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ABSTRACT

This work examines the spin-axis attitude stability of dissipative dual-spin

spacecrafts in force-free environment. A mathematical model of a representa-

tive dual-spin system with energy dissipation on both bodies is proposed and the

dynamical equations of motion are derived. The linear variational equations

describing the behavior of the perturbed system in a neighborhood of an assumed

equilibrium solution are shown to have periodic coefficients. A suitable similar-

- I	 ity transformation is introduced which reduces (in the sense of Liapunov) the

time-varying system to an autonomous one. This allows all the powerful tech-

niques of time-invariant linear system theory to be applied to the dual-spin sys-

tem. The theory is applied on a recently developed mathematical model of the

SAS-A spacecraft and it is demonstrated that this spacecraft may be analyzed

more precisely by utilizing this transformation than what has so far been

achieved.
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0123: reference frame aligned with the principal axes of inertia

A(t): system matrix of an arbitrary time-varying linear system

a(a'): moment arms for dampers on main body (rotor)

B: transformation matrix

c(c'): viscous friction constant for dampers on main body (rotor)

c (j'): c(c') per unit mass

d(d'): axis 3 location of centers of mass of unperturbed dampers on main
body (rotor)

h: angular momentum

I: matrix representation of the inertia tensor of the system,

I = (I ik ); j = 1,2,3; k = 1, 2, 3

I1, 12,13: principal moments of inertia of the system

J3 (J3 ): spin axis moment of inertia of the main body (rotor)

k(k' ): spring constant for dampers on the main body (rotor)

k(k' ): k(k') per unit mass

^, (V): axis 3 location of center of mass of the main body (rotor)

L 19 L 2 (Li, Lz): system parameters defined by L 1 = ma/I1,

L2 = ma/I2 , Li = m'a'/I 1 , L2 = m1a'/I2

MT: total mass of the system, M T = M + M' + 4m + 4m'

M(M' ): mass of the main body (rotor)

ml , m2 (mi, m2): masses of dampers on the main body (rotor)

m 3 , m 4 (m3, m4): balancing masses on the main body (rotor)
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YO y2: transformed variables related to the displacements of the rotor dampers

z l , z 2 (zi, z2): displacements, with respect to null positions, of dampers on the
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X1, X 2 : frequencies

w l , w 2 0 "3: system angular rates

f2:  skew syminetric matrix involving angular rates

,o(p'): mass ratio, p = m/M T (p' = m' /MT)
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INTRODUCTION

It is well known that an ideal rigid body rotating in force-free environment

is stable in spin about the axis of either the greatest or the least principal moment

of inertia. Where spacecraft applications permit, spin stabilization is an extremely

i
attractive and widely used technique for passive attitude stabilization. Following

the launch and subsequent unstable behavior demonstrated by Explorer I in 1958

came the realization that internal energy dissipation may cause the spinning

motion about the axis of the least principal moment of inertia to become unstable.

To get around this problem spinning spacecrafts are often designed to spin about

their axes of the greatest principal moments of inertia. Where this cannot be

done for some reason, the so called "dual-spin" configuration may be employed.

The basic idea is to attach a relatively large spinning flywheel rigidly to the

main spacecraft which may spin, if at all, at a much slower rate. Since the total

angular momentum remains inertially fixed in the assumed force-free environ-

ment, it is expected that the system spin axis would remain attitude stabilized

if the main spacecraft momentum is small.

For the lossless system, it is a simple matter to extend the classical anal-

ysis for the Liapunov stability of a single rigid spinning body to the dual-spin

case. The main question of interest is of course the stability of the system

with the energy dissipation taken into account. An extensive literature exists

reporting the results of various design studies of specific dual-spin systems

and damper configurations. Not much analytical work has however been done 	 I
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to explain satisfactorily the role of energy dissipation in causing instability of

steady spiraiing motion. Likins 1 was one of the first to derive a quantitative

trade-off relationship between the stabilizing and destabilizing effects of energy

dissipations in the two component parts of a dual-spin system. He applied a

heuristic energy sink approximation to relate momentum variation with energy

dissipation; a very valuable result from a spacecraft designer's point of view.

However, he emphatically disclaims rigor and Mingori2 states that detailed

numerical analysis shows that the results obtained from energy sink approxi-

mations can in certain cases be obscure or even misleading.

Likins and Mingori 3 discuss some of the considerations involved in a proper

choice of variables. Since the inertial attitude stability of the spin axis is of

interest, the natural choice is a set of attitude coordinates (e.g., Euler angles)

in an inertial frame attached to the center of mass of the system. For the gen-

eral case of a mechanical system with several connected parts capable of storing

angular momenta in various orientations the equations must indeed be formulated

in terms of attitude coordinates. Pringle 4 has done this to develop a general

stability theory of mechanical systems but it is not quite clear if his theory can

be applied to a dual-spin system with energy dissipation on both bodies.
I

The equations of motion are more conveniently written in terms of the angular 	 1 it

rates resolved along a body fixed reference frame. It can be easily seen that for the

specific case of the dual-spin configuration, some form of Euler's equations in

terms of angular rates suitably augmented by energy dissipation equations is an

2



adequate mathematical model. I, this case, the equilibrium motion is a spin

about one of the body axes which is the common axis of spin of all the connected

parts of the system. In stable spin equilibrium the total system angular momentum

is fixed in the body and inertial attitude stability of the spin axis may be inferred

by an appeal to the fact that this momentum vector is inertially fixed in the

assumed force-free environment.

Accurate modeling is extremely difficult to achieve for the slightly flexible

dissipative spacecraft structures and some of the various damping mechanisms

that have been proposed or used in dual-spin systems. Precise stability results

can however be obtained only for mathematically well defined problems. We

therefore look for a model which is of some practical interest in itself and is

also general enough to serve as an approximate model for a large class of dual-

spin systems. Mingori Z has considered such a model and we take a somewhat

more general version of his system as our basic dissipative dual-spin config-

uration. In this model, the energy dissipation in any component part, whether

inherent or introduced through a damping mechanism, is modeled as produced

by one or more ball-in-tube dampers. This damper is a practical realization

of an ideal linear damped harmonic oscillator and consists of a spring-restrained

point mass in a short straight viscous fluid filled tube. The generalization from

Mingori's model lies in the appreciation of the fact that the high speed rotor is

always made symmetric and the rotor energy dissipation must therefore be

symmetric in the two transverse axes.

I
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The equations of motion of the basic dissipative dual-spin sy 3;em are highly

nonlinear. Rigorous approaches, such as an attempt to construct a Liapunov func-

tion, do not appear to be very promising. The natural attack on the problem is to

apply the Principle of Stability in the First Approximations which succeeds easily

if the linearized variational system of equations of perturbed motion is time-

invariant and does not have purely imaginary characteristic roots. It turns out

however that the linearized equations for this system have periodic coefficients.

As Hahn' points out, the known stability results for such systems are not exactly

stability criteria because in order to apply them several things must already be

known about the solutions.

An exact method of analysis may be developed by use of Floquet's theorem

and the Liapunov Reducibility theorem s Each linear differential equation with

periodic coefficients can be reduced (in the sense of Liapunov) to a king uatically

similar autonomous differential equation having the same stability behavior by

use of a nonsingular matrix with periodic coefficients. Stability and performance

analysis of the reduced system is a fairly routine exercise in linear system

Lheory. The main difficult, in Applying this approach is of course finding the

appropriate similarity transformation. For the proposed dissipative dual-spin

model physical insight suggests a very simple quasi-holonomic transformation

which serves the purpose.

4



MATHEMATICAL MODEL OF THE BASIC DISSIPATIVE

DUAL-SPIN CONFIGURATION

Consider the model in Fig. 1 which shows an asymmetrical rigid body of

mass M, which_ will be called the main body, carrying a uniaxial rotor of mass

M' spinning about a principal axis. Assume that the energy dissipation on the

rotor can be modelled by two ball-in-tube dampers of mass mi and m2 , spring

constant c' and viscous friction coefficient k', each with a single degree of

freedom in a direction parallel to the wheel axis. Let there be two other mass

points m3 and m4 for static and dynamic balance of the system around the spin

axis. To counteract the destabilizing effect of rotor dissipation, let there be

two similar dampers with masses m t and m z, spring constant c and viscous

friction coefficient k, as well as two balancing masses m 3 and m 4 on the main

body. The configuration is more precisely described by the mathematical

formulation below.

Let 0 be the center of mass of the system, which is fixed in inertial space,

and consider a rectangular frame 0123 along the principal axes of inertia of the

system at rest. Let 3 be the spin axis. Let 0 be the angular orientation of the

rotor relative to the main body and aosumn that an ideal servo maintains g con-

stant at a value q. The table below specifies the centers of masses c `. the vari-

ous bodies both when the system is at rest and when it is undergoing perturbed

motion.
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Table 1. Configuration of the Basic Dual-Spin System

Mass Rest Position Perturbed Position

M 0 0 0 0 +y

M' 0 0 0 0' + y

M I a 0 d a 0 d+y+zi

mz 0 a d 0 a d+^+z2

m3 -a 0 d -a 0 d+ y

M4 0 -a d 0 -a d+ y

M 0 d' a' Cos B a' sin 6 d	 + y + z;

M2 0 a' d' -a' sin B a' cos h c''	 y	 + z'

M; -8  0 d' - a' cos B -a' sin B d' + y

m4 0 -2 d' a' s in F -a' cos © d 	 + y

For simplicity, we have assumed that m l = mZ = m 3 = m4 _ m and mi = m1

= m' _ Mt = m'. The damper mass displacements from their respective null

positions are z 1 1 Z21 Z i and z z . Equating moments about the origin

Y = -A (Z! + Z Z ) - P' ( Z i + zz)	 (1)

where p = m/M T , p' = m'/M T and M T = M + M' + 4m + 4m' is the total mass of

the system.	 I 
I
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Let I 1 , I2 and I3 be the principal moments of inertia of the system at rest.

Write i 3 = J3 + J3 where J3 and J3 are the moments of inertia of the main body

and the rotor, each including the corresponding dampers and balancing masses

at rest. During perturbed motion, the components of the inertia tensor are

I 11 = I 1 + X

I22 = I 2 +X

I33 —I3-J3 fJ3

112=T.21. =0

I 23 - = I 32 = -ma z 2 - m'a' (zl sin  + z2 cos 6)

I 13 = I 31 = -ma z l - m'a' (zi cosh - z2 sing)

where

X = MT y2 + m {zi + zz + 2(z1 + z2 ) (d + Y)}

+ m' {zi t + z22 + 2(z' + z2) (d ' + y )j 	(2)

The angular momentum of the system with the rotor and the dampers

frozen in is given by Im where i is the matrix representation of the inertia

tensor defined above and co is the angular velocity vector, w = col (co Is ``) 20 
60 3)

The rotor contributes an additional momentum of J! q along the third axis.

The calculation of the inertifI I already takes into account the effects of much

of the linear momenta of the damper masses, the additional terms to be

considered are due to the time variations of the damper displacements and

wheel rotation. From basic mechanics, a unit mass point at position

7
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x = col (xl Is x 2 9 x3) on a body with angular velocity a) =  col (w 1 , w, * w 3 ) contributes

to the total angular momentum

r—

X 2 X 3 - X 3 X2 + w l (X2 + X3) w2 X1 X 2 (4) 3 X1 X3

	

Ah = X3 x1 - X 1 3 - w1 X2 X1 + w 2 ( X3 + Xi) - w 3 X 2 X3	 (^)

X1 X2 - X2 X1 - w1X3X1 - w2X3X2 + w3 (X1 + 
X2 )

We sum the above expression over the dampers neglecting the terms already

taken into account and add to Ili) to get the total angular momentum of the system

as

I i cv l + Xw l + ma ( i2 - 60 3 Z i )	 -

+m 'a'{cosa(z2-(w 3 +q)z i ) +sin8(zi +(w3+Q)z2)}

h=1 
I 2  CO 2 + X w 2 - ma (Z1 a' w 3 Z2)	

(4)

- m' a' { - sin B (i2 - (w 3 + q) z 1 ) + cos B (zi + (w 3 + q) z 2 )}

I3 w 3
	2

+ J3q -ma (w l z l +w z 2`

- F1	 lrrj 	 `:,: j1 .1. i; L ii - S in v	 1Z2 - w 2 L 1 ^,

Inertial differentiation of the angular momentum yields the rotational equa-

tions of motion as

I1 (`' 1 	 { ( I2 - I 3 ) C'3 -J 3 q } w 2 + X (w1 - CO 2 w3 ) + X(Ol

+ ma { 2 2 - 6) 3 + w 1 ' 2 ) Z1 - (W22 - 3) -2j 	
$ .

+ m a' {cos 6 [72 - ((:) 3 + w 1 w 2 J Z'1 - {v3 - (w3 + q)`} Z21

	

I_	 l J

+sine [zi + (w 3 + w 1 w 2 ) z2 - {w2 - (w 3 + q) 2} zit } -	 (5)
J

a

a



1 2 60 2 - {(1; - 1 1) 603 + J3 > 1 i x(cv 2 + W 3 W l ) + x 602

ma{ Z 1 + (c< + 3 - ro t c<^ 2) z2 + (a'3 - (02)zl)

-m'a'	 jCOS a i 
r 
zl + (W 3 - W1 W2 ) Z2 ^ {(W 3 + q) 2 - WI1z11

-sin 6[Y2  - 6) 3 - 60 1 6,) 2 ) zi + {(cv 3 + q) 2 -a'1 } Z 21 11 = 0

1 3 60 3 - (1 1 - 1 2 ) WlW2

-ma {2co1 i t + 260 2 i2 + (cal W 2 60 3 ) Z l + (ca t + 60 3 60 1 ) Z2)

-m'a' fcos  0 [2W l ii + 260 2 '2 + ((a l - W 2 60 3 ) Zi + ( 60 2 + 60 3 6 1 ) Z2J

- s in B [2601 i2 - 260 2 ii + (cal - 602 60 3 ) Z2 - (cat + 603601) z l )} - 0 (7)

These equations have to be augmented by four others for the four dampers.

From the basic rule for inertial differentiation, 6 a mass point with position

x = col ;x l , x 2 , x3 ) has a linear acceleration in inertial space given by

z + 2f2z + (f2 + n2 ) x	 (8)

(n)

where

	

0	 -603	 W2^

	

S2 = 60 3 	0	
— W 1	 (9)

	

602
	 0

The equation of motion for any damper is obtained by summing the third com-

ponent of the vector expression (8) with the corresponding viscous and elastic

forces and equating to zero. Thus

m{_v+al- 0% 2-60361)-(`'1 +W2 (d+y +z 1 )} +ci 1 +kz l =0	 (10)
z

a
b
x

9



a(^v l + r. w 3 ) - (wi +w 2)m	 {y ' z 24_  	 2 (d + y + z 2 )} + ci 4 + kz 2 = 0	 (11)

m' 
l 
y + a i + a' cos 0 [2gw1 - (cv 2 - (A) 60

+ a' sin 6 12gw 2 + (ca l + w2w3)1

- (cv i + w2)  (d' + y + zi)1 + c' ii + k' z' = 0	 (12)

m' {Y +z2 + a' cos 6 [ 2gw 2 + (w l + w2w3)]

d sin6 [2gw 1 - (u 2 - w3w^),

-- (cvi+ w2) (d'+y+ z2)I +c'i2+k' z2.= 0 	 (13)

In trying to apply the Principle of Stability in the First Approximation, we

linearize the system equations of motion in a neighborhood of the desired equi-

librium point defined by

w3 = n, constant

w 1 = w 2 = z i =Z 2 = zi =z2=0	 (14)

We substitite co, = n + v, and from the linearized version of (28), see that

v3 = 0. Without loss of generality, we put v 3 = 0. The other equations, when
t

Linearized, yield

I 1 w l - {( I2 - 1 3 ) n - J3 q} CO 2 + ma ( Z2 + n2 Z 2)

+m'a' {cos 6 (a2 +(n+q)'-z2) + sin6(zi+(n+q)2zi)} =0	 (15)

m

I ? ^v 2 - {( I3 - I,) n + J3 qj w l - ma (Z1 + n2 Z1)	 i

s
- m'a' {cosb (zi + (n+q)2zi ) - sin6(z2+(n+q)2z2)} = 0	 (16)

10



m {y + z l
-a ^'^ 2 - nw l )} + ci l +kz l = 0

M {y + z2 + a(w l + nco 2 )} + ci 2 + kz 2 = 0

(17)

(18)

m' { y + zl - a' cos 9 (C^ 2 - (n + 2q) wl)

+ a s in B (^ 1 + (n + 2q) W 2 )} + c' ii + k' zi = 0	 (19)

m' { y + Z2 + a' cos d ( cv l + (n + 2q) W2)

+a'sin ° (a 2 —(n+2q)co I )I+c'i2+k'z2=0	 (20)

The stability of the origin of this set of equations has to be examined.

A SIMILARITY TRANSFORMATION FOR LIAPUNOV REDUCIBILITY

Assume that the system of equations (15)-(20) is put in a standard vector-

matrix first order differential equation form

	

x = A(t) x
	 (21)

where x is an appropriately defined state vector in It tO and A(t) is the 10 x 10

v	 ^^	 sox _s ._	 T,--,-- Pa „nihili+vsys em matrix which hasperiod-W a;GGlllclol1ts. ThC .. -,,,.. -	 d 

Theorem 5 asserts that there exists a bounded nonsingular transformation P(t)

with periodic coefficients with a bounded inverse P-1 (t) such that the matrix B

defined by the relation

B = P-1 AP - P- 1 P	 (22)

is a constant matrix. We may then define

	

x = P(t) x	 (23)

11
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and obtain

X=BX	 (24)

The autonomous system defined by (24) is kinematically similar to the original

system (21) and has similar stability behavior. 5 We may therefore confine our

attention to the examination of the stability of (24). This is easy to do because

the Routh-Hurwitz criterion provides a well defined algorithm.

The handling of the tenth order system matrix defined in (21) can be clumsy

and we would rather use the scalar equations (15)-(20) directly. To simplify the

equations we introduce the approximation that y is identically zero. It can be

seen from the definition of y in (1) that this is equivalent to assuming that the

mass of any particular damper is negligible compared to the total mass of the

system. This assumption implies that the location of the center of mass of the

system is fixed in the body and is unaffected by the vibrations of the damper

masses. We also define

Ian + J3 q - Itn
^ t =

In

Ian + J3 q - 12 
^2 - It

12



ma	 m' a'	 ma	 m^ a ' = L
I y L, .	 I	 Li ,	 I	 L2'	 I	 2

1	 1	 z	 2

c/m = c;	 c' /m' = c';	 k/m = k;	 k'/m' = k',

n +Q =—, , ;	 n+2q =n2
	 (25)

Che equations (15)-(20), may now be written

w l + h 2 co 2 + L 1 (Z2 + n2 z 2 ) + L'1 {cos 0(z2 + n2 z 2)

+ sin 6 (zi + ni zi)} = 0
	

(26)

w 2 - xlc`'1 - L 2 ( Z1 + n2 z l ) - LZ {cos 9 (zi + n2 zl)

- s in B (z2 + n2 z2)} = 0
	 (27)

	

zl - a (io 2 - nco l ) + cz l + kz l = 0
	

(28)

	

z2 + a(m l + nco 2 ) + cz 2 + kz 2 = 0
	

(29)

zi - a' cos B (w 2 - n2 co 1 ) + a' sin 9 (co l + n2 w 2 ) + c' z' + k' zi = 0	 (30)

Y2' - a' cos B (co l + n 2 co 2 ) + a' sin 6(w 2 - n2 cv 1 ) + c"2 + "2 = 0	 (31)

Introducing the nonholonomic transformation

zi cos6	 sines

[sinO

yl

z 2 cosB y2 (32)

we have I
w  + x 2 co 2 + L 1 (z2 + n2 z 2 ) + L1 (y2 - 2gy1 + n n2 y2 ) = 0	 (33)



z l -a((L2 - nw l ) +ca l +kz l = 0	 (35)

'2 +a(^)1 +nw2 ) +ca t +fcz 2 =0	 (36)

yl + 2q Y2 - q2 y l - a' (w2 - n2 al ) + -I' (Y 1 + qY 2 ) + k' Y 1 = 0	 (37)

Y2 - 2q Y 1 - q2 Y2 + a' ( )̂
1 + n2 °'2) + e' 02 - qYl) + k ' Y2 = 0	 (38)

(37) is obtained by multiplying (30) by cos 6 and (31) by -sin g and adding; (38) is

similarly obtained by multiplying (30) by sin 0 and (31) by cos 0 and adding.

The last six equations form a set of simultaneous linear autonomous differ-

ential equations. Taking Laplace transform, the characteristic matrix of the

system in the complex frequency s-domain is

S	 X2 	 0 L, ( S 2 +n 2 ) -2gLi s Li (s2 +nn2)

-^1	 s	 -L2 ( S 2 +n 2 ) 0 -L' (s2 +nn 2 ) -2gL2 s

an	 -as	 s2 + cs +k 0 0 0
Q( s ) =

as	 an	 0 s2 +ci s +a 0 0

a'n	 _a'c	 (1
!	 1

it c2 _n2+ r, Iq +^ ' n(2s:.A')

La's	 a' n2	 0 0 -q (2s + s2-q2+C's+kf

(39)

The charatteristic equation of the system is obtained by setting the determi-

nant of the above matrix to zero:

Q(s ) I = 0	 (40)
g

The problem of the determination of system stability is, in principle, solved and
a

iequires only a routine computation.

14



I

r

i

(42)

The transformation may cleRrly be put in the more elegant form suggested

in (21). However, the above presentation is expected to bring out the basic idea

more distinctly. The matrix in (32) simply defines a rotation operation and is

extremely well known and widely used. In the present context, this transforma-

tion effectively replaces the two rotor dampers by two equivalent ones which are,

as it were, fixed in the body frame. The mutual coupling terms therefore have

constant coefficients.

AN EXAMPLE: THE SAS-A SPACECRAFT

SAS-A is a dual-spin Fr:acecraft launched at the end of 1970. It has been

subjected to exhaustive study, a recent work being that of Bainum. It has a

pendulus nutation damper on the main body and a slightly flexible momentum

wheel. Bainum takes axis 2 (Y axis) as the common spin axis and derives the

nonlinear equations of motion. When linearized in a neighborhood of the assumed

equilibrium motion, the following equations are obtained:

Bv2 + mr i ( r i + r o) = 0	 (411

Aml +0w3 (C—B)—cv3 IR s-2mr1 tM 1-2^

z	 M

+ IRi ( 
(OCY + (f2 + s) 2 a 

Y 
I cos 6 + has + (Q + s) 2 as ] sin 0) = 0

15



(47)

Cw3 +ilw l (B-A)+ W, IR s_mr 1 ^ M ¢ + mr l X Mp2
2
	 M	 M

+ IRl {_ ( ay j . (Q + s) 2 ay ] sin 6 + (viz + (f? + s) 2 a= ] cos. 6} = 0 (43)

mr
mri rl - M 

/ 
w - mrI 

M 

w3 i mr I ( r o + r i ) v2 + mr^ ro + , n2

+ mrl 
^M 

flwl + k ^ + KO = 0	 (44)

M

TRI a
Z + kR aZ + [KR + IR1 (fl + s) 2 ] aZ

t iR { i^3 + (' + 2s) Wl ] cos A t [wl - (^ + 2c)	 1 cin (91 = 0 (45)1	 S

IR aY +k R ay + [KR + IR (fl + s) 2 ] ai	 i	 y

+ IRI {- Lw3 + (f< + 2s) co l ] sin g + (LI - (fl + 2s) w3 ] cos 9) = 0 (46)

where Bainum's' notation has been used with the addition of

W2 = fl + v2 , fl constant



Eq. (41) may be eliminated by solving for v2 and substituting in (44).

Bainum introduces the following notations and approximations

A-C=A

B=B

i'-twR

A = M (B - A) + I R s }/A

m./M << 1	 (43)

We introduce a transformation

[,81]	 cos 0 -sin  B [a,

/32	 sin 0	 cos 0	 ay	 (49)

The reduced set of kinematically similar autonomous equations are

1 -
m(ro+r1)2^ 

^+ k ^+	 K + r0 n2,
B	 J	 m r i	 m ri	 r1

- r w3 + r Q W, = 0	 (50)
r 1	 r1

	

2m r 1 f ^A	 A .I	 +I w3 - I w1 +2s %31 - {,32 +S2 (f2+2s)Q2 ? =0	 (51)
R I	 R1	 R1

- I ris	
+A

	
X AW3 + I W1

R I	 Rl	 Rt

+ {%31 + Q01 + 2s) 81 } + 2s Q2 = 0	 (52)

i
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w3 + (fl f 2 s) 0)1 +/3 1 + k  a1 +
FKR

+ 0 (Q + 2s) 81 + 2s a2 + 
kR 1

82 = 0 (53)
I	 I	 2I

R 1 	 L Rt	 Ri

ko
- (Q + 2s) cc  + r:, 1 - 2s at + 2 1 	 ^1

R1

k
+ IB2 +  

R 
Q+	 + Q (i1 + 2 s

I	
I	 ) 

182 = 0	 (54)
R1	 R

The study of this set of equations is a standard exercise in linear systems

theory. In particular, the stability of t, origin for the nominal parameter

values may be easily studied by Routh's method. In the above, 0 and s repre-

sent respectively the main spacecraft spin rate and the rotor relative spin rate.

We replace these by the symbols n and q respectively to be consistent with the

notation used before. These are the only two parameters in the above equations

that are adjustable: the nominal values being 1/12 RPM and 2000 RPM respec-

tively. Using the values given by Bainum' for the other parameters, and de-

noting the Laplace Transform complex frequency variable by s, we have the

characteristic matrix Q (s) of thu system as

1s

vim. - -^	 ^.^^t ^. _-_^•.^u	 ^. _ .^



Q( S ) =

S2 + 0.0097s	
-2.4s	 2.4n	 0	 0

+ 0.0084 + 0.1n2

_S 2

6.04 ns	 267n + 2s	 -4688s	 2qs	 -n (n + 2q)

-3.02(s 2  - n2 )	 4688s	 267n	 s2	 2qs
	

(55)

	

+2s	 +n(n+2q)

0	 s	 n + 2q	 s2 + 1.18s	 2qs
+ 12433	 +1.18
+ n (n + 2q)

0	 - (n + 2q)	 s	 - 2qs	 s2 + 1.18s

	

-1-18	 + 12433
+n(n +2q)

The characteristic polynomial !Q(s) j may be evaluated for various assumed

values of n and q using a digital computer. Application of Routh 's criterion

shows that the system is stable for a reasonably wide range of spacecraft and

rotor spin rates around the nominal values. This result is hardly surprising:

flight data has shown the system to be stable and a number of preflight simu-

lation and experimental studies and approximate analyses had drawn the same

conclusion. This, however, is the first analytic proof of stability under steady

state nominal and off-nominal operating conditions and depends only on the

validity of the mathematical model.

z
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CONCLUSIONS

It has been shown that as required by the Floquet Theory and the Liapunov

Reducibility Theorem, a similarity transformatiun does exist which reduces

the linear time-varying system of variational equations of a dual-spin system

to a linear time-invariant system and thus m2lkes a complete and rigorous anal-

ysis possible. The analysis has been applied to a representative mathematical

model of a dissipative dual-spin system and also to a recent model of the SAS-A

spacecraft. The method of analysis makes use of the fact that most dual-spin

spacecrafts have symmetrical rotor° dissipations in the two t-ransverse axes.

It is evident that more detailed analytical studies can be made by use of the

proposed approach. Conclusive proofs for steady state spin stability may be

obtained. Moreover, since the tr)nsformation is relatively easy to apply, the

steady state spin stability for various assumed spin rates over a wide range of

values may be studied. If the property of quasi-stationarity is assumed (frozen-

time appro)dmation;, the above results may be used to analyze stability during

slow spin-up, it proble II nub vvubidaraU 111 any detiul in Ploaouo uaalgua.
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