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CHAPTIER I

INTRODUCTION

It is remarkable that interplanetary space provides simul-
taneously one of the best vacuums avalilable to man, a marvelous labora-
tory for the study of collisionless plasma, and phenomena that can be
represented by a continuum model. The reason for the latter is that
the solar wind, a tenuous high-speed outflow of fully ionized'and
magnetized gas from the Sun, pervades interplanetary space and behaves
in many ways in conformity with the equations of ordinary continuum
magnetohydrodynamics and gasdynamics. This is true with respect to
both large-scale irregularities in the solar wind itself and to the
interaction of the solar wind with planetary or lunar-sized objects.
This thesis will be concerned primarily with the development of an
appropriate theoxy based on fluid concepts that accurately represents
the large-scale features of the interaction between the solar wind and
the planets Earth, Mars, and Venus and that advances the present
’ underétamding of such phenomena. The basic approach of the presenta-
tion followed throughout will be first to revieﬁ and discuss observed
phenomena éhat are pertinent to this topiec, and then to formulate and
develop a mathematical model that will adequately represent the ob~
servations. - )

Extensive theoretical studies, specific calculations, and
detailed comparisons with obsexvations have shown that the interac-
tion of the solar wind and the Earth may be represented satisfactorily,
insofar as gross features of the flow such as density, velocity, tem-
perature, and magnetic field are concerned, by the standard continuum
equations of magnetohydrodynamics (see Spreiter et al. [1968] ox
Spréiter and Alksne [1969, 1970] for recent summaries). This thesis
extends the same line of analysis to objects in the solar system
ﬁhicﬁ have no significant intrinsic magnetic field, but a sufficiently
dense and electrically conducting ionosphere to stop and deflect the

solar wind before it is absorbed by the planetary surface or atmosphere.



Mars and Venus are known examples of* such objects. It is the plan of
" the present inve%tigation to base the mathematical analysis of these
interaction phenomena with nommagnetic planets on the equations of
magnetohydrodynamics representing the steady flow of a perfect gas
having infinite electrical conductivity as well as both zero viscos-
ity and thermal conduct;vity and then to proceed to an approximaté
solution through simplifications that are well known and tested in
previous applications to the interaction of the solar wind with the
Earth, Modifications ave introduced only as required because it is
the ionosphere rather than the geomagnetic field through which the
pressure of the planet is communicated to the solar wind,
In broad outline, the elements of the theory are as follows.
The incident solar wind is considered to be steady and supersonic, and
to flow in accordance with the equations of magnetohydrodynamics for
a perfect gas in which all dissipative processes, such as those asso-
ciated with shock waves and boundary layers, take place in the inter-
ior of thin layers idealized as magnetohydrodynamic discontinuity
surfaces of zero thickness. The ionosphere, or at least the outer
part of it that participates in the interaction with the solar wind,
is idealized as spherically symmetric and hydrostatically supported
plasma having infinite electrical conductivity. Since the two bodies
of plasma are of different origin, and have different properties,
they must be considered to be mutually impenetrable :i_nA' the idealized
hydromagnetic representation, and to be separated by a tangential
discontinuity surface. This surface is called the ionopause, since
it marks the outer boundary of the ionosphere. Once the problem is
formulated, the solution proceeds in two steps, just as in the analo-
gous problem for the Earth. W¥irst the shape and location of the iono-
pause 1s calculated for selected values of the parameters characteriz-
ing the solar wind and the ionosphere. Following that, the location
of the bow wave and the prépetties of the flow field are determined
from the equations of gasdynamics to which those of magnetohydrody-
namics have been simplified. It is found.that the results for a wide
range of ionospheric parameters may be brought into close cérrespondu

ence with those for solar-wind flow past the Earth's magnetosphere by



application of a simple geometric transformation of“the coordinates.
Finally, these theoretical results based on gasdynamic theory are .
compared with the obsexvations made by Mariner 5 as it flew by Venus
and Mariners 4, 6, and 7 as they flew past Mars, and implications of
the points of agreement and disagreement are discussed,

A more refined analysis of this interaction of the solar wind
with the Earth, Mars, and Venus in which the complete equations of
magnetohydrodynamics are solved without any simplification is then
carried out for the case of the magnetic field aligned with the flow
direction. Furthermore, for Mars and Venus the exact shape and loca-
tion of the ionopause is calculated using the hydromagnetic theor§
without introducing any approximations, Solutions of this improved
theoxry are computed, and the location of the bow wave and the proper-
ties of the fldw field are determined. For high Alfvén Mach number
this refined hydromagnetic solution, shows that the bow-wave location
and the flow-field properties are very similar to those of the
simpler gasdynamic theory, but for low Alfvén Mach numbers they are
strikingly different. This unusual bow-wave position'for flow past
the Earth has recently been confirmed by spacecraft measurements. A
detailed comparison of these two mo@els is carried out to. determine
the accuracy and usefulness of the simpler gasdynamic theory. Lastly,
the results of the hyéromagnetic solution are shown to be in very good
accordance with the observations made by Mariner 5 as it flew past
Venus although certain differences near the theoretical location of
the ionopause suggest the présence of a thick boundary layer.

The present version of the gasd§namic mbdel for the interac~
tion with Mars and Venué is based on a preliminary anal?sis originally
reported by Sprelter, Summers, and Rizzi (1970b). In addition, be-
cause of the similarity of the flow past Mars amd Venus with that
past the Earth as in@icéted.by the correspondence rule and alsoc be-
cause our more accurate hydromagnétic solution has direct application
to the interaction with the Earth, we éhoose, for the sake of unity,
to parallel our gasdynamic analysis for the interaction with Mars and
Venus with the gasdynamic.investigations already carried out in the

past years for the case of the Earth. ¥For this purpose we boxrow



heavily from the work of Spreiter et al. (1966a, 1968) and Spreiter
and Alksne (1969, 1970).
However, before embarking on the major topic of this thesis,

let us review the basic properties and idealizations of the solar

~wind itself in order to provide a background kmowledge of the inter-

planetary medium and also to illustrate the basic coherence of the
entire theoretical description of the solar wind and its interaction
with the planets., Much of this is repeated from Spreiter et al.
(1968).



CHAPTER II

THE SOLAR WIND

Although geomagnetic evidence (Chapman and Ferraro, 1931)
had long before led to the belief that ionized gas was projected all
the way from the Sun to the Earth and beyond, both occcasionally from
flares and more steadily in localized 'M-region' beams, the modern
discussion of the solar plasma begins with Biermann's (1951, 1957)
analysis of the behavior of ionized comet tails. An outstanding
photograph of a more recent comet, Lkeya-Seki, taken at the Mojave

TIracking Station is shown in figure 2-1. Clearly visible are the

i

MOJAVE TRACKING STATION
o GMT 1zh 55-59m
e ey

Pigure 2~1. Comet Ikeya-Seki, October 29, 1965
(Spreiter et al., 1968).

head of the comet near the hoxizon at the bottom of the photograph
and the extremely elongated tail. Although it had become customarxy
to ascribe the antisolar direction of cometary tails to radiation

pressure of sunlight, Biermann showed this explanation to be inade-
quate in many respects, and proposed in its place the concept of ar

approximately radial high-speed flow of ionized gas from all parts




It is not difficult to accept this explanation

the Sun at all times.
of a photograph like that of figure 2-1, since the general effect is

very remindful of smoke from a smudge pot or of a wind sock in a

strong and steady wind.
Although the solar corona is not normally visible because of

the overwhelming brilliance of the light from the photosphere, it is
clearly visible, even to the unaided eye, at the time of a total
eclipse of the Sun by the Moon. As a result, much of what is known

about the solar corona has been Jearned from observations made during
In more recent years, such

the few-minutes duration of such events.
observations, particularly of the parts closer to the Sun, have been

augménted by those taken at other times with the aid of a coromnagraph,

a telescope system fitted with special obscuring equipment invented
by Lyot in 1937. Figure 2~2 shows a photograph of the corona taken
! ley
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Solar corona during eclipse of May 30, 1965,

Figure 2-2.
from NASA CV-990 aircraft at 38,000 feet

(Spreiter et al., 1968).

during the eclipse of May 30, 1965, from a NASA Convair 990 jet air-
liner at 38,000 feet altitude (Smith et al, 1967). Cleaxly visible



beyond the disk of the Moon are the polar rays, similar in shape to
" the magnetic lines of force at the poles of a magnetized sphere.
More interesting from the present point of view is the large outward
extension of the corona from the equatorial and middle latitudes.
Although these plumes appear to extend only a few solar radii in this
photograph, other photcgraphs taken during other eclipses have showm
rather similar features visible to distances as much as five or ten
times farther from the Sun. Obsexvations indicate that the coronal
gas in these plumes is both somewhat hotter and many times denser
than over the poles.

Begimning effectively with the flight of Mariner 2 to Venus
in 1962, direct measurements between 0.7 and 1.5 astronomical units
(a.u.) have demonstrated beyond all doubt the existence of a continuous
flux of magnetized plasma from the Sum, essentially as predicted theo-
retically by Parker (1958) and termed by him the solar wind. However
even this detailed information from the spacecrafts characteristically
possesses substantially greater uncertainties than would usually be
experienced in laboratory measurements of the same properties of a
plasma. In particular, the rather low resolution of directiomnal,
temporal, and energy aspects of the plasma measurements resulting from
weight, space, power, and telemetry limitations imposed by the space-
craft tends to limit the quality of the determination of the velocity
distribution of the particles and ultimately, therefore, the know~
ledge of the bulk properties, such as density, velocity, and tempera-
ture, of the plasma. Further uncertainties arise from the non-~
Maxwellian and anisotropic charactexr of the velocity distribution of
the random motion of the particles. Nevertheless, a good understand-
ing of the broad features of the properties of the solar wind is now
in hand, and further refinements can be anticipated in the near future.

As a review, some’of the basic properties and idealizations
of the solar wind pertinent to our study are summarized in figure 2-3,
wh%ch,was originally presented by Spreiter et al. (1968). First of all
it should be recognized that it is the velocity of the solar wind and
not the planet's motion in its orbit around the Sun, that providés the

dominant contribution to the relative motion of the planet and the



interplanetary plasma. In many ways we may think of the solar wind
as a hypersonic gale that blows through interplanetary space. From
an overall point of view, the solar wind may be considered to result
from forces in the interior of the Sun which are too large to be con-
strained by the feeble pressure that can be imposed by the tenuous
cool gas of the interstellar médium. As the immediate source of the
solar wind, we may look to the unsteady conditions in the relatively
coof visible surface, or photosphere, of the Sun. Nere are to be
found a wide spectrum of acoustical, hydromagnetic, and internal
-gravity waves which grow tremendously in amplitude as they propogate:
upward into an atmosphere of diminishing density. The dissipation of
these waves, either directly or indirectly after their culmination in
shock waves, results in a substantial deposition of energy generallyh\
believed to be sufficient to account for the high temperature of the
solar corona relative to the photosphere. Since the energy is being
deposited.in the form of heat at a greater rate than can be transported
away by radiation of thermal éonduction, convection in the form of the
solar wind ensues. This process is believed to account for both the
2 x 106 °K temperature of the corona, compared with the 5800 °K
temperature of the photosphere, and the outward convection that leads
ultimately to the supersonic solar wind at greater distances from the
Sun. The average flow starts gradually with insignificant velocities
of the order of 1 km/séc or less in the lower corona, and increases
steadily with increasing distance from the Sun until its ultimate
velocity is attained beyond a few tens of sclar radii. The expanding
coronal gas carrvies with it the solar magnetic field, stretching the
lines of force outward through the solar system and enhancing the
strength of the interplanetary magnetic field there while generally
maintaining direct connection to the Sun. Because of the rotation of
the Sun, the magnetic lines of force wind in spirals in the plane of
the ecliptic making, on the average, an angle of about 45° with the
direction from the Sun at fhe orbit of the Earth,.

Representative values for the observed properties of the solar
wind in the vicinity of the Earth's orbit are outlined in the box in

the center of figure 2-~3. The bulk velocity \/ of the solar wind has
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Figure 2-3. The solar wind, a hypersonic gale in
interplanetary space (Spreiter et al,
1968).

been observed to vary between about 275 and 850 cm/sec, with the lower
values usually associated with the quiet solar wind and the higher
values with disturbed conditions in space. The number density n
of the protons in the solar wind, which is substantially more diffi-
cult to determine from the plasma-probe data than \/ , is usually
found to be between 1 and 10 cm~3 in the gquiet solar wind and as much
as an order of magnitude greater during disturbed times. The intensity
of the magnetic field B is usually between about 3 and 7 TCOLY =
103 gauss), but may also be substantially greater during disturbed
times, All of these quaﬁtities have been monitored with varying de-
grees of exactness and completeness for several years, and are known
to display substantial variations with time and location. The chemical
composition is principally ionized hydrogen with a small mixture,
usually about 4 percent, but sometimes more than 20 percent, of helium
nuclei (Hirshberg et al., 1970).

At great distances from the Sun, the solar wind must merge
somehow into the interstellar medium. Although the spatial distribu-
tion of interstellar gas, and its degree of ionization, is both very

. non-uniform and uncertainly determined, temperatures and demsities of
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the order of those indicated in figure 2-3-are frequently quoted (see,
e.g. Kaplan,[1966]). It is generally presumed that the region of super-
sonic¢ solar-wind flow terminates with a shock wave and that the flow
beyond is subsonic. .The location of this terminal shock wave is usually
estimated to be between 50 and 100 a.u., although Brandt (1962) has
suggested, on the basis of an analysis of-the directions of comet tails,
that it may be as near as 2 a.u. (see Betton et al. [1963] and Brandt
[1967] for later comments). One aspect of this terminal shock wave
that does not appear to have been adequately considered in these dis-
cussions is that the temperature attained by the gas behind the terminal
shock wave is far in excess of the temperatures quoted above fox the\
interstellar medium, Whether the gas cools gradually as it continues
to f}ow subsonically away from the Sun by means of some process such'
as radiation not normally included in the analysis of the solar wind
or remains at high temperature throughout a spherical shell terminated
at -still greater heliocentric distances by a second shock advancing
through the interstellar medium or behaves in some other manner alto-
gether remains essentially unknown. Tt may be, on tﬁe other hand, that
the supefsonic solar wind terminates without the intervention of a
shock wave in the mafner suggested by Faus (1966) through the action
of non-adiabatic transfer of kinetic energy to the interstellar medium
in a roughly constant-pressuxre process that takes place between about
1 and 3.5 a.u., Corresponding uncertainties plague any discussion of
the interaction of the solar wind with objects beyond the orbit of Mars.
Ultimately, at greater distances from the Sun, the subsonic
solar wind must interact in some way with the interstellar gas. Al-
though non-uniformities in the spatial distribution and uncertainties
in the measurements dre great, fluid considerdtions suggest the develop-
ment of an interface, the heliopause, separating the solar and intex-
stellar plasma, However, so liktle is lmown about the nature of the
interaction and the properties of the gaées involved that even the
existence of the heliopause must be regarded as hypothetical.
In spite-of the obvious deviations from spherical symmetry in
the solar corona, and presumably in the solar wind as well, the theory

of the solar wind is generally based for reasons of mathematical
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tractability on the assumption of radially symmetric flow. This
theory was initially presented by Parker (1958) and summarized in
more developed form by Parker (1963, 1965), 1Liist (1963, 1965), )
Scarf (1964, 1970), Dessler (1967), Hundhausen (1968, 1970}, and others.
Perhaps the most fundamental concept is that of treating the solar
wind, even as it becomes extremely rarefied far beyond the orbit of
the Earth, as an ordinary continuum gas. Thus to a theoretician, a
very significant finding of plasma and magnetic-~field measurements in
space is the degree to which not only the broad features of the solar-
wind flow, but also much of the small-scgle features, can be repre-
sented by the continuum equations of fluid 'dynamics. Although it is
apparent that not all matters of significance can be treated in this
way (for example the anisotropy of the velocity distribution), the
amouﬁt of understanding that is possible is truly astonishing, par-
ticularly in view of the fact that the solar-wind plasma is one of the
most rarefied gases now accessible to direct measurement. However,

it was always known that the fluid description could not be justified
in terms of ordinary Coulomb-collision effects alone. In his earliest
papers Parker pointed out that as the gas streams away from the Sun
into the supersonic region, the collisional mean free path must rapidly
increase so that near the Earth it is on the order of 1 a.u. Neverthe-
less, in these initial discussions Parker also provided a general jus~
tificétion for the use‘of fluid equations beyond the dense collisional
region. He pointed out that some microscopic plasma instabilities '
must naturally develop and that associated wave-particle scattering
then produces a thermalization mechanism leading to a finite mean

free path and effective fluid transport characteristics. It is now
quite clear that plasma turbulence generates partial thermalization at
1 a.u. Apparently the microscopic scattering mechanism produces ran-
domizing and isotropizing effects so that the gasdynamic equations for
conservation of mass and momentum remain appropriate for descriptions
of the main flow properties, at least out to 1 or 2 a.u. However,
microscopic interactions may play a significant role in energy trans-
port and energy balance (see Scarf [1970]jfor a review of microscopic

phenomena in the solar wind). Clearly these phenomena are important
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in the study of the microscopic¢ structure, but the equations of
fluid dynamics appeaxr to be appropriate for the description of the
macroscopic features of the solar wind and its interaction with the

planets Earth, Mars, and Venus.
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CHAPTER TIIY

BROAD FEATURES OF THE OBSERVATION:

Data acquired in recent years in the vicinity of the ERarth,
Moon, Mars, and Venus have ‘disclosed three essentially different types
of interaction with the solar wind as illustrated in figure 3-1. TFor
the Earth (Ness et al, 1966; Spreiter et al., 1968; Binsack, 1968), the
geomagnetic field prohigits the solar wind from approaching nearer than
about 10 Earth radii under oxdinary circumstances. The shielded region,
the magnetosphere, acts as an obstacle in the supersonic flow of the
solar wind, and a bow wave forms a few Earth radii upstream of the mag~
netosphere boundary, ox magnetopause. Neither Venus nor Mars has a
significant magnetic field, but the electrical conductivity and demsity
of the upper ionosphere of both Mars and Venus are sufficiently great
that thé solar wind is prevented from flowing directly into either the
planetary surface or the lower absorbing levels of the atmosphere
(¥jeldbo and Eshleman, 1968, 1969). The solar wind is thus deflected
around the ionosphere, and a bow wave is formed upstream of the planet,
similar in many ways to that associated with the Earth. Aside from
evident differences in the underlying physical processes at the boundary
surface between the ionosphére and the solar wind, the ionopause, the
principal difference between the flow fields around Mars oxr Venus and
Earth is the size of the cavity. As illustrated in figure 3~1, the
ionopause is wrapped much closer around Mars and Venus than the mag-
netopause is around the Earth, the nose being at an altitude of about
500 km for Venus and probably about 155 to 175 km for Mars, compared
with about 60,000 km for the Earth. ;

interaction of the solar wind and tﬁe Moon is very different
because of the lack of either a sensible magnetic field or ionosphere
to-deflect the incident flow (Lyon et al., 1967; Ness et al., 1967;
Sﬁreitergg al., 1970a). The particles of the solar wind thus proceed
unchecked until they contact the lunar surface, where they are effectively

removed from the flow. As a consequence, no bow wave forms, and the



' ' ' o " BOW WAVE
STREAMLINE P .
e -
SOLAR WIND ] T :

M>>1
MA»I

p~B2/87

=
ALINED FIELD T

PPN

SVENUS T
2 OR

S5 JONOSPHERE

STREAMLINE —

STREAMLINE \

IONOPAUSE

BOW WAVE

o s MAGNETOPAUSE —
STREAMLINE \
. NONALINED FIELD —

Figure 3-1. Principél features of solar-wind flow past the
) Earth, the Moon, and Mars or Venus (Spreiter,
Summers, and Rizzi, 1970b).

BT



15
principal features of the flow field are associated with the closure
- of the lunar wake, or cavity in the solar wind (Colburn et al., 1967), -

that extends downstream from the Moon as illustrated.
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CHAPTER IV

FORMULATION OF FLUID REPRESENTATTION

Just as in the theory of the solar wind itself, the Iunda-
mental assumption underlying nearly all theoretical analyses of large-
scale ‘features of the interaction of the solar wind with the planets
is that the average bulk éroperties of the flow can be described ade-
quately by the continuum.equations of fluid dynamics. That this should
be so is not at all obvious since the mean free path of the particles,
based on Coulomb interactions, is of the order of half the distance
to the Sun at the orbit of the Earth. Indeed, theoretical justifica-
tion is essentially qualitative at the present time, and usually con-
sists of veferring to randomizing and isotropizing effects of small
irregularities, much like a form of plasma turbulence, which are always
present in the solar wind. The details of these prccesses are not well
understood at this time, and it is fair to state that the real support
for the use of the continuum-fluid model is provided by the outstanding
agreement between results calculated in this way and those actually
measured in space. Moreover, the difficulties in solving the mnonlinear
continuum equations and the richness of the phemomena contained within
this theory are sufficiently great so tha? it is woxthwhile to explore
the consequences of this model before introducing additional complica-
tions. .

1f an ionized gas like the solar wind moves in a magnetic
field, electric fields are induced in it and electric currents flow.
The magnetic field exerts forces on these currents which may consider-
ably modify the flow. In turn the currents themselves modify the mag-
netic field. Thus the interaction between the magnetic And fluid
dynamic phenomena jis complex, and the flow must be examined by combin-
ing the magnetic-field equations with those of fluid dynamics. Hence
the appropriate mathematical model capable of description of this phe-
nomena is provided by the standard equations of magnetohydrodynamics

(see, e.g. Landau and Lifshitz [1960]).
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For explicit application to the study of the solar wind's
interaction with planets, these equations can be simplified by treat-
ing the flowing plasma as a steady, calorically perfect, and dissiT
pationless conducting gas. The wind is known to fluctuate in time,
but very few.theoretical analyses of these effects have been carxried
out as yet. There is little doubt that such studies must be made if
many important dynamical properties of the interaction are to be under-
" stood. However, in at least some instances, observations (Spreitex
and Alksne, 1969; Binsack and Vasyliunas, 1968) and theory {(Spreiter
and Summers, L965) suggest,that‘many features of the flow are .able to
respond rapidly enough to achieve an essentially steady-state equilib-
rium within a few minutes after a sudden change in the solar wind.
Conséquently, the steady-state solution for conditions existing at a
given time should adequately represent the flow properties of the wind
at that time. Similarly, the assumption thai the solar wind is pex-
fectly conducting, inviscid, and nonheat conducting-is also not strictly
valid, but the full dissipative equations are much more complicated,
and as yet a solution cannot be achieved. Hence, in order to fully
deveIob and examine the fluid theory, our model is restricted to the
ideal equations in which all dissipative processes, guch as those as-
sociated with shock waves, boundary layers, and curvent sheets, take
place in the interior of thin layers idealized. as magnetohydrodynamic
discontinuity surfaces of zero thickness. Finall&; even though some
of its properties are known to be anisotropic, the solar wind is taken
to be a calorically perfect isotropic gas primarily because its high-
temperature and low pressure satisfy the conditions for a perfect gas,
but also because a more detailed theory of the thermodynamic equation
of state for a two-species ionizedngés.eﬁbedded with a magnetic field
has not been developed yet. The theoretical justification for these
three assumptions is essentially heuristic in nature, and, like thg
original postulate of representing the solar wind by a fluid model,
the real support derives from the fact that extensive theoretical
studies, specific calculations, and detailed comparisons withh observa-
tions have shown that the interaction of the solar wind and the Earth

has been represented satisfactorily, insofar as gross features of the
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flow are concerned, by this model (see Spreiter et al. [1968] or

~ Spreiter and Alksne [1969] for recent summaries). Moreover, recent
investigations (see Spreiter et al. [1970alfor an extensive account)
have shown that the same is true for the Moon, provided that boundary
cenditions are applied at the lunar surface that correspond to the
Moon absorbing or neutralizing all particles of the solar wind on

impact.
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CHAPTIER V

FUNDAMENTAL EQUATIONS

The following fundamental differential equations of magneto-
hydrodynamics for the steady.flow of an isotropic and calorically
perfect gas having infinite electrical conductivity as well as both

zero viscosity and thermal conductivity (Spreiter et al., 1966a)

= 0

1<

I

+

PV -\ + Vp “gF B X eunB

y) O dw§ =0 (5-1)

e
=~ g xeurB
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Curi(B

V-7)S =0 S-S =0yl p/po
v PR

provide the basis for all theoretical mattexrs to be discussed in thi
thesis. 1In these and the equations te follow, the symbols f) > P
S , and l{ refer to the density, pressure, entropy, and veloecity
of the gas; and !3 refers to the magnetic field expressed in terms
gaussién units.l (:p and C,, are constants fepresenﬁing the specif
heats at constant pressure and constant volume. The quan?:ity 7 =

Cp¢3v 1s the ratio of specific heats and is equal to N f(w+2)

%

lThe use of this standard notation contrasts with the practice
in the much older science of geomagnetism of using the symbol H to
represent the Earth's magnetic intensity. Discussion of this property
does appear in somé space-research papers but causes no confusion
bécause the magnetic permeability of the solar wind is very mearly -
unity and hence in gaussian units B -Fi . These twe quantities will
be used interchangeably in this thesis in order to avoid making any
alteration of original sources.
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where N is the number of degrees of freedom of the gas particles.
On first thought the choice of the value 2 for the ratio 'a/ of
specific heats may seem justified in a variety of ways, generally
centering around the presumed twa-degrees-of—freedom nature of the
interactions of charged particles in a magnetic field. This argument
weakene, however, when consideration is given to the extremely irreg-
ular character of the magnetic fields observed in space, particularly
downstream of the bow shock wave. TIn fact, the supposition of apply-
ing hydromegnetic theory to the flow of solar plasma around the planets
involves the assumption of an isotropic pressure, and the whole con-
cept appears more internally consistent if the particles are considered
to behave as if they have three yather than two degrees of freedom.
Thus for a monatomic gas, such as either of the two leading constitu-
ents of the solar wind, atomic hydrogen and helium, N = 3 and 2r =
5/3 . The Subscriﬁt o refers to conditions at an arxbitrary refer-
ence location in the flow field,

Important auxiliavy relations for the temperature T , speed

of sound 4 , internal energy € , and enthalpy N are as follows:

0 = pRT/m — nkT
a=varlap =~7pp =VIRT/M (5-2)

e c, T h:cpT:e + p/p

where R = Cp—-CV)fﬁ = 8.314 x 107 erg/hK is the universal gas
constant, and M .is the mean molecular weight nondimensionalized so

that fh = 16 for atomic oxygen. For fully ionized hydrogen plasma,

M is thus 1/2 , and N = number of particles/cm3 = 2Ny where Np is
the number of protons/cm3 , and k = Boltzmann's constant = 1.38 x 10-16

erg / °K . The relationship between f) eand N is easily seen to be
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f]::inPle where Mp = 1.67 x 10 24 gm 1s the mass of a proton.
It is also fully equivalent and convenient for some purposes to re-
place the entropy equation (V ~E)-S = O in equations (5-1) by the

following energy equation:

R? __- _(B.\/)@ =0 (5-3)

N\

Implicit in the relations of equations (5-1) are two impoxr-
tant nondimensional parameters that characterize the flow at any point,

the Mach number M and the Alfvén Mach number fvh\ defined by

N = V. _ V. . '-MA:-—\—/-: \Y h o
° NP AT BYamo T

where Jd represents the speed of sound defined in equations (5-2),

A the speed of an Alfyén wave which will be discussed later, and
V = |>ﬁ represents the speed of the gas.

Although only first derivatives appear in the éystem of
differential equations (5-1), the neglected dissipative terms are
deseribed by second derivatives, Their neglect requires that the
gradients be small. In-magnetohydrodynamics, as in gasdynamics, how-
ever, compressions tend to coalesce and steepen into shock waves of
such small thickness that they can be Fonsidefed virtual discontinui-
ties for many purposes, Iﬁ this way gfadienté tend to become very
large, and continuous motions tend to break down some-place if they
involve compressions., In addition, attraction between like electric
curren%s tends to cause distributed currents to collapse into thin
sheaths, across which the magnetic field changes nearly discontinuously.
Mathematically, continuous solutiong of the dissipationless equations
cease to exist beyond the point of breakdown, and the flow is no longer
governed solely by the differential equations (5~1)., Mass, momentunm,
magnetic flux, and energy must still be conserved, however, and con-

servation relations provided by integrals of equations (5-1) and (5-3)
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must hold between quantities on the two sides of any such discon-
tinuity. The conservation equations for magnetohydrodynamic discon-
tinuity surfaces are (see, e.g. Landau and Lifshitz [1960])

van] = O

-

p\/n (P + BZ/x 7R Bn&*/%’?'] =0
BY-Bw =0  [B]=0 ¢

/O\/n(h SV2) 4 VeBY —Bn VB = O

Unit vectors normal and tangentlal to the discontinuity surface are
designated by A and T , and components of YV and g in these
directions are indicated by subécripts N and T . The square
brackets are used to indicate the difference between the enclosed
quantities on the two sides of the discontinuity, as in Eﬂ = Q- Q
where subscripts O and | refer to conditions on the upstream and
downstream sides of the discontinuity. These relations are frequently
supplemented by the statement that there is a current sheet flowing
along the discontinuity surface and that the value )J* of this cuxr-

rent per unit width is given by

curlB 5-6
b 477-' i o ( )
It is now well known CLandgu and Lifshitz, 1960; Jeffrey and Taniuti,
1964; Jeffrey, 1966) that five classes of discontinuities are described
by the conservation equations (5-5), but for the sake of completeness

and unity we repeat some of the mathematical development establishing

the basis for the existence of these different classes. The particular
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version presented closely tollows that of Spreiter et al. (LYbba).
Friedrichs and Kranzer (1958) originally developed an alterna-
tive form for the conservation equations that affords a quick survey
of the possible types of discontinuities and some of their properties,
and is particularly useful in the determination of asymptotic proper-
ties of weak discontinuiyies. It is based on extensive uge of mean
values (@) = (@ o Q ) /2 , and the new variables W = | / o and
m= PV, representing the specific volume and the mass flux across the
discontinuity. In texms of these variables, the relations given in

equations (5-5) become

(5-7)

mwf) + @M -sl=0  [B]=o0

m [e"'fawﬂ,Bl] + ﬂN}((P)-&-!%‘(Bb - Bﬁ/BT()‘—- _!__W§7]0<§‘> =0

The last of these can be replaced by

[e;r(p) w] LwWeS) = o | (5-8)

If the mean quantities are considered known, there are thus eight
equationé in eight scalar variables BH} ,; [pﬂ . FJ] . 8] .
and {e] since the condition ﬁBn = (0 always holds.

Since € appears in only the last relation of equations (5-7),
we can conslder alternatively the seven scalar equations in seven
variables defined by the first three relations of .equations (5-7).

They are all linear homogeneous equations, and solutions exist only if
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their determinant vanishes. Equating the determinant to zero yields

the following equation for the mass flux M

. BZ L Kw 8\ L, [PlBe |
Wy el = 222 KWy %mﬁ[p] —i—% m—%ﬁ% =0 -9

With the density po. upstream of the discontinuity given, this equa-
tion can also be considered as an equation for the normal component
of the incident velocity \/no .

Tmmediately we see that M= 0 is a solution to equation
(5-9) and that three additional plus-minus pairs of real woots exist
for whichi M 0 . To follow Landau and Lifshitz (1960) and Spreiter
et al. (1966a), discontinuities that lie along streamlines (M= (OV'n
— Q) are called tangential discontinuities or contact discontinuities
according to whether or not the normal component of the magnetic field
Bn vanishes. Discontinuitias across which there is flow (h‘]l-q 0)
are divided into categories. Those associated with the roots M —=
:tBn/(z%‘T( <W>)!'rz are called rotational discontinuities, although they
ate frequently termed transverse or intermediate shock waves by many
authors. The term shock wave is reserved here, however, for the dis-

continuities associated with the four remaining roots,

A. Tangential Discontinuities

Tangential discontinuities are defined as those in which both
M and Bp vanish. For these conditions, equations (5~5) and (5-7)
yield. the following relations between the quantities on the two sides

of the discontinuity surface . '

Vn=8p=0 [:-JJ‘{': O [%1—] =0
(5-10)

F] >0 [P + BZ/BW] =0
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Although the velocity and magnetic field are required to be parallel
to a tangential discontinuiiy, these relations show that the density
and the taﬁgential components of the velocity and magneiie field .may
have jumps of any magnitude. The other thermodynamic quantities, such
as temperéture, entropy etc., are also discontingous in accoxdance
with their definitions provided in-equations (5-2). The sum of fluid
pressure [ and magnetic pressure Eﬁ/gq{ must, however, be con-

tinuous across a tangential discontimifv,

B. Contact Discontinuities

The properties of contact discontinuities are given by solv-
ing equations (5-5) and (5-7) with M= 0 and Bpx O . They are

as follows:-
‘Vp=0  BpxO [V] =[8}=[P]: O - [{0] X 0 (5-11)

These relations show that the fluid not only flows parallel
to the contact discontinuity in a steady flow, but that the velocity,
pressure, and magnetic field must be continuous. The density, and
therefore thé temperature, entropy, and other thermédynamic variables,

may have any discontinuity however.

C. Rotational Discontinuities

The properties of rotational discontinuities are determined by
solving equations (5-5) or (5-7) with M = mr:iBh/(iTL’]T<W> )Ua .

They are

Vn = #Bnf(1 )2 [g,,.} ~ (B /( 491 2

(5-12)

These relations show that only the tangential component of the velocity
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and the direction of the magnetic~field vector change across a rota-
tional discontinuity. The flow-velocity componeﬁt Vi, normal to a
rotational discontinuity is equal to the phase velocity of an Alfvén

wave in the direction of the wave normal, and is morcover independent

. of the strength of the discontinuity. There is thus no tendemcy for a

series of weak rotational-discontinuities in a homogeneous medium

either to overtake one another and coalesce into a sﬁock wave or to
spread out as in an expansion fan. Although there has been comsiderable
discussion of possible effects of traveling rotational or Alfvén waves
in the magnetosphere and in space (see, e.g. MacDonald [1964] for a
review), and it has been suggested (Levy et al., 1964) that the mag- -
netosphere boundary may be resolved into a rotational discentinuity

and a slow éxpansion fan, the role and importance of stationary rota-
tional discontinuities in the steady-state flow of solar plasma past

the planets has not been established.

D. Shock Waves
The mass flux M through magnetohydrodynamic shock waves

satisfies the equation

pm® NP - @arim? ~ [PB (W] = 0

obtained by setting to zero the last factor of equation (5-9),
Spreiter et al. (1966a) showed that equations (5-7), together with the
further requirement stemming from the entropy considerations that all
shock waves are compression waves, yields the following relations be-

tween the quantities on the two sides of such a shock wave

= = TUD. o

12 B m[w]Bh(g.)a,rr
[B] = Z <,E}>[§] [\l'i”] — _(W>m2—- Et?h//;r’ff
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[Vn] :—[W]m [W] <0 [p] >0 (5-14)

wher.e N represents any of the four woots of equation (5-13). The
first of these, they pointed out, indicates that the sum 2<By>
and difference [@t] of the tangential components of the magnetic
fields on the two sides of the shock wave lie in either the same or
opposite directions. This requires the shock normal /I‘\I and the
magnetic~field vectors on the two sides of the discontinuity to be
coplanaxr. The velocity relations also show that the tangential com-
ponent of the velocity discontinuity [\J'i'] - r\!+l — Mfo is in the
same or opposite directions as <’\E§.;,> and therefore in the same
plane as ,%‘ and Bo

Spreiter et al. (1966a) discussed the properties of shock
waves characterized by the various voots for [N by rewriting equation
(5~i3) to read -

I+ ) [\""])(<W>m2“8$‘/ M] = it (B (5-15)

Since the roots M '= My= iBh/(L{‘ﬁ'(W>)‘f2 were considered before,
it follows that mMp*> —[p]/[W] if mt= mg‘ > mMy® , and conversely
that m§< —[P]/[W] ifF mP=mi < m% .  Shock waves character-
ized by the larger value m+. for the mass flux are called fast, and
those by the smaller value Mg slow. The mass flux across either

class of shock wave must therefore satisfy the inequalities
Mme > Mr > Mg My z—[p]/[v\!] > Mg (5-16)

It follows immediately from equations (5-14) and (5-16) that @.’f
and ‘B* increase through a fast shock wave and decrease through a
slow shock wave. o

Solutions of equations (5~5) or (5-~7) are determined by

straightforward but lengthy algebraic manipulations, details of which
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" are available in several books (see, e.g. Anderson [1963] or Jeffrey
and Taniuti [1964] for extensive accounts). It is important to recog-
nize, however, that these equationg possess extraneous solutions that
cannolt occur in nature. These solutions were originally referred to

as unstable, but this term has now been generally abandoned since it
has become known that this is not an ordinary instability growing
exponentially with time, but rather a sudden disintegration of the
shock wave. Alternatively, as noted by Spreiter et al. (1966a),

a solution containing an extraneous shock wave does not have neigh-
boring solutions corresponding to a small change in the boundary con-
dition which requires an arbitrarily small angle or rotation of the
plane containing the magnetic field. Identification of the physically
relevant solutions cammnot be made on the basis of entropy considera-
tions aléne, as in ordinmary gasdynamics. It is necessary in magneto-
hydrodynamics to consider how a shock wave could evolve through waves
of small amplitude overtaking one another and coalescing. The appro-
priate requirements for a physically relevant solution can be stated

in general mathematical texrms by a palr of evolutionary conditions (see
e.g. Jeffrey and Taniuti [19647). A more physical description that
leads to the same conclusions has been‘ given hy Kantrowitz and Petschek
(1964). From either point of view, it is found that no additional con-
ditions need be imposed for fast shock waves and that the conserva-
tion equations (5-5) possess extraneous solutions only: for slow shock
waves, Fortunately, the extraneous solutions can be easily recognized
by the fact that they indicate the tangential component of the mag-
netic field to be directed oppositely on the two sides of the .discon=-
tinuity, a physical impossibility in all but certain degenerate cases.
Since the first of equations (5-14) shows that the tangential component
of the magnetic field cannot reverse direction through a fast shock
wave, one has the general result that the tangential components of the
magnetic field on the two sides of any physically relevant shock wave
must always lie in the same direction. Spreiter et al. (1966a) pointed
out the further consequence that the flow velocity must be greater than
the rotational wave speed on both sides of a fast shock wave and less

than the rotational wave speed on both sides of a slow shock wave.
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Thus a fast shock wave overtakes a slow shock wave, and conversely a
.slow shock wave camnot overtake a fast shock wave. In application
to the supersonic flow of the solar wind past either the Earth or Mars
or Venus, we therefore anticipaté that the bow wave would be & fast
. magnetohydrodynamic shock wave. However, slow shock waves, as well as
additional fast shock saves, can be expecied in the flow downstream

of the bow wave.

E. Weak Shock Waves

The relations given in equations (5-13) and (5-14) simplify
for weak shock waves to the point where they can be expressed explicitly
in terms of the sound speed & , the Alfvén speed A , and its com~
ponents Ap and ‘A; normal and tangential to the plane of the dis-

continuity surface. The latier are defined as

A = \/BY4Tp
Ah:\/Bi/qfn’p = A-icos 9| (5-17)
Ay=\[Bi /a0 = Alsin o

where © refers to the angle between the magnetic field B and the

. shock pnormal N . ¥For such shock waves, the jump [Q] in every
quantity Q is much smaller than the quantity itself, and the desired
simplification can be accomplished by simply removing the mean value
brackets and replacing, for clarity of expression, the difference
brackets with & , i.e. <Q> = Q@ and [G] =4Q . Equation (5-13)
may then be solved to_. yield the following expression for the normal

velocity companent Vn of the incident stream:

_ \/2
V= * -é-[az o i flar o AR LHﬂaA?‘!ji (5-18)
f
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With Vpn taken positive, the larger of the two values obtained by
using the plus sign before the inmer radical pertains to the fast
wayve and the smaller to the slow wave.

Equation (5~18) coincides with the corrésponding expression
for the velocity component normal to the characteristic surfaces of
equations (5~1) and can be recognized, upon changing to a reference
frame fixed in the fluid upstream of the .shock wave, as the appro-
priate expression for the phase velocities of fast and slow traveling
hydromagnetic plane waves, The propagation of such waves is conveni-
ently described graphically by the familiar normal-speed or Friedrichs
I diagramé, examples of which are shown in figure 5-1 originally pre-
sented by Spreiter et al. (1966a) for A& =42A , @ =A , and
=] :A/Af'é' . In these diagrams \j, is plotted as a function of
angle B ©between the shock normal and the magnetic field ‘ﬁ‘ (here
taken parallel to the horizontal axis). The.outer curve in each dia-
gram represents the results for the fast wave, and the inmer curves

the results for the slow wave.

© asJZA o=a azANZ

Figure 5~1. Normal speed or Friedxrichs I
diagrams for propagation velocity of
weak plane waves (Spreiter et al., 1966a)

Also included are dotted curves representing the normal velocity of a
rotational discontinuity defined by equation (5-~12). TFor ease of

illustration, the diagrams were drawn for the plane containing the
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wave normal and the magnetic~field vectors. The corresponding results
for more general orientations are repreéented by the corresponding
three~dimensional surfaces formed by rotating the plane curves of
figure 5-1 about the 8 = 0 axis. These plots illustrate that, for
any direction © , the speed of a rotational wave is intermediate
between that of the fast and slow waves. Further, Vn for the fast
wave is-equal to the larger of & and A when the wave normal is
parallel to H (©® = 0 ), and to (t:'i?‘—l—\Aa)i/z when .the wave normal
is perpendicuﬁ]iar to }:1 (@:—-’g—) . For the slow wave, \n vanishes
when €= 7'{'/2 , and is equal to the smaller of c'l_ and A when
©=0 . If A approaches zero while & remains finite, the sur-
faces representing the slow and rotational waves disappear and the
surface representing the fast wave approaches a sphere of radius 4 .
Under these cireumstances, the équations of magnetohydrodynamics ap-
proach those of gasdynamics, and calculations based on aerodynamic
methods should provide a good approximation for most applicatioms. If,
on the.other hand, 4 approaéhes zero while A remains finite,.the
surfaces representing the slow wave disappear while the one represent~
ing the fast wave approaches a sphere of radius A, and thosge repre-
senting the rotational discontinuity remain sphexes of radius ,A//Z
as always. Although equation (5-18) clearly shows that the normal
velocity of fast and slow waves are invariant with interchange of
values for & and A and that the former become independent of di-
;ection © a3 & vanishes, the rotational discontinuities retain a
finite normal velocity, and neither the differential equations nor the
shock relations of magnetohydrodynamics approéch those of gasdynamics
in this limit (except in a special and restricted sense for flows in
which the velocity and magnetic-field vectors are parallel at all
points [Kantrowitz and Petschek, 19647).

Spreiter et al. (1966a) indicated that the jump relations
given in equations (5-14) similarly reduce in the limit of weak shock

waves to
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VE -
By = —Z—gi,;if dBp=0 §B°=2B-4B
VE-AR P ~
(5-19)
Vh ALA B+ B :
s\ = | D) | d\h = Vi dp

Vi - AN P | [B+] Bn)

where the quantity in the last bracket of the expression for 4\

~
gives the dixection and sign of that quantity. The corresponding ex-
pressions for the change in pressure [P and entropy S across a

weak shock wave are (see, e.g. Jeffrey and Taniuti [1964])

2 s v

f?
BE-0F, BE-0W (4o} o ..,
4 oA (Ve-a3)T1\ 2 (5-20)

éP
P

_ o ste-1) [y Vot 4Pl 4 ...
S I T E-RrE) | p +

The latter relation shows that the change in entropy through a weak
shock wave is proportional to only the third power of c&O/f? s
and hence it is vanishingly small for weak waves. Physically, this
indicates that infinitesimal expansions, as well as compressions, can
be considered without wviglation of the entropy requirement. Thus JIP
can be either positive or negative. Moreover, equation (5~20) shows
that although the change in pressure through a weak discontinuity is
proportional to J%?ﬂo the first term in which ‘the magnetic field
appears is proportional to - (cfﬁ??o]a . The changes in entropy and

pressure through magnetobydrodynamic expansiong or compressions are

]
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thus the same as in gasdynamics until the strength of the discontin-
uity is sufficiently great that third-order terms must be retained.
As indicated by equation (5-19), however, this statement does not ex-~
tend to other quantities such as the velocity or the magnetic field.
These results for weak compression and expansion waves are
useful for describing conditions at great distances from the Barth or
other disturbing obstacles where it- can be safely assumed that C{(O/P
& | . They are not sufficient for the discussion of the entire
bow-wave problem, however, because typical conditioﬁs in the solar
wind close by the Earth are such that cﬁe/k> may easily exceed unity

near the nose. The maximum value for the density ratio across a

hydromagnetic shock is finite, however, and given simply by /0' / fOO
( 3+ ) /(é’_ l ) just as in gasdynamics.
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CHAPTER VI

APPLICATION TO PLANETARY INTERACTION

The concepts and equations of magnetohydrodynamics which
were reviewed in the preceding chapter can now be applied to the
specific study of the interaction of the steady solar wind and the
planets Earth, Mars, and Venus.

Extensive theoretical investigations, specific calculations,
and detailed comparisons with obserxvations have been carried out in
the past b§ many workers (see Spreiter et al. [1968] and Spreiter and
Alksne [1969, 1970] for recent summaries) in ‘the study of the gross
features of the interaction of the solar wind with the Earth. We
have recently extended and modified the hydromagnetic theoxry of the
solar-wind flow past the Earth so that it is applicable to nonmag-
netie planets, such as Mars and Venus, that have a sufficient iono-
sphere to deflect the solar plasma around the planet and its atmos-
phere. (A preliminary version of this work was reported by Spreiter
et al. [1970b]). Here, because of the similarity of these two theo-
retical analyses, we choose next to review those elements of the
theory of the interaction with the Earth which are necessary for com-
parison with and completeness of this more comprehensive account of
solar-wind interaction with nonmagnetic planets.

0f the five classes of discontinuities described in the last
chapter, only the tangential discontinuity has properties compatible
with those found in space (Spreiter and Alksne, 1969, 1970) describ-
ing the boundary surface that separates the planet from the flowing
solarx plasmé. Specifically, for the Earth the condition By, = 0O
complies with the finding that there is no connectivity between the
geomagnetic and interplanetary fields (Behannon and Fairfield, 1969).
For planets such as Mars and Venus that have no significant intrinsic
magnetic field, but a sufficiently dense and electrically conducting
ionosphere to stop and deflect the solar wind before it is absorbed

by the planetary surface or atwmosphere, B, ~ ( states that at the
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boundary the interplanetary field is parallel to i;T In both cases,
the condition V, = () prohibits flow across the surface, which thus
can be identified as a streamline and therefore a boundary of the flow.
Arbitrary differences in the density and the velocity and magnetic-
field componeﬁté parallel to the boundary are allowed, but the sum of
the gas pressure [O and magnetic pressure Bﬁ/aqr must be the same
on the two sides of this surface.

The properties of contact discontinuities appear to be appro-
priate for the boundary of the distant wake far downstream from the
planets., ‘There, any current system or velocity discontinuity, such
as exists on the forward part of the Earth's magnetopause, has ample
time to diffuse or decay no matter how slight the departures from
perfect e;ectrical conductivilty or inviscid flow. TUnder these cir-
cumstances the externzl magnetic field penetrates the discontinuity
and ultimately at great distances downstream may be expected to tra-
verse the wake completely without distortion (Spreiter et al., 1966a).
Thermodynamic properiies of the wake remain different from those of
the surrounding flow, however, because of the differeﬁt-previous his-
tories of the gases. _

As pointed out before, two important parameters.that charac-
terizevthe flow at any point are the Mach number M and thé Alfvén
Mach number IﬂA defined by equations (5-4). The former is the ratio
) of the flow velocity to the speed of scund S , and.the latter is
the corresponding ratio of velocity to the speed A of a rotational
or Alfyén wave propagating ﬁiong the direction of the magnetic field.
Values for & and A for conditions t&pical of those encountered in
the solar wind as it flows past Venus, Barth, and Mars.are illustrated
in figuxe 6~1. The solar wind is knowp to vary substantially with
time, but number densities of the order of 2.5 to 25 protons/cm3,
magnetic fields of 3 to 10 § , and temperatures of 50,000 to 100,000
°K may be considered representative. Since the velocity of the in-
cident solar wind ranges from about 300 to 800 km/sec, it is evident
that the free-~stream Mach number Mco and Alfvén Mach number pﬂACD )
are generally much greater than unity. And for normal conditions, the

interaction of the solar wind and the planets is related to highly
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km
sec

T, °K B. gamma

Figure 6-1. Speed of sound & and of Alfvén waves A
in fully ionized hydrogen for conditions
representative of those in the solar wind
(Spreiter and Alksne, 1970).

sﬁpersonic aﬁdjsuperAlfvénic magnetohydrodynamic f£lows in which M
and hﬁg'are of the order of 10. ‘

Even though it is p0551ble for weak disturbances to travel as
fast as (cﬂ + A )I/2 in a direction normal to the magnetlc field,
the maximum propagation speed is much less than the flow speed., Con-
sequently, it can be inferred that a standing shock wave must exist
in the flow avound these planets. Of the five classes gf discon—_
tinuities outlined above, Spreiter et al. (1968) pointed out that
only the fast shoek wave can be used to represent this standiné bow
wave because the solar wind approaches these planets wi;ﬁ‘a mass -fluz
£ Voo that greatly exceeds that of a rotational discontinuity, anc

therefore also of a slow shock wave.

A. Asvmptotic Directions of Shock Waves and Wakes

The Friedrichs I diagrams of figure 5-1 describe the propa-
gation speeds of weak plane waves as viewed in a coordinate system ir
which the undisturbed plasma is at rest. In applications te stea&y
flows, the corresponding diagram for the infinjtesimal standing wave
pattern of a point disturbance is often of greater interest., The
directions of such waves are of significance for finite disturbances
as well because they coincide with the asymptotic dirxections of the

standing wave pattern at-great distances from the obstacle.- So when
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Moo and MAOC) are given together with the directions of the velocity
and magnetic-field vectoxrs n\'jm and gm in the undisturbed incident
solar wind, the asymptotic directions of the planetary tail (or wake)
and . shock waves at great distances-from an obstacle can be determined
immediately by a simple geometrical construction based on these
normal-wave-speed diagrams and originally devised by Spreiter et al.
(1966a). The results apply equally whether the obstacle is in effect
the confined geomagnetic field as in the case of the Earth's magneto-
sphere, or the highly conducting ionosphere of either Mars or Venus.

This construction is illustrated in figure 6-2(a) for a case

Fast

Fast

Rotational ) Rotational
Slow

Slow
Wake = Wake
\ Slow . Slow
Rotationol Rotationol
Ho Ho

Fosi Fast

Figure 6-2. Sketches showing how asymptotic directions of
shock waves, rotational discontinuities, and
wakes can be determined by use of Friedrichs I
or II diagrams. (a) Using Friedrichs I diagram
for plane waves. (b) Using Friedrichs IT diagram
for waves from a point disturbance (Spreiter
et al., 1966a).

in which the magnetic-field vector Beo is inclined 45° from the
free-stream-velocity vector Ve , and MA;;D =2 Mg  and Mg is
chosen to be 2 , abnormally small values for the solar wind, in
order to better show the construction details. For Mgy and Mp o
of the order of 10 , the MCD vector would be much longer, and all
waves would make much smaller angles with the direction of flow. TFor .

ease of illustration, only the traces of the various three~dimensional
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surtaces in the plane containing the velocity and lield vectors are

" shown. In this plot the flow is to the right and parallel to the
horizontal axis. The obstacle ié supposed stationary at the centex
of the Friedrichs diagram which has been rotated by the 45-degyee
angle between Mco and ECD . With the center at the tip of the
vector Voo and 6 measured from the direction of Beo » equation
(5-18) is used to comstruct curves representing the normal velocities
of weak shock waves and rotational discontinuities. Except for a
translation of the origin and rotation of the axis, the latter are of
course the same as shown in figure 5-1 for "d/A = »fé . The asymp-
totic directions of the various discontinuities at great distances
from the obstacle can now be determined by application of the theorem
that states that the two lines drawn from any point on a circle to the
extremities of a diameter intersect at a right angle., The req_uired
construction is thus performed simply by drawing a circle of radius
}!oo/Z with center at gm/Z and connecting the origin of ,\J,'co to
the various points of intersection with the normal speed curves by
straight lines as indicated in figure 6-2(a). These lines are not
tangent to the Friedrichs I diagram, as in the simpler isotropic case
of gasdynamics, because this diagram represents the speed of plane
waves and is very different from the Friedrichs I1 diagram for the
speed of waves from a point source. The asymptotic directions can
alsc be constructed by drawing straight lines from the origin of the
vector Voo tangent to the Friedrichs II diagram as illustrated in
figure 6-2(b). This procedure often requires more effort because the
expression descriﬁing the Friedrichs II diagram is much more complex
than equation {(5-18). The construction employed in figure 6-2(a) is
more direct and fully equivalent for the present purposes,

Also inhdicated in figure 6-2 is the asymplotic direction of
the wake or tail, which as- noted previcusly would be represented by
either a tangential discontinuity or a contact discontinuity depend-
ing upon whether or not the- normal component of the magnetic field
vanishes. In either case Spreiter et al. (1966a) noted that equations
(5~10) and (5-11) state that Vn = 0 indicating that the wake.must

be aligned paraliel to Eco independently of the direction of the
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magnetic Field, The oxientations of the other discontinuities illus-
trated in figure 6-2 change, however, as the direction of the magnetic~
field vector is altered. The extent of these changes can be readily
visualized, morover, since a change in the direction of the magnetic
field leads to a votation of the Friedrichs speed diagrams about the
end of the fixed ,Mco vector, and this in turn leads to associated
changes in the intersection points of figure 6-2(a) or the tangency

points of figure 6-2(b).

B. Relation Between Hydromagnetic and Gasdynamic Flows

Although the diagrams of figure 6-2 are drawm for the case
in which the free-stream Mach number is 2 and the speed of sound is
’\/5 times the Alfvén speed, that is for (d/‘q)oa = (4»'[1"5{300/ BED)]/E
= /2 , the qualitative character of these diagrams remains the same
for all Mach numbers and ratios 03/A)oo greater than unity. If
A should become small relative to Qes » however, as might readily
occur if the magnetic field should diminish in intensity, the inner
loops representing the propagation speeds of rotational and slow waves
become small relative to the outer ovals representing the fast waves.
Finally, if the magnetic field approaches zero, the inner loops shrink
toward a point at the end of the k{c: vector while the outer oval
approaches a circle (or sphere in the corresponding three—diﬁensional
' representation) of radius g, . In this way Spreiter et al. (1966;)
indicated that the fast hydromagnetic wave degenerates to the Mach
wave of ordinary gasdynamics, and the rctational and slow waves lose
their physical significance. The fluid and electromagnetic aspects
of the flow thus decouple, and the fluid motion is desecribed entirely
_ by the equations of gasdynamics. The approach to the limiting case
appears, moreover, to be free of singular behavior, aﬁd gasdynamic
theory should thus provide a useful approximation to hydromagnetic
flows when &ﬂ/A)oo is substantially greater than unity. In such
approximations the gasdynamic Mach number should be associated with -
the Mach number ™M of the corresponding hydromagnetic flow, rather
than the Alfvén Mach number fﬂA as was done at times in the past.

If on the other hand the Alfvén speed is substantially creater
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than the sound'speed,ras would occur if the magnetic field is suffi-
ciently strong, the inner loops representing the slow wave speed again
shrink toward a point at the end.of the MCD vector, while the outer
oval representing the fast wave sﬁeed approaches a circle of radius
Ag . The resulting asymptotic directions for fast waves in a hydro-
magnetic flow of Alfvén Mach number MACD. thus approach those of
gasdynamics for Mach number M ::Ny\co . As described by Sears
(1960) and others, however, the flows about a given obstacle may be
gquite different. For certa’in combinations of M, , MACD , and
angles between MCD and ,gcm the physically significant waves are
those that extend upstream rather than downstream from the disturbance.
When such conditions prevail, hydromagnetic flow about a given obstacle
may tend to resemble gasdynamic flow about the same obstacle, but with
the flow direction of the rélatea incident stream reversed. TFor other
combinations of these quantities, hydromagnetic flow about a given ob-

stacle bears lititle, if any, resemblance to its gasdynamic counterpart.

C. SHape of the Boundary

In order to calculate the shape of the boundary for a given
planet, the physical criterion that determines which of the three
classes of interactions sketched in figure 3-1 occurs must be suitably
expressed so that the jump conditions for a tangential discontinuity
can be applied. To stop the solar wind above the subsolar point, as
in the flows past the Earth, Mars, and Venus, the sum of the planetary
gas pressure.]a and the magnetic pressure B%/B?F must be sufficient
to balance the stagnation pressure F%* of the solar wind at a height
great enough so that the ionosphere gas can be considered to be ef-
fectively collisionless. For Earth, all estimates and observations
of the magnitudes of the gas pressure P and the magnetic pressure
B%/8T in the outer ﬁagnetosphere lead to the conclusion that BE/(S7T
> P , whereas for normagnetic planets like Mars and Venus,
spacecraft measurements have shown that'Be/84T<3:F) . However, for
the Moon the solar wind ﬁas found to flow directly into the surface
swhich indicates 'that }34“Ef7L81T<?:F%? . Intermediate cases are ecasily

conceived, but observations have not yet indicated a need foxr their
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consideration.

1. Location of the magnetopause

For the Earth, then, B%/gﬁr far exceeds P throughout all

the magnetosphere above a few hundred kilometers. So far as the flow
outside the magnetosphere is concerned, the magnetosphere boundary
.may thus be represented by the limiting case of a tangential discon-
tinuity in which there is a vacuum (‘O: O, P:O) on one sid;z, and_
across which the sum of the gas and magnetic pressure of the exterior
-£low must be balanced entirely by the magnetic pressure of the magnet-
osphere (Spreiter et al., 1966a). With the neglect of small effects
of electrical currents in the ionosphere, the dominant features of the
magnetic phenoﬁena that the impinging solar wind produces in the outer
magnetosphere are represented by the terms that remain in equations

(5~1) when D and ;0 are equated to zero, namely

o~ ~

div B=0 curl B=0 (6-1)

The form and size of the magnetosphere boundary are therefore effec-
tively independent of the details of the flow within the magnetosphere
and. determined prlmarlly by the interaction between the magnetic
field within the outer magnetosphere and the hydromagnetlc flow around
the exteriox. There is still flow to be expected within the magneto-
sﬁhere, but it would be required to move about as if it were confined
in a container described by the magnetopause.

-To complete the analysis, a mathematical representation for
the intrinsic magnetic field of the Bacth is required, This is provided
with sufficient accuracy for the present purposes by a magnetic dipole
at the center of the Earth having a stremgth such that Igel = Baq
= 0,312 gauss at the geomagnetic equator, and oriented so that ‘the
north geomagnetic pole is at 78.6° North latitude and 70.1° West longi-
tude (Chapman and Bartels, 1940). Its extenéion into space according

to equations (6-~1) is described by
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Bo= —Beq(ae/r_)s(é SN0 + F2cosd) (6-2)

in which ds = 6.37 % 108 em is the radius of the Earth, r is the
geocentric distance, and © is the polar angle measured with respect
to the noxrth geoﬁagnetic pole, and F and @ are unit vectors in the
" and © directions. Thus, the mathematical problem of determining
the shape of the magnetopause and the distortion of the geomagnetié
field confined therein is now completely reduced to finding the solu-
tion to equations (6-1) that has a dipole singularity given by
equation (6~2) at the origin and that simultaneously matches with

the solution for the exterior flow through the tangentiai discon~ -
tinuity conditions Brn=0 and (Bz/Bﬂ')ln.i- = (P + 82/8’}1') ext at
the unknown location of the magnetopause.

The resulting free~bounddry problem is, however, extremely

complex because the location and shape of themagnetosphere boundary

is not known a priori, but must be determined as part of the solution
much as in the classical theory of free-streamline flows in hydro-
dynamics. The problem as such is too difficult to solve, and reason-
-able approximations must be sought. At the magnetosphere boundary

one simplification of great practical utility can be made by introduc-
ing an approximation to the tangential discontinuity conditions. The
_ basis for this is that space observations and theoretical estimates
indicate that the pressure |2 of the solar wind tends to be much
larger than the magnetic pressure Ba/ 8T in the exterior flow around
the forward bart of the magnetopause (Spreiter et al., 1966a). Con-
sequently, as far as the flow exterior to the magnetosphere is con-
cerned, the equations for the discontinuity at the magnetopause can be
satisfactorily approximated by those of the limiting case of a tan-
gential discontinuity in which there is a vacuum on one side and no

magnetic field on the other side, i.e.,

Bn

i

0 - (B°/ Thint = (Plext (6-3)

However, since both P4+ and Bint remain unknown and must satisfy
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" equations (6-3) at an unknown location, the problem as such continues
“to be intractable.

Two additional approximations finally reduce the problem to
amenable form. The first, used in all existing analyses, is the in=-
troduction of the Newtconian approximation for the pressure on the sux-
face of an obstacle in z high-Mach-number flow. Thus }D€><+ is as-

sumed given by

p@X'i‘ - PS?COSE \l/ = K/Ooo\/o% C;OS2 \){/ (6-4)

in which ¥ is the angle between the outward normal to the magneto-
pause and the incident free-stream~velocity vector k{ag , subscript
oo refers to conditions in the solar wind upstream of the bow wave,
and K is a constant equal to 0.88 for highéMach—nuﬁber flow of a
monatomic gas although usually taken as unity in most applications
(Spreiter et al., 1966a). The Newtonian approximation greatly sim-
‘plifies the problem because it decouples the calculation of the shape
of the magnetosphere boundary from the detailed analysis of the sur-
rounding flow. The final approximation assumes that £he unknown mag-
netic field Blfrf at the magnetopausé, which results fxom the dis-
torting of the geomagnetic field by the solar wind, is simply equal

to 2T times the tangential component of the Earth's dipole field,
where ¥ is a constant usually taken to be unity (Spreiter and Briggs,
1962). 1Its use, together with the Newtonian pressure approximation,

in the discontinuity chdiéions (6-3) leads to a partial differential
equation for the geocentric distance [' to the magnetopause. TFigure
6-3 illustrates the solution of that equation for the equatorial plane
(Beard, 1960), the noon meridian plane (Spreiter and Briggs, 1962), and
the remainder of the magne&osphere boundary (Briggs and Spreiter, 1963)
for the case in which the dipole axis is perpendicular to the solar-’
wind flow. Higher-order solutions which do not make use of the last
approximation for B!ryf have been given more recently (Mead and Beard,

19643 Olson, 1969), but the results differ from each other and from
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those of the first-order solution by only about the width of the

gray lines of figure 6-3., As may be seen by comparison with figure
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Figure 6~3. The boundary of the geomagnetic field
. (Spreiter et al., 1968).

3-1, the neutral points indicated on figure 6-3 have physical signifi-
cance as the points on the magnetopause from which extend the only

magnetic field lines to connect directly with the Earth,

2 . Location of the ionopause

" For Mars or Venus the magnetic field is weak of nonexistent
(B%/BTT<Kfp) , but the gas pressure P of the ionosphere is suffi-
cient to stop the solar wind well above the planetary surface. So
in this case, the ionosphere rather than the planetary magnetic field
communicates the bresence of the planet to the solar wind. The iono-.
sphere, or at least the outer part of it that pavticipates in the in-
teraction with tﬁe flowing solar plasma, is idealized as spherically
symmetric and hydrostatically supported plasma having infinite gleé~

trical conductivity. Since the two bodies of plasma are of different
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origin and have different properties, they must be mutually impene-
trable in the idealized hydromagnetic representation and be separated
by a tangential discontinuity surface. This surface is called the
ionopause because it marks the outer boundary of the ionosphere
(Spreiter et al., 1970b).

More explicitly, the assumption of ﬁydrostatic support is
equivalent to assuming that all motions of the gas within the iono-
sphere are sufficiently small with respect to the planetary body
that equilibrium exists between the pressure gradient and the force

of gravity, thus

d

-5

= -—{Og (6-5)

Q.

r

where P and [ are the gas pressure and density, [ is the radial
distance from the center of the planet, and ( is the acceleration of
gravity. Values for the latter are inversely proportional to r= .
Thus ¢ = g ( [‘“S/r‘ )2 , where subscript § refers to values at
the surface of the planet. Values foxr {s for Venus, Mars, and
Earth are about 870, 375, and 982 cm/SEcz, and those for Mg are
about 6.1, 3.4, and 6.4 x 108 cm, respectively. The pressure is as-

assumed to be related to the density by the perfect gas law

= nkT = oERT/m
P fj (6-6)
which was originally stated in equations (5-2). The mean molecular
mass [N is equal to 1/2 for fully ionized hydrogen plasma, aud L and 2
for singly ionized molecular hydrogen and helium., The density may be
eliminated from equation (6~5) by introduction of equation (6-6), and

the result integrated to yield

r .
p = pR eXp —f - (6-7)
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in which F% is the pressure ab the reference radias PR ,and H ,
the local scale height of the atmosphere, is given by
KT RT
H = ____l:_ = e (6-8)

mg Mg

Whe;e M = 1.67MMN x 10,24 gm is the mean molecular mass.

If H is constant, equation (6-7) may be integrated to obtain
= expl— ——— éng

which shows that H represents the height interval in which the pres-
sure decreases by a factor € . If the variation of ¢} with r is‘
disregarded over the range of application of equation (6-9), T is
also constant, and the density varies with height in the same way as

the pressure, thus

o n - "P 3 r-rg
_— = X — m—
AR N Pr P . H (6-10)

H
1

In the upper atmosphere, where little mixing would be presumead
to occur, diffusive equilibrium may be considered to'prevailvamong the
various ionic constituents, at ieast-in an idealized sense. As em-
phasized recently by Baver (1969), however, this equilibrium is more
complicated in an ionosphere than in a neutral atmosphere for which
Dalton's law of partial pressuxes is customarily invoked. This is be-
cause an electric polarization field, dependent on the mean ionic mass
and charged-particle temperatures, acts on all the ions and couples
the diffusive equilibrium distribution of all of them. In most cix-
cumstances, however, the lightest ionic constituent, ionized atomic
hydrogen, would emerge as dominant at great altitudes. At lower aqd-
intermediate attitudes, more specific knowledge, such as is now.re-

sulting from space experiments conducted by the USSR and ﬁSA, is
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needed to specify the wvariation of pressure with radius with any
degree of precision.
Figure 6~4 shows the variation with distance from the center

of Venus of the electron number density, as deduced from the
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igure 6-4., Profiles of electron concenitrations in the night
and day ionospheres of Venus, as deduced from the
dual~frequency-radio-occultation measurements by
Fjeldbo and Eshleman (1969). The dashed lines
represent the average profile independent of
strong fluctuations in the data,
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dual-frequency-radio~occultation measurements by Fjeldbo and Eshleman
"(1969). Tor a plasma with singly ionized ions, charge neutrality re-
quires that these curves also describe the ion number density, summed
over all constituents. These measurements indicate that the nose of
the ionopause is at a distance of about 6500 km from the center of
Venus, or about 450 km above the surface. At high altitudes, there

is some unceritainty in the data associated with the reference level
of interplanetary ionization so that the nightside profile may be
somevwhere between the two indicated curves. Between 6300 and 6600 km,
however, the experimenters have reported that the nightside ionosphere
probably consists of ionized helium at a temperature between 330 and
710 °K. And although there is some ambiguity in the data above 6600 km,
they suggest that at high altitudes the dominant constituent may be
either ionized atomic or molecular hydrogen with a plasma temperature
of either 675 or 1350 °K.

The propér interpretation of these data, and also those from
the Mariner-5-Lyman-alpha measurements of Barth et al. (1967), has,
however , been the subject of considerable discussion. Barth (1968)
and Barth et al. (1968) conclude that the entire upper atmosphere of
Venus above about 6500 km can be represented best by an atmosphere con-
sisting primarily of molecular hydrogen at 650 = 50 °K. On the other
hand, Wallace (1969) and Donahue (1969) have concluded from their
analysis of the Mariner~5-Lyman-alpha data that the dominant constitu-
ent above 6500 km is deuterium at about 650 °K. McElroy and Strobel
(1962) have compared results from a number of models of the topside
nighttime ionosphere of Venus with observations of Mariner 5 and con-
cluded that the primary ionized constituent is either helium or molecu-
lar hydrogen. More recently, Whitten (1970) has performed a similar
study £6r a number of models of the upper daytime ionosphere and con-
cluded that a dominant amotmnt of ionized helium also provides a suit-
able explanation of the spacecraft's findings.

In view. of these uncertainties, and even greater ones with
respect to Mars at the time of this writing, we put aside any further
discussion of refinements of the variation of H with altitude even

though there are obvious violations of the conditions for spherical
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symmetry, constant scale height, aﬁd hydrostatic p;éssure support,
particularly near the dawn meridian of the planet and at great alti-
tudes where M cannol: possibly be constant because of diminishing

¢ . However, one inadequate result of this is that equation (6-9)
then predicts the implausible occurrence of the planetary pressure be-
coming vanishingly small at only a distance of several planetary radii
on the nightside of the planet. This prediction directly conflicts
with the analysis of the occultation data from Mariner 5 suggesting
that there may be a wake of planetary ionization extending a great
distance in the antisolar direction (Fieldbo and Eshleman, 1969).

To reconcile this difficulty equation (6-9) is slightly modified so
that instead of approaching zero, the plﬁnétary pressure now varies
exponentially to a small, finite value FDV/ that corresponds to the
very low pressure in the tall of the ionosphere at great distances

in the antisolar direction. Thus we alter equation (6-9) to read

r‘-rR

- —_ + . -
%) exp H Pw . (6-11)

P = [p,

-Because nothing about the structure within the tail is known and

also because at very great distances this tail must somehow merge
° )
with the solar wind, P, s taken to be’a constant equal to P
. 2 . . .
+ Bm/B T the sum of the gas pressure and magnetic pressure in

the undisturbed solar wind. The value of pVI is about two 6rders of

. magnitude smaller than the maximum pressure on the ionopause. 1If

the constant pR ‘is taken to be the pressure at the subsolar point
of the ionopause, where the maximum pressure occurs, then the coeffi~
cient of the exponential term differs- from F%? by only about 1 pex-
cent. Therefore, the exponential variation of [0 with ™ is main-
tained on the daytime side of the ionosphere, and the small constant
F%{'does not bear effect in equation (6-11) until [ reaches a value
of a few planetary radii and the exponential becomes much smallexr

than pw . Because the ionopause is located so neaxr the dayside of
the planet that [ can only become this large in the antisolar direc-

tion, equation (6-11) satisfactorily predicts the approximate constant
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pressure pW for the ionized planetary wake, which ultimately
balances the sum of the magnetic and gas pressure of the solar wind.
Since equﬁtion (6-11) corresponds at least generally with the little
amount of information so far obtained from spacecrzft measurements,
we adopt equation (6-1l) as adequate to represent the variation of
p with  in the upper atmosphere of either Venus or Mars.

Results will be presented for several values for H , how-
ever, in order to provide an indication of the variations to be ex~-
pected between ionospheres of different chemical composition. For
Venus, with Cg equated to 6500 km and T to 700 °K, H is approx-
imately 1500, 760, 380, and 35 km for ionized atomic hydrogen, singly
ionized molecular hydrogen, helium, and carbon dioxide. The corre-
sponding values for the nondimensional ratio FH/Q, , in which g ,
the distance from the center of the planet to the nose of the iono-
pause, is equated to 6500 km are 0.23, 0.115, 0.058, and 0.0052.

For Mars, the smaller radius and acceleration of gravity and lower
jonospheric temperature of about 200 °K (Kliore et al., 1965; Fjeldbo
and Eshleman, 1968) lead to values that are about 1.2 times larger

- than for Venus, namely about 0.28, 0.138, 0.069, and 0.0062. The
calculations of these values makes use of the result, indicated by
the data from Mariners 4, 6, and 7 together with the present theory,
that the nose of the ionopause is at an altitude between 155 and 175
km, and that [y, therefore scales nearly in proportion to the plane-
tary radius. -

In a manner exactly analogous to the mathematical formulation
of the Earth's magnetopause, tHe boundary of the ionosphere is repre-
sented, under the assumption that the upper ionosphere can be treated
as a perfectly conducting fluid effectively bound to the planet and
incapable of mixing with the solar-wind plasma, by a tangential dis~
continuity. For Mars and Venus the planetary magnetic field is weak
or nonexistent,-and as far as the flow around the ionosphere is con-
cerned, the ionopause can be modeled by the limiting case of a tangen-
tial discontinuity in which there is a perfectly conducting iono-
sphere on the interior side, and across which the sum of the gas and

magnetic pressure of the exterior flow must be balanced entirely by
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the pressure of the upper ionosphere. For this situation the tangen-

"-—tial discontinuity equations become

' 2
Vn=Bp=0 (Phne= (P + B/Smex"r (6-12)

and relate conditions on the interior and exterior sides of the iono-
pause. Therefore the mathematical problem of calculating the shape
of the ionopause is now completely reduced to finding the solution

for the exterior flow that simultaneously matches with equation (6-11)
through the tangential discontinuity conditions of equations (6-12) at
the unknown location of the ionopause, which has to be determined as
part of the solution.

This free-boundary problem, like that for the determination
of the magnetopause, is too difficult to solve as stated. Tn order to
proceed, we introduce, as in the corresponding application to the
Earth's magnetosphere, two important simplifications in these rela-
tions. 1In the present application, P tends to be much larger than
B%GBTT on the exterior side of the ionopause. Therefore the pressure-

balance relation of equations (6-12) may be reduced to

Pint & Pext ' (6-13)

a simple balance between the ionosphere pressure, which is given with
sufficient accuracy for the present purposes by equation (6-11), and
the exterior pressure of the flowing solar plasma adjacent to the
ionopause. However, IDE)(? still remains unknown until the exterior-
flow solution is determined, but the problem can be reduced to tract-
able form, as was done for the corresponding determination of the
Farth's magnetopause, by the introduction of the Newtonian approxima-
tion for the exterior pressure on the ionopause (see equation [6-47).
pS+C052\}f ) .{IOWEVGI, can be

improved because it underestimaltes the pressure on the flanks of the

The Wewtonian approximation Pext =
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ionopause (Spreiker et al., 1966a). Behind the planet where the
“"boundary surface becomes parallel to the flow, ¥ reaches 90 degrees,
and the Newtonian expression indicates that the plasma pressure ap-
proaches zero which is physically implausible. A more reasonable
limit for the exterior pressure on the flanks of the ionopause is the
sum of the static magnetic and gas pressure of the solar plasma
FEO%~B§B//87T because very far behind the planet the pressure must
return to free~stream conditions. Therefore, a better approximation

for the exterior pressure on the ionopause is

2 / 2
Pext = (R4 R B 8'“’)‘"«052}/ + Peo -+ B<Jf>/87T (6-14)
where F%& = K fCaj\éi is the stagnation pressure of the solar wind

exerted on the nose of the ionopause (Spreiter et al., 1966a). This
expression together with equation (6~11) and the relation pvv =

EQD-F BiJSff from above reduces equation (6-13) for the pressure

balance to

(Pey -F{,\l,) cos?Y = (K,omvg ~ Fﬁv) cos® VY

-,
)Q><F) - 0 R

- (pR Ry (6-15)
So in exactly the same way as for flow past the Earth, use of the
foregoing approximations greatly simplifies the problem because they
decouple .the calculation of the shape of the ionopause from the de-
tailed solution of the surrounding flow and permit the coordinates of
the jonopause to be computed without determining any further properties
of thé‘exterior flow field.

It is convenient in the calculation of the shape of the iono-
pause to let [}1==Fb , the distance from the center of the planet to
the nose of the ionopause. Since cosZVV = 1 at this point, equation

(6~15) simplifies to
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= = Kpo_ V& 6-16
at the ionopause nose, and to

coséVy = e“(r'rf’)/H (6-17)

elsewhere along the ionosphere boundary. If, for example, the solar
wind is considered to approach Venus with a pumber density of 3 pro-
tons/cm3 and a bulk veloéity of 5 x 107 cm/sec, as the data reported
by Bridge et al. (1967) show occurred at the time of the.Mariner«S
measurements, equation (6-16) indicates that Fg = 1.1 x 10—8

dynes/cmz. Equation (6-6) shows that such a value corresponds, as-

suming T = 700 °K, to an ion or electron number density N = Nz =
nfz at r Co
somewhat greater than that indicated by the data of figure 6-4 for

" of about 5.7 % 104 particles/cm3 . This value is

]

= 6500 km, but is not unreasonable if the averaged nature of the
Mariner-5 data involved in the estimate and the uncertainties attend-
ant with all ﬁlasma measurements in space are considered. In any

case, it may be seen from figure 6-4 that the essential condition that
the ion-electron number density required to stop the sclar wind be
exceeded at some altitude is satisfied‘by a considerable margin, since
the peak daytime value of 6 x 105 electrons/cm3 is larger than the
required value by a factor of about 10.” Similarly for Mars, the values
Vo = 3.3x% 107 éﬁ/sec, N = 0.8 protons/cms, and T = 200°%K
inferred from the measurements of Mariner & (Lazarus et gl., 19567
Kliore et al., 1965) indicate that an electron number density of

2.6 = 104 electrons/cm3 is required at the subsolar point for the
ionosphere to stop the solar wind. This value is exceeded by a fac-
tor of about 6 by the peak electron density of 1.5 x 105 electrons/
cm3 deduced by Kliore et al. (1965) from Maxriper 4, and subsequently.
confirmed by similar experiments with Mariners 6 and 7 (Fjeldbo et al.,

1970). On the basis of the further observations that the altitude of
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the peak electron density is between 120 and 130 km above the Martian
“—surface and that the electron scale height there is between 20 and

25 km, we may estimate fxom the above relations that the subs;olar

point of the ionopause is at an altitude between 155 and 175 km. Fox

these reasons, we feel that the applicability of the theory to both

Venus and Mars is supported by existing data, even though those for

Mars are restricted in quantity and inferential in nature at the

present time,

'530 proceed, we must express COSEHV in terms of [ and

e s Where ["(e) represents the coordinates of the boundary and

e is the angle measured at the center of the planet with respect

to a line that extends directly upstream. Upon carrying out this step

in the way made clear by the illustraf;ion in figure 6-5, and substi-

tuting the result into equation (6-17), we find

2 = 9_9_)2: (rd6cos6 +drsin©)°
€8 ds 'dre + {r de)?
r—n
—expim-—g— | =t (6-18)

The numerical solution of this differential equation is facilitated

by solving for d(‘/["de to obtain

dr _ sin20t 2+/E-E®

rdd 2(E - sI?9)

(6-19)

At the ionopause nose © =.0, '=0y , and dAr/rd® = 0 with either
choice of sign. The proper choice of sign is dictated by the following
consideréltions based on the assumption that ™ increases monotonically
from Ty to oo , and hence th.lat £ diminishes moﬁotonically from
1 to 0, as © increases from O to 180°. Since Slh?"@ =0at & =

increases to unity at € ’= 90° , and then returns to 0 at 180°, the
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Figure 6~5. View of element of ionopause and
coordinates used in equation (6~18)
(Spreiter, Summers, and Rizzi, 1970b).

denominator of equation (6-19 must vanish at one or more values for
© , and (ﬂF/}Yja would be infinite unless the numerator vanishes
simultaneously. If the critical values for © and E are designated

by the subscript CI" , we have

2
Ecr = sin 6 (6-20)
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and also that

N

S1n. 26 £ 2 Ecr-EE,- =0 (6-21)

Substitution of the former into the latter to obtain

i/2

sin20cr %2 ‘sa N%0ap — SINTE 1

(6-22)

[
O

e 2 é|n SCTCOC‘S ecr\ :.!: 2. lSIﬂ@ngOS@C["I

shows tﬁat the minus sign must be used in equation (6-~19). That the
resulting indeterminate form actually leads to a finite value for
dr‘/d@ at € = Gcp may be confirmed by application of-L,'Hospital‘s
rule. The shape of the ionopause may therefore be determinmed directly
by integration startiﬁg from the boundary condition that I = [
at ©@=0. '

Results obtained by numerical integration are pfesented in
terms of cylindrical coordinates X = COSQ and T =01 SINO for
several values for 14/ﬂ5 from 0.0l to 1 in figﬁre‘6—6. As noted
previously; this range is ample to include all likely possibilities

for both Venus and Mars.1 Also included on figure 6-6 is a dotted

1Although the displayed results are independent of the alti-
tude of the ioncpause nose, a planet silhouette has been added to the
plot to indicate the radius I, of Venus for the ratio Nn,/fg =
6050/6500 = 0.93 . The corresponding ratio M/, for Mars is not
known so definitely, but the estimate given above indicates that it
is about 0.95.
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Figure 6-6. Calculated location of ionopause for various

H/t, . The corresponding results for the
shape of the Earth's magnetopause, nondimen-
sionalized so that the magnetosphere nose is
at %/ry = 1, is included for purposes of
comparison.
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Line indicating'the coordinates of the magnetic equatorial trace of
“the magnetosphere boundary, as determined by Beard (1960) and Spreiter
and Briggs (1961, 1962), that hzs been used extensively in the calcu-
lation of solar-wind flow past the Earth. These coordinates have been
nondimensionalized by dividing by the distance from the center of the
Earth to the magnetosphere nose. We shall contimue to call this dis-

tance [_ , even though it is much larger than for Venus or Mars,

o]
and evaluated differently using the expression Mg =
Pe(quIZTIKPWV%) \/6  in which p = 6.37 x 10° em 1s the radius of

the Earth, and Beq = 0.312 gatss is the average intensity of the
geomagnetic field at the geomagnetic equator. It may be seen that
this curve is very similar to that for the ionosphere boundary- for
H/ﬁs = 0,2 ., The size, with respecl to the planet, of the cavity
carved in the solar wind is very different in the two applications,
however, since o 1s only a few percent greater than the planetary
radius for Venus or Mars, whereas it is usually of the order of 10

Earth radii for the magnetosphere (see figure 6-3).
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CHAPTER VIIL

NUMERICAL SOLUTION OF THE APPROXIMATE EXTERIOR FLOW

A, Simplification to Gasdynamics

We have just shown in thé preéeding chapter that the exterior
and interior regions of the complex free-boundary problem represent-
ing the solar-wind interaction with planets can be disjoined and solved
separately and that the interior boundary shape can be calculated inde-
pendently of the exterior-flow solution. We have determined the shape
and location of both the magnetopause and ionopause, and what remains
is to solve the exterior-flow problem represented by equations (5-1)
satisfying the remaining tangential discéntinuity relations V,=Bp=
O of equations (6~12) at the location of the previously determined
boundary. These reduced tangential discontinuity conditiomns are com-
pletely equivalent to the boundary conditions that must be satisfied
on a solid body, and the problem may be thought of as a hypersonic,
but weakly magnetized plasma streéming past a solid body having the
shape of either the magnetopause or ionopause. In many ways it is
very similar to the aerodynamic problem of a body in a supersonic
stream.

However, this magnetohydrodynamic-flow problem is far too com-
. Plicated to be solved exactly, and resort must be had to approximations.
For Earth, Mars, and Venus, an important simplification of the magneto-
hydrodynamic equations (5-1) can be made on the basis of the combined
effects of the large magnitude of the Alfvén Mach number and the
strong interaction nature of the flow (Spreiter et al., 1966a). This
is so because the order of magnitude of the inertia term {o(y ’Q)EJ
in the differential equation for the momentum is related to the mag-
netic term (I/Lm’)g X (,E,L,\J,E,l § by the square of the Alfvén Mach number.
When the latter is large, therefore, the magnetic term can usually be
safely dropped from the equation with little loss of accuracy, just as
discussed in section B of chapter VI. In order for this approximation

to be valid, however, the square of the Alfvén Mach number must remain
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large at all points in the exterior flow. T¥or normal conditions of
“the solar wind upstream of the bow wave, this term is about 100, but
bbservations made in space indicate that it decreases somewhat in the
disturbed region of the flow downstream of the bow.wave. Leés (1964)
has suggested that a small region may exist near the stagnation point
in which the magnetic field may become sufficiently enhanced undex
certain circumstances o produce a substantial reduction in the gas
density. The region affected is very small for weak magnetic fields,
however, and is anticipated to have little effect on the gross fea-
tures of the flow so that the simplification is justifiable throughout
the exterior-flow region. Although factors of 2 appear when similar
comparisons are made of the magnetic and inertia terms in the conser-
vation equations for the momentum and energy, the general conclusion
that the magnetic terms may be dropped from these equations when the
Alfvén Mach number is large still holds. An immediate consequence is
that both the differential equations and the conservation equations
defining the flow are decoupled from those involving the magnetic
field. The differential equations (5-1) for the fluid motion thereby

reduces to

pNU-UIV + ¥p =0 ' P

P/R,
A

(V-¥)S =0 S=So=cyln

and the conservation equations (5-5) to

[PV = ©
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[_,avny + pﬁ] =0
(7-2)

[pwjh%%vﬂ}= 0

Thus, all the properties of the flow except the magnetic field B

~
can be determined by solving the equations of gasdynamics (7~1, 7-2).
The properiies of the magnetic field can then be determined subse~

quently by solving the remaining equations

curl (VxB)=0 div B =0

_ (7-3)
[Bh},’-i' = By Vn] =0 [B.)=0

using the values for :{ already computed from the preceding step.
These relations, or equivalently, the following equations derived

from them

D_1lpde =0

7-4
DT - (7-4)

D_ (_%_) = 1 (5.9
DTV e

in which S is an arbitrary surface moving with the f£luid and
D/D’(= g—f‘!'[‘g"g)\r_{ = [\j'g) v is the substantial derivative for
steady flow, indicate (Laudau and Lifshitz, 1960) that the magnetic
flux passing through 5% is conserved. and moves with the fluid, In
more picturesque language, the magnetic field is frozen in the fluid,
the general effect being essentially similar to that of a line of
smoke or dye released at some instant into a medium flowing at speeds

high relative to the diffasion vate of the contaminant.
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B. Description of Numerical Method

The preceding discussion has shown how the nonmagnetic proper-
ties of the exterior flow described by equations (5-1) can be repre-
sented without undue loss of accuracy by purely gasdynamic equations.
In this manner, the flow of the solar wind past the Earth, Mars, and
Venus is exactly equivalent to the familiar, but complex, problem of
the external aerodynamics of round-nosed bodies in a supersonic stream,
Although this represents an enormous simplification, the mathematical
complexity associated with the non-linear and mixed elliptic-hyperbolic
character of the governing partial differential equations requires that
the solution be sought by numerical methods. A variety of numerical
procedures can be used to solve the equations of gasdynamics for
flow about a giﬁen body in a supersonic stream, but the difficulties
are sufficiently great that at the present time solutions can only
be computed for round-nosed, axisymmetric bodies. This restriction
poses no difficulty for the calculation of flow past the ionopause
which is a surface of revolution, but it remains necessary to approx-
imate the magnetopause with an axisywmetric shape. 1In nearly all
.cases for which calculations have been carried out, the shape selected
is thdt obtained by rotating the magnetic equatorial trace of the
boundary illustrated in figure 6-3 about its center linme. Inspection
of the magnetopause coordinates shows that this approximation is
reasonable, except possibly where the boundary is dented inward near
the neutral points. Even this exception may be of little importance,
however, because these dents result from the use of the Newtonian
pressure approximation and would disappear in é more accurate analysis
based on fluid concepts (Spreiter and Summers, 1967). In our calcula~
tions we use the shape obtained by rotating the magnetic equatorial
trace of the boundary given by Spreiter and Briggs (1961, 1962).

) Several methods are available for the numerical solution of
the equations of gasdynamics for flow about a given round-nosed body
of revolution in a supersonic stream. The method employed in the
célculations for our work here is that developed by Inouye and Lomax
(1962) and Lomax and Inouye (1964) which is founded on the basic
approach of Van Dyke (1958) and Van Dyke and Gordon (1959) as modified
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by Fuller (1961). As a representative example, figure 7-1 illus-
trates the gasdynamic equations (7~1) and (7-2) used to calculate
the flow around the magnetosphere and the cylindrical coordinate

system originally presented in figure 6-6. As indicated, the method

SUPERSONIC REGION

NFI?ET;IOD OF
" CHARACTERISTICS
DIFFERENTIAL EQUATIONS - MAGNE TOSPHERE
Yepv=0 - T BOUNDARY
DT +Tp=0 (AXISYMME TRIC)
{y+V)3=0
~ p/po .V_,—
S—S():Cv Zn 7 ©
/0 SUBSONIC REGION
INVERSE ITERATION
| METHOD
X EARTH

A

. A

CONSERVATION EQUATIONS n\? \/}
[P\In]jo ———b//
[Py + pii]=0 °7

22 /211
[pVnthBsv2 72}]=0 WHERE [@]=0,-q,

Figure 7-1. Gasdynamic equations for steady flow of
a dissipationless perfect gas (Spreiter
et al., 1968).

usad for the subsonic region.near the mégnetosphere nose and the
- immediately adjoining portion of the supersonic region is an indirect
one in which the location of the bow~shock wave and the free-streamliine
conditions are assumed known and the associated flow field and body
shape are found as part of the solution. The desired solution for
the specified body, either {he magnetopause or the ionopause, is then
found by iteration following judicious selection of the initial
trial shape for the bow wave based on experience with a vast number
of cases of'aefodynamic,interest. The golution for the remainder of
the supersonic region is accomp}ished directly by using as indicated
the method of characteristics in the manner describéd explicitly for -
this application by Inouye et al. (1965). As a backgrouna to our
later modification of these schemes and discussion of the computed

results, it is appropriate to present at this time a detailed review
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of the mathematical and numerical aspects, such as convergence,
dstability, and accuracy for both of these methods. The follewing

discourse is essentially repeated from Lomax and Inouve (1964) and

Inouye et al. (1955).

I'. Method for subsonic-transonic region

In forming difference equations from equations (7-1), a more
useful foxm of the energy equation can be developed from the fact
“that entropy is constant along streamlines. For a gas in equilibrium,
the pressure is determined from the equation of state using any two
thermodynamic variables, say P= ]0({0.‘5) .l Then using the chain
rule of differential caleulus we £ind

opR _ (AP) DP (aP) DS
0T

3plsot T |35)p07
but since %%_zo , we finally obtain

DrP ]
DT ot = © 7=

1/2
where d = (%{%’.)/ is the local speed of sound. In terms of the

cylindrical coordinate system (X,F‘) described above, the components
of the first two vector equations of (7-1) and scalar equation (7-5)

are

o/

v S 0
v +P8F a><+;'9

|

-+

U, eV _
= O

Qv
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|
+
-~
<
o/
=
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Although we have already specified the equation of state to
be that of a perfect gas, the explicit form of that equation is inde-
pendent of both the form of the difference schemes and the numerical
procedures. We therefore use the more general expression for the
thermod i, i = .

ermodynami.c equai:‘lon of state [ p(foas)
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where U and WV are respectively the velocity components in the
X and © directions. These four partial differential equations
must be solved simultaneously for.the four dependent variables D

P , U L, and W . The thermodynamic relationship

a-= alpp) (7-7)

which is derived from the definition of & by using the equation of
state provides-the fifth equation connecting the five unknowns D
g >, W,V ,ad & )

In the subsolar iegion of the planetary boundary, equations
(7-6) exhibit different character; namely, the equations are elliptic
in the subsonic region, parabolic on the sonic line, and hyperbolic in
the supersonic region. Despite these complications, Lomax and Inouye -
(1964) have perfected an inverse method in which a shock shape is as-
sumed and the equations are integrated numerically by a finite-differ-
ence method Lo determine the corresponding body shape. Their particular
scheme has proven to be accurate and.efficie?t in solving.such flow
fields, and we have used the éomputer program which is comprised of a
main program and 26 subroutines written by them at Ames Research Center,

The complexity in the details of programming difference equa-
tions with more than one independent variable depends critically both
on the nature as well as the manner of treating the boundary conditions.
For this reason the governing equations (7-6) are transformed to a co-
ordinate system that provides the simplest appliéation of the boundary
values, Because the initial-boundary conditions are specified along
the shock, the axis of one set of coordinates coincides as shown

in figure 7-2 with the shock, and the coordinates are those lines
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placement of the shock in
the free-stream direction.
The other set of coor~
dinates is parallel to the
free-stream direction.

This coordinate system is
obviocusly convenient for
_starting the inverse problem
although not optimum_fof
studying body shapes. The
coordinates are equally
spaced in both directions,
and their intersections
define the points for the
difference mesh., If the
analytic expression for the
shock shape is X =X(I) ,

then these new coordinates

S and T are defined by

s = x-X{©
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x,5

Figure 7-2. Sketch of flow field
around blunt-nosed
body and coordinate
system’ (Lomax and
Inouye, 1964).

(7-8

and by the usual application of calculus, the X and T partial

differential operators with respect to X and T become

2 _— 2.
IX ~ 2s

EL_ = - ‘2 —_— 3
or Xas ot

‘Equation (7-6) can then be transformed and expressed in matrik form

[‘C] (7-9)
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Equation (7-9) can be inverted, and the partial derivatives with

respect to § of the four dependent variables can be expressed as

. 3P 30 U Y

_?aﬁ_mgi:f!(r"P’P?’u)U? T v 2t +18+)
3P 2 AU 3

——-—-—-—ig = {2(1.1 p',loj u-, ‘U-‘\ ’—a?_ y ap . T a?.‘,).-)

(7-11)

3P 3@ au  JvU

"g%z‘ca(“p”o’“”’"* FERIFE ma“f)

IV _ ¢ - AP 32 3 v
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vhere f, , f, , f3 , and f, represent complicated expressions
involving the indicated variables and are the four elements of the
matrix derived by performing the operation [A]—l [C]

For a given shock shape_a‘nd free-stream conditions, the values-
of P » £ 5 WU , and U just behind the shock wave are caleulatred
from the discontinuity relations (7-2). Tomax and Inouye (1964) then
divide the numerical calculations into two parts. TFirst, the deriva-
tives with respect to T of P , £, U , and U are caleculated
numerically from their known values alorig a 1T coordinate. They are
determined by a standard five-point central difference method except
at the upper end of a T coordinate where a skewed five-point differ-
ence scheme is used. This information together with equation (7-11) is
then used to advance the solution in the § direction by a predictor-
corrector procedure. A second~order method is used and is illustrated
for a typical flow variable P as follows:

(1) Numerically differentiate the flow properties

for the i th step to obtain (%TP)
1

{(2) Calculate (%)l from equaﬁions (7-11)
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(3) Predict new value Bi-i—l: pl-H + 248 g‘g )i

(&) Numerically differentiate new value to obtain

_ 7-12
( a P ( )
{5) Calculate ok ) from equation (7-~11)
9% |1+l
(6) Correct new value 'ai+i = pi +

T‘fﬂ‘s [(-g_?)l + (%SE)LH:I

In this manner the known values of the flow properties are advanced
by marching step-by-step towards the body.z The stream function

\V is calculated for each point, and a body is determined as the
locus of points where the stream function vanishes. This body shape
is then compared with the desired shape, and if the fit is not satis~-
factory, then the shock shape }{(f) is varied slightly, and the
whole procedure is repeated. 1In practice several such iterations

vield the desired body shape to a very accurate degree.

a. Convergence and stability. The question of convexr-

gence is considered by Lomax and Inouye (1964) in two parts. First,
as the mesh size is reduced, do the difference equations converge to
the differential equations, and second, if they do, does the calcula-
tion procedure itself converge throughout the region of application?
The complexity of the governing equations makes the answer to these
questions impossible from a purely mathematical approach. From a
physical viewpoint, however, some insight to them can be achieved.
With regard to the first question, if the difference equa-

tions do not reduce to the specified differential equations, then they

2The solution is started by a first~order predictor followed
by two second-order correctors. )
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must reduce to some set of differential equations which violate one
or more of the conservatioﬁ laws. To check whether or not these

laws have been violated, however, can be done independently of a
mathematical analysis of the difference equations. For example,

the body surface is located by the condition of mass conservation and
if either momentum or energy is not conserved, the entropy and total
enthalpy calculated at the body location would not be constant.

These conditions were checked, and for the solutions presented here,
the entropy along streamlines was constant to an accuracy consistent
with the calculations, and the total enthalpy was constant throughout
the flow. These are independent checks because entropy and enthalpy
are not used in caleculating the flow field, and they insuve that the
results of the finite difference methods employed do coxrectly repre-
sent solutions to equations (7-6) and (7-7). The second question of
whether or not the calculation procedure itself converges is treated
by the following argument. If the calculations give answers that are
physically consistent i.e., satisfy the independent physical checks
and are not significantly affected by changes in eithér‘the mesh size
or mesh ratio, then we assume they have converged and represent the
correct answer. .

However, considerable difficulty is encountered in the study
of the flow properties behind a prescribed shock with the flow proper-
ties aghead of it known. The difficulty arises because anzlytically
our approach is only well-posed for am- initial-value or Cauchy-type
problem, and we are attempting, in mathematical terms, to solve a
boundary-value problem by am approach suitable for an initial-value
problem. The difficulties arising from such an attempf lead to some
of the most fundamental problems in the numerical treatment of both
partial and total differential equations. '

In the solution of equations (7-6) and (7-7) by means of
equations (7-12), numerical instabilities are easy to detect once
they have started. A convenient demarcation of their onset is the
locus that separates regions where the variables are at least physi-
cally possible from regions where they fluctuate beyond all reason

predicting negative pressures, densities, etc. Unfortunately, the
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complexity of the problem makes complete mathematical xrigor in these
" studies practically impossible, and one is forced to rely on experience
with linearized equations and familiarity with the physical problem
for help in making the argumenis plausible. MNevertheless, Lomax and
Inouve (1964} have been able to classify all the difficulties encoun-
tered in this study with one of the following categories (see Fox
[1962] -for terminology and further background):
i. Inherent instabilities
(a) Due to ill conditioning (nonessential)
(b) Due to singularities (essential)
ii., Induced instabilities

Inherent instabilities are brought about because (a) the differential
equations themselves contain an unstable {(exponentially growing)
solution in the direction of one independent variable while remaining
bounded in the other, or (b) because the differential equations con-
tain a solution that is singular. Such instabilities are not caused
by the finite differencing. Induced instabilities are brought about
by the particular numerical techniques employed, mesh size, degree of
truncation, implicit or explicit methods, etc., and can lead to im-
plications quite spurious with regard te true solutions to the partial
differential equations. ,

Fo}lowing Lomax and Inouye (1964) we will refer to the two
different kinds of inherent instabilities mentioned above as essen-
tial and nonessential. The terminology is, perhaps, not apt because
what is referred to as an essential instability is actually caused by
the appearance of a singularity or group of singularities in the flow
region between the shock and body. The singularities are invariant
to coordinate transformations and represent the locations of sources
or sinks that would appear in an exact analytic solution behind an
analytic shoeck, Nevertheless, they refer to the numerical behavior
caused by them as an instability because of its similarity in ap-
pearance to other numerical phenomena which are identified by that
term. The important distinction between an essentiél and a nonessen-
tial dnstability is that the latter would not occur in an exact anélytic

solution. Nonessentlial instabilities are started by round-oif,
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truncation, or end-of-array inaccuracies due entirely to the fact
‘that numerical methods are employed, In most of the litevature pexr~-
taining to the stability of partial differential equations, the state-

ment is made or implied that initial-value data are always unsuitable

for elliptic equations (see Hadamard [1923]). 1In the present termin-

ology it is the existence of nonessential instabilities that leads

to this conclusion, a conclusion that is valid if such instabilities

cannot be controlled.

A great deal has been written on the effect and control of

what we call nonessential instabilities.

So far as we know, most of

the reported discussion attempting to identify these instabilities

with the local form of the governing equations (elliptic, parabolic,

or hyperbolic) have been limited to the elliptic or subsonic region.

Although nonessential instabilities could be detected in the subsonic

portion of the flow field if the numerical differentiation in the

+ direction was of very low order and no smoothing was used, Lomax

and Tnouve (1964) encountered

A 7 no difficulties in this area.
F ., According to them the really
s
4 critical area for stability
P
e was located in the supersonic
Characterislic fine A
Y \ki . portion of the f£low, roughly
k i/ 7 Locus of pents with .
Wﬁmy /’ Eil"// ééﬁﬁgﬁ;w£mfh_ in the shaded region of fig-~
vector-._ < R .
f;//f 4 7 ure 7-3. In fact, in this
A ———— T S
ﬁ?‘_ 8 region they were able to
vy

Shaded orea ndicotes
critical region of
instebdity problems

Figure 7-3.

x5

Sketch of flow field
showing eritical region
of instability problems
(Lomax and Tnouye,
1964).

isolate all three of the
major types of instabilities
listed above, And although
the difficulties inherent in
the asymmetric differentia-
tion formulas used at the
upper end of the arrays often
accentuate the breakdown,

they are not the cause of

these instabilities.
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Consider the flow behind the shock in-the area whexe it is
supersonic. As we march inward from one T coordinate to the next,
we are perpetrating an initial-value problem. We use the term
. “properly set" in the usual way; that is, Cauchy data (function and
derivative) are properly set for the wave equation along the T = O
axis, and Weumann or Qirichlet data (function ox derivative) are
properly set for Laplace's equation. Usually, stability proofs for
* hyperbolic equations stem from the assumption that initial-value or
Cauchy data are properly set. Hadamard (1923) pointed out, and it is
well known in studies of supersonic wing theory, that according to
how the line carrying the initial data cre , 48 each characteristic,
Cauchy data may or may not be properly set inr a hyperbolic equation.
By Hadamard's terminology, a data line is “duly inclined" if Cauchy
data are properly set, and "nonduly inclined" if they are not. One
can easlily show that a shock is a nonduly inclined surface in the
region where the flow is supersonic behind it (see point A, figure
7-3), and Cauchy data are, therefore, nowhere properly set along it.
In fact, the T coordinate continues to be nonduly inclined until
the upgoing characteristics lie to its right as is shown at point B
in figure 7-3.

The principal point made by Lomax and Inouye (1964) in this
regard is that the nonlinear equations governing the flow field may
have inherent instabilities in the supersonic as well as in the sub-
sonic regions. In fact much of the numerical discussion, as well as
most of the criticism, of the inverse method concerns the existence
and manner of treatment of the.nonessential instabilities. The defense
usually invoked by those who use the inverse method is, simply, that
the gas layer between i{he shock and the body is thin enough that the
errors caused by numerical calculations cannot grow sufficiently
large to invalidate the first few significant digits in the results.
We adopt the hypothesis of Lomax and Inouye (1964), that this argument
is sufficient to validate those cases for which the solution passes
the consistency checks on total enthalpy and entropy as discussed
above.

Absolute reliance upon this hyporhesis is not always
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essential instabilities by appropriate numerical methods,
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satisfactory in application,
and is certainly not satis-
factory from a theovetical
point of view. Basically,

the validity of such a
hypothesis is coupled with

the word size (number of
significant digits carried

in each arithmetic operation
and stored in memory) avail-
able in the computing machine.
it is not always wise to

demand larger computing capa~
city merely to push ahead a

few more steps before ex-
poneﬁtially growing instabili-
ties started by numerical trun-~
cations swamp the first few
significant digits in the cal-
culations, A more sensible
approach is to face the
problem with analysis and
attempt to suppress non-

One such

method that has been used by several authors (Fuller, 1961; Lomaxz and

Tnouye, 1964) is to "smooth" or filter the data along each T

dinate as the computations proceed.

coor -

Because of the important role

this method plays in controlling instabilities, we shall present some

of the discussion of Lomax and Inouye (1964).

A representative variation of pressure along a T

- and behind a curved chock is showm in figure 7-4(a).

coordinate

If we expand the

pressure distribution in a Fourier series between the maximum absclute

values of

used in the calculations, we obtain
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PH) & " '
_ Ny _ PR

5 = > bncos T ercax< < rmdx - (7-13)
max  h=0 max

The magnitudes of the coefficients are shown in figure 7-4(b). We
see that the first few terms dominate the expansion, and higher-ordexr
terms, covresponding to higher frequencies, are negligible. WNext we
assume that a Fourier expansion for any of the dependent variables
-over the same interval along any ~T coordinate between the shock and
the body would exhibit the same general behavior, that is, could be
expressed with acceptable error by the first few- terms in a Fourier
expaﬁsion.

That assumption certainly warrants some discussion. However,
to attack‘i£ simply on the basis that it arbitrarily prohibits high-
frequency terms in the true solution is not justifiable, since any
method using finite-difference techniques is subject to such a
criticism per se. 1In fact, as pointed out by Lomax and Inouye (1964)
it is a fundamental theorem in communicatiocn theoxry (Sﬁannon and Weaver,
1949} that the highest resolvable frequency in any finite trigonometxic
series to be represented by a discrete number of pointé is related to
the number of points themselves. Consequently, they reasoned that if
more points are used than are required to resolve the highest fre-
quency, the remaining points carry redundant information. The real
assumption, then, is not that high-frequency terms are arbitrarily ex-
cluded, which is the case for numerical calculations in any event,
but rather that enough mesh points are taken to make data’ contained
in them 1érgely redundant in the sense just mentioned. Under these
circumstances high-frequency terms, appearing from more or less ran-
dom errors brought about by numerical‘truncation in calculations made
at discrete points, f£all above the frequency range required to ex-
press the true solution and can be excluded if the propex numerical
filter is applied. The following discussion briefly describes such a
filter used by Lomax and Inouye (1964). ‘

Consider an even function F(X) that can be represented by

a Fourier cosine series in the interval QSX <L as
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o
Fix) = Z a,,COS mtx (7-14)
| m=0
and define the operator 'G by the equation

) = [Foesjod + Flx—jaa) (7-15)

where (g is the spacing of the points in the X direction. With

Wj defined as arbitrary weighting factors, the sequence of opera-

tions Wi f:j applied to equation (7-14) results in the expression
=0 .

dJ
J ©
Mmx
Fm(x) = ZWJ' -@(F) = ZAmcos JL (7-16)
Jj=0 m=0
where
J jmrc]
: i
J=0
" If we define a polynomial P_F by
) J .
mrd
P = Z W; cos-sg——i_———9 (7-17)
J=0
then equatj:;m (7-16-) beconmes
() S | _ mTrX
U ]
iy = ZPfcamcos S

m=0
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And D repetitions of the operation vield the ex_ﬁression

. (o0
(n — h m7t X _
FPlix) = rnZJ) Ry, cos == (7-18)

Thus, Lomax and Inouye (1964) concluded that if the Ffunction ]:(X)
is replaced by certain weights of its average at equally spaced inter-
vals to the right and left of % (i.e., applying the operator
Z;;DWJ 'f'J }, the coefficients in its Fourier expansion are multi-
plied by Pf which is independent of .X and depends only on the ar-
bitrarily assigned weights W; and the factorx m%d—" . Furthermore,
if the operator is applied N times, each coefficient is multiplied
by the R th power of Pf o

1f the terms j s WU , and %% can be chosen such that
f’{ is near unity for values of M less than some arbitrary fre-
quency M; , and close to zero for higher values of M greater than
some Ma and falls in the range O <P_{;<I for intermediate M
where M, <M <M, , then P’F will be suppressing the higher-fre-
quency terms and be acting like a filter. We caun therefore easily
see that the corresponding :-zeighted:-average operation will leave the
low harmonics for which 0O < m < M, unchanged and will destroy all
the higher harmonics for which mM>M,. Harmonics for which M;<
m < M, will be distorted according to the nature of the poly-
nomial Pf. . To illustrate that P,F actually does possess such
filtering properties, consider equation (7-17). An examination of

this equation reveals it to be a truncated Fourier cosine series

with summation index j . If we choose Wo = 1/2 and W; =
*%'éi-%ﬂﬁm/—%— for J =1, .2, 3... , then P_F is simply a finite~term

Fourier expansion in variable Md, approximating a positive squafe
wave which clearly has the desired characteristics of a filter. To
improve the approximation and make the filter sharper, either more
terms of the series can be taken, or, as ;i.n our case, higher powers -
of Pr corresponding to fepeated averaging can be used.

In our,application, deo  is unknown. We simply assume that
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an |. exists for which our numerical resullts can be represented with
acceptable error by harmonics below Iﬂi and for which our numerical
procedures will introduce errdrs consisting of harmonics above M,
(but below those wery high frequeﬁcies for which :>-%-%ﬁ ). By
numerical experimentation with the spacing s and the weights V{j 5
Lomax and Inouyve (1964) have verified that this is so. The actual
polynomial which they found appropriate and which we have used in our

calculations is

¥ 17 24
Pr = 35 T 35C0S

e 6 2mard

Each application of F%? amounts to moving the central point in a
group of five to the curve obtained by a fitting a least-~squares
quadratic to them. |

The use of numerical filters of this type can be contrasted
to the use of bighexr-order numerical differentiating processes. Con-
sider, as shown in figure 7-5(a), a set of data all zero except for
one "bad" point. These data were numerically differentiated by Lomax
and Inouye (1964) using central-difference schemes and the results
harmonically analyzed. Their results given in figure 7-5(b) show that
with higher-order difference methods the amplitudes of higher~frequency
terms are increased and the over-all maximum amplitude itself is in-
creased, On the other hand, a five-point difference scheme followed
by repeated filtering, of the type just described, has the opposite
effect. This does not mean, of course, that rvelative to low-order
schemes, high—orde; differentiating processes are inferior. Their
value comes in reducing'the initial error. But once this exror has
been committed, the higher-order methods are of no value in control-
ling its effect on the stability.

To demonstrate the growth of an inherent instability and the
effect of numerical filﬁering, we present some results from the study
by Lomax and Inouye (1964). Four curves are shown in figure 7-6, one

corresponding to each of the four pessible combinations of two spacings



O

-1 o +
x

(a) Set of data with one "bad" point.

04 = Number of panis d 50
LA nrx
vsed n differenhahon (E) *by + Xby cos 2>
©Fdlered dote =g & x=0 nzt
o5 o [}
03| 6200 g
89 800 o
b | 23 8°°°%e o 8
o ° OC,AD
L2 oo °
8 o o 0%g
¢] o o A a
o Nomber of o 0a
© flllertng_s'__“___p__.---- ° o8
° RS ° ° o8
------ o g
1 1 ®oa L @Ok 8 N
0 4 8 12 16 20 24
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differentiation and filtering.

Figure 7-5. Effect of differ-
entiation and filtex-
ing on data (Lomax and
Inouye, 1964).
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¥Figure 7-6, Effect of interval

size on determinant
[A] in equation (7-10)
(Lomax and Inouye,
1964).
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for AS and AT .
tity plotted is the magnitude

The quan-

of the determinant of [A] from
equation (7~10), the value of
which is, of course, critical
in evaluating the § deriva-
tives of the dependent vari-
ables. (Actually, any one of
the dependent variables could
be used to display the same
resuli.) Plotted along the
abscissa are the points located
along 2 T coordinate in the
supersonic region above the
body and downstream from the
shock. WNotice that the in-
stabilities have no correla-
tion with the ratio of AT/AS
(all other conditions were

held constant),,fut rather

with the absolute value of AT,
Tor the larger AT no fluctua-

tions at all are observed,

.whereas, for the smaller AT ,

unstable oscillations begin at
a2 T of around 0.6 , and the
distance between successive

maxima and minima is about five

times the AT interval size.

Lomax and Inouye {(1964) ex-
plained this behavior by es~
timatiﬁg the magnitude of the
polynomial F?* With the
smaller %t _spacing correspond-

ing to a smaller value for
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‘do , equation (7-19) indicates that P:' is about 0.99 for one
application of the filter and about 0,90 for 10 successive applica-
tions. Hence; the amplitude of a term with the frequency correspond- ~
ing to the oscillating curves presented in figure 7-6 is only slightly
damped’ by the filter represented by P%f . A similar study for the
larger T spacing in figure 7-6 shows that the same frequency would

be heavily damped, especially for multiple applications of the filter.
The extent of the curves shown in figure 7-6 is well within the region
where the T coordinates in the supersonic flow are nonduly inclined,

a region defined by the inequality de?[A])O . This example illus~.
trates a typical case of a nonessentia% instability and the mannexr by
which it can be controlled.

In their report Lomax and Inouyve (1964) also examine and dis-
cuss an example-of an essential instability which is caused by a line
singularity in the flow field. They found that this singular behavior
corresponding to mass absorption was directly caused by the use of an
elliptic shock-ﬁave shape j{(F). and that exactly elliptic shecks
in the nose region simply do not occur ahead of blunt bodies in

source~free flow. The difficulty is easily overcome, however, simply
‘ by starting with an analytic shock shape that is not ellipﬁic and
never becomes tangent to a free-stream Mach lime., Actually, the shock
shape used in their work asymptotically approaches twice the slope
of a free-stream Mach line, and with its use, essential instabilities

such as they discuss disappear.

The question of just how close the shock can come to the free-
stream Mach line and just how it should behave at infinity does not
have to be settled for most bodies, because we need only to enter the
supersonic region far enough to provide information which can be suc-
cessfully continued by the method of characteristics. Usually this means
that the body shape need conform to its desired value only up to a
point where the local Mach number is around 1.05 . Past this point
the given body shapé can then be used explicitly because the method of
characteristics is a difect method., The exact shape of the body past
‘this point, however, does not affect the solution in the nose region

becanse no disturbance in the supaersonic region can propagate upstrean

-
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into the subsonic part. Thus, the solution in the nose region is

" quite independent of the details of the flow further downstream in the
supersonic part. The real importance of this whole concept lies only
in the fact that analytic shock equations for such bodies with source-
free flow ahead of the-limiting characteristic are not difficult to
construct.

The instabilities discussed so far existed because of the
nature of the differential equations. They would actually have existed
in a frictionless flow if the boundary conditions were exactly repro-
duced. Another kind of instability arises which is caused by the par-
ticular choice of numerical procedure. This kind of instability is
referred to as an induced instability, and it can presumably be elimi-
nated by the proper choice of coordinates, mesh size, and differencing
technique. ZLomax and Tnouye (1964) examined this aspect of the problem
as follows.

The study of the stability of difference methods, as they
apply to hyperbolic equations, usually pertains to the continuation of
Cauchy data given along a duly inclined line. The criterion given for

~the stability of the simplest explicit difference scheme in application
to the linear two-dimensional wave equation (Fox, 1962) is illustrated
in figure 7-7., The scheme is
based on a three-point central-
difference formula written about & EEAW
the point m,n for the first
derivatives in both directions.
Given equally spaced data along
column n , the method is stable

if, as the calculation proceeds

from point a to point b im . Xadl T Sn Snbl

figure 7-7(a), the columns gre (a) %,y plane. (b) st plane.

spaced by AX,, and unstable if

Figure 7-7. Sketch of conditions
for stability (Lomax

for stability is related, simply, and Inouye, 1964).

spaced by ,AX2 . The condition

to whether the point at the m th

row and (ntl) th column does or does not lie in the shaded area bounded
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by the characteristics shown. If this criterion were to apply to our
case (when the n th column became duly inclined), point b in figure
7-7(b) would have to fall in the shaded region shown. Actually our
case ig much more complicated. A five—point difference scheme is used
along the columns and, after smoothing, a second~ordexr corrector equa-
tion is applied.
Coupled with the ever present nonlinear form of our basic

» equations, these complications make a stability amalysis of the situa-
tion quite involved. However, Lomax and Inouye (1964) have obsexrved
that whenever the flow crosses into a region where a T coordinate is
duly inclined, the calculation becomes unstable. When the T coor-
dinate changes from a nonduly to a duly inclined line, the value of
det [A] in equation (7-10) passes through zero. Since det [A] is the
denominator in the equation for the forward-marching derivatives, this
can lead to difficulties in numerical methods even though, of course,
the numerators also must vanish. As was the case for the end-of-~array,
asymmetric, numerical differentiation, this occurrence may help start
the growth of instability, but it is not the cause of it. In their

~ solutions, this crossing 6n1y cccurs in the high supersonic region so
no attempt was made by Lomax and Inouye (1964) to control it. The
line along which the crossover occurs simply becomes a boundary past
which calculations were not continued. This way of treating such an
-instability_is only an expedient. " Blunter bodies and solutioms at
" lower Mach numbers demand that these instabilities be controlled. Con-
sequently, at the present time, this particular computer program is
incapable of solving such cases. Fortunately, however, the bluntness
of the magnetopause and ionopause shapes and the high free-stream Mach
number that characterize ouxr applications fall within the range fox
which accurate solutions can be computed by this program so that fur-

ther development is not required.

b. Relating the shock and body shapes. Even with all

the stability and convergence problems controlled where necessary, the
real success of the inverse method still depends upon the ability to
find some relationship between families of shock and body equations,

Tn other words, it depends upon the ability to formulate a shock
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equation that can be systematically modified to a point where it yields
"7 given body to a prescribed accuracy.

The fruition of the shock-shape iteration requires an effi-
cient way of comparing the calculated body shape with the desired shape
of the magnetosphere or ionosphere boundary and a means of minimizing
the difference. However, the faet that the magnetopause and ionopause
shapes were numerically calculated and are not expressed by an analytic
expression makes a gystematic comparison very complicated. To reduce
these complexities, it was found that the nose of both the magneto-
pause and the Jloncpause can be represented extremely accurately by a
fitted ellipsoid. This simplification made the comparison straight
forward. The following method was then used to relate the associated
bow shock wave with this boundary,

As Lomax and Inouye (1964) pointed out, elliptical or sphexi-
cal shock shapes introduce singularities into the flow field which can
cause essential instabilities to occur in the low supersonic region near
the body. In order to avoid these difficulties, they attempted to rep-
resent the general shock shape EQ(F) by a simple ratio of polynomials

Cin I . Since the body shape and size corresponding to the given shock
are not known at the start of the computation, they found it convenient
to reference the X and [ coordinates to the radius of curvature
Rg of the shock wave at r=0.

The general equation for an ellipsoid, which is to be fitted
te the subsonic region of the given planetary boundary, can be written

in terms of the present coordinate system as

KZA ) = Ry (7-20)

mz(x—A) 2 5o (Ts Re

The syﬁbol A is the shock-standoff distance, R, is the radius of
curvature of the body at =0 , and Bb is the body blunitness para-
meter obtained from the fit to the specific planetary boundary under

congideration and defined by Bb——-(b/R)z where D and R are
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ellipsoidal dimensions illustrated
"Tin figure 7-8.
In relating the body shape to
the shock shape, two factors must be
considered. First, the ratio Ry/Rg

which relates the size of the calculated —_—

body to the shock shape must be deter-
mined, and, second, the closeness of

fit of the calculated body points to

the desired body shape characterized

by B}, must be determined. The pro-

cedure devised by Lomax and Inouye (1964)

Figure 7-8, Sketch of el-
lipsoid {(l.omax

to first assume values for the shock and Inouye,

1964).

and used in the present application is

shape parameters and then calsulate
the flow field including the body shape.
The body coordimates for surface Mach numbers between 0.5 and about
1.05 are then substituted into the left side of equation (7-20) and
plotted against (x-—llyﬁs .3 These points are fitted with a horizontal
straight line that minimizes the sum E:o of the absolute differences
between the points and the line. The ordinate of the line is the
ratio Rb/R5 , and the sum of the absolute differences is a measure
of the closeness of fit to the desired planetary boundary. If neces-
sary, any given parameter in the shock equation can be changed by a
specified increment, and this entire procedure is then repeated until
z:o is minimized. ZEach iteration requires approximately 15 seconds
on an IBM 7094 computer. ’

Lomax and Inouye (1264) have experimented using the above

procedure with & polynomial ratioc for }{(F) . After extensive

3The body coordinates for Mach numbers less than 0.5 are
ignored because they generally lie on a circular arc and because of
the scatter introduced by small wvalues of the denominator %X — A
in the first term of equation (7-20).
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investigation they have discovered the rather remarkable fact that

ellipsoidal bodies are produced to a high degree of accuracy for values

of the body bluntness parameter up to

meter equation

2.25 by the simple, one-para-

— 2 = 14
_.L(L LA (_r_}
—_ - 5
..jgf_)_ 21Rs Rs (7-21)
Rs L 2As ( F )3
ME-1 | Rg

where As is the shock-wave parameter (illustrated in figure 7-9).

This equation is valid for free-stream Mach number greater than 5.

The denominator provides that for large distances from the nose, the

shock shape is twice the Mach line slope.

This condition was imposed

to avoid essential instabilities although it does not necessarily pre-

vent the gshock angle from becoming smaller than the Mach angle in some

intermediary region. The use of
the one—pafameter equation (7-21)
greatly simplifies the body-
optimization procedure, In
our planetary applications, the
body parameter B, is always
" less than one and the corres-
ponding shock-wave parameter
Ag is between 0.2 and 0.7
as illustrated in figure 7-9.
For these values equation (7~21)
vields body shapes-that match the
magnetopause and the jonopause to
a very high degree of accuracy.
" The typical value for the total
absolute error z:o in the body

cooxrdinates is less than 0.1% .

Velues of Ag which Lomax and Inouye (1964)

25
20 Mw’ﬁkgx’,,//,
15 7 5
ANV AR
) e
03 EfV By=(b/R)Z
0%
—055 1 2 3 4
By,

Figure 7~9. Shock-wave parameter
As for ellipsoidal
bodies (lomax and

Inouye, 1964).

found for ellipsoids of
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varying bluntness and for Mach numbers M,, = 6 and 10 are illustrated
in figure 7-9.

For our purposes the inverse method just ocutlined satisfac-
torily computes the solution forxr the flow field in the subsonic-tramsonic
region, The computed flow properties are interpolated along a line
joining the shock and body in the supersonic region. These data are
then used as input for the method of characteristics program to con-

tinue the calculation downstream.

2. Method for supersonic region

A computer program developed by Inouye et al. (1963) at
Ames Research Center and based on the method of characteristics is
used to determine the flow field in the supersonic region, This program
is comprised of & main program and 33 subroutines, for which Inouye
et al, (1965) have described and also displayed flow charts. Since
this method is both analytically and numerically stable for supersonic
flow and since specific accounts of the method of characteristics are
given in numerous textbooks (see, ‘e.g., Courant and Hilbert [1962],
Garabedian [1964], Hayes and Probstein [1966]), we do not present a de~
tailed disaussién of this method, bult rather only ocutline the general
procedure for the calculations.

Along the characteristic or Mach lines defined by

dr
dx
Tcﬁh(@iﬁfi) , the first three partial differential equations of (7-6)
reduce to the following oxdinary differential equations (Hayes and

Probstein, 1966)

et

C—C}Tﬁdo +~ do = - sin d
,o\/z ! Msin(@+x) F

(7-22a)

on the left-running characteristic line ad—r-— = tan(s + /LL) and

hl

E;—c—)j‘—/lic:ip — d6 = - sin© df ' (7-22b)
/o\/e Msin@-p) T
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on the right-running characteristic line {%ﬁ}:ﬁz3r1(6-7u) where

& denotes the angle between the streamline and the free-stream

|

direction X , and M= S;!ﬁl—— is the local Mach angle, Equations

M

(7-22) are solved in conjunction with the energy equation in integrated

form (see chapter IX for derivation)

b+ '_2\/2 = constant

the conservation of entropy along streamlines

S = S(¥)

and the equation of state in the form

h

i

h{p.S)

Briefly, the method con-
sists of starting with flow
.properties along a non-char-
acteristic line between the
body and the shock wave, as
determined from the solution
for the subsonic-transonic Sﬁgmg
reglon, and then integrating

the equations downstream F[—”4>
along the Mach lines. The %
stepwise procedure is iLllus-
trated by the typical chaxr-
acteristic mesh shown in
figure 7-10. Beginning with

known data on the starting

Figure 7-10.

(7«23)

(7-24)

(7-25)

Current dola is stored

in array, P{J,K),

where
J - idenhihes fiow
variobles (x,y, V,--&ic)
K=1dentifies the locehion
of the field points
{numbered as shown)

> Direction of calculation

Typicol choracteristic mesh

The characteristic mesh
used in the supersonic
region (Inouye et al.,
1965).
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line the caleculation proceeds to the bedy aleng a f{ght—running
characteristic, and then back to the next starting point or shock
point as the calculations advance downstream (see Inouye et al.
[1965] for a flow chart which illustrates this part of the program
logic.) 1In figﬁre 7-10 the previously calculated (or input) data
points are identified by small circles, and the point currently being
calculated is identified by the shaded symbol. Only the numbered
points are available in computer memory at this time since the re-
‘maining circled points have been written out previously. The stored
data points are contained in a two-dimensional array, P ( J,K ),

in which the index J ddentifies the various flow variables, and the
index K identifies the location of the point.

For the calculation of an interior mesh point € in figure
7-10, the flow properties at three adjacent points are required.

These pdints are labeled A, D, and B in.figure 7-10, and cox-
respond, in the example shown, to the points K = 2, 3, and 4 in the
P array. "The calculation of déta at the new point is carried out
with the use of equatiéns (7-22) through (7~25) and a standard pre~
dictor-corrector procedure which averages the coefficients of the
differentials-' The procedure is started with a crude pfedictor (i.e.,
that conditions at C equal those at B } and is followed, therefore,
by at . least two correctors. This is in contrast to the method used
for tﬁe subsonic~transonic solution which makes use ¢f only one cox-
rector, bui which uses a second-order predictor.

For-the calculation of a mesh point located on the shock wave,
the flow properties at. only two mesh points, the adjacent upstream
shock poinf and the nearest Interior point, are.required because the
upstream segment of the right-running characteristic line does not
exist at this point due to the presencé of thée shock ﬁave. The cal-
culation of data at the new shock point proceeds with the use of
equations (7-22a) through (7-25) along with the shock discontinuity
equations (7-2) which hawe replaced equation (7~22b). The procedure it
then started and réfined in the same manney as for an interior point,
In this way the shock shape and location in the supersonic region is

calculated as part of the solution ‘and is no longer determined by
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equaltion (7-21) as was the case in the nose region.

For the calculation of a mesh point located on the body,
again the flow properties at only two mesh points, the adjacent up-
stream body point and the nearest interior point, are required be-
cause the upstream segment of the left-runnipg characteristic line
does not exist at this point due to the presence of the body. For
this case, the calculation of data at the new body point is carvied
out’ with the use of equations (7~22b) through (7-25) along with the
specification of the flow angle © which is determined for that poin.
from the known shape of the planetary boundary arocund which the flow
is being computed. This procedure is also started and refined in the
. same manner as was dope for an interior point. This method thus allows
the direct use of the previously calculated magnetopause and lonopause
shapes and contrasts with the invérse method which requires that these
boundary shapes be fitted with an analytic equation for an ellipsoid.
Consequently, this method computes the shock shape and flow propexties
foxr boundary shapes exactly as they dre displéyed in figure 6-6.

In calculating rotational supersonic flow by fhé method of
characteristics, Inouye et al. (1965) found it convenient to introduce
entropy as a flgw property since it remains constant on.streamlines.
Their particular version of this method which we used assumes that the
entropy varies quadratically between streamlines. To illustrate this
procedure, consider four points in the flow field (see figure 7-10),
A, D, and B where the flow properties are known and C " where they
are to be determined. Thé entropy at C can be calculated using the
flow properties at A, D, and B alongjwith the assumption that the
entropy vafies quadratically along the normal to the stfeamlines be~
tween A and B . This assumption is valid provided that the higher-
order devivatives of entropy between A and B remain small, Al~
though serious errors may occur in the flow-field calculations if this
condition is not realized, Inouye et al. (1965) have found that these
errors are the ovder of the cube of the mesh size and, for not-too-
coarse meshes, that this scheme computes accurate solutions.

As in the case of the inverse method, a check on the overall

accuracy of the method of characteristics is based on physical rather
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thzn mathematical arguments. 1TIn rthe subsonic-transonic region the
conservation of total enthalpy everywhere and entropy along stream~
lines were adopited as independent checks on the physical consistency
of the gplution. However, for the present method these two require-
ments are used in the numerical calculations and therefore are not
independent and cannot be adopted as checks on the overall accuracy.
For the method of characteristics, instead, Inouye et al, (1965)
calculate the mass-flow balance between the shoeck and the boﬁy at
several positions along the body. This calculation is independent of
the numerical computation of the flow field and can be adopted as an
independent check on the overall accuracy. For the results presented
in this thesis, the mass-flow balance was constant to an accuracy:
consistent with the calculations throughout the entire superscnic
flow region. This check helps to insure us that our computed results

do correctly represent solutions to equations (7-6) and (7-7).
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CHAPTER. VIII

FEATURES OF THE APPROXTMATE SOLUTION

A, Results of the Computed Solution

With the specification of a value for the free-stream Mach
number Mo >>| , the location of the bow wave and the properties
.0f the flow field can be computed for either the magnetopause or any
of the ionopause shapes shown in figure 6-6 by application of the two
highly developed computer programs described in the preceding chapter.
Although we have only carried out these calculations for solar-wind
flow past Mars and Venus, we present some of the calculated results
for flow past the Earth achieved by Spreiter et al. (1966a, 1968) and
Spreiter and Alksne (1969, 1970) in order to provide a background for
a laterx discusgion about the similarities and differences between

these two cases.

1. Flow past the Earth

Figure'S-l shows the ﬁosition and shape of the'bgw shock wave
generated by the solar wind's interaction with the magnetosphere
boundary and calculated by Spreiter et al. (1966a) using the computer
programs just described. These results, which are presented in terms
of cylindrical coordinates X and [.normalized by the distance D
as originally denoted by Spreiter et al. (1966a) but exactly equivalent
to our Iy , are for § =-5/3 and Mg=18 , a representative value
for the free-stream Mach number Mo o Also included on this figure
are several additional solid lines representing streamlines, and
dashed lines representing characteristic or Mach lines of the flow
which correspond to standing compression or expansion waves of in-
finitesimal amplitude. As indicated by equation {(5-18) with A =0 ,
Mach Llines cross the streamlines at such angles that the local velo-
city component normal to the wave is always exactly equal to the local
speed of.sound A . Mach lipes thus exist only where the flow is

supersonic and, consequently, axe absent from the vicinity of the
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Figure 8-1. Streamlines and wave
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t ose because the
3.0 ~ —— STREAMLINES - magneLopause n

——— MACH LINES flow there is subsonic. This

plot also shows that the angle

between the shock wave and the
incident stream is much larger
along the entire length of

the shock wave included in

the illustration than the asymp-

totic angle which is just the

angle between the streamlines

and Mach lines of thes incident
undisturbed flow upstream from
the bow shock wave. We can

thus see that knowledge of the

- . asymptotic direction of weak
patterns for supersonic

flow past the magneto- shock waves is of limited use-
sphere, M®=8 s
¥ = 5/3 (Spreiter et
al., 1968). the location of the bow shock

fulness in the estimation of

wave, except at extremely
great distances from the planet.

Contouy maps showing lines of constant density ratie ’O/F%o R

velocity ratio V[V , and temperature ratio T/T}D which were ob-

tained from the computed solutiom of equation (7-1) and (7-2) and

originally presented by Spreiter et al. (1966a) are shown in figure

8-2 for the same conditions of M_ =8 and § = 5/3 as in figure 8-1.

These results show that the density ratio FVQ%D remains near the

maximum value (5‘ +l) (b’—al) = &4 for a strong shock wave in a gas

with § = 5/3 along nearly the entirve length of the portion of the

bow wave shown. The gas undergoes a small additional compression as

it approaches the stagnation point at the magnetosphere nose and then
expands to less than free-stream density as it flows around the flank
of the magnetosphere. The velocity remains less than in the free
stream,. however, throughout the same region. Ag indicated, a single
set of contour lines, although with different labels, sexrves for both

V74V,

o and 'E/TCO because, as Spreiter et al. (19266a) pointed out,
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Figure 8~2, Density, velocity, and temperature fields for super-
) sonic flow past the magnetosphere. M _ =8 , § :.5/3
(Spreiter et al., 1966a).
the temperature ratio TYT}D is closely related to the velocity

ratio through the expression

T (J'—!)Méo[ 2 2]
Tm—iJr——-é---—‘1—\//\/Q., (8-1)

derived by integrating equation (5-3) with §,=() , combining with
relations for enthalpy N and speed of sound A given in equation
(5~2), and rearranging. If values for ¥ and Mgy are given, it

is then a straightforward and simple calculation to determine 'F/Tco
as a function of VV\QD . The resulis presented in figure 8-2 show
that the temperature is substantially higher than in the free stream
throughout the entire region illustrated. Particularly noteworthy is
the large increase in temperature of the solar wind in the region of
the magnetosphere nose. If, for example, the témperature of the in-
cident solar wind is 105 °K , then the temperature at the stagnation
point ié caleulated to be 2.23 x 106 which is of the same order of
magnitude as the temperature of the gas in the solar cdrqna before

it is accelerated to the high velocities characteristic of the solar
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wind. This result simply demonsirates that the energy content of
the solar wind is, to a large extent, dependent on the temperature
of the solar corona. Although the gas cools considerably as it flows
around the magnetosphere, it is still about one million degrees K as
it passes the Earth ( X/D = 0 ) and about three-quarters of that
farther downstream at X[D =1} .

Spreiter et al. (1966a) also showed that the constant-velo-
city contours of figure 8-2 can also be used to represent, with a
suitable relabeling, lines of constant local Mach numbers Nﬂ=\h&3
Their conclusion follows from equation (5-2) and (8-1) which show that
a is proportional to Tik for a given pair of values for & “and
M and that TfTew depends only on V/Ve» for given Mg and ¥

There exists, therefore, for flow characterized by given Mg , ¥

and M . a unique value for M "associated with eve&y value for
V/Ve . Contours for constant local Mach number are thus identical
to those for constant-velocity ratio. Similarly, since the mean velo-
city of the particles is propoftional, but not equal, to the speed of
sound according to the simple kinetic theory of a gas,-contours of
constant ratio of directed to random velocity are also identical to
those for constant MV\QD '

Figure 6~1 and the accompanying discussion show that the value
of 8 for the free-stream Mach number is well centered in the range
of values to be expected in the incident solar wind. However, since
both the veleocity and the temperature,. and hence the speed of sound,
of the solar wind vary substantially in the course of time, it is of
interest to review some of the results'given by Spreiter &t al. (1966a,
1968) for other Mach numbers. Figure 8-3 shows their plots of con-
tours of constant-density ratio fﬂéﬁg for free stream Mach numbers
of 5 and 12 . Although differences in the density ratio are clearly
evident, they remain sufficiently small to be of only secondary impor-
tance for most purposes. It should be noticed, however, that the bow
wave recedes from the magnetosphere as the Mach number diminishes al-
though the change is small as the Mach number decreases from 12 to ~ 8
The entire portion of rhe bow wave shown for M=I2 is, in fact, very

near its. asymptotic position for infinite Mach number, and further
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Figure 8-3, Effect of Mach number on density field for flow past the
magnetosphere, § = 5/2 (Spreiter et al., 1968).

increases in Mach number produce virtually no effect, This lack of
dependence on Mach number does not apply, however, far downstream of
the planet where the bow wave approaches alignment with the asymptotic
direction of weak discontinuities in the undisturbed incident solar
wind.

The corresponding results for the veleocity and temperature are
shown in figure 8-4. Like the density, the velocity field is hardly
affected by the change from Mach number 5 to 12 . However, the
temperature fields for these two Mach numbers differ substantially,
the temperatures for Mach number 12 being about five times larger
than for Mach number 5 . Such strong effects on the temperature can
be easily explained by an examination of equation (8-1) for T/Tco
Although we do not display the results graphically here, Spreiter et al.
(1968) showed that the temperature contours can alsc be put into a
form relatively independent of My, by normalizing the temperature
by V5 rather than T . The explicit form they chose was the
ratio ZCP(T—TOO)/VG?; of the change of the enthalpy‘ CP(T“Ton) =
& Cy (T "'Too) to the kinetic enexgy and derived the expression
ZCF (T'“Too)/ch = | - V¥VE by combining the equation
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Figure 8-4. Effect of Mach number on velocity and temperature fields

for flow past the magnetosphere, ¥ = 5/3 (Spreiter
et al., 1968).

(T—-Tm)/Tm = E'Tle‘o (1 - V?-/Vé) , the relation h:CPT defining the
enthalpy per unit mass, and the expression Mg = Voo/(2b'RTm)‘[2

for the free-~stream Mach number of fully ionized hydrogen. Since
V%/Vé) tends to be independent of Mach number at large Mg , as
jllustrated in figure 8-4 for Mg = 5 and 12, and Tx in the same
regi&n is very much smaller than T , they concluded that the ratio
ZCP(T-—T@)IV% also tends to be invariant with changes in Mach
number at large Mg .

a. Distortion of the interplanetary field. The results

presented in the preceding paragraphs represent solutions of equations
(7-1) and (7-2). As described previously, once the dynamic flow
properties- are numerically computed from these gasdynamic equations
and the orientation for the magnetic field in thé incident stream is
specified, the deformation of the interplanetary magnetic field Q by
the flow around the plamei can be determined by numerically integrat-
ing equations (7-3), or, equivalently, equations (7-4) which indicate
that magnetic-field lines deform in exactly the same manner as do

fluid lines. Spreiter et al. (1966a) have demonmstrated that these
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equations lead to a straightforxrward, but tedious calculation in which
the vector distance from each point on an arbitrarily selected field
line to its corresponding point on an adjacent field line in the down-
stream direction is determined by numerically integrating I M drt
over a fixed time intexval S . This procedure in general results
in field lines that are curved in space.

The intensity of the magnetic field at any point may then be
determined from the relation |§|“§m| = (p ]AM)/(prAQw])
in which Aﬂ is the length of a small element of a flux tube.
Figure 8-5 shows the results of such calculations performed for three

different angles between %m and Mm by Alksne (1967) and

20 Mgp=8, »=5/3 \\\
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3~ FIED LINE T - 23
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STREAMLINES |, 22227 55 5
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Figure 8-5. Direction and intensity of the magnetic field in the plane
of symmetry for three different angles between Be and
Voo 5 Mo=8 , = 5/% (Spreiter and Alksne, 1969).
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Spreiter and Alksne (1969) for the plane that passes through the cen=-
ter of the Earth and contains both the Vg and ‘ch vectors. Be-
cause of the assumed axial symmetry of the magnetosphere and sur-
rounding flow, all these field lines are planar, rather than spatial,
curves., While the calculation of the results for the case showm in
the upper left must be carried out in more or less the method just
described, the vesults for the other cases displayed in figure 8-5 can
be obtained more easily. Those in the lower left for @cn parallel
to Ve can be obtained immediately from the gasdynamic calculations
because Imai (1960) found that g is proportional to PV throughout
the entire flow field for this case. The field lines thus ceincide
with the streamlines, and the contours of constant E% coincide with
those of constant oV . The results shown on the right for 45°
angle between Beo and Veo weie otriginally calculated by Alksne
(1967) in the lengthy manner described above, but recently Alksne

and Webster (1970) have shown that the linearity of the equations
(7-4) for g > with © and V already speéified by the axisym-
metric gasdynamic calculations, permits the magnetic field at any
point in the plane of symmetry to be determined by addition of the

Ei vector for 0 and 90 degree orientations. Furthérmore, re-
sults for any angle between gaj and !03 can be obtained by de~
composing Qa} into-components (Bco)” and (BcnlL parallel and
perpendicular to }&n , and superposing the contrxibutioss.

Figure 8-~6{(a) shows the magnetic-field direction and inten-
sity for the more complex case in which the set of field lines con-
sidered in the incident solar wind is éontained in a plane parallel
to the plane offsymmetry but offset from it by a distance [)/3 .

The lines of intersection of the offset plane with the bow wave and

the magnetosphere boundaxry are indicaéed by the solid and dotted

lines. Sincé the field lines are no longer confined to a plane behind
the bow wave, the results are presented in the form of a pair of pro-
jections. These and related results for other cases were originally
calculated by Alksne (1967) and Spreiter et al. (1968) in the laboxious
manner described at the beginning of the preceding paragraph. Alksne.

and Webster (1970) have shown that the magnetic field ar -any point in
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Direction and intensity of the magnetic field cut of the
plane of symmetry, and illustration of components of inter-
planetary magnetic field used in equation (8-2)

.(Spreiter and Alksne, 1970). '

Figure 8-6.
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the flow field can be calculated more simply, howé;ér, by vectorially
summing the contributions of the three component fields indicated

in figure 8-6(b). At any point P , the magnetic field EF’ is thus

B A Bp
Cp —"NP BCD“ -+ H—HP BCOJ_ 4+ Nn{——— an (8-2)
Bdﬁ,; [BG’J_ ELn n
In this equation, the three ratios with subscripts i s A , and

N zefer to the contributions associated with the components of 'Eco
parallel to Ve 3 perpendicular to yu, in the plane that contains
the point P , the center of the Earth, and the vector yao ;5 and
the normal to the that plane. Froﬁ the previous discussion, we see
that (@p/Bm)” = (FP yp)/(pm[yml) and ('@p/ Bm)_,_ is as illus-
trated in the uppex left part of figure 8~5 for Mg =8 and

¥ = 5/3 . Since the remaininé; ratio (Bp/Bco)n can be shown equal
to (f},op)/(ﬁpc,fzn) where © is the radial cylindrical coordinate
of the streamline, as indicated in the sketch of figure 8-6(b),
values for it can be determined directly from the gasdyhamic solution
for the flow.

The results displayed iﬁ figure 8-5 cleariy show how the
magnetic-field lines bend discontinuously as they pass through the
bow wave at any angle except a right angle, and then curve in a con-
tinuous manner throughout the entire region between the bow wave and
the magnetosphere. The discontinuous bend at the shock wave is,
méreover, always in the direction that preserves the sign of the
tangential component of the field, as is required for all physically
relevant hydromagnetic shock waves. Iﬁterestingly, the field lines
illustrated in figure 8;5 are all draped around the nose of the mag-
netosphere, This is characteristic of the results for all relative
orientations, except perfect alignment, of the magnetié—field and
velocity vectors for the special plane for which these results are
presented, Outside of this plane, howevef, the figld lines drift

around the nose with the flow and deform as illustrated in figure
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8~6(a) into three-dimensional curves,

- The results shown in figures 8-5 and 8-6 indicate that the
intensity of the magnetic field is usually a few times larger near
the magnetosphere nose than in interplanetarj space, except when the
magnetic field is aligned or nearly aligned with the flow direction,
and that it may be either larger or smaller than the incident-stream
value along the flanks of the magnetosphere. They also show that
the direction of the field in the region between the bow wave and the
magnetosphere is highly distoxrted by the flow and bears little
direct relation to the direction of the field in the incident soler
wind.

The results in these figures are for a free~stream Mach
number of 8 , but no qualitative changes are anticipated if a
somewhat different value is selected since the velocity field is

only slightly influenced by variation of Mach numbser.

2. TFlow past Mars and Venus

In exactly the same way as was done for the Earth, once a
value for the free-stream Mach number is specified, the location of
the bow wave and the properties of the flow field can Be computed for
any of the Mértian or Venusian ionopause shapes shown inhfigufe 66
by application of the numerical gasdynamic programs.

- Results for the location of the bow wave for flow with
Moo= 8 and ¥= 5/3 are presented in figure 8-7 for each value for
H/fB for which the coordinates of the ionopause are illustrated in
figure 6-6. Although these results are for a specific My , it has
been shown in the previous section relating to the Earth that the
shape of the bow wave, and also the associated distributions of
{O/pm s y/Voo , and {@/Bm for any given direction for Beo are
relatively independent of free-stveam Mach number for all Mg,
greater than about 5 (Spreiter et al., 1966a, 1968).

In figure 8-8 are shown contour maps for the density ratio
py@gm , velocity ratio V[V , and temperature ratio T[T, for .
flow with H/FE,:O,Z . Such a value is appropriate, for example,

for a Venusian ionosphere composed primarily of atomic hydrogen at
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Figure 8-7. Calculated location of ionopause for various H/{“o s

and asscciated location of bow wave for Mg=8 ,

§ = 5/3 . - The cortesponding results for the shape of the
Earth's magnetopause and bow wave, nondimensionalized so
that the magnetopause nose is at X/Ip =| , is included
for purposes of comparison. The dashed line for the bow
wave for H/r;=0.2 has been omitted because it is in-
distinguishable from the dotted line representing the
RBarth's bow wave (Spreiter, Summers, and Rizzi, 1970b).
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about 600°%,

In view of the current tendency for some to interpret the
Mariner~5 results as indicating that the primary constituent in the
Venusian atmosphere is molecular hydrogen, or even heavier ions, we
have also made a set of calculations for the density, velocity, and
temperature in the flow field for H/rb::O.l . The results are
showvn in figure 8-9. Corresponding plots for other quantities of
interest, such as the magnetié~-field strength and direction, ox
Maxwellian proton-velocity distribution, can also be calculated in
the same way as has been done previously for the Earth by Spreiter
and Alksne (1969, 1970) and Spreiter et al. (1966b). Such calcula-
tions have not been carried through, however. This is partly because
they are time consuming to do and require considerable space to dis-
play the results for even a mipimum number of cases, but principally
because an approximate correspondence rule to be described in the next
section makes it possible to convert quickly any of the numerous con-
tour plots already available foi the properties of the flow around
the Earth's magnetosphere into that for the flow around an ionosphere
having any H/rb between 0.01 and 1 by a simple relafeling of

the coordinate axes.

a, Correspondence rule. The close relationship between '

the sﬁape of the magnetopause and that of tbe ionopause for FVrb =
0.2 , and the gemeral similarity of the ionopause shapes for all )
Fﬂr& , Suggests the possibility that a correspondence rule relating
ionopause shapes for 1%/rb other than 0.20 to an appropriately
scaled magnetopause may be found if the coincidence between the Earth
and planetary centers be relinquished. Great practical utility would
result from the availability of such a correspondence rule, because
it would enable a substantial body of results already calculated for
solar-wind flow past the Earth to be applied with minor change to
nonﬁagnetic planats having a wide range of ionospheric parameters.
The results displayed in figure 8-10 show that it is indeed
possible to achieve a fit that is probably sufficiently good for most

purposes relating to the interpretation of data obtained in space.
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This figure is basically that given originally by Spreiter et al.
(1966a) for the magnetosphere boundary and shock wave for the Earth,
and the associated characteristic or Mach line pattern, for Me=8
and ¥ = 5/3 . Superposed on it are the ionopause curves from figure
8-7 each with its nose retained at X/FBZZI , =0 , but with its
scale adjusted so that its ordinafe coincides with that for the mag-
netopause curve at e::‘nfa . The center of the nonmagnetic planet
is, in general, no longex at the origin of coordinates, but at the
points Xc/no indicated along the axis of symmetry for each value
for Fﬂrb . The coovrdinates of these points are listed on figure 8-10
for accuracy and convenience in applications of the correspondencé
rule.. To convert the nondimensional shape for the magnetopause into
that for the ionopause for a given H/r, , we must thus place the
center of the planet at )(C[r‘o and change the labeling of the scales
so that X[l =0 at X, , and X[rp =1 at the.ionopause nose.
1t follows from the close correspondence between the coor-
dinates of the ionopause "and the magnetopausé that the coordinates of
the bow wave should also 'display a similar relationship. It may be
seen from figure 8-10 that this is indeed true. A similar degree of
correspondence may be anticipated for the coordinates of contour
lines for constant values of the flow parameters, such as those for
the density, velocity, and temperature shown in figures 8-8 and 8-9.
Although some of the ionopause curves depart-significantly
from the curve for the magnetopause somewhat downstream of the planet,
the effects of these differences have no influgpce upstream of the
rearwardly inclined characteristic line'emanating from the point on
the boundary where the differences first become significant. It
may be seen from figure 8-10 that this is sufficiently far downstream
for ionospheres having J{/Q) between 0.0l and 1 that nearly all
cf the results we have presented previously for the properties of the
flow field about the magﬁetosphere can be carried over with no other
change than relabeling the scales to obtain a good approximation for

the conditions around Mars and Venus.
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Tllustration of degree of coincidence of

curves representing the ionopause and bow waves
for various H{fry obtained by application of
correspondence rule. The solid lines have been
onitted where they are indistinguishable from
the dotted lines (Spreiter, Summers, and

Rizzi, 1970b).
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B. Evaluation of the Theory

Since all of the foregoing theoretical results are founded

on the numerical solution of the gasdynamic equations which, we argued,

approximate the hydromagnetic equations in this application, it is

informative and important to examine these theoretical calculations
for internal consistency. This examination should assay the three
principal postulates of our theory; namely, do the numerical calcula-
tions represent accurate solutions of the gasdynamic equations, how
precisely do these equations approximate the complete hydromagnetic
equations, and finally, how accurately does the Newtonlan pressure
predict the flow pressure on the boundary.

The accuracy of the numerical solution has been verified
theoretically by the consistency checks built into the computer pro-
grams. As discussed in chapter VIL, in the subsonic region the con-
servation of entropy along .streamlines and teotal enthalpy everywhere
provides an independent theoretical check on the programs internal
consistency whereas the constancy of mass flow furnishes a similar
check in the supersonic region. All of the numerical calculations
presented in this report accurately satisfies these checks. In addi-
tion, Inouye and Lomax {1962), Spréiter et al. (1966a), and othexrs
have found that these computer programs provide golutions to the gas~:
dynamic equations that do compare very well with actual aerodynamic
measurements obtained experimentially, On this question then, we are
assured that out numerical results do indeed accurately represent the
solution of the gasdynamic equations.

One of the-simplifications fundamental to the attainment of
the numerical results presented in the foregoing sections of this
chapter assumes that the Alfvén Mach nuwber MF\ is sufficiently
greater than unity so that the gasdynamic equations satisfactorily
épproximate those of hydroﬁagnetic theory, and subsequently that the
magnetic field can be calculated by application of the concept of the
magnetic-field lines moving with the fluid. Comparison of the values
for the Alfvén speed displayed in figure 6-1 with representative values
foxr the velocity of the solar wind assures that this condition is

easily met in the free-stream. A similar ccmparison for the conditiouns
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behind the bow wave is more difficult to make a priori because both
the flow velocity and the Alfvén velocity vary considerably throughout
the flow field. Once the velocity, density, and magnetic~field in-
tensity have been calculated for ény point, however, the Alfvén Mach
number is easily evaluated, and-we can therefore determine to what
extent the postulate of large My, is fulfilled. The findings of

such an examination carried out by Spreiter et al. (1968) are presented
in figure 8-~11 for two orientations of the interplanetary magnetic
field both with Mng . The results are given in the form of a

ratio of the local Alfvén Mach pumber My to the free-stream Alfvén

L- i A 1 L.
2 2

Figure 8-11. Alfvén Mach number distribution, Me = 8 and
§=5/3% (Spreiter et al., 1968).

Mach number - M Aco in order to take advantage of the simple propor-
tionality between the two quantities at any point in the flow f£ield,
If Mpe=10 , as is usual for the incident solar wind, the results

show that M A is greater than unity everywhere except in a small
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region near the magnetosphere nose. Although; as predicted by Lees
(1964), some localized departures from the calculated results might
be anticipated in this region, it would seem that the larger-scale
features of the flow should be quite adequatgly represented by the
gasdynamic and frozen-field calculations. Moreover, although this
case is not digplayed here, as the magnetic-field orientation approaches
alignment with the flow direction, this region shrinks even smaller,
and the validity of the pumexical resulls becomes even more assured.
As Mpe decreases below 10 , however, the critical regions expand
significantly for all orientations, and increasing differences be~
tween The approximate numerical results and wore exact theoretical

or observational results should be anticipated. When IWFWD becomes
as small as 2 or 3 , which it does only infrequently, the
eritical region of small local Alfvén Mach number would become so ex-
tensive that substantial departures from the éesults so far presented
must be expected. (This interesting behavior at low Alfvén Mach num~-
ber will later be more thoroughly discussed in chapter X.)

Lastly, there remains theé question of how accurately does the
simple Newtonian pressure formula P = ps JfCOSE“;L’ approximate the
variation of pressure along the magnetosphere boundary. The answer
to this question for the present applications is easily arrived at
by comparing the Newtonian pressure on the magnetopause with the pres-
sure derived from the detailed gasdynamic calculations. The results
of such a comparison, originally preseﬁfed by Spreiter et al. (1966a),
are shown in-figure 8-12 for several values of Mg and ¥ . We
can easily see that the simple Newtonian expression does indeed
provide a generally good approximation over most of the magnetosphere
boundary of interest in the preseﬁt studies. The agreement is par-
ticularly good over the portion of the magnetosphere along which the
flow is subsonic, No significant changes are expected, therefore,

-in the shape of the nose portion of the bow wave if a more accurate
and nécessarily more complicated calculation of the pressure is car-
.ried oui. The Mewtonian pressure formula does, however, underes-
timate the pressure somewhat along the flanks of the magnetosphere

which indicates that a more exact calculation using the gasdynamic
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Figure 8-12, Comparison of exact and approximate
pressure distributions on magnetosphere
boundary  (Spreiter et al., 1968).

pressure distribution would yield a slightly slimmer shape. This
change in shape along the flanks of the magnetopause should never-
theless be small because the geomagnetic pressure. I3%/81T which
balances the gas pressure P is nearly proportional to the inverse
sixth power of the distance from the center of the Earth. A point of
equal intereét digsplayed by these results is the lack of significant
variation of the pressure distribution with changes in My and §
over the range of cases presented.

) Although we do not display the results here, we have per-
formed a corresponding examination of the acecuracy of the modified

MNewtonian pressure formula
b 2'(%_ P Bo/8TW ) cos2 Y + B, + BS /e

for the ionopause of either Mars or Venus and found the results similaxr
to those. presented in figure 8-12, TFor this case, too, agreement is

particularly good in the nose region, but the modified pressure formula
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partially underestimates the pressure along the flanks of the iono-
pause. The resulting slimmex ionopause shape which a more exact cal-
culation using the gasdynamic pressure distribution would indicate,
however, would also not differ-very much from the present shapes be-
cause the ionosphere pressure which balances the gas'pressure o vaxies

exponentially with distance from the centexr of both Mars and Venus.

C. Comparison with Observations in Space

Although a number of checks on the internal consistency of the
fluid theory and its subsequent results are given in the original
references, some of which we have reviewed in the previocus section,
the final test of any theory of solar-wind flow past these planets
must be based on comparisons with observations actually made in space.
Such comparisons have been made by several different authors on several
levels éf detail. These range from simple comparisons of gross fea-
tures, such as the existence and location of the magnetosphere boundary
and bow wave, to more detailed comparisons of the velocity, density,
and temperature of the flowing plasma and the intensity and direction
of the magnetic field. Here, rather than review in detgil the enormous
amount of space observations made in the vicinity of the Earth, we
shall restrict ourselves to only a brief account of near-Earth data
intended to show the éctual validity of one of the fluid assumptions
and then concentrate on a more thorough comparison between the appro-
priate theoretical results presented so far and the data observed
near Mars by Mariner spacecraft 4, 6, and 7 and near Venus by Mariner
5. In addition, several extensive summaries of the comparison between
Earth-related space observations and theoretical fluid calculations
have been given recently by Spreiter et al. (1968) and Spreiter and
Alksne (1969, 1970). .

A key point in the hydromagnetic theory of the steady»stafe
interaction of the solar wind and both the magnetic field of the
Earth and ionospheres of Mars and Venus is that the magnetopause must
be represented by a tangential discontinuity. Somnerup and Cahill
(1967, 1968) have investigated this by examining the magnitude of the

magnetic~£field component normal to the magnetopause in the data of
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Explorer 12 satellite. Although the accuracy of those data is mar-
ginal for the task, and the orientation of the magnetopause is un-
certain, they conclude that this quantity is sufficiently small for
most of the crossings to be compatible with the theoretical require~
ment given in'eﬁuationg (5-10) that. Bn::O . Tairfield (1967) has
also investigated this question using data obtained simultaneously -
by the TMP 1 and IMP 2 satellites when they were on opposite
sides of the bow wave. Within the accuracy of the determination, the
results showed that the magnetic field is tangentiallto the magneto-
pause, which satisfies the condition BF\:C) , and also that the
orientation of the magnetic~field wvectors throughout the entire re-
gion between the bow wave and magnetopause is consistent with the
theoretical predictions provided by the simplified hydromagnetic
model., This conclusion has been récently_cpnfirmed and strengthened
by the results of a more extensive study by Behannon and Fairfield
(1969) using 1661 hours of data from four spacecraft, Explorers 28,
33, 34, and 35.

1. Comparison with Marinexr 5 data for Venus

Due to insufficient déta, a similar examination of the ful-
fillment of the tangential discontinuity conditions cannot be carried
out for the ionopause of either Mars or Venus. We can, however, make
a general assessment of the relation between the theoretical results
shown in figures 8-7 to 8-9 and those observed by Mariner 5 as it
flew past Venus. Figure 8-13 shows the time variation of the bulk
velocity V , ion number demsity N , and intensity |Bl and direc-
tion o and R of the magnetic field together with a plot of the
trajectory giving the position of the spacecraft as a function of
time (Bridge et al., 1967). The angles o and A are in spherical
coordinates in which & is the longitude measurement, in the B;I
plane, and from the B direction, where B is a unit vector in the
antisolar direction and T is an orthogonal vector which is parallel
to the Sun’s equatorial plane and points in the direction of the
planet's orbital motion; and 4 is the latitude angle of the mag-’

netic-field vectoxr, considered positive when northward. For ease of
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reference, lines indicating the theoretical 10cati;£ of the ionopause
and bow wave for H/r‘O:O.i and 0.25 , for Meu=8 , ¥ =5/3 s
and Mo = 6500 km  are supexposed on the plot of the trajectory.

The corresponding location of the bow wave for Mg =5 and l%ﬁ; 0.25
is also included in order to better assess the consequences of the fact
that the values of about 590 km/sec and 300,000°K reported for the
velocity and temperature in the solar wind before and after Mariner

5's encounter with Venus indicate a value of about 6.5° for Me

The magnetometer and plasma probe experimenters have con-
cluded from the presence of abrupt and easily recognizable changes in
their data that Mariner 5 crossed the bow wave at the points labeled
(:) and (:) . These points are reasonably close to the theoret-
ical locations of the shock wave for Hfry, = 025 for Mw =75 ,
and somewhat farther from Venus than indicated by the theoretical
results for Meo=8 , or for H/r,= 0.0 .. On the other hand, the
theoretical results for H/rb==C125 indicate that Mariner 5 should
have -crossed the ionopause, whereas those for H/rp = Q.10 indicate
that it should have just skimmed along this surface. Although the
data display decreases in h/nco and V[V that are at least qua-
litatively similar to thosec for either Hir, =010 or .0.25 .
there is no certain evidence that Mariner 5 actually penetrated the
ionopause, In particular, the intensity of the magnetic field re-
mained of the order of that for interplanetary space, and V dimin-
ished to only a modest fraction of Voo rather than to a value com-
parable with the speed of the spacecraft relative to Venus. On the
other hand, the observations made when the spacecraft was near the
\théoreticai location of the ionopause indicate values for h/hga
and \.I/\fcD that are only about one-half of those indicated by the
theory for the flow exterior to the ionosphere,

A possible explanation for these discrepancies is that the
tail of the ionosphere might taper inward toward the axis of symmetry
rather than extend straight downstream. The theorectical results give
no indication of such a trend, but they are of low reliability for
this feature of the flow because of the deterioration of the quality

of the modified Newtonian approximation for the pressure of the solar
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wind as ‘P approaches 90° , and the substantial departures from a
constant scale height of a planetary atmosphgre at great heights
caused by the diminished gravitational acceleration, and also by
probable increase in temperature.. In addition, it is virtually cex-
tain that the ionosphere in an extended tail would be supported pax-
tially by dynamical interaction with the flowing solar wind instead
of entirely by the simple hydrostatic means assumed in the present
analysis. Although neither theoretical nor observational evidences is
as yet sufficient to provide a definitive statement regarding the
nature of the ionosphere taii, we are inclined to explain the dis-
crepancy between the theoretical and Mariner-5 results in terms of an
extended tail with a relativeiy thick boundary layer between the plan-
etary ionosPhefe and the solar wind. The latter may be contrasted
with the thin boundary between the solar wind and the Earth's mag-
netosphere that is becoming increasingly evident as the time resolu-
tion of the observations is improved. That the ionopause might be
thick well back from the nose, whereas the magnetopause is usually
thin , is plausible in view of the fundamentally different nature of
the two boundaries. For the Earth, the magnetopause is essentially a
boundary between the flowing solar plasma and a relative vacuum, and
would be somewhat 1like the boundary formed by a free streamline in a
water flow with embedded air cavity. For Venus or Mars, the iono-
pause is esséntially a boundary between two differemt bodies of plasma.
As such, a significant boundary layer would be anticipated which would
provide an increasingly fhick transition between the ionosphere and
the solar wind with increasing distance from the stagnation point at
the nose of the ionopause. It would spread, moreover, both into the
outer part of the ionosphere and outward into the surrounding flow,
broadening the transition region in which all properties of the plasma
including the density, velocity, and magnetic field change from their
values for the flowing solar plasma to those of the planetary iono-
sphere. At the location of the ionosphere boundatry indicated by the
present dissipationless theory, the plasma velocity might be expected
to be substantially less than indicated by the theory. Since the

plasma velocities observed by Mariner 5 in the vicinity of the



tﬁeoretical location of the ionopause display such a trend, it is

tempting to cgnclude that Mariner 5 entered the boundary layer sep~
arating the ionosphere and the flowing plasma, but did not enter the
ionosphere proper. A more detailed examination is clearly required

before a definitive statement can be made, however.

2. QComparison with Mariner 4, 6, and 7 data foxr Mars

As described in less detail previously, data from the magneto-
meter (Smith et al., 1965), plasma probe (Lazarus et al., 1967), and
energetic-~-particle detectors (Van Allen et al., 1965 and 0'Gallagher
and Simpson, 1965) on Mariner 4 displayed no effects attributable to
the presence of Mars as it flew past that planet. Although such a
negative finding does not provide much material for comparison,
Spreiter et al. (1970b) found it at least consistent with the indica-
tion of the present theory for the conditions measured at the time of
the encounter that Mariner 4 did not cross the bow wave into the
region influenced by Mars at any time when signals were being received
from the spacecraft.

More recently, however, it has been reported by Smith (1969)
and Kavanagh et al. (1970) that a closer examination of the magneto-
meter data indicates that Mariner 4 may have detected a Martian bow
wave, although its effects are weak and its presence could not be con-
firmed by the other instruments. In figure 8-14 are reproduced 16 hx
of the Mariner-4 magnetometer record (Smith, 1969) showing the inten-
sity IB] of the field as the spacecraft passed Mars, This quantity
is plotted as a function of the time that the data was received at
Earth, and is 12 min later than the time at which the measurements
were made and transmitted by the spacecrafﬁ. The distance of the
spacecraft from the center of Mars is indicated-by the aerocentric-
distance scale at the top ;f the plots. The point of closest approach
to Mars is denoted by CA . The two abrupt changes in ]B, signify
crossings of the proposed Martian bow wave. Those authors see fit,
however, to repeat the cautioning of the experimenters (Smith et al.,
1965 and Smith, 1969) that the field disturbances seen while the

spacecraft was near Mars could have-been interplanetary-field
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fluctuations bearing no relation to the planet. Although data from
the plasma detector reporied by Lazarus (1967) show a slightly broader
than average energy spectrum from about 300 to 100 eV when the space-
craft was inside the proposed bow wave, these indications were con-
sidered indecisive for the confirmation of the shock wave's presence
because failure of the instrvument's high voltage supply made the lower
energy data unreliable. TIf, hoﬁever, it is assumed that the magnetic
discontinuities do, in fact, signify crossings of the bow wave, the
locations of the crossings can be interpreted (Dryer and Heckman,
1967) as indicating the existence of a Martianmagnetic field having a
dipole moment about 2.1 x 10"4 that of the Eaxrth.

The alternate intevpretation, presented by Spreiter and Rizzi
(1971) that the Martian bow wave results from the presence of an
ionosphere, and may develop even in the absence of a planetary field,
gains substantial support from the remainder of the results shown in
figure 8-14, These consist of a plot of the trajectory of Mariner 4
near Mars projected onto the Sun-Mars-spacecraft plane (Van Allen
et al,, 1965) and superposed on a plot of the calculated position of
the bow wave for Mg =8 and ¥ =5(3 resulting from interaction
with the indicated ionopaanse drawn for F‘M/{"o =095 and H/ry = 0,25
The distance [, was calculated to be 5 percent greater than the
3.4 x 108 e radius of Mars from the electron density profiles for
the Martian ionosphere determined from the Mariner &, 6; and 7 ob-
servations together with the present theory. The value H/rb::CL25
is representative of conditions that would prevail if the dominant
molecule were atomic hydrogen at a temperature T of about 200°K as
is indicated by Kliore et él. (1965) and Fjeldbo and Eshleman (1968)
to be the case in the upper ionosphere, the region of greatest im-
pertance to the interaction with the solar wind., The associated bow
wave is drawn for Mg =8 , but results of similar calculations
for the Earth's bow wave have shown that it would be in virtually
the same location Ffor higher Mach numbers. Significantly lower Mach
numbers would lead io more remote locations for the-bow wave, but
are considered to be unlikely for Mars in view of extensive knowledge

of solar-wind properties in the vicinity of the Earth's orbit and the
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preﬁiction of solar-wind theory that Mg, increases monotonically
with increasing distance from the Sun. These theoretical calcula-
tions displayed in figure 8-14 are identical to the results presented
by Spreiter et al. (1970b) for the same condilions except that (a)
the direction of the solar wind has been rotated 4.5° from the Sun-
Mars line to allow for the aberration effects of the motion of Mars
about the Sun, in the same way as done previously by Smith (1969) in
a similar-appearing plot made using a scaled-down drawing of the
-Earth's bow wave and magnetopause, and (b) the calculated shock-

wave location has been indicated for greater distances downstream of
the planet. To facilitate comparison with the magnetometer record,
markers have been added to the trajectory to indicate the time at
which measurements at each point were received at Earth. The times
at which the trajectory crossed the calculated bow wave are indicated
on the magnetometer record by the wvertical dashed lines labeled shock.
Their near-perfect coincidence with the times of abrupt changes in'

| BI supports the proposition that these data do indeed provide the
signatufe of a Martian bow wave and, since Mars almost Eertainly_
possesses an ionosphere having a ratio H/rb of the order of .25

in its upper levels, that itsuexistence arises from the'interaction
between the solar wind and the planetary ionosphere along the lines
deseribed by Spreiter-gg.gl. (1970b). '

* A corollary is that there is no need to postulate a planetary
maghetic field to account for the observations. The vaiue proposed by
Dryer and Heckman (1967) maf still be regawded as an upper limit for
the strength of a dipole field, but the actual existence of such a
Martian field should not be inferred from the Mariner 4 observations.

Mariners 6 and 7 subsequently approached within 2000 km of
the Martian surface, but neither spacecraft carried a magnetometer,
plasma probe, or emergetic-particle detectors. As a result, the only
observation of relevance to the present study is the copfirmation of
the previous determination of the jonospheric density by Mariner &,

‘ The data from these experiments, and also those of Mariner 5
for Venus, are of considerable significance to the present theory,
however, because they demonstrate that the ionospheres of both Mars

and Venus are sufficiently dense to stop the solar wind at the subsolar
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point and to deflect it avound the ionosphere. Since the margin

Tin the product /OaﬁA% is only about 6 for Mars and 10 for

Venus, considering the ionospheric properties to remain fixed, the

knowm wvariability of the solar wind suggests that it may be sufficiently
enhanced at times to proceed directly through the ionosphere at the sub-
solar point and into the lower atmosphere where it would be absorbed by
collisions. Under such conditions, the interaction would be quite
different from that described here, and would probably tend toward

that described by Spreiter et al. (1970a) for the Moon. Since such
conditions can be expected to occur only occasionally, if at all,
particularly if the ionospheric density and temperature are enhanced

by a strong solar-wind flow, we conclude that the theory given here is
both plausible and capable of providing é reasonably accurate descrip-~

tion of the conditions that prevail most of the time at Venus and Mars.
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CEAPTER IX

NUMERICAL SOLUTION OF THE EXACT EXTERIOR FLOW

All of the results presented so far in this thesis have been
based on solutions of the gasdynamic equations which for large Alfvén
Mach number only approximate the completé magnetohydrodynamic equa-
tions (5-1) of hydromagnetic theory. We have showed in the preced-
ing chapter thalt these gasdynamic equations provide a satisfactory
approximate solution for most cases, but the decoupling of the dynamic
and magnetic properties which results from this simplification does
represent a lcss of the magnetic character of the solar-wind inter-
action, In the gasdynamic simplification not only do the terms rep-
resenting the magnetic force in the flow equations disappear, but
even the number of parameters required to characterize the flow is
reduced, ) )

For the numerical gasdynamic solution we needed to specify
the Mach number and velocity direction upstream of the bow wave while
for the full hydromagnetic solution, im addition to those two para-
meters, we must also specify the free-stream Alfvén Mach number and
magnetic-field divection. However, because of the combined effects
of Phlcki{ and the strong interaction nature of the flow, the
dynamic terms in the momentum equation of (5-1) will dominate, and
therefore, for IﬁAqn at a value of 10 or above the differences be-
tween our approximate solution and a more exact one are expected to
be small. WNevertheless, as the magnetic field becomes stronger and
Nhkm decreases, figure 8-11 shows that these differences will grow.

At the present time the general solution of equations (5-1)
through (5-53) representing the fluid description of the solar-wind
interaction with the planets Earth, Mars, and Venus has not yet been
worked out. This solution is of considerable interest because it
would express the interdependent dynamic and wagnetic interaction and
consequently be a more consistent fluid theory for representing these
phenomena. Since equations (5-1) through (5-5) represeht a more

refined theory, the general-solution would also provide a good check
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on the accuracy and applicability of the simpler gasdynamic one al-
ready presented. Furthermore, a comparison between the exact solution
based on magnetohydrodynamics and the approximate one based on gas-
dynamics would determine whether Dryer's (1970) suggested use of the
free-stream magnetoacoustic Mach number MY, in an attempt to include
the effects of both Mg and Mpo in the gasdynamic solution ac-

tually improves the accuracy of that theoxy.

A, Tquations for Aligned Hydromagnetic Flow

In our fluid formulation the hydromagnetic equations (5-1)
through (5-5) represent the flow of the solar wind past the planets_
Earth, Mars, and Venus. Now, instead of simplifying these equations
to those of gasdynamics as we did before, we attempt to determine the
general solution to them. The completely general solution is, how-
ever, still intractable at this time, but we are able to find the
solution for the particular case of aligned velocity and magnetic-
field vectors. Although this hydromagnetic solution is for a par-
ticular orientation of the upstream magnetic field and cannot show
the effect of variation of that direction, it will demonstrate, what
the approximate gasdynamic solution did not, the role that the mag-
netic field §§ and the parameter Nh§¢‘ plays in determining the
character of the flow downstream of the bow wave. Moreover, study of
the Friedrichs, or phase and group velocity, diagrams_illustrated in
figure 5~1 for hydromagnefic flow with any orientation of the flow
direction relative to the magnetic-field direction shows that perfect
alignment of the H“’ and ‘gq, vectors is not essential so that
qualitatively similar effects may be anticipated for other alignments
as well, This solution, therefore, should be representative of the
character of the general hydromagnetic solution and provide some in-
gight to the influence that the magnetic field bears on the flow
properties.

Compare the second equation of (7-4) and the expression
%%%(g) = (E*gjy for the rate of change of velocity for a fluid )
particle in steady flow. TImai (1960) originally pointed out that the

rate of change of the vectors Bﬂo and \V are given by identical
o § ~
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equations and concluded that if these two vectors are initially in
the same direction they will remain parallel everywhere and their
lengths along a given streamline will remain in the same ratio.

Mathematically, this result is expressed by

5 o
/OHR(

or (9-1)

where 1(‘?) is a constant along streamlines but can differ on
different streamlines. Thus, if the velocity and -magnetic-field vec-
tors once become aligned, then they will remain aligned throughout

the eatire flow field, and the magnetic-field lines will coincide with
the streamlines of the flow. ZLooking at it from a more physical view-
point, we see that this result is just a consequence of the frozen-
field property of 'these_‘, perfectly conducting hydromagnetic flows,

By following and extending the work of Imai (1960} and
Spreiter et al. (1970a), we can derive the explicit form of the general
equations for aligped hydromagnetic flow aund then specialize them for
pur application. The conditions which R(\,'f) mest satisfy are easily
derived by substituting equations (9-1) into the thirxd of equations
(5-1) which yields the expressions (V-V)}\ =0 and {E\} = 0
requiring _}\(\}f) to be constant along streamlines even passing through
a shock wave. 1In our application upsiream conditions are uniform,
and A is therefore a global constant., For this situation equations

(5-1) and (5-3) reduce to (Spreiter et al., 1970a)
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(9-2)
. . p/p

(v-7)s =0 S-S = Cy, Iy —=

Y pe,)?
v-[pg(—alv%-h)] = p(v-uizvi+h) =0

and the discontinuity conditions (5-5) to
[evn] = ©

[ 3 VY A 2 32
oY+ (p+%§%—))n - %,—gvny =0 (9-3)

oV (EVE + h)} = [—'z-va + h} = 0

Equations (9-2) and (9-3) along with the auxiliary relations (5-2)

and {5-4) are the equations of nondissipative aligned hydromagnetic

flow which in our fluid theory represents solar-wind flow with

parallel velocity and magnetic fields. They show that aligned flow

past any of the boundary shapes for either the Earth, Mars, or Venus

illustrated in figure 6-6 is axisymmetric about a line through the

center of the planet and parallel to the direction of the solar wind.

This 1s so because the azimuthal components of all the terms wvanish

identically for flows that are uniform at infinity and disturbed

only by an obstacle that is axisymmetric about a line parallel to the

direction of flow in the undisturbed stream. Nonaligned {lows past
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these planets are not axisymmetric, howvever, because the azimuthal
components of the magnetic terms in equatioms (5-1) and (5-5) are,

in general, not zero. In the‘latter case, nevertheless, mirror
symmetry still remains about the plame through the center of the planet
that contains the Ve and’ ..E}GD vectors.

Since (y}g)s =  indicates that entropy is constant along
a streamline, except where derivatives cease to exist as a‘t a shock
wave, and S =G, far upstream of the shock, the flow is isentropic
until the shock wave is crossed. Equations (9-2) show that —]2—\}2 + h
is also a constant along a streamline equal to -,"-a-\jg'o +heo = Mot
where subscript St refers to conditions at a stagnation point any-
where in the isentropiec part of the flow field. Since equations (9-3)
show, in addition, that -’EV?‘-i-h is conserved across a shock wave in
aligned flow, hs+ is an absolute constant throughout the entire
flow field. We should note that the constancy of h5+ everywhere in
aligned flow also holds in the corresponding gasdynamic flow. This
equivalence results because the Lorentz force gxg\i’{j B is every-
where normal to the streamlines in aligned flow, and hence the energy
equation (5-3) veduces to that of gasdynamics. Moreover, the con-
tinuity and energy equations of (9-2) are in fact exactly equivalent
to those corresponding equations (7-1) of gasdynamics. Equations (9-2)
actually differ from the gasdynamic equations (7~1) only by the Lorentz-
force term standing on the right—hgncl side of the momentum equation.

A corresponding examination of equations (9-3) and (7-2) reveals a
similar comparison for the discontinuity relations.

However, the numerical solution- to equations (9-2) and (9-3)
remains formidable because of their nonlinear nature and complicated
regions of mixed elliptic, parabolic, and hyperbolic charactexr. TFur-
_thermore, the partial devivatives representing the Lorentz force in
the momentum equation prevents making direct use of any of the vast
amount of work already carried out in developing the two gasdynamic
computer programs described in chapter VII because their finite-dif-
ference schemes approximate the gasdynamic momentum equation and do
not correspond ito the momentum equation for aligned flow. Conse-

quently, to compute the solution of equations (9-2) and (%-3) we would
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have tc begin anew and develop entirely different programs for which
extensive analyses of the stability and convergence would have to be
carried out in much the same way as was done for the gasdynamic pro-
grams in chapter VII, The magnitude of such a task is formidable.

This problem is very much simplified, however, by introducing
a transformation of the flow properties which reduces the aligned-
hydromagnetic~filow equations to those of gasdynamics for a fictitious-
gas obeying a peculiar equation of state. This reduction of the
aligned~flow equations to those of gasdynamics has been known for
sometime (Cowley, 1960). For example, the details of this corres-
pondence has been worked out for the case of two-dimensional flow by
Grad (1960) for linearized motion, by Imai (1960) and Iuxiev (1960)
for irrotational motion, and more recently Spreiter et al. (1970a)
have developed the transformation for axisyvmmetric, shock-free ro-
tational flow. In our application we have extended this concept and
developed the transformation for more general aligned flow which ad-
mits shock waves in the flow region.

For-our purposes, then, a mathematical transformation of the
aligned-flow properties is introduced, and the resulting transformed
variables are defined as pseudoproperties, indicated by % and related

to the actual physical properties by the transformation equations

?\alo)—[

pPr= Pl — 43 (9-4)

p¥= p + é2/87r

h = h + (Fov¥um (I = Xp/ux)

¥ = g
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Trom equations (5~4) and the definition for

(9=1) we easily derive

A given by equations

2o | °

= L = (9-5)
I hqﬂ? | ﬁ§)N%£iD

Substitution of equations (9-4)
and (9-3) yields

into the aligned~flow equations (9-2)

(9-6)
(Y= 2)-5_"_“ = 0
Y ‘[Pﬁ\!*(%v”% h*)} - VDV R) = 0
and the discontinuity relations
[PV ] =0
LeVEY* + pri] =0 -7
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which are identical in form to the equations of ordinary gasdynamics.
The definition of M"ﬁ and h* shows that h:f:;- = %V%a 4+ h* =
SNVE+h = Mgt which for uniform upstream conditions is constant
everywhere and is the integrated form of the pseudoenergy equation.

An equation of state relating the variables {O* s p'x" )
and S% is needed to complete the system of equations (9-6) and (9~7).
Although the equation of state relating P , o , and S is the
same as in ordinary gasdynamics for a perfect gas, the corresponding

relation between P* /o"‘ , and S" is substantially different.

Explicitly equations (7~1) show that

- Peo
P = ;050“ /OX exp [(S - Sm)/cv] (9-8)

The derivation of the corresponding relation for the pseudovariables
begins by using equations (9-1) to eliminate BZ/S'TT from the defi-
nition of p”“ given in equation (9-4) and by introducing the enthalpy
in place of V through the relation N+ -!2-\12 = hgt = constant. There

thus results

p* = p + Xelhg—h)[ur = p + phg— h/p Ma,,
(2-9)

in which the stagnation enthalpy hs-}-:%\!gg + CpToo is given by

_ g2 5 poo . z 11 4+ !
Substituting h = —5?':1_ —‘E;- and equation (9-8) into equation (9-9) and

- - ‘-r b L3 3
rearranging, we finally express D7 in terms of den\s:.ty ~ and

pseudoentropy g by
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# 3% . J p /O 5 (S“Sm)
= {} — L
P(0,57) ¥—1 /%MAw)p‘”{ ,o) explTcy +
(9-11)
;IOE
h 2
st /%MAQD

g~ 2
, LM, 4
/Omd-x = 2 °°y ™ /OCO
QXP(S'—'S(D
Cv

arises f:jci%n the substitution into equation (9-9) of V2=2(h51"h)

= a(ﬁt- - —%‘ jL) 2 O . From equation (9-11) we can proceed to
st T F-1 P

obtain the desired relation between P¥ , ©% , and S* by using

equation (9-10) and the following relation derived from equation (9-4)°

to express 2 in terms of f7% :

Thug the correspondence between the aligned-flow equations and
those of gasdynamics for a hypothetical gas obeyin;r; an unusual equa-
tion of state is complete. A significant advantage results from ap-
plying these equations because now the partial differential equations
(9-6) for the pseudogas are exactly equivalent to those of gasdynamics,
and therefore we can make use of much of the numerical analysis and

program development that has been carried out for gasdynamic applications.
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What these transformation equations (9-4) have accomplished, in ef-
fect, is to absorb the Lorentz-force term of equations (9-2) into

the inertial and pressure~gradient terms while leaving the form of

the continuity and energy equations unchanged. However, this simpli-
fication of the.momentum.equation'by the effective elimination of the
Lorentz force comes at the expense of a-more complicated equation of
state. Wevertheless, the net result remains a significant advantage
because we have reduced the number of partial derivatives which must
-be appioximated'by finite-difference expressions while only increasing
the compiexity of an alegebraic equation which is simply used in an

auxiliary step to relate flow variables.

B, Adaptation for Numerical Solution

Once the foregoing transformation is introduced and the
aligned~flow equations (9-2) and (9-3) are reduced to the gasdynamic
equations (9-6) and (9-7) for a pseudogas obeying the equation of
state Pf“‘ = p*(p%S*)} , the two computer programs described in
chapter VII and originally designed for gasdynamics can be modified
to the flow field for.aligned hydromagnetic flow. We have indicated
in the foregoing section that the basic numerical approach (inverse
iteration method for the subsonic region and method of charécteris-
tics for the supersonic region) as well as the finite-difference
schemes all remain intact, the only changes required are ‘to the aux-
iliary relationg:derived from the properties of the pseudogas. Thﬁs,
the explicit forms of the auxiliary equations which are used in each

of the two computer programs must now be derived.

1, Inverse iteration method

For the inverse iteration program which computes the flow-in
the subsonic region, the dependent pseudovariables are the two
pseudovelocity components W* , V* along with the pseudo pressure
and density Fff and ©% . In precisely the same way as outlined in
chapter VIL, the derivation of the alternate form of the pseudoenergy

equation



132

(V-V)p* — c:“ﬁ*‘a(‘L/*vY)/'o"F =0 (9~13)

follows from the constancy (L}"“S],)S* = {) of pseudoentropy along

streamlines and the definition of the pseudosound speed

a¥2 ( /Off px) = (9-14)

By pe'rforming the indicated differentiation of expression (9-14) on

equation (9-11l) by means of the chain rule and equation (9-12), we

obtain
2 |, 2 52y _ (¥-5)_P* R
S 2y — 2 _-:_ _ -5 .
P ({O“ PM?N(.K—I) (aH oMy &1 (,%Mgw)?’)ap +
(9-15)
hsf 3 2 *2 _,_?:)3 _ ,o*'
%Mgm((e DO~ gl ) -+ ) g,

or, equivalently, by a similar operation on the definition of p*

given in equations (9-4) we obtain

2 i 2
2 LV a2l - — ] + A
a* = |l - ——~) { ( ) -J 9-16
( v /:f MAa ( )
12 2
t-:rher_e a = [—-—g—g—- is the actual speed of sound and A = (L:Er,a 12

is the ALfvén speed of sound. Therefore, the comtinuity equation and

the two components of the womentum equation from equations (9-6)
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together with the energy expression in the form of equation (9~13)
supplemented by the auxiliary relation &%= g% (/O",‘ P*)  provide
the four partial differential equations required to determine the

four unknowns U* ¥, P* | and £% . 1In this form we see

3
that the pseudogas transformation has in effect transported the Lorentz
force from the momentum equation'to the energy eciuation (9-13) through
the influence of the auxiliary relation for o

Although it is not intrinsically required for the numerical

solution of these equations, an explicit form for H"L: h*{/o:p*)

can also be derived from the definition h* = h -+ -&}:%'{—)([ - %?—‘f—:)
of h* or, from what is easily derived from that by use of equatiomns -
(9-5), "0 = h + A%(Il - a_lﬁg) . In a manner similar to the deri-
vation of p"“ , we replace \V by means of the relation h -+ IEV?‘

= hsi' = constant, h by its calorically perfect form ?%% s

and /0 by equation (9-12), and after considerable reaxranging, obtain

+ =8 Nst PeF
i op*) = | =5 &, —— - + hy
(/CI,P ) L IO’OM}Z\ ¢ %M;\m g
fes] [<=]

(9-17)

it should also be pointed out noﬁ that the conservation of
entropy S along streamlines and of stagnation or total enthalpy
h5+ everywhere in the aligned flow carries over and is maintained
for the pseudoentrcpy S$* and pseudo total enthalpy h:% in the
pseudogas flow. This is an important result because the internal
consistency checks built into the computer program of Lomax and
Inouye (1964) will remain valid independent checks on the accuracy of
the compuited solution of the pseuwdogas. Furthermore, since M*‘ and
v are parallel vectors; the streamlines for both flows will coincide,
and similarly the definition of the stream function v =
[Blpudx — pudr) = [ F(PUTdx - G*uYdR ) s
equivalent for both flows. In this way the criterion of ¥ vanishing,
which is used to determine the calculated body shape in the subsonic

region, can still be maintained.
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2. Method of characteristics.

This close équivalence between the actual aligned flow and
the pseudogas also extends into the supersonic region of flow where
the pseudo Mach number M” has a value greaéer than unity. The
relation between the pseudo Mach number and the two Mach numbers M
and iwp\ of the aligned hydromagnetic flow is derived from the defini-

Fa
tion [ﬁ*==j%;. and equation (9-16) and rearranged into the form

o M® ME |
M= = > 5 : (9-18)
M=+ M5 - |
From this relation we can readily see that when M = | M* also

has a value of unity, and consequently the sonic line and transition
region from subsonic to supersonic flow cointide for both these flows
(see next section for further discussion about this transition). Be-
caﬁse of this equivalence we can use the method-of~characteristics
program to compute the pseudoflow in the supersonic region. )

Since the flow equations (9-6) for the pseudogas are exactly
the same as ordinary gasdynamics, the equation derived from them and
applicable along characteristic lines is exactly equivalent to the
corresponding equations (7-22) for ordinary gasdynamics although the
shape and location of the characteristic lines will be different. To
compute the pseudoflow by use of the pfegent characteristic program,
in addition to the pseudoenergy equation in integrated form
%ﬁdkz-k H%= hsi = constant, and the constancy of pseudoentropy g*
along streamlines, an auxiliary equation h*':.h*(]j*‘s*_) is
required to complete the mathematical description. This relation,
however, camnot be obtained in explicit form from the relation
o= h* (©* $¥ } because the equation of -state p%-==p*(f5f5*)
cannot be inverted analytically to yield ﬁ?ﬁ ==ﬁf1 p*, 57) .

This finding causes no difficulty, however, because given numerical
values for p%* and S¥ in the computer algorithm, if is a simple

matter to compute the corresponding value foxr /Oﬁ‘ from equations
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(9-11) and (9~12) by a standard root-finding technique. Then with
h* = h%“D*3 S*’) effectively determined, the mathematical descrip-
tion for the pseudogas corresponds exactly to that for gasdynamics
and has precisely the form required for the method-of-characteristics
computer program. Furthermore, since f9§{=f§¥* , the independent
mass~balance check on the accuracy of this program is still maintained.
Although the discontinuity conditions ($-7) relating pseudogas
properties across a shock wave have exactly the same form as those of
gasdynamics, they do not reduce to the simplified relatiqns of or-
dinary gasdynamics for a perfect gas because of the unusual pseudo
equation of state. This result stems from the fact that even though
the aligned hydromagnetic flow is a perfect gas, the bow wave in that
flow is a fast hydromagnetic shock wave and not a gasdynamic one.
Therefore, because both of the above numerical programs require ex-
plicit equations relating the flow conditions across the shock wave,
the discontinuity velations (9-7) for the pseudogas must be expressed
in such a way that the pseudoflow variables | lﬂ* , /Df , and
pf’ on the downstream side of the shock wave can be determined from
the conditions W% , WEf', ﬁ%ﬁ and Fg‘ upstream. For this purpose
the four equations of the discontinuity conditions (9-7) together with
equation (9-17) provide a determinate system to calculate the five
downstream unknowns 1.[:(- s 'D',*, Pé‘g R pl""' , and h? . ]?;y com-
bining equations (9~7) and (9-17) and rearranging, we form the more

convenient expressions

x {qrg tqz’& l'a' _
(/Cf 2) -b.’:‘(h"p"_* +b2"{6_* * bi((_%) + by = 0
- X, xe’ _ X o\ T -
PP =R+ BVea — (@)Y R

(9-19)
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where

[P
T 20D(ME —1)F |y

] ] { \Lfn 2
o, = Tt | -t ] (s
) Ao A V

_ _ (9-20)
2
— (l + %?E) \Ain g F%ﬁ

(- (MAo"1) | Voo 51 FVg*

_ a3 [ Vhe|?
b = (a-\ 2)(v;)

b,

The first equation of (9-19) is a quartic im /%* which can be solved

numerically if the upstream conditions and shock angle are specified.
x

Once f%

from the remaining three equations of (9-19). This quartic equation

is determined, then pf‘ and ﬁ{r are easily calculated

in -f%*_ has four roots, the trivial solution f%*':: ﬁ%: and three
others which must be determined by numerically solving the remaining
cubic equation for /of . Over the range of values for parameters

VrToq ) Vﬁw . p:: , and Maew in our application, we found the
solution of this cubic to consist of one real and two complex conjugate
roots. Since equations (5~14) state that a hydromagnetic shock wave

must satisfy the condition :%: <Z:%; , we find that the nontrivial
real root is the physically relevant solution. With /Of determined,

the calculation of the remaining downstream properties follows directly

from equations (9-~19).

3. ZIdentification of flow regimes

In the preceding paragraphs we have shown that except for the
equation of state the analogy between the pseudogas equations and
those of gasdynamics is exact. However, if we expect to solve these

pseudogas equations by use of the inverse~iteration and method-of.
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characteristic computer programs, then the character of these equa-~
tions must also correspond, that is, the pseudogas equations must be
elliptic in the subsonic region and hyperbolic in the supersonic one.
. The approach to gasdynamics as Ew—> Q and hence
MACOT_} o is clearly evident from equations (9-4), (9-5), (9-15),
and (9-18). But although the mathematical analog holds for all MA R
it becomes less suitable when B increases and Ma <1 since o
then becomes negative and the two velocity vectors L/% and V are
of opposite sign.- As in the corresponding gasdynamic case, an ex-
amination of the local pseudo Mach number M¥* indicates the character
of the pseudogas equations and in turn the aligned hydromagonetic
equations also., ¥rom an investigation of equations (9-18) we deter-
mine the following relationship between the actual Mach number M and

the pseudo one M¥*
if Mp > | then M é | implies Mx_ -~<>— ] (9-21)

and M* = | for all M when MAI { . Thus for Mp > throughout
the flow field the aligned hydromagnetic equations are elliptic in

the subsonic flow region and hyperbolic in the supersonic region, This
situation corresponds exactly to that for orxdinary gasdynamics, arid
therefore the application of our two computér programs tc; the ficti-
tious flow is possible. A closer inspection of equations (9-18) .
reveals, however, some unusual behavior when MA < | and consequéntly
when p#_becornes negative and ,‘,J,* has the opposite sign of V .

For the case when both Mp <! and M < | , equation (9-18) shows
that M* > 1 when M? +M,f > 1 and, M** < QO when M? + M&‘ < |
The first of these vresults indicates that even though the aligned
hydromagnetic f£flow is subs.onic and subAlfvénic, the flow equations
are hyperbolic when M2 4+ MAZ >| while the -latter indicates that the
wave speed becomes imaginary and the equations are elliptic when

M= + M/:\?‘ <1 ! For the case when MZ -+ MA"* > |, subsonic aligned
hydromagnetic flow is related to supersonic ordinary gasdynamic flow

in the opposite direction. As indicated by the Friedrichs diagrams
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in figure 6~2, hydromagnetic disturbances ‘wou].d then propagate along
upstream rather than downstream characteristics, and slow hydromag-
netic shock waves would extend upstream from the body rather than
downstream as in ordinary gasdynamics. For Ma <l and M == | /O*
is negative, ﬁ\!”‘ has the opposite sign of ._\!), and supersonic aligned
hydromagnetic flow is related to subsonic ordinary gasdynamic flow in
the opposite direction past a similar body. With this peculiaxr be-
havior we cannot expect our numerical programs which wers designed
for ordinary gasdynamics to successfully compute the pseudogas flow.
Nevertheless, some applications for MA < | flows past obstacles
have been carried out by Seebass (1961), Tamada (1964), Geffen (1965,
1966) and others.

This behavior of M”™ is illustrated in figure 9-1 which
shows the range of values for M" for various pairs of values for
M and MA . Also included in that figure is an isentrope {dashed
line) indicating variation of Mp as a function of M along a

streamline. The explicit form of that function is given by the ex-

préession
i
M (M2 + +57) S-Sl | 207D

derived from the definition of Mach number M , equations (9-5) and
(9-8), and the relation '-.-'Eva-}- n= hs’r . From this equation it is
clearly evident that along a given streamline Mp is a monotonically
increasing function of M . Since entropy reaches a maximum value
and M a minimum value at the stagnation point, equétion (9-22)
indicates that Mp also reaches its minimum value Mp,,, there.

The value of Mpy,, » which depends on My and Mpe , thereforé,
determines’ whether the condition Mp <! will occur in any region
of the flow. TFor example, as illustrated in figure 9-1 if Mamin 2 |
then both Pig and PM* increase monotonically from the stagnation

point to the free stream along the stagnation streamline just as for
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ordinary gasdynamics, and ﬁ@q never becomes less than unity at any
point in the flow field. On the other hand if Mp. <1 , Ma
.still increases monotonically, but M* varies in a complicated
manner: it is imaginary at the stagnation point, then decreases to

- 00 , jumps up to -+ o , and then decreases down to a minimum which
is lesg than 1 , and finally increases monotonically up to the free-
stream value, The condition, then, that M¥ increases monotonically
and that the pseudogas equations have the same character as those of

" ordinary gasdynamics is easily determined from equations (9-5) to be

MAZOO > /%/;Om (9-23)

which for hypersonic‘flow would wsually be satisfied if h%%d!:>.2 .
If condition (9-23) is satisfied, then both the supersonic and sub-
sonic regions of the pseudogas flow will correspond directly with
those of ordinary gasdynamic flow, and therefore the inverse-itera-
tion-method and method-of-characteristics computer programs will be
suitable for computation of the pseudoflow.

Actually, difficulties arise even before the free-stream
Alfvén Mach number M;vu reaches its lower limit. An examination
of equation (9-15) for &% and (9-17) for H" reveals that when
input values for P@ym become lower than about Wfﬁ5 , the denom-
inators of both these equations'vanish at some point in the flow field,
and both 7éﬁ$ and D* would be infinite at that point unless the
numerators also vanish simultaneously., If the critical values for
the flow properties at this point are designated by the subscript
Cr , we see from the denominators of those equations that
fi; = (- 1)Fﬂpﬁnfg or equivalently after use of equation (9-12)
that Og.= (-1 Mp%k, . A similar analysis of the numerators
yields Pé = het(6-)/1)*Mp% 0, , and they also vamish. Both
quantities A% and h¥ , then,‘are of indeterminate form at this
point. This situation actually stems from the fact that 41f the A

pseudoentropy S is considered as a surface described by equations
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(9-11) and (9-12) over the Fﬁ*—f?* plane, then S7%, is multivalued
at the critical point Ffzfafjﬁz . However, an analysis of the limit
process for these equations shows that as the point pgf_ ) /Ot’.ﬁ. is
approached in the p*—745* plane; a continuous and finite limit for
S?} which depends on the direction of approach ko that point is also
reached, and in addition, that the indeterminate form of equations
(9-15) and (9~17) actually leads to a continuous finite value for.
a¥ and - h* at the critical point., Some liwit values for S#cr
corresponding to certain approach directions in the ]3*—*/0* plane,
however, are not physically realistic and incite the growth of in-
stabilities in the numerical computation of the flow field. To con-
trol the instability we have developed an algorithm that restricts
the path of apﬁroach to the critical point fto only those that lead to
a physically realistic limit for $2. and were able to get suffi-
ciently smooth values for S¥ . &%, and h* in the vicinity of
the critical point so that the computation scheme was stable.

Even with these added procedures the lowest value of Mpgs
for which we could compute an accurate solution was for Mpg = 2.5
Uncontrollable numerical instabilities associated with the T co-
ordirate line becoming duly inclined and consequent deterioration of
accuracy ;s indicated by the consistency checks on the conservation of
&¥  and hz? as well as increasing discfepancy between the calculated
and desired body shape prévented solutions being computed for lower
Maw - In fact in retrospect it appears rathexr remarkable that even
for values of {Wﬂw& ef 2.5 and highexr, the shock-~shape equation
(7-21) which produced ellipsoidal body shapes to a high degree of
accuracy for gasdynamic flow of a perfect gas also produces similaxr

body shapes to the same accuracy for aligned hydromagnetic flow.
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CHAPTER X

FEATURES OF THE EXACT SOLUTION

We have shown in the last chapter that with the introduction
of the pseudogas transformation the equations for aligned hydromag-
netic flow can be reduced to those of gasdynamics supplemented by an
unusual equation of state. Once the required auxiliary relations
derived from the pseudo equation of state have been determined and
written into the inverse iteration and method of characteristics
computer programs, all that remains is the specification of the input
parameters My, and F@Rw , and then the solution to the pseudogas
equations (9-6) and (9-7) can be computed. It is then a simple matter
to invert the transformation equations (9-4) and convert the pseu-
doflow properties back to the actual aligned-flow properties which
satisfy equations (9-2) and (9-3). As discussed before this solu-
tion now depends on the two input pavameters Mgy and hhﬂm , in-
stead of the single parameter M, as was the case in the gasdynamic
theory. Thus, once we specify Mpe 2 2.5 and Mep>>1, we can
compute the hydromagnetic solution to equations (9-2) and (9-3), and
therefore determine what effect variation of the parameters Mpjep
and Mgy , representing different conditions in the oncoming flow,
has on the aligned-flow properties. And even though this investiga-
tion is based on the solution to the aligned hydromagnetic flow
equations, study of the Friedrichs diagrams suggests that qualita-
tively similar effects may be anticipated for other alignments as
well.

A. Broad Features of the Aligned-Flow Solution

Together with the input Mach numbers, we must also speclfy
an axisymmetric planetary boundary. Tor all the calculations presented
in this chapter, we have chosen to compute these hydromagnetic solu-
tions for aligned-flow interaction with the magnetosphere boundary of

the Earth partly bescsuse of the interest in and enormous amcunt of data
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measured in near-Earth space, but mainly because application of the
correspondence rule quickly comverts any of the properties cof the

flow avound the EZarth's magnetosphere inte those for flow around the
ionosphere of either Mars or Venus by a simple relabeling of the co-
ordinate axes. Using the magnetopause shape illustrated in figure 6-6
for the magnetosphere boundary, we have computed aligned-flow solu-
tions for various sets of input Mach number Mg and Alfvén Mach
number Mpy, in the range 5 < Mg <20 and 2.5 £MP\OO <20 . A
comparison of the different solutions obtained for differing vglues

of input Alfvén Mach number Iﬁﬁvn but the same value of Mach number
My dmmediately reveals qualitative variations in these solutions.
The most apparent distinction noticed among these solutions for dif-
fering values of Ny%m is the large diversity in the shapes and loca-
tions of the fast hydromagnetic shock wave that forms upstream of the
planet. To illustrate this effect we have plotted in figure 10-1

the calculated bow-wave positions derived in the computed solutions
for aligned hydromagnetic flow using values for [Wﬁ¥m of 2.5,

3, 5, 10, and 20 but while maintaining § = 5/3 and the Mach
number Mgy constant at a value of 10 , which is representative of
normal conditions in the solar wind. For ease of comparison the cor-
responding bow-wave position detexmined by using Mg = 10 in the
approximate gasdynamic theory described in chapter VII is also in-
cluded in figure 10-1. Easily noticed in this figure is the trend
that as “an decreases the position of the bow wave for aligned flow
further departs from that for the gasdynamic bow wave. The departure.
is such that as IWFVD diminishes t@e hydromagnetic shock-wave loca-
tion becomes closer to tpe magretosphere boundary in the nose region
than does the gasdynamic one but moves substantially further away

from the magnetosphere tail downstream from the Earth. Tﬁg nature of
this variation in bow-wave position as Mpeg decreases is almost as
if the bow wave were rotated.counterclockwise about the point of in-
tersection of all the bow waves illustrated in figure 10-1. ©No partie-
ular significance, however, is attributed to this point. For I

= 20 the hydromagnetic and gasdynamic shock waves nearly coincide,

and the approach to gasdynamics as f@qw further increasss is clearly
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Figure 10-1. Various calculated positions of the hydromagnetic bow wave which develops in aligned
flow upstream of the Earth's magneto

sphere for several Ma, , Mo = 10 , and § =5/3 .
The corresponding bow wave determined by gasdynamic theory is included for purposes of
comparison.
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evident.

This migrétion of the hydromagnetic bow wave from the posi-
tion of the gasdynamic bow wave as iﬂAm decreases can be understood
by comparing the relative values for the pseudosound speed &* in
_the hydromagnetic solution and the speed of sound & in the gasdy-
namic one. Such a comparison was carried out, and it revealed that
throughout the flow &% was greater than & except in thé nose re-
gion of the magnetosphere where Aa* was less than & . These rela-
tive differences become greater as M, diminished. Since the
pseudovelocity V¥ and the gasdynamic velocity V are also about
the same magnitude, the higher value of A&¥ means that infinitesimal
disturbances in all regions of the aligned flow except near the nose
of the magnetosphere travel faster, relative to the flow speed v
than do similar disturbances in gasdynamic flow and, consequently,
propagate further upstream in a given time interval before coalescing
into the bow wave. Conversely, in the nose region of the magneto-
sphere the lower value of ¥ indicates that these disturbances
travel slower relative to V¥ than do corresponding ones in gasdy-
namics and, therefore, do not propagate as far before coalescing into
the bow wave. As DMp, diminishes, this propagation effect increases,
and in this way the aligned hydromagnetic shock wave reaches the posi-
tions illustrated in figure 10-1 for the various values of Mpgp .

In relation to the magnetopause the position of the hydro~
magnetic bow wave in the nose region is best characterized by the
standoff distance defined as the distance along the axis of symmetry
between the magnetopause and bow wave. Not only does figure 10-1
distinetly show that this distance diminishes with decreasing hh¥ﬂ
but also the numerical calculations indicate that the extent of the
subsonic~flow region likewise contracts with a diminution of i%ﬁ@g
We should point out that 4 decrease in Nh¥m has just the opposite
effect as does a coxrresponding decrease in the Mach number My in
ordinary gasdynamic flow, However, this behavior connected with
diminishing h@\u) actually aided the stability of the computation
scheme because a decrease in the standoff distance means fewer steps

in the marching technigue and a shyrinking subsonic region aided
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control of the associzted numerical difficulties in the neighboring
transonic region.

All of the hydromagnetic shock-wave shapes presented in
figure 10-1 have been computed for varying values of input parameter
lﬁpg, while holding the other input parameter Mg fixed at a con-
stant value. The combination of the definition of Mach number and the
calorically perfect relation for internal energy € leads to the

equation

v = VR 2 12 B ve \I2
7 Ao \YRT|  |sG-lew
m

which indicates that the square of the Mach number expresses the ratio
of the directed energy to the internal energy. Thus, the free-stream
Mach number specifies the relative gasdynamic energy in the fluid of
the oncoming flow but not its magnetic energy. Heretofore, in gas-
dynamic theory the shock-wave position for a given magnetépause shape
was solely determined by the free-stream Mach number M., , which
in turn is set by the values of Vo and Te . Figure 10-1 shows
that for- Mpg > 10 this is still true for hydromagnetic shock waves.
However, since for N&VD < 10 this figure indicates that the observed
variation in bow-wave positions is also a function of Nh\u) , the
definition MAOD = [(%fomvéo )/( Béo/ e )] \j2 for input parameter
Nu\m suggests that it is the ratio of the kinetic to the magnetic
energy of the incoming flow as well as its relative gasdynamic energy
that determines the hydromagnetic shéck—wave position for low values
of MAQD . For a given free~stream velocity Vg this ratio, and
hence Mpg , can only bé made small by either unusually small

values of density 4, or unusually high values of magnetic field

Beo in the undisturbed flow. If we hold the free-stream velocity

Ve and temperature T constant, and hence specifying Mo

we conclude on the basis of the results presented in figure 10-1

that either a low value of P OF @ high value of DBy or a
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combination of these two effects can cause the position of the hydro-
‘magnetic shock wave to substantially differ from that of the cor-
responding gasdynamic shock wave calculated for the same value of

Mo

Although most of the time the flou properties of ‘the solar

wind are steady and arve approximately the values indicatad in figure
2~3, several instances of unusually low density or high field strength
have been observed: For example, for nearly the entire day of July 31,
1967 Lyon et al. (1968) reported that Explorer 35 in the vicinity of
the Moon observed an anomalously low solar-wind flux of about 0.2
protons/cm3 flowing at 200 km/sec and that these results are cor-
roborated by data from Mariner 5 in flight to Venus at 0.84 a.u.

Both magnetometers on Explorer 35 (Colburn et al., 1967; Ness et al.,
1968) show that the intensity of the interplanetary magnetic field
was about 7 § duvring this time. Substitution of these values into
equations (5-4) leads to a value for WMpg of about 0.6 . Unfortun-
ately, no data on the Earth's bow wave was reported on this date so
that the effect on the position of the bow wave remains unknown.

However, Ungstrup (1971) has recently analyzed data that showy

a very strong correlation between increasing magnetic-field strength
in the solar wind and shock-wave movement out from the magnetosphere
tail. He has examined magnetometer and plasma-detector data measured
simultaneously by the satellites 0G0 5, Pioneer 9, and Explorer 33 and
35 covering a wide region of near-Earth space during a 36-hour period
spanning November 17-18, 1968, The magnetometer data from Explorer 33
revealed‘the remarkable occurrence of the satellite following the
movement of a segment of the bow wave downstream from the Eaxth for

a distance of more than 18 Earth radii during the 36-hour period.

From these data and simultaneous observations made by the three other
satellites, Ungstrup (197I) was able to determine that not only did
the density of the solar wind vemain at a practicaily constant value
of about 2 protons/cm3 but the velocity and temperature, and hence
the Mach number, also remained relatively constant throughout the
entire 36-hour period. The data indicated that the only varying flow

property of the Solar wind was the magneric field which linearly
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decreased from 13 +to 3.5 § during that 36-hour time interval,
Since the magnetometer data from Explorer 33 indicated that the rear
portion of the bow wave downstream of the Earth traveled steadily
inward from its unusually large distance from the magnetosphere tail
towards its more usual position as predicted by gasdynamic theory
during that same time interval, Ungstrup (1971) concluded that the
large magnetic~field strength in the solar wind was responsible fox
the unusual position of the bow wave and that the decreasing field
strength brought about the movement of the bow wave back towards its
usual position. Since a linear decrease in magnetic-field strength
from 13 to 3.5 J corresponds, for the steady plasma conditions
‘of the solar wind reported by Ungstrup (1971), to a linear increase
in Alfvén Mach number Mpg From about 2 to around 8 , the space
observations which he analyzed as well as his conclusions are in
complete agreement with the trend displayed in the theoretical curves
presented in figure 10-1 for varying positions of a hydromagnetic
shock wave for differing values of Mp,, . Such space observations
confirm the validity of our hydromagnetic fluid model and the con-

- clusions ﬁhich are drawn from it.

With the applicability of this refined model substantiated,
we can now proceed to examine the effects of input Alfvén Mach number
on the aligned-flow properties which are calculated as part of the
numerical solution. For each individual solution using a given set
of input parvameters Mg and NU\¢’ , the main flow properties of
interest are the density ratio /@0, , velocity ratio V/Veo >
and magnetic-field-strength ratio B/Bag as well as the streamlines
of the flow which indicate the direction of both the magnetic-field
and velocity vectors throughout the flow. The temperature ratio is
also of interest, and since the energy equation for aligned hydxo-
maénetic flow integrated to exactly the same form as in gasdynamics,
equation (8~1), which is derived from it and relates velocity to
temperature, still holds. Thus the contours of constant-temperature
ratic T1/Tw coincide with those for velocity ratio V[V , and
specific values for TYTQD can be-determined by a simple application

of equation (8-1)., We present in figures 10-2 through 10-5 these flow
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propexrties of four individual solutions for aligned hydromagnetic
flow computed with input conditions of Mg = 10 and ¥ = 5/3 for
each of the four wvalues for IﬂAﬁ) of 2,5, 5, 10, and 20 .
For each of the four solutions presented in figure 10-2 to 10-5 four
-subfigures havé been drawn to illustrate lines of constant-property
contours for (a) demsity ratio /T, , (b) velocity \MV&, and
temperature T[T, ratios, and (¢) magnetic-field~strength ratio
B/Bw s 28 well as (d) direction of magnetic-field and velocity
vectors, .

A comparison between constant density and velocity contours
from the hydromagnetic sclution fér [%Am = 20 opresented in figﬁres
10-5 (a) and (b) and the corresponding contours from the gasdynamic
solution in figure 8-2 shows that the differences between these two
solutions a¥e practically indistinguishable, and clearly indicates
that thé hydromagnetic solution approaches that of gasdynamics as
Mpoe further inmcreases. A similar comparison between these gasdy-
namic properties and the corresponding hydromagnetic properties in
figures 10-4 (a) and (b) computed for IWAgj= 10 shows that the
differences between these two solutions are also relatively small.
However, an examination of all four solutions presented in figures
10-2 to 10-5 reveals some general qualitative trends in these flow
properties as the freé—stream Mach number decreases to the value 2.5
For example, figures 10~2 (a) to 10-5 (a) show that as rﬂAu} dimin-
ishes the zone of high-density ratio in the nose region of the mag-
netosphere shrinks while in the remaining part of the flow the density
ratio app;oadhes unity. Hence the overall efféct of dgcréasing fﬂF“D
is a decrease in both the compression and expansion of the flowing
plasma. Meanvhile, figures 10-2 (b) to 10-5 (b) indicate that a
decrease in NUMw produces a slight increase in the velocity ratio,
and consequently a small decrease in the temperature ratio, uniformly
throughout the entire flow field. On the other hand, figures 10-2 (c)
to 10-5 (c) manifest that diminishing Mpg, causes the magnetic-
field~strength ratio to imcrease slightly in the flow region near the
nose of the magnetosphere but to approach unity in the remaining

part of the flow. Finally, figures 10-2 (d) to 10-5 (d) ‘show that as



W
l

r/rg

&= 5/3

Mep= 10

DENSITY RATIO /£

¥pco

150

= 205

BARTH
/\/l ]

MAGNETOSPHERE

BOUNDARY

1

Figure 10-2,

0 =)

-2

X/ro

-3

Various field properties for aligned hydromagnetic flow

past the magnetosphere for

MAm= 2.5 s

Meo = 10 ,

and ¥ = 5/3 represented by lines of constant-property

contours for:

(a).

Density ratio FVF%D .

. 50

Pl

.25



151

5= 5/3 Hog= 10 Mpoo= 2.5

2= T VELOCITY RATIO V/Veg
TEMPERATURE RATIO T/Too
T 2.33
-
T 3,00
T
35— ——— 4.23
BOW WAVE
»/2q 6.12
7.33
2 o
9.67
MAGRNETOSPHERE
BOUNDARY
l — L
5
A
- /EARTH
. e - ) { s t 3 i J
1A 0 -] o =5

X/ro

Figure 10-2 (b). Velocity V[V and temperature T/Tp ratios.



152

&= 5/3 Moy = 10 MaAs = 2.5

MAGNETIC-FIELD-STRENGTH RATIO B/Bg,

&

.75

MAGNETOSPHERE
BOUNDARY

EARTH
\/

i 1 3 .9 } : 1 i,
1 0 =1 =g -3
X/ro

Figure 10-2 (c). Magnetic-field-strength ratio B[Bg .



153

&= 5/5 Mgp= 10 Mpgo = 265
STREAMLINES
5 —-— ——
/.
4 — +

BOW WAVE

’/_,__.._.‘
MAGNETOSPHEERE
BOURNDARY
1 ! 1 1
D -3

x/Tp

Figure 10-2 (d). Direction of magnetic~field and-velocity vectors.



154

8 =5/3 Meo=1l0  HMap= 5

DENSTTY RATTO L/ P

ole.,

75
.80

« 25

MAGNETOS PHERE
BOUND ARY

! 'I . i i |
-1 -2 -3
x/rg

Figure 10-3.

Various field properties for alignéd hydromagnetic
flow past the magnetosphere for MAw = 5 ,

Me = 10 , and & = 5/3 represented by lines of
constant-~propexty contours for:

(a). Density ratio /o/fooo



155

8 =5/3 Mgp=1l0 Mpeo= 5

VELOCITY RATIO V/Vg,

i .. TEMPERATURE RATIO T/Tgo

95

4., 23

T/Teo

N

HMAGNETOSPHERE
BOUNDARY

Figure 10-3 (b). Velocity V/\fm and temperature T/To:) ratios.



156

8 =5/3 HMg=1l0 HMpo=5

5—- o
MAGNETLC-FIELD-STRENGTH RATIO B/Bcp
6
:3 _
cf/ I‘o
2 —_—
S
QS‘ \
B/ By MAGNETOS PHERE
BOUNDARY
.
O Lo ] i ] 1 | 1

X/ro

Figure 10-3 (c). Magnetic-field-strength ratio BBy .



157

3 = 5/3  Hg= 10  Mpem= 5

STREAMLINES

. | ///

\

MAGNETOS PHER®
BOUNDARY

X.t,i'?o

Figure 10-3 (d). Direction of magnetic-field and velocity vectors.



¥ =5/3 Moo =" 10 Mago= 10

4 — + 2.5
2.0
DENSITY RATIO f?V%o .
50
1.25
3 - 1.0
.8
5:-‘/1‘0 .7
.5
55
2_.
.5
\\-s
KDﬁQQ MAGNETOSPHERE
BOUNDARY
1 ~
DL_ 1 12 s ;3 I 14

x/To

Figure 10-4, Various field properties for aligned hydromagnetic flow past the
magnetosphere for Mpeg = 10, . Mo = 10 , and ¥ = 5/3 represented
by lines of constant-property contours for:

(a) Density ratio /O//Om



¥=5/3 . Mep= 10 Magy= 10

TEMPERATURE RATIO T/T.,
VELOCITY RATIO V/V,

x/ro

T/TDD
6.12
6.73
7.33
7.93
MAGNETOSPHERE
BOUNDARY
] 1 1 ! A t
- -3 -4

Figure 10-4 (b). Velocity V/Voo and temperature T/Tm ratios.

651



3= 5/8

Moo= 10

MACO = 10

4 - —_— 2-5
MAGNETIC-FIELD-STRENGTH RATIO B/BOO 2.
2.0
2.5 1.75
//“’ 1.5
1.
1.0
‘3
75
E/I’o
«5
2 -
MAGNETOSPHERE
BOUNDARY
1 -
D L. ! 1 . . 1 1 |
-1 : -2 -3 -4
X/Tq
Figure 10-4 (c). Megnetic~field-strength ratio B/Boo .

091



¥ =5/3 Mpo= 10 MAco= 10

4 — . STREAMLINES /

3 - - . :
;/ Yo -

P
e )

MAGNETOSFPHERE
BOUNDARY
EARTH '
/1 ! 3 1. '|__ i X £
0 — -1 -2 -3 -4

x/To

Figure 10-4 (d). Direction of magnetic-field and velocity vectors.

191



F =5/3 " M= 10 MAcp= 20

4 - T 3.
2.5 e //go
2.0
DENSITY RATIO 1.75
1.5
1.25
3 - 1.0
.8
I_‘/I‘o 6
2 5
MAGKETCSPHERE
BOUNDARY
1 -
EARTH
0 4 \/4 \ \ ) 1 | 1 )
-1 -2 -3 -4

x/rg
Figure 10-5. Various field properties for aligned hydromagnetic flow past

the magnetosphere for Mpg = 20, Moo = 10 , and & = 5/3
represented by lines of constant property contours for:

{a). Density xratio fb/fab .

291



1N

& =5/3 Moo= 10 MAco= 20

TEMPERATURE RATIO T/T.,
VELOCITY RATIO V/Vo 92

T/T
.12

7.93

T/ Toc MAGNETOSPHERE
BOUNDARY

L) i | 3 )

A3

.33

Figure 10-5 (b).

- ~2 ~3
1 X/Tq

Velocity V/Vy and temperature T/Tm ratios.

€91



X =5/3 Moo= 10 Maco = 20

4 _ . 2.75
2.50 5 oo
MAGNETIC-FIELD~-STRENGTH RATIO B/Bg, . 2.0 -
1.75
1.50
1.25
1.0
3 -
.75
f/ro'
. 50
2 —_
MAGNETOSPHERE
BOUNDARY
1 -
O\ \ ! |- | ! ]
-1 -2 -3 ~d

X/xq

Figure 10-5 (c¢). Magnetic-field-strength ratio BfBe.

79T



g =5/3 Mon= 10 Maco= 20

4 . -
STREAMLINES

MAGNETOSPHERE
BOUNDARY

1 | ] 1 !

x/r,

Figure 10~5 (d). Direction of magnetic~field and veloecity vectors.

G971



166

IﬂAa; decreases the angles that the streamlines make with the axis
“of symmetry also dec;ease somewhat throughout the entire flow except
for that portion of the nose region where they remain relatively con-
stant. Since a decrease in Mp, implies an increase in the mag-
netic-energy content of the oncoming flow relative to its kinetic
energy, we thus conclude from the foregoing resuits that as Mp“n
decreases it becomes increasingly more difficult for the flow to
stretch and distort magnetic-field lines. Comnsequently, the density
and field strength are less disturbed and tend to remain closer to
their free-stream values while the velocity tends to increase some-
what because of the smaller flow deflection. Although these four
solutions presented in figurxes 10-2 through 10-5 are all for the same
value of Mach number, we have also computed similar solutions for
this same set of values for My, but for different values of Mg
and found the same variation in flow properiies for decreasing fﬂApo
as we did for the case with Mg = 10 . These effects, then, appear
to be controlled by the value for Mpg » and hence (P and B,
and to be relativel& independent of My .

B. Comparison Between Approximate and Exact Solutions

In the foregoing section we have discussed in a rather
qualitative way some of the broad features of the aligned hydromag-
netic solution and its behavior for decreasing Mpg .. AL this
point it is appropriate to carry out a more thorough comparison of
these solutions for varying MF¥D and ultimately a collation of them
with the more approximate gasdynamic results. )

A quantitative comparison of the shock-wave position is most
easily and adequately performed by plotting characteristic distances

. of the shock position from the‘planetary boundary. The two measure-
ments we chose are the shock standoff distance Xg to characterize
the nose region and the radial coordinate FE measured from the axis
of symmetry to the shock wave at a distance 2.5 p downstream of
the Earth, 8Since, for Mpew approaching infinitely large values,
the hydromagnetic solution reduces to that of gasdynamics, we bave

plotted in figure 10-6 two groups of curves depicting the two
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distances Xg and [. versus I[MAoc; in oxrder that values on the

S
-ordinate represent the distances for a gasdynamic shock wave. In
this figuxre three curves in each group are drawn representing three
sets of solutions over the given range of My for values 5, 10
and 20 for My . For decreasing values of Mp e both these
curves clearly indicate a decrease in Xg as the bow wave moves
closer towards the nose of the magnetosphere and an increase in the
shock coordinate I~ as the downstream segment of the shock moves
farther from the magnetosphere tail. Furthermore, the similarity of
these curves for different values of Mg shows that the relative
shock movement for decreasing MAco is independent of the value of
Mg although the absolute shock position does vary with My .
Finally, we should point out that these curves indicate the smooth
approa;:h to gasdynamics for increasing MAOD , but that as the wvalue
of MAco decreases below 10 the position of the hydromagnetic shock
departs significantly from that of the gasdynamic shock.

To compare this effect with the variance of position of the
gasdynamic bow shock for differing values of Mg , in figure 10-7
we have plotted versus ! /Mco the corresponding values for Xg
and FS for the shock calculated in the gasdynamic sclution. This
figure indicates that the distance l_"‘s for the gasdynamic shock
varies with My in roughly the same manner as the corresponding
distance FS for s the hydromagnetic shock does with MAoo in figure
10-6. This equivalence, however, does not carry over to the shock
standoff distance Xg . For this distance figure 10-7 shows that
Xg varles with My in just the opposite sense that the corres-
ponding Xg for the hydromagnetic shock does with MAW . That is,
decreasing Mg causes the gasdynamic shock standoff distance to
increase while decreasing Ma oo brings about a decrease in the
hydromagnetic X, . This result is just amother manifestation of
the differing natures of the two input parameters Mg and Mpe,

¥igure 10-7 further provides a suitable examination of the
effect of using, as advocated by Dryer (1970) in an attempt to in-
clude some effect of the second input parameter MAm , the value

of the free-stream pseudo HMach number MY, for the input Mach
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number in the gasdynamic theory., For example, if the free-~stream
parameters Mg and PAAPU in the aligned flow both have a wvalue of
10 , then equation (9-18) determines M Lo be about 7.09 .

With dashed lines we have indicated this value on the abscissa for
the curves in figure 10"7.S° that the values for X and F; re-
sulting from the gasdynamic solution using M% instead of Mg,

as the input parameter can be easily read off. The dashed 1ine§ in
this figure show that for this case the standoff distance would have
a value about Xg = 0.29 Ty while the shock ordinate would be about
F% = 3,7 o . These values together with those obtained by using the
gasdynamic theory in the usual way with Mo instead of M& can

now be compared to the exact values determined by the hydromagnetic
solution. TFor Fg figure 10-7 shows that gasdynamic theory using
Mg = 10 calculates a value [y = 3.57[% as compared to 3.7 [o
obtained from the same theory using IWi = 7.09 . Comparing these
two values with the exact value f; = 3.66 [y displayed in figure
10-6 for Mgp= 10 and Mp,, = 10 , we see that use of M* in the
gasdynamic theory does improve the accuracy of the shock oxdinate

?g calculated downstream from the Earth by that theory. However,

in a similar comparison of the value for X figure 10-7 indicates
the value to be X = 0.26 " for the gasdynamic theory using

M = 10 and X = 0.297c using Mi~.= 7.09 while figure 10-6 shows
the exact value to be Xz = 0.251, . Therefore, the use of Mm%,
in plaée 0f M actually lessens the accuracy of the gasdynamic
theory in calculating the standoff distance. Because such use of
M% in the gasdynamic theory increases the accuracy of that theory
only for that part of the flow downstream from the Earth while re-
ducing it for the flow upstream, M appears to be the best overall
choice of input parameter to use in the gasdynamic theory for approx-

imating the hydromagnefic ‘solution.

C. Synopsis of the Foregoing Results and Conclusions

The comparison between the solution of the gasdynamic equa-
tions and the solution to the more exact aligned hydromagnetic equa-

tions representing our fluid model of the solar-~wind interaction has
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been presented in this chapter, and it has verified the accuracy and
applicability of the simpler gasdynamic theory for modelling the solar-
wind interaction for conditions in the solar wind when h%qq) has a
value avound 10 or higher, When this provision is fulfilled, all
of the previous theoretical results-based on gasdynamic theory that
has been derived in an analysis of the solar-wind interaction with
the Earth, Mars, and Venus remain accurate and valid. However, when
the value of IWAGJ becomes lower than 10., the aligned-flow solu~-
tion indicates that substantial discrepancies exist between the
exact hydromagnetic theory and the simpler gasdynamic one. These
differences manifest themselves in not only the values of the flow
properties but even the gross features of the theoxry such as the
shape and locaiion of the bow shock wave. This result shows that the
position of the bow wave is not only determined.by the values of

Voo and Tg in tﬁe undisturbed flow as is the case in gasdynamic
theory, but also by the values of J, and Be which fix the value
of E“IVD . And indeed the validity of this conclusion based on the
aligned-flow solution has been supported by the satellite measure-
ments made in space and reported by Ungstrup (1971). TFor the condi~
tions in the solar wind at that time, he concluded that the unusual
position of the bow wave was determined by the strong magnetic fieid
and that it varied with decreasing field strength in precisely the
manner indicated by our theoretical hydromagnetic analysis,

Finally, we should point out that although these results and
conclusions are all based on the solution of the hydromagnetic equa-
tions (9-2) and (9-3) for aligned flow, the study of the Friedrichs,
or phase and group velocity, diagrams in figure 5-1 as well as the
good agreement with space observations shows that perfect alignment
of the VYeo and Bo vectors is not essential, and qualitatively

similar effects can be anticipated for other alignments as well.
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CHAPTER XTI

COMPARISON WITH ALIGNED-FLOW OBSERVATIONS MADE IN SPACE

In the Jast two chapters we have developed the nondissipative
hydromagnetic theory.for the case of parallel velocity and magéetic
fields and presented a numerical procedure for solving the resulting
aligned-flow equations and determining the position of the bow shock
wave and the hydromagﬂetic flow properties of the shocked plasma. In
the previous chapter we have qualitagively examined these computed re-
sults for a variety of free-stream conditions, compared them with cor-
responding results from gasdynamic theory, and have recognized trends
in the general character of the hydromagnetic solution for decreasing
free-stream Alfvén Mach number ﬁkvb . Since this preliminary com-
parison indicated very encouraging agreement‘with previocus theoretical
and experimental investigations for large fﬂppa and with measure-
ments observed in space for low “@vn s, 1t is now appropriate to
carry out a more detailed, quantitative comparison with space obsex-
vations in ?rder to further verify the accuracy and validity of this
aligned hydromagnetic model.

For such a comparison space observations made at a time when
the velocity and magnetic-field directions in the solar wind were
reasonably aligned is obviously most suitable. One instance of such
experimental data is the measurements of the plasma and magnetic-
field properties of the solar wind made by Mariner 5 as it flew past
Venus. The magneéometer and plasma-probe experimenters (Bridge et al.,
1967) found that the interplanetary plasma conditions in the solar
wind were quite steady, and although the direction of the magnetic
field showed some fluctuations its magnitude was nearly constant, .
They do not attribute these fluctuations in field direction to changes
in overall interplanetary conditions, but rather to a series of local
solar-~wind structures, perhaps filaments, which were convected past
the spacecraft. For our purposes this localized character can be dis-
regarded. The nature of the average magnetic field encountered: along

the spacecraft's trajectoxry is illustrated in figuré 11-1 as originally
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(Bridge et al., 1967).
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presented by Bridge et al, (1967). The three parts of this figure
show the usual orthographic projections of both the Mariner trajectory
and the measured fields. The aphrodiocentric-solar-eclipiic (ASE)

coordinates are defined by a plane parallel to the ecliptic passing

through the center of Venus and by XASE , the projection in this
plane of the direction to the Sun. The axis 'ZASE points toward
the north ecliptic pele, and ¥ completes the orthogonal, right-

ASE
handed system. The cirxcled numbexrs (:) through (:) correspond to

the labels added by the experimenferé to the plasma and magnetic-
field data in figure 8-13 and denote features of special significance.
The field vectors are not shown at equally spaced intervals but at
times that best illustrate the character of the average magnetic
field within the various regions along the spacecraft's trajectory.
That the magnetic-field direction is reasonably parallel to
the velocity direction which is radially outward from the Sun can be
determined by study of the orthographic projectioﬁs in figure 11-1.
The X

ASE " -ZAs
edge of the plane parallel to the ecliptic passing through the center

- projection, which is viewed from the cross-section

of Venus and along the line between the Sun and Venus, shows that the
magnetic field remains nearly parallel to the Sun-~Venus line through-
out the time interval displayed, Furthermore, the small components

of the magnetic field illustrated in the YAS 7 projection,

£~ ZAs
which is viewed from the Sun toward the planet, also indicate that
the field direction is primarily parallel to fhe ecliptic and in a
radial direction from the Sun during the interval. And finally, the
XASE - YASE projection, viewed from the north ecliptic pole, com-
firms that the magnetic field lies in the ecliptic plane, and a com-
parison with the theoretically calculated field direction displayed

in figure 10-3(d) for aligned flow dounstream of a shock wave shows
that the observed direction of the field is indeed consistent with
that for aligned flouw. We then conclude that at the time these data
were measured the average magnetic-~field direction was reasonablﬁ
aligned with the velocity direction, and thus these data are very
appropriate for comparison with the theoretical calculations made with

our aligned-£flow model.
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Although there have been other examples of measurements made
in space which show the solar wind to be more steady and the velocity
and magnetic-field directions to be more perfectly aligned, we choose
to make a detailed comparison witﬁ these near~Venus data from Mariner
o for two particular reasons. The first is that in chapter VIIT we
have already carried out a comparison between these data and the
theoretical positions of gasdynamic shocks arising from interaction
with several of the ionopause shapes illustrated in figure 6-6 and
found general agreement. An additional comparison of these same data
with the calculated results of a more refined interaction model would
therefore enable us to also contrast the theoretical results cal-
culated using the simpler gasdynamic theory with those from the more
refined hydromagnetic theory with reference to these Mariner-5 ob~
servations. But the primary reason is, however, that the values of
about 590 km/sec ,- 4 protons/cm3 ,.and 8 § reported by Bridge
“et al. (1967) for the velocity, ion number density, and magnetic-
field strength in the solar wind before and after Mariner 5's en-
counter with Venus indicate a value of about 6.75 for PﬂAco ; and
our analyéis of the aligned hydromagnetic theory presented in chapter
IX showed that when NUR&>< 10 substantial differences between the
theoretically calculated hydromagnetic and gasdynamic results begin
to appear. Thus on this theoretical argument alone we should expect
better agreement to exist between the hydromagnetic results and the
observations of Mariner 5 than existed for the corresponding gasdy-
ndmic results. Tn fact at this point we can already predict better
agreement with the hydromagnetic theory on the basis of the following
argument. ?igure 8-13 shows that the gasdynamic shock wave calculated
for Me= 5 and associated with the ionopause shape for H/r, = 0.25
indicates that the theoretical shock is positioned somewhat closer to
Venus than was observed. However, since we have learned in chapter X
that for !%A&3< 10 the position of a hydromagnetic shock wave is,
in all regions except near.the nose, somewhat farther away from the
planet than the corresponding position for a gasdynamic shock, hydro-
magneiic theory will predict a shock position that better agrees with

the observations than did the gasdynamic theory. This good agreement
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between the calculated position of the shock wave associated with the
ionopause shape for i%/Q,= 0.25 and that observed by Mariner 5
suggests that the upper ionosphere consists primarily of ionized

atomic hydrogen at a temperature of about 700 °K corresponding to a
scale height of around 1500 km . On the other hand, however, the
theoretical results displayed in figure 8-13 for H/G,= 0.25 indicate
that Mariner 5 should have then crossed the ionopause, but there is

no certain evidence that Mariner 5 actually did penetrate the iono-
pause. As discussed in chapter VIII, a possible explanation for this
discrepancy is that the tail of the ionosphere might taper inwaxd
toward the axis of symmetry vather than extending straight downstream.
The theoretical ionopause shapes displayed in figure 6-6 give no
ipdication of such a trend, but they are of low reliability for this
feature of the flow because of the deterioration of the quality of

the Newtonian approximation for both the gas and masnetic pressure of
the solar wind as V¥ approaches 90 degrees. This aspect of our model
can be refined, however, by using the exact pressure of the solar wind
calculated in the numerical solution instead of the approximate New-
tonian expression and thus determining the exact shape of the iono-
pause as part of the solution. BSuch a calculation would then accurately

represent the shape of the ionopause tail for the model presented.

A. CGCalculation of the Exact lonopause Location

The ionopause shape is defined as the locus of those points:
at which the tangential discontinuity conditions (6-12) are exactly
satisfied, For all the boundary shapes illustrated in figuve 6-6, the
calculated results presented in figure 8-12 imply that although the
discontinuity relations (6-~12) are not satisfied exactly on any of
these shapes the discrepancy is larger on the f£lanks than on the nose
section of each boundary: In fact we found that the necessary incre-
ment in the radial coordiﬁate I of the present ionopause shapes

needed to satisfy the discontinuity relation

F .Iz- r-.O
i

Pexs (;D + BQ/S?T)EXT: P (R R expl- F y o+ R,

(11-1)
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on the forward part of the boundary is imperceptibly small on the

scale of figure 8-12 and would not change the calculated xesults foxr
the exterior flow in this region. On the other hand a similar pro;
cedure for the coordinates of the ionopause flanks shows that larse
increments are necessary, thﬁs indicating serious errors in the present
shape of the ionosphere-tail. This exror can be corrected by calculat-
ing a new shape for the ionopause. Since the error lies in the region -
where the flow is supersonic and the equations hyperbolic, the posi-
tion of the boundary is mnot required to be specified a priori, but
rather can be calculated by the method of characteristics as part of
the solution of the exterior flow. A simple numerical procedure to
calculate the position of these new boundaxry points as well as the
exterior-flow properties such that equation (11-1) is satisfied at
those points was developed. A representative boundary point C is
indicated in figure 11-2, and the unkoown flow properties at point ¢
are o be determined from the known flow properties at points B and
D by using the aligned-flow equations (7-22) to (7-25) in the follow-
ing way. We use a cruae predictor and assume that the ionosphere
boundary and right-going characteristic lines are straight and then
solve for the location I* of the point C . With this value of T
the ionosphere pressure Pur can be calculated by equation (11-1)

and then (p +—Bzﬂ8ﬂ05xr== Fﬁ}T can therefore be determined at

point C by use of equation (6-12). Thus with [Dg and pﬁe now
knowvmn, we then solve the right-going characteristic equation (7-22b)
for the flow angle & at point C . ¥inally, using this value of

B , we can compute the average of the flow angles at points € and
D and the average of the angles (A~0) at points G and B , and
then correct the position of point ¢ using these averaged angles to
specify straight lines from points B and D , This corrector process
can be repeated till the néw position of point C differs from the
cld by less than 0.01L percent. (For all of our solutions this pro-~
cedure always converged in less than 20 iterations.) In this way,
then, the precise shape of the icnopause, on which the tangential
discéntinuipy conditions (6-12) are satisfied exactly, is determined

simeltaneously as part of the solution for the exterior flow., We
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can thus solve the exact free-boundary problem and no longer need to
decouple the calculation of the ionopause shape from the exterior-flow

solution as was done before,

right-going lLeft-going
characteristic line — characteristic line
i /B

//’//////

e b /G’D

O\
* VIONOSPHERE BOUNDARY
‘(free streamline)

Figure 11-2. Sketch of characteristic lines for determination
of the location of, and flow properties at, a
representative mesh point C on the ionosphere
boundary. :

B. Comparison with Mariner-5 Dala

Since the pressure of the exiternal hydromagnetic flow is
balanced by the ionosphere pressure at the interface, tﬁe exact shape
of the ionopause depends on the input parameters of the exterior flow
and the expression (6-11) for the ionosphere pressure. In order to
make a comparison of the calculated aligned-flow properties around
this new ionopause chape with those observed by Maviner 5, values for-
these input parameters which coirespond to conditions in the solar
wind at the time of observation must be determined. For the exterior
flow we have already found fﬂgﬁ)= 6.75 while values of about 590

kmfsec and 300,000 *X reporzed for the velocity and temperature
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in the solar wind before and after Marimer 5's encounter with Venus
indicate a value of about 6.47 for Me . For the interior pres-
sure we choose a value for H/rb of 0.2 corresponding to a Venusian
ionosphere composed primarily of atomic hydrogen at about 600°K
because it agrees reasonably well with both the dual-frequency-occul-
tation and Lyman-alpha measurements made by Mariner 5 on the dayside
as well as nightside ionosphere, Similarly, the pressure in the
ionosphere wake pw':: pco+ B§/8‘JT = p?fo is about 5 xvlo-lo dyne/cm2
which, in view of the uncertainties attendant with these measurements
made in space, approximately agrees with the value of 800 electrons/
cms at a temperature of about 675 °K for the elec;ron density and
temperature in the ionosphere tail reported by Fjeldbo and Eshleman
(1969). )

Figures 11-3(a) to (d) illustrate the aligned hydromagnetic
solution for the exterior flow represented by lines of constant-
property contours for (a) density ratio /@qu , (b) velocity ratio
V/Véo , (c) magnetic-field-strength ratio B/Be , and (d) the di-
rection of the velocity and magnetic-~field vectors as well as the bow-
wave position and the exact ionopause shape all of which were computed
for Mo = 6.47 , Mp,=6.75 , § = 5/3 , and H/g= 0.2 . The
exact ionopause shape illustrated in these figures is seen to be
somewhat slimmer than the approximate shape for l4h; = 0.2 presented
in figure 6-6. The ionosphere tail in the exact calculation also
tapers slightly inward toward the axis of symmetry vather than ex-
tending straight downstream as did the approximate shape. This inward
tapering just indicates that the solar wind closes in behind the
ionosphere plasma some distance downstream from the planet as might
be expected since the pressure in the jonosphere decreases with in-
creasing altitude aﬁd Venus is a nonmagnetic planet. Also included
in figures 11-3 is a2 plot of Mariner 5's trajectory near Venus. The
plotted trajectory has been obtained by transforming the ASE coor-
dinates of the trajectory given in figure 11-1 by Bridge et al. (1967)
to a second cartesian coordinate system having its K axis along the
Sun~YVenus line, its \ axis pointing in the direction of Venus's

motion, and its 2 axis completing the right-handed system. To take
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into account the effect of the aberration angle of 3.4 degrees
arising from the relative motion of Venus in its oxbit about the Sun,
this new-system was then rotated 3.4 degrees about its Z axis.
Finally, since our flow solution possesses axial symmetry, the Y and

tfz

2 coordinates were formed into a radial coordinate [ ={y?+ 2%)"" ,

and these X and I° coordinates of the trajectory were then plotted
- in figures 11-3. -

The magnetometer and plasma-probe experimenters have con- i
cluded from the presence of abrupt and easily recognizable changes in
their data that Mariner 5 crossed the bow wave at the points of the
trajectory labeled (:) and (:) (Bridge et al., 1967). Point (:)
is in virtually perfect agreement with the theoretical location of the
hydromagnetic shock wave although point (E) is somewhat farther up~
stream from the theoretical results. But figures 11-3 also indicate
that Mariner 5 should have crossed the ionopause. These results, how-
ever, are best interpreted by comparing the oﬁserved density, velocity,
and field strength of the solar wind with the corresponding calculated
properties. Figure 11-4 shows the time variation of the bulk velo-
city \V , ion number demsity N , and field intensity IBI obsexved
by Mariner 5 as it flew past Venus originally as presented in figuxe
8~-13 only now enlarged. Superposed on this plot are dashed lines
representing the flow properties theoretically calculated at the posi-
tion of the spacecraft's trajectory illustrated in figures 11-3(a) to
(c).

Although conditions in the solar wind were reasonably steady,
study of figure 11-4 shows that all the data presented display some
fluctuations just before time 1 . After a discontinuous increase at’
time 1 , the agreement between the theoretical and observed value of
the intensity as théy both decrease somewhat up to time 2 is quite
good, Agréement is also good between the thecretical and observed
velocities as they likewise decrease slightly to time 2 . The ob-
served ion density, however, does not rise discontinuously through the
shock as does the theoretical density, but the agreement is nearly
perfect from them till just before time 3 when the spacecraft passed

through the calculated ionopause and out of the theoretical flow field.
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Meanwhile after time 2 the measured velocities begin to be somewhat
“lower than their calculated counterparts as they both decrease to’
just before time 3 when the spacecraft entered the theoretical iono-
sphere and the compuited value falls discontinuously to zero in our
hydrostatic model of the ionosphere. The observed values also decrease
sharply but only to a value about one-half the interplanetary level.
At the same time fluctﬁations in the field intensity have substantially
increased aftexr time 2 , although the average intensity remains at
about interplanetary level till after time & , while the theoretically
calculated intensity continues to decrease slightly until falling dis-
continuously to zero just before time 3 at the ionopause calculated
in our theory for a nomnmagnetic planet. After emerging from the
theoretical ionosphere after time 4 , the SsSpacecraft observed a
rapid and large increase in field intensity which corresponds fairly
well with the displayed theoretical values. Just before time 5 the
theoretical intensity falls disconiinuously across the shock wave to
the interplanetary value while at nearly the same time the observed
intensity also decreases sharply to the interplanetary value. Simi-
larly, after the spacecraft re-enters the theoretical flow field
after time & , it observed a sharp increase in density closely cor-
responding to the large compression in the theoretical density which
then falls discontinuously through the shock wave to interplanetary
values just before time 5 . Although during this interval the cal-
culated solution indicates a discontinuous drop Iollowing a larger
rise in density than that observed, this discrepancy is nol serious
since it invelves only one data point which is a S5-minute average and
cannot sharply represent such a large compression rapidly followed
by a discontinuous decrease. Just after time & the theoretical
-velocity returns to about three~fourths of the interplanetary value
and roughly agrees with the measured velocities. At the theoretical
shock position the caleculated velocity jumps disconfinuously to its
full interplanetary value while the observed velocity continuously
increases up to that level,

_ Overall the theoretically calculated flow properties agree

with those observed by Mariner 5 vexry well indeed. 1In particular,
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this good agreement appears to suggest that the upstream crossing of
the bow wave was encountered by Mariner about 5 minutes sooner than
the experimenters had originally indicated with their label (:) .
Suppért for this belief increases if the fluctuations superposed on
the interplametary value of intensity just before time 5 are dis-
regarded and the time~averaged nature of the plasma data is taken into
account. 1If so, the observed bow-wave crossings and the calculated
positio;l of the bow wave are in virtually perfect agreement, These
theoretical results also indicate that Mariner 5 should have crossed
the ilonopause into the ionosphere where the plasma velocity and mag-
netic-field intensity would be zero and the density would be that of
the ionosphere plasma. However, although the data display decreases
in hfNeg and VfVe that are at least qualitatively similar to
the theoretical values, there is no certain evidence that Mariner 5
actually penetrated-the ionosphere. TIn partipular, the intensity of
the magnetic field remained of the order of tﬁét for intexplanetary
space, and V diminished to only a modest fraction of Vg rather
than to a value comparable with the speed of the spacecraft relative
to Venus.

These results for the more refined hydromagnetic solution
using the improved calculation for the tapering ionosphere tail give
further support to the concepl, originally suggested in chapter VIIT
as an explanation of a similar discrepancy wiith the simpler gasdynamic
model, that a relatively thick boundary layer grows along the iono-
pause shape between the planetary ionosphere and the solar wind. Be-
cause the ionopause is essentially a boundary between these two fun-
damentally different bodies of plasma, it is highly preobable that the
ionopause would provide an increasingly thicker transition between
the ionosphere and the solar wind with increasing distance from the
stagnation point at the nose of the ionopause. As such, it would
spread both inte the upper part of the ionosphere and outward iﬁto
the surrounding flow, broadening the transition region in which all
properties of the plasma including the density, velocity, and magnetic
field change from their values for the flowing solar plasma to those

of the planetary ionosphere. Thus at the location of the ionospherxe
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boundary indicated by the present dissipationless-ﬁ§dromagnetiu

theory, the plasma velocity would probably be substantially less than
indicated by the theory. Since the plasma velocities observed by
Mariner 5 at the times when it penetrated the theoretical location

of the ionopause display such a trend, we conclude that just before
time 3 Mariner 5 entered the boundary layer separating the iono-
sphére and the flowing plasma, but did not enter the ionosphere proper,
and finally emerged from it shortly after time 4 .

One peciliar aspect of these data is the substantial increase
in fluctuations of the magnetic~field intensity at time 2 ., Even
thougﬁ there is little change in average field intensity, the experi-
menters (Bridge et al., 1967) chose to interpret these fluctuations
as changes in the interplanetary medium. Another possible interpre-~
tation is that these fluctuations are generated by disturbances in
the ionosphere boundary, possibly caused by turbulence in the boundary
layer. To give some i&ea as to the location of such boundary dis-
turbances, we have plotted in figure 11-5 solid lines representing
characteristic lines of the flow which correspond to ‘standing hydro-
magnetic compression or expansion waves of infinitesimal amplitude,
Also included in this figure 'is a dashed line represenﬁipg the charac-
teristic 1line passing through point (:) of the spggecraft‘s trajec-
tory. The segment of the ionoéphere boundary downstream from the
intersection point A of this line with the ionopause is then a
possible region for the generation of disturbances which piopagate
out to point (:) . We might thus infer that a turbulent boundary
layer exists downstream of point A , 'Actually, though, the fluc-
tuations in the magnetic-field data measured by Mariner 5 persist
after emerging from the theoretical boundary layer near point (:) s
which suggests that this boundary layér may be turbulent much farther
upstream than point A . Such intexpretations, however, must be
regarded as purely speculative at the present time.

The overall good agreement between the observations made by
Mariner 5 near Venus and the corresponding calculated properties of -
our hydromagnetic model offers excellent support for the validity of

our hydromagnetic theory for the intevaction of the solar wind with
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nonmagnetic planets, such as Mars and Venus, which have a suificient
ionosphere to deflect the solar plasma around the planet and its
atmosphere.. In particular, it has verified the supposition that the
current sheath which bounds the solar wind away from the planet is
formed by interaction with the ionosphere rather than with a planetary
magnetic field as in the case of the Earth and that continuum hydro-
magnetic theory sufficiently represents this interaction of the solar
plasma with the ifonosphere and the consequent development of a shock
wave as well as rthe variation of the average plasma and magnetic-field
properties throughout the surrounding £low. Furthermore, the compari-
son of these theoretical results with spacecraft observations also
demonstratesthe validity of treating the subsolar segment of the
boundary between the solar wind and the upper planetary ioncsphere
as a tangential discontinuity even though on the remaining segment
of this theoretical boundaxy certain differences suggest the presence
of a thick transition region or boundary layer.

We therefore conclude that the theor& given here is both
plausible and capable of providing a reasonably accurate description

of the conditions that prevail at Mars and Venus.,
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CHAPTER XIT

COMPENDIGM

To provide a basgis for the theoretical approach of the major
topic of this thesis, we have reviewed the data acquired in recent
vears in the vicinity of the Earth, Moon, Mars, and Venus that have
disclosed three essentially different types of interaction with the
solar wind. Tn addition, the basic properties and idealizations of
the solar wind itself, which have been predicted theoretically and
also actually observed in space, were outlined in some detail in
order to illustrate fhe basic unity of the entire theoretical descrip-
tion of the 'solar wind and its 'interaciion with these planets.

'The fundamental assumption underlying our theoretical analysis
of the large-scaie features of the interaction of the solar wind with
the Earth, Mars, and Venus is that the average bulk properties of the
flow can be adegquately described by a continuum-~fluid theory. Al~
though this assumption has not been theoretically justified, we re-
marked that the presence of a weak and irregulax magnéfic field in
the incident solar-wind plasma appears to couple the motions of paxr-
ticles even in the absence of collisions, More convincingly, we
argued that the real support for the use of the continuum-fluid
model is provided by the outstanding agreement between results cal-
culated in this way and those actually measured in spaée.

Our fluid model is based on the differential equations of
magnetohydrodynamics for the steady flow of a perfect gas having
infinite elecitrical conductivity as well as both zero viscosity and
thermal conductivity. Study of these equations reveals five classes
of discontinuities that can exist in.the flow because of the omission
of dissipative terms from the differeniial equations. Two of these,
the fast hydromagnetic shock wave and the tangential discontinuity,
are of concern in our analysis. The first is relevant for relating -
conditions on the two sides of the bow wave which forms in the solar
wind upstream of the planets, and the latter is the only one that has

properties compatible with those required to describe a boundaxry
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surface that deflects the solar wind around the planet. ¥or non-
magnetic planets which have a highly conductiné ionosphere, such as
Mars and Venus, this boundary is formed by interaction of the solar
wind with the ionosphere rather than with the geomagnetic field as
in the case of the Earth.

With the problem so formulated, there follows an accouni of
the manner in which these equations can be simplified to obtain a
tractable mathematical problem without wndue loss of realism or ac-
curacy of representation of principal features of the interaction.
First, by using the Newtonian pressure formula the approximate shape
and location of the ionosphere boundary is calculated for selected
values of the parameters that characterize the ionosphere just as in
the analogous problem of the Earth. Following that, the magneto-
hydrodynamié equations are then simplified.to those of gasdynamics by
dropping the magnetic terms on the basis of -the large magnitude of
the Alfvén Mach number. The 19cation of the bow wave and the proper-
ties of the flow field are then determined for a substantial range of
values for the parameters describing conditions in the solar wind by
solving these simpler gasdynamic equations using numerical techniques
specifically developed foxr tﬂat purpose. t is found Ehat the results
for a wide range of ionospheric parameters cam be brought into close
correspondence with those for flow past the Earth;s magnetosphere by
application of a simple geometric transformation of the coordinates.
This correspondence rule enables a substantial body of theoretical
results available for solar-wind flow past the magnetosphere to be
applied to Mars or Venus with only minar modification: Finally, these
apprpximaée theoretical results are compared with the 6bservati0ns
made by Marinexr 5 as it flew past Venus, and implications of the points
of agreement and disagreement axe diséussed. A similar comparison
with data from Mariners 4, 6, and 7 indicates that Mars has a suffi-
cient ionosphere for the theory to be applicable and that the observed
position of the Martian bow wave is exactly predicted by the theory.

A more refined solution is carried out for the complete mag~
netohydrodynamic equations for the special case of parallel veloaiﬁy

and magnetic-field vectors. The explicit hydromégnetic equations for
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aligned flow are derived, and the numerical procedures developed
originally for gasdynamics are modified so that solutions to these
equations are able to be computed for a substantial range of values
for the parameters describing conditions in the solar wind. Study

of these exact hydromagnetic solutions discloses a strong dependence
‘on the content of the magnetic energy relative to the kinetic enexgy
in the solar wind. When this ratio is low, or equivalently when the
Alfvén Mach number is high, this refined solution shows that the bow-
wave location and flow-field properties ave very similar to those of
the simpler gasdynamic solution. However, when this ratioc is high,
the bow-wave location and flow properties are strikingly different.
This unusual phenomena for low-Alfvén-Mach-number flow past the Earth
has recently been confirmed by spacecraft measurements. A detailed
comparison of these two models is also carried out to determine the
accuracy and usefulness of the simpler gasdynamic model.

The calculation of the exact shape of the ionopause is also
performed by determining as part of the flow solution the points at
which the tangential discontinuity relations are satisfied exactly.
Lastly, these refined theoretical results are found to agree bettex
with the observations made by Mariner 5 as it flew past Venus than
do the simpler gasdynamic results. However, certain differences near
the theoretical location of the ionopause suggest the presence of a
thick boundary layer.

Overall, we conclude that the theory presented heve is both
plausible and capable of accurately describing the phenomena associated

with the interaction of the solar wind with the Earth, Mars, and Venus.
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