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SIMULATED ISOTOPE HEAT SOURCE FOR USE 1N BRAYTON POWER SYSTErvI 

by Robev"i B. Smith and George M. Prok 

Lewis Research Center 

SUMMARY 

A simulated isotope heat source was deslgned and tested at Plum Brook Statlor, 

Lewis Research Center, for use in  the Bra-ytsn power system. The simulateci 7sutc:r 

heat source enables ground testing of flight-like hardware without the inhere: l; zasrzJ3 
of  the isotope heat source. 

The simulated isotope heat source i s  electrically powered, and has been 3 
for 820 hours at various power levels. The design objectives for the sirnul 

heat source were met .  Power and temperature levels were well within a u 
and the l i fe  was demonstrated to  be sufficient for preEminary testing of the is:,egc 

Brayton cycle. An array of electrically heated simulated isotope heat sor*r cz - z 2 1-5 

used to supply 25 kilowatts or more of thermal power to  the Brayton sysh;ezA --ea,-r 2i re ;e  

heat exchanger. 

INTRODUCTION 

The PdPhSA Lewis Research Center i s  engaged in  the development of a Bray-&;e?r pcwer 

system to provide up to  15 kilowatts of electric power for space applications E ~ F L ~  

testing of the power system ( r e f .  1) has been with an electric (nonflight) heat sxourco 

In flight application, the heat supply will be an isotope heat-source assembly 7unrei e~,Bl 

heat the working gas by radiation from the isotope heat-source assembly to  a heht :x- 
changer containing the working gas. 

The isotope Braylton cycle power system consists of the isotope heat-sou~ree s- 13- 

system and the Braflon power-conversion system. Figure 1 shows a scherna~lc d ~ g - a r :  

of the isotope Brayton cycle power system. 
The isotope heat-source subsystem consists of a circular planar array of rsotcpe 

heat sources enclosed in  an insulated container and mounted on a combination supyr :  

and auxiliary cooling heat exchanger. The isotope heat sources transfer heat sole,v; by 



raa ia l lx  to  the heat-source heat exchanger which contains the Brayton cycle working 
f ujd 

E2eh isotope heat source has an  external graphite jacket for reent ry  protection. 

J ~ s l c c  A e  po tee t ive  jacket is a metal  container encasing radioisotope fuel. Figure 2 

s kcw9 the isotope heat-source subsystem and an individual isotope heat source.  When 
isatcpe seal: sources a r e  used, precautions must  be taken against their inherent 

kazaras - radiation, possible contamination of surroundings, and high temperatures .  

3-9 simulated isotope heat sources were designed to  provide an  electrically pow- 

ered, :or,Lrollable source of heat for  preliminary t e s t s  on the auxiliary cooling heat 

exckaqger, thermal  insulation, safety devices, heat-source heat exchanger, and the 

cornple~e isotope Brayton cycle power system, without the time-consuming handling 

requir,d for the isotope heat sources.  

Desiga3 work was s tar ted in  January 1970. The first tes t  s e r i e s  on a boron nitride 

ccre i;/-St a platinurn winding was run in March 1970. The purpose of the first tes t  
series was t3 check roughly the filament operating temperature against the filarnent 

J-CI  -,XG-I , L e m ~ e r a k ~ r e .  To this  end the t e s t s  were run with no jacket of any kind over the 
j q.->- 

,&,A ,.. h a n d  core.  

11-3 s e c m d  t es t  s e r i e s  was run  in  April  1970 on an  assembly built t o  simulate the 

- i ~ o t = ~ j e  heat source. The assembly consisted of a boron nitride core with platinum 

&7-cd,,~gs encased in  a stainless-steel capsule, which in turn  was encased in  a graphite 

~acke! This configuration was operated at full power for a shor t  t ime without incident. 

t T , ~ - 3  . t . ~  t h i s  t ime no problems were  encountered. - 
L j: e *"bird t es t  s e r i e s  was run, s tar t ing late in  April  1970, with the s m e  configura- 

t r ~ n  as t h s  second tes t  s e r i e s  except that the simulated heat source was enclosed in  an  

I. I S U L ~ L L E ~  container such that the graphite surface temperature approximated the design 

vaIua3c Prcblems were encountered with the platinum filament, the stainless-steel 

caps J e ,  and the thermocouples. 

The fourth tes t  s e r i e s  s tar ted in  June 1970 with a slightly different tes t  configura- 

t I 3-n -?,'he stainless-steel capsule was omitted entirely.  A platinum filament wound on 

a ~ o ~ o ' x n l l s i d e  core encased in a graphite jacket comprised the simulated isotope heat 

scuree Tlaas assembly operated at full  power for  24 hours then failed after being oper- 

ated i.c: an additional hour at 12-percent overload (450 watts). The apparent cause of 

I,ia.h~^lrre axas overheating of the platinum winding in spots.  

Tbr i i f th  t es t  s e r i e s  was run  in August, September, and October of 1970. The data 

presenied in  this repor t  a r e  resu l t s  of the fifth t e s t  s e r i e s .  

T b r s  report  descr ibes  the simulated isotope heat source, outlines the design method 

used, and presents the resu l t s  of t e s t s  run  at full-power levels in an  insulated container 

i~ a aaewm. 



DESCRIPTION OF TEST SETUP 

The simulated heat source (fig. 3) was placed in  a n  insulated container, whrcr i*? 

turn was placed in  a bell-jar-type tes t  chamber. 
"E i ixr- The insulated container was designed to reject  400 watts with the heat-sour, 

face a t  1090' C ( 2 0 0 0 ~  F ) .  Materials available were  columbium-zirconium sheet metal, 
stainless-steel sheet  metal, and microquartz felt. Thermal conductivity of the mLcro- 

quartz felt is available in the manufacturer's (Johns-Manville) published i n f o r m a ~ ~ ~ i :  

The insulated container (fig. 4) was made up of alternate layers  of 2. 54-eerrtivneter- 

thick quartz felt insulation and sheet metal.  Sheet meta l  close to  the heat s o w o e  was 
all columbium-zirconium. Sheet metal  on the outer layers  and the outer container 
all 304 stainless steel.  The insulated container was 33 centimeters in outside dia~meter 

by 40.6 centimeters high. Figure 4 also shows thermocouple locations on the heat- 

source faces (TG-2, TC-3, and TC-4). 
LOPS are The power supply schematic, instrumentation, and instrumentation connect? 

all shown in figure 5. Alternating-current e lectr ic  power to the heat source was sup- 
plied through a variable-output autotransformer. Equipment was protected by fusee 
and a s e t  of overpressure relay contacts in the power lines t o  the heat source.  The 

overpressure relay contacts were se t  to  open when the tes t  chamber pressure  rose zo 
1.33 newtons per  square me te r  ( 1 ~ 1 0 - ~  to r r ) .  

DESIGN OF THE SIMULATED ISOTOPE HEAT SOURCE 

The design objective was t o  provide an  electrically powered heat source simr;,ator 

with these characteristics:  

(1) Power output of 400 watts with the heat-emitting surfaces at approxirnatelj 

1090' G (2000' F )  

(2) Neat-emitting surfaces of the same mater ia l  as the isotope heat source (gra;hite 1 

(3) Power output capabilities of at least  450 watts t o  provide a range of tes t  

capabilities 

(4) Sufficient life to  conduct all preliminary testing of the Brayton power system 

For  the heat surfaces to  be at 1090' C (2000' F), it was estimated that the tungsten 

filament temperature would have t o  be approximately 1315' C (2400' I"). 

Data were provided by previous t e s t s  run by Mr .  G. Prok on the currenl ra;qiar:lbed 

in a tungsten filament to  make the filament reach 2480' C (4496' F) in  a vamtzrn. Based 
on these data, an  estimate was made of the current  required t o  make a 0.51-millimeter 

(20-mil) tungsten filament reach  13 15' C (2400' F) .  Knowing the power requirement,  



430 watts, and the resis tance of tungsten at 2400' F made it possible to  a p p r o x k a t e  

"he $ 7  anent l eneh .  

*:u~gs:en wire 0.51 mil l imeter  (20 mi ls )  in  d i m e t e r  at a temperature of 1315' C 
2420' F) P a s  a resis tance of about 4.16 o h s  in a length of 213 centimeters (84 in .  ). 

The : irre~t required to  make the filament reach  1315' C (2400' F) was estimated t o  be 

9.  81 ~~xpea-es .  
Yolk  ge drop ac ros s  the filament under these conditions is approximately 41 volts. 

Tke saxe  power output can be obtained with smal le r  d i m e t e r  and longer filaments o r  

sage:  ?ianaeter and shorter  f i l a e n t s .  F i l m e n t  selection depends on the space, 
volra,, ard current  available. 

The design resul t  is shown in figure 3 .  A 0. 51-millimeter (20-mil) diameter tung- 

s&en *~!zu'y?ent is wound on a threaded boron nitride core.  The 213-centimeter (84-in. ) 
.ocg aicgsten filament was designed t o  operate a t  a temperature of 1315" C (2400' F) 
4 i ~ m  .-A a power input of 400 watts. 

';The 4 45-centimeter (I.  75-in. ) diameter boron nitride rod was made oval on one 

erd tc prel~ent  turning in the graphite jacket. The opposite end of the 15.24-centimeter 

6-sn ) i03g rod was made round t o  allow tightening of the graphite retaining ring. 

Drilletl passageways in the heater core allowed both ends of the tungsten f i l m e n t  

to be 3rought to one end of the core .  Power leads could then be connected to  the filament 

ends ?-t that end of the core.  The core and f i l m e n t  assembly a r e  encased in  a graphite 

"acke~ whLeh has the same  outer dimensions as the isotope heat source. 

The graphite jacket is in the shape of a hollow hexagonal rod. EAernally,  the jacket 
-s 1% 15 centimeters (6.75 in. ) long and 8 .9  centimeters (3.5 in. ) ac ros s  the flats of 

~ 1 1 ~  h2xzgon. The hollow interior of the jacket is 6.35 centimeters (2.5 in. ) in  diameter.  

Lx,r-anentation included a thermocouple embedded in the center  of the boron nitride 

 el^-e; core, a thermocouple on the outer surface of the insulated container, and current  

a x  v ~ l t a g e  me te r s  for the heater.  Thermocouple readings were taken on a two-channel 
,A .. Cu pi - E , ~ I  ding ~niliKvoltmeter. 

-, clressure in  the tes t  chamber was measured with an  ionization gage. 

OPEWABlNG PROCEDURE 

After 3he heat source and insulated container were placed in  the tes t  c h m b e r ,  

power. leads and instrumentation leads were connected. The tes t  chamber was closed 
and p~x~-pdown star ted.  pdown to  the 1.3~l0-~-newton-per-s~uare-meter (10 -~ - to r r )  

r-ange took approximately 24 hours.  

A small  m o u n t  of power (approximately 100 watts) was applied to  the heat source. 

-4s *.be heat source and the insulation system warmed up, the t e s t  c h m b e r  pressure  



rose ,  indicating that outgassing was t&ing place and that the pumping system s30ula pot 

keep up with it. Tkroughout the tes t ,  added increments of power were limited by 51e 

outgassing of the heat source and the insulation system. Additional power to  the  beat 

source was applied in sma l l  enough increments that the t e s t  chamber pressure  did rsL 

r i s e  above the 1.3~B0-~-newion-per-s~uare-meter (10-A-torr) range. 

Power was ra i sed  in  this manner to  the 400-watt level in  a t ime period C I ~  11 Cays. 

Power was maintained at the 400-watt level for  19 days, then ra i sed  t o  450 watts lor 
B day, then ra i sed  t o  about 480 watts fo r  3 days. 

RESULTS AND DISCUSSION 

The simulated isotope heat source was successfully operated for 820 burs  w ,i; 

power applied: for  566.3 hours at 400 watts o r  more ,  and for 100.22 hours at 440 tvatts 
o r  more .  The highest power applied at any t ime was 506 watts. F o r  660.94 horar s of 
the 820-hour period the graphite surface temperature was 982' C (1800' F) or more.  
With 400-watt power input, the graphite surface temperature was approximaiely 102 8" C 
(1900' F). With 500-watt power input, the graphite surface temperature was app r~x l -  

mately 112%' C (2050' IF). 
Figure 6 shows the power level throughout the tes t  plotted as a function of time. 

All the t ime shown at zero power was due t o  facility-related problems rather thaa test 
ar t ic le  problems. The numbers on the curve in figure 6 identify the particular power- 
off t imes.  The m a s o n s  corresponding t o  the numbers a r e  

(1) Replacement of cold-trap control valve 

(2) Power outage 

(3) Power shutoff to add additional ammeter  

(4) Fuse blown in re lay  control circuit  

Figure '7 shows the temperature level tkroughout the tes t  plotted a s  a ftnnckix: of 
t ime.  The temperatures  plotted were taken at thermocouple location TC-2. Tern;-era- 
t u r e s  at locations TC-3 and TC-4 differed from the temperature at location TC-2 -rA:y 

above 788" C (1450' F ) .  The biggest temperature difference was at the highest te,:~pera- 
0 - 7 - \  b e ,  1821' C (2050' F), where TC-3 and TC-4 were approximately 11' C (20 r , ecola;. 

than TC-2. The numbers on the curve in figure 7 showthe  same  power-off times 
in  figure 6. 

On disassembly of the insulated can and heat-source assembly, other eoadi-cio;as 

noted were 

(1) The tungsten filament had developed whiskers which on analysis turned ~ u t  t o  be 

tungsten boride. The filament had also become very brit t le and was broken in seweral 
places. Filament breakage did not occur during the test .  Cooldown o r  handling d,ring 



oiszsseirnuly a r e  possible causes of the f i l m e n t  breakage. The tungsten filament and 

*,he bercn nitride reacted with each other during this test .  TMs interaction may limit 

the ,i_e expectancy of this design. 

(23 The microquartz insulation had changed in  physical character is t ics  from being 

soft a ~ d  flexible to  hard and likely t o  crack if bent. This change took place only in the 

:nnerrnos"ilayer of insulation. The manufacturer% l i terature s ta tes  that shrinkage and 

weigkt l.sss will take place in  microquartz at temperatures  above 815' C (1500' F). 
(3 j The columbium container and radiant insulation had not been affected deleteri-  

ously by the temperature and pressures  involved. 

CONCLUDING REMARKS 

The simulated isotope heat source has m e t  the design objectives. The fifth tes t  

se.r;~ea vias run until the planned shutdown t ime.  Power and temperature levels were 
T ~ ~ ' ; ~  ,, within a usable range, and the life was demonstrated t o  be sufficient for  preliminary 

test:.rg of the isotope Brayton cycle. 

The tes t s  described in  this  repor t  indicate that mater ia l s  a r e  available to  simulate 
the l x w e r  and temperature levels of isotope heat sources.  The design of the simulated 

:sotope heat source is adaptable to  many other shapes besides the hexagonal type tested. 

A cnange -Ira the final configuration and power level of the isotope heat source should 

still zllov: the use of this  technology for  a simulated heat source.  

On disassembly of the tes t  ar t ic le ,  an  interaction between the tungsten filament and 

the lboron nitride core was noted. Tes ts  a r e  continuing with the objective of cueing 

down o r  eliminating this  interaction by separating the filament and core with aluminum 

o-xixride spacers .  

Lewis Research Center, 

National Aeronautics and Space Administration, 

Cleveland, Ohio, June 23, 1971, 

120-27. 
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Figure 5. - Schematic diagram of test setup. 
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Figure 6. - Time h is to ry  of power inpu t  t o  t h e  simulated isotope heat source. 
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Figure 7. - T i m e  h is to ry  of simulated-heat-source surface temperature. 
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