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INTRODUCTION
 

This final report includes work performed on the "Study of the
 

Mechanisms of Flux Pinning in Type-TI Superconductors," under NASA
 

contract NAS8-24816. The work reported was performed during the first
 

year of a project expected to be of two to three years duration During
 

the course of this work, it became necessary to limit the program to
 

the funds allocated for one year of effort.
 

The term "flux pinning' refers to the interaction of quantized
 

vortices of magnetic flux (fluxoids) in type-II superconductors with
 

defects in the superconducting sample This interaction restricts the
 

motion of fluxoids in the sample and can pin them to the sites of de­

fects. Since fluxoids are restricted in their motion, a gradient in
 

the flux density results and a current density is established such that
 

the pinning force equals the Lorentz force on the fluxoids
 

In materials without defects, a current density cannot be estab­

lished. Thus, defects are introduced intentionally to obtain materials
 

with currents useful for practical purposes. Generally, defects are
 

introduced in superconductive alloy wires in the process of reducing
 

them from ingot to wire size. Superconductive intermetallic compounds
 

are produced generally at high reaction temperatures and normally con­

tain many defects. Some degree of control over the defects introduced
 

is possible in the metallurgical processing of these materials, but un­

fortunately at present there is no method of determining which defects
 

are important in establishing a specific magnitude or characteristie of
 

the resulting current density. Present materials were developed
 

empirically.
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The objective of this work was to develop a method of determining
 

the effect of various types of defects on the current density and thereby
 

specifying ways of making superconductors with properties appropriate to
 

specific applications.
 

The fundamental property of defects used in this program was the
 

change in the Ginzburg-Landau parameter X associated with each type of
 

defect. Knowing this change in K and the distance over which the change 

occurs, the change in energy with distance, i e., the pinning force, can 

be determined 

The program consisted of three parts (i) development of a theo­

retical model capable of describing the interaction of fluxoids with
 

specific types of aefects, (2) determination of the distribution of K
 

in the superconductor using measured values of the specific heat
 

capacity,* and (3) measurement of the distance between fluxoids
 

(from which fluxoid forces can be determined) and determination of the
 

underlying defect structure using electron microscopy. From (3) above,
 

the relative numbers of defects of various types would be evaluated and
 

from (2), the An associated with each defect would be determined
 

Parts (I) and (2) above were completed successfully, but experimen­

tal difficulties were encountered in part (3) that prevented us from
 

obtaining the data required to treat the entire flux pinning problem
 

coherently and verifying the theoretical predictions.
 

The specific heat measurements were made at Stanford University by
 

Mr Robert Zubeck and are being continued under the direction of
 
Dr T H Geballe. These measurements, together with their interpre­
tation, are expected to form the basis of Mr Zubeck's Ph D. dissertation.
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SUMMARY
 

Theoretical and experimental studies were made of the flux pinning
 

mechanisms in type-II superconductors. A theoretical model based on
 

the London theory was used to obtain trial functions for a variational
 

calculation using the Ginzburg-Landau theory The microscopic proper­

ties of fluxoids were calculated. The model was applied to the problem
 

of flux pinning by (i) large defects having a x gradient, (2) small
 

normal regions or voids, and (3) small regions having x values different
 

from the bulk of the sample The forces arising from these pinning
 

mechanisms were related to the critical transport current and were
 

found to provide reasonable approximations to experimental data Item
 

(3) above seems to be responsible for the peak effect in type-II super­

conductors.
 

Specific heat measurements were made on annealed and deformed pure
 

niobium samples Changes in the normal-superconducting transition in­

duced by straining the samples were analyzed, yielding the distribution
 

of 9 and To throughout the sample The method developed should be val­

uable for the general analysis of defects in superconducting materials
 

Attempts were made to decorate fluxolds using the Bitter pattern
 

technique and correlate the observed distributions with the underlying
 

defect structures. Tight adhesion of the ferromagnetic powder to the
 

sample prevented stripping the powder for observation in an electron
 

microscope.
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THEORETICAL MODEL
 

Introduction
 

Many properties of defect-free type-II superconductors have been
 
1 2 

described by Abrikosov, Gorkov and others based on the-Ginzburg­

3
Landau theory of superconductivity. One of the major distinctions be­

4 
tween the Ginzburg-Landau theory and the earlier London theory of
 

superconductivity is the spatial dependence of the order parameter, 4, 

in the Ginzburg-Landau theory and its constancy in the London theory
 

This difference affects the predicted behavior of the density of super­

conducting electrons in the vicinity of a boundary between normal and
 

superconducting regions of the material. The London theory predicts a
 

uniform condensation of electrons into the superconducting state while
 

the Ginzburg-Landau theory predicts a condensation gradient of super­

conducting electrons over a distance characterized by the coherence
 

distance §.
 

In their original paper, Ginzburg and Landau noted that in certain 

materials superconductivity would not be suppressed at the thermodynamic 

critical field, H , but would persist to a field H = H • The a ca c 

parameter x is approximately XL/ where XL is the depth of penetration 

of a magnetic field in the London theory Abrikosov considered this
 

phenomenon in more detail and discovered that for fields between 

H Hc = H2H , quantized vortices of supercurrents occurred 

in these materials The condition for a material that can have these 

vortices is that 9 be !l/2 These materials are referred to as type-II 

superconductors 
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Abrikosov found that in these vortices the current density vanishes
 

at the center, reaches a peak value at a distance of approximately
 

from the core, and decreased at larger radii As a consequence of this
 

behavior, the magnetic field is greatest at the center of the fluxoid.
 

The flux Po in these fluxoids is hc/2e or 2.07 X 10 G - cm
 

Although the Ginzburg-Landau theory describes these properties, it
 

is mathematically difficult to use The model to be presented here
 

describes all these features in a mathematically tractable but approxi­

mate form.
 

Formulation of the Model
 

5
 
De Gennes and his coworkers developed a model of type-II super­

conductivity starting with the London equation
 

GUBL(X2 CURL t1) + 	)a= 0 (i) 

For a single fluxoid with cylindrical symmetry and X X L- , the London
 

penetration depth, equation (I) becomes
 

2 d2b dh 2 
x 2-+ x-- x h = 0 , (2)

dx dx 

in terms of x r/XL The solutions to equation (2) are the modified 

Bessel functions K00 (x) and 1 (x) which have the unphysical feature of 

a singular core A cutoff can be introduced by letting X be spatially 

dependent. This penetration depth is related to the superconducting or­

der parameter, *, by X = XLL . 

Now equation (i) becomes
 

2 +( +a2 	 Xd- - x-2eh = o (2') 

dx dx 
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S 2N- (3) 
y 

1
 

where y (x2 + 62) and N and C are field dependent variational param­

eters (E for cutoff and N for normalization) then equation (2') becomes
 

2 d a h  
 h 2(2")

d
dy2 


Equation (2") has the solution
 

h = C3o(Ny) + C NI (Ny) (4)
20
 

Where C and C are constants (independent of position but not field)
 

By introducing a cutoff into the London equation, we have obtained
 

trial functions for the order parameter, equation (3), and local magnetic
 

induction, equation (4) These can be introduced into the Ginzburg-


Landau free energy to determine N and s by a variational procedure.
 

We investigated the possibility of other forms for equations (3)
 

and (4) in detail, including such families of solutions as h proportional
 

to an arbitrary function multiplied by a Bessel function of arbitrary
 

argument, series solutions, exponentials of arbitrary functions, and so
 

forth No other choice that we investigated gave tractable forms for
 

and h, simultaneously
 

A solution can now be constructed that approximates an Abrikosov
 

fluxoid by causing the current density to vanish on a circular boundary
 

of radius R This construction consists of approximating the hexagon
 

on which the current actually vanishes by a circle This approximation
 
6,7,8
 

has been used previously by several authors We demand further that
 

the flux contained inside the circle be the flux quantum yo. These
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conditions require that dh/dxlR = 0 and Jh • ds = Cp 

magnetic induction is given by B = (Oo/ITR' 

Using these conditions, we find
 

h E h(x) - NC% y(R,y)z 2r2 oP (R, E:) 

L 

N(O c R,y)(6 

= 8%2Ao =- (X) nX6 

L
 

yx (R,y) N 0 
A(x) = +2ITX L x (R,e) 2rr 

where
 

y(R,y) = 0 (NY) + K 1(NYR)1o(NY)
I(NYR )Ko


and
 

P(R,y) = I(NyR)K1 (Ny) - K,(NYR)I1 (Ny) 


and
 

y = (R2/2 + 62)2 

Finally, it is noted that
 

7 42 [A 

Consequently, the
 

(5)
 

(6)
 

(7)
 

(8)
 

(9)
 

(10)
 

(ii
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London Free Energy
 

The usual form of the Lagrange energy density in the London theory
 

is
 

L = 1 [h' + (dh/dx)S] (12)
87
 

Writing equation (i) in its usual form, the equation for the local mag­

netic field is given by
 

dmh idh
 
- -- - h=h (13)
 
dx2 
 xdx
 

and has the solution
 

h = D K0(x) + D I(x) (14)
 

At x = 0, both h and dh/dx become infinite leading to an infinite energy
 

density at the core of a fluxoid The present model can be obtained from
 

thq formal transformation of x into Ny In this case, the Lagrange energy
 

is
 
2
L [h + (dh/d(Ny)) (15) 

which has the same form as equation (12) At x = 0, however, the arguments
 

of the K functions become Ne and the energy remains finite. The free
 

energy per unit length of fluxoid is obtained by integrating the free
 

energy density over the cross section of the fluxoid, resulting in the
 

simple expression
 

F cp0h(Ne) 

Z ST
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Ginzburg-Landau Free Energy
 

Since a functional form of *(x) has been assumed and a correspond­

ing expression for h(x) has been calculated, it is possible to use these
 

to obtain an approximate solution of the Ginzburg-Landau equations The
 

Ginzburg-Landau free energy will be minimized with respect to the param­

eters N and c to yield the values of these parameters which give the
 

lowest energy
 

The Ginzburg-Landau free energy density has the functional form
 

H2 Z h1 i e* I 

F -F = - 4 1 - 41 + JL L-A4I-2m (17)8 
 -

Sit NO 4r L 2 j Sn 2m I 

from which the following two equations can be derived
 

+X-22k = o+e * 2XH 2 (1s) 
e 

= -2 A I- -T * V  - * )j (19) 

4TOX2 T 

Cylindrical symmetry and single-valuedness have been assumed, imply­

ing that 4 can be written in the form * = Ilele Substituting this 4 

with 1*1 = (Nx/y) into equation (19), we find that equation (19) is iden­

tical to equation (1i) if the expressions for j and A from equations (6) 

and (7) are used 

Substituting h and 4 into equation (17) and letting x = 

He = cp/2 &X,, and Hc2 = yp/2Tr 2, the free energy in this approximation 

can be shown to be 

H2 x ] +_[h+ d Ne2 ) 
Sit NO 4nT 2 yKdrSn it)J+ S' ay43 

(20)
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It is seen immediately that the energy of the modified London model
 

[equation (15)] is only one part of the Ginzburg-Landau free energy
 

The first term is the condensation energy and the last term is a part
 

of the V47 * term.
 

Integrating equation (20) over the cross section of a fluxoid and
 

dividing by the cross-sectional area, the free energy per unit volume
 

becomes
 

8S (l N 20h2 B 2 
- (F F 0 -2N -L + N2(1 

H2 -F )4 =) H )Ln(yR/0)
c c2
 

+ Bh(NS) +4I[N 2Ce4+ CI + Ce2/Y2 (21) 
c H 

The external magnetic field H = 41T(a/aB)(FSH - FN)H can be obtained 

from equation (21) 

HC _Hc2 Hc0 r[N 1+e 

- 2 N2) []+tn2Y/K X N= 3 04 2
 

C2c RR R 

+ + NyC (22) 

2Xwe y'RB0(R, e) 2 (, 

Finally, the Gibbs energy is given by
 

BE H 2 

G - G = F - F -- +-H2(3
SH NH SR NO 4rr SiT (3 

As B - 0, N approaches I and yR' $and y approach infinity Under 

these conditions, the first and third terms of equation (22) vanish.
 

The limit as B 0 of the remaining two terms define the lower critical
 

field H
 
cl
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H
Hi 

= !
8

(C + + (/) (24) 

HC 2 8 2n{2eKI (e)
 

In this limit, the minimization procedure indicates that e approaches
 

2/K yielding
 

¢ +! - 0 (25)
 

Results of Model
 

It was found that when N and e were varied, the lowest energy at 

low fields was obtained when * slightly exceeded unity For this reason, 

the physically realistic condition that * be less than or equal to one 

was imposed. Some of the parameters were evaluated for several values 

of X, but detailed results are given here only for R = 5. These results 

are shown in Figures 1 through 5.
 

The average Gibbs energy per unit volume of the specimen is shown 

in Figure 1 as a function of the magnetic induction B/HC2 . The magne­

tization -4TM/H was obtained numerically from equation (22) by choosing 

a value of B/Hcs and calculating H/H The results of this calculation 

are shown in Figure 2 where they are compared with the Abrikosov magne­

tization given by
 

-4rn/H 2 I - H/HC (26)
1.16(2n' - 1) 

The difference between the local magnetic induction, h(x)/He, and
 

the average induction B/Hc2 is shown in Figure 3. The local current
 

density j(x) inside the fluxoid, normalized by CHc/47X, the London
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critical current density, is shown in Figure 4, the order parameter
 

4(x) is shown in Figure 5. A list of parameters applicable to the case
 

K = 5 is given in Table 1. 

Pinning of Fluxoids
 

It is generally agreed that the pinning of fluxoids in supercon­

ductors is caused by imperfections in the superconducting sample The
 

variety of imperfections in metals is quite diverse, ranging from simple
 

defects such as vacancy-interstitial pairs to grain boundaries, precipi­

tates, and composition variations in alloys. Undoubtedly each of these
 

contributes to some extent to the total pinning force exerted on the
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Table 1 

PARAMETERS FOR n = 5 

BA H/H 2 -4TM/H S/ 2 e2 N 
c22__2__2__
 

0 005 0 04530 0 04030 -0 8973 0.082 1.0025
 

01 04627 03627 -.8936 089 1 0055
 

02 .05104 03104 -.8777 091 1 0113
 

.05 07389 .02389 - 8167 095 1 0292 

.1 1192 01924 -. 7206 094 1 0571
 

2 2152 01525 - 5575 083 1 0668
 

.3 3128 01282 -.4209 .0736 1 0378
 

5 .5088 008849 - 2092 0575 0.9126 

6 6070 006983 - 1314 .0515 0 8239 

7 .7051 005151 -. 07183 0465 0.7157
 

8 8033 003333 -. 03016 0425 0.5813
 

9 9015 .001525 - 006315 0392 0 3962 

95 9506 00621 - .001049 0377 0 2537
 

fluxoid lattice. Since so many different types of imperfections are
 

present in commonly available materials, it is difficult to determine
 

which imperfections contribute most to the total pinning force by mea­

suring macroscopic quantities such as the critical current or the
 

magnetization of the sample
 

Experimentally, attempts have been made to reduce the number of
 

types of pinning centers by carefully controlling the metallurgical
 

preparation of the samples Numerous experiments of this type have
 

introduced known amounts of precipitates in a host matrix, known amounts
 

of radiation induced defects in well annealed samples, and known amounts
 
9-20
 

and sizes of grain and subgrain boundaries
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Theoretical treatments of pinning are complicated by the inability
 

to describe fluxoids that are nonsymmetric Thus, if a fluxoid is posi­

tioned over a region of the sample in which the metallurgical, and there­

fore the superconductive, properties vary significantly, the properties
 

of the fluxoid cannot be described adequately. For this reason, valid
 

calculations can only be made if the change in superconductive properties
 

occurs over a distance that is large compared to the fluxoid dimensions,
 

or if the change in properties occurs over a region that is small enough
 

compared with the fluxoid that the fluxoid geometry can be assumed to be
 

unperturbed Imperfections intermediate in size between these limits
 

cannot be treated at present. These two limiting cases are considered
 

in the following discussion
 

Consider first the effect of a large imperfection such as a cell
 

wall, grain boundary, or precipitate Such imperfections range in size
 

from about 2 X 10- a cm to 2 X 10- cm or larger depending on the purity
 

and thermomechanical history of the sample (We will use the example of
 

a cell wall or grain boundary to which defects and impurities have mi­

grated ) These imperfections lead to a reduction in the electron mean­

free-path, an increase in the resistivity, and consequently to an in­

21
 
crease in X according to the relation
 

1
 

= = 7.5 X 10 p (27)
0 o en 

where X
0 

is the value of n in the defect free portion of the sample, ye
 

is the electronic specific heat, and p is the normal state resistivity
n 

Assume that through the cell wall of width 2w the value of ft is
 

triangular in shape, increasing from 0 to w and decreasing from w to 2w.
 

Thus, dx/dx is constant from 0 to w and the pinning force associated
 

with this gradient in n is
 

is 



f p = aG G A (28)
 
V T x 8K W 

Letting the total length of imperfections perpendicular to the force 

be s, and the length of the fluxoid parallel to the imperfection be 2, 

the volume over which the force acts is sw A and the pinning force on the 

imperfection is 

f = 2-8G (9fP - G Ans A (29) 

where the force on each side of the wall has been included It will be
 

shown later that aG/6n is negative for an increase in A, and therefore
 

the force is attractive on both sides of the wall, drawing fluxoids into
 

the wall
 

Since the width of the wall does not occur in the final expression, it
 

seems at first sight that only the change in energy between 0 and w or w
 

and 2w is important. However, this formulation is only valid if w > 2R and
 

dx/dx is small, otherwise, the energy of the fluxoid cannot be calculated.
 

The radius of fluxoids is smallest at high fields and the calculation is
 

most applicable At low fields, the radius increases and fluxoids are
 

more likely to encounter regions of widely varying x Since a gradient
 

in x is assumed to exist only in the cell wall, a force is excited and
 

a current flows only in this part of the sample
 

The current density in the layer w is found by equating the pinning
 

force f and the Lorentz force jB/c.

P
 

j = cfp/B (3o) 

The average current density in the sample is
 

3 = cf sw/BA (31) 
p 
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- -  

where A is the cross-sectional area of the sample and sw/A is the frac­

tion of the sample in which the current actually flows
 

The field dependence of f arises from aG/'IH which was obtained
 

by numerical differentiation and is shown in Figure 6 for X = 5 The
 

same figure shows the result of differentiating the Abrrkosov energy
 

under the same conditions. The curves were not extended below
 

B/H = 0 1 due to numerical problems with the present calculation and
 

the inapplicability of the Abrikosov energy at low values of B/HC2 

Neither curve goes to zero at B = 0 as might be inferred from the curves 

shown The Abrikosov result can be shown to be 

009 
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FIGURE 6 	 PARTIAL DERIVATIVE OF THE AVERAGE GIBBS ENERGY WITH RESPECT TO 
K AS A FUNCTION OF THE MAGNETIC INDUCTION 
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STy 6G = 4.(l - H/H)2 -H (2 

( (2, (324h-2K2 
C2
 

22 
where = 1 16. 

For large values of x, this varies approximately as
 

SrT aG 2H/H2(I - H/H ) 
(33)


H

C 

Using this approximation, the average current density in the sample
 

is
 

c H (34) 

3.32rAH x B H 
C2
C2 


The form of this current density is shown in Figure 7
 

To determine the effect of small defects on the pinning force, it
 

is necessary to know the distribution of the Gibbs energy inside a
 

fluxoid This is obtained using equations (20) and (23) with B replaced
 

by the local induction h(x) in the latter equation. In this case,
 

4 (H - h(x)) H
 

G - G --c (x) - ! (x)/2) +
 
SH NH 4n 8T 41 ( nys 

(35)
 

This energy density per unit volume is shown in Figure 8 as a function
 

of x?/R with B/Hc2 as a parameter. It is surprising and previously un­

recognized that although the average energy density in the fluxoid is
 

negative (see Figure i), the local energy density can be positive and
 

quite large. From the shape of these curves, it is seen that if a
 

small normal region exists inside the fluxoid, the largest amount of
 

energy will be gained when this normal region lies at the center of the
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fluxoid The slope of these curves gives the pinning force per unit
 

volume of normal inclusion in the fluxoid as a function of position and
 

magnetic induction. The maximum slope, or the maximum force per unit
 

volume, does not occur at the center of the fluxoid but at some distance
 

from the center To calculate the actual force, N and H must be known
 
c 

We choose, for illustrative purposes, the self-consistent parameters
 

- s
H = 2 X 10 Oe and X = 7 5 X 10 cm from which it follows that 
c 

= 1.5 X 10-6 cm, H = 14.6 kOe, and He = 659 Oe In this case, the 

maximum pinning force per unit volume of normal inclusion is shown in 

Figure 9 

To obtain the current density, it is necessary to know not only the
 

force on a defect but the fractional volume of the sample occupied by
 

these defects. For this purpose we let
 

V
 

dG n (dynes/cms) (36)
 
p dr V
 

where Vn/V is the fraction of the volume occupied by normal inclusions.
 

The current density is then j = ofp/B (statamperes/cm2 ) This current
 

density is shown in Figure 10 in amperes/cm2 without correction for the
 

term V/V. If in a particular sample 0.1% of the sample were occupied
 

by normal inclusions, the current density in Figure 10 would be multi­

plied by i0-3  This current density is compared with the functional
 
i 

form (I - H/Ho)/(H/HC )2 which has been compared with experiment and 

discussed elsewhere 8,23,24
 

Voids of the type just discussed are rare in comparison with the
 

numerous other types of defects found in metals, with the exception of
 

sintered materials which can contain a large number of voids It is
 

of interest to determine the effect on the current density of small in­

clusions that have a A value different than that of the host lattice
 

In this case, the volume pinning force is
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&G V
 
F An 	 (37)
 
p 5K~r V
 

where V /V is the relative volume of the material having a different
 

value of x
 

This derivative was evaluated numerically but met with difficulties
 

at low fields that have not been resolved at present The maximum value
 

of the pinning force in the fluxoid is shown in Figure 11 The shape of
 

this curve differs radically from those shown earlier A pronounced peak
 

occurs at high fields It was found that although 6G/r decreased at
 

high fields, the difference between values calculated for slightly dif­

fering n values (a 0.5% change was used in obtaining the derivatives)
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increased with field It is assumed that since aG/tr vanishes at H0a
 

for the bulk of the sample, the pinning force will vanish at this field.
 

It is not possible to calculate values at higher fields without
 

resorting to double precision computations which time did not permit
 

These calculations were considerably more difficult to handle than those
 

previously discussed since the absolute energy must be known with great
 

precision. The Bessel functions were calculated to an accuracy of only
 

one part in 1010 At low fields, the arguments of the functions become
 

large and oscillations occurred about the asymptotic value, limiting the
 

accuracy to as little as one part in 0a At this time we are unable to
 

state the cause of scatter in the results at low fields. It may be caused
 

by the loss of precision, or by insufficient minimization of the energy
 

with respect to N and e.
 

The curve drawn in Figure 11 is a reasonable approximation to the
 

calculated points and has been used to determine the average critical
 

current density shown in Figure 12. This curve obviously depicts the
 

well-known "peak effect" often observed in type-II superconductors. To
 

obtain the actual critical current density in a sample, the current den­

sity shown must be multiplied by the volume fraction of the sample
 

occupied by the inclusions having different values of K and by AK
 

In the following section, we will show that a whole spectrum of
 

values of A can occur in a sample, even in samples that are well annealed
 

Consequently, in most samples there will not be one value of AX but
 

several, and the current density will have contributions from more than
 

one curve such as that shown Further, rather than having a sharply
 

defined change in x there is a distribution in K about a central AK.
 

This will cause a smearing of the curve shown for most samples. The
 

peak effect has been introduced into at least one niobium-zirconium
 
14
 

sample by radiation damage. This type of experiment introduces rather
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well-defined clusters of displaced atoms that should yield a fairly
 

sharply defined An It should be noted, however, that other samples of
 

different materials did not exhibit this effect
 

The volume fraction of the sample occupied by these defects must
 

be small for this calculation to be valid For this reason, the critical
 

current density contributed by this phenomenon will be relatively small
 

and the effect will be noticed only at high fields where the critical
 

current density caused by the other mechanisms discussed is small
 

The force exerted on the pinning site by the fluxoid as not always
 

of the same sign, but can be attractive or replusive at different positions
 

For a positive AK, the largest force is always attractive near the center
 

of the fluxoad, but can be repulsive near the outer radius at low fields
 

(this is thought to be true even though the absolute magnitude is in
 

doubt for the reasons discussed earlier). At high fields, the force is
 

attractive all the way to the outer radius. The form of the force at
 

B/Hc2 = 0.3 is shown in Figure 13 Obviously, if there is more than
 

one pinning site inside the fluxoid there is a high probability that the
 

forces exerted on the two sites will tend to oppose each other and an
 

average force is needed This behavior persisted in the present case
 

to a field of about 0.6 H . At higher fields, the force was attractive
 

all the way to the outer radius of the fluxoid.
 

Conclusion
 

The model developed is sufficiently accurate to permit detailed
 

calculations of features of fluxoids in type-II superconductors which
 

could not be calculated previously. The model can be used to determine
 

all the usual physical properties of fluxoids such as energy, energy dis­

tribution, magnetic induction, induction distribution, current density
 

distribution, magnetic field, and magnetization
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This model was used to calculate the forces exerted on a fluxoid by
 

several sLmple types of pinning centers (I) large defects with gradients
 

in X, (2) extremely small voids, and (3) small inclusions with values of
 

n different from that of the host lattice. These forces were related to
 

the current densities that can be sustained by materials containing these
 

defects. The resulting je versus H curves are similar in form and mag­

nitude to the curves generally observed experimentally The third type
 

of pinning center indicated above had unusual properties, yielding a
 

30 versus H curve with a peak in j near H Further, it was found 

that although the strongest pinning force was always attractive for a
 

positive An in the inclusions, inclusions near the outer radius of the
 

fluxoid can cause a repulsive force.
 

32
 



SPECIFIC HEAT CAPACITY
 

Theoretical Analysis
 

The specific heat of a homogeneous annealed sample can be charac­

terized by the material parameters n and T o = T (H = 0)
 

When the material is strained, we observe that the specific heat
 

discontinuity in zero field is smeared out This means that the
 

strained material must be characterized by a distribution in To
 

Further, the strained material in nonzero fields displays an even
 

larger temperature smearing of the specific heat than in zero field
 

This means that in addition to the T distribution there is also a
0 

distribution in 9 We have developed a formalism that describes and
 

permits solving for such X and T0 distributions It serves also as a
 

posteriori justification of the assertions
 

The essential point in this theory is that the temperature varia­

tion of the specific heat near the transition is extremely sensitive 

to variations in material parameters Away from the transition, the 

specific heat is particularly insensitive and, indeed, not predictable 

from theory with enough accuracy to determine material parameter dis­

tributions 

To obtain a useful specific heat expression which displays the dis­

continuity, the normal electronic specific heat, which at low temperature 

equals y T, is subtracted from the total specific heat C. This function 

for particular values of To, Ho Hc(T = 0), % is 

f(T, H, T,07 H,0 ) e - f (T, H, T, H, A) 'AM(T(h) -T (38) 
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where C is the specific heat The Heaviside unit function X(T (H) - T)
 

expresses the discontinuity The functional form away from the discon­

tinuity is contained in f1 One of the better expressions for fI is
 

25
 
that of Van Vijfeljken
 

f H(T, n) ( T) H
H, To, H [3 + (39)
0A Log TO2H 

o 

The measured specific heat in a strained material at fixed H would
 

include contributions from all values of T and A present in the material,

0 

f(T, H) = 1 (T,H, T 0t) (40)fdT dKPTo(T0)P (K)f O,H (To(H)-T). 


The experimental data imply that distributions in two parameters
 

are required If the microscopic basis for the T and R distributions
0
 

were understood, it might result that these distributions were related
 

The sensitivity of the discontinuity to the material parameters
 

is best identified in the derivative df/dT, which would be infinite for
 

a homogeneous, annealed material
 

Fdf1
 
f P (T) P(T - fb 6 -T)(T PK() -T) (T (41) 

dT fd0P d 

In the region where df/dT is large, only the second term makes a non­

negligible contribution,
 

df f dTodn P (TK) f 6(T - T) (42) 

dT 0 T 0 0 X 1 c 
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Further reduction of equation (42) requires a functional form for 

Tc(H, T , K) For most materials, in the vicinity of T 

o 0
 

At the transition H = H equation (43) inverts
 
C2
 

cam
 
1
 

(H, iX) = T -K H (44) 

This form applies to a variety of type-Il superconductors Use of more
 

precise and more complicated forms for equations, (43) and (44) has only
 

a minor effect on the results below
 

Further reduction of equation (42) must be performed before data can
 

be analyzed In zero field, the argument of the 8 function has only a
 

To dependence The temperature dependence becomes
 

d P(T) f dAP (hf(T, 9)(45) 
dT TO 1
 

H = 0
 

In nearly every form conceivable for fl, the variable TO would
 

occur as T/T Therefore equation (45) is PT (T) multiplied by a con­
o 

stant that is later absorbed in the normalization. Since we want P (T)
 
0 

normalized such that its intergal is unity,
 

f dT (T) = 1 (46) 

equation (45) is an algorithm for determining PTo(T) directly from the
 

experimental data
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When the magnetic field is not zero, a modification of the above
 

approach must be used to determine the % distribution Note that in
 

equation (44) for T., K appears only in the form xtI/=HH This
0 .
02
 

implies that the observable is really HC, hence our analysis of the
 

distributions will be in the form of H distributions Equation (42)
 
C2
 

is changed to
 

I
df- oH(e ) f
 

dT fdT dHC PTo(T) PH ( f 8(T c - T) (42')
 

and equation (44) becomes
 

T(H, T0 , H ) =iTo(I H
H 

) 	 4' 
c 	 0 C2 

CC 02 

First examination of equation (42') would suggest that we have a hopeless
 

unfolding problem, because elimination of the one 8 function will still
 

result in an integral over PT and PH Thus, we would have at best,
 
o 


a Fredholm integral equation of the first kind for PH
 
02
 

This is not the case, however, for elimination of the delta func­

tion in equation (42') gives us an integral over two distributions, each
 

of which is fairly narrow or peaked To examine their relative contri­

butions to the derivative of the specific heat given by equation (42'),
 

we can take the derivative with respect to temperature of the argument
 

of the function as given by equation (44') The result is
 

AT AT e0 H/HC2 AH C - + 	 2 (47) 

T 	 T0 1-H/H H
0 	 c3c 2 
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A
 
The important point is that the contribution to the width of the tran­

sition consists of two parts, one due to the distribution in T and one

0
 

due to the distribution in H The latter distribution has its width
 
C2
 

multiplied by a factor that is quite large at high fields For example,
 

at field values near the largest value for which measurements were taken,
 

2,700 gauss, the contribution of the T0 distribution to the width of the
 

specific heat transition was less than 5% of the contribution due to
 

the H distribution. This means that in the evaluation of equation
02
 

(42') (for the purpose of analysis of the data in high fields), it is
 

quite satisfactory to treat the T distribution as a delta function,
 o 


PTo = 6(To-To) We then obtain the following equation for the Hc2 dis­

tribution
 

C2H
di ~H C2YH(8
 

--- Q(T, (48)
H, To, H )* 


T 2 
 7 2
dT 


where
 

H C H (49)
 

Equation (48) and (49), plus the normalization condition . dH 1,
 
C2
 

provide a complete algorithm for analyzing specific heat data for H
 

distributions. Because of the considerations implied by equation (47),
 

it is worth while to do such an analysis only at large values of fields
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Specific Heat Measurements, Data, and Analysis
 

The heat capacity of high purity niobium samples was measured using
 

the apparatus shown in Figure 14 This device uses an ac calorimetry
 

26
 
technique developed by Sullivan and Seidel
 

In the apparatus shown in Figure 14, a laser beam which is chopped
 

at a known frequency, w, is used to heat a sample The temperature of
 

the sample rises above that of the copper reference block by an amount,
 

AT, determined by the equation at the bottom of the diagram. The
 

equation states that this temperature rise consists of two parts (a)
 

a dc temperature rise given by Qo/k and, (2) an ac temperature rise pro­

portional to i/C. This temperature change, AT, is measured by using a
 

gold-iron versus copper thermocouple. The thermocouple is mounted on the
 

sample and coupled to a copper reference block whose temperature is mea­

sured using a dc thermocouple connected to a Keithley-type 147 nanovolt­

meter. The actual increase in dc temperature above the temperature of
 

the block is determined from the thermocouple by using the nanovoltmeter
 

An ac signal is produced in the thermocouples by the temperature rise
 

and is amplified through a low temperature transformer The signal is
 

measured by a PAR HR-8 lock-in amplifier tuned to the same frequency, W,
 

as the chopped laser beam
 

It should be noted that there are some correction terms in the ac
 

temperature rise that do not make it strictly proportional to I/C. By
 

judicious choice of (, T1 (relaxation time to block determined by the
 

thermal conductivity of the thermocouple wires), and Ts (thermal relaxa­

tion time across the sample itself), the correction terms can usually
 

be made less than 1%. Thus by properly choosing W, T1, and T2, the ac
 

temperature rise can be measured accurately However, to make an abso­

lute measurement of the heat capacity, Q0 must be known accurately
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An effective measure of the Q is made by using a standard sample
 
0 

of known heat capacity (usually copper) in one of the two chambers shown 

in Figure 14 The laser light, and its associated Q , produce an ac 
0
 

signal This signal is assumed to be inversely proportional to the heat
 

capacity of the known sample By measuring the ratio of the two ac sig­

nals with the same Qo, and at the same temperature, an absolute measure
 

of the heat capacity of the unknown sample can be determined
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FIGURE 14 SPECIFIC 	 HEAT APPARATUS 

As primary advantages, this technique has the ability to measure
 

relative changes in heat capacity as a function of temperature with a
 

precision of about 0 1%, and the ability to make continuous measurements
 

of heat capacity as the temperature is varied thereby increasing the
 

speed of the data-taking process Furthermore, since the mass of the
 

additional apparatus required to sense the temperature and heat the
 

sample has been minimized, an absolute measurement of the heat capacity
 

of samples whose weights are approximately 150 mg or less, can be made
 

with an accuracy of approximately 3%
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The temperature resolution is approximately I mK while the absolute
 

accuracy is approximately 20 mK The accuracy of the magnetic field
 

measurement is approximately 1%, which implies a 28 gauss probable error
 

at the highest field measured of 2,745 gauss
 

The niobium specific heat capacity data is shown in Figures 15, 16,
 

17, and 18 as measured for four different field ranges near zero, 500,
 

1,300, and 2,700 gauss Four different samples were measured. The first
 

was an annealed sample. The second had a strain of 0.07. The third had
 

a strain of 0.20, and the fourth had a strain of 0.75. The strains were
 

introduced by rolling The measurements in zero field show a systematic
 

increase of transition temperature with strain, and a systematic increase
 

of width of the specific heat transition with strain The results near
 

500 gauss resemble the results of zero field with the exception of
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the shifting of the relative positions of the curves due to the varia­

tions of magnetic field strength The change of character that is noted
 

in the results at 1,300 and 2,700 gauss is due to the shift of the tran­

sition width from a transition that is dominated by the T distribution
 
0
 

to one dominated by the X or H distribution as described in equation (47)

C2
 

T Distribution
 
0
 

Taking the derivative of the specific heat with respect to the 

temperature from the data shown in Figure 15 for zero fields yields the 

T distribution as given in equation (45) 
0
 

The T distribution of the annealed sample is a delta function or
 
0 

a gaussian distribution with a standard deviation of less than 0 5 mK
 

Figure 19 shows the T. distribution for a strain of 0 07. This distribu
 

tion is fit reasonably well by assuming a gaussian distribution with
 

To=9.225 K and a standard deviation of 4mK When the strain reaches 0.20,
 

the distribution is broadened as shown in Figure 20. This distribution is
 

still sufficiently well fit by a gaussian distribution with T = 9 268 K
o 


and a standard deviation of 11 mK Note that there is a high temperature
 

tall that extends several standard deviations above T . When the strain
 
0
 

is as large as 0 75 as shown in Figure 21, we found that the distribution 

of T was broadened considerably and not even close to a gaussian dis­
0
 

tribution in shape The distribution extends many times as far above
 

the mode of the transition temperature, T = 9 285, as it does below T
 
0 0
 

The distribution to higher temperatures appears more exponential-like
 

than gaussian The behavior of the modes, T0 versus strain as shown in
 

Figure 22, indicates that for small strain there is a rapid increase in
 

T with strain, and for large strain there is an asymptotic approach to
0
 

a maximum value at s = 1.0 It is useful also to show how the width of
 

the transition changes with strain in Figure 23 The width is defined
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as the half width at a relative height of 0 135 of maximum height For
 

a gaussian distribution such a definition of width would yield twice the
 

standard deviation The width increases rapidly with strain for small
 

strain, but shows a much lower derivative for large strain
 

H or x Dlstributions
 
ca 

Analysis of the high field specific heat measurements near 2,700
 

gauss, according to the algorithm of equations (48) and (49), yield the
 

H cS or X distributions shown in Figures 
24, 25, 26, and 27 Figure 24
 

shows the K distribution for zero strain The results were surprising
 

because they indicate two narrow, clearly separated distributions in K
 

The relative separation is approximately 2% From earlier work with a
 

27
 
less quantitative model, we had expected such a behavior to be more
 

likely in highly strained samples in which there is a well-defined cell
 

wall structure The lower peak with H = 3,333 has approximately 33%
 

of the area of the entire Hc2 distribution. The upper peak occurs at
 

HCS = 3,395 The X scale uses H0 =1,993 gauss for niobium as obtained
 
28
 

by Finnemore, Stromberg, and Swenson
 

In the sample with 0 07 strain shown in Figure 25, the same basic
 

structure persists except that each of the peaks have been broadened
 

and the relative magnitude has changed For 0 07 strain H = 3,293
 

and 3,358 We do not regard the shifts of peak position as significant
 

because a 37-gauss shift, which is only slightly more than the probable
 

error for the field measurements, would cause the two structures to be
 

in agreement
 

The sample which was strained to 0.20 and is shown in Figure 26,
 

demonstrates that the distributions have been broadened further into
 

two plateaus and the structure at the lower value of X was nearly de­

pleted at the expense of the peak at the higher value of h Figure 27
 

for a strain of 0 75 shows a behavior in the H or K distribution that
 
c2
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FIGURE 24 	 DISTRIBUTION IN Hc2 OR K IN AN 
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is less complicated in structure The peak that remains corresponds to
 

the highest H or X peak in the annealed sample Further, the lower X

e2
 

material has disappeared and has been converted into a high % distribution
 

that extends about 5% above the value of i The extension of the dis­
02 

tribution at high strain toward a higher n clearly represents improvement
 

of the magnetic field properties of the material, as well as improvement
 

in the pinning properties as discussed earlier
 

Conclusion
 

Our major conclusion from the specific heat capacity data analysis
 

is that the technique developed for the analysis of high resolution spe­

cific heat data has implications to the analysis and understanding of the
 

metallurgy of superconducting materials that extend far beyond the par­

ticular samples analyzed in this report There appears to be an oppor­

tunity for a detailed understanding of the metallurgy, and a characteri­

zation of the contribution of different types of imperfections and defects
 

to probability distributions over the relevant parameters We have ob­

served in detail the tendency of imperfections to increase the transition
 

temperature and H or X We have observed also the strain induced
 
C2
 

broadening of the distributions in T and X, causing a cutoff below
 
0
 

the unstrained values of Y and H and extending the tail of the dis­
0 C2 

tributions some considerable distance above T and H These distribu­
0 C2 

tions clearly indicated how large strains can improve the temperature and
 

magnetic field characteristics of superconductive materials
 

This analysis technique should be applied to practical materials
 

such as superconducting magnet wire at various stages of manufacture to
 

determine the effects of the manufacturing processes on the distributions
 

of TO and x Because our time and funds were depleted sooner than ex­

pected, we were unable to perform extensive metallurgical studies on the
 

niobium samples This would have enabled us to identify the types of
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defects in the sample, and determine methods of improving the T and
 
0 

H distributions However, for practical assessment of materials we
 

have provided a basis for completely characterizing superconducting
 

materials by macroscopic specific heat measurements
 

In fact, the technique appears useful enough that T and H or
 

9 distributions should be treated as primary data for understanding the
 

behavior of superconducting materials
 

Finally, the T and K distributions can be interpreted as the
 

relative fraction of volume that has a particular T 0 or 71 What we do
 

not know is whether these changes in properties are concentrated in
 

small regions of the sample or whether they are finely distributed
 

throughout the sample in small clusters. This question must be answered
 

by detailed microscopic metallurgical examination
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BITTER PATTERN MEASUREMENTS
 

The purpose of the Bitter pattern experiments was to observe the
 

distortion of the fluxoid lattice in imperfect type-II superconducting
 

niobium resulting from the interaction of the fluxoid lattice with the
 

defect structure of the material. For example, if the fluxoid lattice
 

maintained its hexagonal symmetry, but showed a continuous variation in
 

lattice parameter or fluxoid spacing, this could be related to a flux
 

gradient Such flux gradients result from pinning, and direct observation
 

on the scale attainable with this technique would allow correlation of
 

these flux gradients with microscopic defect distributions The surface
 

structure of the sample observed is of primary importance in that varia­

tions in the microscopic sample thickness would introduce flux gradients
 

resulting from variation of the total free energy of the system with the
 

sample thickness These observations were to act as a guide to calcula­

tions made using the theoretical model developed in this work
 

Experimental Method
 

The method of observing the distribution of flux in type-I and
 

type-It superconductors is a modified Bitter pattern technique The
 

29

Bitter pattern technique was developed to allow the observation of
 

magnetic domain walls in iron, nickel, and cobalt In this technique,
 

a colloidal suspension of small (less than 200-A diameter) ferromagnetic
 

particles is placed on the surface of a ferromagnetic material The
 

particles experience a force when in the presence of an inhomogeneous
 

magnetic field and are drawn to the points on the surface of the sample
 

at which the magnetic field intensity is highest In this colloidal
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suspension, the particles are free to move and distribute themselves in
 

a manner determined by the field intensity distribution at the sample
 

surface By observing the variations in the density of the particles,
 

the spatial variation of the magnetic field (i e , the position of the
 

domain walls) can be determined.
 

This method has been applied also to investigations of the inter­

mediate state in type-I superconductors, using both ferromagnetic and
 

superconducting powders This application has been reviewed by Livingston
 

30
 
and De Sorbo In these observations, the normal or the superconducting
 

state domains are delineated by the magnetic powders More recently a
 

31

technique with which higher resolutions are possible has been reported
 

This technique is similar to one developed independently at SRI. It con­

sists of evaporating a ferromagnetic metal (iron, cobalt, or nickel) from
 

a refractory heater in a helium gas atmosphere onto a sample in the super­

conducting state The ambient pressure is extremely important and de­

termines the resulting particle size Fine particles with diameters down
 

to 80 A can be produced in this manner at gas pressures between 0 5 and
 

1 0 torr These particles are allowed to settle on the superconducting
 

surface and distribute themselves in a pattern determined by the local
 

magnetic flux density. Individual fluxoids as well as the fluxoid lattice
 
3 3
 

in type-II materials have been observed by this technique.
3 2'


The resolution necessary for the observation of fluxoids is defined
 

by the value of the parameter n from the GLAG theory and, therefore, by
 

the penetration depth and the coherence length The spacing, d, of these
 

fluxoids in the hexagonal array is described in terms of the bulk magnetic
 

induction, B, and is given by i/d 2 
= qB/po, where q is a geometric factor 

describing the packing density in the hexagonal array, and po is the flux 

contained in a single fluxoid For relatively pure niobium, having a
 

K of 1.2 at 4 20K, a fluxoid spacing of the order of 1,700 A is expected
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for inductions of approximately 700 G This represents about 20 magnetic
 

particle diameters and allows sufficient resolution for observation of
 

individual fluxoids This spacing increases as the magnetic induction,
 

B, decreases and larger spacings are possible with materials of higher
 

a due to the resulting lower values of Hcl In fact, spacings of the
 

order of 6,300 A are predicted for inductions of the order of 50 G.
 

In the Bitter technique, particle agglomeration is necessary for 

the observation of the distribution of the magnetic flux in the sample 

The conditions for this to occur have been determined by Kittel34 for 

the case of a colloidal suspension of particles He found that this dis­

tribution was field-dependent and given as P(H) = sinh (iH/kT)/(PH/kT), 

where P(H) is the particle density expected for a field H, p is the mag­

netic moment of a particle, k is Boltzmann's constant, and T is the ab­

solute temperature Analysis of this equation shows that usable particle 

densities are expected when (pH/kT) 3 0 For iron particles of 80-A
 

diameter at a temperature of 40K, this requires the local field to be
 

larger than about 4 G This condition is met since the field at the
 

fluxoid core is greater than the applied field.
 

Experimental Apparatus and Procedures
 

The experimental apparatus was designed so that samples at tempera­

tures between 2.0 and 5 0°K could be studied. The apparatus generally
 

consisted of a vacuum-tight thin-wall stainless tubular probe 24 in.
 

long X 1-1/4 in diam that was isolated from the liquid helium bath
 

The sample was mounted in this probe The probe was filled to one at­

mosphere pressure with helium gas after pumping and purging three times.
 

It was then inserted into the liquid helium bath after cooling by immer­

sion in liquid nitrogen. The probe fit (with 0 020-in clearance) into
 

a superconducting niobium wire solenoid (458 gauss/A)
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A schematic drawing of the inserted probe is shown in Figure 28
 

The sample (typically a disc 0 250-in diam and 0 005 to 0 020-in. thick)
 

is mounted at (i) and is thermally grounded to an OFHC copper sample
 

mounting block (7). This block can be removed from the end of the probe
 

for mounting and examination of the sample A vacuum tight seal is made
 

using a sheared indium gasket (8) The sample is optically shielded (2)
 

from the evaporation source (3). The evaporation source (3) is mounted
 

on the end of two 0.150-diam stainless steel rods (4) that act as power
 

leads for the evaporation source and are isolated from the probe walls
 

(6) by teflon spacers (12) The sample is positioned at the center of
 

the magnet. The whole system is immersed in liquid helium contained in
 

a double-wall glass dewar (i0).
 

A typical experimental sequence is as follows The sample is posi­

tioned as described above The helium gas pressure in the probe is re­

duced to 250 p. This initial pressure was determined empirically and is
 

the pressure necessary for particles of approximately 200 A to be formed
 

during the evaporation. The sample is allowed to sit in a constant mag­

netic field for one hour to ensure complete deposition of the ferromagnetic
 

powder so that no erroneous patterns will be observed because of powder
 

deposition during removal of the probe from the liquid helium. The sample
 

is then removed from the liquid helium and allowed to warm to room temper­

ature over a period of three hours The sample is removed and a 500-A
 

carbon layer is deposited. Subsequent observations are made on samples
 

in this configuration
 

Experimental Results
 

A total of 19 experiments were performed, eleven of which are listed
 

in Table 2 The remaining eight are not described in detail since they
 

were directed toward empirical definition of the experimental conditions
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(1) 	SAMPLE 
(2) 	 OPTICAL HEAT SHIELD 

(3) 	 COBALT WRAPPEDTUNGSTEN FILAMENT
 

EVAPORATION SOURCE
 
(4) STAINLESS STEEL POWER 

LEADS AND EVAPORATOR 
SUPPORT 

(5) 	NIOBIUM WIRE SUPER-

CONDUCTING MAGNET
 
(458 gauss/amp) 

(6) 	 STAINLESS STEEL THIN 
WALL EVAPORATION 
CHAMBER
 

(7) 	 ANNEALED O F H C 
THERMAL GROUND
 
SAMPLE MOUNTING 
BLOCK
 

(8) 	 INDIUM GASKET 

(9) 	 LIQUID HELIUM 
(10) 	DOUBLE WALL 

GLASS DEWAR 

(11) 	 MAGNET SUPPORT 
STRUCTURE
 

(12) 	TEFLON CENTERING 
PIECES 

TA-8043-1 0 

FIGURE 28 EXPERIMENTAL APPARATUS FOR BITTER PATTERN MEASUREMENTS 
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Table 2
 

BITTER PATTERN EXPERIMENTS PERFORMED ON DEFORMED AND ANNEALED NIOBIUM
 

Deposition Conditions 

Experiment Temperature Field Time Current Pressure Observations 

Number (OK) (gauss) (see) (A) (j1) Optical Electron Microscope 

8043-1 4 20 1,000 0 4 55 200- X X 

e= 0 1,500 

8043-2 4 2 1,000- 4 55 200- X X 
e = 0 20 500 1,100 

8043-3 4 2 1,000- 4 60 200- X X ­

= 0 20 500 350 

8043-4 4 2 1,500- 4 60 215- X X 
C = 0 75 500 2,000 

8043-5 4 2 1,000- 4 60 220- X X 
e = 0 07 500 700 

8043-6 4 2 1,000- 4 60 230- X X 
G = 0 07 800 750 

8043-7 4 2 1,000- 5 60 225- X X 
6= 0 20 800 400 

8043-8 4 2 1,000- 5 60 225- X X 
6 = 0 500 750 

8043-9 4 2 1,000- 5 60 200- X X 

e= 0 75 500 400 

8043-10 4 2 750 7 60 200- X X 

e= 0 700 

8043-11 4 2 1,000- 7 60 180- X X 
e = 0 75 0 350 



necessary to produce the correct helium gas pressure in the sample probe
 

and of the evaporation conditions necessary to produce the correct amount
 

of powder without unnecessary heating of the samples.
 

Samples deformed from 0 to 75% by rolling were examined Typically,
 

the external field was raised to 800 to 1,000 gauss and then reduced to
 

approximately 500 to 800 gauss. This sequence was used so that stable
 

flux distributions were established in the samples and so that the trapped
 

flux density in the samples exceeded the external field. The powder is
 

attracted to the sample and controlled experiments are possible.
 

All samples listed in Table 2 were examined using both electron
 

and optical microscope techniques, e.g , during optical microscopy, obser­

vations were made of sample 8043-5, a pure niobium sample deformed 7% by
 

rolling. A steady applied field of 500 gauss was maintained on the
 

sample after cycling the field to 1,000 gauss Since the lower critical
 

field of high purity niobium at 4 20K is nearly 1,500 gauss, the sample
 

was never fully in the type-II state and the mixed state structure was
 

defined poorly. The structure of the sample is shown in the low magni­

fication micrograph of Figure 29 Essentially, no microscopic structure
 

is obtainable in this picture
 

In Figure 30, the flux distribution at the sample edge is shown.
 

A quasi-intermediate state structure is apparent in this figure with the
 

regions of high flux density lying nearly parallel to the sample radius.
 

This structure is consistent with flux distributions obtained in other
 

type-II materials at fields less than the lower critical field
 

In Figures 31, 32, and 33, the flux distributions near the center
 

of the sample are shown. Two specific characteristics are apparent.
 

First, the flux distribution is nonuniform, but locally isotropic What
 

appear to be flux spots of nearly uniform size are shown. These consist
 

of high densities of individual quantum fluxoids. The local field
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FIGURE 29 MICROGRAPH OF SAMPLE STRUCTURE 
(SAMPLE 8043-5) 

64
 



loop 

FIGURE 30 	 FLUX DISTRIBUTION AT THE SAMPLE 
EDGE. Lines of high flux density show 
a quasi-intermediate state structure. 
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TA-8043-13 

FIGURE 31 	 FLUX SPOTS AND REGIONS OF RATHER HIGH 
FLUX DENSITY NEAR THE CENTER OF THE 
SAMPLE
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TA-8043-14 

FIGURE 32 FLUX DISTRIBUTION AT THE SAMPLE 
CENTER 
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TA-8043-15 

FIGURE 33 	 FLUX DISTRIBUTION AT CENTER OF SAMPLE. 
The regions of high flux density have a structure 
that is not fully resolvable in this micrograph. 
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intensity in these flux spots is of the order of 700 gauss, the equili­

brium induction for fields just above the lower critical field of nio­

bium Therefore, the fluxoid spacing expected is of the order of 2,000 A
 

which is beyond the resolution of optical microscopes. This is shown in
 

Figure 33 where obvious, though unresolvable, structure is seen within
 

the individual flux spots At a magnification of 50OX, 2,000 A is equal
 

to 0.1 mm Therefore, it is likely that individual fluxoids may be shown
 

in this micrograph because of some randomness in the powder deposition,
 

but the detailed structure cannot be resolved.
 

The carbon film was stripped from this sample using standard repli­

cation techniques and observed in the electron microscope in transmission
 

Essentially none of the deposited powder was removed and, therefore, no
 

data were obtained This problem was encountered in all the samples
 

investigated, and although the scant optical observations indicated that
 

interesting patterns were formed, we were unable to observe them in
 

detail.
 

The experimental problem of removing the deposited powder from the
 

sample surface for observation in the electron microscope limited the
 

observations in this work. Several techniques typically used to aid in
 

the removal of carbon films from sample surfaces were tried These in­

cluded etching, electropolishing, and deposition of a parting layer before
 

the formation of the powder pattern. None of these was successful, al­

though the inclusion of a parting layer did show indications of leading
 

to a solution to the problem
 

Conclusion
 

A series of experiments directed toward the direct observation of
 

flux distributions in type-II superconductors by a modified Bitter pat­

tern technique have been conducted The purpose of these experiments
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was to observe quantum fluxoid distributions in imperfect type-II super­

conductors and to correlate imperfections in the fluxoid lattice with
 

defect structure
 

Although optical micrographs indicated that several interesting
 

Bitter patterns were formed on the niobium samples, the inability to
 

strip the powder from the sample surface prevented us from observing
 

these patterns with the electron microscope We were unable to resolve
 

this problem with the time and funds available
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CONCLUSIONS
 

* 	The theoretical model formulated in this project is a good
 

approximation to the Ginzburg-Landau theory and is mathe­

matically tractable
 

* 	Flux pinning arises from a variety of metallic defects, each
 

of which contributes to the critical current density in a
 

different way. Three types of pinning were analyzed
 

* 	The peak effect was found to be caused by small dispersed
 

inclusions of material with a x value higher than that of
 

the host material
 

* 	A method for analysis of the % and To distributions in super­

conductors caused by deformation was formulated The method
 

uses experimental specific heat measurements. Using this
 

analysis, distributions of X and T in annealed and deformed
o 


niobium samples were determined
 

* 	Bitter patterns showing the location of fluxoids in pure
 

annealed and pure deformed niobium were formed. Problems
 

associated with replicating these patterns precluded
 

observing the patterns in detail using electron microscopic
 

techniques
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RECOMMENDATIONS
 

The theoretical model developed in this program provides a
 

sample, accurate means of calculating the properties of
 

type-IT superconductors and should be explored in more detail
 

The results of the flux pinning calculations should be com­

pared with experiments on carefully controlled samples The
 

peak effect analysis should be checked experimentally by
 

introducing a microscopic dispersion of a second material
 

with a x slightly higher than that of the host material
 

If the predictions can be verified, a method of controlling
 

the current density at high fields would result
 

The technique for analysis of specific heat data developed
 

in this program shouldbe applied to superconducting wire
 

and other practical materials The technique can aid
 

considerably in the understanding of the relationship between
 

the macroscopic performance and the microscopic metallurgy
 

of superconducting materials
 

The Bitter pattern technique used shows promise of providing
 

a direct measure of the pinning forces exerted on fluxoids
 

by different types of pinning centers. This information would
 

be valuable in assessing the accuracy of theoretical models
 

of the type developed in this program This technique should
 

be developed to its full potential.
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