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FOREWORD

This report presents the results of development and implementation of
steepest-ascent optimization theory as applied to trajectory computation.
This program depicts the results of the developments performed by

efforts contracted by the Trajectory and Optimization Theory Branch of

the Astrodynamics and Guidance Theory Division of the Aero-Astrodynamics
Laboratory at MSFC. Questions and requests pertaining to this program
should be addressed to Mr. Ron Toelle at the Trajectory and Optimization

Theory Branch, Aero-Astrodynamics Laboratory, MSFC.
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ABSTRACT

LIFTING ROBOT is a minimum Hamiltonian-steepest ascent
multistage lifting booster optimization program. It can simulate up to
15 thrust or coast events, provides aerodynamic lift and drag as a func-

1ttt

tion of Mach number and angle of attack, and can maintain ''g" limits

by thro‘i:tliné.

The payoff and terminal constraints can be selected from a
library of 26 functions. In addition, intermediate point constraints,
selected from the same library, may be imposed on the trajectory

following any one of the thrust events.

Through the use of input switches, a variety of vehicle parameters
can be optimized in conjunction with the control variables y-pitch and
X-yaw. Tank limits of stages being optimized can be held and performance
reserves as a function of AV, can be calculated. The impact point of any
stage can be calculated and publishable tables can be printed. The working
coordinate system and the environmental simunlation conform to Apollo

standards.

This document contains the LIFTING ROBOT input description and

an exaraple problem,

~1iii-
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1. INTRODUCTION

The program described in this report is designed to optimize a
large variety of multistage lifting booster trajectories. This objective
is achieved through the use of the Min-H* steepest-ascent trajectory
optimization technique described in Reference 1. Briefly, the steepest-
ascent techﬁique requires that a reasonable, but nevertheless arbitrary
choice of the controls be used to calculate a nominal trajectory. In
general, neither the desired terminal state will result, nor will the per-
formance index be optimum. Next, by solving the adjoint differential
equations associated with the linearized perturbation equations about the
nominal trajectory, impulse response functions may be determined for
arbitrary small variations in the control variables, and influence coetti-
‘cients may be determined for arbitrary small variations in the control
parameters, The choice of small changes in these controls, which
simultaneopsly moves the terminal state closer to the desired terminal
state and improves the performance index, "is calculated. This change
in the controls is added to the nominal control history and the process is

repeated until the optimum is reached.

The LIFTING ROBOT program can simulate a multistage lifting
booster having up to 15 thrust events. The program can be used for both
ground-launch and jump-start trajectories. Both the aerodynamics and
throttling of the Space Shuttle are simulated. The working coordinate

system and the environmental simulation conform to Apollo standards.

aa

Minimum Hamiltonian
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The payoff and terminal constraints can be selected from a library
of twenty-six functions. In addition intermediate point constraints, selected
from the same library, may be imposed on the trajectory following any
one of the thrust events, Also, the instantaneousimpact point of the first

stage may be forced to avoid specified regions.

Thro-ugh the use of input switches, a variety of vehicle parameters
may be optimized in conjunction with the control variables y-pitch and
x-yaw. Tank limits of stages being optimized can be held and performance
reserves as a function of AV, can be calculated Staging on either fuel or
time can be specified. Also, the impact point of any stage can be calcu-

lated and publishable tables can be printed.

The LIFTING ROBOT program has straightforward automatic
convergence logic and a dynamic updating scheme for the control parameter

weighting matrix. Convergence should be as reliable and sure as the

original ROBOT program [9].

For the most part, this report is devoted to a description of the
mathematical model used in formulating LIFTING ROBOT and to such a
limited discussion of the logic structure as affords a complete description

of program flexibility.
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2. COORDINATE SYSTEMS

The basic reference coordinate system in the LIFTING ROBOT
program is the inertial geocentric cartesian coordinate system 3% SAT ZA
shown in Fig. 1., This coordinate system has the SAZ axis pointing north,
the }Ai and .%, axes in the equatorial plane, and the ﬁ axis in the meridian
plane that cc;»ntains the launch dite at gyro release time. In the LIFTING
ROBOT program gyro release time or guidance reference release (GRR)

is a reference time occurring either prior to or at liftoff.

Next described is the inertial cartesian plumbline coordinate

AAA
system x y 2, in which the equations of motion are written.

The plumbline coordinate system ;c ;' g,. shown in Fig, 2 is
formed from }%.' ’S‘} ZA. by first rotating counterclockwise about EA{ through
9, and then clockwise about gr through A - 90. A is the launch azi-
muth angle and 8, = /2 - 0, where 0, is the geodetic latitude of the

launch site. Both AZ and 60 are input quantities.

A A A
The equations for transforming a vector from the X Y Z system

A A A
to the xy z system are

N>td> K>
1
]

N> K> P>

2-1
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where

— -
sin A cog A ginf ~cosA cos @
Z z 1 Z 1
A = 0 cos @1 sin 91
cos A -sinA sin@ sinA cos @
Z Z 1 z 1

Since AZ is an input constant and 6, is the complement of an input

1
constant, the matrizx A is also constant.

In the plumbline system the position coordinates x, y, z and the
A A A
velocity components w, u, v are measured in the x, y., z directions,

respectively.

The plumbline system in LIFTING ROBOT differs from the

Apollo 13 coordinate system [3] only in the names of the axes, i.e.,

s M N
1
N S > >

Apollo 13 ROBOT

The third coordinate system used in LIFTING ROBOT is the geo-
centric spherical polar coordinate system g% ?:' ?9 with coordinates ¢, v,
and 6. The gg 2- ‘b axes, ghown in Fig., 3, point in the direction of increasing
¢, r, and 0, respectively, and may be formed by first rotating counter-
clockwise about SAE through ¢ and then rotating counterclockwise about

A
¢ through 6.
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A A A
The projections of r on XY Z are

sin 8 8ing

cosé

N < N
i
b}

sinOcos¢
. AAA
and therefore the projections of r on xy z are
e sinfsing
y| =r A cos @

z sin fcosd

The transformation from x, y, z to ¢, r, @ is therefore

o apfBgpEtagytag, @
¢ = fan a,.xta +a_ .z
13 23” " %33
. = /\/Xz b g2 4 g2

_ -1
8 = cos ((a12x+a22y+a322)/r)

where the a;; are elements of the A matrix described previously.

A A A
The equations for transforming a vector from the ¢ r 8 system

A A A
to the XYZ system are

N> > D=
1l
td

D> H> G

2-6



where

cosy singsinf® sing cosd
B = 0 . cos o -sin @

-gin¢g cos¢gsin® cospcosh

A AA
and therefore the equations for transforming a vector from the ¢ r 6

AAA
system to the xy2z system may be written

e R
n
v

T D> M Qs

where D= A* B

A A A
Also, the inertial velocity components in the ¢, r, 6 directions,

W U Vo respectively, may be written

W w
T

u | Dlu

S

v v

s

I the multiplication A+ B is performed and substitutions for ¢ and

6 are made in terms of x, y and z, the elements of the D matrix become

dy = (agz - a32y)/r sin 6

c‘t21 = (a32x - a.lzz)/r sin 6

dgy = (alzy - azzx)/r sin 8

ale

" )T Denotes matrix transpose.
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3. GEOPHYSICAL PROPERTIES
Described in this section are thrée geophysical properties of the
earth which affect a rocket trajectory: gravitational acceleration, geo-
meiric form, atmospheric properties.

3.1 GRAVITATIONAL ACCELERATIONS

The gravitational potential function, U(r, 6), used in LIFTING
ROBOT is [4]

u R \2 R \3
Ulr, 6)=-—];3 [1+93§_ —lfi (1-3cosze)+15{- —1;9- (3 - 5 cos6) cos 0
'R 4
+-g]?-§- = (3*30c0826+3500546)J

where CJ, H, DJ, Re’ p, are input parameters which are, however,

preset to

CJ = 1.62345x 10 °
H = -0.575 % 10 °
DI = 0.7875x 10 °
Re = HEarth equatorial radius
= 6378165, m
By = Product of universal gravity constant

and earth mass

14

3. 986032 x 10 1113/sec2

1
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The components of the gravitational acceleration vector in the
plumbline system are calculated as the first partial derivatives of
Ulr, 6) with resgpect to the plumbline position coordinates, i.e., g gy

and g, are calculated as

(1 Teu] [ or | 20 |
gx 9x % ox
. |au| . au|ax| , 2U | 28
gy 3y dr oy 36 oy
2U 3r 26
gz 32 9% oz

gx x . 'alz
8y | T %1 |Y| T Gpo (%22
A gz _ z _a3 2 |

where
My Re 2 9 R“3 3 2
Gyq = - ;5 [1 +CJ(T) (1-5cos"8) +I—I(—r—) (3-"7cos" B)cosbd

R \4
+ DJ (—f) (% -{6-9 cosze) coszeﬂ

sk
These partials are given in Appendix B.
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‘ue Re 2 Re 3 3 2
GTO = ;2" [ZCJ (—;-) cosG-H(—r—) (g - 3cos 6)

R \4
+ DJ (—-f) (172 - 4 cos28) cose}

Equations of the same general form are used in the Saturn V

flight computer. [5]

In the event that a spherical earth is to be simulated these equations

become
gx X
g, = Gy |
where
_ 3
Gy = Tu/r
and, of course,
GTO= 0

3.2 GEOMETRIC FORM

The earth is taken 1o be an ellipsoid, [8] as shown in Fig. 4.,

which rotates about its polar axis with an angular velocity Qe.

3-3
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The angular velocity, Qe » and the flattening, {, are input constants that

are preset to

o]
It

7.92921158 x 10 ° rad/sec

'-h
1]

1/298.3

The relationship between geocentric colatitude, 8, and geodetic

latitude, eg, is expressed by

ctng = (1 -f)z tan eg

The radius of the earth as a function of colatitude, R(8), is

R(6) = {1-1) Re/. V(l"f)zsinzei-cosze

The derivative of R{8) with respect to 8, which is needed in order to
calculate the time at which maximum dynamic pressure occurs, and

altitude related terms in the adjoint equations is given by

dR(8) _ R(6)° £(2-1)sind cose
e ®)%(1-1)°

3.3 ATMOSPHERIC PROPERTIES

The earth is assumed to have an atmosphere which rotates with
it at the same angular velocity, so that there is no wind over the earth's

rotating surface.



>

The PRAB3 model atmosphere [7] routine on the MSFC system
tape is presently used to calculate density, o, pressure, p, and speed

of sound, s, as a function of the altitude, h, where h is calculated from
h = r - R(6)

During the adjoint integration, analytic derivatives of p, pa, and s;

91% s %’E and ég—isl- , respectively are calculated in PRB63 which differs

from PRAG63 only in that these derivatives are calculated.



4. CONTROL VARIABLES .

A
The time history of the orientation in space of the centerline, c,
of the boost vehicle is determined by the control variable attitude angles

xp (chi-pitch)} and xy (chi-yaw) shown in Fig. 5.

A .
In addition to defining the position of the centerline, ¢, ¥ and
AAoA

xy may be thought of as defining the auxiliary coordinate axes pc¢
shown in Fig. 5. This auxiliary coordinate system is formed by rotating

. A A
clockwise about z through xp and then counterclockwise about p through

Xy-

A A A
The equations for transforming a vector from the p ¢ ¢ system
. AAA
into the x y z sysiem are

MNo>ids> K>
it
Q
Sx N> g>

where

cosxp sinxpcosxy -sinxpsi.nxy

C-= -sinxp cosxpcosxy -cosxpsin)(y

0 sin cos
Xy X




Xy~

FIG. 5.

Xp, Xy AND pc¥ COORDINATE SYSTEM
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A 3 -
The unit vector ¢ which defines the centerline of the vehicle

in the plumbline system is

sin cos
Xp X
A
= cos cos
c Xp Xy
siny .
! vy

4-3



5. AERODYNAMIC FORCES

The passage of the vehicle through the atmosphere gives rise to
aerodynamic forces defined to act coincident with and normal to the

A
vehicle body axis ¢, In LIFTING ROBOT, the relative velocity, VR s

is considered to be the velocity of the vehicle relative to the atmogphere.

hid W rﬂesme w - (a.z2 zZ - a32y) Qe
Ve®la|=[u|-D 0 = u-(a32x- alzz) Qe
h's v 0 _v - .(alzy - azzx) Qe_

It is convenient io define the magnitude of the relative velocity, VR

_ = B 3.2
vy = | Vgl —1/1@1 tuty

A —
and a unit vector, V_, in the direction of VR as

A =7/
Vg ¥ VRr/VgR

The aerodynamic normal force in LIFTING ROBOT is assumed

A A
to lie in the plane defined by ¢ and V This allows the aerodynamic

R
forces to be described in the plumbline system using the nonorthogonal

A A
coordinates ¢ and VR and the tfotal angle of attack, ®. This situation is

depicted in Fig. 6.

5-1



g

AA

FIGURE 6 AERODYNAMIC FORCE QUANTITIES




It is obvious from the figure that the vector of force due to FAA

is

— A
Fon = Fanc

and that the vector of force due to F can be found by summing com-

AN

A A
onents along ¢ and VR’ i.e.,

— A A
FAN = FAN(cota c - cscH VR)
Also, o is simply
~ -1 A A
« = cos (c - VR)

The dynamic pressure, d, is calculated as
o dovk
The Mach mumber, M, is calculated as
M= Vp/s

These can be used to calculate FAA and FAN as

|
|

AL S as CA(M,(J!)

by
|

AN = 98 CN(M, o)

|3



where S is the reference area and CA(M’ o) and CN(M’ ) are assumed

{0 be

C a(M) cose + b(M) sinza + c(M)

A

‘N

a(M) sina - b(M) sing coso

This form for C A and CN is consistent with reasonable assumptions for

lift and drag as is shown in Appendix D. 7The coefficients a, b and ¢ can
be fit directly to aerodynamic data for C A and CN or constructed from
lift and drag data.

Tables of a(M), b(M) and ¢(M) are provided in subroutine CACN
in LIFTING ROBOT. These may be changedby the user via a new data

statement,

Asg is shown helow, the form of C. and CN is such that ¥

A AA

and F AN do not have to be constructed in order to write the aerodynamic

force vector in the plumbline system.

Summing AA and F AN the aerodynamic force vector, F A is

found 1o be

o A A
FA = (FAN cote - FAA) c - FANcscaVR

5-4

L3



Using the definition of C A and CN above gives
FAX
F, = |F = +c) ¢ + gS{b y
AT Ay | T gS{b+c) c + gS{bcosw a)VR
FAZ

5-5
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6. BOOSTER CONFIGURATION

In LIFPTING ROBOT, the simulation of the thrust profile of a
multistage booster is accomplished by synthesizing the profile from a
sequence of up to 15 thrust events. By allowing the grouping jof these
thrust events into stages 1o be specified byl/input rather than Hy fixed
internal 1og:ic, a great deal of generality is obtained. Fig. 7 depicts

five thrust events as an example of such a sequence.

The ith thrust event is characterized by five (seven in the

atmosphere) items:

1) Fi Reference thrust per engine
2) m, Flow rate per engine
Vg Number of inboard engines
Vig Cant angle of inboard engines
3 !
Vi Number of outboard engines
Vig Cant angle of outhoard engines
4} T, Thrust event duration
5) W,  Weight jettisoned at the end of each thrust event

and in the atmosphere....

6) Aei Engine exit area

) Si Aerodynamic reference area

6-1
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Reference Thrust
A
1 2 3 4 .8
Pt 'l’1 -‘12 E o ‘ts —tag— 1'4 s = = 1-5 JEE———
St Tr-—l g r:
H d d '
EEEEEE
b tay iy tys tia tae tes tig
——f- Time
FIG. 7. THRUST PROFILE - A  SEQUENCE OF THRUST EVENTS
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The convention used in LIFTING ROBOT for labeling thrust event
and miscellaneous weight drop event times is also depicted in Fig. 7.

Thust event times are labeled tli and miscellaneous weight drop event

times are labeled t2i'

Note that there are six t,. but only five thrust events of duration

1i
T The same is true of a picket fence, in that there is always one more
picket than there are spaces. The T, may therefore be thought of as

"spaces', and the i subscript of t,. as the "picket' number, with i =1

ii
at the beginning of the first thrust event.

From the figure it is apparent that the tli are calculated as

+1 = +
SR T

with tli being defined as some input initial time,

In addition to thrust event items, Fig. T also depicts two

miscellaneous weight drops. A miscellaneous drop weight, as distin~

guished from a jettison weight, can be dropped at any time. The ith

migcellaneous weight drop is characterized by three items:

1) Wf‘ Miscellaneous weight dropped

2) 'r? Time interval between beginning of n‘: th

thrust event and miscellaneous weight drop.

3) n‘zl Weight drop time is calculated from the

beginning of this thrust eveni. Can also be

6-3



thought of as "picket'" number of the thrust
event time to which 'r‘;f is added to get

miscellaneous weight drop time.

The t are

The ith miscellaneous weight drop occurs at t2i' 2i

calculated as

where

Note that with this definition, none, one or many miscellaneous weight
drop events may be defined relative to any given thrust event, and may
occur during that or any other thrust evenit. The only restriction being

that t must be greater than t

2i+1 2i°

In LIFTING ROBOT the thrust events are grouped into stages
through the use of the input array NGVENT. The first member of the
NQVENT array should contain the number of thrust events in the atmos-

phere, the second member contains the number in the second stage, etc.

However they are grouped, all thrust events must be accounted for!
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6.1 THRUST AND FLOW RATE

The use of the four numbers v.., v.., V.., V.,, to describe the
i1’ "i2° i3’ " i4
effective number of engines leads to a rather cumbersome notation if
they are used in each equation where the number of'engines is required.
" Consequently, an effective number of engines operator, Vi, is defined
to be:
sV co8V., TV,
i i i

CosSV, if v, multiplies ¥, or Ae,
i i i i

1 2 3 4
1 . PR
Vg + vi3 if v multiplies m, or cm,

The -input thrust levels for first stage component rockets are
congidered to be nominal sea level thrusts. The total thrust, T, for

all thrust events considered to be in the first stage is calculated from
= -+ - = -
T =vy(F, +Aelp - p ) =T -v, Ae;p,

where P is thé sea level atmospheric pressure and TV is the vacuum

thrust level,

The input thrust levels for all thrust events other than those in
the first stage are considered to be vacuum thrust levels, and the total

thrust is calculated from

b -

q‘cmi ig defined in Section 7. 4. 2,

6-5



T = vi(Fi - Aeipa) = Tv -y, Aei 15

while still in the atmosphere and

once the atmosphere is dropped.

The total flow rate, m, in any thrust event is calculated from

-6. 2 THRUST TABLES, FLOW-RATE TABLES AND
DELTA-WEIGHT TABLES

If the input variables J THRi = 0, thrust and filowrate of the ith

thrust event are calculated as above.

If JTHRi = 41, rhi ig calculated from a table of Ifli vs time and
Fi is calculated from a table of Fi vs. time. If J'I‘HRi = -1, Fi is
calculated from a table of Fi vs. time and m(t) is calculated as

m{t) = mit-At) +Amt-At) - Am(t)

where Am(t) is a table of mass loss vs. time.
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6.3 THROTTLING

If Tv/m in the ith thrust event is greater than (}LIM:.L = go- GLIMGi

where GLIMG is an input vector, the throtile value T is calculated as
T =m-+ GLIM. /T
i' Ty

and Tv and m become

H
I
-i
=]
I

m GLIMi

H
—I;
B

= (m GLIMi/ Tv) m

' Throttling should only be used when JTHR, = 0.
6.4 +STAGING ON FUEL
If the input variable MSWCHi = +1, staging will be on time, If
MSWCI—Ii = -1, the ith thrust event will terminate when a weight loss equal

to FUELGi has occurred. The actual burn time 'I'i will then be calculated.

FUELG is an input vector.

6-7



3

>

7. THE FORWARD TRAJECTORY

This section contains the equations of motion integrated in
LIFTING ROBOT, a description of the forward trajectory flight phases,
the terminal functions which may be selected to define an optimization

problem, and various users' options associated with the forward trajectory.
7.1 THE EQUATIONS OF MOTION

In general form, the equations of motion integrated in LIFTING

ROBOT are written

ij1 =W=Fxlm+gx
152 =q = Fy/m+gy
133 = v =FZ/In+gZ
134 =% = w
B =3 =u
15.6 =z = v

ISf]:d:—m

p8 = Impact point penalty function. Integrated if
terminal constraint No. 26 is activated. See Section 7. 10.

By = T/m



>

|

o AA
Big = [1-(c-vpl

By, * ~(W.gX+u.gy+v.gz)/vl

B, =aVpl(g -

1313 = -931 [{bcosa - a) ({}1'{}3) - (b+c)(’c‘:ﬂ‘}1)]

Equations 9 through 13 are integrated only on a converged

trajectory.

The forcing functions FX, F and FZ are

v
F
X
A A
Fy = [T - aS(b+c)lc + gS(bcosa - a)vVy
i
Z

with, of course, ¢ set to zero when the atmosphere is dropped.

Equations of motion 9,10, 11 and 13 are easily derived by forming

. = A
the dot product VI'VI

the characteristic velocity, Pio is known as the turning loss, Pi1 is

and adding and subtracting T/m. Py is known as

known as the gravity loss and Pis is known as the drag loss. Pio is an

aerodynamic heating indicator.
The mass, m, is calculated from

m=,u+ma



where u is continuous and consists of the total propellants to be burned

plus the payload, and

_ d J
m, = (zi:Wi+? Wj )/gO

The constant g, relates mass to weight and is taken to be
2
g, =9 80665m/sec

Since m_ is constant from one weight drop to the next, i = -m for all

t 4 tli or tZi"
By this artifice,. the seventh sitate variable, u, is made to be

"continuous at all times, including those times at which mass is discon-

tinuous. The primary advantage of integrating this particular choice

of state variable is the ease with which mass can be reconstructed during

the adjoint integration. Since u is continuous, it may be stored as a

function of time on the forward trajectory, and therefore, even if m is

a time varying function obtained from a thrust tape, the mass can be

calculated during the adjoint integration by looking u up, updating m

at the tli and tzi and adding the two together.

7.2 GROUND-LAUNCH TRAJECTORY FLIGHT PHASES

The flight profile of a ground-launch trajectory is separated into
a number of phases. These phases arce depicted graphically for a boogter

having n-1 thrust events, The symbols in Fig. 8 are discussed below.
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FIG. 8. GROUND-LAUNCH FLIGHT PHASES
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7.2.1 GRR, At , t
o o

The input quantity Ato is the time interval between the time the

coordinate systems are defined, GRR, and the lift-off time, to. t0 is

an input constant which is generally taken to be zero. the time the

t
11°
first thrust event begins, is set to to. If a non-zero value of Ato is used,
the boost vehicle, which is fixed to the earth, will not be in the

A A
YZ plane at lift-off,

7.2.2 Ground-Launch Initial Conditions

The calculation of the initial, to' conditions for a ground-launch
trajectory proceeds directly from Ato and the input value of the geodetic
latitude of the launch site, 60. The geocentric colatitude of the launch

site is
-1 2
6 = 7/2 - tan “({1-f) taneo)

The radins of the launch site is R(#) and the initial velocity of the launch

site is
V = R{8)Q sine
0 e

The longitude angle subtended by the launch site 'during the time

interval Ato is

AP = Q At
(o] e o]




The initial plumbline velocity components are

W cosA @
0 o
u =V A 0
o o}
. - A
Vo sin 5250

The initial plumbline position coordinates are

X sinA 9 sineg
o o

Yo = R(6) A cos 6

zo cosh gbo sin @

The initial value of the seventh state variable is calculated from

m and the input value of initial mass, m ., as

The initial value of state variables 2 - 13 is of course zero.

7.2,3 Lift-off -~ Phase 1

The interval to - tL, Phase 1 of Fig. 8, is the lift-off portion of

the trajectory. During this interval the control variables xp and Xy are

chosen so that the launch vehicle will clear the launch tower.




Since the launch tower is constructed normal to the reference
ellipsoid, the angular separation of the launch tower and north is BL’

where

The longitude of the launch site is QSL, where

¢. = AQSO +Qe(t—to)

L

A unit vector in the launch tower direction can be transiormed

into the plumbline system as

E smga&L sin BL smxp cosX

= A cosé = | cosX_cosX
Z L XP y
Z cosqbL sin GL siny

A
Therefore, in the interwval to - tL’ ¢ is calculated to be

0>
I
N[ K

Since the A matrix and GL are constantand BL depends only on

A
t; xp, xy and hence ¢ during lift-off are functions of time only. tL is
an input constant.
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7.2.4 Tilt-Over -- Phase 2

During the interval tL - tT’ Phase 2 of Fig., 8, the vehicle is

A A
caused to tilt over in the x y plane by calculating xp and Xy as

>
i

X (t-tL)

=0
XY

where X is a trajectory parameter and t,, is an input constant.

T

A
During Xy = 0 flight, the equations given previously for ¢
reduce to
sin¥X i
A
¢ = [cosX

0

7.2.5 Pitch-Plane Gravity Turn -- Phase 3

Following the tilt-over, a pitch-plane gravity turn can be flown

in which

. A A
and xp is chosen so that the angle of attack in the pitch (x y) plane is

zero. This requires that during Phase 3



wiw®+u”
A 2 2
c = E//l"’. +u

0

7.2.6 Optimal Flight -- Phase 4

The pitch-plane gravity turn terminates at tx, an input constant

marking the beginning of Phase 4.

Prior to tx the thrust vector control angles xp and X__ are obtained
as a direct consequence of internal logic phases. After tx, xp and X
are considered to be tabular functions of time. Time, XP and xy can be
-specified at a maximum of 196 tabular points. These are broken up into
four sets of conirol tables with a limit of 49 points each. Through input
it is possible to specify the thrust event "picket" number at which control
tables start and stop and the number of points in a table. Control tables
should not continue across a coast or an intermediate point constraint*.
Since Simpson's rule is used to integrate p'roducts of impulse response

functions during the adjoint solution, there should always be an odd number

of points in a control table.

The steepest ascent process converges on the optimal xp, xy
time histories by updating the tabular control programs of Xp and xy

(if specified by input) at each iteration. If the input quantity KWTA is

zi‘Described in Section 7. 3.
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. set to 3, both xp and xy are varied. If KWTA is input as 2, Xy isheld

at zero and xp is varied.

7.2.7 Exo-Atmospheric Flight

At tQ the atmosphere is dropped and the 12th and 13th state
variables are no longer integrated. The LIFTING ROBOT program shifts
to a different set of derivative routines at this point in order to avoid
bypassing terms that have to do with the atmosphere., The internal logic

of LIFTING ROBOT is arranged so that t. is a miscellaneous weight drop

Q

event time, i.e.,

with I being the number of the miscellaneous weight drop event which
terminates Phase 4. The end of Phase 4 (or possibly Phase 3 - see below).
marks the end. of atmospheric flight and hence tQ must be defined on
every ground launch trajectory., Note that this implies that there must
always be at least one miscellaneous weight drop event. If none is

actually desired, then a zero weight must be dropped.

7.2.8 Elimination of Phase 3 or Phase 4

If the input variable TCHFRZ is input equal to TTILT there will
be no gravity turn and optimal flight will begin immediately after Phase 2.

7-10



3

If TCHFRZ is input greater than t. there will be no optimal

Q
flight within the atmosphere and Phase 3 will last until the edge of the

atmosphere at which point optimal control begins.

7.3 INTERMEDIATE AND/OR TERMINAL FUNCTIONS

In order to define an optimization problem it is necessary to
specify ‘the trajectory constraints as well as the quantity to be maximized
or minimized. Table 1 congists of a library of 26 (at present} inter-
mediate and/or terminal functions and their formulas. Any one
of these functions inay be selected as the payoff and be maximized or
minimized at the terminal time. Any physically realizable set of the
remaining functions may be selected as trajectory constraints and imposed
-at the terminal time.. In addition, any physically realizable set of these
functions may be imposed as constraints at an intermediate time by
inputting the number of the thrust event following which the constraints
are imposed as NVRST. Additional functions can be added by setting up
a new GO TO agumber in ACSTOP and computing the magnitude of the
function and itg partial derivatives with respect to the first 7 plumbline

states.

1.4 CONTROL PARAMETERS, PRCPELLENT TANK LIMITS AND
FLIGHT PERFORMANCE RESERVES

In addition to optimizing the Yp and Xy time histories, the

LIFTING ROBOT program can simultaneously optimize control parameters

selected by input from the control parameter library.
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TABLE 1.

FUNCTION LIBRARY

Code
No. Function Name Symbol Formula
1 Massg (Payload if m.
pavyoif)
2 Inertial Velocity VI VI = sz + u? + v?
3 Inertial Flight . =1{%s
Path Angle £ Y = sin (V;)
4 Radius T r= «/xz..p ')rz + zz
2
2 Mg
5 Fne C =V -
nergy C3 3 1 "
c,= Wa% 4 B2 4+ C? where
6 Angular <, A=yv -uz
Momentum
B=zw - vx
C=—xu-wy
a., x a a_ .z
7 | Inertial B=tan™t | AL+ 217 + %31
Longitude ¢

313X+ 3,57 + 2,7

8 Inertial Heading -1 (W_S)
Angle A g =tan Ve
9 Colatitude 6 0 :cos-l (alzx +a22y +a32z)/r
10 Inclination i i1 = cos -1 (sin @ sin 8)
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Table 1. {Cont'd)
Code
No. Function Name Symbol Formula
11 Line of Nodes w w = Q -f-tan"l (cos 8 ta,nﬁ)
12 Semi-Latus Rectum P P =1'2' (w 2 + v 2) /,u
=] =] e
13 Eccentricity e e :Jl + p- C.3 / Ay
These two constrainis must be
activated together. When they
14 Radius of Perigee rp are specified by KCDPHI the
state is propagated forward from
tf untily = 0. The values of
I' at the peints where y = 0 are
compared and the smaller is set
15 Radius of Apogee I‘a in I‘p and the larger in Ia. A

set of adjoint equations is inte-
grated backwards from both

I‘p and I‘a ot The values of

£
the A's at tf are then stored into

the vector partials of I‘p and

I‘a with respect to the stzate at
cutoff. A call to APPQG initiates
thig process, and APPG is
described in Appendix E.
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Table 1 {(Coni'd)

Code
No. Funciion Name Symbol Formula
2
q =(w"+ vy o/ u
16 True Anomaly' n >
2
n=t n-l(qusl Vs *t Vg )
g-1
) -1 cos @
17 Argument of Perigee a a =17 +tan ——
. sin Bcosh
A=7.5s
B =r? - A2
18 Outgoi ©1
utgoing Asymptote Asym Asym =+ (Cy - BFS) -7 4+ A
(=]
S is a unit vector in direction of
asymptote
Asm Pl= E}- )
19 Asymptote Plane Asm Pl EI is the angular momentum
vector
20 Rendezvous W Rend W Rend W = W-W
target
21 Rendezvous U Rend U Rend U = U-U
target
22 Rendezvous V Rend V Rend V = V-V
target
23 Rendezvous X Rend X Rend X = X-X
target
24 Rendezvous Y Rend Y Rend Y =YY
target
25 Rendezvous Z Rend Z Rend Z = Z-7
target
26 Impact Penalty PEN PEN = Pg
Function
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7.4.1 Control Parameters

Table 2 containg the members of the control parameter library.

Library No. Parameter Name Symbol
1 . 1st thrust event duration T 11
2 2nd thrust event duration T 12
15 15th thrust event duration 1‘1 15
16 Launch Weight mo
7 - Tilt-over Chi-dot X
18 Liaunch Azimuth AZ

TABLE 2 CONTROL PARAMETERS

The library number of each parameter to be optimized is
specified by putting a nonzero value into the equivalently numbered
elements of the input array KDB. Thus it is the position of nonzero
elements in KDB which indicates an active parameter. Although all
T, are provided, a library number, only those T1i terminating after

optimal conirol beging may be selected for optimization.

T. 4.2 Propellant Tank Limits

In a great number of real problems the total propellant in a

given stage is fixed, albeit allocated among a number of different thrust'




S

events. Also, since the available fuel and oxidizer will not, in general,
be exhausted simulianeously when mixture-ratio shifts are considered,
tank limits in LIFTING ROBOT are based upon "critical' propellant
rather than actual propellant. In what follows it is assumed that

J ’I‘HRi = 0 for all thrust events involved, and that throttling does not

occur.

The T, can be connected by logic so as to maintain the

relationship

m = Ty, cm. T..
b il i Ji

where rnX, when tank limits alone are considered, is defined by the input

values of the critical flow rate CIfli and the 7 Since m_ cannot vary

11

when the Ty are being varied by the steepest-ascent process

L.v.cm, dr., =0
i1 i 1i

Therefore, all the connected thrust events cannot be optimized indepen-

dently. One of the 7 the jth, must be dependent and result from a

11’
choice of the cthers, i.e.,

Uicmi
dr.. =-L ——— 4dr._.
4 ij v.cm 1
il

The procedure used in LIFTING ROBOT for specifying that the jth thrust

event is connected to the ith with the ith being independent, i.e.,
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KDB(i) # 0, is to put the difference between j and i into the same

elem‘ent of the input array KDT, i,e., KDT{) =j - i. One restriction

on this procedure is that j must be greater than i. If no connection is
desired, the appropriate element of KDT is set to zero. Note that if
KDT() = j - i> 0, then KDB(j) must be zero since the same parameter
cannot be specified as hoth dependent and independent. (If this requirement
is not met, the program will print a warning, run a forward trajectory

and go to the next case.) If, for example, KDB(4) # 0 indicating that

1‘14 is to be optimized and if KDT(4) = 1, then 1'15
m_ constant and KDB(5) must be zero. If, on the other hand, KDT(4)
= 2, then 1'1 4

If, however, KDT({4) =0, then T

is altered to keep

is altered to keep m constant and KDB(6) must be zero.

14 is optimized without regard to limits.

As is implied by the equation for drT the same thrust event

15’
can be specified as dependent by more than one independent parameter.

For example, the input arrays

1l

KDT =90,0,0,4,3,2,0,0,0,0,0,0,0,0,0

KDB = 0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1

indicate that m X, T and 7, ., are to be optimized and that

14’ T15° 16

VY .cm v5crf1 v _crh




1t should be,noted that although the rationale for the development
of the connection logic comes from the necessity of holding stage tank

limits, the connection logic is independent of stage specification.

7.4.3 Flight Performance Reserves

Flight performance reserves (hereafter called FPR) is a name

given to the propellants held in reserve on a design flight to provide an
increment of velocity over and above the design velocity in the event it
“should be necessary on an actual flight. As such, FPR are jettisoned
along with the jettison weight of the last thrust event and do not appear
as part of the payload, Again it is assumed that JTI-IRi = 0 for all thrust

events involved, and that throtitling does not occur.

The input quantity IPR is the number of the thrust event from
which the FPR are withheld. If IPR = 0, FPR are not calculated. There
are several accompanying requirements if IPR is not fo be zero. First
of all the IPR th thrust event must be in the last stage. Secondly, the
maximum amount of critical propellant in the last stage, m._, must
be input as WPMX. Thirdly, although the 1PR th does not have to be
the last thrust event, no thrust event which follows the IPR th may be

optimized.

The LIFTING ROBOT program calculates FPR on the basis of two
input AV requirements. These are, Avg to account for geometiry per-
turbations and AVp to account for performance perturbations. FPR are

related to Avg and AVP through the equations
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“AV [Vex

GPR = mc(l-e )

~AV [Vex
PPR = (m - GPRN1-e P )
FPR = GPR + PPR

where mc ié the mass at cutoff of the IPR th thrust event, and

Vex = g I _ of the IPR th thrust event, Defining
0 sp

-AV [Vex
k, =1-e &
“AV [Vex
k. =1-e P

The FPR can be calculated as

FPR = mC k4
where
= +
k4 1{1 k3
k3 = (1 - kl) kz

Denoting IPR by j, and the mass at the beginning of the IPR th

thrust event by mj, the cutoff mass, m , can be written ag

m =rm,-v.m,T,.
c I TR T



&

The problem of courge is to find le such that the sum of the critical
propellant contained in the FPR and that consumed during the remainder

of the last stage is equal to m_. This may be written

m = Zy.cm. T, +ty.ci (T,  +7T)
CE gyt LA A I A 5 I &

where the summation by i is over the thrust events in the last stage, and

‘rp is defined by

m.
_F._I.’_E_zk(_:l_ -7 )

T = .
p v.m, 4 v 1, 1i
J 1 J ]
This leads to
1 cm,
T.=—————-—~(m-km.—3-2v.c1ﬁ.7.)
U oyemax) = %3 m g4 ! 1
3 ] 4 J —

If in addition to FPR, 'l'1i are optimized in the last stage, a

different form of the equation for le is useful in the calculation of the

steepest ascent influence coefficients. Denoting the mass at the beginning

of the first thrust event in the last stage by m_ and noting that

L

where md is the sum of the weights dropped (if any) in the interval

between m, and mj, the equation for, le may be written



&

el

.

1 cIm d CcIm.,
T,, = ————— (m -k —Llm_ -m )+ © (k —dh - ) v, T,
1j . x 4 . L R S 1 i Tiu
v.em (1-k ) m, i<j m.
i1 4 i N

) f vy orhy Ty,
>j

The situation:that exists when T.. in the last stage are optimized and

FPR are calculated, and when ﬂi]c::re is KDT connection between the ith

and IPR ih thrust events is essentially the same, since rnX is constant

in either case. The difference is that in straight KDT connection the

input thrust event durations define an m_, whereas with FPR, m_ = WPMX
defines le. The similarity between IPR and KDT connection can readily
be seen for the case where AVg = AVp = 0, in which case k

for both IPR and KDT connection

4 =0, and

Vicxfli
dr. = - &

i#j v.cm,
] J J

d‘Tli

The situations are in fact so similar logically that the LIFTING ROBOT

program setsup and uses KDT connection logic whenever T . are optimized

1i
in a stage that has FPR.

7.5 JUMP START

The input variable JUMP is the thrust event "picket' number at

which a trajectory begins., If JUMP = 1, the trajectory will progress



S

through the ground-launch logic. If JUMP # 1, the irajectory will begin
at that thrust event "picket' number. If JUMP < NQVENT (1) the trajec-
tory will begin in the atmosphere. If not, the trajectory will begin out

of the atmosphere. The starting state is specified through the input
array VIV, the starting time by TZERQ@ and the starting weight by W@1.

When there is a jump start, 1. is set to TZER(@ and all KXDB and KDT

Q
below the jump start point are set to zero. IF VIV(7) = 0, the plumbline

state w,u, v, X, v,z must read into VIV(1) - VIV(6). If VIV(7) = 2,
V., ¥, r, azimuth (Az), latitude (8') and ® must be read into

I
VIV(1) = VIV(6).

Setting
a=180-A
zZ
and

6 =90 -0

_1 N
w = tan (cosf tana)
¢ = w-

Then, constructing a B matrix using 8 and ¢ above and using the launch
gite A matrix, a D matrix can be constructed and used to calculate the

initial plumbline state as
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W cosy cosa
= D - 1
u VI siny
v, cosy sina
- . - - 0_
o]
Vo = rD 1
Z g
o

7.6 10 KM, QMAX, 14 KM

The program prints out as it crosses 10 km altitude, 14 km
altitude and the point of maximum dynamic pressure. In order to find
the latter, the time derivative of dynamic pressure, g, is used. § is

calculated by forming the dot product of the partials of ¢ wrt the plumb-

line state, %% , and the time derivatives of the plumbline state, p.

That is,

where
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qdp,, . dR(6) _ i}
o dn ‘319" Tqp Yig) T PlagH azzx)ge_

qde,, _dR(6) B, -
p dh Gpp” Tap  dag) TR ¥ 7AW O

94dp .y - 4R() - ,
p dh (952" Tap  dzg) T Plegp WA

dp

and ah

is calculated numerically using the PRAG63 atmosphere routine.
7.7 IMPACT POINT

The LIFTING ROBOT program integrates the trajectory of the

jettison weight of the IMPth thrust event ( } to impact (h = 0) if the

T
WIMP
input constant IMP is > 0. The forcing functions FX, Fy and FZ on the

impact trajeciory are

Fx -p VR W
Fy = P VR u
Fz P VR v
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where p = 0 for altitudes greater than 690 km and p calculated from
PRAGB3 as a function of altitude for h < 690 km. Only the first 6 equations

of motion are integrated on the impact trajectory.

7.8 ANALYTIC COAST

Universal coast equations have been installed in LIFTING ROBOQT.

These equations solve the two-body problem in cartesian coordihates.

A description of the method is contained in Appendix A.

An analytic coast may be specified in any two zero-thrust thrust

events. The method of specification is through NC@ST1 and NC@STQ.

NCJ@ST1
NCGST2

No. of thrust event for 1st coast

No. of thrust event for 2nd coast

If the analytic coast is used, the problem will print out START
COAST and END COAST at the beginning and end of an analytic coast.
No print-out will occur during an analytic coast. The analytic coast
should be used with a spherical earth. It goes without saying that the

analytic coast results in a great time savings if long coasts are considered.

7.9 RENDEZVOUS

If terminal functions 20 through 25 are activated, a rendezvous

will take place and additional input, which gives the position and velocity



of the target at to’ is required., The position dnd velocity of the tax_‘get
in the reference coordinate system at the nodal point are calculated using
the radius of the target orbit at the nodal point, its flight path angle,
inclination, and velocity; RTGT, GAMTGT, INCTGT and VELTGT,

respectively.

N =0

Y T O

z = RTGT

Wy = VELTGT cos(GAMTGT) cos(INCTGT)
uy = VELTGT cos(GAMTGT) sin(INCTGT)
vy = VELTGT sin(GAMTGT)

The position and velocity of the target at any later time, t, are
calculated by coasting T tar seconds using the initial conditions specified

above.

The target is positioned in its orbit through the use of the input
variable BTATGT. The input state defined above is caused to coast a

length of time equal fo

; = 34BIATGT  RIGT
tar RAD VELTGT

where t is current time in LIFTING ROBOT and BTATGT is an angle

turned through in a circular orbit.
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The final target state is then rotated into the plumbline system
using the A matrix. The difference between this state and the vehicle
state at 'l:f must be zero for a rendezvous to occur.

7.9.1 Rendezvoug Options

If IAA is input as 1, the launch azimuth will be calculated internally

to coincide with the azimuth of the target as it passes the launch site, i.e.,
. -1 .
Az = gin “(cos (INCTGT)}/sin 91)
7.10 THE IMPACT POINT PENALTY FUNCTION STATE VARIABLE

If IPCNST # 0, the derivative for the eighth state variable is
calculated by mapping the instantaneous state down to Re using an
analytic form for the f and g series. (See Appendix E). The elapsed
time, DTI, to impact is also calculated. The latitude and longitude at

impact BP and q)p respectively are then calculated, The calculations are

- - . -
X X W
p
= f + u
yp ¥y g
z 7 v
P

DTI = r S1 +crO S2 +,ue S3

+ Zp a32)/Re)

. -1
= -
Bp sin ((xpa12 yp 209
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1+Z

x a,_ -+ a a
o = tan t[R71L p%21" "p 31
xpal3+y a Z a

n ] - Re(t+At0+DTI)'¢O
p 23 "p_s3 :

The following vectors are then formed

A£G, ¢p - LLGS1
A ¢N@I ¢p - L]—@N@I
n _ L -
and
A 91 6 - LLAl
A GN@I Bp - LLANQ‘)I

where LLA = TH1/RAD where THL is an input vector of latitudes and
LL¢ = PH1/RAD where PHI is an input vector of longitudes of vectors

of impact area allipses, N@I is the number of active ellipses.

There follows

2 2 2 2
= + +
Ei U¢1A¢i p121 A¢iA9:‘L UGiAQi !

i=1, NGI
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where Uii’ Py and crzi are the arrays S214, RH12 and S2LA respectively

which are calculated in AINIT.

If € is greater than 1, € is redefined to be

m
1

=1, +¢€ .-
1 k_(t:'l 1)
L
-€,
_ 1
Z.=Cc_ e
n.
1

where crl and ¢

are set to 1 and 2 respectively. Then
i 1 )

This has the effect of setting up a state variable which increases
at two different rates depending on the closeness of the impact point to

one of the impact area centers. The ek are intended to be used to cause
i
very little penalty to be generated when far from an impact area center,

and the c, are intended to weight the cenlers relative io each other.
i
' The arrays S214, S2LLA and RH12 are calculated as

piz = (LATWTHi/LONWTHi)z -1

a = RUYTA/RAD

Bi = RAD/ LA’I‘WTHi
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2 2 2
SZI_@ = ==
i Bi (1 pi cos ai)
2 2 . 2
= +
S2LAi '8i (1 p, sin ‘ai)
2 2 .
RHlei = Bi ey sm?ai
where LATWTH and LONWTI—E are input arrays of latitude width and
longitude width assuming the impact area elipses were aligned with lines
of constant latitude and longitude, and ROTA is an input array of ellipse
rotation angles.
7.11  QUTPUT TABLES
By inputting a nonzero value of NTABLE ouiput tables suitable
for publication can be obtained. The output tables are printed only for

converged trajeciories.

If tables are desired, additional input described in Appendix D

is required.
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8. THE BACKWARD TRAJECTORY

Since the steepest ascent method converges on the optimum set of
controls by adding beneficial changes to the nominal set, the effect of
small changes in the controls on the terminal and intermediate functions
must be calculated. This is accomplished through the use of the adjoint
differential equations. One solution of the adjoint differential equations is
required for each terminal or intermediate function being either optimized
or constrained. The adjoint solutions proceed backward in time from the
final time for the payoff and ferminal constraints, and from the intermediate

constraint time if there are intermediate constraints.

The adjoint variables are used to form impulse response functions
which give the effect of changes in Xp and Xy and influence coefficients
which give the effect of changes in the parameters. These impulse re-
sponse functions and influence coefficients are then used in the steepest

ascent formulae to calculate beneficial changes in the controls.

Notation traditionally used to describe the adjoint solution is in-

troduced below.

)] The scalar payeff function.

] An m x 1 matrix of constraints. Includes both terminal
and intermediate constraints. (Constrainis satisfied when

Y =0.)

An m x1 matrix of constant Langrange multipliers
associated with the constraints. (This v should not be
confused with the effective number of engines v defined

1
in Section 7.)
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o> The augmented scalar payoff function ¢ +szl).

A A 7 x1 matrix of particular adjoint solutions associated
with the payofi function.

A 9 A 7 xm matrix of particular adjoint solutions associated
with the consiraints.

A A 7 x1 matrix of adjoint solutions associated with the
function ®. When appearing without a subscript, A is
the equivalent of the Euler-Lagrange variables used in the

calculus of variations {c.o.v. A's) and are formed as

A= A
}L¢+ 4)\)

8.1 BOUNDARY CONDITIONS

The boundary condition on the Euler-Lagrange variables A are

known to be

T_ 2@
A

Consequently, the boundary conditions on A 8 and X " are chosen to be

and

T _ o (1, for terminzl constraints
My | '

Ply=q

Ltlj, j = NVRST + 1 for intermediate constraints
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8.2 THE ADJOINT DIFFERENTIAL EQUATIONS

Defining the 8 x m + 1 matrix )LZ tobe A = [A.Q)I )\qb 1, a vector
T8
variational Hamiltonian HZ can be defined as I—IZ = )LZ p. The Euler-

Lagrange or adjoint differential equations become

. BHZ T
A= -(5 ) {for backwards integration)

Z
m + 1 sets of adjeint equations are integrated backwards to tQ* {one
set for ¢ and one set for each of them ¥'s). The reconstruction of the
plumbline state, needed to calculate (aHZ/ 3p) during the adjoint run, is

accomplished by looking up stored values of the state as a function of time.

The differential equations for the A.Z are most conveniently written

:fn vector form. To that end, define

SO |

!
.|

S
-
1]
P
o

* t. in Section § is considered to be the time where optimal control
b%gins.
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where the superscript on A corresponds to the state derivative it multi-

plies in AE;’). The total lz vector is now

oo
PV

X
! Z

r
Z

A

SV _ 4T
kZ B A.Z
A= g¥aY
Z Z
{F_F_F 1 AV [ m? if not throttling
}.Lm ) y 2 z
= i I
’L-A . ™ GLIM/TV if throttling
AP=0
z

" See Appendix C for a definition of J.

84
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In the atmosphere )LZ can be written

v r — v A
= - + +
)LZ )LZ azvr a3 ,\Z oz4 c

- T s — T
) V3V, alnY -V ) a(c -V )
T dh T r A r r
AT =JA ( -) ('-“—-‘——) +q —— tgg ——
Z Z 2 _T 3 or 4 or
—[}5‘X Fy FZ] . AZ/ m2 if not throttling

{

im =¢
z igS A A v m. . X

- (( (b+c) ¢ - (b cos a—a)Vr)‘ )LZ) - kz m GLIM/THR if throttling

AP =0
A
where
Ae dp . aS. 1Qp_ btc) 1 ds Voo
o =I5 TP gy aM s an 1@, - ¢l
_as _Qp_ 3b _3a 1 ds
([bcosoz a) M( Cos Y aM)s dh]( )
o, = [( -M(— cosa 22 oY v )+(2(b+c)+Ma(b+C))OL A1
pPSV
_1_ R _
as 5 Tm (bcosa - a)
PSV.
_ 1R VoA
oy T 5T PR g
i = (& -V
also, cosa = (¢ VR),
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o

2

Q/
o/

and

3

Ele
U6 |

In addition,

b

Ma
do
dh

nd

o/

and

3¢

M

1

are calculated by the cubic fit SPLINE routine,

dh

if épherical earth

~(;cose—r

-

A

Ay )Y

212

£(2-f )cos @

L2 R’
22!/ pé

2 %99 TA, 2ag

W v
2 233 "7, 39
W

z 212 ~ %z %a3

sin Xy 9
sin Xp COS Xy Ban

cos Xp cos Xy a5

: 2(1-£y2
R “(-f)

~ COS8 cos X
XP
- sin Xy a12

-8in X cos X
b

g

<

a

a

are calculated analytically by PRBG3

if oblate earth

>

e



Note that lIZ) = 0 always, hence Ag is not integrated. If one ele -
ment of z happens to represent the penalty function, then that element of
X’Z is 1 and all others are zero. However, if one element of z happens
to represent the penalty function, the derivatives of AV and k;‘ are af-
fected. This can be seen by noting that since Ag =1, the variational Hamil-

tonian will be

= m . .
. - +
VI Ap m ¥ pg
Therefore, to the standard derivatives of H with respect to the first seven
states must be added
WBg . Wg
(=) ()]

aVI

These partial derivatives are calculated analytically in IMPPT. (See
Appendix F).

8.3 IMPULSE RESPONSE FUNCTIONS AND I INTEGRALS

The impulse response functions for Xp and Xy are defined by

the equations

T.
T a(A Tp)
G = —%—— = T (I‘Wcosx cos X -I‘ucosx siny )
zZp BXp m z ¥y P z Yy p
T.
T a&zp) ( W 1 I,v )
G° = ——————— = T (- "sinx sin ~- I " sinx cos + cos
zy aXy m z X:Y XP z XY XP z XY

8-17
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where

I-r]r:l out of the atmosphere

-3
fi
e e

g .
T -aS tbte) in the atmosphere

v
A

A out of the atmosphere

R in the atmosphere

|1
s N
]
PRSSIS—— “-——.u.._\

v v,A .aSh A
lz+az VR) Tm Vv

Impulse response functions are calculated at every tabular point in use in

the - control tables,
XP XY

Denoting GZ by

G
T PP
G =l--- if KWTA = 2
z G
bp
G G |
Pp ¢y
gt ={-"" =7~ ifFKWTA = 3
Z G G
L “¥p by
[

The m+1 x m +1 matrix of control variable 'I" integrals is

calculated during the backward trajectory as

r a ! a**
I voI ;
a A Y ooT -1
1 T - | = [ aTw TG at (t) =0
% 12 Ia! A Zz a

..1 N
where Wa is a time varying weighting matrix defined in Section 8. 6.
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If there are intermediate constraints, the above definitions of
Izi“ may be used provided that after the intermediate constraint time the
elements of Gz corresponding to the intermediate constraints are taken

10 be zero.
8.4 INFLUENCE COEFFICIENTS

The influence coefficients for a parameter give the changes in
trajectory functions resulting from a unit change in that parameter and
hence may be considered trajeciory to trajectory partial derivatives.

The influence coefficients for lift-off weight and tilt-over x are calculated
using numerical derivatives; whereas, those for the Tli are calculated
using analytic partials.

8.4.1 Influence Coefficients for Lift-Off Weight, Tilt-Over X and AZ

If the launch weight is to be optimized, two trajectories are run

from to -1 with m changed by £ Am,. The influence coefficients

Q

for the 16th parameter are then calculated as

T

Q
= A (L))
Zm ZAmO z Q@

_|.. -
p (tQ)-p(t)

+ -
where p and p refer to the plumb line state from positive and nega-

tive variations of Amo respectively.
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If the tilt-over X is to be opiimized, two frajectories are run

from t -t with' X changed by + A%. The influence coefficients for

Q

the 17th parameter are then calculated as

s _
- t

L PP ) A (E)

zZX 2A5( ZQ

If the launch azimuth AZ is to be optimized, one trajectory is

run from tc- to t, with AZ changed by AAZ. The influence coefficients

f
for the 18th parameter are then calculated as

8. 4.2 Influence Coefficients for the Tli

The calculation of the influence coefficients for the T proceeds
through three phases, In the first phase the influence coefficients for the
effect of shifting the time at which a discontinuity occurs are calculated

as

for the effect of shifting each tli and as

Y = Ap A

Z] z



5
>

- .+
2% where AP =[P -p ] is the discon-

tinuity in the plumbline state derivatives resulting from a discontinuous

for the effect of shifting each £

change in either thrusi or mass or both. The Ap are calculated and
stored during the forward trajectory; and in and Yzj are calculated

and stored during the backward trajectory.

Lo .
When. 1:li is the final time, p is set to zero., When tii is the
.t . .
intermediate orbit time, p is set to zero for the multiplication of those
columns of AZ corresponding to the intermediate constraints. In the

second phase cognizance is taken of the fact that the t, are pinned to

2]

the t1i via TV;./. Since the T;:V are coustant,

diys = dty,, i= NOWD()

and therefore the following additions are performed in sequence with j

running from 1i-nw

L. =L +Y , i=NOWD()
zi zl Z]

where nw is the total number of miscellaneous weight drop events.

In the third phase cognizance is taken of the fact that for the 'r1i

to be parameters

at, . at, .
1.1: t11 =1, >

oT. oT.
i i

and therefore the following additions are performed in sequence with i

running from nv-1-=1
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L =L +L ., j=i+1

where nv is the total number of thrust events.

Influence Coefficients with Tank Limits and FPR

If flight performance reserves are withheld from the jth thrust

event, the influence coefficients for launch weight and Tli become
k4
L = L -v.m. - L .
zZm zm j (l-k4) zj
. vy c'm.k4
= I, + ——F (i< i
in zi v (l-k ) LZJ (1 lL)
1] 4
where i]'_. is the firsf thrust event in the last stage, and
cirn.rhi vic'mi
L . =L  -Q@Q-k — : i, 1<
zi zi ( 4cmimJ )vicmj(l—k4) LZ](lL i<y

In the above equations, when and if the element corresponding to

payload is augmented, k4 is set to zero.

The proper augmentation of in ;2when tank limits alone are con-

sidered and the jth thrust event is connected to the ith via KDT, is

L, =L -—— 1L (i<j
zi zi \)jcmj Zj
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Note that this result can be obtained from the last equation given above for

FPR if ]L‘:4 and iL are taken to be zero,

8.4.4 Influence Coefficients with Staging on Fuel

If any of the thrust events terminate on fuel, i.e., l\/ISTJ‘V’(.Z‘I-Ii <0,
then the launch weight influence coefficient and the in must be altered.
This is becuase a change in mass causes a change in burn times (if there
is throttling). Since fuel is constant, tl_'le difference between initial mass
mi and final mass rnf of the thrust event is constant, i.e.,

fuel - m, = const

2

Therefore

o,
2

dm,

Also, the mass when throttling begins is always constant since throttling

begins when T/m = GIL.IM. Thus
T/GLIM = m, -m(t -t)
i T i

and hence

8-13
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Since dm/dt when there is throttling is

dm _ _ o GLIM m
dt T
v
RIS (- HB(GLIM 4y
£ GLIM P T, £ b
and
. dm
_ _ _mGLIM _ i
olmf dml T m.f(dtf : )
v m
Therefore
Peo_ (11 1
dm, m m GLIM m m. m
i f i f
T
v

Notice that if there is no throttling

—— = (0 sincem. = m
i f

If the launch weight parameter is active and there is staging on

fuel in say the jth thrust events

{dtf \

L =1 + 2 L, =

zm  zm %] \dm. I.
J 1]
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In addition, the following is done for each active 'ri inclunence coefficient

dtf
L =L + £ L (m) ( )
z, z, i s z. dm,
1 1 j=1i i

8.4.5 Parameter I Matrices

Grouping the active parameters into a matrix LZ = [1. f

the m+1xm+1 parameter "I'" matrix Igz can be formed as

b ' b ]
|
A A"
10 =|---'---| =L W L
73 t Z b A
Ib 'Ib
o | YO

‘where W[;I is a weighting magfrix defined in Section 8. 6

8.5 STEEPEST ASCENT FORMULAE

L¢]

Denoting the vector of active control parameters by b, and the

vector of active control variables by a, (if KWTA = 2, a is a scalar

equal to xp) the steepest ascent formulae for the changes in the controls

are

i -1, -1
ba = ‘G¢ ¢ w o) B W, % o k¥
db = +W_1(L JE - W, -1

="p ‘g !PtMJ ¢¢ !béb
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where

_ a2 b
o = T T gy
_.a b
Yo T e T e

In the control equations above the plus sign is used when ¢ is to be
maximized, the minus sign is used when ¢ is to be minimized, 0<E<1
is a constant chosen to aid convergence, ¥ is the vector of terminal
congiraints violations, and k is the decimal fraction of the constraint

violation to remove.

If there are connected thrust events involving tank limits only,
-the d‘rli for optimized thrust events will appear as elements of the db
vector and the corresponding d7T.. must be calculated as indicated in

. 1
Section 7. 4. 2.

The changes in the controls calculated using the above equations

are then added to the nominal set fo get the controls for the next iteration.

The change in the payoff function ¢ resulting from the control

changes is

_ B -1
9 =3 Q™ T Ty o) T 7 g Tpp BV
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where the sign is chosen as before and

I = 4+

8.8 THE AUTOMATIC CONVERGENCE SCHEME

It is the function of the automatic scheme to pick k, E, W;l and

Wbl in order to speed convergence, and to terminate a run when it does

converge. The logic for picking k and E is straightforward and

is directly related to iteration number. On the first iteration, E is

set to zero and k is chosen such that .25< k< 1. A starting value of

k can be input as DP2, however the program will ignore k<.25 or k> 1,
If k is input > 1 the iteration number is advanced to 2. On the second
.itera'tion k=1 and E = 0, On the third iteration k=1 and E = QY/2,
where QY is an input constant which should be chosen 0 < QY <1. On

the fourth and subsequent iterations k =1 and E = QY.

The choice of the weighting matrices W;l and Wk_)l is also

dependent on iteration number. On the first iteration W;l is chosen to

be

r ok
= if KWTA = 2
T
Wnl =<

a8 m

T 0
if KWTA = 3
0 m
T
"If k starts at . 25 the k sequence is .25, .5, 1. ... with B =0., 0., 0.,

QRY/2, QY ...
""m/T ig defined to be I/Tm
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and W;l is chosen to be

W, P, 0---=-- 0
B L
= {
W 0 W2 5 ;
' ~. t

0. oo __2WP

n n

where the Wi are an input set of weighting numbers for the np active
parameters. The Wi are input as WIBT and should generally be left
at their preset value of 1 unless experience dictates otherwise. On the
first and subsequent iterations the Pi are chosen automatically so that
the largest contribution of the ith parameters to the diagonal of I:Z' b is
“equal to one. Denoting the influence coefficients of the ith parameter

on the constraints by L, the Pth scale factor is

Py = ; i 2
Max (L)

i

j=1l,m} .a

v

J1

For the second and third iterations the constant Liagrange multipliers

on the constraints, vV, are

___-'1
Vo Tl g
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thereafter, v is formed as

-1 = -1
v = - L +
o s * Y ?
where the minus sign is used of maximizing and the plus sign if minimizing.

Once v hasg been calculated, min-H on the control variables can

begin since the Euler-Lagrange multipliers A can be formed as

A=l¢+lwv

the variational Hamiltonian H has

for the first partial of H with respect to xp and Xy as

dJH oH
H = [—— —
a 9 3

xp XE’

and the second partial of H with respect to Xp and xy as

BzH BzH
2 P, 3
aX Xp Ky
P
Haa =
32 32H
SX_ 9% 2
o
Py X
| -

8-19



3

_.1 .
Therefore on the second and subseguent iterations Wa ig taken to be

where the minus sign is used of maximizing and the plus sign is used if

minimizing..

The elements of H are
aa

2
2 H ’ W . b
L 2 = - cosX sinyY +I'cos¥x cos
2 @ XySInX, Xy xp)
P
BH2 W a
= =T sinx cosx - T sinx sinX )
axpax m(l" Xy ><p xf}’ XP
5
aZH W U v
—_ = =T os¥x sinx + I cosx cosx +I'si
o 2 'y 08X sinX, XyCO8 Xy, * 1 sinX )
Y
where
w W ] w |
I r
o ¥
o .| + | TH
3 N
v v v
0 b |
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If H is ill conditioned, x_ and X_ satisfying H_ = 0 are used
aa P y a

to calculate a backup Ha.a having elements

2
- T R b T2 R R
2

p

BZH 0
axpaxy

2
3 H‘2 I (I‘W)Zﬂ_'a-.u)Z_{_(l.‘v)Z

m

Bxy

where the minus sign is used if maximizing and the plus sign is used if

minimizing.

If KWTA =2, H _is
aa

5]

W, 1
-
o T §siny +I cosX.)

with backup

- W2, el 2
e =TT A @Y

If a backup Haa matrix is used, the output quantity KAT will be

s
i

1; otherwise KAT = 0. KAT should never be 1 on a converged run.
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On each iteration a normalized total influence coefficient for

i,
each parameter, L. is formed as

= (L +L¢v)/(

i

Prior to the fourth iteration the input values of Wi are used in

the construction of ng. For the fourth and subsequent iferations each

Wi is altered according to the following logic:

W, unchanged if | L' <.005

Wi unchanged if ILiI present <(1- §E-) |l"~i| last
otherwise

Wi - 2W if ]“present I—"'iLastl<iLi[ present

Wi ) Wi/2 i lL present -L-last|—| lpresent

The Wi are printed out as WIBT between iterations.
This dynamic updating of Wi will generally insure smooth

convergence of the parameters. The relative magnitude of the Wi on a

converged run can be used as a guide in picking input WIBT.
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If there have been at least 3 iterations, if |dm ] < 100 kg, if
l dx| <, 00002 radians, if all | d'r l < .5 seconds and ]_f in addition all
] L | < .005, the parameters are conszdered to be converged and the output

quantity BETCON will be T; otherwise BETCON will be F.

The convergence test for the control variables Xp and Xy is

X I Max
pimax overall -1
oo |2 " H.| <.005
l I max points in aa a
v chi-tables

This implies that the max deviation of either xp or Xy from the
optimum anywhere along the trajectory is less than . 005 radians. The
‘max deviation in Xp from the optimum is labeled DEL CHIP MAX in the

output and the max deviation in xy is labeled DEL CHIY MAX,

As soon as |dx_| < .005, |dx [ < .005 and BETCON
p' max v' max
is T, a run is considered converged. A final forward trajectory is
then run at the input print interval, integrated impact (if any) and ouiput

tables (if any) are run from this trajectory and then LIFTING ROBOT

looks for input for the next case.
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APPENDIX A

UNIVERSAL COAST EQUATIONS AND THEIR
APPLICATION TO TRAJECTORY OPTIMIZATION

First, we begin the analysis of the universal coast equations
with a statement of plausibility: Since any conic is completely described

in terms of six elements, generally c.. c_, etc., it is not unreasonable

1 73
to search for a solution of the equations of motion which has as the six

elements the state vector at the initiation of coast, i.e., XO, 3:0.
Al EQUATIONS OF MOTION (SCALAR FORM)

The equations of motion in terms of the radius vector x are:

X = -5 (1)
r
where
r = (X_X)llz (2)

Calculating the second derivative of r from Eq. (2) gives

ry¥ = X-°x (3)
and
e 1.2 24 .2 . n
r—r[x - r +r:] (4)

Since the energy a = %% - zrl_i , Eq. (4) becomes

v o= %(cz - i2+f§). (5)



N
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Now make a change in the independent variable defined by the equation

dt=rd¥. (6)
Consequently,
dr _ dr dt _ v (7)
d¥ T 4t Jd% 7
d*r diry) 4t o 2 . e (8)
- - - - = Trr
3¥2 ~ 4t 4¥ roer

If we denote differentiation by ¥ with a prime, then, from Eq. {7)

- - _L /
r= ¢ Y (9)
and hence
FEwA
NI {r’) (10)

Y

By substituting Egs. (5) and (9) into Eq. (10),

¥ Y 72
Y = vya-X2+ pu+ I (11)
r Y
or
i@
f b= Td\ 1' }.AL ] (]2)
Now we seek an expansion of v in terms of ¥ about the point Y,
as

Y, .-:}lz . rom 1{_3 . r,_—,”“ 44 - (13)

Y= vy, + Y/ ¥+
© o ¥ Z1 Y 41

We already have v_,” and the higher derivatives of f; are given by



/ b (14)

Therefore Y may be writiten

Z j 2 3
Y=t S+ T, ”‘37?: S Sl -

: 4 j s
G‘(Z'III P 0{1{"# / G‘(Z'TL (15)
41 41

The terms in Eq. {15) may be grouped in the following way:

+ Yo

+

i 2z 2 A 3 ye ]
Y = v, |1 T d—,'l—-z! + 0‘4! + d——*—é}f Fo.oo.o.
- v 5 7 3 16}
Y3 s o3 (
P | Yt ST s T b T b
LS A S
T & %ff Y e
Define:
-
B AYE A2y a2 ye
Sg = i+ st T +_I.__é‘ F oo ov
- 7
S A
i~ t 31 1 51 F Tyt an
Z + 27 &
§, = L2+ 2t 4+ & PP e
z1 4! &!
3 y 27
Sz = £ - LS S S
3! 5! 71! B




In fact, Eq. {17) can be written in general form as

S, = i xf ¥2°77 (18)

P;:O (ZPrn)l 2

where cB, the number of terms desired, depends on the number of
significant figures desired.
Using the definitions in Eq. (17) and defining G';: 'rc’: Yo ‘;‘Q s

Eq. (16) may be written:
Y= Y,8:, + 0,8 + uS3 (19)
Also, since £ =/rd}L ,
E=t, t 7.8, + 7,82+ nSs - (20)

Eq. {20) is solved iteratively for that value of }[ which yields the desired

coast time (+ - £,). The fact that C_lt:r is useful here. Only the

d¥

highest two values of Sn need be calculated as a series sit_lce

. n
Sn = O‘Sn-rz T %L,]"T R (21)
A2 EQUATIONS OF MOTION {VECTOR FORM)}

Now go back to Eq. (2) and proceed to derive an expansion for

the state vector X ,)'( similar to that derived for ¥ . Again we note that

dx dx dt .

a—;rr = ECW: ATf :X’ (22')
and
2 ¢ e . o "
j;z:j—@(xr)f{ﬁ(: v+ xer=x'. (23)




Therefore,

px o X’ 24
X"z - - 1 ¥ - (24)
x = RACHTSUE I SR IR S N ¢ S AT 'O R
= =z
y e (X'r7 = x) , ‘e o
PSS R 44 — +rx {rocr m) = (XY -uUX)T
rZ
@ 7 i@/ Y @ / ) 2 I@ ’@" / G: ’
pei - MUrX F XYY - URY X7 XXM - XY +UXY
X = g A
X" = X7, (25)
o _ o x'y' _ X
X = X = X v (9,4 =
)(nrul - xl‘ ORL , (26)
etc.
Expand X and.}(’ in a Taylor series aboub the initial point:
1
] - ; X ,uy'z, Iu’%j
)(n = xo 1— x 'r L% 'f‘ ¢ &
b XSSP -
2 trer 31 3
ro L 7 % 5‘
x«xof-xo’%f-o 3,7‘“
’ J
Substituting Eqs. (25) and (26) into X we obtain
Z A
K= Ry b X[ P XTOET L px ¥
° ° T 21! r, Z!
3 /o 4 i 4
i ¥ Xy, «F X, A ¥
1— x £ - £ +' [ (28)
o 3T T 4 v 7

Collecting terms, Eq. (28) becomes

= x. [1- & ( '7”m+-..,)]
.'#

rxg [(Fre "5 tod) ey Lo w“" 71 *"”)J‘z"’

A5




or

R s
K= xo (1= #52 )¢ X3 (5,v, +vS,). (30
To fo ’
Since
’
Yo = 0"0 .
X /
Y‘; = Xo J
S;ve t 0, Sy = t-1,- uS;,
the equations for the state vector X may be written
X= fx .+ 3>‘<° (31)
where 1
Foq - M52
Yo >
and {(32)
3 = £ “ﬁo - #85 o J

Substitution of the expressions for the higher derivatives of X into the

results in ¢

K erko= (- B2

’ s
expansion for X

Yro + (r-uSy)%, -

(33)

(34)

(35)

Hence
X = fx, 1-(]‘)20
where y
p_ df 4t ps,
S dt 4t T vy
. dq dt, . u3:2
i*w =

.

We have succeeded in the first of our objectives,

namely, to express

the state at one time as an explicit function of the state at another time.



A3 TRANSFORMATION OF ADJOINTS

We proceed now with the second of our objectives: to develop
the partials of the state at one time with respect to the state at another
time. This is necessary to transform the adjoints across the coast

phase of the trajectory. It is well known that

Mx)ta - Mx)fb (36)
Let
Lo X{ER)Y
Y @
Then
Sx (£p) = dx(ty) (38)
and

Alta) Sx(ta) = N(Ep) B&x (ta) (39)
Therefore, since 5)( (‘ta) is arbitrary,
N(ta) = Xt & | (40)

and the A’s can be transfiormed backwards across a coast as soonas &
is determined. We adopt a convention of Pitkin [2_}, letting X represent

the state at t, and Y the corresponding state at t., Therefore,

- - Ty ] ] - - m
Yi X X4 Ya Xy Kq
Y2 = X, | £ + |Xs 9 Ys | = Xz| £+ | X5 g(41)
Y3 X3 Ab ' ye IR 3 o
L A A— S N -




B
a)\'; axe
aYs 3Y3

Similarly,
8Y4“ a« P o 9)/4 ]
axl aX,,

Ve . .. Mo

3Y; I

X, X 4
= *® of « o - af X5
: [ﬁ aXJ+
% 3] T X6

_-F - .

; £

o o

Xa‘ ‘Xq.

= | Xz 3_%— co. oF 14| X5
X, IX¢

X3 X6

f O

+ F '

. - P

ag . 24 |
3%, 3K,
-
g (42)
J
35 ...99
a)(: oXg
O
’ (43)
N
Ny

The only difficult part of this is the calculation of the partials

of £, v f ,é with respect to the state X . Taking them one at a time,

we begin with f.

and

or

M 82

Yo~ MS=

f=

s To

r |2k
# K2 - w2

(44)

- a«S‘;] _ [?B _MSJ%%_ (45)

X~ ro‘f-

FY A
X~ Y,
A

L |- 2

8

o 2|

(46)




Also,
952, B 332, 3.4' " :982, aot
5k 3F ox K IX (47)

Cne can show the following:

a3, 23S,

v = On s Sy =S
?~§E:L{‘$¢Sn+l'ﬁsn+a} ; (48)
o X E-L

23 25z} - I

aao: (83 r e aaa) :

/
The partials of 'f with respect to X proceed from the fact that the coast

time is fixed, i, e,

3('&"{:0) J)(':O—_- [_r_o c;S' F U—b 333 & 335
5‘5 oX X
|
aT, .
+S 3x t Oz o
Therefore,
. d}l r( aSi ‘@Sz
(ro 8o + 06 Sy + 1 Sz) ax e ¢
oo 293} 2% g 9% J (50)
'{Z 200 aX . ax X
o

and 5y 1is given by

9}[' 'L[(To BS, 0 332 +M35‘3)
X 14 o0k 20k 3/ ox

o7 ] 51)

Recalling from Eq. (48) that

33 P g - ]
5% 7 _¢ 2 = 9 i
2 Sz. i ]
Hﬂ—: -5- ‘2/33 = 284_’ > . (52)
& 83 o " e _ i
_3"5\_— —z- ‘¢54 335_

A-9 /




and definingv

oT . 381 235, 3383
— 2 ¥, + 0, —_—
oK a X adk 2R
we substitute in Eq. (51) to obtain
_‘_3_.]'_{’__ _ b [EI c)_O_(_ . S 3T + S 20,
K- T ¥ oxX 9ax Tk YR o,
From Eq. (47),
98 . 8 2T ao‘_silaro_slsz. 20, 2 ok
2 X Y ok 23X Y ox Y o X oX 22X
Hence, from Eq. {46) -3—% is given by

of  U-P) avy, M5 2T X . wS,S ey
K~ Yo @ 2X Y, Kk 22X Y, X
S S2 90, p 3Tz o
Yy, X Y, oK X
or
o ["'”— ﬁs,} M, _ g ,._M_[f IT, K 3%
J To ax 2 JX X Yo S0&

Eq. (57) can, of course, be written:

oF _oF ar, of a0, aF ox
5X -, X oo Xt ad 9%
where -

o G-
% Yo FS)
Bf &
3E T £354 ’
of 20T L M a8
—_— - + 2
X (F 2 A Y-D ag\) e J

A-10

3

el

(53)
(54)

(55)

(56)

a0

(58)

(59)



Now we derive the partials of g with respect o X :

g _ 28: _ o 2t 385 oo
IX M oKX Mz x - M Sx BX (60)
29 . MSp 2T 3% uSy o o M§y o
X T Ty 9 X Y 7P 3X Yy 3%
‘ 333 X
“MOSA 3% (61)
Hence
39 39 %, 99 % 29 IX :
X~ av, aX = 30, X ' Ik X (62)
where
J ' h
= (I~ ) :
57 (t-9J 5,
Qﬁ .
= - . 63
TR (4 3)82 > (63)
29 [ 2T- 953]
X (1 M )
We derive now the partials of f with respect to X .
. - QS__ Y | <Y,
é__‘YTO( Maxl)f‘usi(rcaxf“rgg—
IX (rvy,)” (64)
oF ! 38 Jr
2K YY, 3% T Te 33() (65)
gY-__. S 30—‘0 . BSO ,aS) 35‘2_ X
oX ~ ©° - S *’<°am+@am+“aua—x_
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I;

-

The only new term here is

aSd‘) 981 I
= Eq. (48).
2= S b S22 [See Eq. (48).]
Therefore,
\
g, Yo, g 20 oy & 9T ¥
X oX b ox 3K 3x U 3T 3%
where
37 338, . S
T:Yusz.f"f; ao(f—(}if“ofx)——-— (67)
PAS
SV C (;Scf(ﬂ+raa)5,
Sf 3‘}/’ QS, 2 X
=L g ’ .
o X ¢ SX 2 DX (68)
Substituting Egs. (67) and (68) into Eq. {65) yields
_a_f_:*uSo 0¥ oS, 2x £ ar
2R TY, oX Yy, o 2X Y, oX
g ore £ o af F OV 2K f oy oY
=TT Ve X Ty Y 9X TT 3K K T v Y ax 69

This can be rewritien

_g_f_ 1, uS, DAYy 2T Ik MSe o srng oOr
X T r* Yo +’£‘9)ao( axf‘rl(v ‘Lga—?)glax
! (MSG . Or o 7 £ FSy o

v “’2;+‘C3)Sl aX’(*o+r 3 X
| .
-£S, 3@___(_/:(_9__3, g 2or) 2% (70)
r By Y o 3 2/ 3X .



Hence,

where

fashion:

99 .
2K

5§ _of ar, 2 om | of o
X 3Y, 3X * Il 22X 3K ax
o f NIEAENY I 28,

- i 71
a¥g 7[\ _W ?T Ts T ] ?( )
38 1 [a-0ys, | £Sa ar
aﬂ; - ? - T + ¥ 3-5{,_“' QS;]
é_f_:_’,'_’_(ﬂiso pov)er 4 23S f»fj_’]
3K v Ly SHad Y, 33X 2% |

Now the partials of é with respect to X are derived in a similar

f'f" L_Af.iz_ (Eq. 35)
h ( - M Sz)_(r‘__ 3,) X
3 v X M2) 5%
2X = (72)
. ~ g
99 . M " ?_Y; 982]
2 X Y*|¥% oxX 24 (73)
ii— 1 [("ﬁ') ar 28,
3X T 7 L 3X T M 3% (74)
{ 0 aro ’ By ar :)OC
Coe5r s e 2y oy 202X
by Or aY > ¥ 23, ia_ci]
PU-9) 57 53045 T4 S5 SR o
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S

%gx_ i [(,-3)5 LS PRI A ((Iﬂ)f;*“%);;“
L T 2«
Y (“ 3)7"' g‘) X X “_(U j) MY)S'

a3 (76)
X

- (- S5~ #5)S2 3

39 . 2§ Y. | 39 oF, 3G 9K

5 3y, 3% T i oax Uoax ox (77)
where
%%-: —:; —(1-5)& -§-;_-‘-((i—j) %——u&)—
24 - i S (0p —w )
S 7 [0 3 w3 (0 375 5]

Using Eq. (42) we can define a malrix A as

CA/RRUR-1 7 RS sV B LR« 3
X 3X, A1 P - N
Az | - 1= X2 xs
73 3V S s R
EEY X, 1~ Xe | 13x, 3X,
{ O ° ! O
+ ¢ o g (78)
o f ¢ 0 9




Note that

Yo

1!

4

20,
2 X

&

n

1\ F)

n

X

Defining B to be

we have
- |
X X4
B - X 2 X5
X X
L 3 6.]

9

- or, - -
of o |52 |F e -3 o
2T 29, I o0 | ¢ P
sg 29 ag| X |° A
29 x .
EeRE A <o B 9 |
\
X% X ooo |
_YO rp YO
~
Xg X5 Xg X Xz x‘s] & (80)
ZUX,  2MUXa ZMX3 5. e
3 3 3 cd 5 G
| Yo L "o
/
*‘BY‘? 924-
ax; s
B = | ; . (81)
Ve, .. 2V
X, oKX,
L _.
—— . . . - _ ) ' A
oF  oF 5F Al £ °o- 4 o
o, of x| |9% . .
. ‘ . A0, | + £ g (82)
2 35 3| X : ,
3, O, IX| |3xX & f *r o g
e - x— L —
and therefore, the transition matrix § defined in equation (37) is written:
(83)



If the transition matrix is rewritten in partitioned form as

¢H : ¢!Z

R 84
¢2..'-]. G2z (84)

e
|

it can be shown that @nl is easily found in terms of transposition of its

own elements, i, e,

¢Z: :- ¢|12-
I R 85
2 "'¢::l : ¢rfl * 59

A. 4 APPLICATION TO SPACE TRAJECTORIES -

VARIATION OF PARAMETERS

The equations developed thus far can be used to develop a very
straight-forward Variation of Parameters integration method. The para-
meters to be varied of course are the six initial conditions X, , )‘(,, . Again
letting X represent the state (xo,,‘-.(o) at £, and y represent the state at

time £ we can wrilte

dx 3% 2% dy

= —— I 86
g5 3T ' 37 g€ (86)

Treating the time derivatives as the sum of a two body part and a

part due to perturbative accelerations, Eq, (86) becomes

dx ax) o oX Kdy) .(dy)
- 2]

Since ¥ 1is constant on a two body orbit the sum of the first two

terms is zero, 1.e.

A-16




2) ¢ 2y -
(at)33+ S—;(CHZ 313— o (88)

Now, an osculating two body orbit will match position and velocity

-

d
with the actual orbit, and since the first three elements of /_c-j% are \/ ,
equation (87) becomes

dx  ax o

dt = oy | T4, (#]

where aF are the perturbative accelerations,

In terms of the notation of Eq. {85), Eq. (89) may be written

dx ‘¢E
Jf T ap (90}

Since ¢r“,_, and ¢“ are themselves functions of X and € and
since aP is also a function of x and € through the transformation given

by Eq. {41), Eq. {90) is a well defined differential equation for X .
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APPENDIX B

FIRST PARTIAL DERIVATIVES OF
SPHERICAL-PLUMBLINE TRANSFORMATIONS

The matrix N is defined to be the matrix of the first partial

derivatives

=2

!
o |
iz

where S here is the 6x1 vector of spherical components

and P is the 6x1 wvector of plumbline components

"U
1
N9 oW o< o8 g




The matrix N may be partitioned into four 3x3 submatrices,

i, e.,

These submatrices are defined by the equations:

11

12

ow AW oW
s s 8
dw ou ov’
Ju Ju au
5 s 8
oW au v
oV ov av
g8 s 2]
ow au oV
ow ow oW
] 8 8
ox i o}
ou ou au
5 5] ]
90X 0y [}
av av dv
g s s
9% oy oz




where

oz

1

(a

(w-d

22

12

v-a.. w-w {d
s

u-a,,v-w (d,_cosé+td
s 1

22 3

32 23

- - +
w-a,.u Ws(d330089 d

12

us)/r

{u - c:l22 us)/r

(v -'d32 uS)/r

(dllws ctné - c'i13 us)/r

(d21 W ctng - d2

(d

31 s

3 us)/r

w_ ctnf ~ d33 us)/r

32

12

5in@))/(r sind)

cosf@+ dzzsj_ne))/(r 8ing)

sin®))/(r sind)




oo
ol <.

d21

oo
<R

|
‘4"1

o/
L]

r sinf

22

23

Q)
td




APPENDIX C

FIRST PARTIAL DERIVATIVES OF
GRAVITATIONAL ACCELERATION WITH
RESPECT TO PLUMBLINE POSITION COORDINATES

The mat'rix J is defined to be the matrix of first partial derivatives

of the gravitational acceleration vector in the plumbline system with

respect to the plumbline position coordinates. This matrix is used in the

gravity related terms of the adjoint (Buler-Lagrange) equations.

°g, %8, 9g,

89X 3y 02 XX Xy
) 3 3
I = &y 5y O _ g g g
X dy  °ox yX Yy VZ

o8, . °g, °8,
g g g

X dy 3z ZX zZy Z7
x a -
12 GZZ ng x v z
J=G I+ |y a
11 22 a G o a
32 733 12 P22 %32
2, a32

Gll is defined in Section 3.1, I is a 3x8 identity matrix, the

ai_ are elements of the A matrix, and



1 (aGll cing aG11

Goo =% 37 T YRR
L R 2 (R 3
=~ 3_ __® e} (2 _20 .2 —€) (4~ 2
5 LGy 3(CJ(_ r) G- cos 9)+H\ r) (4 - 14 cos”6) cosb
r r
R \4
+ DJ (—:—-) (;%— - (12-24 cosze) coszﬂ))}
i
G =G = - 1 aG].l - _;‘L_(BG’TO+ ctnd aGTO)
23 32 r sing 36 or r 80
u R 2 ;R '\3
= -—z~ [10CT (—-9) cosé - H(—e} (3 - 21 cos26)
I r ‘r
Re 4 2
+ DJ (T) (12-36 cos 8) cosf]
3G
1
G - TO

33 r sind 30

Fe Re 2 Re 3 12 Re 4 2
= -—[2CJ (-*-) + 68 (——) cosfg +— DJ(—-—- (1-7 cos™ 8)]
r3 r T 7 r

The fact that J is symmetric can be anticipated, since J is also
the matrix of second partial derivatives of the gravitational potential

function U(r, 8) with respect to the plumbline position coordinates.




>

In the event that a spherical earth is being simulated J reduces

to
X
= +
J= Gy v G22[x v 2]
Z
with

since G2 =G =G = 0.



APPENDIX D

RELATION OF CA AND C__ TO CL AND CD

N

The aerodynamic formulation in Section 5 is predicated upon the

assumption that the 1lift and drag coefficients may be approximated by
cC, =C, «

L L

and that

o g~ sina

2
@ ~ 2(1-cosq)

Using these agsumptions CL and CD become

C_.=2¢C + 2CD {1-cosa)

D D
o a
Since
CA = CD cosq - CL sine
CN = CL cose + CD sine




there results

O
n

.2
+ + - -
(CD 2CD ) cosee + {2 CD CL )sin a ZCD
o a a o

“N

+ . _ . )
(CD ZCD ) sine - (2 CD CL } sinc coso
o a a o

Therefore the aerodynamic coefficients a, b, ¢ of Section 5 are

0 a
b = ZCD 'CL
a o
c=-ZCD
a

D.1 REDUCTION OF DATA
Given C A(o&, M) and CN(a, M) it is easy to construct

CL(oz, M) = CN cosg - CA gine

CD(oz, M)=C, cosa+ CN sinw

A

therefore, CL and CD may be thought of as perfectly general.

a




It is not unreasonable to expect to be able to approximate a given

set of CL(oe, i), CD(oz, M) data as

‘L

CL -leL Qs
0 o

CD = CD +CD CL

where C

and where o* denotes the reference or data-base angle of attack.
Since the angle of attack is the angle between some reference
direction and the velocity vector, define a new reference direction by
the angle of attack, «, related to the one on which the data is based by
o = o% +3§
where § is a bias angle.

In {erms of o, CL is

CL = CL +CL {-6)
o o

In order that CL = 0 when @ = 0 it is necessary that




>

In general § will not be exactly constant with respect to Mach
mumber, however, a good least squares constant bias may be calculated

by cheoosing a set of Mach numbers, Mi’ and then forming

6 =rCy (M) - Cp (M)/ZC; (M)
1 o4 8] 1 o

In terms of ¢, CD becomes

2
CD CD +CD (CL +CL {&-86))
(o] L o o

n

2
CD +CD ((cL - CL <5)+CL o)
0 L 0 (s o

Recall that § was chosen such that

'CL 'CLﬁasO
O o

Therefore o good approximation

o) L o
or cC_.=C +C ozz
D D D
o a
where CD = CD CL
a L o

which is consistent with the original assumptions about the form of CD.



APPENDIX E

RADIUS OF APOGEE AND RADIUS OF PERIGEE CONSTRAINTS

The radius of apogee and radius of perigee constraints are treated
in the APPQG package which includes subroutines APPG, ADDR, AGEQ,
FQRKM and SYSDER., The approach used is to compute the radii of
apogee and perigee ry and rp, respectively, é.nd the associated adjeint
vectors Lgbra and _}%prp
equations of motion and the associated adjoint equations. The orbital

through a numerical integration of the orbital

Euler-Lagrange equations are

x

i1
o
P
2

2= -(2E)

where H is the variational Hamiltonian., These equations take the form

W = Gx }Ll = "A4
u = GZY 7-\.2 = 'A5
V=G, ’.‘3 = A
*Ew ?4 ) —AIGXX—AZGy‘x_kS sz
y=u Ay = A Gy Al g Gy
2 =v A'6 ) -Al ze_k2Gyz_l3 Gzz




E

where (G, G, G ) is the gradientand G__, G__, etc. are the second
: X y Tz xx’ ¥y

partials of the gravity potential. Boundary conditions are ;_;(to) the state

at injection given and

T .2
2 (k) = ox jt=t
r = a
a
T _or
Ll,b (tp) Bxlt=t
rp = P

where ta and tp represeﬁt the times at which the orbit passes through

. its apogee and perigee, respectively.

The procedure used in the numerical integration of the orbital
equations is to first integrate the system equations forward in time from

g(to) to some time t, at which time r passes through its first extremum.

1
The stopping condition used is

Ut,) =r-r] = [xwtyutzvl, , =0
e =1
1:-1:1_ 1

The adjoint equations are then integrated backward in time from tl to

1:0 from the terminal conditions

T
ATe) t=t

3%



S

Define _)54) as the solution at time 1:o of this backward integration,
1
The second extrémum is found by integrating the system equations
backward in time from g(to) 1o some time t2 at which time r passes through
its first extremum., The adjoint equations are then integrated forward in

time from the initial conditions

or

T = ——
A () = ox |t=1

2

Let A!,’J be the solution of this forward integration of the adjoint equations
r

2
at time to. Then a simple comparison of r(tl) and r(tz) can be used to
set r, rp, A’\br and Awr . If r(tz) is greater than r(tl)
a2 P

r = r(tl) Aﬂb =__?§._,1b

ra = I‘('tz) Ai,b = -&!,b

Otherwise
I‘p ) r(tz) Aﬂb =—A1b

R



2

The advantage of using this approach to determine r rp, L‘b
r
a

and A is that it does not require analytic expressions for ro rp, etc.,

)

r

in term;) of the state at injection. In general derivation of analytic express-
ioné for ros rp, etc., for an oblate gravity field is quite difficult and some
sort of approximation is generally used. By computing these quantities
through a numerical integration of the orbit equations, this approximation

is avoided.

The only limit on the accuracy for this approach is the nimerical
integration error. Numevrical integration of the orbit equations in APPG
employs a fourth order Runge Kutta differential equation solver with a
fixed step size of 20 sec for the system equations and 40 sec for the
adjoint equations. Numerical accuracy appears to be adequate but can

be improved if desired by decreasing the step size DT.



APPENDIX F
THE IMPACT PQOINT PENALTY

The impact trace of a launch vehicle will be forced to avoid certain
regions by utilizing an impact trace penalty function. A new state variable
is therefore defined to be

k
X nt+l = f C. e

where Ci are weighting factors, Bi is a 2x2 symmetric matrix agssociated

with each point ( Gi, ei) that shapes the exponential function, and

By properly choosing Ci’ Bi’ Gi and q)i the impact trace penalty function
can be designed to cover forbidden zones in the 8, ¢, (latitude, longitude)

space. By constrainting the termal value of x the impact trace can be

nt+1

made to avoid the '"peaks' in % An efficient algorithm for calculating

n+1’
the latitude and longitude at impact which is consistent with the partial

derivatives needed for the adjoints is developed below.
In order to avoid iterating on the change in eccentric anomaly
necessary to give the proper coast time, it will be computed analytically

and then used in the Goodyear coast equations.

Figure 9 -shows a schematic of the coast to impact.




Initial point

Impact

FIGURE § SCHEMATIC OF COAST TO IMPACT



Obviously,

_ la-r
E = cos (——a-é——)
and
-1 a-Re
ET = 27 =~ cos | - )

It is assumed here that only coasts initiating with positive flight path

angles are of interest.

The charge in eccentric anomaly is

= - +
AE = 27 (61 92)
where
- a -1 (a_Re)
| = cos s
A -1 a-r
62 = cos  ( ae)
Thus
cogdARE = cos(61+92)
. s 4
sinAE sm(@1 62)

Since both 81 and 62 will be calculated to be less than pi, the sine will

be positive for both angles; therefore we can calculate



/2

cosAE = cos elcos 82 - [{1 - cos261)(1 - coszﬁiz)]1

. o _ 2 _ 2
sinAE = -[cos 62 4/1 - cos 91 + cos 911\/1 cos 62]

with
a-Re
cos B, = ———
1 ae
_a-r
00892 " e

The correspondence between AE and Goodyear's universal variable,

P, is known to be
1/2
b = (/%
Also,

S =C =cosAE
o 0

/2sinAE

s, =9C, = /'
S, =9°C, = alu)(1-5)

s, =9°C, = (a/u)e-s))
2

_ad B
84-¢' 04—(a/,u)(2., 52)
3
a8 A L -
Ss—ab Cs_(a/“)(s.' SS)




Then defining

N
along with

F=1- uSzlr

g = :r'S1 +UOSZ

the position coordinates at impact are

X p:4
P

= f 4
Yp N g
Z A
P

The time {o impact is

= + +
At = ¢S 0‘052 IS

1 3

Using the A matrix of Section 2,

T
y = A y

S

-



the latitude at impact is

9£ = Sin-l(Y/R )
D [~

and the earth relative longitude is
9, =tan ‘(x/z) - O_(A1+DTZ+T) - ALGN GO

£
p

Using these values, icn 41 can be calculated.

During the adjoint run, the partial derivatives of kn +1 With

respect to the state along the trajectory must be calculated.

The calculation proceedg as follows:

O 1 7, Bz,
—_— = - - -+ -
S 9p z:cie (Zbill(ep 91) bilz(¢p ¢>i)
0% 41 "ziTBizi
W =-ICe (by19{0,7 6 +2b,9 o8 = ¢,))
_ _ or
dr =0 =2 5x_+Fadt
P
. dt =—'.1" or §x
f r axp P



where

P e
9% voBx '| 8
6x. = : D (X)
P dx , dv | 6.
X2, ag
do0 = —L sx + —2 x_dt
P ox p X f
P P
belo) 38
= -+ 7 -
quP B_EX 5XP _Eax Xp Qe d‘tf
P P
which can be written
36 T
1 .
de =&E[ —; Xpaéf_} 5xp
P P
10} &
o =4—L|1-1 % g_;;_]+_§____ar 5%
Ix r Tp X r o 9ox P
P P
Note that % or is a 3x3 outer product
P ox
b
oG ~ -]
_bP 0 . S — 0
axp Recose
= AT
o¢
P 2 0 X
axp X2+ ZZ X2+ 2'.2




ox I

. nt+l n+l1
dx = —= df t+t——— &
n+1 28 o
P p P [y
or
ds _ aXn+l Z aXn-i-l 1 -axn-!-l X
N -
n+l agp X2_|_22 aep Recos op agbp xz-f-z
s °ox 1 & ap 5
) ax
¢P
where
A _ 1 or
L= I3 r Xp dx

Some simplifications in the numerical work required can be made.

Defining
A axn+1 1
a(Dp X +z
a O%n4 1
b = 1
ox R cosé@
e
This gives
3% 9x Q
n+l n-+1 e
= +
X (PRI PR2 PRE)T g r v
P P P

T
P




where

= - +
PR1 (Z a4 Xa13) a ba12
= - +
PR2 (z 201 Xazs) a ba22
= - -+
Pﬂg (= a31 Xa33) a ba.32
Then dfafining
A * - *
¢c = (PR, x +PR + PR_Z )(r - v
(PRy %, 29 p g2ty vy
3 Q
a 2% e
d =
og r.v
D P D
gives
a}::n+1
—— = (PR, +(d- PR, + (d- PR, +(d-
aXp { Ry { C)Xp R, ( .c)yp 3 ( C)zp)
Finally
3¢ X o '
Xn+1 : aXn+1 i Xn+1 axp :Bxp
ox ! A axp 3x | oV

where the partials of state at impact with respect o state along trajectory

will be calculated using Goodyear's partials.




The velocity components at impact are calculated from

M-

[

fi1a 7Y

!

e

¥-10




APPENDIX G

INPUT DESCRIPTION AND EXAMPLE PROBLEM

The user of the LIFTING ROBOT program will find it helpful to
sketch a thrust profile before setting up input for the problem he wishes
simulated. Sketched in Fig. 9 is an 8 thrust event representation of a three
stage Saturn V thrust history. Vertical lines and horizontal lines will
be referred to as 'pickets" and 'spaces', respectively. The ''picket"
numbers in Fig.10 are circled., Note, there is always one more picket
than spaces. A thrust event must be defined every time there is a dis-
continuity in the total thrust. Dashed vertical lines represent miscella-
neous weight drops. Spaces are thrust duration times and are denoted
TAUT., The elapsed time between the Jth miscellaneous weight drop
-event {(dashed vertical lines) and some thrust event picket is denoted
TAUW(J). The particular thrust event picket to use is denoted NGWD(J).
LIFTING ROBOT drops the atmosphere at the IWDCHI th miscellaneous
weight drop event. Therefore, a miscellaneous weight must be dropped
where the atmosphere is to end even if it is a zero (0) weight drop.
Min-H optimization begins at either tx or tQ whichever occurs first.

The LIFTING ROBOT program controls vehicle flight by looking
up xp and xy as a function of time out of control tables. The Min-H
steepest ascent process adjust these tabular points until they take on
optimal values. A "control table' consists therefore of three tabular
arrays: time, xp, xy' LIFTING ROBOT containg four control tables,

each containing a maximum of 49 points. In order to provide generality
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for the user, the Jth control table begins at the NBGCT(J) th picket, ends
at the NENDCT{J) th picket and has a maximum of NP(J) < 49 points. NP
should be odd for all tables in use and zero for all others. Control tables
should not extend over coasts or over an intermediate constraint point.

If Min-H is to begin in the middle of a thrust event, NBGCT(1) should be
set to the picket at the beginning of the thrusi event.
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SYMBOL,

INPUT

e

HEAD

TZERQ
TLIET
TTILT
TCHFRZ
DTZ
FLBS

TNE

WDOT

CWQT

SIZE

(15)

(15)

(4, 15)

(15)

(15)

NAMELIST INPUT DESCRIPTION

EXPLANATION

Identification for priat out (60
characters)

Initial time

End of lift-off; beginning of tilt
End of tilt

Begin Min-H

Time from GRR to Lift-off
Thrust per engine/thrust event
Number of engines/thrust event
Four numbers for each thrust
event: the number of inboard
engines, their cant angle (deg),
the number of outboard engines,

their cant angle. (deg).

Flow rate per engine/thrust
event

Critical flow rate per engine/
thrust event

='<$ INFPUT in Col. 2. All Data begins in Col. 2

PRESET
VALUE

UNITS

s5€C
sec
sec
sec
gsec

1bs

lbs/sec

lbs/sec




INPUT

SYMBOL

WDLBS

WTJET

AE

TAUT

TAUW

NQWD

NGEVNT

PRINT

STEP

PRESET

SIZE VALUE UNITS

(15) Weight dropped during a weight 0. ' 1bs
drop event

(15) Jettison weight/thrust event 0. ths

(15) Engine exit area/thrust 0. m?
event

{15) Aerodynamic reference 0. m2

area/thrust event

(15) Thrust event duration time/ 0. sec
thrust event

(15) Elapsed time between a 0. sec
thrust event and a weight
drop event

(15) Denotes a picket number from 0
which TAUW is defined

(5) The total number of thrust 0
events which comprise a
stage

(15) Print time increment/thrust 10. sec
event

(15) Integration step-size increment 8. sec

for forward runfthrust event
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INPUT
SYMBOL OLZ I

BSTEP (15)

AZ
LAT

XJEXT

CASE

DP2

QY

CHIDT

W@l
DELVG

DELVP

Integration step-gize
increment for backward
run/thrust event
Launch azimuth

Initial geodetic latitude

= 1, if maximizing payoff
=~1, if minimizing payoff
Cage number

Decimal fraction of constraint
error to remove in first
iteration

Decimal fraction of Ha to

remover per iteration

X for tilt-over during first
stage pitch

Lift-off weight at TZERQ
AV for geometry reserves

AV for performance
reserves

PRESET
VALUL

16,

90,
28.531855

1.

UNITS

sec

deg

deg

deg/sec

lbs
m/sec,

m/sec.

9



INPUT PRESET

SYMBOL SLZE EXPLANATION VALUE UNITS
WPM Maximum, critical propellant 0. 1bs.

in stage from which
performance reserves are
taken

TCHIR Time of chi roll initiation sec
(for report tables)

CHRD@T Roll rate (for report tables) deg/sec

FAZ Agzimuth at which Fin 1 deg
points (for report tables)

ALONGE Longitude of the launch site 80. 5649528 deg
(measured positive west)

EU Upper error bound in forward 1. E-5
integration

BEU Upper error bound in 2.E-5

backward integration

AYIL Used for error check in 2. E-3
forward integration

BYL Used for error check in 4, B-5
backward integration

HMN Minimum step-size for .25 sec
forward integration
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INPUT

SYMBOI, SIZE

BHMN

CMUE

POMEGA

CJ

bJ

FLAT

RE
GZERQ

J@RB

JUMP

EXPLANATION

Minimum step-size for

backward integration
Gravitational constant

Angular rotational
velocity of earth

First coefficient in
gravitational expansion

Second coefficient in
gravitational expansion

Third coefficient in
gravitational expansion

Flattening of Fischer
ellipgoid

Equatorial radius
Relates mass to weight

=1 if spherical earth

=0 if oblat:e earth

Jump start at this picket
number if JUMP > 1

PRESET

VALUE

. 50

3.986032E14

" 7.2921158E-§

1.62345E-3

-5.75E-06

7.875E-06

1/298.3

6378165, 0
9. 80665

0

UNITS

sec

3 2
m /sec

rad/sec

m/sec2
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INPUT
SYMBOL SIZE

IWDCHI

KIND

KWTA

NMAX

NTABLE

NVRST

IPR

EXPLANATION

The number of the
weight drop event where
atmosphere is dropped

Type of integration used:

=1 for variable step
size Adams-Moulton

=2 for Runge Kutta

=3 for fixed step Adams

=2 if xp only optimized
=3 if X and optimized
p XY P

Total number of iterations

=1 if output fables are
wanted for publication

Intermediate constraints
imposed at termination of
this thrust event. Must be
zero if no intermediate
constraints wanted.

Thrust event from which
performance reserves are
taken. (IPR must be zero

if no performance reserves
are wanted), If IPR#0, WPM

and CWDQJT must be input.

PRESET

VALUE

UNITS
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INPUT

SYMBOL

LAST

KRDER

KINDB

KDERB

IMP

JTHR

KCDPHI

SIZ I

(15)

(10)

PRESET
EXPLANATION | _VALUE

=0 if only one case is run; 0
=1 if more cases are run

Order of differences in 3
integration package for
forward run.

Type of integration used in 3
backward run (See

JRBETC+3)

Qrder of differences in 3

integration package used
for backward run.

Jettison weight of this thrust 0
event will be integrated to

impact. (Cannot be the last

thrust event).

=0 if input thrust and flowrate 0
used

=1 if thrust and flowrate
found in ATTRAC

=-1 if thrust and delta
weight found in ATTRAC

Terminal function codes,
{Code in KCDPHI(1) is
payoff)

UNITS
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INPUT
SY MBOL SIZE

PSIREQ (10)

KCDRES (6)
PSIRST (6)

KDB
KDB(1)
KDB(2)

KI.)B(IES)
KDB(17)
KDB(18)}

KDT (17)

Constraint values desired

at terminal point. (Value

in PSIREQ(Ll) is constraint
for code in KCDPHI(2), etc.)

Intermediate constraint
function codes

Constraint values desired
at restart point.

Control parameter switches

Insert 1 to optimize TAUT(1)
Insert 1 to optimize TAUTY2)

Insert 1 to optimize W(1
Insert 1 to optimize CHIDT
Insert 1 to optimize AZ

Companion vector to KDB.
Contains in corresponding
locations the number of the
thrust event from the present
one which ig to be altered in
order to hold tank limit.

PRESET

VALUE

oo

UNITS
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INPUT PRESET

SYMBOL S1ZE EXPLANATION VALUE UNITS
WIBT (17) Used to speed up or slow 1.

down convergence of one
parameter relative to
another, 1st element of
WIBT goes with 1st active
parameter, 2nd with 2nd
active parameter, etc.

NBGCT (4) Jth control table beging at
NBGCT(J)th picket

NENDCT (4) Jth control table ends at
' NENDCT(Jth picket

NP (4) The number of points in a 0 pte
control table (Must be an

odd number of points. )

CONTROL TABLES

TTBL{1) 49 pts. 1st time table (real time from sec
TZERQ)

TTBL(51) " 2nd time table {real time from
TZERGQ)

TTBL(101) " 3rd time table (real time from
TZERQ)

TTBL{151) " 4th time table (real time from

TZERG)
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INFPU'L
SYMBOL SIZE

CPTBL(1) (49 pts. )
CPTBL(5) "
CPTBL(101) "
CPTBL(151) "

CYTRL(1) (49 pts. )
CYTBL(51) "
CYTRBL(101) X
CYTBL(151) "

VIV (8)

RTASC
DECL
VELTGT

GAMTGT

EXPLANATION

1st ¥ table
2nd X_ table
3rd x_ table
4th y_ table

T g g T

1st x_ table

2nd table
y‘ .

3rd xy table

4th x__ table
y

Vector of initial conditions

for a jump start,

PRESET

VALUE UNITS

rad

rad

If VIV(7)=0, input: %, 7, 2, %, ¥, z{2, X, ¥, 2, x, y Apollo 13)

If VIV(7)=2, input: V

Right ascension of
outgoing asymptote

Declination of
outgoing asymptote

Rendezvous Target

.velocity at node

Rendezvous Target
Flight Path angle at
Node

I.’

v, T, Az, Lat., Node

0 deg
0 deg
0 m/sec
0 deg
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INPUT
SYMBOL SIZTE

RTGT

INCTGT

LATTGT

BTATGT

NCOST1

NCORST?2

IAA

IPHIT

LPRINT

EXPLANATION

Rendezvous Target
Radius at node

Rendezvous Target
Inclination

Rendezvous Target
Lauhch site Latitude
Displacement
(Ignored)

Rendezvous Target
Position Phase Angle

Thrust Event for lst
Analytic Coast

Thrust Event for 2nd
Analytic Coast

=1 calculates launch azimuth
for rendizvous
#1 uses input A
z

=1 calculates LATTGT
#1 uses input LATTGT

=0 Ignored
=1 Suppress X table print-out
=2 Suppress trajectory

print out

PRESET

VALUE_

UNITS

deg

deg

deg
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INPUT
SYMBOL

ICQNT

IAEOK

LONGPR

THI1

PH1

RQTA

LATWTH

LONWTH

SIZE

(10)

(10)

(10)

(10)

(10)

EXPLANATION

No. of times complete
trajectory integration
is carried out after
convergence

Used in ATTRAC for
decaying exit areas

Number of complete
trajectory printouts
after convergence
Cannot be greater than
ICGNT

Impact point ellipse
centers-latitude

Impact point ellipse
centers-longitude

Impact point ellipse
rotation angle (pre-
counterclockwise)

Impact point ellipse
latitude Wildth

Impact point ellipse
longitude width

PRESET

VALUE

UNITS

deg

deg

deg

deg

deg
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INPUT
SYMBOL.

NQ@1

IPCNST

MSWCH

GLIMG

FUELG

SIZE

——

(15)

(15)

(15)

EXPLANATION

No. of impact point
ellipses

0 if no impact option
1 if impact penalty
integration is desired

it

=1 if staging on time
=-1 if staging on fuel
Axial "g'"' limit/thrust
event

Fuel consumed in thrust
event where MSWCH =-1

PRESET
VALUE

UNITS

lbs
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TITLE
GFFICE
DATE
NCASE
SRID
$END

i

$ INPUT 2

48 Columns of BCD information

12 columns of BCD information

12 columns of BCD information

Fixed point case number; should be < 1000
360 columns of BCD information )

The alignment of the codes and congtraints is

KCDPHI

PSIREQ

KCDRES

PSIRST

I}

1

payoif code

1st constraint code 2nd constraint code

1st constraint value 2nd constraint value

1st constraint code 2nd constraint code

1st constraint value 2nd constraint value

ete.

ete,




EXAMFPLE PROBLEM

Maximize payload into perigee of a 50-100 nm orbit having an
inclination of 55 degrees. Launch at a 38 degree azimuth [rom Cape
Kennedy over an oblate earth using a two-stage space shuitle vehicle.
Both stages must be throttled to maintain a 3 "g" axial acceleration limit
and are stageé on fue.l depletion. Controls to be optimized are: lift-off

weight and tilt-over x as well as Xp and xy'after 140 sec.
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Data for this problem is given below:

Thrust Event
Thrust/engine (1b)

Flow rate/engine
(Ib/sec)

Jettison weight (1b)

Number of engines

Engine exit area (mz)

Aerodynamic ref, area
(mz)

Burn times*(sec)

Integration step {sec)

Print Interval (sec)

Lift-off time = 0
Begin ¥ tilt at 8 secs
End ¥ tilt at 30 secs

Begin optimization at 140 secs.
Group thrust events as follows:

1st stage - 2 thrust evenis; 2nd stage - 1 thrust event

1 2
520000. 0.
1298.4 0.
700000. 0.

12 0
2.18869 0.
929, 929.
205. 10.
1, 2.
20. 20.

3
597000.
1300. 6536

SHENCE

297.

20.

Start 1st control table at picket 1 and end at picket 2 (25 points)

Start 2nd control table at picket 2 and end at picket 3 (5 points}

Start 3rd control table at picket 3 and end at picket 4 (35 points)

- Just guesses since staging is on fuel
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Estimate xp and X'y in the three tables to be:

lgt table 2nd table 3rd table

xp from 1.14 to 1.22 from 1.34 to 1.37 from 1.23 to 1.74
xy from 0 +to -.0015 from -.002 to -.0025 from -.0017 to -.0018

Tstimate starting tilt over ¥ to be . 155 deg/sec
Estimate launch weight to be 4788230 1lbs

Injection condiiions are:

Vel. = 7876.4195 m/sec
Gam = 0
R = 6470762. m
Incl. = b5°
There is a 10 sec coast between the first and second thrust
events.

Report tables are fo be output.

This problem converges in 6 iterations. All constraints are met

within a small tolerance and the max payload is 352840. 8 lbs.

A listing of the input cards and aero data for this problem are on the

following page.
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LIFTING=ROBUT NAMELIST TRPUT DATA

SINPUT .

TZERO=Gee TLIFTZ8ar TTILT=30.+ TCHFRZ=140.» DTZ=0.»
FLBSZSEUOUUofO.r597ODU-r

TNEZ 240 0et0erDetUerBarDearCorZ4r
WOOT=1298+410 v 1300.6530r

WTJETZ700000 .

AE=Z2.1869r S=929,¢r5%20.

TALTZ205, 1100297+

TAUNZ12.¢ NOWLZZ2,

WOEVNT=Z20 1y

PRINT=20,¢20e220.0

STEleo!EO’q" BSTEP=2.94.-8.r

AZ=A58+¢ LATZ28.531,

XJEXT=1.r CASE=1.r DP2=+5r QY=,.75

CHIST=.155

AUL=Z 4T7BB2IET

ALONGOzZE80 en3bl

Kithwz=le KWTAZ3» NMAXZ10»

NTAULEZL,

KCLUrH1=Z1»29 30410,

PSIREG=78T0 419910964 T707624¢55,r

Koglliel=irly

wIdf=2.!.lr

NGOCT=1e2r3e NENDCT=Z2r304

NP=25¢50 35

TTQL:1QO|IZOU-' CPTHL:lnquloEZ' LYTBL:Oc'_OGUlSF
TTeL(51)=200.e280.r CPTBLIS1)=1.34¢1,37 CYTBL{S51)1==,002,~.0025"
TTEL(101)=210er83 75 CPTBLO101)=14230v1.74 CYTRL{10G1)==,0017+=.0018>
ICOI.T=1» LONGPR=1:

mowCHS=Llelr=1¢

GLIMGZ3erder3en

FUELG:30538490670c'681542-5'

SENY

SLlisfPuTZ

NCASE=1ry

BENU

SUBROUTIMNE CACN(M.L}

AERQO UATA =~  A{M)B(M) AND C(w) == CgoNF 19 800STER HCF ORBITLw
REAL MeMT

COMMON/ARODTA/ACF +BCF » CCF o DALM DBOUMy GCDM

COMMON/ TABLK /Ky MMM(11)

DIMENSION WKT(20),ATE(20) BT (20).CTusl(2qQ)

DATA Nn/l2/ .

UDATAL MT(I)}+121912) /00245148911 07105720030rtherDarbar7e2204/
DATALATE (1) +IZ1s12) /2890100521 8.422:7.917v4,781,4.853

1 4380136330 2.80822.651192.,64392.043/

DATA(BTBIL) 2131 912) /4275481 1.09294%.598:4,048391.9485602¢503¢
1l 2e70112:0609r1l73Urle044r]l 640 r 644/

DATACCTBLIY 1 IS1912)/-2.7961=4,7800=8,322r=7:.767¢=U0UL1lr=0.740
1 =4 ,3U8s=3.27201=2,765+=2.6199=2:619:~=2,619/

CALL SPLINE(LsKeNs M ¢ MT+ACF,ATBeBCF +BTEB+CCF,CTHyDADMyDBDM e DCOwW)
RE TuRiy

£
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http:CPTBL(1O1)=1.23,1.74
http:CPTBL(51)=1.34,1.37
http:CPIBL=.14t1.22

