is again em-

ployed.

3.1.1 Control of Adaptive Method

As indicated above, the two parameters considered most critical

13

in controlling the use of the adaptive strateqgy were the avérage request
size and the formation of queues of unhonored requests. In an actual
operating system, more memory would be allocated to the buffer pool so
that queues would not be present, or, as in the EXEC 8 system, a sensitive
mode of operation could be entered where only priority requests are
honored until sufficient buffers have been released to resume normal
operation. In the simulation process, enlarging the memory p001 was not
possible, so unhonored requests were queued and the existence of queued
requests is included as a factor in the control of the adaptiye strateqy.

In [2] it was found that the first-fit method of allocation re-
duces queued requests more quickly than the buddy method. This is
particularly true if queues are formed and a change is made from the
first-fit to the buddy method. In this case, the buffers being released
were allocated by the first-fit method and, in general, are not the
correct size for the buddy method. Therefore, in the process of return-
ing them to the available list, many large buffers are sp]if by the buddy
method. This in effect reduces the number of large buffers available to
honor large requests which were queued.

In view of the above results, if a queue exists, it was decided
that no change from the first-fit to the buddy method should be made
even if the request size were favorable for using the buddy method.

When queues no longer exist, the buddy method may be introduced as a
function of the request size. On the other hand, if queues form while
allocating using the buddy method, a change is made to the first-fit
method since the first-fit method introduces less internal fragmentation

and is more economical of the limited space available.

14

3.1.2 Simulation Performed

Although the adaptive strategy allocation and release execution
times can not be obtained from the simulation performed, execution time
was considered in deciding on the internal parameter monitoring to be
used with the adaptive method. First, the interval over which requests
are averaged is determined by the number of requests made and a power4
of two was selected as the number of requests which should define an
interval. This permits obtaining the average request size for an inter-
val with one computer operation, a binary shift, as opposed to first
computing a time interval, and then dividing the request sum by this
number. The latter not only increases the computation time, but, if
average request size is required, additional computation must be per-
formed. Second an attempt is made to select an interval long enough so
that the frequency of computing the average request size is low and so
that false predictions are not made that cause rapid oscillations between
the alternative strategies. Such transitions result in increased running
time and inefficient allocation.

If the interval is too long, significant change in the request
size may be averaged out so that the change is undetected. Even if thé
change is detected, introduction of the alternative strategy may be de-
layed Tonger than desirable. Using the rate of change of the average
buffer request and the current average value of the request size, the
predicted average for the next interval is calculated as a Tinear com-
bination of the two estimates. At the end of the following interval,
the calculation is again performed.

In the simulation, thé interval is determined by 64 buffer

requests. First, the average request size for an interval, 21, and the

change in request size, Q}, are computed where:

_ 64
=1
and,
= -7 . T
(3-3) x = (x Xi_q)

The prediction for the following interval is then based on the current
request size, ?}, and the change from the previous interval, 2}, as
follows:

(3-4) predicted Xipp = X5 ¥ p(Xi - X

1)
where p is a parameter which may be adjusted to provide reliable pre-
diction. Here again, it is recommended that this factor be a power of
two to take advantage of the binary shift operation. In this study o
was set at 2'1. If the requirement that the prediction should be greater
than the threshold for two consecutive intervals were not imposed, this
value for p would lead to spurious signals to change strategies. See
Table III-1. However, with the two interval requirement and this setting
of o, acceptable control is maintained.

The simulation was performed using two buffer request distributions,
d] and d2’ with an average buffer request size of E} = 15.2 and Hé = 20.3
words respectively. See Figure III-1. The selection of these request
distributions was based on two factors. First, the shape of the distri-
butions is realistic in view of the request distribution found in the
Univac 1108 EXEC 8 system. Second, the average buffer request sizes
represented by these distributions are distinct and satisfy necessary

conditions for testing the predictor simulated in the adaptive strategy.

The distributions were used alternately for significant periods

16

of time to generate the buffer requests. In Figure III-2, the'average
request size per interval and the distribution in use are shown. Two
series of simulation runs were performed to determine the effcctiveness
of the prediction and control method described above. In the first,
‘perfect prediction' of the buffer request size was used to control the
use of the alternative allocation strategies. In this mode, when the
request distribution was changed, the allocation method was changed.

In the second, the predictor mechanism was used at the end of each in-

terval to determine whether the allocation method should be chahged.

3.1.3 Simulation Results

The results show that the first-fit method was in use more in the
predicted control than when control was based only on the request
distribution in use. This is explained by observing that control in the
predictor method is based on the existence of queued requests as well as
the average buffer request size whereas the perfect prediction was based |
only on the average request size, i.e., the distribution used in generat~
ing the requests. As will be seen later when the allocation performance
of the various methods are compared, the effect of using the buddy method
while queued requests exist is significant.

The results of the simulation indicate that the predictor method
of controlling the adaptijve method describe above is feasible. Based on
results it is concluded that if the adaptive strategy were implemented
in an actual operating system with similar user input statistics,
adequate control could be maintained using this method. Further, the
parameter monitoring is minimal and the prediction calculation is

uncomplicated since it is simply a lTinear combination of the control

17

Interval

=
o

39

OCOoO~NOOTRWN —~

TABLE III-1.

X AX
19.77
15.06 -4
19.34 +4,
15.52 -3
15.14 -
21.48 +6.
15.72 -5
14.69 -1
16.55 +1
16.00 -
20.88 +4,
16.20 -4,
17.33 +1.
16.04 -1.
20.19 +4,
12.42 -7
14.20 +1
17.89 +3.
28.06 +10.
18.41 -9
25.80 +3.
20.97 -4
16.83 -4
21.58 +4,
15.48 -6
18.05 +2
18.92 +
19.42 +
20.42 +1
20.38 -
22.72 +1
16.76 -5
13.36* -3
15.42 +2.
11.56 -3
13.50 +1
17.30 +3.
13.50 -3
17.30 +3.
12.94 -4,
19.06 +6.
13.81 -5
17.05 +3,
17.52 +
13.66 -3
12.88 -
20.40 +7.
12.13 -8.
20.33 18,
14.63 -5.

+3.
-4,
44,
-2.

COMPARISON OF PREDICTOR CONTROL AND PERFECT PREDICTION
BASED ON REQUEST DISTRIBUTION CHANGE.

18

TABLE III-1. ({(Continued)

Pred. X,

= X, + pAX,
41 T X T ey

*
denotes when change should occur based on predictor

**denotes when distribution d1 and d2 were interchanged when ia = 15.18
1
and ia = 20.25
2

TABLE III-1. COMPARISON OF PREDICTOR CONTROL AND PERFECT PREDICTION
BASED ON REQUEST DISTRIBUTION CHANGE.

19

PROBABILITY OF REQUEST SIZE

1

%
0 |
. - 6) -,p-{:}-
&
e
9L 73//
/ .
(]
B Vi AVG. REQ.
xéi, @ = 15.18
T / B
/ d, = 20.25
6L /
3 ‘l/ /
5 v . AVG. ALLOC (BUDDY)
/ d, = 21.24
/ / |
— 7 d, = 27.00
3L /
2>—-- J.—é{l !I; %
1_.m_{§idt
/’/ ‘
s i :
L | 1 | 1 S
7NN S LA AR A

BUFFER SIZE

CUMULATIVE REQUEST DISTRIBUTIONS d; amd d,
51
AL 0]
X /
3l / \
4, NAER
)
2 / i
/ =X \
'1———-64-/}- N \
| N
‘ | | | — |
P S ERIPUPUPL

BUFFER SIZE
REQUEST DISTRIBUTIONS d] and d2

FIGURE III-1. BUFFER REQUEST DISTRIBUTIONS d, and d,

20

¢

p

L

(62°02

*¢-IIT 3dN9I4

ol

X ONV 8L°GL = FX FuaHM) p 4o lp NOILNGTHISIO ONY TYAYAINI ¥3d 3ZIS 1S3INDIY IoVHIAY
(S1SINDIY 79 = TYAYIINI HOV3) YIGWON TYAYILNI
08 0L 09)] oy (0] . 0¢
mh . _\ ﬂ
lp i p > lp | %p
@
o b

7 o w,.g%tkﬁa

/%@%e @\/@1 L K / /%q@ o /Noﬂo Hom/o% oy-u

X
5

& . o

o
nmwumww mww —02

i
0¢

AVERAGE REQUEST SIZE

21

parameters. It should be noted that with other user statistical environ-
ments, the predictor could become more complex through the introduction
of higher order approximations. However, it appears thét the same para-
meters, the average buffer request size, the change in request size, and

queue formation, would be involved in controlling the adaptive strateay.

3.2 Observed Side-Effects in Adaptive Strateay

Before arriving at the method for comparing the allocation
strategies described in Section 3.3 of this report, several other methods
were considered. Among these was one which attempted to estimate external
fragmentation, where external fragmentation was based on the number of
small buffers on the available buffer lists. It was noticed here that
when a transition was made from the first-fit method of allocation to the
buddy method that there was a surprising increase in the number of buffers
on the buddy available Tists. This was surprising since in general when
the buddy method is used throughout there are fewer available buffers
than when the first-fit is used throughout. See Figure III-3.

The external fragmentation based on the number of buffers on the
available 1ist was in turn greater for the buddy method for the transi-
tion period than for the first-fit method. Since [1,2] when the algorithms
were evaluated separately the opposite was found to be true, i.e.,
external fragmentation is more predominant in the first-~fit than in the
buddy method, an investigation of the adaptive strategy was needed. It
was clear that the phenomenon was a result of attempting to make the two
methods of allocation compatible and interchangeable. The analysis of

the contributing factors is discussed in this section.

22

{1

NUMBER OF AVAILABLE BUFFERS

350 ' Mx :
i ’ % SR ;
v, Ak AV S I F
£ Y. : [= x ;R e
A N g T e
300 ;WA & 7 T Lid,
X! Y , | T
r)\ :t—x% ; / [.17 & Perfect Prediction - FF
- % I ITLD 0 Lists 1st BUDDY - FF -
o ¥ “ o BUDDY
T m / I ~1] x Perfect Prediction -
250 | A 2 S R BUDDY Lists 1st BUDDY -
i - b L FF - BUDDY
¥ ﬁ\i\ I = 711 @_FF Throughout
i . , A ! -+« [Z}BUDDY Throughout
}5 | v ! -
< x ! ~T1
200 || A A, e e
. : e f0pe | = :i}t M}q
! : e - } 4
! ; OG% ol \,‘ — SRR R
: | 5w X\ = =
150 | Ko NP9
! D J/ g 5 ! Yo {\ ;
CNESVAT S v © F A, |
. !

FIGURE II1I-3.

INTERVAL NUMBER

AR
A,H,.Jk__.‘
50 60 -~

COMPARISON OF NUMBER OF AVAILABLE BUFFERS ON LISTS.

23

3.2.1 Adaptive Strategy Model Simulated in [2] (Mod I)

A method for making a smooth transition from one allocation
method to the other was worked out in [2]. One of the basic objectives
which influenced the design of the transition mechanism implemented was
to provide a rapid and complete transition. An attempt was made to
1imit the duration of interruption to the normal operation of eijther
method and to keep algorithm memory requirements at a minimun, i.e.,
maintain only one algorithm in core.

In going from the buddy method to the first-fit method, the
transition was effected immediately through an adjustment of available.
buffer list pointers. The space required by the buddy algorithm was
then released. The duration of total changeover from the first-fit to
the buddy method was also limited as far as possible. In this case,
all allocations possible were made from the first-fit lists using the
first-fit method until they were exhausted prior to allocation from the
buddy Tlists. During this time, no buffers were returned to the first-
fit lists but were returned to the buddy available lists. After a re-
latively short period of time, the first-fit 1lists were exhausted.

In the process of releasing buffers which were allocated usingb
the first-fit method, buffers were checked for valid size, i.e., a power
of two. If the sizes were not a power of two, a released buffer was
split as required to insure a valid size and start address. Since in
the first-fit allocation process buffers may be any multiple of four, it
is clear that more buffers are allocated in the first-fit method which
are not a power of two than are. In turn, the buddy release process
creates many more avai]ab]e-buffers than would be present if release

were made using the first-fit method. The number of small buffers is

24

increased significantly and external fragmentation is unavoidably intro-
duced.

An increase in small buffers is also introduced by the decision to
make all allocations from the first-fit 1ists until they are exhausted.
The small average request size is the basis for introducing the buddy
method. In the process of exhausting the first-fit lists, all buffers
on the first-fit 1ist regardless of size are being used to satisfy the
small buffer requests. This reduces the number of available large
buffers unnecessarily. At the same time in the release process, small
buffers are being created and returned to the buddy lists. These could
be used to satisfy small buffer requests instead of splitting larger

buffers from the first-fit list.

3.2.2 Modified Adaptive Strategy Model (Mod II)

As a result of the above observations, an alternative strategy
for allocation during the transition period was modeled. In this model
the buddy lists are checked and allocation are made from the buddy lists
if possible. If this is not possible, the first-fit lists are checked
and the allocation is made or the request is queued. Simulation runs
showed that the number of available buffers was reduced over the
original strategy, as seen in Figure III-3. When the memory pool was
limited, queues were formed earlier using this strategy than the
original one. See Figure III-4. This is caused since the internal
fragmentation of the buddy method is significantly greater than that of
the first-fit method. Allocations are being made using the buddy method
primarily which does not make economical use of the Timited storage

available.

25

QUEUE LENGTH

FIGURE III-4.

& USE FIRST-FIT LISTS FIRS
® FIRST-FIT THROUGHOUT
[-]BUDDY THROUGHOUT

X USE BUDDY LIST FIRST - ;} op
T

QUEUE FORMATION IN FIRST-FIT, BUDDY, AND ADAPTIVE MOD
WITH PERFECT PREDICTION OF REQUEST DISTRIBUTION IN USE.

26

Another serious consequence of this strategy is that the first-
fit lists are not exhausted rapidly and the first-fit a]gorﬁthm must
reside in core indefinitely. In some simu]atioh runs, the first-fit
available Tists were not exhausted throughout the period during which

the buddy method was being employed.

3.2.3 Simulation Results of Mod I and Mod 11

It was concluded from the simulation results of these two models
that some reduction in the number of small buffers during the transition
phase was possible using the modified model, Mod II. See Figure III-3.
However it appears that this reduction is not significant based on the
probability of queueing requests shown in Table III-3. There it is
shown that if in the perfect prediction mode, the probability of queueing
for Mod I is .025’énd for Mod II is .022; or if using the predictor, the
probability of queueing for Mod I is .007 and for Mod II is .005. 1In
neither case is the difference signficant. In view of the above results
and the fact that Mod II requires both allocation algorithms to remain
in core indefinitely, Mod I would be preferable if an adaptive strategy

were implemented.

3.3 Evaluation of Allocation Performance

The primary objective of the research discussed in this report was
tp explore the possibility of determining and implementing satisfactory
criteria to control the use of alternative methods of the adaptive
strateqy. As the study progressed it became clear that a very basic

problem should be explored. In order to compare the performance of the

allocation process, we must be able to measure performance. The importance

of a valid measure of allocation performance can not be overemphasized.

27

Memory utilization was selected as the basis for comparing alter-
native allocation strategies since algorithm execution times could not
be obtained readily from the simulation outputs. The question to be
answered is then 'What is a satisfactory measure of memory utilization?'.
Several alternative measures have been discussed in the literature [4].
Among these are memory compaction and memory fragmentation.

Memory compaction is defined as the percent of the memory pool
allocated when apparent memory overflow occurs. This may be viewed as
a direct measure of memory utilization., This measure taken alone was
considered inadequate since it is possible that one allocation strategy
may provide a high degree of compaction but exhaust the memory pool more
quickly than another. This introduces another element, internal frag-
mentation, which should be included in measuring allocation performance.
For this reason attention was turned to finding a measure of memory
fragmentation.

Memory fragmentation is a term used to define the amount of unusable
memory. It is essentially an indirect measure of memory utilization
since it measures the unusable memory as opposed to the used memory.
Considered properly, it includes both internal and external loss.
Initially, these two types of memory loss were analyzed independently.
The results of this analysis showed that a satisfactory measure of total
memory fragmentation could not be defined. The problem lay in the fact
that internal loss and external loss are different and must be measured
in different terms which could not be combined readily to obtain a re-
sultant value of total memory loss. It was clear that a measure of
total memory loss was sti]].needed.

Approaching the problem of total memory fragmentation from another

28

viewpoint, the basic question is 'What is the significance of memory
loss?'. If memory is unlimited, there is none. However, if memory is
Tlimited, one would 1ike to use that allocation method where the pro-
bability of overflow is zero, or the smallest possible. This is the
same as finding the probability that buffer requests will be queued.
Since this could be measured from the simulation outputs and since this
was a measure of total fragmentation regardless of the relative impor-
tance of internal or external fragmentation in the particular allocation
method in use, the probability that buffer requests would be unhonored
was the measure of allocation performance adopted. The following
sections describe in detail the analysis which was performed and the

results obtained.

3.3.1 Memory Fragmentation

The problem of memory fragmentation is two~fold. As discussed in
Section 2 of this report, two distinct types of memory fragmentation
are present - internal and external. It is clear that internal frag-
mentation is the predominant type of memory loss in the buddy method and
external fragmentation is the predominant type of memory loss in the
first~-fit method. In the adaptive method which makes use of both the
buddy and the first-fit method, the total fragmentation is the resultant
of the two types. If the two types of fragmentation could be measured
independently, then the sum of the results would be representative of
the total fragmentation. This measure could then be used to compare the
performance of the alternative methods of allocation.

The total fragmentation was obtained by adding the internal and

external fragmentation. Plots were made of these three values. As

29

observed earlier, the plots gave an indication of the type of fragmen-
tation which was characteristic of each method of allocation. In the
buddy method internal fragmentation contributed most to the total frag-
mentation and in the first-fit external fragmentation was predominant.
See Figure III-5.

This measure of total fragmentation was inadequate as a basis
for comparing the allocation methods since external fragmentation does
not realistically reflect the unusable memory o} actual memory loss due
to the breaking up of the memory pool into small buffers. Essentially,
external fragmentation of memory is a matter of concern only when a re-
quest is made for a buffer which cannot be honored while at the same
time the total amount of available storage exceeds this request. The
number of small buffers available is of no consequence as a measure of
external fragmentation if it is found that there is always an avéi]ab]e
buffer equal to or greater than the size requested.

From the above it is clear that external fragmenfation.is signifi-
cant only for buffers of size x where there is a probability that
X > max {x]}, where X; are the sizes of the available buffers. From this
it was concluded that the two important elements to be considered were
the probability that there would be a request for a buffer of size x
and the probability that an available buffer of size x or greatér would
not be available. The effect of fragmentation was then defined in terms
of the probability that a request for size 21 would be queued as follows:

. . n
$3-5) p(q|21) = o(2") . kgip(zk list empty)

where @(21) is the probability of a request for a buffer of size 21,
p(2k 1ist empty) is the probability that the ok 1ist is emoty,

p(q|21) is the probability that, given a request for Zi, the request

30

d3GWNN TYNYFINI
oel ocl OLL 00L Q6 08 0L 09 09

. Mo N
(TYNYILNI) “re < v é?i/f.ﬁ. ,\»\/jZ%TN/

- \>>
\, A,,A

) ,.
(yNY¥3LX3 ,,,._r, Df \J ,\a (iif < \/ \/\
wo gl

€68 NNY) LI4-1S¥HId

(TYNY3LX3) \,\, ,.,/

:<z~Ez:wmw} J\rl :-J J\iéﬁ/\é \ﬁ\/\

. 5? M L %\?\z [

(8€68 NNY¥) Aaang
NOI.LVINIWIVIL

T ANTINGTHIQTA

“ \ ,,{r\/}j\/\(w\}f\ /D.\.\/i,\

0s”

09°

0s*

09°

PERCENT FRAGMENTATION

MEMORY FRAGMENTATION BASED ON INTERNAL AND EXTERNAL FRAGMENTATION

FIGURE III-5.

31

will be queued.
If using the first-fit allocation method, the calculation for determining
when a request will be queued requires additional analysis. This is re-
quired since, unlike in the buddy method, a Tist may not be empty but
may contain buffers which are not a power of two. This allows for the
situation where a buffer less than 21 exists on the 21 list and a request
is made for a buffer greater than the available buffer. When this
occurs, the request is queued even though the list, 21, is not empty.
In order to obtain the probability of queueing for the first~fit allo-

cation, the following modification was made:

. . n
(3-6) plal2') = e(2') - m,qp(250) -

p(2'=0) + tp(req > mox 12'1)]
where p(req > max'{Zi}) is the probability that a
request is made for a buffer which is greater than the
maximum size buffer on list in én intervé].
Finally, for either the first-fit or the buddy method, the probability
that any request will be queued and not honored given all requesis is
given by

n .
(3-7) plq) = 7 plq]2").
i=2

The outputs from the simulation of each model were evaluated in
terms of the above interpretation of memory fragmentation., The parti-
cularly important aspect of this approach is that fragmentation need
not be treated as two distinct types -~ internal and external. This
interpretation of fragmentafion avoids the problems of measuring and

comparing dissimilar entities in an effort to arrive at a single measure

32

based on their contributory components. The results obtajned reflect
the effect of total fragmentation, regardless of the type.

In the simulation the probability of requests for buffers of
size 21, i=2,...,8, was obtained directly from the request distributions
used to generate the requests. The probability that a list of 21 size
buffers would be empty was then obtained by plotting the frequency |
distribution of the number of buffers on each available buffer list at
the end of each processing interval. Additional simulation runs were
made in order to insure that steady state in the allocation process had
been reached and to permit a significant period of time over which the
frequency distribution was obtained. The percentage of the time that
each list was empty was then used as the probability that a given list
would be empty. If any 1i§t were never found to be empty, then the
probability that this Tist would be empty was set to zero along with all

lists which contained smaller buffers.

3.3.2 Scope of Simulation

In this simulation study two distributions, d] and d2’ were used
to generate the buffer requests. The average buffer request sizes were
H} = 15,18 and Hé = 20.25 words respectively. See Figure III-T,
The simulation runs were set up so that the outputs could be used to
compare the allocation performance of the first-fit method, the buddy
method throughout, and the two models of the adaptive strategy discussed
in Section 3.2. For both of the adaptive models, the allocation algorithm
in use was controlled in two ways. The first, a perfect prediction of
request distribution change, was controlled as a function of the distri-

bution in use. In the second, the decision to use a particular

33

algorithm was based on monitoring the average request size, the chanae
in the average request size, and the formation of queues of unhonored
requests. This latter method is that method described in Section 3.1.

Table III-2 provides a chart of the simulation runs performed.

3.3.3 Results of Simulation

In using distribution d] with an average request size of 15.18
words, it was found that neither the buddy nor the first-fit method of
allocation ever exhausted the largest size buffer list, 29. The pro-
bability that a queue of unhonored requests would exist was zero. For
this distribution the buddy method was found to be slightly better than
the first~fit method in terms of memory utilization. This was based on
the fact that throughout the use of the buddy method, there were always
two or more buffers of size 29 available, while the first-fit method

reduced the 29

1ist to just one buffer.

This is a rather interesting result in view of the fact that it
was found in [2] that based on internal fragmentation alone whenever
the average allocated size in the buddy method is greater than four
times the average overhead of the first-fit method, more memory will be
used by the buddy method than by the first-fit method. Here the average
overhead of the first-fit method is 2.5 words and 4x2.5 = 9 would be
the point at which the first-fit method would be preferable. However,
this run shows that with an average allocation size of 21.24, the buddy
method is still slightly more economical of memory available than the
first-fit method. This indicates that external fragmentation is

significant and must be considered if a meaningful comparison of the two

methods is to be made.

34

Perfect Prediction Predicted

FF-B B-FF FF-B
Buddy First-Fit Mod T |Mod 2| Mod 2 Mod 1 | Mod 2
|
d] X X
d2 X X
d] > d2 X X X
d2 > d] X X X X X X

TABLE III-2. SIMULATION RUNS PERFORMED. (NOTE MOD 1 AND MOD 2 ARE
ADAPTIVE STRATEGY MODELS WHERE 'USE FIRST-FIT LISTS FIRST'
OR 'USE BUDDY LISTS FIRST' RESPECTIVELY AS DESCRIBED IN
SECTION .3.2,)

35

Interval 22 23 24 25 26 27 28 29

39 48 17 40 31 8 5 4 1
41 48 23 44 31 7 4 5 1
43 52 29 39 27 14 3 2 1(512)*
45 56 33 35 25 11 4 2(188) 0
47 58 25 36 27 3 2(68) 0O 0
49 69 23 45 40 4 3(128) 0 0
51 72 26 48 47 4 1(84) 0O 0
53 67 31 47 44 10(56) 0O 0 0
55 53 25 50 49 23(64) 0 0 0.
57 57 18 47 46 28 6(100) O 0
59 60 21 42 45 18 5(96) 0 0
61 50 22 37 45 22 12(116) 0 0
63 56 22 38 41 23 11 1(136) 0
65 66 19 41 38 24 10(96) 0 0
67 64 18 37 37 26 12(100) O 0
69 74 21 40 26 17 10 1(156) 0
71 69 23 34 25 19 6(96) 0 0
73 63 15 33 37 20 7(112) © 0
75 68 15 41 39 11 4 1(192) 0
77 86 26 43 36 5(52) O 0 0

TABLE III-3. NUMBER OF AVAILABLE BUFFERS ON EACH LIST AT THE END OF
PROCESSING INTERVAL USING DISTRIBUTION d, WITH AVERAGE
BUFFER REQUEST SIZE d, = 20.25 AND THE FIRST-FIT ALLOCATION
METHOD. = . - . . : .

(*NOTE. gHE NUMBER IN PARENTHESIS IS THE LARGEST BUFFER AVAILABLE ON
ANY LIST.

36

Interval

22 23 24 2° 26 2! 28 29
39 0 7 12 2 8 4 0 0
Y 2 1 10 0 3 1 3 0
43 3 9 6 1 5 2 1 0
a5 10 3 3 6 4 0 0 0
47 1 1 1 0 0 0 0 0
49 0 4 6 0 0 0 0 0
51 8 1 1 0 0 0 0 0
53 9 7 0 0 0 0 0 0
55 6 5 0 0 0 0 0 0
57 3 7 2 1 0 0 0 0
59 6 9 10 9 0 0 0 0
61 5 6 2 0 0 0 0 0
63 5 13 4 4 0 0 0 0
65 1 12 14 15 0 0 0 0
67 1 2 15 14 0 0 0 0
69 3 4 0 2 0 0 0 0
71 3 2 1 6 0 0 0 0
73 2 2 1 10 6 0 0 0
75 3 12 10 4 1 0 0 0
77 6 1 15 1 9 0 0 0
TABLE III-4. NUMBER OF AVAILABLE BUFFERS ON EACH LIST AT END OF
PROCESSING INTERVAL USING DISTRIBUTION a. WITH AVERAGE
BUFFER REQUEST SIZE , = 20.25 WITH THE 8UDDY ALLOCATION
METHOD.
(NOTE:)EVERY BUFFER ON.LIST IS A POWER OF TWO WITH BUDDY ALLOCATION
METHOD. A

37

Buddy First-Fit

p(a]x < 2°) 0 .0
p(q]2® < x < 2%) 0 .0
p(g|23 < x < 2% 0065 .0
P(q|24 < X < 2°) .1037 .0
p(g]2® < x < 25) .0302 .0002
p(q]2® < x < 27y .0144 0041
p(ql2” < x < 2%) 0090 0067
To(al2") 1638 o010

TABLE III-5. PROBABILITY OF QUEUEING GIVEN BUFFER REQUESTS FROM DISTRI-
BUTION d2 WITH AVERAGE BUFFER REQUEST SIZE d2 = 20.25.
(SEE WORKSHEET 1 AND 2 FOR CALCULATIONS USING EQUATIONS 3-5,
3-6, and 3-7). '

38

20 X - Buddy X
19 @ - First Fit e
18 /

— —
oy N
\\\
G

—
U1

[T p—
w &

—
™~
®

INTERVAL
pa
\

\
\

8

7 !

6 ‘ / |

; o

4

3 ©

2 . o X - A

| ___.__Ti>k<;_;;,£fmm, :

0l g N & b4] |
TP B LU C VA S B

AVAILABLE BUFFER LIST

FIGURE TII-~6. FREQUENCY WITH WHICH A LIST IS EMPTY. USING DiSTRIBUTION d,
WITH AVERAGE BUFFER REQUEST SIZE d2 = 20.25,

39

p(2
p(2
p(2
p(2
p(2
p(2” =
p(2” =

p(q]2

(q]2”)

p(q]2°)

p(q|2°)

p(q]2%)

p(q) =

0)
0)
0)
0)
0)
0)
0)

(Lo

WORKSHEET 1.

w o o v o

@(26) .

o(2

@(24) .

5(2°)
@(28)
s(2')
2(2°)
o(2°)
@(24)

p(2k =0) =

p(zk - 0) =

p(gk - 0) =

p(2k =0) =

p(ZF - 0) =

0090 + .0144 + .0302 +
0.1648

METHOD WITH DISTRIBUTION d
AND FIGURE III-T.

40

EQUATIOES (3-

) AND (

.01
.02
.07
.40
.25

(.01)(1.0)(.9)
(.02)(1.0)(.9)(.8)

(.07(1.0)(.9)(.8)(.6)

(.40)(1.0)(.9)(.8)(.6)(.3)

(.25)(1.0)(.9)(.8)(.6)(.3)(.1)

.1037 + .0065

1]

.009

.0144

.0302

. 1037

.0065

CALCULATION OF PROBABILITY OF QUEUEING A REQUEST USING BUDDY
DATA TAKEN FROM TABLE IIT-4
~7) USED.

p(2 =0) = .8 s(2%) = 0
p(22=0) = .65 5(2%) = .01
p(2’ =0) = .15 o(27) = .02
(%) = .07
9 .
plal2’ < x <28 = o(2%) 3 p(,Ko)+[p(25=0)+]p(req > max {2°})]
68+120+100+64 1
= (.01)(.85)-[(.65)+ -]
128 20
= (.01)(.85)(.7875) = .0067
6 ; 1 60+44+2x28+3x32+12+16
p(ql2® < x <2') = (.02)(.85)(.65)[.15 + —]
) 20 64
= (.02)(.85)(.65)(.3719) = .0041
pal2® < x < 2%) = (on)(.8s)(.e8) (1) [0+ B2)]
= (.07)(.85)(.65)(.15)(.0313) = .0002
9 . .
p(q) = Jp(ql2"™" _x 2') = .0067 + .0041 + .0002 = .0110

2 —_—

.i

WORKSHEET 2. CALCULATION OF PROBABILITY OF QUEUEING A REQUEST USING
FIRST-FIT METHOD WITH DISTRIBUTION do. DATA TAKEN FROM
TABLE III-3 AND FIGURE III-1, EQUAT%ONS (3-6) AND (3-7)
USED.

41

In distribution d2 with an average buffer request size of 20.25,
requests were queued using either the first-fit or the buddy'method.
For this distribution the allocation performance of thé two methods was
compared using the probability of queueing method discussed above.

Here the probability that requests will be queued was found to be .01
for the first-fit method and .164 for the buddy method. Tables III-3
and I1I-4 give the frequency distribution of the number of blocks on
the available lists for the first-fit and buddy methods respectively.
Figure I1I-6 shows the frequency with which each 1list is empty using
either the buddy or the first-fit method. Table III-5 gives the pro-
babiTlity that a request for a buffer ofizi, i=2,...,8, will be queued
for the two methods. The total probability of queueing is the result
of summing these probabilities. A direct comparison of the performance
of the alternative allocation strategies is possible from the values
given in this table. |

Similar tables and calculations were performed for each simulation
run. The results, the total probability of queueing for each run, are
given in Table III-6. It should be pointed out that in all runs data
from processing intervals 39 to 77 were used. This permits the use of
data obtained after steady state conditions have been established and
provides a common processing period for the comparison of the allocation

methods.

3.4 Summary of Conclusions

The simulation results show:
(1) The predictor method of controlling the adaptive method is

feasible and provides adequate control in view of the distributions used

42

Predictor

(NOTE MOD I AND MOD II ARE ADAPTIVE STRATEGY MODELS WHERE
"USE FIRST-FIT LISTS FIRST' OR ‘USE BUDDY LIST FIRST'

RESPECTIVELY AS DESCRIBED IN SECTION 3.2).

43

Perfect Prediction
FF-B B-FF FF-B
Buddy First-Fit t Mod I [Mod II {Mod II Mod 11 Mod II

dT .00 .00 %
d .160 017 §
? |
' |
.06 '
d.l - d2 .040 .002 i

d2 - d.l .038 .008 .025 .022 .007 .005

TABLE III-6. PROBABILITY OF QUEUEING RESULTS BASED ON SIMULATION RUNS

to generate the buffer requests.

(2) The result indicates that the control of the allocation
algorithm in use should be based not only on the averagé buffer request
size but also on the existence of queued requests.

(3) The attempt to improve allocation performance by reducing the
numbers of small buffers placed on the available buffer lists during
the transition from the first-fit to the buddy method did not produce
significant improvement due to the basic incompatibility of the first-
fit and buddy methods of allocation. If one decides to use the adaptive
strategy, the model (Mod I}, which if possible uses buffers from the
first-fit lists prior to allocating from the buddy lists, should be im-
plemented. This avoids the necessity of maintaining both algorithms,
the first-fit and the buddy, in core indefinitely.

| (4) A comparison of the performance of the allocation methods
simulated is possible using the probability of queueing calculation pro-
posed in this report. |

(5) The attractive feature of using the probability of queueing
as a basis for comparing allocation performance is that it reflects the
effect of total fragmentation which includes both internal and external
fragmentation. This avoids the problem of determining the relative
importance of internal or external fragmentation individually in an
effort to arrive at a measure of total fragmentation.

(6) Finally Table III-6 shows that for the request distribution
used in the simulation the adaptive strategy is slightly better than‘
the first-fit method and significantly better than the buddy method.
The difference in the allocation performance of the first-fit method

and the adaptive strategy is clearly not significant. Further in view

44

of the need for monitoring, predicting when to alternate allocation
strategies, and the added complexity of the individual a1gor1thms to
make them compatible in the adaptive mode, one would he advised to im-
plement the first-fit method.

(7) Simulation is an effective tool for studying the character-
istics of alternate methods of handling computer operating system
functions prior to modifying an existing system or including a proposed

strategy in a proposed system design.

45

[1]

(2]

[3]

[4]

[5]

(6]

[7]

Bib1iography

Minker, J., Crooke, S., Yeh, J., "Analysis of Data Processing
Systems", University of Maryland Technical Report No. 69-99,
December 1969, p. 103.

Crooke, S. An Adaptive Approach to the Allocation of Buffer Stor-
age, M.S. Thesis in Computer Science, University of Maryland,
College Park, Maryland, June 1970, p. 78.

Markowitz, H. M., Hausner, B., Karr, H. W., Simscript: <A Simulation

Programming Language, Prentice Hall, Inc., Englewood Cliffs,
New Jersey, 1963.

Knuth, D. E., The Art of Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Menlo Park, California, 1968.

Denning, P. J. "Virtual Memory", Dept of E. E. Computer Science
Lab. Technical Report No. 81, January 1970, p. 87.

Randell, B., Kuehner, C. J., Dynamic Storage Allocation Systems.
CACM 11, 5 (May 1968) 297-305.

General Purpose Systems Simulator II (GPSS) Reference Manual,
Univac Data Processing Division Manual Number UP-4129.

46

Appendix

The purpose of this appendix is to present in some detail the logic
and data structure of the allocation methods simulated. First a skele-
tal outline of the total model is given. This is followed by a detailed
flow chart of the GPSS routine which serves as the basic control in the
simulation. A flow chart of the HELP routine* gives the models used in
simulating the first~fit, buddy, and adaptive allocation methods.
Finally, the data structure employed to make the first fit and buddy
aT]ocation methods cdmpatib]e is discussed. It is hoped that the dis-
cussion and detail given in this appendix will permit a better under-

standing of the simulation performed and the results which were obtained.

*Note; HELP is a Fortran routine called using a standard GPSS block
) type.

47

generate
buffer
request

assign size to request
also distribution flag
to request

__HELP Routine __

allocate using |e. .+ e:
first fit methodqf”rSt fit
if possible

buddy method

allocation
if poss1b1e

allocate using
method
?

queue g
allocation ™\, request there space
possible 7~ | yet
ves
determine store time
and enter store
__ HELP Routine
| - = —]
b1 release buffer |first-fi release buddy release buffer
L AR using buddy

| using first fit

method
‘ method ?

method |

«| " Save buffer size
71 released for test
at o

terminate
transaction

A<1. GENERAL OUTLINE OF SIMULATION MODEL

48

In GPSS, each transaction may have eight words, P1,...,P8,
associated with it and may be used by the programmer to describe the
transaction. In this simulation, the following use is made:

P1

The actual buffer request size as obrained using request dis-
tribution FN1 or FN3. (See Figure III-1 for graph of these
functions.)

P2 - The start location of the buffer allocated.

P3 - the exponent of the least power of two which is equal to or

greater than the buffer request size in P1.

1

P4 - The actual buffer size allocated. If allocation is made
using the first-fit method, P4 is the multiple of four which
is equal to or greater than the request size contained in P1.
If allocation is made using the buddy method, P4 is a power
of two.

P5 - P8 unused.

Certain storage may be used for temporary storage and méy be re-
ferenced by Xn where n is the cell number in the temporary storage area.
In this program X1 through X6 are used as follows:

X1 - Indicates either a request for buffer allocation, or a request
for buffer release upon entering the HELP routine. Upon re-
turn from the HELP routine, X1 contains the start location
of the buffer allocated.

X2 -~ Contains the least power of two which is equal to or greater
than the buffer requested. Upon exit from the HELP routine;
X2 contains size of buffer allocated.

X3 - Indicates which allocation method should be used if control

is to be a function of the request distribution in use.

49

X4 ~ Contains total number of requests currently queued.
X5 ~ Size of most recently released buffer.

X6 - Total number of releases.

50

Compare 30

%;2

100

Originat

0,3,5‘3{2'\

000

Advance

N\

e

Advance

53
Both
B
51
Both
A
52
X6 < 4000

A<2,

Transactions (buffer requests)
are originated using a Paisson
distribution., This distribution
is obtained using the mean inter-
ar ival time, m=3, and modified
by the function FN2 as given in
Table A-1,

Determine request distribution
to be used and X3 as a fusction
of the value of X6 where X6 is
the number of processed requests,

_ that is, the number of released

buffers.

Set Pl = the actual buffer request
size obtained using request
distribution FN1 or FN3.

Set X35 to indicate wnich alloca~-
tion method should be used
as a function of the re-
quest distribution used,
FN1 or FN3.,

Set P3 = the least power of two
which is e-ual to or
greater than the buffer
request size in Pl,

Set X1 = to indicate request for
buffer allocation.

Set X2 = power of two found in P3.

Set X4 = total number of requests
queued at the time current
request processed.

Save
1]
Save

GPSS CONTROL PROGRAM

51

’ T . .
! //51/04\\\\ \ Parameters troarnamict i
: . to and used in tne
X2,X3% - HELPE subr.utine.,
+

Assign < Boz

\ .
N . P4 ¢ ntalilns the
' L I number of 3tor-
- KT 7 N [- N
\Yi 1250, FNe \1,P4;Store uge cells to bie

T allocated,

The store tiwes
are obtalned
uslng s mean,

HaLP

Compare

by the finciion,
WN2 given in

Taole A-1,

Save

N !

J

‘XZ 3 o350

A~2 (CONTINUED)

52

6=1250, and sodif

ied

HELP X2 XB)
\ . -
N

Save 22
[i
X5 Xl

Save

advance

Compare ///;g/ﬂ 2006\t>>
\\ /////

Ldvance

o i
e g
<;ff\< 4038/;>> , Comvare
. |
i T |

| . | =
G2 ‘ 41)
Save Save

| [xi;m‘]’“’“ X3,K2)

A-2 (CONTINUED)

53

~NOY O B N - O

O 0 0
o (S,

TABLE A-1,

.104
.222
. 355
.509
.690
.915
1.200
1.38
1.6
1.83
2.12

.92
.94
.95
.96
.97
.98
.99
.995
.998
.999
.9997

Y O B Wwow W NN NN

00 N NN W oY W oo

FUNCTION FN2 - EXPONENTIAL DISTRIBUTION

54

The HELP subroutine is written in Fortran. Its basic function is
to maintain the memory map and data structure of the buffer pool. Two
methods of buffer allocation are provided: the first-fit and the buddy
method. The data structure maintained is such that the methods may be
used interchangeably. Provision is made for interchanging the methods
as a function of the request distribution in use. The request distri-
bution may be determined either from a parameter passed through the
calling sequence to HELP or by calculating the average request
size and the observed change in the average request size.

The flow chart of the HELP routine outlines the models used for
the.first—fit allocation and release processes, the buddy allocation
and fe]ease processes, the method of calculating the average request
size and the change in request size, and the means provided for chang-
ing from one allocation method to the other as a function of the request
distribution.

Finally, the buffer pool data structure which permits the use of

either allocation method is described.

55

Initialize on 15t |
entry to HELP ‘

| SISO §

14 ' . .
i Set QCUR é QCUR = current
i : queue size
QMAX = maximum
queue size

QINT = maximum queue
© .~ size in samp-
ling interval

MAD may be-set in the
initialization, or con-
trolled dynamically by
parameter X3.

£ 300
S ~ s . yes ;
Move buddy lists st eggry\\f Move 2° buffers
‘. to buddy ' .
o first-fit lists to buddy 1ist

L.

L

no N_J

release 301 , 400
’ ‘ - lease T
o < rel |
| first-fit operation- . pera§1gn ~._ buddy buffer release
‘ buffer release needed \\\\ neede -
? N -
| ‘ e T
103 J,allocation |, allocation !
[! = . /,/ \
first-fit buffer . buddy buffer (return)
allocation allocation N J/
! : i S~
S !
\

As3;' GENERAL OUTLINE OF HELP ROUTINE
56

[

[e N ;
i
1 Print interval |
‘ data
‘ 1
|
N
| Set mAD for |
| method control |
| required i
i . !

T
i

|

'return}
/

A
\\ ‘_/’

A=3 (CONTINUED)

57

K is now -the

difference
between the
size of the
available

buffer and the size of |
the buffer requested

First-Fit Routines

100

<(//////)L\\\\\\\ es
IFIRSJ:///////’

IFIRST =

_____~1:_~§-“

102

)

! Move available buffers
! currently on buddy list
to first-fit 1ists and clear
buddy 1lists

First-Fit Allocation

103 {“Ih{£1alize
N is number Eg - igIM (x2)
of words to)
be allocat- . N = P1 - MAD(P1,4)+4
ed
—
104-120] Look for available

buffer which 1is

equal to N

} greater than or
|
3

il

X1 1 for buffer
allocation
2 for buffer

release

MEM(_) dis pointer to
next buffer
on list

MEM(_+1) is the size
of the buffer.
If the buffer
is allocated,
the sign is minus.

MEM(_+2)is the Tlist on
which the buffer
is found.

ne available to

Set flag that no !
allocation possible' |

(x2 = 20000)

130 available]no
buffer - ._satisfy request
P . was FP~
b K = MEM(u+1)-N (,,"a11ocgt}on‘ no
| d = ysed + 1 ~.entere rom.-
e buddy. -
Iyes

A-4,

58

(keturn/

\
N

DETAILED OUTLINE OF HELP ROUTINE

K <
\\\\\\\\T e
L is the loc- i

ation of the
first word of
the available
block to be
returned to
the 1list

4 Y&
P
L = N + K|
X1 = N 1

|

MEM(u+1) = K i

40 :I -

Find available 1ist

on
’ b

142 .

which remaining
uffer should be
placed

o

Remove buffer from

remain

|
i current list and place
i

lyes

| set IFLAG = N

t to indicate that

| no request Z N can

| be honored from :
l the first-fit lists .

[1

lreturn to buddy allocation

“ jrout1ne at 303

143 (allocate whole block)

Set X2 = size of buffer
a]]ocated 7

~

Remove buffer
from list

der on proper list
147 i
| Set: X2 = N ‘
S T
146

BRI
|

i
MEM(L+1) = - X2 1

X3 = X2 - P1

[B

_

Update data for
statistical summary

A-4 (CON

59

TINUED)

First-Fit Release Routine

k Sét N éauairigwbibbk sigé released

B

Update data for statistical summary:
USED - USED - 1

AVAIL = AVAIL + 1 '
SPACE = SPACE + N !
SPUSED = SPUSED ~ N]
ICNT = ICNT + 1 :
201
- Is 205 (Place buffer on
- this Tast>. yes . appropriate list
—-——> _ buffer in -~ 7 according to size .
~. pool 7 :
(no v
v : -
I In released buffer
next\' g set: 1link to next buf-
adjacent ! fer on 1ist, buffer size
buffer free.. no and 1list on which placed
N+ <512 wds . o
\\ // . .
///// Set X1 =N
; | . A

i

" Increase buffer size (N) !

yes ,
202 V. _ coalesce two blocks return
|

|

Vi] -

fﬁeduce number of avafjébT;Nbuf%érs (AVAIL)

203-204

I
1
|

Find buffer being combined with buffer
being returned and delete from available
list

A-4 (CONTINUED)

60

Initialize Buddy Routines

300‘ MAD = 2 ,

BE

MEM(18)
MEM(9)
IFIRST

MEM(9)
0
1

’301

Go to
(302,400),

‘, =

Buddy Allocation
‘ s < *Note
302 Ve ~
“Can this >
7 request be
filled from
1§t fit 1ist§/
N //
N/

303 lno

7

Move 29 blocks from first-fit

1ist to buddy 29 Tist. Clear first-
fit 1ist, set flag to indicate initial
entry to Buddy routine made.

N _yes First-fit allocation routine

7 \Note

f%n thi?\\\
none request be
available {f filled from

/

Look for available
buffer on buddy lists

avéi]ab]e ‘

D,

A-5.

*Note:

med.

=

N 1st fit 1ist§,
s/

N/
SWyes

BUDDY ROUTINE

A search of the first-fit lists may be made at either of these
points in the program.

For any given run, only one is program-

61

315 310 l

. .
L = location of first word of set flag gggzib?g'a11ocat1on
available block (X2 = 20000)
Remove block from
available list Return

A Set X1 = buffer start location
starting at L85 X3 = interval memory loss
——>
Split

update statistical
Place one half of (data cells

buffer on correct
available list

Reduce block size
——] to one half

A-5 (CONTINUED)

62

Buddy Release

Set buffer size
positive
Set X1 = buffer size

401
Set K = X1

acceptable

for 2N
?

405

es

start
Tocation
acceptabl
? 420
, ———+| K=kK-2"
’ Set K= 0
- 406 |
, Find the start loc of
the buddy of the
buffer being released
408
450
. Can
Set: buffer size
and buffer list no gg;ﬁ?ieﬁe
451
Place buffer on Find buffer to be
available list combined and delete
: from Tist on which
found

I
A-5 (CONTINUED)

63

454 0 |

- \\\\ Set new buffer start location and
k=0 i K fer si
4 K=20 ~Yes.(return size. Set K to buffer size
N N //,/
e v
[no
N

Set start location of

S _"‘——-———?
new buffer Set new \\\\\\\\
= old start location buffer size i // K < 9N
+ size of buffer just equal to k 7(402/
released

X

l % j no

499 !] ——
oo e ;. n=n + 1 \

' Calculate and print twe
Tines of data

i
i

520
/ -
a1?323¥1on Calculate and print
being next data Tine
U%EQ////// (buddy)
no
5 Calculate and pr1nt next (/////// .
j data line QCUR PRED ™~ no
. (first-fit) P <> THOWD RS
‘\\\r///
yes

PRED

| 540
- N
. THOLD 530) | wap - 1 <}~Xﬁiw//////E;LAG
\\\\ | IPRINT = 0 ‘\\\\\\i 0o
..... - e

v | I no
505, v
CFLAG : | <;,/ CFLAG = 1.0:

| - ! e
> 0 : CFLAG = 0_z A
L : /ﬁeturn‘
\ ;
~— A-5 (CONTINUED)

64

()

N

yes
530, \K\\\\\\
CFLAG [co]

531

Increment
IPRINT

CFLAG = 1.0 ! ; i

>

e

N
1
i
i

~.
.
N

532 \L . ~
BRI 20 . /“/E;;INT = 3~Jo \
MAD = 2 - - - Return
(Reset to allocate using) ' Ny
buddy) . e
b e i et 2 e a0 - st e - amrt e e 2o B i‘yes
Reset IFLAG = 512 S
4 set IPRINT =0 IPRINT = 1T |
505\ '

Print start location, size }
and list # of all available
buffers !

Set up from change to
other allocation method

i o

~,
N,

Return

A<5 (CONTINUED)

65

Data Structures

When the first-fit method of allocation is in use, all available
buffers are accessed from MEM(2) to MEM(9). Lists headed by MEM(11) to
MEM(18) are empty. Whenever the first-fit routines are entered after
having allocated using the buddy method, the buffers from the buddy
lists are placed at the end of any existing first-fit lists.

When the buddy method of allocation is in use the available buffers
may be found on either the first-fit or buddy 1ists. In the allocation
process, buffer requests are filled from the first-fit 1ists if possible.
The buffers contained on the first-fit lists may be any multiple of four

while the buffers contained on the buddy 1ists must be a power of two.

66

‘ MEM(2) to MEM(9) contains
MEM(2) - pointers to lists of buffers
. of size 2¢ to 29 when first-
fit method is in use
MEM(9)
MEM(11) MEM(11) to MEM(18) contains
. pointers to lists of buffers
of size 22 to 29 when buddy
. method is in use
MEM(18)
MEM(20) __~___~____j;_
512 Initially memory is broken
. 9 into 512 word buffers and linked
» together. This list of buffers
? } is accessed from either MEM(9)
if first-fit is in use or from
MEM(532) | &= MEM(18) if buddy method is in
512] use.
)
MEM(1044) e
512
- 9|

Each buffer has the following format.

MEM(X)
MEM(X+1)
- MEM(X+2)

MEM(X) is a pointer to the next available buffer on the Tist, If
o this is the last buffer on a 1ist this Tocation is set to zero.

MEM(X+1) Contains the buffer size. If the buffer is in use the sign is
A-6. DATA STRUCTURES

67

negative. If the buffer is available, the sign is positive.

MEM(X+2) Contains the least power of two which is greater than the
buffer size. If the buffer were placed on a Tist using the
buddy method, the sign of this word is negative.

A-6 (CONTINUED)

68

