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The accuracies of two strapdown system attitude algorithms are
compared by digital computer simulaticon of the algorithms' response
to specified angular input rates. For constant rate cases, both the
direction cosine matrix (D.C.M.} technigue and the Euler parameter
technique gave risé to linearly growing drift angle errors.- The
errors incurred by the Euler parameter technique were significantly
less than those incurrxed by the direction cosine matrix scheme.

For the cases where the simulated body motions were purely
sinusoidal, the drift erxrors incurred by both technigues were bounded
sinusoids having the same periods as the applied angular inputs. The
magnitudes of the bounds were again less for those routines using
Euler parameters ratﬂer than D.C.M. schemes. The magnitudes of the
bounds for this case were also found to be proportional to the input
" angular rate raised to the power of the order of thevnumerical

integration scheme employed.



ACKNOWLEDGEMENTS

The author wishes to express his appreciation to his thesis
supervisox, Professor Winston R. Markey, and to his technical super-
visor, Kenneth R. Britting, whose generous advice and criticisms were
very helpful in this effort. Mr. Edimund J. Koenke must also be .
thanked for the assistance he rendered during the preparation of
this thesis.

Acknowledgement is also made o the M.I.T. Computation Center for
its assistance in overcoming programming difficulties.

Grateful thanks are also extended to the author's wife for the
patience and encouragement she offered.

This thesis was prepared under DSR project 70343, sponsored by
the Naticnal Reronautics and Space Administration, Electronics Research
Center, Cambridge, Massachusetts, through NASA Grant Number NGR
22-009-229 and under bepartment of Transportation Contract DOT-TSC-143.

The publicalicn of this thesis dogs not sconstiiuis approval by
the NWational Zerconavtics and Space Administration or by the M.I.T.
Measurement’ Systems Laboratory of the findingé or the conclusions
contained therein. It is published only-for the exchange and

stimulation of ideas.



PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

INTRODUCTION

TRANSFORMATION ALGORITHMS

RATE EXTRACTiON, INTEGRATION ROUTINES, AND
ORTHONORMALIZATION ROUTINES

ERROR QUANTITIES AND TRUTH MODELS

RESULTS OF COMPUTER ANALYSIS

CONCLUSIONS

REFERENCES
APPENDIX A -~ DERIVATION OF TRUTH MODELS
APPENDIX B - ORTHONORMALIZATION

APPENDIX C -~ . COMPUTER SIMULATION -

Page No.

23
33
41

45
47
53

59



PRECEDING PAGE BLANK NOT FILMED

CHAPTER 1.
Introducticn

Strapdown navigation systems enable the determination of vehicle
motions, position, and attitude with respect to some reference frame
by using gyros dnd accelerometers which are fixed to the vehicle.
Because these instruments are fixed to the vehicle, they are always in
the same orientation with respect to any coordinate frame also fixed
in the vehicle. This hypothetical frame f£ixed in the body is called
the hody frame.

In ordexr to use the gyro and accelerometer measurements, it is
necessary t¢ have an accurate measurement of the orientation of the
body frame with respect to the reference frame. The most common
representation of this orientation is that of the direction cosine
‘matrixz. This is a matrix whose elements are the cosines of the angles
between the axes of the body and reference frame. There are, however,
other representations which can be used. Specifically, two of these
are: (l) EBuler parameters; and (2) Caylefnxlein parameters. The
three technigues mentioned above are all governed by differential
equations which are functions of vehicle rotations, and these
eguations can be solved by numerical integration on a computer using
the gyro signals to indicate changes in vehicle orientation. The
eqﬁations programmed in the computer for this purpose are called
attitude algorithms.

It will be the purpose of this thesis to evaluate, by use of
computer simulation, the relative merits of the three techniques
mentioned above. The algorithms will be simulated as if they were
computed on a dgeneral purpose computer. Ancother technigque employing
Euler angles to represent the relative orientation of the coordinate
frames was not included in this analysis due to the singularities
inherent with three parameter schemes. These singularities are the

_equivalent of "gimbal lock" sitwations found in physical represen-



tations employing a threec gimbal systcm.fl} The merits of each
algorithm can be detexmined by comparing the relative orientation
computed by using each of the techniques (when specific vehicle maneuvers
are prescribed) with the closed form solution of the direction cosine
matrix. The accuracy of each of the algorithms will depend not onily

on vehicle maneuvers, but also on the integration s¢hemes used to
evaluate the differential eguations and the rate extraction techniques
used to determine the angulaxr velocity of the vehicle. It will bhe
assumed that integrating gyros which are sampled a number of times over
each integration step will be utilized. These changss in accuracy by
use of more sampling times or higher order numerical integration
techniques will, of course, increase the computer time needed for each
integration interval. The algorithms will be compared by: {1) deter-
mining relative accuracy for sach algorithm using different integration
routines'(Runge-Kutta first order, second order, and fourth order),

and specified vehicle motions; (2) determining relative accuracy for
each algorithm when combined with an orthonormalization scheme; and {3)
determining relative accuracy for each algorithm using differsnt
specified vehicle motions.

The accuracy will be determined by putting the results of all

the techniques into their eguivalent direction cosine matrices
{(b.C.M.'s), Because of the errors incurred in numerical integration,
these D.C.M.'s may not be orthonormal; and different orthonormallzation
techniques will be used to determine which yields the best results.
After orthonormalization, the D.C.M.'s calculated by using the two
different algorithms will be compared by determining how large a rxota-—
tion must be made with each computed reference frame to align it with
the true reference frame. .

The vehicle motions which will be used for thig analysis are

those for which closed form solution can be evaluated. These motions



will include: (1) single axis constant rotations; (2) three axis
constant rotations; (3} single axis sinusoidal rotations; and (4)
general coning motion. For each of these motions and different
angular Yelocit;és, the accuracies of each algorithm will be compared.
The direction cosine algorithm computation using B = BQ, (where
Q is the skew-symmetric form of the angular velocity of the bhody with
respect to the reference frame, cocrdinatized in the body frame) secms
to be the one most frequently used in strapdown systems. This thesis
will try to either confirm the value of this algorithm ox suggest the
use of an alternative algorithm‘in order to yield the best results in

a-strapdown system.
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CHAPTER 2.

Transformation Algorithms

The purpose cof a transformation matrix is to transform the
coordinates of a vector in one frame to their associated values in a

second frame. .

The transformation matrix accomplishes this transformation by a
simple multiplication. If we let y? be the coordinates of a vector in
the body frame, zi be the coordinates of the same vector in the

inertial reference frame, and C; be the coordinate transformation

from the body frame to the reference frame, then:

.

where each element of the transformation matrix C; is the cosine of

the angle between an axis of the reference frame and an axis of the body
frame.ls)
The purpuse of a4 transioomeiion slguriitim is o detlerwmine the
elements of the transformation matrix as a function of time, given
only the value of the elements of the transformation matrix at the
initial time‘{fa), and the angular motions of the body with respect to
the reference frame coordinatized in the body frame. The latter can

be obtained directly from the gyros mounted on the vehicle.

If the angular rotation of the body is:

wx(t{

w(t) = wy(t)

wz(t)

11



where Wy r wy, w, are the angular rates about the x, y, 2z body axis

respectively, then
.3 i
Cplt) = ¢ (t) a(t) (2.1)

where @ is the skew symmetric form of the angular rate vector, i.e.,

0 ~w_ (%) ()
2 ={ w,(t) . 0 -, (t)
-0, (t) w,, (t) 0

Equation 2.1 actually represents nine first ordexr coupled differ-
ential eguations. It is assumed that C% (to) and w{t) are known.
Therefore, Ci (t) can be obtained for all t by numerically integrating
these equations on a general purpose computer. This scheme will be
identified as the "Direction Cosine Matrix Algorithm," and should not
be confused with the direction cosine matrix itself.

1]

The Euler parameter algorithm uses a four parameter technique.

When Euler formulated this technigue, he found that by using three
parameters instead of two to represent the components of an axis about
which one coordinate frame was rotating with respect to another, he
could avoid the problem of singularities. A complete derivation of this
technigque can he found in Reference 2.

Instead of having nine differential equations to solve, the Euler
parameter technique has only four. The Euler parameter technigue can

be summarized hy the following eguations:

12



Let & be the vector whose components are the Euler parameters

This wector will then satisfy the following differential eguation

- e
F 0 wz my mx
a6 mw, 0 Wy, —my
—_ =1 0
dt 2 w —~w 0 - -
Y X z
i mx my w, 0

manipulations as follows

2, .2 .2 2 -
01+8,-05-05  2(0,0, +66,) 2(6,6,-0,8,)

i 2,02, 0202 )
o = |2(8,8,-8,8,) 05+85+05-05  2(0,8,+6,0,)
2,2, .2 .2
2(9193 + 294) 2(6263 —6184) —81"92f83+94

Using this technigue, we have to integrate only four differential
eguations. However, these four values must be put into the D.C.M.
form in order to use their information as a transformation from the

body frame to the reference frame. The effort involved in accomplishing

13



this task is comprised solely of simple algebraic manipulations and

is not an iterative procedure, as is the integration of the differential

equations.

Klein parameters.

Finally, the third algorithm to be mentioned is that using Cayley-

the differential equation,

0 uwz
® 0
A
1
-2
w, w
b x
wa ~my

S

—u oy
0 -,
w, 0 |

It is also a four parameter technique satisfying

and the dirxection cosine matrix can be formed according to the

following equation.

14

2 2 2 2
alﬂaz-a3+a4
ci = 2{0, 0 FaLa,)
b 1727374
2(—ulu3+a2a4)
If we let

2(ala3+a2m4)

2(—ula4+u2a3)

2,2 2 2
oy, -as=ey,




we then have ide?tical differential eguations and identical forms for
the transformation matrix in both the Euler parameter and the Cayley-
Klein parameter techniques.

Because these two techniques are really the same, the computer
anal§ses run on the IBM 360 were only.programmed for Euvler parameters.
The results for the Cayley-Klein parameters would have been identicéi
to these. Thexe is no practical reason why one of the four parameter
techniques should be favored over the othar, with respect to accuracy,

ease of programming, or computer time needed to process the algorithm.

15
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CHAPTER 3.

Rate Bxtxaction, Integration Routines,

and Orthonormalization Routines

4. Rate Extraction

It was shown that the attitude algorithm requires continual
knowledge of-gtt). However, most systems use pulse torqued integrating
gyros whose output is not in the form of angular velocities, but rather
in the incremental form A6(L), where AB(t) is an incremental change in
angular orientation. It is necessary to be able to extract rate infor-
mation w(t) from the series of pulse trains A8(t) for the Runge-Kutta
integration routines which were used éo integrate the algorithms'
differential eguations. A f£irst order approach to rate extraction

‘would be to let

L @6 _  lim  AB(t+At) —AB8(t)
wlt) = £ = Akso AT -

Some integration routines, however, also need rate information at
the midpoint of the integration interwval, i.e., m(t+%). For this
reason, a second order rate extraction scheme was used in the computer
simulations which were implemented.

This second order scheme samples ‘the gyro output at times ¢,

t + %}, and t + At. Using these three points, and simulating the gyro

output increments as

= Aty .
A0y (£) = 8(t + =) 6 {t)
80,(t) = o(t + At) ~ ot + &y,

where 8(t) is the actval simulated rotation, and fitting the points

with a second orderx polynomial, yields after differentiation: [+

17



3A81(t} - Aaz(t)

wl{E) =
At
. AB, (E) + a8 (1)
ot + é%) = % 2
At
—Ael‘:t) + 3(&92 (t)
wlt + At =

At

Other technigues using higher sampling rates for the gvros can
yield better approximations to w(t) than the method just described.
The advantages and disadvantages of these techniques well be discussed

later.

B. Integration Schemes

The rate information determined in the previocus section can now
be used as the input tco the integration routinés, which were.uked to
get solutions from the algorithms' differential equations. In the
pputer simulations nerformed, it was arbitrarily decided to let the
initial conditions be set by the fact that at t = 0 the body frame of
the vehicle is exactly aligned with the reference frame. The magnitudes
and general form of the_errors associated with the algorithms would not
be changed by using other initial conditions, and exact initial align-
ment was chosen merely for convenience. F;r the direction cosine matrix
technique Cp (t) = Cb (£)Q(t), the initial conditions imply that
Cé (to) equals the identity matrix. For the Euler parameter technique,

the initial conditicns implying estact alignment are:

91 = 0.0
82 = 0.0
93 = 0.0
94 = 1.0



For the purposes of this simulation, it was decided to test
both algorithms using a first, second, and fourth order Runge-Kutta
integration routine with fixed time steps of integration. Thard order
routines were not employed, due to the fact that some of the cases
simulated in this analysis have been-preVLOusly analyzed using closed-
form analytic techniques when first, second, and third ordex integrétion

(2]

routines were smploved. It was hoped that use of first, second and
fourth oxrder technigques in this analysis would computationally confirm
and extend the results of previous analytic comparisons. On an actual
fiight, it would be advantageous to be able to sample the gyros at a
éredetermined rate and zlsc compute over predetermined intervals of
integration, so that the amcunts of computer time needed to implement
a particular algorithm would be known exactly. The ﬁse of a variable
step size Entegration routine would.not permit the evaluation of the
computation time needed because 1t would be impossibie to determine
beforehand what integration step size would be used.

Runge-Kutta integration technigues were emploved because they do
not reguire past histories of the dependent variables, and they have

an accuracy egquivalent to the accuracy of a Taylor series solution of

the =zame order.

The equations governing these integration routines are shown

below.[3’4]

Letting é(t) = f[x(t), wl(t}], the equations become:

First~-Order Runge-Kutta

x{t + Aty = x({t) + At [£{x(t), w(t))]
Second-0Oxrder Runge-Kutta

¥ = x(t) + At [£(x(t), wit))]

x(t + 4t) = x(t} + % (£, wit + at)) + E(x(t), w(t)}]

19



Fourth-Ordex Runge-Xutta

A= At Elx{t), w(t))]
B = At £ = At
B = x(t) + 5, wit + =51
=t 2" = 2
. At F B At
€= At £lx(t) + 35, alt + =5))
D= At flx(t) + C, w(t + AR)]
t + At) = 2 E £ =
®{t + ALY = x{t} +'-6—-—-+-———+ 3'._0+-{5-:T)'

5t 3.0

€. Orthonormalization

The elements of the direction cosine matrices computed by either
the direction -cosine matrix technique or the Buler parameter technigue
will contain errors due to the fact that numerical integration routines
are not exact. Because of these errors, the computed D.C.M.'s will nct
necessarily have the property of being orthonormal.

Orthenormality is a requisite of a true D.C.M: and can be
synracsard as follows. If C,: i=1,2,3; are the three rows of the

D.C.M., normality reguires that

where "x" denotes the cross product operator. The algorithms used in
this analysis were also tested with the orthonormalization routines

included, to determine how much improvement could he obtained in the

20



Por the Euler parameter technigue, orthonormallzation merely

requires that:

4
) (Gi)z =1

i=1

If this requirement is met, the rows and columns of the D.C.M.
formed from the Euler parameters have magnitude equal to one, and they
are mutually orthdgonal. Therefore, the D.C.M. formed by these para-
meters will be automatically orthonormal. Therefore, in the computed
simulation, orthonormalization was achieved by dividing each of the
computed parameters by the square root of the sum of the squares of
the computed parameters,

) Orthonormalization for the direction cosine matrix.technique
is not.nearly as simple as for the four parameter algorithm. For

this case, a technique was used which was not too complicated but

does normalize the computed B.C.M. and orthogonalizes the computed
______ 32
Appendix B).

The procedure used was to let Ei; i=1,2,3; be the rows of the
computed DB.C.M.

Then form:

where i = 1, j =2, k=3; i=2, =3, k=1; and i=3, § =1,

k = 2. HNext let

21



and the gi are now the rows of the orthonermalized D.C.H.
The direction cosine matrices were corthonormalized each time
the direction cosine matrix was formed, i.e. every ten seconds for

the simulations performed.

22



CHAPTER 4.

Error Quantities and Truth Models

A. Erxrror Quantities

. Use of a computer”to integrate the differential equations of the
attitude algorithms discussed in the previous chapter, yields a computed
direction cosine matrix. The elements of the computed direction cosaine
matrix will differ from those of the true direction cosine matrix
representing the relative orientation of the body irame and the refer-
ence frame, due to errors in the numerical integration technigues,
errors in the rate extraction schemes and numerical round off in the
computer. In the present analysis, the errors due to numerical round
. off were reduced enough to become insignificant by using double preci-
sion in all the programs run on the computér. Merely comparing the
difference of the elements of these two matrices does not, however,
yvield a good physical representation of the errors in the computed

D.C.H,

. .
In orxdor 2 okitain o zsomevhet

rrors assoclated with the computed direction cosine matrix, the fol-
lowing scheme can be used.[l'z]

Let 6 be the computed D.C.M. between the body and reference franmes,
C be the exact D.C.M. between the two frames, and CT be the transpose

of C.

Then

Cc + 6C

1
i

or
{T + B)C

0>,
n

23



where

E = scct
and the fact that CCY = T yields E = ECT - X. The error matrix, E,
will be of the form: .
®11 €12 “i3
E= 21 €22 23
®31 32 €33

The elements of the error matrix can be given a physical

(1]

interpretation. The elements along the main diagonal indicate to
first order the growth or decrement, of the column they are in, from
unity. This error is called the "gcale error" and is a dimensionless

thcolumn and ith row of

Letting Eij be the element in the 1
the error matrix, "skew errors" can be defined as the average of the

off diagonal elements of the error matrix, i.e.

K=1,4i=2,73=3
Es + £ _.

(Skew), = —13—2—3—‘5 for {k=2,1=1,3j =3

k=3,4i=1, =2

Physically the skew error is a measure of the perpendicularity

of the i and j axes, as shown by the foliowing figure:

24



j TRUE coMP

egy T ey
Y
2
TRUE

k=1,4i=2,3=3
. €55 — €y
Qrift Errork = —3Q—ZT—JL- for k=2, 1= 3, 3=1

k=3,41=1, j=2

The drift error is a measure of how much the computed frame must

ko rotated zhout the Kth axig to z2lign it with the tre frame.

A geometric interpretation of the drift error appears below.

j TRUE

i comp

ei. - e.i
] Tl
s —B> i TRUE

25



The scale errors as defined arxe dimensionless guantities. The
skew and drift errors are in radians, but can easily be converted to
degrees, as was done for this simulation.

Using these errors‘as a measure of accuracy for the different
algorithms tested easily lends physical insight to the determination

of the merits of each algorithm.

B. Truth Models and Input Rates

In order to calculate the error matrix E, described in the pre-
vious section, it is necessary to have knowledge of the true D.C.M.
Four basic-types of vehicle rotations were used in this computer ana-

lysis, and a truth model which could compute the true D.C.M. in

closed form was needed.

.1l. 8ingle Axis, Constant Rate

For the single axis constant rate ro£ations, the 5.C.M. is
merely a function of the angle through which the body axis was
rotated. Assuming an x, y. z coordinate sys em, the simulated

rotations were input abour the y axis, i.e.

0
wlt) = k " %k = constant
0
then _
60 =0
Ey(t) = BO + kt ex(t) = 0
Bz(t) =0

26



and

cos By(t) -0 sin Gy(tx

CB {(t) = 0 - 1 . 0

True
. 8 ( l') 0 8 .
\"‘sl Y cos . }? i t/)

Z. Bingle Axis, Sinusoidal Rates
The single axis, sinuscidal rates case also used the y
body axis as the axis of .rotation. The form of the sinusoidal

input used was:
w(t) = oacos Bt

As for the single axis case, the true D.C.M. is only a
function of By(t), which was evaluated accoxdiny to the

followiny equation:

t t
= - = 2 in
Sy(t) = eo(t) +‘/racos Bt 0+ B sin BEJ
% tp

Therefore

and the construction of the true D.C.M. is the same as for the
single axis case with equation 3.1 being used to evaluate

By(t).

27
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3. Three Axres, Constant Rates
For this case, a constant angular rate was input ainto all

three axes. To evaluate the truth model for this case, we let

&) = cieyalt)
true true

which is the differential eguation used in the direction cosine
matrix technigue.

If we let ¢(L,t0) be the transition matrix for this equation,
it can be shown (see Appendix A) that the true direction casine

matrix can he represented as:

. 2 i

el )y = o+ (3 - cos wt) - L osin wr)?
B 2 W

true w

1
where w = {wxz(t) + wyz(t) + mzz(t)lz

and Q(t) = skew symmetric form of w(t).
4. Coning Motion Superimposed on Constant Pitch Rate

The angular input for this case is:

o sin Rt

o cos Bt

" For this case, 1t can be shown (see Appendax A} that the true

p.C.M. as a function of time is as follows:

2
c, () = [I + 95 {1 - cos wt) + % sin wt] cg (£)
w2



where

°? 1
wi®) B4yl s e= (624 (B+MH?
a4
fi(t) is the skew symmetric form of w(t)
cos BL 0 ~s5in Bt
and C3 (t) = 0 1 0
sin Bt 0 cos Bt

Besides evaluating truth models for the analysis, we must
provide our coﬁputational algorithms with pulses AB{t), in
order to enable evaluation of the angular velocity, aft), as it
would be accomplished by meaguriﬁg AB(t) fromlthe gyro ouitputs.
The A8(t) used for the analysis was not quantized, as would be
the case with a physical system, although evaluation of errozs
from this source might be desirable if the level of guantization
were so large as to compete with the drift errors which come
about from only approximate integration of the algoxithm’s

differential eguations.

. For the single axis constant rate case

0
wlt) = (k
0
. 0
eadt
A8, {t) = 48, (t) =7 w(t) = (kLA
—1 =2 - 5
t
0

20



Thus kAt was the pulse input to the algorithm which +hen used
the rate extraction routine described in Chapter 2 %o derive rate

information.

b. For the threze axes constant rate case

wit) ={p

and the pulses used by the algorithms were

t+AL wAt

2 2

— AD {1y = _ IBae

88, (t) = A8,(%) —[ wl{t) = 5
: t ‘Y_‘QE"

2

¢. For the single axis sinusoidal case,

0
. w(t) = /o cos BEt
0
and therefore
[ o ] [ 0
’ t+8t
2 o At .
ﬂgl(t) = o cos ft dti = 8 sin RB{t + —5) - gin Bt
. .
t] ¢
I 1o ]

30



AQQ(t) = J{- o cos Bt 4t} = %{sinﬁ(t + At)-sinf(t + é%)]
At
€+ 55
1] 0

d. For the coning motion superimposed on & pitch rate, the

angular rate is

¢ sin Bt
wlt) = Y
[a cos Bt
ané therefore
a By |
B [cos B{t} - cos B(t + —7)?
_ At
by (8) = v 45
& [sin B(t + 8% - sin gt
- |
% [cos B(t + 93-2':) - cos Bt + At)]
N At
AB,(t) = Y =
$ (sin §(t + At) - sin B(t + 23]
L .

31




It should be reemphasized that the angular rates could have been
supplied to the algorithm directly; but doing this would have neglected
the exrors incurred by the algorithms due to the fact that they do

not have exact means of rate extraction.



CHAPTER 35

Results of the Computer Analvsis

In oxder ta compare the accuracies of the previously discussed
algorithms, four types of vehicle motions were simulated. PFor each
simulated vehicle maneuver, boih the di%ecuion cosine matrix and Euler
rarameter techniqués were employed using first,; second and fourth
order integration routines. The integration incerval was kept at a
constant value of 1/8 second, and all 6f the test runs were simulated
for a period of three minutes.

The drift, scale, and skew errors found in each of the computed
D:C.M.'s were then compared in an attempt to evaluate the relative
merits of each of the algoxithms tested. Although each type of wehicle
maneuver was input seﬁarately, the generality of the programs allow
any combination of vehicle maneuvers to be input, as long as it is
* still possible to formulate a closed férm solution of the D.C.M. to use
as a truth model. It was felt, however, that the maneuvers which
were used for the present analysis are Trepresentative of common
motions an actual vehicle would undergo during f£light.

A. Single Axis Constant Rate Case

As previously discussed, a constant angular velocity of 10°/
second around only one body axis was the simulated vehicle msneuver
for this test case. For this type of input, the rate extraction routine
will yield perfect rate information in_ the absence of gyro pulse
quantization. Therefore, the errorshfoﬁnd in the compu?ed direction
cosine matrices will only depend upon the type of attitude algorithm
employed, and upon the order of the integration technique used to
integrate the differential equations of the algorithm. Erxors which

might have resulted due to the fact that digital computers only have

finite word length, were made insignificant with the simulations

33



perfo:méd by using double precisi;n word length with all of the computex
Programs.

For this simulated vehicle maneuver, it was found that both the
scale and drift errars grew linearly as a func§ion of time, independent
of the algorithm and integracion routine employed to compute the D.C.M.
Also, the skew errors were identically zero over the complete simulation
period.

These same simulations were also run with an orthonormalization
rou?ine included in the algorithm. The orthonogmalization routines
vere used to orthonormalize the computed D.C.M. every five seconds
during the three minute simulated maneuver time. It was found that
the use .0of an orthonormalization scheme decresased the scale errors by
a factor on the order of l()h‘4 for those algorithms using & first or
second oxrder integration routine. The addition of an orthonormalization
scheme to the algorithms usiﬁg a fourth érder integration scheme 4id
not yield a gignificant improvement in the scale errors. It is
imporrvant to noie that the cocrthonsymalization gchemes did not improve
the drift errors incurred by the algorithms, and in some cases they
actually incdreased the drift errors{see Appendix B).

Orthonormalization-routines which were only employed at the end
of the three minute simulation period were also analyzed. It was-Iound
that orthonormalization for those cases yielded much less significant
improvement in scale errors than did orthonormalization routines which
were used continuously throughout the simulations.

If, however, it is reguired that the drift errors should be
small, i.e., on the oxder of the size of the quantization level of a
typical gyro pulse (approximately .007°), it-is found that the addition
of an orthonormalization routine is of no advantage. The drift exrors
are not improved, and the scale errors are already in the 10-10 range.

The single axis constant input test case showed the drift errors



incurred by the Euler parameter technigue with any order integration
routine tested were always lower than the drift errors incurred by the
direction cosine matrix technigue 1sing the same order inteération .
routine, Euler parameters yield 1/4 the drift errors that the direction
cosine matrix scheme does for both the first and second ordexr integra-
tion technigues, and 1/16 the drift error for the fourth order
integration technigues.

With orthonormalization every 5 seconds included, the drift
errors at the end of three minutes, normalized with respect to the
drift error incurred by the direction cosine matrix technigue using
a first order integration routine, (0.285°), can be summarized

as follows:

Table 1.
Drift Erxor 1st Qrder 2nd Order 4th Order
B = BQ 1 .5 .12 x 1074
E.P. .25 ©.125 .75 x 107°

to
hl

B represents the direction cosine matrix technique.
E.P. represents the Euler parametexr technique.

10°/sec.; At = 1/8 sec,

E
1

The elements of Table 1 were found to be constant for first and
second order integration technigues, for varying integration interval,
At, and for varying angular rate, w. Howe%er, the fourth oxrder
techniques were shown to improve relative to the first and second ordex
technigues as the ratic w/At was decreased. The fourth order Buler
parameters continued; however, tc incur only 1/16 the drift errorxr
incurred by fourth order direcition cosine matrix technigues as w/At

was decreased.
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B. 'Three Axis Constant Rate Case

In this test case, constant angular rates of 10°/second were
input along the three oxrthogonal body axes. The resulting error
analysis showed the scale, skew, and drift errors to be the same along
all three axes. As in the single axis case, it was found that requiring
the drift errors to be small made the use of an orthonormalizacion
scheme to reduce scale and skew errors unnecessary. The drift for
this case using D.C.M. technique with a first order integration scheme
was found to be 2.391°.

A summary of the normalized drift errors can ks seen in Table 2.

Table 2.

Déift Or§er lst Order 2nd Order 4th 0rde£

5 = B 1 ) .5 .26 x 1074
E.P. .25 125 . .225 x 107°

Again it c¢an be seen that for first and second oxder integration
routines, the Euler parameter technique yields a drift error of 1/4
the drift error incurred by the direction cosine matrix techaigue; and
for fourth order integration routines, the drift erxror ratio is 1/16.
Tt should also be noted that the fourth order integration techniques
in this case do not have the same relative improvement over f£ixrst and
second order techniques as they did in the single‘axis constant rate
constant rate test case. Their relative improvement was Xeduced by a
factor of three from its value in the single axis case, althouwgh for
the value of w/At used they still held a commanding advantage.

If the results of these first two test casés are compared with
the analytical work of McKern,[zl it can be seen that using a second

_order integration routine with either Euler parametoers or direction
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cosine matrix scheﬁes yvields drift errors of half-thosze which would
result from using a first order integration routine with the algorithms,
independent of tpe value w/At. Use of a fourth order routine,

however, yields only 1/4 the drift error of a third order routine, also

independent of the value w/At.

C. Single Axis Sinusoidal Rate Case

For this test case, the simulateq vehicle angular rate was of the
form w = B cecsBt. For computer runs made, using a simulated vehicle
rate of this form meant that by-varying g, the wvehicle would perform
constant amplitude but varying frequency oscillations.

The results of the error analysis showed that there was no skew
error incurred, and that the scale error d&id not need improvement by
an orthonormalization routine when the drift errors were kept small.
-Most important was the result that the drift errors for this case did
not grow linearly with time as in the constant rate test cases, but
instead were bounded sinuscids having the same periocd as did sinft.

The drift errors Lor this case Lad another interssting depsndénce
upon B. For the first order integration schemes, using eithex Euler
parameters or the direction cosine matrix technique algoxithms, drift
errors were directly propeortional to'R. With second order integration
techniques, the drift. errors for both algorithms were propertional to
82, and for fourth order integration technigues the drift errors were
proportional to 34. No computer runs were made with a third order
integration routine, but it seems reasonable to speculate that the
drift errors for a third order routine would be proportional to 33.

The ratios of Euler parameter drift errors vs. direction cosine

matrix drift errors for this case is shown in Table 3.
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Table 3.

Drift Brrors lst Oxder 2nd Qrder 4th Order
E.P./B = BQ 1 1/4 1/16

These ratios held constani as the value of B was varied., These
ratios are the same as they are for both the single and three axis
constant rate cases vhen second ox fourth order integration routines
are used. However, the advantage held by the Buler parameters decreased

sharply for the first order integration routines.

p. Coning Motion Superimposed on a Constant Pitch Rate

For this simulation, the simulated angular rate of the vehicle

was:

—q sin Bt_|

o« cos Bt

As in the sinusoidal rate_case, the magniutdes of a and B were
kept the same.

The results of the computer analysis showed the draft errors
- incurred along all three axes to be irregular fﬁnctions of time, i.e.,
they were not linear and they did not have any simple sinusoidal form.
In o;der to compare the aceuracies of the slgorithms tesited, a mean

drift was defined as follows:

Bf s

. 2 2 2
dean Drift = (Dx + Dy + DZ)
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where Dx’ Dy, Dz was the maximum drift achieved during the three

minute simulations about the x, y, and z axes respectively.
The first used

Two

basic test inputs were simulated for this case.

o=y = 1°%/sec, B =.1
and the second used
= 10.0

a = vy = 10°/sec. B =

The normalized mean drift errors is shown in Tables 4 and 5.

The

mean drifts for these cases when the D.C.M. technigue with first order

integratién was employed were 6.25 x 10

" respectively.

Table 4.

Normalized Mean DPrift Brrors

2 and 10.2 x 107T degrees

lst Qrder 2nd Ordex 4th Qrdexr
. -2 -3
B = BQ 1 71 x 10 .30 % 10
- . ~2 -9
E.P. 1 L27 = 10 .16 x 10
Table 5.
Normalized Mean Drift Errors
lst Order .2nd Orxder 4th Orderxr
, ~4
B = B 1 .44 19 x 10
E.P. .66 .16 .23 x 1970

o =8 = =10
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The most significant result of the analysis is that adain LDuler
parameters had mean drift errors less than or equal to those incurred
by the direction cosine matrix technigue, when the algorithms were
tested with the same simylated input and evalvated with the same orderx
integration technigue.

The coupling of the algorithms' differential equations, and
dissimilarity of the angular rates imposed upon each axi; for this test
case, made it difficult to derive a concase correlation between the
magnitudes of the inputs aﬂd the resulting mean &rifi exrrors incurred

by the algorithms.
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CHAPTER 6

Conclusions

For every éase tested, the EBuler parameter algorithm proved to
be at least as good as, and in mosi cases superior to Lthe direction
cosine matrix algorithm, when both used the same order intedgration
techniques. It would seem wiser, therefore, to choose a four parameter
technique in favor of the direction cosine matrix scheme which emplovs
nine differential equations.

Although the orthonormalization algorithm used with the direction
cosine matrix algorithm was only an approximate scheme, the method
employed with the Euler parameter algorithm was exact, and showed
that orthonormalization was useful only for reducing scale and skew
errors. It further proved orthonormalization to be completely unneces-
'sary when the algorithm smployed uses an integratior interval small
enough to maintain the drift errors at a magnitude on the order of the
quantization level of a typical gyro pulse. For those reasons, it
would seem appropriate not to waste computer time by employing an ortho—
normalization routine when the above conditions are met.

It was mentioned in a previous chapter that the rate extraction
routine used for these simulations was not the oniy choice available.
One could in fact saméle the gyro outputs more often over the integr§—
tion interval in order to derive more accurate rate information. For
example, the gyros' outputs could be sampled more frequently and beﬂ
fitted with a third rather than a second order polynomizl. However,
choice of the optimum rate extraction scheme to be used would depend
upon a priori knowledge of the angular rates to be undergone by the
vehicle. The simulations run for this paper were not emploved to
explore the advantages of more accurate rate extraction routines.

However, the generality of the computer programs written for this
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analysis could easily handle changes such as this. It might be
useful, therefore, in future work to explore the effeét of rate
extraction upon the accuracies of the attitude algorithms.

It must :also be reemphasized that the simulaticn runs employed
double precision throughout. This yields an accuracy of 15 decimal
digits for each number stored in the computer. When some of the simu-
lations were carried out in single precision (accuracy 7 decimal
digits), it was found that computer round off became one of the most
prominent sources of inaccuracy in the algorithms. Typical on-board
computers do not have as long a word length as does the I.B.M. 360
with double precision. The accuracy of the on-board computer will,
therefore, be a great source of concern when attempting to implemen£
an attitude algorithm with a strapdown inertial navigation system.

Another important aspect concerning the accuracy of an attitude
algorithm is the fact that each pulse from an integrating gyro is

cbtained only after the vehicle has undergone a certain minimum

o

change in angular oriencation. whis minamum changs fo produce a

pulse can be identified as the pulse quantization level of the gyro
being considered. This simulation did not teke this guantization

into account, but again the programs could easily be modified to do

so. The pulse guantization level would set a minimum magnitude on

the drift accuracy of the algorithms duvue to the fact that the algorithms
cannot be expected to have accuracies greater than the information
supp;ied to them. The buiild-up cof errors due té gyro guantization could
be a study by itself, but for the purpose of these simulations it was
ignored. It would, however, be reasonable to assume that gyro guantiza-
tion errors would only be important when algorithm drift errors are
about the same order of magnitude as the guantizatien levels. For

much larger drift errors, the errors caused by quanélzation would in

all likelihood ke overshadowed by the errors incurred due to only
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finite order numerical integration and errors in the rate extraction |
schemes. It might be. possible to analyze effects of gyro guantization
by merely looking at the effect they would have on rate extraction
information. .

Finally, it must be noted that although higher order integration
routines yield better accuracies, they also take more time for
computation., In some applications it might be more commendable to use
a low order integ;anion routine and small integration interval rather
than a high order integration rowtine and large integration interval.
To make a good choice would'depend upon knowledge of typical vehicle
maneuvers for the application of the strapdown system computation
times reguired by the general purpose computer being used, and the
.accuracies required of the algoxithm.

Although this study does not indicate what is the optinum rate
extraction or optimum order integration routine to employ, it does
strongly indicate that the four parameter 'technigues have a distinct
advantage over the direction cosine matrix method, both of which yield

attitude algorithms with no singularities.
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APPENDIX A.

Closed Form Soluticons for the Direction Cosine Matrix

The differential eguation for the D.C.M. is
&(t) = cle)a(t), A.l

This matrix equation actually represents nine first order differential

egquations and can be rewritten as
Ty = ¥ eyt (e, A.2

The solution to Equation A.l-can be expressed using state space tech-’

{6]

‘nigues as

cT(t) = 2k, tg)CT (k). A.3

Throughout the remainder of this appendix the initial values will

he seit as follows

The differential equation for the state transition matrix in Eguation

A.3 can be expressed as
$(t,0) = —-Q(&)&(t,0), a.¢

because (t} is skew symmetric, i.e.

of (v) = ~a(e); a.5
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and the boundary condition for the'differential equation is

${0,0}y =1I

The solution for the state transition matrix, when Q(t) is.

constant, is
ot -Gt Q Q.2 0t 2 . 03,0t 03
R _ _ . 2, ot
o{t,0) = e = e = I + a(mx} + (%G TF ) (§T) e

AT
i
.2 2 2,2

where o = (mx + my + wz) . A.8

Noting that

3 4 2

Q° Q. 0" _ 0

3T W AT g °he- 2.9
© w ®
and substituting A.9 into 2.7 yields
3 5
: - _f _ {wt) {wt)
8(¢,0) = I (D) [(wt) - FpE—+ ~gp—+ ...]
2 2 4 6
Q {wt) {wk) {wt)
+ (ﬂi} [ 2! T Tar + 3 + ':-]r A.10
[A) ]
Now
2 2 4 2
Q. . Q {(wt} {(wt) Q
&{t,0) = I - 5[51n wt] - -5 [1 - 57 + + ...} + -
N © W
A.lL
which results in
A.l2

Q 02
o(t,0) = I - G[Sin wt] + _3{1 - cos wkt]
i3]
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From Equation A.3, the D.C.M. is shown %o be

cle) = cye” (¢,0) a.13
so that
‘Q 0? ' 7
C{t) = CuII - osin ot + —(1 - cos wt)17, A.l4
o
For the case where C0 =TI
Q 92
Cc(t) = [I + asin wt + =5 (1 - cos wt)], A.15
@

"For the case of coning motion superimpesed upon a constant pitech

rate, the body angular velocity is given by

¢ sin Bt

=
]
-
o
=
)

Egb = Eg_;:b A7
where
[ cos Bt v sin ;’:;'l:.-1
Py = 0 1 0 A.18
-sin Bt v cos ft
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andé

]
a _—
Yip ¥ A.19
3
Now
i _ i a
Cb(t) = Ca(t)Cb(t) A.20

which is the matrix of interest for this case.
. . X i
It is now nccessary to determine the solution fox Ca(t) .

From Eguation A.l18, the value for E:b can be determined as

0
g _ . b _ -
b T ¥ap ¢ B A.21
Lo .
w? zan ke rowrsitica as
—ib
] R
0 /’o
b b
= - A.22
Wip =Cot 1B+ VY] + B >
L o t]
and becausc
a a a
- X A.23
Rib T Y%ia T Zab

it must follow that



o .
Eia is of constant value and
éi(t) = ci(t)sz
where
[ 0 -0 (8 '+ v)
Q= o 0 0 A.25
“g+y) 0 | 0 .

The solution to A.25 is then given as

i 2
ey = 1+ & (1~ cos ut) + £ sin bl A.26
w

where

)

w = (az + (B + Y)2)2- . A.27
The value for C; {t) is now given as

: 0? Q. a
cl(i) = [I + (1 — cos wt}) + =sin wt] Cb(t). A.2g
b w2 )
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APPENDIX B.

Orthonormalization

One technigué that has been suggested for orthonormalizing a

computed direction cosine matrix is the following.

Letting C be the computed D.C.M. aad
¢t = ¢ (c’c) 2

then C* will be the optimal orthogonal approxzimation which minimizes

Trace [{C* - C} (Cc* - C)T]. B.2
Letting .
c=c+sc=(x+ scchic . B.3

where C is the true D.C.M., and e¥panding Equation B.l to first order

according to the binomial series yields the result

ct = [I + % scct - % cscTic. B.4
Letting P = scct and substituting %nto B.4 gives
c* = {1+ 3¢ - 2'lc B.5
When this first ordex approximation is substituted iﬁto the erroxr
equation of Chapter 4
E=cct -1 B.6



Hote that the xight hand side of equation B.7 is in skew symmetric

form. This means thar thé error matrix wvould be of the following form.

0 €12 “13
E = —812 0 €93 B.8
“€13 Bay 0

This error matrix would yield zero scale and skew errors inde-
pendent of the magnitude of its elements.

‘Letting the difference matrix §C and the true D.C.M. be divided

into row vectors

a3
8¢ = 52 ; C = B.9
E3
The error matrix becomes
i — B = =T - =T _ = =
0 283°C; " 8379 a)°C3 ~ a3°Cy
2 2
T 7 - T — 7
a,*Cc - &, *C a.* - a,*'¢
I v S B o 2 3 3 2 B.10
2 2
- P  — =T - =T = T
§3-cl - al-c3 a3 02 - a2 03 0
L 2 2 -
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"and the three drift errofs ag defined in Chapter III are

52-'&{; - 53'555
Driftl =
- 2
T..6F ~ 7, oL
3 71 1 73 B.11
Drift2 = *
2 '
3,065 - 3,08
Drift, = = .
3 2

If the computed D.C.M. is not orthonormalized, the error matrix of

Eqguation B.2 hecomes

- =7 - =T - =7
21°% 8% 21°C3
_ - =T = =T - =T
E = aytey a,°c, a, c3 B.12
SQ.E? —:'Eg 53'E§
and the other errors as defined in Chaétgr ILI are as follows
_ = =T 2 - =T 2 -~ 1,2
Scalel = (al cl + (d2 cl) + (a3 c.l)
. (T 2T\2 = =T, 2 — =T 2
Scale2 = (al cz) + (a2 c2) + (a3 cz)
_ i - =2 - =I2
Scale3 = (al C3 + (a2 c3) + (a3 c3)
T,-5% + &@,-50 B.13
Skewl = 2 73 3 72
2
3 Tht @yt
1l -2 371
Skew2 = ——is
2
— =T, - =T
B al'024 E}.‘:2 Cl
Skew3 =



- -m - o
dL,"C = a,*C
Drift, = ——=3 3 "2
1
2
- =1 — m
d,*'C.~ a-.*C
Drift, 3 7113
2
— T — %
3, +C,- &,
Drift 1 2 "2 71
3 2

The drxift exrors of Eguation B.1l2 are seen to be identical to
those of Eguation B.1l0. Therefore, an exact first order orthonorma-—
lization routine does not yield any benefit in.reduction of drift
errors. This is due vo the fact that the error matrix associated
with thé orthonormalized D.C.M. is the skew symmetric form cf the
error matrix associated with the non-orthonormalized D.C.M., and
drift errors are defined"a; the skeﬁ symmetric portions of the errorx

.

matrix. Obviously, skew symmetritizing an already skew symmetrlc

Therefore, first order crthonormalization routines will effec-
tively null scale and skew erxors. However, they do not minimize B.Z
as much as would a higher order expansion.

& second crder expansion of Eguation B.l results in a C* of the

form

_ Lr 1 LT, _ 1,7, 30T 1.2
C*-—-[I"-:?P +—2-P'—'-8"PP -s-PP ‘1"8-.?P 2P1C B.l4

‘T

where again P = 6CC™.

The error matrix for this second order approximation is then

= ] —_— I - ] - P - =P -
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This error matrix is not of skew symmetzic form; and theralore,
the scale and skew errors will not be zero. However, if the higher
order terms of the binomial expansion are included, Eguation B.2
should be more effectively minimized. This would imply that 2 lesser
amount of change was made upon the computed _&irection cosine matrix
to orthonormalize ié. ‘

The results of the preceeding analysis show scale and skew errors
to ke second order, while drift errors are first oxrder with respact

to the errors. found in the computed direction cosine matrix.
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HAIN PROGRAM

IMPLICIT REAL%B{A-G.0-Z}

COMMON  TINT «NCNT

COMHON /ABC/ PLOT.PPRINT

COMMON FCONG/ ALPHA.BETA,GAMMA

DIMENSION BC(3+33+8T7(3+3)+DB(3+3),DE(3+2),DTHETA{3]},E{9)
DIMENSTON NT(2000},E1(2000).E2(20001,E3{2000)

DIMENSION E4(2000).E5(2000)+E6(2000),ET(2000},E8{20001}.E2(2000}

DIMENSION HEAD{108)
DATA MARK/ 1H= /
IREAD = &

IHRITE = &

————— INITIALTIZE PROGRAM PARAMETERS

P1=3,141592653589732
RDTODG = 18Q.0/P1
ALPHA = 1.0

BETA=1.0

GAMMA = 1.0

DGTORD = P1/180.
ALPHA=ALPHA%DG TORD
BETA=BETA%DGTORD
GAMMA=GAMMAXDGTORD

----- READ SIX JOB OESCRIPTION CARDS

i¢

4

READ(5,3) {HEAD{I),I=1,108} "
FORMAT(18A4/1BA4/18A4/18BA4/18BAA/1BA%)
HRITE {(IWRITE.2)

FORMAT {1H1,40X.35HGSSA2 ~ ATTITUDE SIHMULATION PROGRAM//
1 1X¢15HJ08 NESCRIPTION//}

WRITE(6.4) {HEAD{I},1=1,108)
FORMAT(G(/2X.18A41}))

DO 10 I=1.3

DO 10 J4=1.3

BT(1.4) =0.0

BCUI+d} =00

BT{1.1} 1.0

B8C{L.1} 1.0

L

MAINOGDL
MAINGOD2
MATNOON3
MEINO 504
MAINODOS
MAINO0O6
MAINOUOT
MAINDGO 8
MAINDOOS
MAINJOL0
MATNOOTL
MAINIOL2
MAINGO13
MAINDO1 4
MAINDOLS
MATNOO LG
MAINGOLT
MAINDD LS
MATNOO19
MAINGD 29
MATNOO21
MATNOO 22
MAINGOZ3
MAINGO24
MAINOC25
MAIND )26
MAINOC27
MAINDUZB
MAIND 029
MAINOG30
MAINOO 31
MAINDO32
MAINOO33
MAINOO 34
MATNOO35
MAINDC36

UOTIBTOWES Zaznduod

0 I1aNM=sddY

QT -TON MNV'IE ¥9Vd HNIaa0Tdd
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BT(2¢2) = 149 . MAINDN3T
BC(2,2) = 1.0 MATNIU3E
BT(3.3) = 1.0 MATNIQ3S
BCE3431 = 1.9 . MAINOG4C
————— READ TNPUTS : MAINOO41
READ (IREADs402)  FREGsTPLOToTPRINT,TF ° MAINOC4:

47 FORMAT{4F10.0) : MATINOCS:
WRITE {IWRITE +403) MATNOD 4L

403 FORMAT (////1X,10HINPUT DATA) MATNOG4E
WRITE(IWRITE 404} FREQ,TPLOT,TPRINT.TF MATNDO4E

404 FORMAT  (//1X,6HFREQ |=D1548 +4Xe THTPLOT =DL50844Xs BHTPRINT = MATNDOG]
1 D154 844Xe4HTF =D15,8//) MAINID&E
TINT = 1.0/FREQ | MATND04S

T = 0.0 MATNDOSC
NTIL) = T MATNUDS]

NPLT = 1 MAINUOS:

PLOT = TPLOT : MAINOCS?
PPRINT = TPRINT MAINQDS?

CALL ERROR {BC,BT+DB4DEEeTWRITE]) MAINOOSE

DO 20 K=6,9 MATNOOS¢

FlK) = E{K)¥ROTODG MAINGOST

20 CONTINUE MAINDOSE
ELINPLT! = E{1} MATNOGSS
E2(NPLT) = E{2) MATNG 060
E3{NPLT) = E(3) MAINO 06!
E4(NPLT} = E(4) MAINODG;
ES(NPLT) = E{51 ° MAINDOG!

« EGINPLT) = E(6] MAINDDG?
ET(NPLT} = E(7] MATNDOGE
EBINPLT! = E{8} MALNDOBE
FOINPLT) = F(9] MAINQCE
WRITE (IWRITE.405) MAINOOGE

4n5  FORMAT (////1X-11HIUTPUT DATA} MAIND U6
WRITE (IWRITE.406) T HATNO2T(

406 FORMAT (///1X.6HTIME =D15.8) MAEINQOT)

WRITE (IWRITE.407} ' MAINQOTE
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407
1

°1

4N8

409

72

410
1

C o s

180

FORMAT /71 X+3THBC - CCMPUTED DIPECTICH COSINE FATRIX.22X,
33HBT -~ TRUF DIRECTINN COSINE MATRIX/)
na 21 I=1,3
WRITF (IWRITE+4n38) (BC{I.J)ed=1,3)y {(BT{1.Jdlsd=1s3}
CONTINYE .
FORMAT  {3C16.8¢11X43016.8)
WRITE (IWRITE.4NS)
FORMAT (//1X+22HDR - DIFFERENCE MATRIX,3TXs1THOE ~ ERAOR MATRIX/}
DO 22 1=1.3
WRITE (IWRETE«408) (DB({I+d}ad=1231, (DE{IJ)}sJd=L+3}
CONTINUE =
WPITF {ITWRTTE.+417} '
FORMAT  (//1X.8HE VECT{R//6X:21HSCALE (DIMENSIONLESS) 29X+

1OHSKEW (DFG) +42X«1LHDRIFT (DEG}/])

NN 2% 1=1.3

WAITF  (IWKITE+4L1Y E(I),ECI+3).E(I+6)
CONTINUE '

FORMAT  (7XsD16a8:2¢%X,D14:8+36%y016.8}
SFT UP nO Lo0op LIMIT EQR HAIN LDOP
XINT = TF/TINT

INT = XINT

12 =0

NCNT = 1

MAIN LOOP

iz =172+ 1

CALL PULSE (T,TINT.DTHETA}
T = T+TINT

CALL ALGOR (DTHETA+BC.IWRITE)
IF (T JLT. PLOTI GO TO 31
NPET =.NPLT+1

NT {(NPLT) = PLCT

PLOT = PLAT+TPLOT

cabl, THRUTH  {T,.B8T)

CALL ERROR (BCyBT+DB,DE.ELIURITE}
DO 32 K=4.9

EfK) = F(R)I~ROTQDG

MAINUGT;
MAINDO T,
HAINUOT!
MA INOOT!
MATNGSTS
MAINODTI
MAINNOT?
MAINNE 31
MAINDDS:
MA INIOB;
MATNILY?
MAINTSG:
MAINDDS!
MAINO LB
MATNANG,
MAINDGa
MAIND OGS
MAINNGYY
MAINOOG]
MA INUD9;
MAINDCS:
MAINDOGY
MAINOD{9!
MAEND2O¢
MAINNO9,
MAINOGOE
MAINQDOS
MAINS19¢
MAINALD]
MAINOL{Z
MAINGLD:
MAIND Lu4
MATNNLOE
MAINGLOE
MAINDL1OT
MAINILYE
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32 CONT INUE
EI(NPLTY = E(1l}
EZUNPLTY) = E(2)
E3{NPLT) = E(3}
F4INPLTY = E(4)
ES{NPLTY == F{5)
EGINPLTY} = E(6)
ET{NPLTY = E(7)
EBINPLTY = E(8)
EG{NPLT) = E(9}

31 TF{T.LT.PPRINTY GO TO 131

APLT=PRLOT=-TPLOT

IF{T-GE.APLT}) GO TN 132

CALL TRUTHIT.BT}

CALL ERRDOR{BC+BT+0B+DE+E-IWRITE)

132 CONTINUF

PPRINT = PPRINT+#TPRINT

Comr—=~¥WRITE OUTPUT

rd

25

26
131

WRITE (IWRITE.406) T
WRITE {IWRITE.407}
N 24 1=1,.3

WRITE {IHRITE.4D8) {BC({I,J}.d=143)y (BT(T+d}ed=1,.3)

CONTINUE

HRITE (THRITE.409)

DO 25 I=1.3 .

HRITE (IWRITE.408) (DBAI,Jd)ed=143),
CONTINUE

HRITE [THRITE.410}

0N 26 1=1:3

WRITE {IWRITE«4LLY E{T}LE{I+3},E{I+&)
CONTINUE

CONTINUE

IF X2 oLTw INTY GO TO 110

READ Si¥X PLOT DFSCRIPTION CARDS

READ {IREAD.3) (HEAD{I)+1=1.T72}
PRINT PLOT DESCRIPTICN HEADING

(DECLJY2Jd=1.31}

MAINALGY
MAINDL1O
MAINILLL
MAINIL1Z
MAINGL13
MAINOL1i4
MAINOLLS
MAINTLLG
MATNOLLT
MAINDLLB
MAINOL19
MAINDOL20
MAINOL21
MAINGLZZ
MAIND123
MAINQLZ4
MA{NOL2S
MAINOL2S
MAINOLZT
MAINDL2S
MAINDLZS
MATNIL3D
MAINDLZL
MAINOL3Z

MATND133

MAINOL34
MAIND13S
MAINOL36
MATNO 137
MAINNL38
MAIND 139
MAIN2 140
MAINU141
MATND142
MAIND143
HAINO 144
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4210

471

473
424
425
LD b
427
428

WRITE  {IWRITES) )

EORMAT (1HLe LX21&6HPLOT DESCRIPTEONA/)
WRITFIIWRITE404) FREW.TPLOTSTPKINT,TF
WRITE {(TWRITE+4} (HEADEI).1=1,72)
WRITF (IHRITE,420)

CALL PLGTER  (ELWNT,NPLT,MAKK, INRITE)
WRITE (IWRITE,421) |

CALL PLNTER [E2,NT,MPLT,MARK. IWRITE)
WRITF (IWRITE.422) |

CALL PLATER {E3+NTMPLT+MARKy TWRITF}
WRITE (IWRITE.423)

CALL PLOTFR  (E4 . NT NPLT s MARK INRITE)
WRITE (IMRITE.424)

CALL PLOTER  (E5«NT,NPLTyMAnK s IWRITE}
WRITE (IWPITE.425)

GALL PLOTER (EAWNT,NPLT,MARK, IWRIVE)
WRITE (IWRITE.4256)

CALL PLOTER {ET+NT.NPLT.MARK.IWRITE}
WRITE (TWRITE.427)

CALL PIOTER (EB+NTsNPLT.MARK, IWRISE)
WRITF (IWRITF.478)}

CALL PLOTER (E9+NT,NPLTMARK, INRIVE]}
EARMAT  {1H] . 45%,50HX-AXIS SCALE ERROR
1FCa )}
FORMAT
1FGa 1)
FORYMAT
1EC. 1)
FORMAT
FORMAT
FORMAT

(1HL +45X+3IHY-AXIS SCALE ERROR

[1HL.45X.50H7-AXIS SCALE ERKOK

FORMAT { 1H1 + 45X »45HDRIFT £RAOR ABQUT X {DEGREES) VvS. TIME
FORMAT{IHL 45X 24SHORIFT ERROR ABQUD Y (DEGRFES) VS. TIME {SEC.1))
FORMAT (1M1 « 45X 45 HDRIFT ERROR ABOUY Z {0EGRGES) VS TIME

STAP
END

{OIMENSTONLESS) . VS,
(WIMENS IDNLESS) VS

(DIMENSILNLESSY VSe

TIME {5

TIME (5

TIME

(1HL1+ 45X 40HX-Y SKEW FRROR (CEGREES) VS, TIME (S5EC.))}
flHL » 45X +4QHY~Z SKEW ERROR (OEGREES} VS, TIME (SEC.)}
(1HL,45%.4NHI-X SKEW FRROR (DEGPEES) VS, TIME (SEC.]))
(SEL.)

(SEC. 11

(s

MAIND145
MAIND1464
MAINULIAT
MATHG148
MAINGTLAS
MAINALBD
MAINDLIS]
MAINDISZ
MAENGDT 53
MAING 154
MATNULSS
MAINDL156
MAINLLST
MATINDLSSE
MAINOL159
MAING16C
MAINGOLSL
MAING162
MAINDL 63
MAIND 164
MAINCL1 6D
TAINOT 66
MATNDL&T
MAINOL GBS
MAINGLES
MAINGLTO
MAINDLITL
MAINDL1TZ
MATNNIT3
MAINDLTS
MAINQLTS
MAINOLTE
MAINGLTT
MAINCLTE
MAINGLTS
MAINL1BD
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SUBROUTINE FRROR (BC+BT.DB.DELELIHRITE)
IMPLICIT REAL=8(A-G+0-L}
DIMENSION BC{3.31.RBT{33)1+FE{9),DE(3,3),BTT(3,3)
DIMENSION D8{3.3}
Cromem=COMPUTE ERROR MATRIX
CALL MATXT (RT.8TT)
CALL MATMLT: (BC+3+3+RBTT+3+3+DE.IHRITE}
0o 10 i=1.3

10 DE{I,I} = DE(I.I] = 1,0
ne 20 1=1,3
00 20 J=1.3
BBII4d} = ACLT4J) = BT(I, )

20 CONTINUE
E{1) = DE(1.1}
F(2) = DE(2,?)
F{3) = DE{3.3) |
E(4) = (DE(2.114DEL1,2)1/2.0
E(5) = (DE(2:3)+0E(3,2})1/2.0
Bl6) = (DE(3.1)+DE(1.3)1/2.0
E{7) = {DF(2:3)-NEL3,2))/2.9
E(8) = {DE{3,11-DE{1,3))/240
E49) = (DE{1+,2)-DE(2,1})/240
RETURN

ERRODSAHL
ERRDOCD2Z
ERRIQOOI03
ERROCOGS
ERRAGOOS
ERRDNGO6
ERRQGULT
ERROJCOS
ERROD G
ERKDNN1D
ERROULCILL
ERRQGDL1Z
ERROUDL3
ERROUN14
ERROOQLS
ERROJQ LG
ERROODLT
ERROJ0C1S
ERRGOO1C
ERROONZC
ERROOGZ2]
ERROOO22
ERRQ0O23
ERROQOZ4
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102

SURRQUT INE PLCTER (PLOT.NT«NUMBRMARK,IWRITE)
IMPLICTT REAL<A{A~G.O-1)

INTEGERP BLANK.DIT,PLUS

DATA BLANK / 1H 7/

PATA DOT / 1Ha /

DATA PLUS / 1H# /

DIMENSION PLOT (NUMBR)Y SNTINUMBRY +LINE{LIL3)
ABS{X}=DABSI X}

DMAX=ABS(PLOT (1))

o0 5 T=1.NUMBR

XCATA=ABS{PLOT (I}

TR{DMAX=XDATA)Y445,5

NMAX=XDATA :

CONTINUE

FACTR = DMAX

IF(FACIR 4 R0} GO TO 13

SPACE = 50,0 / FACTR

HNG = FACTFR
HRITE {IWRITE.LDZ} HOG
FORMAT (/50X 17THSCALE (0 TO 1) = 1PDLO.1//

1 36X 5HMINUS 55X 4HPLUS /)
03 1 1=1.103 .
LINECE)=DOT

LINF (1) = 1
LINE (2% = (
LINE [T}y =09
LINE (12) = 8
LINE (17} = 7
LINE (P22} = 6
LINE [27Y =5
LINE {32} = &
LINF {37} = 3
LINE {42} = 2
LINE [47) = 1
LINE (52) = &
LINE {57 =1

PLCTOLG)
PLOTRIN2
PLLTOOGS
PLOTO0 24
PLOTHCNS
PLOTHOO6
PLOTONDT
PLCTODIS
PLCTD 209
PLOTHWID
PLOTUNLE
PLATQOLZ
PLOTOLLD
PLOTGO 14
PLOTOC1S
PLOTOG1S
PLOTOGLY
PLATOLLAE
FLOTJG1LS
PLOTOLZQ
PLOTHOZ2E
PLOTCO22
PLOTOG23
PLCTCO2Z4
PLOTGL 25
PLOTUS 26
PLGTZT
pLOTOG:28
PLCOTLO29
PLOTOC3D
PLOTDO3L
PLOTRO32
PLOTI033
PLOTOD34
PLOTIO3S
PLOTON3G



99

io0n

13
161

LINE
LINE
LINE
LINE
LINE
LINE
LINE
LINE
L INE
LINE
HRITE

FORMAT

0o 3
LINEC
LINEL

[62}
(67}
(721
(77}
{82
(871
(92}
(97)

Or g~ undHwiv

{13 N T - N | | I

[IHRITES1QQ)

I=1.103
T 1=BL ANK
1i1=D07

LINF{521=D0T

LINE(
ng 13

J=SPACEYPLAT (1 1452.5

LINFI(
WRITE
LINES
LTNES

103 =007
I=1, NMIMBR

J1=MARK
[IWRITE. 101}

J)=BLANK
521=00T

CONTINUE
FORMAT(9X, T10+1X+103A1)

RETUR
END

N

LINE

(20X 22110481012 e4AL I Lo2ALyT1e4ALeTLe4ALsI144A0.T114A1
1 T304A3el2a4ALeT104AT el 104AL o labALlsBLloaALlsTladALlslledAlyila4Al,
2ILe4AL s T1v4As I11e4hla1L44A)4211)

NT{XYsLINE

PLOTLD3T
PLOTOOH38
PLOTODG39
PLGTO04D
PLOTOO4]
PLOTOOAZ
PLOTI043
PLOTOZ44
PLOTOC 45
PLOTOONG
PLOTIOVGT
PLOTOO4B
PLOTO049
PLOTHOSG
PLOTSO5L
PLOTOC52
PLOTALS3
PLAOTOOSA
PLOTQOSS
PLOTOOS6
PLCTOOBT
PLOTOOSS
PLOTOONS59
PLOTUGBE
PLOTOOGL
PLOTO0EZ
PLOTODRGS
PLATOOGS
PLOTOOES
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20

&40

SUBRIUTINE MATMLT (A.N1,M2,8,M1.M2,C,IWRITF)
IMPLICIT REALYBIA-G.D-Z)
DIMENSION A(3.,3)1, B(3.31. C(3.3)

IF {N2-= ML) 194+423.190

WRITF (IWRITE.L1} Nle NZ. M1, M2,

1 {(AlTcdbrad=1eN2)y I=14N1} +» ({B(Ied)eJ=1M2)4[=1,M1)
FORMAT {1H1 26H MATRIX MULTIPLY ROUTINE 7/

1 25H INCOMPATIBILITY RRROR 3H Aty I3+ 1H. 15,
2 3H 8{s I5+ 1H, I5, 1H) /7 18W A MATRIX BY KOWS

3 18H R MATRIX BY ROWS /f 16D21.8) !

NG 32 I=1.N1

nn 30 J=1.M2

Cli.J} = n,.n

nnoan ¥K=1,N2

CUT+d1=0CT+d) + A{TKI¥BIKsJ}
CONTINUE

RFTURN

END

1H)
/

3x

T

MATMOZA1
MATMOGO2
MATM2UCS
MATM0 4
MATHINGS
MATHMOOT26
MATMIOAT
MATMICCS
MATHMICC S
MATHIG LD
MATMOOLL
MATMOOL12
MATMOOL3
MATMHOL 4
MATMIO0L5
MATMIOLE
MATMOOLT
MATMGC 18
MATMOO19
MATMND 20
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SUBRDUTINE MATXT{A,AT}
IMPLIGIT REAL<8{A~G.0~2}
DIMENSION A(3,3) » AT{3.3)
nn 1 [=1.3

DO 1 J=1,.3

AT(14JY=4L00. 1)

CONTEINUE

RETURN

END

MATRQOCL
MATXO002
HATAO003
MATX0004
MATANQ05
MATXOGOQOUOG
MATX0007
MATXO008
MATX0009
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SUBRNUTINE VEGMLT(ANLeNZB.C)
TMPLICIT REALYB(A-G.D-2)
DIMENSION Af{4.4).8(a).Cl4}

N0 10 I=1.N1

C{It=0.0

N 10 J=1.N2

CLT)=C(T) + A{T.317R0d)

RETURMN
END

VECMIOD
VECMILD
VECHOCD
VECMNID
VECMOUT
VECHMNDD
VECMID
VECMOD )
VECMID ]
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SUBROUT INE ORTHO{B)

IMPLICIT REAL®B{A-G.D=Z]}

DIMENSION B8(3,31.,.0(3.2)
SORT{X)=DSORT { X}
Cl1+1)=B(2.,21#B(3431-B{3,21%B(2,3)
ClL+2)=B{3,1}xR{2.3)-8B(2,11=B(3,3)
Clioed31=Bi2+11%B[3.21-B{2:2)5B(3+1}
C{3.11=B{1:,21*B{2,3)-8(2,2)%B(1+3)
Cl3+23=B{2+1)14B11,3}-B{1+1)1%B(2+3)
C{3,3)1=R(1,1328(2.,2)=B{1.2i»B{2.1}
Ci2.1)=B{3.2)%Bl1,31-B{1,2)%B(3.3}
Ci2,2)=Bl1s11%B(3+3}~B{3:1)%B(1s3)}
C{2:31=B(3-1)%B{1Ls21-B(3+2)*B(1-1}
D1 i=1.3

no 1 J=1.3

B{I1:J)=B{I.J)+C{I.d)

Do 2 i=l.3 .
Dz=SORT{B{I 1)%%2+B01,2)%%2 + B(I.3)4x2)
DO 2 Jd=1.3

B{I.Jt=Bl1.4}/D

CONTINUF

RETURMN

END

CRTHO001
ORTHODD2
DRTHOOV3
ORTHOOO4
DRTHO0D5
ORTHGGDG
ORTHINOT
ORTHNCOS
ORTHOO09
BRTHOS 19.
GRTHIDLL
GRTHANO L2
QORTHOOL3
ORTHGOL4
ORTHOQLS
ORTHCO16
0RTHIOLT
GRTHOC18
GRTHON19
ORTHEO2D
DRTHOGO 21
GR (MO0 22
ORTHDO23



T

SUBROUTINE TRUTH (T.8T} TRUTIOL

SINGLE AXIS CONSTANT-KATE TRUTWS 2
TMPLICIT REALT 8{A=G.0~Z) TRUTLDA3
DIMENSION BT (3.3t AlS)s TMI6) TRUTOOD %
SIN{XI=DSINX) TRUTH( GO
COS{X}=DCOSIX} TRUTOGORG
SWRTIXI=DSWRT{X} TRUTSLOT
PI=3,14157265358%732 TRUT 0B
DGTORN = PI/140aN TRUTOIGO
THETAN = 1,0 TRUTAULO
4011=10.0 TRUT Q11
A(2) = .0 TRUTIOLZ
Al3) = Lag TRUTIO13
Al4) = N0 . TRUTQIC 14
A{5} = Nn.r TRUTOQULS
T™{L) = T TRUTLD LS
po 7 I=145 TRUTOILT
Xp =1 TRUTOOLS
THETAN =  (A{I¥/XT) » TM{I)} + THETAN TRUTHQLD
TMEI+1Y = TMUT}#TMA{1) TRUTOG20
CONTINUF ’ TRUTUOZ1
o0 17 I=1.3 TRUTGG22
PO 10 J=1.3 TRUTOOZ3
BT{I«d} = 0al) - TRUTODZ 4
CONTINUE TRUTaNZS5
THETAN = THETANYDGTORD TRUTLUZS
5T = SIM(THETAN} TRUTNL2T
CT = COS(THETAN) TRUTANZ8
RTI2+2) = 1.0 TRUTHA29
BT{1.1) = CT TRUTLO3Y
BT{3.1} = ~5T TRUTAO3L
BT(3.3) = BT(L.1} TRUTUD32
BY{1.3) = -BT(3.1)} TRUTIU33
PEFTURN TRUTIO34
EMD TRUTLO3SE



SUBROUTINE PULSE (T.TINT.OTHETA?}

TMPLICIT REAL=8{A-G,0~2)

GEMERATES PULSES FOR THE POLYNOMIAL INPUT CASE -- SINGLE AXIS
DIMFNSION DTHETAI3) . A(4%)

P1=3,141592653589732

DGTORD = PI/180.0

A0=10.0

ALY = 040

Al2Y = 0.0

Al(3) = 0.0

A4} = Da0

DTHETA(L} = 0.0

DTHETA(3} = (0.0

DTL = FINT

D72 = TINTH%2

DT3 = TINT#%%3

DT4 = TINT®ES

L =7

T2 = T#=?

T2 = T#%+3

Ta = Tak4

PARTY = AD+A{L }®*(T1+0.5*DT1}

PART2 = A(2V¥#{T2+TI#DT1+DY¥2/3. G}

PART3 = A(31x(T3+1a54T2¥DTI4TINDT2+.25%0T3)
PARTS = A(4YE{T4+2,0+4T3%0T14+ 2, 0#T2xDT2+TL4#0T 34, 240T4)

DTHETA{2) = (PART1+PART24PART3+PART4}*DTL*DPTQRD
RETURN
END

PULSO0UL
PULSO0D2
PULSGIN3
PULSO004
PULSUGOS
PULSOCO6
PULSICOT
PUL SDO0S
PULSOO0D
PULSURIO
PULSOO 11
PULSO012
PULSNO13
FULSUCLA
PULSOGLS
PULSO0L6
PULSOG LT
PLLSDO01B
PULSOOLY
PUL 50020
PULS0O021
PULSQG22
PULSDG23
PULSO024
PUL3NO25
PULSO026
PULSO0ZT
PULSONZB,
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SUBROUTINE ALGOR {DTHETA.BC,IWRITE)

C DIRECTINN COSINE MATRIX. FOURTH ORDER

305

IMPLICTT REAL¥8{A-G,0-Z)

COMMON  TINT «NCNT

COMMON /ABC/ PLOT.PPRINT

DIMFENSION DTHETA{3)+BC(3,3) UNITY[3,3),DTHETL{3}

DIMENSIAN DTHET2{3} s THMATI(3,33THMATZ(3,+3),TEMPL{3:3)+DMG2(3,3) .

DIMFENSTON CMGO(3.3),TEMP2(3,3)
DIMENSION NMG3(3+3)4BNI3+3).CN{3+3)DN(3,3}
SIN(XI=DSIN(X}

SQRTIX)=DSORT (X}

CasS{x=Dcasixy

DY = TINT/ZaD

GO TO (106G.207%),  NCNT

T= 00

NOCNT = 2

CALL PULSE (T.DT+DTHETL}

T = T 4 TINT

DO 303 I=1.3 '
DTHET2(1) = DTPETA(I) - DTHETL(I)
0NN 305 I=1.3

THMATL{I+1} = 0.0
THHMATZ(T,1) = 0.0

CONT INYF

THMATLIl1.2) = —DTHETL[ )
THMATI(2,3} = —DTHET1(1)
THMATL{3+1) = —-DTHET1(2)
THMATI(1.3) = DTHET1{2}
THMAT1{2.1) = DTHETL(3)
THMAT1{3.2} = DTHETL(1}
THMAT2{1.2} = -DTHET2(3}
THMATZ2(2.3} = —=0THET2{1}
THMAT2(3.1) = -OTHETZ2(2)
THMAT2( 1.3} = DTHET2{2)
THMAT2(2.1) = DTHETZ2{3}
THMATZ2{3,2) = DTHETZ(1)

ALGOVOOY
ALGODOO2
ALGDOOO3
AL GDOCA 4
ALGDOGYS
ALGDOOU6
ALGOUDUT
ALGOOUGS
ALGOUULS
ALGOOOLD
ALGIGOL1
ALGOOQ12
ALGOUO13
ALGODD14
ALGUNO1S
ALGDIO16

. ALGOOOLT

ALGDOOLS
ALGOOM19
ALGODG20
AlL.Gooez1
ALGODOZ2

© ALCDONZ3

ALGDOD24
ALGOVO25
ALGDOD26
ALGOOO 27
ALGDOO28
ALGOON29
aLGOCL30
~LG00031
ALGO00 32
ALGOOO33
ALGODN34
ALGODO35
ALGDOE36



310

500

i

" 501

502

503.°

888

0O 310 I=1.3
D8 315 J=1.3

OMGLIT.3Y = (B.O#THMATl(I-Jl—THMATEFI;J}}/TfNT

OMG2ETad) = (3WDFTHMATZ (121 ~THMATL i+d) F/TINT
OHG3 (14 )= (THUATL(T+d 1eTHHAT2LT: ) ) FTINT
CONT INUE

CALL MATMUT(BCs30c3i0MG0+305, TEMPL, IWRITE)
DO 500 1=1.3

DO 500 J=1.3 .

TEMPL(T + ) TEMplnqui*TINT
TEMP2(Tod3=TEMPLLI,J)/2.0 + BL{L1,J}

CALL mATﬂLTtTEMP2,3.3.oMea,3. +BN, IHRITE}
GO 501 I=1.3.

DO 501 J=1,.3

BNET.J)=BN(TdVETINT'

TEMP2{1+J1=BNi [+.0) /2.0 + BCL1,J

CALL MATMLT{TEMP2,3,3,0M4G3, 303;LN;1H11TE?
00 502 I=1.3 ' o .

DO 502 J=le3 ' _

COMUT . d)=CN T J VST INT

TEMP2 (1o} =CNITad) + BCUT+J) ‘
CALL, MATHLT( TEMP2,303,0M62)33,0N, IHRITE)
DO.503 T=1.3

DA 503 J=1.3

DN(Tod1=DNETad ) KTINT

BO{TyJi1=BC{I.d) % TEMPl‘[?Jl/é»O + BN(_IqJ)/BeU. -

l DN{I-J17600
IF(7.6E.PLOT) GO T0 888
IFLT.GESPPRINT) GO TO 888

" RETYRM
CALL DRTHIT(BC)

RETURN
END

CN{Ied?/3.0 +

ALGOOQ3T
ALGDOC3E

" ALGDOG39

ALGOOO4O
ALGOOO4L
ALGOOQAZ
ALGOO045
ALGOOCGAA
ALGOOG4S
ALGGDO46
ALGOOQ4L7
ALGOOO4S
ALGCO049
ALGQOOS50
ALGHO0S]
ALGOOOS52Z
ALGOQ053
ALGDUOS4

ALGO0OS5S

ALGOB0SS
ALGOD0ST
ALGUDOSE
ALGOOO59
ALGODO6D
ALGUOO6 L
ALGOGO62Z
ALGT0063
ALGOOO6%
ALGOOOGS
ALGAVO66
ALGOGO67
AL GUDO6E
ALBD0O06Y



