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Introduction and Summary
 

This report summarizes progress for the period of
 

October 1, 1970 to March 31, 1971 performed under NASA
 

Grant NGL 22-009-012, "Optical and Infrared Masers". Seven
 

topics are summarized in the areas of high resolution studies
 

of atoms and molecules, molecular excitation and relaxation
 

mechanisms, short pulse experiments, and laser harmonic fre

quency mixing. Four appendices containing more detailed
 

discussions are also included.
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I. 	 Application of Laser Induced Line Narrowing Techniques
 

to Measurement of Hyperfine Structure of Ne2 1
 

The laser-induced line narrowing technique has been used
 

21
 
to measure hyperfine structure in Ne 2 . This technique, which
 

utilizes laser-induced changes in the atomic state velocity
 

distribution, permits the resolution of structure which is
 

normally obscured by Doppler broadening. Measurements of the
 

narrowed spectral lines have yielded values for the isotope
 

2 2 
shifts of Ne 2 0 , Ne2 1 , and Ne at 1.15p and 6096A and hyper

fine constants of Ne 2 1 , which lead to an accurate value of the
 

Ne 2 1 
quadrupole moment. These measurements are described in
 

detail in Appendix A.
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II. Excitation and Relaxation Mechanisms in the HF Laser
 

Molecular Relaxation Studies in HF Gas
 

Work has begun on assembling the nedebsary experi

mental apparatus for investigating vibrational and rotational
 

relaxation processes occurring in pure, gaseous HF and in mix

tures of HF and other non-reactive gases. At present, a high
 

vacuum, HF handling system has been designed and assembled.
 

The system is constructed entirely of Kel-F and Teflon plastics.
 

These materials are inert-to chemical attack by HF, and, there

fore, the formation of impurities via chemical reaction is pre

vented. The system includes two cold traps for use in further
 

purifying HF by successive distillation. Purity of the condensed
 

sample can be ascertained by electrical conductivity measurements.
 

Finally, a capacitance manometer, for precision pressure measure

ments was designed and fabricated. The manometer design is similar
 

to that of a-standard capacitance manometer, except that only non

reactive teflon materials were used for the interior of the sensing
 

head.
 

Near Infrared HF Laser
 

A systematic investigation of the high energy, high gain
 

pulsed HF laser is in progress. Initial experiments with a trans

verse discharge (TEA) HF, DF laser are described in a paper pub

lished in Applied Physics Letters and included as Appendix B of
 

this report. Briefly, the laser is capable of high power, high
 

energy (> 50 m.j.) pulsed output in the attractive 3 and 4p regions.
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The laser device is simple and compact, and utilizes relatively
 

nontoxic gases. However, its spatially non-uniform excitation
 

scheme and its high gain make single transverse mode operation
 

difficult. To overcome these difficulties a short narrow bore,
 

high pressure, longitudinal discharge laser has been designed
 

and operated. It is capable of pulse energies of several milli
 

joules and peak powers of >,2kW. Preliminary experiments indicate
 

its single mode behavior is superior to that of the transverse dis

charge laser. A comparison of the spectral characteristic of the
 

two lasers is now in progress.
 

Long Wavelength HF Laser
 

A wide bore, longitudinal discharge HF laser, to be used
 

in studying far infrared emission in HF, has been built and operated.
 

Laser excitation is accomplished by electrically pulsing a flowing
 

mixture of H2 and a fluorinated gas species such as SF6 , Freon 14, or
 

Freon 13. The device design is such that a wide range of laser opera

ting conditions and gas mixtures can be investigated. In studying
 

the laser output spectrum, a fore-prism-grating spectrograph combina

tion has been found to be a convenient method of isolating near and
 

far infrared laser lines.
 

Using this apparatus, we have observed intense, pure rota

tional lasing in all three of the above named fluorinated gases.
 

Laser wavelength ranged from 9 to 15 p; corresponding to rotational
 

transitions from J=17 to J=30. Many of these laser wavelengths fall
 

within the well-known 8 to 14 p atmospheric window. Studies of the
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variation in laser spectral properties with gas pressure and
 

gas mixtures have begun. Initial results have already provided
 

clues to the process leading to rotational population inversion.
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III. Coherent Effects in Short Pulse Propagation
 

The study of fluorescence induced by short pulses of radia

tion in CO2 has been concluded and the results submitted for pub

lication (see Appendix C). It has been demonstrated that one can
 

observe the coherent excitation of an optical level in this way,
 

even in a very weakly absorbing transition, and extract values of
 

the matrix element and relaxation times.
 

Present efforts in the area of short pulse propagation and
 

coherent interaction have shifted to an investigation of adiabatic
 

rapid passage. (I ) This technique has long been used in magnetic
 

resonance to invert a spin system and study relaxation processes.
 

Previous works in our laboratory on Stark spectroscopy of NH3 and
 

NH2D has uncovered a number of transitions which can be swept through
 

resonance with a CO2 or N20 laser transition. Because of their
 

large absorption coefficient and tunability, these transitions
 

make excellent candidates for the study of adiabatic rapid passage.
 

These experiments are of interest both from the point of view of
 

studying the propagation of chirped laser pulses through an absorbing
 

or amplifying medium, and for the study of relaxation processes.
 

The laser and Stark cell are functioning properly-and adequate
 

absorption signals have been observed to make an attempt at obser

vation of adiabatic rapid passage feasible in the near future.
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IV. Extension of Laser Harmonic Frequency Mixing Techniques.
 

Efforts at frequency measurement in the infrared are
 

currently directed at establishing a high accuracy laser fre

quency multiplying chain. The objectives are to produce a pre

cise determination of the speed of light, superheterodyne
 

detection at infrared wavelengths, and an accurate frequency
 

measurement of the saturation resonances in CO2 with possible
 

application as-a frequency standard.
 

Based on the earlier work of Freed and Javan , consider

able progress has been made (see VI below) in the observation
 

of extremely narrow saturation resonances in CO2. The sharp
 

resonances show considerable promise as high accuracy frequency
 

standards. The laser frequency multiplier chain will be used
 

for high accuracy frequency measurements of those resonances.
 

A major obstacle to highly accurate frequency measurement
 

with laser chains has been the difficulty of comparing several
 

drifting laser frequencies to an absolute frequency standard.
 

In 1968, Hocker, Small and Javan2 demonstrated in a point contact
 

mixer that microwave frequency sidebands may be added to a laser
 

carrier frequency and that drift in the laser may be offset by
 

electronically tuning the microwave source. Work is now pro

ceeding toward construction of a laser frequency chain of elec

tronically stabilized sidebands which can be frequency locked
 

to a frequency standard of absolute calibration.
 

1 C. Freed & A. Javan, App. Phys. Letts. 17, 53 (1970).
 
2 Quarterly Progress-Report, January,22, 1969.
 

-9



Figure I shows the method of producing a 9.3p stable fre

quency source which is phase-locked to a conventional frequency
 

standard. A V-band microwave klystron, KIr is phase-locked to
 

the frequency standard through a commercially available frequency
 

multiplier chain and phase-locked feedback loop, indicated as a
 

lock box. The 12th harmonic of the klystron is produced in the
 

point contact mixer and serves as a stable reference frequency
 

close to the HCN laser frequency.
 

The HCN laser frequency and a second klystron, K2, of any
 

convenient frequency are also applied to the mixer resulting in
 

the laser frequency plus and minus a sideband. The difference
 

frequency between one of the sidebands and the stable reference
 

is applied to a second lock box which electronically tunes K2
 .
 

At this point, K2 exactly compensates for any drift in the laser,
 

producing a stable sideband offset from the stable reference, but
 

phase-locked to the frequency standard. The HCN laser and K2
 

outputs are then applied to the next mixer and their 12th harmonics
 

are used as a stable reference falling near the 28p H20 laser
 

frequency.
 

In a similar manner, a chain of stable sidebands may be
 

constructed extending to near optical frequencies. The upper
 

frequency limit to such a chain'is given by the frequency res

ponse of the mixer elements. Previous work of Sokoloff, Sanchez,
 

Osgood and Javan 3 has demonstrated the response of the point
 

D. Sokoloff, A. Sanchez, R. Osgood & A. Javan
 

-10



contact diode mixers down to wavelengths near 5p, which overlaps
 

the response range of optical mixers employing bulk nonlinearities
 

in solids.
 

Progress to date has seen the reconstruction of the HCN and
 

H20 lasers in order to improve their power output and stability.
 

Current effort is proceeding toward optimizing the 9.3p and 281
 

mixing. In the next several months, a Cesium beam atomic frequency
 

standard is expected to arrive on loan from the Electronic Com

ponents Laboratory of the United States Army, Electronics Command.
 

The laser chain will be frequency locked to the Cesium standard.
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Figure 1. Block diagram of a phase locked laser frequency multiplier chain.
 



V. Unidirectional Laser Amplifier with a Built-in Isolator
 

As described in the last progress report, an attempt is
 

'2
 being made to utilize the laser-induced line narrowing effect
1
 

to produce a unidirectional laser amplifier in a ring laser con

figuration. This laser would have the unique property of attenua

ting any feedback signal which was sent back into it, thereby pro

viding isolation from its surroundings.
 

The N20 pumping laser has been optimized to give more than
 

6 W of output. The laser stability has been checked and found to
 

be satisfactory by looking at the inverted Lamb dip in NH3, and
 

measurements of absorption and saturation in NH3 have been carried
 

out. Detailed calculations of the gain in NH3 and other systems
 

are underway to determine the most suitable substance and operating
 

conditions. A paper describing the operating principles of this
 

device is in preparation.
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VI. Molecular Studies Using Standing Wave Saturation Resonances
 

The study of the standing-wave saturation resonance in low
 

pressure CO is well underway. The effect, first observed by Freed
 

and Javan, (l) is being studied in detail to determine the influence
 

of collisions and intense laser fields on the detailed line shape.
 

In the experiments being performed, the low pressure CO2 absorptin
 

cell is placed outside the laser cavity and the CO2 laser, which is
 

spaced with 4 invar rods for rigidity and thermal stability, is
 

mounted firmly on a half-ton steel rail to minimize vibration. To
 

further minimize laser jitter we have found it necessary to run the
 

laser under very slow flow conditions. This has been done without
 

the loss of laser intensity as would have been the case with a
 

sealed off laser. Data is being taken on several of the CO2 laser
 

lines to determine the pressure shifts and saturation parameters of
 

each transition. The signal to noise obtainable bv this technique
 

for locking a laser to this narrow resonance is demonstrated in
 

Figure 2.
 

C. Freed and A. Javan, Appl. Phys. Letters 17, 53 (1970).
 

-14



I 
U 
I 
I 
U 
I 
I 
I 
I 
I 
U 
I 
U 
I 

Fig. 2 

I Standing wave saturation resonance 
of resonance is- 1 MHz. 

in CO2 gas. Full width 

I 
I 

-15-

A 



I 

I 

VII. Standing Wave Features of Laser Induced Line Narrowing Effects
 

A theoretical investigation has been carried out of the effect
 

of an intense standing wave laser field on a coupled transition
 

when the laser is tuned to the center of its atomic gain profile.
 

The calculations predict a fine structure in the response of the
 

coupled transition which should have important applications in high
 

resolution spectroscopy and laser frequency stabilization. This
 

work has been submitted for publication and is included as Appendix
 

D. 

U 

I 

I -6 

I 
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I APPENDIX A 

UJYPERFINE "STRUCTURE OF EXCITED STATES AND QUADRUPOLE MOMENT 

OF Ne 2 1 USING LASER INDUCED LINE NARROWING TECHNIQUES* 

I TT. W. Ducas, M. S. Feld, L. W. Ryan, Jr., N. Skribanowitz.and A. Javan 

I INTRODUCTION 

*Laser Induced Line Narrowing Spectroscopy(l) has been used to 

21observe optical hyperfine structure in Ne. This technique repre

sents an advance in several ways over other methods of investigating
 

hyperfine and other closely-spaced structure in Doppler broadened
 

systems. The best conventional optical spectrometers, even if not
 

instrument-limited in resolution, are unable to resolve hyperfine
 

transitions whose structure is buried within the Doppler profile.
 

Atomic beam studies in rare gases eliminate the Doppler effect, but
 

have been g&nerally limited to metastable levels, the only states with
 

hyperfine structure that have lifetimes sufficiently long for beam
 

Furthermore, ordinary beam techniques are incapable of 

measuring isotope shifts. 

3techniques. 

In the present approach, an optical technique ( 2 - 5 ) is used in 

which the Doppler width is effectively eliminated by laser-induced
 

velocity selection. Measurements of the narrowed spectral lines have
 

2 1 ' 2 2 3yielded values for the isotope siifts of Ne 2 0 ' at 1.15V and 
o 21 

609CA, and hyperfine constants of Ne, which lead to an accurate 

Ivalue for the Ne2 1 quadrupole moment. 

I
 
U 



I. -2

The..level scheme under study (Fig. 1).consists of the hyperfine
 

(6) 21

sublevels of the 2s2, 2P4 ' and is4 fine structure levels

(6 ) of Ne2 

(nuclear spin I = 3/2),. which form the 1.15V (2s2 - 2P4 ) and 6096A 

_.(2p4 - is4 ) cascade transitions. The magnetic dipole and electric 

quadrupole hyperfine interactions split each fine structure level 

(angular momentum J) into a number of hyper-fine components, of energy 

K 3/4K(K+I) - I(I+l)J(J+l)WF Wj + -2
21 (21-l)J (2J-l) 

where K = F(F+l) - I(I+l) - J(J+l)
 

and F, the total angular momentum, can take on the values:
 

P = I+J, I+J-l,. ., ji-J.
 

WF is the total energy of the h.f. level, Wj is the energy of the
 

fine structure level; A and B are the magnetic dipole and electric
 

Uquadrupole interaction constants of level J, respectively.
 

LASER INDUCED LINE NARROWING EFFECT
 

I A'comprehensive treatment of the laser induced line narrowing
 

effect is given in Ref. 1. The following simplified discussion will
 

provide a sufficient background for an understanding of the present
 

* experiment. Let us consider a particular coupled three-level system
 

in Ne21 consisting of a pair of hyperfine transitions, one at 6096A
 

I and one at 1.15p, which share a common level. If a 1.15V traveling-


I wave laser field is incident upon a sample of Ne2 1 , the atoms over a
 
narrow velocity range which are Doppler shifted into resonance with 

I the applied field couple most strongly to it. This causes selective 

changes in the level' populations over the narrow velocity range. These 

I 



I changes have a Lorentzian lineshape centered about v = -62/K 

and the velocity range is Avzy/K2 where QL is the frequency of the
 

1.15p hyperfine transition, k2 the corresponding propagation constant
 

and y is the homogeneous linewidth of the laser transition.
 

This change in the velocity distribution manifests itself in a
 

*~change of intensity with a Lorentzian lineshape (change signal) in the
 

coupled 6096A fluorescence over a narrow section of the Doppler pro

file emitted along the axis of propagation of the laser field. The
 

peak of this spontaneous emission signal in the forward direction (i.e.
 

parallel to the propagation vector of the laser field L ) occurs at
 

= ,
9 +klV and the backward (anti-parallel) change signal occurs
 

- at aB=w - kIVz; where w is the atomid denter frequency of the coupled 

* (7)
6096A transition.
 

The locations of these change signals can be rewritten simply as:
 

IF i [. W2 i (2a) 

IB W1 [PL- 2I :2 (2b) 
2
 

Thus the separation between change signals due to the pair (j,k) of
 

closely spaced three-level systems is given by:
 

-QF(j)-F (k) [w 1 (j)-( 1 (k)] o2 (j)-w2 (k)] 2 (3a) 

2
 

SMB(j)0(k) = [w j)-W(k)] + [(j)-W20011. (3b) 
3~2 

21
 

The hyperfine interactions in Ne, which produce 18 such three
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,level systems, can be analyzed from Eqs. (3). Note that forward and
 

backward patterns contain information on the h.f.s. of both 1.15p and
 

609GA transitions. Separate observation of forward and backward sig
 

nals(5) provides two.distinct patterns which must be fit by a single


I-"set of parameters. These parameters, the hyperfine A and B constants
 

*for each of the three levels, can be extracted from the separations
 

between the features of the spectrum. The fact that the relative posi

tions of the change signals are independent of laser tuning [Eq. (3)]
 

._ greatly simplifies the analysis.
 

The complete theoretical expression describing the laser induced
 

change signals is given in Table I.
 

EXPERIMENTAL ARRANGEMENT
 

The experimental set-up is shown in Fig. lb. An intense single


N model(8 9) 1.15V He-Ne laser (see below) is locked to the resonance of 

* a stable passive Fabry-Perot interferometer by standard methods. The 

..laser output beam is focused into an external sample cell containing
 

Ne2 .1 
at a low pressurle (1O.l torr). The 6096A spontaneous emission
 

from the sample cell, emitted in either the forward or backward (10)
 

-* direction, is analyzed using a pressure-scanned Fabry-Perot interfer-

I ometer with a free spectral range of 4090 I1Hz and a finesse of 40. 

The entire apparatus is shock-mounted to reduce vibration effects. 

'Linear scanning is achieved with a system of capillary tubes (11) bleed-

I ing dry air into a cannister containing the interferometer. A chop

per, placed between the laser and the sample cell, enables us to use

N a lock-in amplifier to subtract off the spontaneous emission background 

and improve the signal to 'noise ratio. 

I.
 



-'In this experiment it is essential to have the laser operate 

on a 	single mode, since each extra mode would produce an additional
 

Sset of change signals. It is also important to maximize the power iw
 

this mode since the sizes of the change signals are essentially pro

portional to the laser field intensity. This is particularly criti

i 	 cal in this experiment because the sample cell is outside the laser
 

resonator. Neither short laser cavities nor conventional Michelson
 

mode-selection techniques can satisfy the single mode power require-
I 	 (819)
ment. We have employed instead the following arrangement:'


j Within the laser resonator (length 1.6 m) along with the He-Ne 

amplifier cell (total pressure I2 torr) we have placed an absorber 

* 	 cell filled with neon at a low pressure ("\0.2 torr). The cells are
 

of comparable length and the small signal gain of the amplifier is
 

several times as large as the loss of the absorber. While the linear
 

-gain of the system is dominated by the amplifier cell, the absorber,
 

which saturates more readily, contributes appreciably to the satura

tion behavior. The result is that the system is driven into the
 

strong coupling regime, where the modes compete heavily with one another.
 

Thus, laser oscillation at one mode tends to suppress oscillation at
 

B 	 other modes. The net result is a continuously tunable single mode 

output with an appreciable fraction of the full power of multimode opera

tion. In our experiment we-were able to convert over 50% of the multi

mode power ( modes) into a single mode. 

U 
I 



9 
HYPERFINE THEORY.
 

The electronic configurations of excited states in neon consist-' 

of a 2p hole coupled to an excited electron surrounding closed shells.
 

_The wave functions of the resulting fine structure energy levels, ob

(12)

tained from the f.s. energy splittings 2 , may be expressed in terms
 

of the admixture of the appropriate LS wave functions(13,14) The
 

A and B interaction constants which determine the hyperfine spectrum
 

[Eq. 	(1)] may.be obtained from these wave functions, the nuclear di

pole 	momentvi, and the nuclear quadrupole moment Q(15) The.resulting
 

II 	expressions for the A's and B's of the three levels of interest con
tain the coefficients of the LS wave functions and the parameters: p; 

Q; I for the 2p hole; L for the 3p electron; and the contact terms 

A and A4s for the 3s and 4s states of the excited electron.3s 4
 

In a previous experiment (16 ) Grosof, Buck, Lichten and Rabi
 

I measured the A and B constants of the 135 level of e21 tb high (0.1%)

1
 

accuracy. But since 1 - can only be estimated to 10% accuracy, 

r 2p hole 

using the Fermi-Segre formula(15) and their measured value of A(is5 ), 

their value of Q has this same uncertainty [B(is 5) Q hl 
5 2p hole 

I We make use of the measured (1 6 ) values of A(1s5 ) and B(is5 ) and 

of the known (17 ) value of p to reduce the number of parameters in
 

our theoretical description by three: Q is expressed in terms of
 

B(s 5) and 2pho ; and A3s may be expressed in terms of A(Is 5)
3 ~ s) n 2p hole 

(independent of the admixture of states for the Is5 level).
 
2p hole .
 

i 1 ; 1- and A.s
 
The remaining parameters are: rT2phl
3Aelcto
I 
The contribution of the 3p electron to the h.f.s, is negligible. Fur

1 



thermore, the error in our estimate of a4s (from the Fermi-Segre form

ula) produces only a small uncertainty in A(2s2. Thus, the h.f.I I parameter. 
2pehoe pa-	 interaction constants are sensitive only to the 


In the following paragraphs we expand upon the preceding discussion
 

and describe the particular calculations involved in obtaining expres-


I sions for the hyperfine constants.
 
In our analysis we use the wave functions of Vainshtein and
 

Minaeva (
1 4 ): 

)+
: .6601 3pi .75211
 

L?s2 Pi~.6j
 

1j2p 4 .1271 3 2 - .3091 1D2 + .94313p2 (4)
 

ls .9641 1 + .2661 pi, 

Where 2s+i j are wave functions in the LS representation. These
 

..wave functions have been derived from the fine structure energy
 

(12)
I splittings 1 , taking into.account electrostatic, spin-orbit, spin

spin and spin-other-orbit interactions.
 

The LS matrix erements for the magnetic dipole and electric
 

* 	 quadrupole interactions for the p53 and p5p configurations are
 

given by Childs We use the non-relativistic limit for these
 

U. matrix elements since relativistic corrections are negligible (<1% 

for low Z atoms such as neon) combining these with Eqs. (4) we get 

I the following expressions for the A and B interaction constants for 

the three levels of concern: 
A(2s 2) = 1.352 a2p hole + .460 a4s, 

B(2s 2 ) = -.139 b2p hole' 

A(2P 4 ) = ..367 a2p hole + 	 .403 a3p, 

..219 bV p,
B(2p 4 ) = .053 b 

4 2p hole 3
 



--. A(1s 4 ) = .819 a2p hole + .051 a3s, 

B(ls4 ) = .158 b 

With
 

U 21iiB 1
 
p I r
 

2Q1

I b ebnp r np
 

3 where pB is the Bohr magneton.
 

Now-7, if we employ the results of Grosof et al ( 1 6 ) for the ls
-I N21: 
level of We
 

3. A(is 5 )A~s5)= -267.68_+ .03'iHz 

B(Us 5 ) = -1li.55±.lMHz 

and the fact that (18 ) independent of the LS coefficients of the is5 

wave function: 

A(ls 5 ) = 1/4 a3s + 2/5 a2phol e3 B(is5 ) = -2/5 b2 p hole 

we can express our A and B constants in MHz in the following manner: 

5 A(2s2 ) = .460 a4s 843.27 Rh? 

B(2s2 ) = -38.786; 

- 2 2 8.A(2P 4 )= 7 8Rh - 251.39Re (6)g B(2P4 ) = 14.898-61.191 Re/Rh; 

45 9
 A(1s 4 ) = -54.639 .74 Rhr 

i B(1s4) 43.940; 

*where
 

x102 6 3
1 R cm-C3 2p hole 

1 26 -3 

i e3p electron 



I.
 
Equation (6) provides quantitative expressions for the don

tributions of the different parameters to the A's and B's. Esti

mates of A4s and Re can be obtained from the fine structure energy
 

(15)

levels using formulae in Kopfermann The uncertainties in these
 

I calculations are of the order of 10%, but the uncertainties they intro

5 duce into A2s, A2) and B(2 are much smaller, on the order of
 

1%. This is so becuase Re is less than 1% as large as Rh and, as
 

will be seen below, the A4 s term in Eq. (6) contributes less than 10%
 

_ to A(2s2 ).
 

t The preceding discussion indicates that the single dominant in

fluence in determining each hyperfine interaction constant is 

r 	 Because of the sensitivity of our expressions to this
i 

a.2p hole
 

parameter, we must provide for its variation with the state of the
 

excited electron. Equations (5) and (6) can be modified in a straight

forward way to include such effects. The B of each level is less
 

than 10% of the corresponding A in magnitude, so that small changes
 

in 1/r3 2p hole have negligible influence on the h.f.s. through the
 

B's. (This assertion is born out in our computer fits to the data.)
 

But these modifications cannot be ignored in the A's. The A's from
 

Eq. (6) are therefore written:
 

A(2s 	 = .460 - 843.27% (2s2) 

22 8 2 51A(2p 4 ) - .7 8Rh (2p4 ) - .39 Re' 	 (7) 

A(ls4 ) =-54.639 - 459 .74 Rh(S4.4 

I
 

1
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.DATA ANALYSIS AND THEORETICAL FIT
 

I- Figure shows typical experimental spectra-taken with the
 

Fabry-Perot interferometer, and the computer-generated fit for for

5 ward (Fig. 3a) and backward (Fig. 3b) runs. In each case the upper 

experimental trace shows the narrow change signals, and the lower. 

Strace shows the Doppler-broadened background observed.without the 
i lock-in amplifier. Note that the hyperfine structure is ordinarily 

completely masked by the Doppler widths. 

The laser frequency, which was carefully monitored, was stable 

S to about 2MHz over the course of a run (about one minute). This 

figure is considerably smaller than the linewidths of the observed 

change signals, which are of the order of 250 MHz (including a Fabry

perot width of e000 MHz). The largest change signals in Fig. 3 have 

I 	 intensities of about 0.5% of the intensity of the spontaneous emission 

I 	 background. It must be emphasized that the observed spectra are 

richer than ordinary 6096A h.f. spectra in that our data contains in

i 	 formation about both the laser transition and,the coupled spontaneous 

emission transition. The markings on Fig. 3a denote the eight 3-level 

Iystems producing the observed change signals (the contribution of the 

remaining ten change signals being negligible). The two additional 

features in the forward and backward traces are due to the presence 

Ne 	
(2 0 )* -of 	 sampl of Ne 2 1 . 

-U 	 20 and 22 in the sample 

A PDP-12 computer was used to display intensity patterns employ

ing the expressions in Eq. (1) and (2) and in Table I. Trial values. 

, for the A's and B's were obtained from Eq. (6), using r'eomi-Scgre esti

mates for A45 and 1r and an optimum value of 1/r 2 hole Only
4s ~3p 	 2 oe 

small deviations from these trial values were required to find the 

1 



hyperfine constants that provided the best fit to the data. These
 

Ssmall deviations from the values generated from Eq. (6) can be


3 associated with the theoretical considerations which led to Eq. (7), 

where a slightly different 1/r3
2p hole characterizes each A. 

h a(j)ls and B(j)'s appearing in the intensity formula (Table.I),
 

which determine the relative intensities of the change signals, were
 

(13)
calculated from the electric dipolematrix elements A convenient
 

3. simplification is that the a(j)'s and 8(j)'s are independent of the 

admixture of the LS wave functions for a particular fine structure 

energy level (aside from a proportionality constant). 

ISixty-six 
runs 	were analyzed in all: 41 forward and 25 back

ward. In analyzing the data we operated under the strict require

ment, imposed by the theory of laser induced line narrowing, that the
 

same set of A and B values has to fit both forward and backward ex

a pefimental traces.
 

In several experimental runs, the laser frequency was intentionally
 

shifted "I00MHz. This alters the intensity pattern in prescribed
 

- ways (Table I), serving as a further check on our identification of
 

the features.
 

.3 The best fit to the data (Table II) provides values of 

R (ls4) = .865 ± .015; Rh(2P4 ) = .948; Rh(2S2 ) = .866. The slightly 

larger error in the latter value is due to the uncertainty in esti

mating a4s. 

Combining 1/r3 2p hole for the is4 level with B(is 5) from Ref. 18,
 

we obtain an accurate value for the uncorrected nuclear quadrupole
 

5 	 moment Qt for the is 4 level of Ne 2 1 . This is in gond agreement with 

the value quoted in Ref. 18. Estimates of Q' for the other two levels 



would be less accurate since our experiment is not very sensitive to
 
the 	precise values of the corresponding B's. To establish the actual
 

3 0, the Sternheimer correctons would have to be taken into account.
 

We"can also obtain a value for a the Fermi contact interaction
 

j 	 constant, from Eq. (5) and our value of 1/r3 2p hole for the is4 level. 

Note that this value if 15% smaller in magnitude than that calculated 

from the Fermi-Segre formula. 

3 Our values of 1/r2 2p hole for the 2s2 and is4 levels, which 

have the excited electron in an s-state, are within 1% of each other. 

The corresponding result for the 2P4 level is about 10% larger than 

these. The former two values are in close agreement with the semi

empirical value for the is level from Ref. 18. 

j It is interesting to compare these values with that for the neon 

ion ground state, in which the excited electron surrounding the 2p

1.hole is removed. A calculation using restricted Hartrep-Fock wave 

functions (21) gives a value-for 1/r 3
2 p hole which is within 2% of 

our results for the 2s2 and Is4 levels. 

j These conclusions are, of course, subject to the approximations 

made in deriving the A's of Eq. (7) and the B's of Eq. (6). One 

* 	 source of error is the uncertainty in the LS admixture coefficients
 

of our wave functions [Eq. (4)]. These values are expected to be
 

accurate for the is4 and 2s2 levels, but somewhat less certain for
 

3 the 4p4 level. This is primarily due to the difficulties associated
 

with properly including effects from spin-spin and spin-other-orbit
 

.interactions.22  ,Note that the value of A(2P 4 ) is particularly
 

sensitive to small deviations in the admixture coefficients, since
 

the 2p4 state is %89% a pure LS state.
I.4
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The assumption of a single 1/ 2p hole characterizing each
 

level ignores core polarization effects. hc eutfo h
 

spin-dependent distortion of the (Is) (2s) core by the outer elec

trons. Taking this effect into account theoretically would necessi

-- tate for each level: the use of different values of i/r 3 .
 
2p hole
 

in the magnetic h.f.s. resulting from the orbital and spin moments of
 

the electrons; a separate value of /r3 2p hole associated with the
 

3 quadrupole interaction; and would also add a small contact term to
 

the expressions for the A's.
 

3 It should be possible to explore fully the details of the above 

considerations by studying the laser induced change signals produced 

at other transitions branching from the upper and lower levels of 

the 1.15p and other neon laser lines. 

1 '21'
We have also measured the Ne20 22-isotope shifts at 1.15V and* 

20 22
6096A. Ne and Ne were introduced into the sample cell containing
 

Ne21 
to bring up the intensity of their change signals, thus facili

tating their identification and measurement. The shifts for the 1.15P
 

and 6096A transitiong are extracted from the change signal spectra
 

21
using Eq. (3) [and Eq. (1) in the case of Ne21, and are summarized
 

in Table III. The Ne2 0'2 2 results are in excellent agreement with
 
' (2,24,25)
 

previously measured values Note in particular that the 1.15V
 
. • N 21
 

transition of is shifted to a higher frequency than that of
 

Ne22. An analysis of the results is in progress and will be reported 

t later.. 

I
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ICONCLUSION
 

We have demonstrated the applicability of laser induced line
 

narrowing techniques in observing optical h.f.s. in a system whose
 

features are ordinarily masked by Doppler broadening. These tech

niques can be applied in principle to measurements of closely-spaced
 

-- structure of transitions coupled directly or indirectly through
 

radiative cascade to either of the laser levels.
 

Although the change signals in this experiment are considerably
 

_narrower than the Doppler width, for many other systems they may be
 

two or three orders of magnitude narrower still. The limits on the
 

3 resolution are only determined by the hombgeneous width of the lines
 
and the resolution of the detection apparatus.
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where F refers to the sum over all possible cascade
 
- . p 

transitions of the type F+r'F'FI
 

ja(j) 12 = JPx (FI,MF';FI1,MF11 ) 12 + IV (F1,MF1;FI.!,MF11) 12
 

for observation of both polarizations of the 6096A
 

radiation together.
 

]8(9) [1= II z F',MF;FIMF1 ) 1';
 

ji's are' the hyperfine electric dipole matrix elements and
 

can be obtained from tables in Ref. 13.
 

Note that the relative magnitudes of the a(j)'s and O(j)'s
 

are independent of the fine structure coupling of the levels.
 

2CQI is the frequency of the spontaneous emission at 609GA.
 

3w are defined in the text
 
Explicit expressions for the proportionality constants C
 

and.C2 are given in Ref. 1.
 

The line-widths of the change signals (full. width at half

maximum) are:
 Y Y+ +- I (y0+2()±-O ] 

SExplicit expressions fo th rprinliycntnsC
 
where yi is the decay rate of level i. For our case i=0,,2
 

correspond o tothe 2P S and 2s levels respectively.
 
See Ref. for t in ef.13
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Ne 2 f.s. levels- is 2 2s
 
4 P~4 2 

Magnetic Dipole h.f. -452 -219 --756
 
Interaction constant,
 
A (MHz)
 

Electric Quadrupole + 44 + 15 39 
h.f. interaction
 
constant, B (MHz)
 

Rh 1/r 2-hole3) .865-.015 .948 .866in102 ~cu_ 


Nuclear Quadrupole Moment:
 

Q' (Is4) = .0926+.0016 b* Q' (is5) = .093+.010 b** 

Fermi Contact term for 3s electron:
 
(theoretical) 

a3s -207 MHz * a3s -245 MHz *** 

I/r'2p hole
 

Rh(ls 4 ) = .865+.015* Rh(is 5 ) = .86+ 

Rh(Ne+ )=.84"
 

Present work
 
Ref. 16
 

•** Fermi-Segre Estimate
 
Semi-Empirical value derived from Ref. 16
 
Ref. 21
 

TABLE II
 

3 



v (Ne2 2  v (Ne 2 0 

22 20 

31 Present Ref. Ref. Ref.
 
Work 21 23 


-
_ 

6096A' 1708 1706+30 1680+
 

1.15p 261 
 257+8 
 261+3
 

V(Ne22 
 V(Ne21
 

Present Work
 
3.. 0 

6096A 1010
 

1..15 
 -186
 

TABLE IllI
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Hyperfine splitting of is4, 2P4 2S2 levels in Ne21 .
 

Experimental Arrangement. Note the different configurations
 
for observing forward and backward 6096A spontaneous emis
sion.
 

Comparison of experimental traces and theoretical fit. Note
 
that the Doppler profiles for forward and backward traces
 
completely mask the hyperfine structure. The change sig
.als labeled are the eight most prominent, and are associa
ted with three level cascade systems of the type F-Ft-F''
 
Denoting these systmes as ordered triplets, they are: A=
 
(3/2, 3/2, 1/2); B= (3/2, 5/2, 5/2); C= (3/2, 3/2, 3/2);
 
D= (5/2, 7/2, 5/2); E= (5/2, 5/2, 3/2); F= (1/2, 1/2, 1/2);
 
G= (3/2, 5/2, 3/2); H= (5/2, 5/2, 5/2).
 

For these computer fits to the data yF=265,MHz and YB=22 5MHz.
 

Of these widths %l00MHz is instrumental. Also, the Doppler
 

width klu=2500Mnz. 

TABLE CAPTIONS
 

Theoretical expression for intensity pattern of change signals.
 

Experimental results for h.f. interaction constants and
 
values for 1/r2p hole' Q', and
 

Observed isotope shifts at 6096X and 1.15P inNe
 



APPENDIX B. 	 OBSERVATION OF INTENSE SUPERRADIANT
 

EMISSION IN THE HIGH GAIN INFRARED
 

TRANSITIONS OF HF AND DF MOLECULES
 

J. Goldhar, R. 	M. Osgood, Jr. and A. Javan.
 

ABSTRACT
 

Intense stimulated emission (superradiance) is
 

obtained in several high gain transitions of HF
 

and DF molecules. The narrowing of the linewidths
 

of the high gain transitions are observed in detail.
 

Pulsed energy and peak powers are comparable with
 

those obtainable in a similar transverse CO2 laser.
 



2.
 

This 	letter reports the observations of intense stimulated
 

emission (superradianceLin a number of high gain, rotational

vibrational transitions of HF and DF molecules in the 2.7p and
 

3.8. range of wave-length respectively.1 '2 The vibrationally
 

I. 	 excited molecules are produced with a transverse pulsed discharge 

in a flowing mixture of molecular hydrogen (or deuterium) and 

SF6 gas, at relatively high pressure. The spectral distribution 

of the individual high gain transitions have been studied with a 

pneumatically tuned Fabry-perot interferometer. Each of the 

superradiant transitions is found to show considerable line-width 

narrowing due to substantial amplification of the traveling 

optical wave. In addition, it is found that in the presence of 

a regenerative optical feedback (i.e . with the device used as a 

laser with an optical resonator), the laser oscillation on each 

line occurs mainly in a single resonator mode. With regard to 

the obtainable peak power and the pulse energy, the performance 

of the system is competitive with that obtained at 10.6p using 

laser excited by means of a similar transverse pulsed
a CO2 


discharge.
 

In the experiment, the laser configuration consisted of a
 

50 cm long transverse discharge 
3.
with 101 equally spaced pin
 

electrodes arranged in a row facing a long cylindrical brass,
 

anodc across a 2.5 cm gap. A 0.01 vF capacitor at high voltage
 

is discharged across the tube through a 1000 ohm resistor in
 

scries with each pin. The discharge tube was terminated with CaF 2
 

Brewster mtindows. Gases were introduced into the system by
 

means of standard needle valves and flow was maintained with a
 

10 CFM fore pump.
 



3.
 

In the experiment, most of the detailed observations were
 

made with the hydrogen gas. Typically, the partial pressure
 

ratio of SF6 to H2 was 10:1. In this system, the vibrationally
A 

excited HF molecules are formed through chemical reaction of
 

the fluorine atoms, (which exist as a byproduct of the SF6 dis-


As noted earlier, 2
 
sociation), and the molecular hydrogen. 


this reaction is 31.7 kcal/mole exothermic for HF and DF, and
 

hence capable of producing vibrationally excited HF up to the
 

vibrational lavel
 
vU3/(and up to v=4 in DF).
 

The distribution of infrared output radiation among the
 

various rotation-vibration transitions in HF, is found to be
 

dependent on the operating conditions such as flow rate, partial
 

and total pressure, and applied voltage. If the device is
 

operated as a laser with a regenerative optical feedback, at
 

and low applied voltage,.
relatively low pressures of SF6 and H2 


(below about 10k.v.), the output is distributed among several
 

rotation-vibration transitions of each of the three v=3 2, 2+1
 

and 1-0 vibrational bands. 5 At the elevated pressures and for
 

the applied voltages in the regions of about 15 kilovolts (or
 

higher), the laser output spectrum tends to peak in the v=l0
 

This behaviour
transition with P (4) the most energetic line. 


indicates that at the elevated pressures and voltages, (where the
 

states
H7 population is appreciable), the HP molecules in the v-! 


state, causing a build-up of population
decay rapidly to the v=! 


in the v"i state, which apparently decays at a slower rate.
6
 

An important characteristic of this system is its capability
 

of producing very high gains leading to intense stimulated
 



emission without regenerative optical feedback (superradiance).
 

in analyzing the output spectrum of the superradiant device, it
 

was most essential to guard against unwanted optical feedback
 

introjuced by small reflections or scattering from auxiliary
 

optical components present in the path of the output beam. This
 

was done by introducing heavily absorbing filters placed at an
 

angle in the path of the output beam and appropriately mis

aligning the various components to prevent the feedback. Such
 

precautions were particularly important when a folding mirror
 

was placed at one end of the amplifier to obtain double pass
 

amplification at the output. Fig. 1 shows the method used to
 

zonitor the presence of an unwanted optical feedback. A sample
 

output was provided by placing a beam splitter on the amplifier
 

axis near the folding mirror. When the light emanating from
 

the output end of the amplifier was interrupted, the presence
 

of any feedback exterior to the amplifier could then be detected
 

as a signal appearing at the sampling output.
 

in the high pressure region (about 200 torr SF6 and about
 

20 torr H2), it was possible to obtain intense stimulated emission
 

on the P(4), v=l-0 and P(3), v=2-l transitions with the amplifier
 

used in a single pass; the P(4), v=10 was generally found to be
 

more intense.
 

A pneumatically scanned Fabry-Perot interferometer with a
 

S.26 cm mirror separation was used to analyze the spectral dis

tribution of each high gain transition. In this system, the 

output of the interferometer was detected through a &nal pinhole 

with an iErarad detector. The interferometric analysis of the 

spectral distribution in each superradiant transition showed a 
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full-with at half maximum below 110 MHz. The 110 MHz limit 

was instrumental, deterained by the finesse of the Fabry-Perot. 

This result was obtained with the amplifier used in both the 

single and double pass configurations. 

An additional noteworthy behaviour of the system is that
 

under the superradiant conditions, it is possible to obtain
 

stimulated emission with sufficient intensity to cause amplifier
 

saturation even for a single pass amplifier. This was observed
 

by noting that at the limit of highest gain, the double-pass
 
transition
 

amlifier output on the P(4), v=lo-0as only about 20 times
 

larger than that obtained in the single pass. Furthermore, using
 

the feedback monitor described above, the sampled signal of the
 

double pass amplifier with no feedback was compared with that of
 

the amplifier used as a laser with a complete regenerative feed

back. The power level in the latter case was found to be only a
 

few times higher than that of the double pass amplifier
 

Under the high pressure condition where the amplifier gain
 

.s near optimum, the spontaneous emission linewidth is essentially
 

due to collision broadening. The exact magnitude of this
 

broadening is not as yet known for the HF transitions. However,
 

in the presence of about 200 torr SF6 pressure, the spontaneous
 

emission line width can be assumed to be at least about 3000 MHz.
 
observed corresponds to 

Accordingly, thell0 MHz line width limit A a line narrowing 

of 33 or greater. In the absence of saturation, this factor is 

3nown to be given by the square root of GL where G is magnitude 

of the gain per unit lenuth and L is the amplification path 

>ength. owever, it is important to guard against hasty appli

cation of this relationship in obtaining an accurate iteasure 
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of the am-.?ifier gain in this system. For instance: it is
 

probable that the presence of each pin electrode in the amplifying
 

medium can cause appreciable scattering of the infrared emission
 

to introduce sufficient feedback to cause additional narrowing
 
7
 

of te line profile. Furthermore, the saturation effect is also
 

expected to play an appreciable effect on the line-shape.
 

The frequency spectrum of each oscillating line was also
 

analyzed when the device was used as a laser with two aligned
 

mirrors providing complete regenerative feedback. Interestingly,
 

the frequency spectrum of each oscillating line, as averaged
 

over a number of pulses, was found to be distributed within a
 

frequency interval below about 70 MHz resolution limit of the
 

Fabry-Perot8 . In this case, a much broader spectrum is expected
 

because of the possibility of the laser oscillating on several
 

longitudinal modes of the laser resonator which wasll8 cm long
 

(corresponding to 130 MHz mode frequency spacing). The narrow
 

line-width for each oscillating line was observed while the gas
 

pressure and the applied voltage and hence the gain in the
 

various transitions were varied over a wide range. (The lowest
 
somewhat
 

total gas pressure was/less than 10 torr). While it is tempting
 

to attribute this persistent behaviour to the high gain property
 

of the medium, it is more likely that the effect originates from
 

moda coupling in the presence of collision broadening. For a
 

collision broadened line, the saturation effect decreases the
 

-ain uniformly over the whole line profile leading tc mode
 

ccpctitioa In general, however, complete single moding is
. 

not always expected for a collision broadened line due to the 

so called " spatial hole burning" effect. This effect occurs 
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n a region of space within the resonator where the crest of the
 

standing wave for one mode falls near the node of another. This
 

would allow coupling of both modes to the amplifying medium when
 

the molecular mean free path Is appreciably below one wavelength
 

I.- a condition valid for a fully collision broadened line.
 

in our system, however, the spatial hole burning of this
 

type may be smeared because of rapid density fluctuations and
 

the acoustical waves caused by the high current discharge pulse
 

I This would inhibit multimoding on, say, several longitudinal
 

modes but would allow simultaneous oscillation on a longitudinal
 

and a transverse mode having appreciably different intensity
 

distribution in the direction transverse to the laser axis.
 

The latter possibilitv was verified by using an appropriate pair 

I of curved laser mirrors to introduce transverse modes separated

K in frequency by tens of tHz from the corresponding longitudinal 

modes. With a fast response infrared detector, it was possible
 

to obtain beat notes in the appropriate frequency regions
 

dependent, as expected, on the degree of aperturing of the laser
 
simultaneous
 

resonator. This result indicates the possible/presence of one
 

longitudinal and several transverse modes at frequencies falling
 

within the 70 MHz limit of the Fabry-Perot.
 

Study of the output power obtainable from this sytem has
 

revealed an important practical property; namely, that the system
 

I iis potentially capable of supplying considerable energies and
 

high oeak powers in each pulse. The optimum power and efficiency
 

was found to be an increasing function of the applied voltage.
 

1 t te 20 kv limit of the available high voltage supply, it was
 

nossible to obtain 16 kw peak power (corresponding to 0.6%


>3ctficioncv) in a pulse of 700 ns duration. This was obtained in
 



a Zixture of SF6, H2 with partial pressures of 300 and 10 torr 

rsoively. This result suggests that by increasing the 

a-plied voltaqe and scaling the volume and the gas pressure, it 

is possible to obtain much larger output powers, competitive wICA 

those reportedly obtainable in the transverse discharge CO2 laser. 

With the D2 gas used instead of H, it was possible to obtain 

intense stimulated emissions on the DF transitions in a manner 

similar to that observed in HP, as described above. With the 

aU!npifier used as a laser with regenerative feedback, the DF 

oscillations appeared over several transitions in the v=4-3; 

v=3-2, v=2-1, and v=-l*0 bands. In the high pressure region, 

the lines capable of intense superradiant emission were P(5) 

and ?(6) of both the v=2-1 and V=3 v=2 bands. More detailed 

studies of the pressure dependence of the DF spectrum are now 

In progress.
 

in conclusion, we would like to point out that the high 

pressure transverse gas discharge provides a general method of 

extracting high peak powers and pulse energy for many other gas 

laser transitions. For instance, we have recently observed intense 

laser oscillations in the Sp bands of Pure CO excited by a trans

verse gas discharge at relatively high pressures. Detailed study
 
i0
 

0-z-nesvs -.
m will be puzlished separately 

would leto acnowleage Dr. F. Ze-nike for making avail

:)Ic t:ho Tbrv-'?erot flats used in the experiment. We would also 

,:sh to thank Mr. Ronald IcNair and W. L. Ryan for their expert 

I.cc.i ssistance. Lastly, we are grateful to Prof. E. V. 

3corge ano Dr. R. Carbone for numerous helpful discussions.
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1. 	 Laser oscillations in the 2.70 and 3.83 bands of HF and DF
 

molecules formed chemically in a gaseous discharge, were
 

separated sometime ago by T. F. Deutsch, AppI. Phys.


3 	 Letters, I0,234, 1967. Similar results obtained in a
 

transverse discharge at the 2.7P band of HF have recently
 

been reported by M. C. Lin and W. H. Green, J. Chem. Phys.
 

53, 3383, 1970. See also C. J. Ultee, IEEE J. of Quantum
 

Electronics, QE-6, 647, 1970. This publication shows the
 

possibility of obtaining large gains in an electrically
 

pulsed, chemical HP laser.
 

2. 	 For chemical HF, DF lasers produced in a supersonic
 

flowing mixture of D2 or H2 with thermally heated SF6 ,
 

see D. J. Spencer, H. Mirels, and T. A. Jacobs, Appl. Phys.
 

Letters 16, 284, 1970. For the application of flash
 

photolysis, see J. H. Parkes and G. C. Pimentel, J. of
 

Chem 	Phys., 51, 91, 1969.
 

3. 	 A. J. Beaulieu, Appl. Phys. Letters, 16, 504, 1970.
 

4. 	 Parkes and Pimentel, J. of Chem. Phys., 51, 91, 1969.
 

5. 	 The transitions in the v=3r2 and v = 2t1 bands ranged from
 

P(3) to P(6) with P(3) generally being more intense. In 

the v=100 band the transitions P(4) through P(6) were ob

served with P(4) being the most intense.
 

6. 	 In. this process, the rapid decay of the HF molecules inthe v>]
 

states to the v=l will be dominated by v-v type collisiors
 

with HF molecules in the v=O state. However, the slower
 

decay of the v=l state will result from collisions with
 

2 and S26	 molecules. 
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Un - nh.. gain conditons, it was possible to trigger 

amplifier into oscillation with a diffuse regenerative

Ieedback. For instance, by holding a sheet of paper at the 

cUtt-U end of the folded amplifier, it was possible to 

obtain strong oscillations. 

This could be detected by means of the feedback monitor (see 
rig. 	1). For a discussion of non-resonant feedback and its
 

implications see R. V. Anbartsumyan, N. G. Basov, P. G. Kryukov
 

and V. C. Letokhov JETP 24, 
481 1967; and R. V. Anbarsumvan,
 

P. G. 	Xrvukov and V. C. Letokhov JETP 24, 1129, 1967.
 
E.I 	 When the device was used as a laser with regenerative feed' 

back, the interferometer could be better alignbd with respect 

to the incident beam without introducing feedback into the 

liser. Accordingly, a better system finesse was then obtained.
I .	 An additional source of the smearing of the spatial hole 

burning may also arise from a rapid variation of the refrac

zive index during the build up of radiation within the
 

1esonator causing a wavelength sweeping of each mode. Such
 

an index change may arise from molecular dissociation due to
 

7zhe current pulse and the build-up of population in the high 

•n z )lmolifinq tranitions cont-ibuting to the refraczive 

_."dox. 

I :z. scood, Goldhar and MoxiJr to be published in Journal of 

Quantum Electronics.
 





CAPTIONS 

Fig. 1: 	 Experimental apparatus for Analyzing the Behaviour
 

of the Superradiant Device.
 

A) Folding Mirror; B) Sampling;
 

C) Sampling detector with filter beamsplitter;
 

D) Discharge tube; E) Absorbing Filters
 

F) Monochrometers G) Collimator
 

HI Febry-Perot Interferomater with pressure scanning
 

valve, pinhole and detector.
 

I0
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APPENDIX C. 	 FLUORESCENCE INDUCED BY COHERENT
 

OPTICAL PULSES
 

H. P. Grieneisen, N. A. Kurnit and A. Szoke
 

ABSTRACT
 

A coherent electromagnetic field, resonant with
 

an optical transition, drives the molecules of
 

a gas into the upper an lower states alternately,
 

unless relaxation is too fast. The observation of
 

this coherent excitation of optical levels by fluor

escence measurement is discussed and experimental
 

results are presented. The 4.3p fluorescence of
 

CO2 gas excited by a 10.6p laser is studied; values
 

for the dipole moment and relaxation times are ob

tained in good agreement with those obtained by other
 

methods.
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Studies of photon echoes adiabatic rapid passage, tran

3
sient nutation, and self-induced transparency 4 have extended into
 

the optical region many of the methods used in magnetic resonance
 

for probing relaxation processes. This letter presents results
 

on a related, sensitive method of examining relaxation effects
 

'6
by the measurement of fluorescence5 excited by a coherent, mono-


In this
chromatic optical pulse in an optically thin sample.
7 


case, a simple and direct correspondence between the analysis
 

and the experimental results emerges; complications from non

linear propagation effects3 '4 do not appear.
 

We consider an atom or molecule in a gas with three energy
 

levels of primary interest. The system is initially in state 1;
 

a resonant optical pulse excites the system coherently to state
 

2, and the system subsequently decays to state 3 (possibly
 

identical to state 1) while radiating spontaneously. The optical
 

electric field of the running'wave pulse, at the position of the
 

atom, x, is described by:
 

(x,t) = E$(x,t)cos(wt-kx) (1) 

where s is the polarization vector,L(x,t) is a slowly varying
 

envelope, and w12 is the optical carrier frequency, possibly
 

During the pulse the equation of
also varying slowly in time. 


motion of the density matrix p can thus be approximated by that
 

of a two-level system:
 

1- 1rn P1
 
(2)
 

= 

P21/T2 (P22-P22)/T i1

where the Hamiltonian H = Ho-pop(x,t) consists of the unper



3 

turbed part, Ho, having the energy levels 1, 2, and the inter

action of the optical field with the electric dipole moment of
 

the atom, 1op" The relaxation is treated phenomenologically
 

(Bloch equations), it is characterized by the decay time of the
 

energy, TI, and that of the coherent dipole moment, T2. The
 

relaxation can be caused by radiative processes, collisions, 8 or
 

diffusion. A more detailed account is beyond the scope of this
 

letter. Eq. (2) can be integrated (as a rule numerically), with
 

,
the initial condition pij(t=o) = P0lilajl to give the value
 

of Pi(t=ta) after passage of the pulse. If for simplicity
 

we assume that the lifetime of the excited population is much
 

longer than T2, the decay of P22 (t>ta+T2 ) can be considered sep

arately since P1 2 0. Thus the fluorescence intensity probes
 

the upper state population at the end of the pulse. We can
 

illustrate the expected results in some simple cases:
 

1) No relaxation, field on.resonance for all the atoms.
 

Eq. (2) can be integrated immediately in the rotating wave
 

approximation to yield:
 

P2 2 (ta) = pll s in j (pC(x,t)/2h)dt (3) 

where p = I(Pop)1 2 1. This is a dramatic effect. Increasing the 

field (or lengthening the pulse) first increases, then decreases 

the observed intensity. The period of the modulation yields the 

value of the dipole moment p. Also it is a direct measure of the 

quantity 6 = (p/) f (x,t)dt, introduced by McCall and Hahn,4 

which has importance in propagation effects. As an optically thin
 

sample changes the value of 8 only slightly, this experiment can
 

be used as a diagnostic tool in self-induced transparency and
 



4 

related studies. The angle 6 is also related to the pulse
 

energy/unit area# S, by 81, 2ST /C 2 , provided we define
2 

f_[ f
 
the pulse width as p i (x,t)dt]2/ 2(xt)dt. 

2) For fast relaxation, TI,T2<<Tp the steady state 

solution applies. For a square resonant optical pulse one has 

0ll 
 (E/h)) 2T1 T2
p22(ta) = 2 I+(/) 2TT (4) 

It can be seen that the fluorescence increases monotonically with
 

pulse energy, first linearly,then more slowly. The saturation
 

field measures the product T1T2.
4 
In our experiment we deal with a spatially degenerate
 

rotational-vibrational transition of CO2. The measured fluorescence
 

intensity is then proportional to
 

P22 (ta) =fdc)g(Aw) P2M,2M(AW'ta) (5)
V-J 

where g(Aw) is a spectral distribution function (a Gaussian of
 
width AwD for Doppler-broadening). 9 In the case of spatial
 

degeneracy,the selection rule AM=O for a linearly polarized
 

field allows the transition to be treated as a collection of two

level systems, each one with its own resonance frequency and
 

()1 2 21/2 10
matrix element PM(J)= Po(J) (I-M 2/j) for a P-branch transition.
 

Eq. (2) and the integral (5) have been evaluated for width AwD/21 

= 60MHz and for various pulse shapes on a digital computer 

and results are presented in Fig. 1 for some cases of interest. 

The fluorescence intensity is plotted against laser field strength 

for various TI,T 2 values. The salient features are: At long
 

relaxation times (low pressures) there is modulation even for
 



high J transitions, the modulation disappears at T2 T
 

The fluorescence intensity is always linearly proportional to
 

the laser intensity (quadratic in P) at low laser powers. For
 

T1 ,T2 «Tp it becomes proportional to the square root of laser
 

intensity (linear in C) when (p/h)(TIT)I1/2>I, and finally 
saturates when (pS/Ta) (TI/T2)Ii/2AD.12 The parameters p,T2, 

(T1T2)I/ 2 can be estimated from the first minimum, the disap

pearance of the modulation, and the linear to square root
 

transition region respectively.
 

Our experimental arrangement is shown in Fig. 2a. A 4m
 

flowing CO2-N2-He laser (A), operating on the P(20) 1000-0001
 

10.6p transition, with line selection provided by a diffraction
 

grating (B), is Q-switched by a rotating mirror (C). Apertures
 

(D) placed at both ends of the cavity each introduce ru30%
 

diffraction loss in order to eliminate off-axis modes and improve
 

line selection, resulting in a pulse with good amplitude and
 

shape stability (Fig. 2b). Frequency drift of the laser was
 

corrected by moving the 90% reflecting laser output mirror (E)
 

with a piezoelectric transducer (F). The laser gain was kept
 

sufficiently low that detuning of the cavity mode by more than
 

3'4MHz from line center was readily evidenced by amplitude and
 
shape changes in the laser pulse. The output of the laser passes
 

through an amplifier tube (G) which provides a pulse of typically
 

2kW peak power and 250 nsec width at half maximum, a dimethyl
 

ether absorption cell (H) utilized to vary the pulse intensity,
 

and two CO2 sample cells (I,J). It is then attenuated by filters
 

(K) and focused by a lens (L) onto a Ge:Au detector (M) used
 

to monitor the '-aser intensity and pulse shape. The 4.3v
 

http:TI/T2)Ii/2AD.12
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fluorescence from the 0001 to 0000 CO2 level (see Fig. 2c)
 

was observed with InSb detectors (N). The second sample cell
 

(J), containing CO2 at relatively high pressure (4 torr), was
 

used to insure that nonlinearities observed in the low pressure
 

sample were not due to undetected change in the laser frequency
 

or pulse shape.
 

In order to obtain uniform intensity in the low pressure
 

sample cell (I), a 5mm dia. aperture was placed inside the cell
 

in the center of the beam. Thistogether with a 7mm aperture
 

placed 4 cm behind it, limits the field of view of the detector
 

to this central 4 cm region, a distance in which diffraction of
 

the laser beam does not produce serious nonuniformities. These
 

apertures also served to reduce a linear background signal be

lieved to orginate from CO2 adsorbed on the cell windows. The
 

laser profile at the position of the first aperture was measured
 

to be uniform to within 30%, which gives a sufficiently small
 

field variation to avoid severe smoothing of the experimental
 

curve. Attenuation of the laser resulted in no detectable change
 

in the laser profile.
 

The possibility of a frequency chirp during the laser pulse,
 

which would greatly alter the nature of the observed effect (see
 

Fig. lb), was checked both by beating the laser against a cw
 

CO2 laser and by splitting the pulse and recombining it in an
 

interferometric arrangement with a 12m delay in one arm. The
 

latter technique is sensitive to small frequency changes during
 

the pulse,provided the pulse shape is stable. By careful ad

justment of the position of the aperture near the rotating mirror,
 

the frequency chirp could be kept under 2MHz during the pulse
 



7 

(dw/dt<4MHz/wsec).
 

Although fluorescent signals were directly observable on
 

an oscilloscope even at our lowest pressure (0.05 torr), signal
 
14
 

averaging was necessary in order to obtain accuracy. It is
 

interesting to note that at 0.05 torr, in the region of pET /5 =7r,
 

the signal originates from approximately 2 x 109 excited molecules.
 

This sensitivity compares well with magnetic resonance.
 

Experimental data (Fig. 3) reproducibly shows modulation of
 

the fluorescence intensity at a pressure of 0.05 torr. This
 

determines the laser intensity in terms of 8. In order to compare
 

our data with theory, the above analysis must be modified. In
 

CO2, rotational relaxation is the main T1 mechanism: once a
 

resonant molecule suffers a collision which changes its rotational
 

state, it no longer interacts significantly with the radiation
 

field. It nevertheless contributes to the measured signal since
 

fluorescence is observed from all rotational levels of the 0001
 

vibrational state to the ground state. The proper expression
 

for comparison with our data is thus
 

fta
 
14.311 ' P22(ta) +0 (P2 2 (t)/Tl)dt (6)
 

One effect of this additional term is to cause the modulation to 

disappear more rapidly as the relaxation times are made shorter 

than Tp . Also, the fluorescence increases for shorter T be

cause rotational thermalization tends to restore the population 

of both interacting levels to their equilibrium values.
 

An additional complication is the presence of radiation
 

trapping, which introduces a pressure dependence in the rela

tionship between observed fluorescence and excited population.
 



The data plotted in Fig. 3 are proportional to the intensity
 

of fluorescence immediately after the pulse, normalized to CO2
 

pressure and multiplied at each pressure by a factor R(p)
 

introduced to account for radiation trapping. At low pressures,
 

a correction has also been made for a residual linear background
 

signal. Theoretical curves are shown utilizing the known relaxation
 

rate of I/T2 = 2 x 10 7/torr-sec obtained from pressure broadening
 

studies,15'1 6 together with a value of lI/T 1 = 107/torr-sec 17 in
 

Eqs. (2) and (6). The set of numbers R(p) which produce
 

agreement with these theoretical curves (see Fig. 3) is consistent
 

with the trapped lifetimes measured by Kovacs and Javan.
6
 

However, the uncertainty in this trapping factor for our cell
 

geometry and the insensitivity to T1 of the curves resulting from
 

Eq. (6) prevent an accurate determination of TI. Variation of
 

T2 by 50% produces significantly worse agreement with the set of
 

theoretical curves. The measured Tp of 0.56 psec and energy/unit
 

area of 0.024 -n/cm2 in the region of the 2n condition give a
 

value of oz (P20) = (2.0 ±0.4) x 10- 20 esu, in agreement with
 

esu deduced from absorption measurements.
15
 

the value of 1.7 x 10
- 20 


The example discussed above shows the potential of the
 

fluorescence method for the measurement of the dipole matrix
 

elements and the relaxation parameters T and T2 in gases in
 

the presence of inhomogeneous broadening. Photon echoes, self

induced transparency and optical nutation measure similar parameters
 

and thus should be compared with our method. When applicable the
 

fluorescence method has the advantage of simplicity and sensitivity:
 
5
 

it can measure relaxation in a sample of total absorption 
10

and relaxation times as short as the pulse length itself. This
 

feature makes the method attractive for the measurement of short
 

http:measurements.15


relaxation times, especially using tunable short-pulse lasers.
 

Despite the advantagesclaimed above for this technique,
 

we think it necessary to point out certain experimental difficulties.
 

It is necessary to have a stable, reproducible, single mode laser
 

with negligible frequency chirp and uniform amplitude across the
 

beam. It is also important to eliminate any linear background
 

signal arising, for example, from gas adsorbed on cell windows.
 

On the positive side, we note that the magnitude of the dips should
 

D1
be much larger than those reported here if the condition Tp is
 pp

fulfilled.
 

Two simplifying'assumptions were made in the derivation of
 

Eq. 2: the third level has been neglected, and the radiative
 

reaction on the level pair 1-2 has not been included. It can be shown,
 

6

using the methods of Feld and Javan, that under the influence of the
 

strong field the radiative lifetime of the level pair 2-3 can change
 

only up to a factor of 2. Superradiant phenomena 18 can also play an
 

important role in determining the shape of the fluorescence curve as
 

well as the fluorescence decay envelope, due to the enhanced rate
 

'1
arising from thesuperradiant state. 18 Both effects are negligible
 

in our experiment.
 

In conclusion, we note that this technique is also applicable to
 

the study of relaxation in solids and in electronically excited
 

molecular states which are coupled to a quasi continuum of levels.19
 

It can be extended to include the time development of the angular
 

distribution and polarization of the emitted radiation, which directly
 

measures the equilibration of the-degenerate M-sublevels.
 

We wish to thank Prof. A. Javan for his continuous encouragement
 

and help in this work. The initial phases of this work were done in
 

cooperation with Dr. C. K. Rhodes, who also bequeathed much of the
 

apparatus.
 

http:levels.19
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FIGURE CAPTIONS
 

Fig. 1. Population of upper level as function of 0, calculated
 

for various pulse shapes (S=square, H=approximate hyperbolic

secant, A=approximation of actual pulse of Fig. 2b) with
 

tp=0.6 Psec and for AwD/2 =60 MHz. (a) No relaxation. P,Q 

indicate average population of degenerate sublevels of high 

J, AJ=±l or AJ=0 transition. (b) Effect of frequency chirp 

of 4 MHz/lsec. (c). Effect of relaxation, labeled by T2,T1
 

values (in psec) as follows: B=aD=l, I=0.1, L=0.0125.
 

Fi_ . . (a) Schematic of experimental apparatus (see text for
 

details). (b) Multiple exposure of laser pulses, 100 nsec/div.
 

(c) Relevant transitions in CO2.
 

g. 3.Observed fluorescence normalized to CO2 pressure
 

and multiplied by trapping factor R(p) as function of square 

root of laser intensity (in units of 8). Theoretical 

curves from Eq.6, labeled by T2 rT1 values (in psec) as 

follows: C=2, D=I, E=0.5, F=0.25, G=0.2, I=0.1, J=0.05, 

K=0.025, L=0.0125.Origin is displaced for clarity. Error bars 

indicate typical uncertainty. 
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Abstract
 

Previous theoretical results on the influence of 
a laser on
 

the line shape of a coupled transition -- laser induced line nar

rowing -- have been restricted to the case where the laser is de

tuned from the center of its atomic gain profile or is in the form
 

of a traveling wave. 
This paper extends those results to include
 

the case where the laser is an intense standing wave field tunable
 

to the center of its atomic gain profile (conditions for Lamb dip).
 

The effect may be observed either in transmission, by probing the
 

coupled transition with a weak traveling-wave field coaxial with the
 

laser field, or else in spontaneous emission from the coupled trans

ition viewed along the axis of the laser field. 
 It is now wellfor
 
known thatAa laser detuned from the center of its atomic gain pro

file, two narrow Lorentzian resonances of different widths appear
 

superimposed upon the broad background signal at frequencies sym

metrically located about the corresponding line center. When the
 

laser is tuned to the center of its gain profile, however, additional
 

fine structure develops. 
 This structure, which is particularly sig

nificant when the laser field is intense, may have important appli

cations in high resolution spectroscopy and laser frequency stabili

zation. 
 In this paper the laser frequency may be smaller or larger
 

than the frequency of the coupled transition. In the latter case an
 

intense laser introduces additional splitting effects, even when
 

the laser is detuned. Splitting effects due to weakly saturating
 

laser fields are also discussed. The problem is formulated by ex



panding elements of the ensemble-averaged density matrix in infinite
 

series of spatial Fourier components. A perturbation technique is
 

employed, valid for a weak probe field and a standing wave field
 

of arbitrary intensity. One obtains an expression for emission induced
 

by the probe field due to atoms moving with one velocity, written
 

in terms of continued fractions in the general case and with
 

Bessel functions in an important special case. This expression is
 

integrated over the atomic velocity distribution by means of com

puter to obtain the total emission due to atoms moving with all
 

velocities. A detailed discussion of line shape and of the physi

cal processes involved is included.
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I. Introduction
 

The lineshape of a Doppler-broadened transition is dramatically
 

altered by the presence of a standing-wave laser field resonating
 

with a second Doppler-broadened transition sharing a common level
 

(Fig. la). For a laser detuned from the center of its atomic gain
 

profile, two narrow Lorentzian resonances of different widths
 

appear superimposed upon the broad background signal of the coupled
 

transition at frequencies symmetrically located about its line
 
1-6 71
 

center (Fig. ib). Recent observations of this effect, 7-11
 

called "laser induced line narrowing", confirm the predictions of
 

the theory. The line-narrowing produced, which can be 100-1000
 

times narrower than the Doppler background, has been utilized in
 

a variety of ways as a high-resolution spectroscopic technique
 
" 14, 15
for determining isotope shifts,

1 2 fine1 3 and hyperfine I I
 

structure, g-factors14 , 16 and linewidth parameters. 17, 18, 19
 

The effect may be observed either in transmission, by probing the
 

coupled transition with a weak traveling-wave field co-axial with
 

the laser field, or else in spontaneous emission from the coupled
 

transition viewed along the axis of the laser field (Fig. 2).
 

Note that identical lineshapes will be observed in both cases
 

since the spontaneous emission lineshape is equivalent to the line

shape of emission induced by a probe field containing a single
 

photon in each mode.
4
 

The overall features of the line-narrowing effect may be
 

understood in terms of the velocity selection of moving atoms
 

by the standing-wave laser field. The field selectively interacts
 

with atoms whose velocities Doppler shift one of its traveling
 

wave components into resonance. This produces changes in the
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laser level populations over two narrow intervals symmetrically
 

located about the center of the velocity distribution. These
 

changes reflect themselves in the gain profile of the coupled
 

transition. The above explanation does not account for the different
 

widths of the two change signals, nor, as shall be seen,for the
 

other striking lineshape features to be described below. The
 

formulation, analysis and interpretation of these effects form
 

the content of this paper.
 

Previous theoretical resultsI-6 on the influence of the laser
 

on the lineshape of a coupled transition have been limited to the
 

case where the laser is detuned from the center of its atomic gain
 

profile (or is weak). A detailed treatment was given in Ref. 4,
 

the first paper in this series (which shall be referred to here

after as "I"), using a method of calculation in which the E.M.
 

fields are treated classically. The present paper extends this
 

approach to the important case in which the laser is of arbitrary
 

intensity and may be tuned to the center of its gain profile
 

(conditions for Lamb dip). This case is of particular interest
 

in view of the fact that recent theoretical studies 20' 21 predict
 

that under these conditions the laser-induced change in the velocity
 

distribution departs from a simple Lorentzian-like curve. Instead,
 

additional fine structure develops for atoms with low velocities
22
 

(Fig. 3a). This fine structure does not manifest itself in the
 

Lamb dip. We shall show below that related fine structure does
 

appear in the gain profile of the coupled transition. This
 

structure is particularly significant when the laser field is
 

intense. An example is shown in Fig. 3b, where the fine structure
 

is clearly discernable on the wings of the central dip. The
 



1 4
 

additional central feature of Fig. 3a results from other spatial
 

interference effects to be described below.
 

When the laser field is intense other related lineshape
 

effects can occur, even when the laser is detuned from the atomic
 

center frequency. For example, when the laser frequency is higher
 

than the frequency of the coupled transition under study, the
 

narrow resonance splits into two (Fig. 4). This new effect should
 

not be confused with another splitting effect which occurs for
 

weak fields?3-25 Both of these effects are treated below.
 

It should also be noted that the lineshape details analyzed
 

here are of importance in considering stabilization schemes based
 

on laser induced line narrowing effects.
 

This paper is divided into five sections. In Section II we
 

set up the problem using the ensemble-averaged density matrix
 

equations of motion. We obtain an expression for the small

signal gain profile of a transition coupled to a laser-transition,
 

valid for arbitrary values of laser intensity, laser detuning,
 

level lifetimes, Doppler width, and relative frequencies of laser
 

and coupled transitions. These expressions are given in terms
 

of continued fractions in the general case and Bessel functions
 

in important special cases. In Section III computer methods of
 

evaluating these expressions are discussed. In Section IV we
 

present the results in a number of special cases which emphasize
 

the different physical effects which come into play. These results
 

are compared with a simplified expression obtainable from a rate

equation approximation, and also with the independent field
 

approximation. A brief discussion of the area (integrated intensity)
 

properties of these results is given in Section V. Lengthy
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I mathematical discussions which would interrupt the continuity are 

deferred to appendices4
3 

U 
I 
I 
I 
I 
I 
U 
I 
I 
I 
U 
I 
U 
I 
I 
I 
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II. Theory 

The theoretical problem under consideration is the interaction of a
 

coupled Doppler-broadened three-level system with two co-axial applied
 

fields, an intense standing-wave field resonating with the "laser" transition
 

and a weak traveling-wave probe field resonating with the coupled transition.
 

To be concrete we Shall deal with the folded level configuration
 

of Fig. la. Hcwever, the results may be easily extended to the
 

cascade configuration. 26
 

In formulating the problem it is most convenient to treat
 

the applied fields classically. It is important to note, however,
 

that the resulting line shape expression is also applicable to the
 
27
 

case of spontaneous emission at the probe frequency. The formalism
 

of the ensemble-averaged density matrix is adopted. In this
 

formalism one considers the interaction of the applied fields
 

with atoms moving with a given axial velocity. Having obtained
 

the response at the probe frequency, it is necessary to sum up
 

over the entire distribution of atomic velocities. Note that
 

in the ensemble-averaged formalism the initial conditions at
 

which individual atoms are produced have already been averaged
 

over, a considerable simplification.
 

The problem is solved by means of a perturbation technique. In the 

absence of the probe field the problem reduces to the interaction of a standing

wave field with a two-level system. We then consider the influence of the 

probe field as a small perturbation on the unperturbed system. The un

perturbed problem has already been solved for arbitrary intensities and 

detuning of the standing-wave field in Ref. 21. Thus, we may directly 

substitute the required terms into the perturbation equations. In the unperturbed 

solution it is important to include spatial variations of high harmonic content 

produced by the standing-wave field in the level populations and the
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induced polarization. In Ref. 21 the unperturbed solution is
 

expanded in an infinite series of spatial Fourier components. In
 

the present problem it is also convenient to expand the perturbation
 

solution in spatial Fourier series. This immediately leads to
 

an infinite set of coupled nonhomogeneous linear difference equations
 

which may be solved subject to the appropriate boundary conditions.
 



3. 	 -8-

In the general case the solution may be expressed in terms of continued 

fractions and in important special cases in terms of Bessel functions. One 

then obtains an expression for the emission induced by the probe field due 

to atoms moving with one velocity. This expression is integrated over the 

atomic velocity distribution by means of computer to obtain the total 

emission due to atoms moving with all velocities. In certain special cases 

the integrations may be done analytically. 

The three level system under study is of the type shown in Fig. la. Level 

0, the common level, is coupled to levels 1 and 2 by electric dipole matrix 

elements K10 and 1120 , respectively, From parity considerations, R21= 0 and 

there are no diagonal matrix elements. Denote the energy of level j by

1w. , and let W0 -W j=os :W1 and 02 fall in the optical-infrared region. We 

shall assume that Iw2 is large compared to the Doppler widths so that 

E does not resonate with w2 nor E 2 with w1. The system interacts with a
 

strong standing wave laser field E 2 (z,t) at Q2 , a frequency close to wc
2 .
 

The resonance at w1 is probed by the weak field E (z, t) at variable frequency
 

I1 Specifically:
 

El(Zt)=P cos (Q t-klz + 1) 	 (la) 

+ (2 ) ,  E 2 (zIt)=E 2 
0 

sink2 z cos (Q2t 	 (lb) 

with 

kj= gl/c, 	 (ic) 

and 0. and hare constant phase factors. The additional condition 

k2 =-i, 	 (id) 

2I 
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(L=cavity length, m is an integer) is imposed on E 2 by the laser resonator. 

The total Hamiltonian for the system is 

H = H o+V, (2) 

where H ois the Hamiltonian of an unperturbed atom with stationary states of 

energy iW'and V is the interaction Hamiltonian, 

V = -p.E(z,t), (3a) 

E(z,t) = E 1(z,t) + E 2 (z,t), (3b) 

with electric dipole operator p. 

The problem is most readily treated by means of the ensemble 

averaged density matrix p(v, z, t),which describes an ensemble of atoms 

at coordinates {z,t} moving with axial (z-axis) velocity v. The equation 

of motion of p, derived in Ref. 21, is given by 

3 a[H p- 1/2 {0p , (4) 
(yTr+v )p 

where ] and 0 are commutator and anti-commutator brackets, respecttsly 

The left-hand side is the total derrivative of P . Relaxation is accounted for 

in the second term on the ri4t-iand side through r, which has elements 

rI~ Y (5)r'1 61j' 
0 

where yjis the relaxation rate of level j. Also,p describes the steady

state ensemble, assumed spatially uniform, in the absence of applied fields: 

3i n (v) 6.., (6) 

n (v) being the steady-state population density per velocity interval in level 

j in the absence of applied fields. We may write 

n (v) = N.Gi(, (7a) 

with N. the total population density of level j and G.(v) its normalized33 

velocity distribution: 

G.(v)dv = 1. (7b)(7b) 
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For further details regarding Eq. (4) see Ref. 21. 

The partial induced polarization due to the atoms moving with 

velocities in the interval between v and v + dv is 

P(v, zt)dv = Tr [w] dv. (8) 

The net polarization is 

velocities: 

obtained by considering contributions from all 

P(z,t) zS Tr [so ] dv. (9) 

To formulate the perturbation approach let us rewrite the 

Hamiltonian of Eq. (2) in the form 

Hf= HU+H ' (10) 

with 

3 and 
H Ho 1 E 2 

(11) 

H =-±E1 . (12) 

U! 

Thus, Hu is the unperturbed Hamiltonian, describing the interaction of 

the standing wave field with the atomic system in the absence of E 1. The 

corresponding unperturbed density matrix, pu is the solution to Eq. (4) 

with H equal to zero: 

U( u = - 1[Hu, u) - 1/2 pU-o 

The additional term H 	 , due to the weak probe field, is taken to be a 

u produces a small correctionp' to p :small perturbation on H . Thus, H 



P = pU+p,. 
 (14)
 

Inserting Eqs. (10) and (14) into Eq. (4), subtracting Eq. (13), and 

neglecting the [H , p.] term, which does not contribute to p 'to lowest 

order in H , one obtains 

+Va)p I=-1 [H' , u 11u, 1/2 r}. (15) 

Assuming pU is known, p' is completely snecified by Eq. (15). 
Equation (13) has been studied indetail inRef. 21. Its solution, 

valid for arbitrary values of E 2, has elements of the form 

,z e
~ 
p 

) = U 

u v ~ 

020 (vz)e (16a) 

e
fn +fIn e 2(16b)kU(v,z) = n02 I + ink2z .-ink2 z1 

od n>1 

1c
 
u u = 0 

P 21 = P01
 

S
 u
u 


(16d)
Pik =Pki' 


I0 z,t)=no+n0 2  [an(v)e0(v, [a 2 +c.c] (16e) 

even n>O 
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Sn2 2 (v zt n +2 n [(v) eink 2z+c.c. , (16f) 

even n>O 

I = nl(16g) 

where 

n = n.-n .i (16h)ij 

(In obtaining Eqs. (16) it is assumed, as stated above, that E 2 does not 

resonate with 1 . ) For convenience an, bn and1-+, obtained in Ref. 21, 

are given in Table 1. Note that Z Eq. (T 14), is a continued
 

fraction which is to be evaluated subject to the boundary condition
 

Zn0 for n-*. The computation of Zn is discussed in Section III.
 

Let us now consider Eq. (15). The weak probe field does not perturb 

the level populations, so that 

= (17)Pkk 0, k = 0,1,2. 

Therefore, using Eqs. (16c) and (16 g), the equations of motion of the off

diagonal martix elements of p may be written as 

(-3T+ vga + i~+YOpt (18a)1Lll~u-n 

[ 'E ,3va +(6-2)+721 0 'l E) 

+Vt z + = E iO2l lg --2 ).(oio.)aa -w2 2 )P'20 -jl 20E222'0,+ 12 •(18c) 

This set of equations may be solved by inserting E 1 and E 2 [Eq. (1) ] in 

complex form: 
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ElI(Z' t) A Ile'ikIZeiol t + c.c, I(19a)
 

E 2 (z,t) = (A 2 / 2 )(ek 2Z-e- ik 2 z) ei 2 2t + c. c. (19b) 

with
 

Ai =Ee i (20a)1a 

i a 1-1 (20b)2=-4E2e
 

The various spatial and temporal Fourier components of E1 and E2 drive 

the off-diagonal elements of p'. Let us consider the variations of the 0' 1ij 

Of special importance are the coefficients of p' I on the left hand sides of 

Eqs. (18). These are associated with the resonant behavior of the induced 

polarization. The only important frequency components of a 0' ,. are those 

for which a'ij/3t cancels the ia factor for appropriate values 01 and 

92' thereby reducing the coefficient of Pij to-yj+va/ 3z Therefore, a 

nearly complete solution to Eqs. (18) will be of the form 

01
' =A(v,z )e-ilt (21a) 

P21==D(v, zz e i( 22-2 )t, 2b3 (21b)
 

U20 = X(v, z)e 02t (21c) 

where A, D and X are time-independent. Inserting Eqs. (16a), (19) and 

(21) into Eqs. (18) and equating like coefficients of the 

complex frequency factors, one finds that%(v, z)=O and that 
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(A 1 +iv z+i-y 0 )A=*e 1 (p 0 0-nl) + i ik 2 Z. ik 2 z)D (22a)
I 10 ik 0 i 

(A 12+ivaj + i 2 1)D=c*eklzXu + 3-e'k2 z-ef 2 )A, (22b) 

where 

=110A I/ i (23) 

* 

(24)8 -i L0 2 A 2/ 4 

A.J J j, (25) 

and 

AI2A= I - A 2. (26) 

We may proceed by expressingA and D in Fourier expansions in k 2 z. Note 
*U u 

in Eq. (16) that 900 is expanded in the even harmonics of k 2 z, whereas X 

is expanded in the odd harmonics. It directly follows from Eq. (22) that 

A will consist of the even harmonics of k 2 z, and D of the odd harmonics. 

Therefore, the required solution will be of the form 

A(v,z)= e f n(v)e +An(v)e 2[A +cL 2 (27a 

I even 
n>2ZD ink z -. -ink z 

D(v, z)=a* e kl D (v)e 2 z+Dn(V)e 2). (27b) 

odd
 
n>1 

The induced polarization at S2 ,obtained from Eqs. (8) and (21), is 

of the form 

P (v, z,t) = Re[2Li Ae-I ] (28) 
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The average power increase per unit volume at Q 1induced by El, due to 

atoms located at z and moving with axial velocity v is given by 

AI(v,z) dvdz= -<(vz,t)El(zt> dvdz. (29) 

time average
 
The net power increase per unit volume is obtained by integrating this 

quantity over the distribution of atomic velocities and the length, . of the 

active medium, centered at position a: 
a+ /2 

AT= _ dz f dvAI(v,z). (30 a) 
a- /2 - w 

Making use of Eqs. (29) and (27a), and indicating velocity averages by 4 >, i.e. 

<0> = f 0(v)dv, 

we obtain rZ 4
 
AT =-2-,j 1 I .1m <A 0> + additional terms of the form n.< 

(30b) 

where X=27r/k 2 is the wavelength of the intense standing-wave field. Since 
+ 

,C<I I , the additional terms are negligible as long as the A7 don 

not diverge for large n. As shown in Appendix A , the carergence of the 

n as n-4 c is a necessary condition for a physically acceptable solution. 

Accordingly, the additional terms may be neglected, and we obtain 

AI =-2 Ti Ial 2 11m<A 0 >. (32) 

Note that only A0 contributes to the net emitted power. 

We now solve for A0 1 Inserting Eqs. (16b), (16e) and (27) into Eqs. 

(22) and equating like harmonics of k2Z, we obtain a set of equations which 

can be written in the following compact form: 

x+(n+l) - x+(n-l) + L(+n)x+ (n) = n0 2t+(n), n>1, (33a)

I2 it- I 

Ix 1 +t(l) - x_(l)]I + L(O)x(O) = t (0). (33b) 
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The following definitions have been made:Io)D n n = 1,3,5 ... (34a) 

x+( n) n+ A± n= 2,4,6... (34b) 

X+(0) = x(0) = A0 (34c) 

(35a) 
n = 1,3,5...Ut ( ) n 


a n= 2,4,6... (35b)
 

n = 1, 3, 5... (35c)Infl/Bln 
t_ =(a n= 2,4,6... (35d) 

t(O) = n 0 2 [a0 + a*] + n01  (35e) 

(12 - (kl ink 2 ) V + "T21 n= 1,3,5... (36a) 

L(+n) 

Ial - (kl±nk2 ) v + iylo n = 0,2,4,6... (36b) 

Equatinns (33a) and (33b) constitute an infinite set of coupled nonhomogeneous 

linear difference equations, in which the t+ (n)' s , known quantities 
determined by the unperturbed solution, act as driving terms for the x+(n)? s. 

We are particularly interested in obtaining A0 , since, from Eq. (32), 

the emitted power is proportional to ImA 0 . It is shown in Appendix A 



that the solution for A0 is 

A0 = 

n0 

= 

n 0 240 +a+ 

Lu+(1) -u(l) 

l(-)[yi)u+(i)+t-()u-(J 

+ L(0) 

] 

(37) 

where 

Iui() J
zITr(k), (38) 

and W+ (k) is the continued fraction 
±ifo 1 

W+(k) = k 

Io 1 r L[±kJ 

i-l TEk--T11-

1_1 

1 

+iIT 

1fT+T 

(39a) 

evaluated subject to the condition 

For 

lim W+ (k) = 0. 
k , 

the special case Y0='y2,A2=4 we find 

(39b) 

u+ (j) 

T(j) = 

iJT (j)_ 

J T(0) 

_L(+j)/k2v 

(-%°/k 2 v) 

( 0 /k 2 v) 

, 

(40a) 

(40b) 



I 

where W1(z) 

argument z. 

(3'?) and (38).

U
 
U
 
U
 
I
 
U
 
U
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
 
I
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represents a Bessel function of complex order t and (real) 

The final expression for At may be obtained from Eqs. (32), 
The numerical evaluation of W+(k)is discussed in Section m. 
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III. 	 Computer Evaluation of AI 

The calculation of AT , the emitted power at Q I, from Eqs. (35), 

(37), (38), (39) and (31),requires the evaluation of continued fractions and 

velocity integrals. The computations have been performed on the M. I. T. 

360 cmputer using double precision complex arithmetic. Continued 

fractions were evaluated by comparing the value obtained by truncating the 

continued fraction after j terms with the value obtained by truncating after 

j+l terms. The algorithm used in calculating a truncated continued fraction 

of j terms is given in Appendix C. If the absolute value of the fractional 
-5 th
 

difference between the two calculated values is less than i0 , the j+l

value is taken as the numerical answer. The u+'sand y' s represented as 

convergent continued fractions have been calculated from Eqs. (38) and Table 

I with all the continued fractions computed independently to insure that small 

errors did not propagate. In the. summations in Eqs. (37) sufficient 

terms were included so that the absolute value of the ratio of the last value 

-to the first is less than 10 . The convergence of this sum is a consequence 

of the boundary conditions, which require A n to approach 0 for large n 

(Appendix A). 

As a check, when 70=1Y2 and A2 =A1 we have compared our 

continued fraction results with the Bessel function expressions and find 

agreement to 6 places of accuracy. 

To simplify the interpretation of our results we have chosen a 

rectangular population distribution, 

G (for Ivi- 34.9y20/k2 
j# 0 for IvI > 34.9720 /k2 (40) 

for all values of j. This procedure greatly reduces the effects of a finite 

velocity distribution, which would arise had we chosen a more realistic 
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population distribution.2 8 It would,of course, be easy to insert
 

any desired form of G. (v) into the program.
 

The velocity integrations are evaluated using Simpson's
 

rule with intervals of .2k2v/Y20 . The accuracy of the integration
 

is better than 2%. The accuracy of our calculations was checked
 

by decreasing the step size and increasing the limits of integration.
 

Our numerical results are in excellent agreement with the lim

iting case of a weakly saturating standing wave field (3rd order
 

polarization) and with the case in which the laser is of arbitrary
 

intensity but significantly detuned, cases for which we have
 

obtained analytic expressions. (See discussion below.)
 

http:distribution.28
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IV. Results 

Equation 	(32) may be written in the following form: 

AT ( 4) = hQ 1<'n 2 -nl) J2 1 + (no-nl)J 0 1 > , (41) 

(as before, <> indicates yelocity average), where
 

J 21= m / aj=l1u+(1)-u-1 I + L (0)	 , (42a) 

i 	01-l1aao~m1) 0 [t+(j)u+(j) + t(j)u (j) (2b 

("o [u+(1)-u_(1)] + L(O) 

Expressions in the same form for the off-resonance case
 

(A2/Y2)>(1+/2)1/2 were previously discussed in I, where it 

was shown that J21 represents the double-quantum transition rate 

per atom, in which atoms produced in level 2 subsequently decay 

from level 1 by the net exchange of two photons with the applied 

radiation fields, one absorbed at f2 and one emitted at VJ01was 

introduced as the single-quantum transition rate per atom, due 

to atoms produced in level 0 which subsequently decay from level 1, 

emitting a single photon at 0I" In this paper,however, we find 

it more convenient to express our results for AI(Q 1 ) in terms of 

n0-n 2 and n0-n1 . We thus have, equivalent to Eq. (41), 
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I Arl)1n[ Q < 2 +a] , (43a) 

where 

R02-2n0x4aptm (43b) 

I + L(O)N o [u+(l)-u (I) 

2 {R0 1 =-2n0 o fll o[(J (43c) 
o u+1-u_(1) ]+ L(0) 

in Figs. 5 through 8, <R02 > and <Rai> are plotted for various 

parameters. For convenience we have introduced the usual saturation 

parameter 28o2 

1 = , (44) 
0 2 

as a measure of the intensity of the standing wave field 

(E2 ). In Figs. 5, 7a and 7b the standing wave field is 

on resonance (A2/Y 02=0). In Figs. 6,7c and 7d the standing wave 

field is off resonance [A2 /Y 0 2 >> (1+1/2)1/2] . In Figs. 8a
 

and 8b the standing wave field is near resonance [A2/y02 (1+1/2 1/2]
 

I/O2
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Briefly, the general behavior of the curves is as follows: 

<RP curves: When the laser is detuned a pair of resonances, 

one broad, one narrow, but of equal area, occurs symmetrically 

located about wi" In the folded configuration discussed here
 

(Fig. la) the narrow resonance and the laser are always detuned

to the same side of their respective Doppler profiles. (In a
 

cascade configuration the narrow and broad resonances would be
 

interchanged [Ref. I]). In the special case k2>k1 the narrow
 

resonance splits into two for intense laser fields. As the laser
 

is tuned to line center the resonances overlaps and. additional
 

complex structure develops.
 

*< > curves (background): The background is unaffected by the
 

laser when detuned, except in the case k2 >k1 , in which structure
 

develops on the same side of the Doppler profile as the narrow
 

resonance in the<R 2> curves. (In no case does structure occur
 

on the opposite side of the Doppler profile.) As the laser is
 

tuned to line center structure emerges for strong laser fields.
 

In all cases, the area under the background curve is unchanged
 

by the presence of the laser field.
 

The additional features occurring on resonance are due to
 

the standing wave nature of the intense field, whose traveling
 

wave components simultaneously interact with atoms moving in the
 

same narrow range of velocities. It will be shown below that
 

off resonance, where the traveling wave components of E2 no
 

longer couple to the same atomic velocity band3 that the line
 

shape can be analyzed in terms of the two oppositely directed
 

traveling waves at Q22 which do not couple to one another.
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Intense Standing Wave Field - On Resonance [A2=01
 
Typical results obtained from Eq. (43) are shown in Figs.
 

5a-5f. To understand the significance of these results and
 

how they differ from the curves produced by an intense traveling
 

wave field, consider the case k1=k2. For the traveling wave.
 

case broad (E11E2 ) or narrow (E1 anti-IE2 ) resonances are
 

produced in the <R02> curves, depending on the relative directions
 

of the two fields. No additional features occur as the traveling
 

wave laser field is tuned through resonance. In the standing
 

wave case the broad and narrow resonances occur simultaneously
 

on opposite sides of the wi gain profile when the laser is
 

detuned. When the laser approaches line center, these resonances
 

overlap. The resulting curve is not simply a superposition of
 

broad and narrow signals. Complicated structure occurs. This
 

structure results from the fact that the induced polarizations
 

at i associated with each of these resonances, being coherent
 

with one another) interfere by means of spatial variations induced
 

in both the population distribution [p ' Eq. (16e)] and the
 

parametric driving terms at n2- i [produced by p Eq. (16a)]
 

causing complex line structure to develop [compare Eqs. (21a,b)
 

and (27a, b)].
 

On resonance the standing wave background curves also exhibit
 

complex structure resulting from coupling of the spatial variations
 

in the polarization at Qi directly through p 21, which drives the
 

system parametrically at Q2-0I. Note that the characteristic
 

behavior of the background term is distinct from that of the
 

<R02> term, occurring even when there is complete transparency
 

at the laser transition (n2=n0). It is also interesting to note
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that the area under the background curves remains unaffected by
 

the laser field in all cases, consequence of the fact that the
 

area of the response of each atomic velocity ensemble is unaltered
 

by the laser field. A comprehensive discussion of this fact
 

will be presented in a forthcoming publication.
 

It is worthwhile to reexamine the above line shape features
 

from another point of view. In Refs. 20 and 21 it was shown
 

that when an intense standing wave field is tuned to the center
 

of the Doppler profile of a two level system, fine structure occurs
 

in the spatially averaged population distribution. An example
 

is shown in Fig. 3a. This structure results from the coherent
 

ringing of slow atoms moving through the spatial nodes of the
 

standing wave field (See Ref. 21, Sec. 7 for detailed discussion.)
 

This curve is compared with a typical <R 20>curve in Fig. 3a.
 

The influence of the velocity deformations in the spatially
 

averaged population are clearly evident on the wings of the central
 

dip in <R 02 >. No such fine structure appears in the central
 

tuning dip of the two level gain profil (or the Lamb Dip),
 

obtained by tuning the intense field through the center of the
 

atomic resonance. Thus experimental observation of curves such
 

as <R 02> of Fig. 3b would not only confirm the present results
 

but would also provide evidence of the population structure
 

predicted in Refs. 20 and 21.
 

Indeed, a major incentive of this work has been to determine
 

the extent to which the structure in the population distribution
 

would manifest itself in the radiation at the coupled transition.
 

This behavior was anticipated on the basis of a simple argument
 

ignoring field interactions between E1 and E2 [Independent Field
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Approximation (IFA)]. In this limit the spontaneous emission
 

at Qi is given by
 

1(
1 k,/ 0 (n' 0-n02 a0+a0)
 

ISlIA= t~\
5 1I(lIFA hly10-h'l. T (lrlV 2+02(45) 
/ 

l2+Ylo 

where n0+n02 (a0 +a0) is the spatially uniform component of P00(M,
 

Eq. (16e), in the presence of the standing-wave laser field.
 

One would expect the fine structure to wash out for Y10>>120
 

since in this case the broad Lorentzian cannot follow the narrow
 

structure within the population curve (whose fine structure is
 

of the order of Y20 ). However, with Yl0<Y20 fine structure would
 

occur. Needless to say the IFA expression is not rigorous. For
 

purposes of comparison the IFA results are plotted together with
 

the exact expression for <R 02 >[Eq. (43b)] and the corresponding
 

rate equation approximation (REA), discussed below, in Fig. 9.
 

For the case kl k2 additional line shape features develop.
 

These features are also observed when the laser is detuned from
 

resonance, where they can be separated from the standing wave
 

interactions discussed above. We defer discussion of these
 

traveling-wave effects to the next sub-section, where algebraic 

expressions for <R02>and <R01 > , valid for a detuned standing

wave laser field of arbitrary intensity, are presented. 

Intense Standing-Wave Field-Off Resonance [A2/2>>(I+I/2)I/2]
 

Next consider the case when the laser field is off resonance
 

(Figs. 6, 7c and 7d). In this limit R02 and R01 reduce to
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SW02 (/2)n 02 oJafI 2. x
 

5 ~ 	 REA FA [L(1)-4-iY]I y*EA rA [L(-1)+iyo
12 + 01 	 2

TF y02+ik2 v Y tL0 7	 + 
Im 
 2-E	 + 0
0 


2 	 L(O)j+ + 

I 7(46a) 

I0	 1 

RO1--n1 Ri<2 2
m 

o00 1 1 	 + L(0) (46b)
 
4 [7 )T+ -T 

3 Where yREA is given in Table I, Eq. (T21).
 

These results are equivalent to the Rate Equation Approximation
 

I 	 (REA), in which the spatial harmonics induced by the standing-wave field 

are neglected. (See Appendix A and Table I.) Since we are restricting 

our considerations here to the detuned case, Eqs. (46) further simplify 

I 	 to 

2 ( +  R0 2 =R + R02(-) 	 (47a) 

R01R01+R0(+) + R 	 (47b) 

I 	 with 

I 

I
 
I
 



I 
3-28

- Re - 2L(--)F+

Fy. 2(R02(-±)=2n 02 j,2 ok Re 1 F 2 (48a) 

I 

I where 

1 , 
F+ = 2 20+i(A2 k2v) 

and
 

I 2R0 1 (±)=-(1/2)n0 1 u 2°Im L149a 

I (O)LL(O)L(±j)-

I 00 

R0 I -2n0 11cl2tIm L'-17 
(49b)


I 

I 
U 
U 
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The terms naturally break into pairs (+ and -) as a consequence
 

of the fact that when the standing-wave laser field is detuned
 

from resonance the oppositely directed traveling-wavecomponents
 

of E2 couple to distinct bands of atoms moving with opposite
 

velocities. In fact, the 
(+)[(-)] refers to the component of E2 anti
parallelfparallel] 
to E1. Note that R0irepresents the usual background
 

term in the absence of E2.
 These results were previously obtained
 

in I, where the intense field was assumed to be in the form of
 

a travelling wave. In the DoDpler broadened limit the velocity
 

integration of Eqs. (48) and (49) may be carried out analytically. (29)
 

The results for the two cases k >k2 and k <k2 differ qualitatively.
 

Case 1: kl>k 2
 

In this case we find that
 

<R0 >= R°W0 1 (A/kl)
j 0(50a) 

<R0 1 (+)>= 0, 
 (5b)
 

00 2(o) k ) p 8o24 xIm(7 5R02(+) > -R n 0) W (A1 / k Q2k
0 2 1 2 LnF i (50cJ 

where
 

ni(Al/i= NiGi (A,/k) - NjGj(A l/kl )  (51a) 

I. /t
1/k)=1 k1 )

W.(A/k= 
 (51b)


1) 

R° 2= 27r 1 n (0 ) , (51c) 

F ,
402 11/ 2 

[1+ (51d) 



3 A ~+(k/k92)A2 (51e-) 

=T+ Ij + 'Y+Q (5]f) 

a n d k l Ik2 k l j Yo (5 1 g )
 
+
Y+ k2 Y2 k2
 

Equations (50), valid for large values of E2, were first given
 

in I . Curves of <R01> and <R02 
 for the detuned case
 

with k1-k2 are plotted from Eqs. (43 b, c) in Figs. 6a,b,e,f,7c
 

and 7d. It is found that the results agree with the
 

analytical expressions, Eqs. (50). 
 The <R02> curves exhibit
 

a pair of Lorentzian resonances of equal area at 0+ = 0, of
 

widths r+ as in Eq. (50c). 
 Note that r+ are significantly
 

power broadened for intense laser fields (Q>>l), as in Eq. (51f).
 

The + and 
- resonances correspond to the interaction of E1 with that
 

component of E2 anti-parallel and parallel to El, respectively. 
The
 
<R01> curve exhibits no structure,in accord with Eq. (Sob),
 

and is identical to the background one would observe if E2
 

were absent.
 

I 
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Case 2: k1 < k2 

In this case we find that 

<R0 1> = <R1 + R0 i ( - )> = -R°W0 1 (A/k 1 )Im (T), (52a) 

<I0l(+)> = 0 (52b) 

<R02 (+) = same as for k> k 2 , Eq. (50c), (52c) 

<R0 2 ( )= 

on 0 2 ( 0 ) 
-RnoO W2 (A1/ 

I 

Imo 

B20 

T-

2 

( 

k 

2 

+ 

2 x 

(A+ 

01ok 

+ 

where 

S 2 kl 
2= 

k2 -kl 

k22 

2 

0 (53a) 

T +i(y_) 

y = + S2_ T2] 

-k2 
A+ = 2- 1 (T + 

I2kT-T(A 

, 

iY) + (A1 + iy 0 1 )

yl 
, 

(53b) 

(53c) 

(53d) 
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B+ =±A+ k (iy2 0Q -A2), (53e)
A2
 

1
 

-k 

kk (A21- i 21) (53f)
 

As an example, curves of <R02> and <R01> for the case kl=k2/2 are 

plotted from Eqs. (43b,c) in Figs.6c,d and 7c,d. The results agree 

with curves plotted for the analytic expressions, Eq. (52), and 

differ significantly from those for the case kl The <R
1 k2 02 >
 

curves still exhibit a Lorentzian resonance at Q+= 0 of width
 

F+ corresponding to the interaction of E1 with the anti

parallel component of E2 , just as for the case kl> k2 . However, 

the resonance at D_ = 0, corresponding to the interaction of E 

with the parallel component of E2 , exhibits a splitting which 

increases with increasing field strength E2 and vanishes in the 

limit of weakly saturating fields, where the resonance reduces to
 

a Lorentzian of width r_ (see following paragraph). In addition
 

to the features in <R0 2 $, structure in <R 01> also manifests itself.
 

We see that a distinctly non-Lorentzian resonance appears at
 

n = 0. This resonance features a central dip and broad wings
 

peaking off center, in such a manner as to leave the area of the
 

<R01>background curve unaltered by the presence of E2 The
 

resonance is a result of the interaction of E1 with that component
 

of E2 parallel to E1 , and as such is a travelling wave effect.
 

This effect, which occurs even for weakly saturating values of E2 , 

has recently been observed in Ref. 9. The splitting of the <R02> 

resonance, which appears only for a strongly saturating value of 

E2 , is a new effect and has not yet been observed. 
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I 
Z 1/2)1/2]
I Intense Standing-Wave Field--Near Resonance A2/y2 

1 
 In the near resonance case interference effects produce


5iadditional lineshape alterations. 
Examples, plotted from
 
Eqs. (43b,c), are given in Figs. 8a,b. 
Note that these curves
 

I combine features of the off-resonance and on-resonance cases,

S leading to complex asymmetric lineshapes. 

I
 

I
 

I
 

I
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Limit of Weakly Saturating Laser Field (Q:l)
 

The results for the case of weakly saturating laser are
 

plotted in Fig. 7. The analytical expressions for the case
 

are the same in Eqs. (50) but with Q= 1, indicating
kl>k2 


that the Lorentzian resonances of different width but of equal
 

area occur in <R02> even in this limit. It follows from Eqs.
 

(43b) and (43c) that in the weak saturation limit Eqs. (50)
 

are valid even when the laser is tuned to the line center.
 

In this limit it follows from Eqs. (52) that the analytical
 

are identical to the results for
results for the case kl<k 2 

-


kl~k2 with the exception of 
<R01(-) >,which is given by (23 25)
 

f 7 k k (54)
O(-) >= R0oCi/kB2(2-- icl e . 


I+k
 
<R0


I
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Therefore, even for a weakly saturating laser field structure 

appears on the background lineshape when k2> kI , although the 

area under <R,1 remains independent of E2 No such structure 

appears when k >k2 . Note also that the splitting of the narrow 

resonance of the <R02 curves, which occurs at intense laser 

fields for k2 >kI , disappears in this limit. All these remarks 

are contingent upon the assumption that the Doppler widths are 

much greater than the natural widths. 

Computer plots of Eq. (43) for I= 0.1 are given in
 

Figs. 7c,d for the off-resonance case and Figs. 7a,b for the on

resonance case. Note that the latter curves are just the super

position at AI= 0 of the detuned resonances, indicating that
 

spatial interference effects between components of the induced
 

polarization at Qi are not significant here.
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V. Equal Area Property
 

Some interesting properties of the laser induced change
 

signals emerge from the results presented here. First, as stated
 

above, the area under the <R01 > background is always independent
 

of E2. Secondly, the area under the <R0 2 > lineshape is
 

independent of the field interactions between E1 and E2. From
 

this consideration it follows that when the laser is detuned
 

the broad and narrow resonances are always equal in area, even
 

when the narrow resonance splits in two. In fact, it may be
 

shown that in each case the area under the exact lineshape curve
 

IEq. (43a)] is identically equal to that under the corresponding
 

IFA curve [Eq. (45)]. This property is a manifestation of the
 

fact, first pointed out by Javan (30) , that the area under the
 

response of each individual atomic velocity ensemble is equal to
 

that obtained from the corresponding IFA, even though the actual
 

frequency behavior differs significantly. These results can be
 

shown to follow from an elementary quantum mechanical analysis
 

of the transition rates of three level systems coupled to applied
 

fields. A detailed discussion will be deferred to a later
 

publication.
 



-37-


Acknowledgement
 

This work has benefitted from discussions
 

with Professor Ali Javan and his support
 

of the research.
 



-38-


Appendix A: Solution to the Nonhomogeneous Linear Difference 

Equations (33)
 

Consider the coupled nonhomogeneous linear difference equations,
 

Eqs. (33) of the text, which may be written in the form
 

x+(n+l) -x+(n-l) + A+(n) x±(n) = ±(n), n >1 (Ala) 

x+(1) -x_(l) +A(0)x(0) = 010) (AIb) 

x+(0) = x_(0) - x(O) (Alc) 

where
 

A± (n ) =l2 ±n) (A2a)
 

3) ±2n 02 

_ - t (n) , (A2b) 
2 

A(0) = 7 L(O) , (A2c) 

and
 

(0) = (0) (A2d) 
a0-


Note that adjacent x+(n)'s are coupled together in three's. The
 

+(n)'s are prescribed driving terms. Equations (Alb) and (Alc)
 

serve to join the x+(n) with the x_(n). Henceforth, the ±
 

subscripts will be deleted when convenient.
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The solution to Eqs. (Al) may be formed from the solutions to
I H 
the associated homogeneous equations, x (n). The homogeneous
 

equations are obtained by setting the 4(n) = 0:
 

x (n + 1) -xH(n - 1) +A(n) xH(n) = 0, n >1 (A3) 

Solutions to equations of the type Eq. (A3) are discussed in detail
 

in Section 5 of Ref. 21. A brief account is given here in
 

Appendix B, where it is shown that the most general solution for
 

xH(n) may be written in the form
 

xH(n) = Cu(n) + Dv(n), (M) 

where u(n) and v(n) separately satisfy Eq. (A3), and C and.D are
 

arbitrary constants independent of n. The u(n)'s and v(n)'s are distinct
 

classes of solutions characterized by their behavior at large n. The
 

u(n)'s, which we call B-type solutions, have the limiting behavior
 

Frk)21-T~k2v/,n large. (A5a)u(n)-1 Q1tvJ , n 

The v(n)'s, called N-type solutions, have the limiting behavior
 

v(n)- (n - i):yr( o) n large. (A5b) 

Accordingly, in the limit n - , u(n) vanishes whereas v(n) diverges. 

In subsequent discussions it will be convenient to normalize u(n)
 

and v(n) such that
 

u(O) = v(O) = 1. (A6) 
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Solutions to the nonhomogeneous equations, Eq. (Ala), may be
 

constructed using the method of variation of parameters. 31 Let
 

us assume x(n) to be of the form
 

x(n) = C(n) u(n) + D(n) v(n), n>0. (A7) 

Inserting Eq. (A7) into Eq. (Al), and eliminating terms containing
 

A(n) by means of Eq.(A3), one obtains, for n>l ,
 

6C(n)u(n + 1) + 6D(n)v(n + 1) 

+ 6C(n -1) u(n - 1) + 6D(n- 1) v(n -i) = *(n), (A8) 

with
 

6C(n) = C(n + 1) -C(n), (A9a) 

6D(n) = D(n + 1) -D(n). (A9b) 

Trial solution (A7) does not uniquely specify the C(n)'s and
 

D(n)'s, and in Eq. (AS) we are free to choose
 

(AI0)3C(n) u(n) + 6D(n) v(n) = 0, n>0, 

whereupon for n>l, 

6C(n) u(n + 1) + 6D(n) v (n + 1) = n) (all) 

http:parameters.31
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Combining Eqs. (AlO) and (All), we find 

€ (n~v(n) (Al2a) 

6C (n) =u(n+) v (n)-u(n) v(n+l) 

n >1. 
-4(n) u(n) (Al2b) 

D(n) u(n+1) v(n) - u(n) v(n+l) 

These expressions may be simplified by means of the following identity, 

obtained from Eq. (A3): 

u(n+l)v(n)-v(n+l)u(n) =-[u(n)v(n-1)-v(n)u(n-1)] (A13) 

=(_i) n [u(1) - v(1)] 

(The last step follows by induction.) Thus, 

Iu
 
(Al4a)


6C~n) u v(l)
6C(n) (-l)u1)n (n)v- (n) 

n>l
 
(Al4b)

(nl)n, (n) u(n)
6D(n) u(1) - V(I) 

Accordingly, for n>l,
 
u~i) n-i
 

C(n) = C(1) + u(1 - v E-~ (Al5a)v1) (-l)J¢(j) v(j)

U= 
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n-i1Dn(n)-iD_(1 z (-i)Jdj)u (j)• (Al5b)D(n) = D(1)- u(1)-v(1) j=l 

An additional equation, obtainable from Eq. (AlO) for n = 0, is 

SC(0) +'D(0) = C(1) + D(1) (Al6) 

since, by Eq. (A6),
 

u(0) = v(0) = 1. (A17) 

Therefore, using Eq. (A6), we can write down the sequence 

(Ala)
x(O) = C(1)+D(1), 

(Alb)
Sx(1) = C(1)u(1)+D(1)v (1), 

{C + 1 n-1 )
 

x(n) = (l) + u(l)-v() E (-l)J(j)v(j u(n)
 

n-I
1 

4D(1-T (-11J (jMuO v(n) ,nnI!1. (Al8c) 

+ u(l)-v(1) j= 

Thus the x(n) may be expressed in terms of two quantities independent of n, 

C(l) and D(l), as of yet undetermined. 

The value of D(l) may be established by considering the behavior of 

x(n) as n . Recall from Section 11 that the x(n)' s are the coefficients 

of Fourier expansions ink2 z for p21land p;1 .The latter quantity is essentially 

the induced polarization at 01 , consequently the emitted power, Al, may be 

expressed as a sum of x(n)' s (n even), [Eq.(30b) ] .For all physically 

possible (i. e. finite) values of p (n) AI must remain finite, hence the x(n)' s 

may not diverge. [It was shown in Ref. 21 that the *(n)'s themselves 

strongly converge to 0 as n *. See also Table I.] 
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This requirement on x(n) places a restriction on the coefficient
 

of v(n) in Eq.(Al8c). Note first that in Eq. (Al8c) both summation
 

terms (including multiplication by u(n) or v(n), respectively) con

verge rapidly to zero for n large. Thus, since u(n) itself converges
 

1/n: [Eq. (A5a), the entire first bracketted term of Eq. (Al8c) 

converges. But, as can be seen in Eq. (A5b), v(n) diverges - (n-l)!, 

placing a restriction on its coefficient. In fact, the required 

boundary condition can only be guaranteed by setting 

D(l)1 (-i) JCj)v(j) 1(A9) 
u (1)-v() j=1 

The remaining constant, C(1), may now be determined. Displaying 

the subscripts as in Eq. (Al), we have: 

from Eq. (Alb), 

x(O) = *(O), (A20a)X+(l)-x_(l)+A(O) 

from Eq. (Al7b), 

x+ (1) = C+ (1)u+ (l)+D+ (1) v+(1), (A20b) 

x (1) = C_(1)u_(l)+D_(1)v_(l), (A20c) 

and from Eqs.(Al8a) and (Al7), 

x(O) = C+ (1)+D+(1), (A20d) 

x(O) = C_(1)+D_(i). (A20e) 

These equations may be routinely combined to obtain 

x =j=l (A21) 
x (0) U+ (1) - u_(1) + A (0) 

Substitution of definitions (A2) gives the result of Eq. (37) of the text. 



x 
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Rate Equation Approximation: 

The Rate Equation Approximation (REA) for a two level system 

interacting with a standing wave field is that approximation in which spatial 

population variations arising from the interaction are neglected. In extending 

this approximation to a 3-level system we ignore contributions of the 

polarization arising from these terms (i. e. xn = 0, n >1). The difference 

equations [Eq. (Al a-cj considerably simplify and we have 

REA (2
(A22a)x(O)+A (1)x (1) = *+1) 

x+(1)-x_(1)+A(0)x(O) =p (A22b) 

Solving these equations directly, we find 

.RA REA
 
REA*(0)+ - () 
 A+(U
 

( 0)= + 

(A23)

1A(0)+ 1
1T)- A-- () 

REA 
where the * (n) are obtained from Eq. (A2)and Eq. (35), using the 

Rfl vauaes, Atble 1, Etsz (T20)-(T22). 



Appendix B: Solution of the Second Order Linear Homogeneous 

Difference Equation (A3): 

Consider Eq. (A3), 
H (n+l)-xH(n-) + A (n)x+(n)=O, nl, (BI)
++ + 

where
 

A (n) = + 2 L(+n),
+A (B2)
 

(t1 2- (kl+nk2 )v+iy21,n odd
 

L(n)=j.. (B3)
 

S(A,-c(kl+nk2)v+iY1 ,, n even
 

In second order homogeneous difference equations, such as
 

Eq.(BI), one may distinguish two classes of solutions, character

ized by the behavior of xH(n) for large values of n. (21) In the
 

present case the nature of these types of solutions is readily
 

ascertained, noting that for large enough n (for v#O),
 
I. (n) ;nk 2v,+ (B4)
 

so that
 
2ikv
 

A,(n)-* n. (B5) 

To obtain the first class of solutions, assume that for large n
 

xH (n+l) H (n-) (B6)
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Then
 

XH (n+l) 
-- 2kvn, (B7) 

SxH(n) i8° 

so that
 
n (S


X+(n) (n-l)! 2k2v 


Note that x+(n) - for large n, in accord with initial assumption
 

(B6). We denote solutions of this type by v+(n). Because of
 

their close connection with Neumann functions we refer to solu

tions of the latter type as N-type solutions.(21)
 

The second class of solutions is obtained by assuming
 

(9
(B9)
XH H 

(n+l).
Thn (n-1) >>x+ 


* Then
 

oxH(n) / 1 

B)H 2ik2v n' 

so that
 

x+(n) ' _ Bn.80 

Note that x+(n) -0 for large n, in accord with initial assump

tion (B9). These convergent solutions are denoted by u+(n).
 

Because of their close connection with Bessel functions we refer
 

to solutions of this type as B-type solutions. (21)
 

To express u+(n) in a form convenient for computation we
 

define the quantity
 

u+ (n) 
W(n) = U(n-1) (B2) 
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Then from Eq. (Bl) we obtain an expression for W+(n) in contin

ued fraction form,
 

+ io/2L[+nI (B13) 

W4 (n) = 

1-/ (4L[±n]L[±(n+l)]) 

a2/(4LE±(n+l)]L[±(n+2)])1

l±i80 W±(n+3) / 2L[±(n+2)]
 

Then
 

n
u± (n)=11 W±(k) ,(B4)
 

k=1
 

where we have set u±(0)=l without loss of generality.
 

Special Case 72=70 and A2=0
 

For the case y2=y0 and A2=0, u±(n) may be written analytically 

in terms of JT(z), the Bessel function of real argument z and 

complex order T:inj
I 'n)t _O/k 2 v)
u±(n)= .. ( (-3 0/kv) (B15) 

Jt(O) (-8o/k 2v)
I 
where
 

T(n)= TL(±n)/k 2 v. (B16) 

As before, Eq. (B15) is normalized such that u±(0) = i. 

Equation (B15) follows from Eq. (BI) which, in this special 

case, reduces to the well-known recurrence relation for cylin

drical functions. (21)
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Appendix C: Algorithm for Computing Continued Fractions
 

Let
 
a= 
 (Cl) 

+ a 2 

1 	 + a3
 

1+ a4
 

Define 

Pn 
n a (C2(02) 

1 + a3 

1 + 	a
 
n 

One can then show that Pn and Qn obey the following difference
 

equations:
 

=
Pn n-I + anPn-2, 
 (C3a)
 

Qn Qn-i + anQn-2, 	 (M) 

with 

P-1 = 1P 0 = 0 (C3c) 

Q-1 	I 0Q 0= 1. (C3d) 

From the recurrence relations for P and Q one can readily
 
n n 

I 
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compute Pn and Qn for any value of n. The computation is halted
 

when
 

6
(Pn+/Qnl) - (Pn/Qn) (C4) 

We then set
 

Pn+l 

(C5)


Qn+l
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Table I: Definition of Symbols Appearinq in Equation (16)
 

= (y+y) (TI) O=22 (T3) 

A2=2-' 2 (T2) %= (T4) 

Y7=702/Y20 (T5) 

n 2j zinkvj Yn (T6) 

odd n>l 

S 2 8 (T7)2 o 
[ Y0-ink v - Y 

Y20+an= a 2 y 4:IY2v3 Yn (aY2 + ink2v (T8)
 

b Y0+ink2v 1 even n>2 

bn=- Ly 20+ink2 (T9) 

a0+a= '2 [y0-l1 (Tic)
I ~2y a20 

* =-0 [Y0-1 (TI) 

b 0 +b 0 = 2Y2 0 

General Expression for y

1 

Y3 + 2 0 Re (Z (T12) 

y
 

(T13)
Yn+l=-Znyn , n=0,1,2 .... 


Z . (T14)
n 
Fn+l + 

a Fn++ ... 

I+
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kwith + 
 n=0,2,4 ....
 

• ! =(T15)
[iua 280 5 _______ 2 v0 Ink ]v
 

20i (nk v+A ) + 2 (nk v-Ax 
T7 7 2 ) Y20+ 2 2 

evaluated subject to the condition
lim Z=
n Zn=0 (T16)
 

Expression for y when y0=Y2 Ey,A 2 0
 

U
 
i in j (n) (n)/JV (0)(n) 

S Yn - 210 J ) (T17) 
1+ -y- Im iv (1) (n) /JV (0) ( n 

n k2 (T18) 

~k2v 

"(n) n - iy (T19)
k 2 v 

I with J (z) 
= Bessel function of order v, argument z
 

Rate Equation Approximation to Yn
 

yREA (T 20)_1 

1 +,0 Re 
y F1 

AI l R - YoR / (T21)IEARREA
 

I
 YnRE = 0, n>2 (T22)
 

U
 
U
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Figure Captions
 

Figure l(a). Energy level scheme considered in this paper.
 

Note that wi/W2 is variable and may be greater or less than
 

unity.
 

Figure l(b). Typical gain at S21 for standing-wave field
 

at n detuned from resonance. The broad and narrow dips in
 

the laser transition gain profile will be treated in a separate
 

publication. The dips in the coupled transition are treated
 

here. The insert depicts the dips as they occur in the absence
 

of the background (<R0 2> of the text). In the example shown,
 

the background (<R01>) is unaltered by the standing wave field.
 

In other cases both terms may be influenced by it.
 

Figure 2. Possible experimental arrangements for observ

ing laser-induced line narrowing.
 

(a) Transmission - a tunable probe field E1 (Q) is coaxial
 

with standing wave laser field E2 (l2 ). A filter blocks E The
 

output intensity of the probe field is monitored as a function
 

of Qi"
 

(b) Spontaneous emission - the fluorescence spectrum EI(QI)
 

emitted along the axis of the laser cavity is studied by means
 

of a high resolution scanning Fabry-Perot inteferometer. The
 

filter transmits only El.
 

The lineshape effects will be observed in both arrangements.
 

Figure 3(a). Plot of the spatially averaged population dis

tribution vs. axial velocity for the upper level of a two-level
 

system interacting with an intense standing wave field on reso
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nance. Note the fine structure appearing in the central dip over
 

a narrow range of velocities about v=O.
 

(b). Typical curve of gain at as a function of Al, the
 

detuning from the atomic center frequency of the coupled transi

tion for the same case as Figure 3(a). Comparison indicates that
 

structure similar to the population fine structure occurs at
 

the wings of the narrow central dip of the profile. The central
 

dip itself originates from complex interference effects dis

cussed in Section IV.
 

Figure 4. Gain at Qi' background omitted, for the case
 

312/2 
 as influenced by an intense standing wave field E2
 

detuned from resonance. Note that the dip on the right is split.
 

For weakly saturating values of E2, the splitting disappears.
 

This new effect should not be confused with another effect which
 

appears in the background term even for weakly saturating values
 

of E2 [see Figure 7(d)].
 

Figure 5. Intense standing-wave field on resonance (A2=0).
 

(a). <R0 2> versus A1 for k1 =k2. The additional structure
 

on the sides of the central dip emerges as I increases. The
 

latter structure is closely correlated with the structure in the
 

space-averaged population distribution (Figure 3a).
 

(b). <R01 > versus A1 for the same conditions as in (a).
 

Note that this structure would be present even if the medium were
 

transparent (n2=n0 ).
 

(c). <R02> versus A1 for k1=k2/2. The splitting observed
 

in the central dip also occurs when E2 is off resonance [Figure
 

6(c)] and is a traveling wave effect.
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>
(d). <R01 versus A1 for the same conditions as in (c).
 

This structure also occurs in the detuned case [Figure 6(d)] and
 

is a traveling wave effect.
 

(e). <R02> versus A1 for k =2k The complex structure
 

observed within the broad central dip is the result of interfer

ence effects due to the standing wave nature of E 2 and does not
 

appear when E2 is detuned [Figure 6(e)].
 

>
(f). <R01 versus A1 for the same conditions as in (e).
 

The structure here is also the result of standing wave interference
 

effects and does not appear when E2 is detuned [Figure 6(f)].
 

Figure 6. Intense standing-wave field well detuned from
 

resonance (A2/Y02 =7.5k 2/k1).
 

(a). <R02> versus A1 for k =k2. Two Lorentzian resonances
 

occur at 2±=0 of FWHM r±, respectively, in accord with the analytic
 

expressions Eq. (50c).
 

(b). <R01> versus A1 for same conditions as in (a). Note
 

that E2 has negligible effect on the background.
 

(c). <R02> versus A1 for k =k2/2. A Lorentzian of width r+
 

occurs at Q+=0. The resonance at Q_=0 splits into two, with increas

ing splitting for increasing values of I.
 

(d). <R01 > versus A1 for the same conditions as (c). The
 

background curve exhibits non-Lorentzian structure at Q =0. No
 

structure appears at S+=0.
 

(e). <R02> versus A1 for k1=2k 2. Lorentzian resonances of
 

widths F+ occur at U±=O.
 

(f). <R01 > versus A for the same conditions as in (e).
 

The flat curve indicates that E2 has a negligible effect on
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<R01> when the standing wave field is detuned.
 

Figure 7. Weakly-saturating standing wave field.
 

(a). <R02 > versus A1 for A2=0. In the weak field limit the
 

resonances at A1=0 are essentially the sum of two Lorentzians of
 

widths r and r_.
 

(b). <R01 > versus A1 for A2=0. Note that for klk 2, the
 

background curve is unaffected by E2. However, for k1 <k2 , a
 

non-Lorentzian structure appears about A1O.
 

(c). <R02> Versus A1 for A2=7.5k 2/kI. The two resonances at
 

Q+=0 are of widths F±.
 

(d). <R01 > versus A1 for A2=7.5k 2/kI . These curves are the
 

same as the background curves of (b) except that the non-Lorentzian
 

resonance at l =0 in the 1l=k 2/2 curve is shifted.
 

>
Figure 8. Plots of <R02> (a) and <R01 (b) versus A1 for
 

I=16, k1=k2, for the case in which E2 is near resonance, A2/Y0 2 =3.0.
 

These curves show features common to both the off-resonance and
 

on-resonance conditions, indicating the complexity of the line

shape resulting from the interference effects treated in this paper.
 

Figure 9. Comparison of <R02> versus A1 for 1=16, k =k2 for
 

the exact solution [Eq. 43(b)], the IFA [Eq. (45)] and the REA
 

[Eq. (A23)]. Note that structure in the exact curve on the wings
 

of the central dip coincides with the residual structure in the
 

IFA arising because of the fine structure in the population dis

tribution of level 2, although the structure in the exact curve is
 

significantly enhanced. This enhancement results from spatial
 

interference effects and does not appear in the REA curve. The
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narrow central dip in the exact curve is in part due to the field
 

interactions between E1 and E2 in the absence of spatial variations
 

in the population of level 2, as can be seen by comparison with
 

the central dip of the REA curve. The exact curve, however, is
 

further influenced by spatial interference effects.
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