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FOREWORD
 

Lockheed Missiles & Space Company's Huntsville Research & Engineering 

Center submits this report in partial fulfillment of the requirements of contract 

NAS8-30520, Advanced Substructuring Techniques. The report describes work 

performed for the George C. Marshall Space Flight Center of the National 

Aeronautics and Space Administration. The contract was administered under 

the direction of the Aero-Astrodynamics Laboratory, NASA-MSFC, with 

Mr. Larry Kiefling as Contracting Officer Representative. 

A magnetic tape containing the computer programs developed under the 

contract is being submitted separately to fulfill contract requirements. 

Advanced substructuring techniques and associated computer programs 

were developed during this study under the supervision of W. D. Whetstone. 

The methods incorporated in the study were formulated jointly by 

W. D. Whetstone and C. E. Jones. 

The Substructure Synthesis computer program was developed by C. E. Jones. 

D. B. Alves developed the most recent version of the Substructure Function 

Generator program. A previous version of the Function Generator program 

was developed by R. A. Moore. 
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SUMMARY 

This report describes methods and associated digital computer programs 

developed for evaluating free undamped modes and frequencies and damped 

transient responses of structural systems mathematically modeled as assemblages 

of arbitrary substructures. A Rayleigh-Ritz solution method is incorporated in 

which the state of each substructure is represented by a set of generalized dis­

placement functions. 

Two general purpose computer programs were developed. The Substructure 

Function Generator program, which is a modification of the dynamics version 

of the Lockheed-Huntsville Structural Network Analysis Program (SNAP); 

calculates generalized displacement functions and constructs the corresponding 

mass and stiffness matrices for substructures mathematically modeled as 

basic finite element networks. The Substructure Synthesis program forms 

system mass, stiffness, and damping matrices. 

Full-matrix eigenproblem solution routines (Cholesky/Householder) 

compute system undamped modes and frequencies corresponding to specified 

constraints on system joint motion components. Transient response is 

computed using coefficients of undamped system modes as generalized 

coordinates. A method was developed for constructing a system damping 

matrix according to the energy dissipation characteristics of the individual 

substructures. Response calculations are performed by numerically inte­

grating the system equations of motion. 

Communication between the Function Generator and Synthesis programs 

is accomplished by means of substructure data files created by the Function 

Generator program. Each data file contains a complete substructure descrip­

tion along with a large number of generalized functions of various types. The 

Synthesis program has provisions for using any prescribed sub-sets of gen­

eralized functions from the data files. 

iii 

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER 



LMSC-HREC D225003
 

Studies were performed of the related topics of substructure number 

and size and choice of substructure generalized functions. 

User's manuals for both the Function Generator and Synthesis programs 

are included as appendices. 
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Section 1 

INTRODUCTION 

In this study methods and associated computer programs were developed 

for evaluating the vibrational characteristics of complicated structural systems 

mathematically modeled as assemblages of arbitrary substructures. Techniques 

were developed for performing two basic kinds of system analyses: (1) evalua­

tion of the free undamped modes and frequencies; and (2) calculation of damped 

transient response. A Rayleigh-Ritz formulation is incorporated in which the 

state of each substructure is represented by a set of generalized displacement­

functions. 

Substructures are mathematically modeled as arbitrary finite element 

networks. Generalized functions used to represent substructure motions 

include: (1) rigid body motions, (2) static functions corresponding to inde­

pendent motion components of boundary nodes (i.e., nodes which connect to 

other substructures), and (3) arbitrary displacement functions (e.g., vibrational 

modes) computed subject to specific restraint conditions imposed at the boundary 

nodes. 

A computer program called the Substructure Function Generator program 

was developed for generating sets of substructure generalized functions. The 

program also forms mass and stiffness matrices expressing the kinetic and 

potential energies of substructures as quadratic forms in coefficients of the 

generalized functions. The Substructure Function Generator program is 

basically a modification of the dynamic analysis version of the Lockheed/ 

Huntsville-developed Structural Network Analysis Program, SNAP, which 

performs static and dynamic analyses of structures consisting of various 

types of finite elements, including beams, triangular and quadrilateral mem­

branes, and plate and shell elements. Detailed accounts are given in Refs. 1 

through 4. The Function Generator program creates a substructure data file 
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containing all the information required to represent a substructure in a system 

analysis. The data file is automatically stored by the program on magnetic 

tape, drum or disc units, or punched cards. 

The Substructure Synthesis program forms system mass and stiffness 

matrices based on the contents of the substructure data files and a description 

of substructure interconnection given by the user via input data cards. System 

analysis routines are included in the Synthesis program for calculating (1) 

undamped system modes, and (2) damped transient response. 

Each substructure data file created by the Function Generator program 

contains descriptions of various classes of generalized functions, the number 

and type of which are controlled by the analyst via input data options. Pro­

visions are included in the Synthesis program for using any sub-set of these 

functions as generalized coordinates in the system analysis. Accordingly, 

the effects on overall system modes and response characteristics of different 

classes of substructure generalized functions can be studied without recreating 

substructure data files. This feature is also useful if the anticipated motion 

of a substructure varies according to different system environments such as 

varying boundary conditions or forcing functions. 

The standard mode of operation is to create substructure data files for 

each substructure with separate executions of the Function Generator program 

and then to perform a system analysis using the files. This approach is well 

suited for the types of studies frequently performed early in the design of a 

system in which it is required to determine the effects on overall system 

vibrational characteristics of design changes in only a few substructures. 

In such cases, substructure generalized functions, etc., need be recalculated 

only for the substructures containing the alterations. 

The computer programs developed during this study provide an economi­

cal method of performing parametric studies of proposed Space Shuttle launch 

configurations. For example, the effects of parameters such as orbiter posi­

tion and interconnection structure stiffness can be readily studied. 

1-2 
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Section 2 

TECHNICAL APPROACH 

2.1 SYSTEM COMPOSITION 

In this study a structural system is modeled as an array of interconnected 

arbitrary multi-node substructures. Joints through which the substructures 

are interconnected are called "system joints," as illustrated on Fig. 1. Any 

number of substructures may connect to a given joint. 

Substructures are in general modeled as basic finite element networks 

composed of arrays of nodes interconnected by two, three, and four node 

beam and shell elements. A specific set of the network nodes in a substructure 

model are declared "boundary nodes. " Each substructure boundary node is 

attached to some system joint either directly or through a rigid arm. If the 

location of a boundary node does not coincide with an attached system joint, 

the connection is accomplished by means of a rigid arm. 

As shown on Fig. 1, a local reference frame called the substructure 

reference frame is associated with each substructure. The position of a sub­

structure in the assembled system is defined by the location of the origin of 

the substructure reference frame relative to the system reference frame and 

the orientation of the substructure reference frame axes relative to the system 

reference frame axes. 

2.2 ENERGY FORMS AND GENERALIZED COORDINATES 

Z.2.1 Substructure Energies 

An "intrinsic reference frame, " with axes parallel to the arbitrarily selected 

substructure reference frame, originates at boundary node 1 of each substructure, 

2-1 
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Substructure p Substructure q 

I system 
joint j 
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System Reference Frame. 

Fig. 1 - System Model 
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as shown on Fig. 2. Various categories of substructure generalized functions 

are defined as follows. 

i 
1 =rigid translation in intrinsic reference frame direction i 

(for i=l, 2, 3), rigid body rotation about intrinsic frame axis (la)i-3 (for i=4, 5, 6). 

For j=Z, 3,..., n (n boundary nodes), 

i. 	 =static displacement function associated with unit value of 
motion component i (i=l through 6) of boundary node j. These (lb) 
functions .are subsequently called boundary node motion func­
tions. 

For k=l,2,.. .,m, 

1 k = 	 arbitrary function, subject to the requirement that all 
boundary node motion components are identically zero. 
Specific types of functions are discussed in Section 2.2.3. (ic) 
These functions are subsequently called fixed boundary 
node functions. 

Total 	substructure motion is expressed in terms of generalized coordinates 

as 

q i 	 + ql @Il +1 1 2 2 q'"q)6 61 

92 	 "' 2Z
2 Zz+.q 26 2+ + q2 t 2 

+ 	 .(id) 

1 q1 	 + qZ 4 + 6 6 

n n n n f n 

+ PltPI + P2 t 2 + "." +p m 4 

The above equation defines generalized coordinates q and 
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Substructure Reference Frame 
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Fig. 2 Substructure Model 
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If the basic finite element net representing the substructure has s nodes 

(generally, s>>n), each substructure generalized function is a 6s component 

vector. The mass and stiffness matrices associated with the basic finite 

element net will be designated M and K '(both are 6s x 6s matrices). The 

substructure kinetic and potential energies are 

T = and 

(Za) 

Where qi [ij qi ... 

and 

yq, * 
Y -- qlq 2 "nP P2 . 

P ]' 

Equation (Za) may be rewritten to express the energies in terms of the sub­

structure generalized coordinates, Y, as 

T = Y* MY, and 

(Zb) 

V = Y* KY 

th .th 
If substructure generalized functions corresponding to the i and j components 

of the generalized coordinate vector Y are i and ti, the associated elements, 

inij and ki, of the substructure mass and stiffness matrices, M and K, are 

m.. = i t, and 

k.. = LjJ.K4J. 

Terms of this type are readily evaluated after all of the generalized functions 

have been computed. For example, the "static load vector, "1Fj, corresponding 

to each n is always known (even if 4ij is a vibrational mode). That is, 

Z-5
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F. 	 = K~p.
 
F 3
 

Therefore all k-,'s may be computed as simple inner products, jt F.. 
13 	 3 

Similarly, each vector MIJ. is readily computed in a sparse-matrix multipli­

cation, then the required mi.js are computed as inner products, 44(Mq).1 ; 

Advantage is taken of the fact that certain components of F. and 4j., 

etc., are identically zero for specific classes of functions. 

2.2.2 System Energies 

The kinetic and potential energies of an assembled system composed 

of N substructures can be expressed as the summation of the energies of the 

individual substructures, as follows: 

N 
T = E Tr, and 

r=l
 

(3) 

N
 

V = E V r
 
r=l
 

where T r and Vr represent the kinetic and, potential energies of substructure 

r as required by Eq. (Zb). 

In order to perform the energy summations indicated by Eqs. (3), the 

substructure energies must be expressed in terms of a set of system generalized 

coordinates that are common to all substructures. In this study, the system 

generalized coordinate vector, X, is expressed as 
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Qi 

QZ
 

(4) 

Q 
m 

QJ 

Qi, for i=l, Z,... m (m=total number of system joints), is a six component vector 

containing the motion components of system joint i. As illustrated on Fig. 3, 

a joint reference frame is associated with each system joint. The origins 

of the joint reference frames coincide with their associated system joints 

and the axes of the joint reference frames are arbitrarily oriented relative 

to the system reference frame axes. Components of Q. are relative to the
.thI 
I joint reference frame. Q4 represents a vector of coefficients of the indi­

vidual substructure fixed boundary node functions (see Eq. (lc)). 

2 

2 3, System Joint i 

1 

S1 
System Reference Frame 

3 

Fig. 3 Joint Reference Frame 
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The generalized coordinate vector, Yr for substructure r can be 

expressed in terms of the system generalized coordinate vector, X, as fol­

lows 

Y =-A X. (5)
r r 

Substituting Eq. (5) into Eq. (Zb) yields the substructure expressions as 

quadratic forms in terms of the system generalized coordinates as follows 

Trr = X* M X, and 

(6) 

V r = X* K r X, 

where 

M A and 
r r (r 

(7) 

K~ -CA 
r : r r r 

Substituting Eqs. (6) into Eqs. (3) yields the following expressions for the system 

kinetic and potential energies: 

T= X MX, and 
(8) 

V =--* 

where 

N 

TMr, and 
r 1 

N 

r=l
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The matrix notation used above is symbolic of the actual operations per­

formed by the Substructure Synthesis program to transform the substructure 

energy expressions from substructure generalized coordinates to the desired 

system generalized coordinates. Trivial arithmetic operations are avoided 

by taking advantage of the sparse characteristics of both the transformation 

and energy matrices. The symmetric properties of Mr, Kr, Mr, Kr, v and 

K are utilized, and only the upper triangular portions are computed. The 

coordinate transformations indicated by Eqs. (7) are performed in a manner en­

suring maximum numerical accuracy and minimum computer execution costs. 

2.2.3 Substructure Generalized Functions 

As discussed in Section 2.2.1, arbitrary "fixed boundary node functions" 

represented by the vectors tpk of Eq. (id) are admitted. 

The zero boundary node motion requirement does not restrict generalized 

function choice, since a complete set of boundary node motion functions ( 'Is) 

are used. That is, suppose it is desired to use a certain function, f, involving 

general motion of the boundary nodes. Some linear combination of the ''s may 

be added to f to generate a function for which all boundary node motions are 

zero. 

In this study, the standard types of fixed boundary node functions are: 

* Undamped free vibrational mode shapes, 

* Arbitrary static displacement finctions, and 

* Uniform acceleration modes. 

Uniform acceleration modes (Whetstone, Ref. 5) are static displacement 

functions produced by inertia loadings corresponding to six independent uniform 

accelerations (3 linear, 3 angular). Functions of this type are especially 

useful if the system consists of a relatively large number of small substruc­

thres, since the total motion of most individual substructures will consist 
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primarily of rigid body motion. Consider, for example, the lateral motion 

of a beam-like structure for which x is a position coordinate directed along 

the longitudinal axis. The total lateral motion of points along the substructure 

is. 

u(x) = U+Rx+f(x), 

where U and R are the displacement and rotation of the origin of the x 

coordinate axis, and f(x) is the deformation of the substructure. Where 

rn(x) is the distributed mass intensity, the lateral inertial forces acting on 

the substructure are proportional to m(x)u(x). If the predominant motion is 

rigid body (i.e., f(x) is small compared to U and Rx), the distributed lateral 

inertia forces are approximately proportional to m(x) + x]. Accordingly, 

displacement functions produced by lateral loadings corresponding to static 

lateral force distributions proportional to (l)m(x), and (Z) x r(x) are excel­

lent substructure generalized functions. For a general substructure, six 

functions of this type are used: three functions corresponding to static dis­

placement fields produced by inertia loadings associated.with constant rigid­

body acceleration in each of three non-parallel directions, and three similar 

functions produced by inertia loads associated with constant rigid -body angular 

acceleration about each of the three non-parallel axes. 

During the course of the study, an investigation was conducted to evaluate 

the relative merits of the substructure generalized functions mentioned above. 

Examples were executed to compare uniform acceleration modes, static dis­

placement functions, and natural vibrational mode shapes. No general con­

clusions could be drawn from the results except that generalized functions 

selection should be governed by the anticipated motion of the substructure in 

the assembled system. It was determined, however, that in most applications 

an adequate set of substructure coordinates were the rigid body functions and 

the functions associated with boundary node motions along with uniform accelera­

tion modes. In almost all comparisons, uniform acceleration modes represented 

substructure behavior as well as, if not better than, natural vibrational modes. 

Since uniform acceleration modes can be generated at a much lower cost than 
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natural modes, it was concluded that they should always be included in a sub­

structure generalized function repertoire. 

2.3 SYSTEM CONSTRAINTS 

Using the complete set of system generalized coordinates represented 

by Eq. (4) to characterize the motions of the assembled system implies that 

all system joints are free to execute six independent motions. The Substructure 

Synthesis program includes provisions for imposing constraints upon selected 

system joint motion components. Two types of constraints are permitted: 

* 	 Complete restraint of explicit system joint motion components, 
and 

* 	 Relative constraints among sets of system joint motion com­
ponents. 

For each explicit system joint motion restraint, the order of the system 

mass and stiffness matrices, i and K of Eqs. (8), is reduced by one, and the 

corresponding term of the system generalized coordinate vector is eliminated. 

Relative joint motion constraints are provided for imposing linear rela­

tions among various joint motion components. For example, consider a set 

of eight system joints lying in a circular plane as shown on Fig. 4a. If motion 

is confined to the plane of the circle, 24 coordinates (two displacements and 

one rotation of each of the eight joints) would be required to represent all 

possible joint motions. Through the use of joint motion relative constraints, 

however, the total number of system degrees of freedom can be substantially 

reduced (e.g., Fig. 4b - 4e), provided that expected system motion is adequately 

represented. This is often of considerable value in systems containing sub­

structures having large numbers of boundary nodes. 

2.4 UNDAMPED EIGENVALUE ANALYSIS 

After the system energy expressions appearing in Eq. (8) are modified 

according to the constraint conditions imposed upon system joint motion 
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Fig. 4 - Relative Joint Motion Constraint Example 
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components, the final form of the system kinetic and potential energies are 

expressed as
 

T = i* M X, and 

(10) 

V = {X KX 

In the absence of dissipative effects and externally applied forces, the Lagrange 

equations yield 

MX+KX = 0. (11) 

Assuming solutions of the form X = Z sin0at yields the usual linear vibrational 

eigenproblem 

2 (2 
o MZ -KZ=0 (12) 

Since an arbitrary selection of generalized coordinate functions occasionally 
results in a dependent set of system equations of motion, a solution procedure 
is incorporated for solving Eq. (12) that eliminates the problem of coordinate 

dependence by automatically "collapsing" the mass and stiffness matrices of 
the system. For instance, if during the eigensolution process it is discovered 

that the Nt h coordinate function is a linear combination of coordinates 1 
through N-I, the Nt h row and column of the system mass and stiffness matrices 

are automatically eliminated, thereby reducing the order of the eigenproblem 
by one. The solution is then continued, eliminating any subsequently encountered 

dependence in a similar manner. 

2.5 DAMPED FORGED RESPONSE ANALYSIS 

The energy dissipation function for a viscously damped assembled system 

is 

F = I*D (13) 
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where D is the system damping matrix, and as discussed in Section 2.4, X 

is the vector of coefficients of the system generalized functions. 

In this study, the forced transient response of an assembled system is 

evaluated using a specified set of the undamped system modes as generalized 

functions. Where q is a vector of coefficients of undamped system modes, 

the transformation from response coordinates to modal coordinates is 

X = E q . (14) 

Columns of E are the particular system modes used as generalized functions. 

Substitution of Eq. (14) into Eqs. (10) and (13) yields the following ex­

pressions: 

T = 2q M 

V = I q, and (15) 

F zq D q, 

where 

M = E ME, 

K = E KE, and (16) 

D E*DED = E'DE 

Where q. is the ith term of q, the generalized force associated with
 

qi is equal to
 

d 8T + F + 8V
+ + 

dtaak 
 a 
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Accordingly from Eqs. (15), 

A. 'N 'N
 
M q + D q+K q= G (17)
 

where G is the vector of generalized forces. 

'N A 
The transformations of Eqs. (16) yield diagonal matrices for M and K 

th 'thinhicin which the i diagonal terms correspond to the generalized mass and stiff­

ness of the system mode associated with the it h term of q. The damping 

matrix D is not diagonal unless D is constructed as a linear combination of 

M and K. 

In many cases the damping properties of individual substructures can be 

obtained more readily than those of the assembled system. Accordingly, the 

system damping matrix, D, is constructed on the basis of the damping char­

acteristics of individual substructures, and the resulting matrix D is, in 

general, not diagonal. 

The system response is evaluated by numerically integrating equations 

of motion in the form of Eq. (17). 

2.5.1 System Damping Matrix 

The total energy dissipation of an assembled system composed of m
 

substructures is expressed as the summation of the energy dissipation of the
 

individual substructures, as follows:
 

m
F 	 E F r (18) 

r~ 1 

where F r is the dissipation function of substructure r. 

F = 	Y DY (9
r 	 r r r (19) 
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where D is the damping matrix for substructure r, and Y is the vector ofr r 

coefficients of substructure generalized functions as discussed in Section 2.2.1. 

The damping matrix for substructure r is expressed as a linear combina­

tion of the individual substructure mass and stiffness matrices, as follows: 

Dr = a I Mr +a 2 K r 	 1 (20) 

where 1 and a2 are constants to be determined, and Mr and K. are the 

substructure mass and stiffness matrices as defined in Section 2.2.1. 

Substitution of Eq. (20) into Eq. (19) yields the following expression for 

the substructure energy dissipation: 

+F Y (a 1 M a2 K) Y (21) 

It is assumed at this point that the generalized damping, and a2 ,a I 

associated with two specific substructure generalized coordinate vectors, 

01 and q'2 , are known. Accordingly, from Eq. (21), the following simultaneous 

equations are derived for a1 and a2 : 

a 1 AI + a2 B1 = a 1 

(22) 

a A2 +a 2 B2 = 2 

where, 	 for j=l,2, 

A =(q' Mr qj, and
3 j 

(23)
Bj (P Kr (P 

Solving Eq. (22) for a, and a 2 , and substituting into Eq. (20), yields the sub­

structure damping matrix, Dr ' 
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In the Substructure Synthesis program, the coordinate vectors, (P, 

and qP9 , may correspond to any two designated substructure vibrational 

modes calculated by the program relative to a specified set of boundary node 

constraint conditions,. Individual eigenvalue analyses are performed for each 

substructure contributing to the system damping. Consequently, the terms 

All A2 , BI, and B2 of Eq. (22) correspond to the generalized mass associated 

with Tand 2, and the generalized stiffness associated with 0 and '1 

respectively. 

The substructure coordinates may be transformed to system coordinates 

by the following expression 

Yr A X (24) 

where A r is determined from A of Eq. (5), according to the constraintr r
 
conditions imposed upon system joint motion components.
 

Substitution of Eq. (24) into Eq. (19) yields 

F =XDX , (Z5) 

where
 

D A D A 
r r r r
 

Accordingly, substituting Eq. (Z5) into Eq. (18) and comparing with Eq. (13) 

yields the system damping matrix, 

m 
D -. (26) 

i=l1 
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2.5.2 Numerical Integration Method 

Determination of the system response involves integration of matrix 

equations of the form 

/'N o -'N. 'N
 
Mq+Dq+Kq = G , (27)
 

where q is the system coordinate vector representing coefficients of free 

undamped system vibrational modes. As discussed in Section 2.3, M and K 

are diagonal matrices and D is, in general, completely full. 

The numerical integration procedure used in the program is a matrix 

Taylor series expansion method developed by Whetstone (Ref. 6), which has 

been used in a number of structural dynamics applications in recent years. 

The basis of this procedure is outlined below. 

Matrix series expansions of the vectors q and q in powers of the time 

increment A are: 

A2 
q(t+ A) = q(t) +A 4(t) + -T 

4(t+ A) = 4(t)+A(t)+ - qt)+... 

Equation (27) may be rewritten as 

= Aq+B4+n , (29) 

where 

A=M D, B M K, andiM G (30) 
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From Eq. (29), 

and I]. 

higher derivatives of q may be expressed in terms of q, 

q A~j + B4j + 

=A (Aq + Bq + r)) + B4j + 

2
(A + B)4+AB q+Ai +n 

=(A +B) (A4+Bq+ I)+AB q+Afl+ 

(BA2 + B) A±+AB] 4 +(A?2 +B) Bq+ (A' + B)t + A* + 

etc. In general, 

(n) 
q Rnq+ Pnq+ Pn-l + Pn--Z + "+P 

(n-2) 

1 (31) 

Since 
(n+1) 

q = Rnq+ Pn(A4+Bq+ti)+ Pnl + P nZ . 
(n-i) 

The recursion formulae for P and R 

P n+1 

are 

P A + R n 

R n+l = PB, (32) 
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beginning with 

PI = I (identity matrix) 

and R 1 = 0 (zero matrix). (33) 

Substitution of Eq. (31) into (28) yields: 

q (t + A) = q(t) + Aq(t) 

+ 4-- [RZq(t) + PZ(t) + P1(t)W 

+AT R3qt + P3 4(t) + P2 (t) + P (t) 

+ 4! [R 4 q(t) + P 4 i(t) + P 3 71(t) + P2' + PlY(t)J + .. 

q(t + A) = q(t) 

+ A 

+ 

z, 

+,[ 

jRZq(t) + P?4(t) + PIT)(t)j 

1 R 3 q(t) + P 3 (t) + P2 + 1 

3, 3q]t 

R4 q(t) + P 4 q(t) + P 3 'n(t) + P 2 

] 

(t) + Pli(t)] + .... 

(34) 
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or, for an -term expansion, 

q(t + A) W I w 1 2  q(t) 

+ A) S(t w 21 W5 i( 

N10 N 1..... N, (t) 

N2 0  N21 . . . . N2, -2t) 

where 

WI = I+ 
11n=2 

E A7 
nzI n 

,n 

Rfn12 W 

(i-z) 
Q(t) 

In=l Ln 

pn 
P' 

(35) 

W1= 

n= 1 

2-1An 

nn- Rn+I' Vr22 =I 

P-1 

+ 

n=1 

I
n 

Pn+ 

and, for j=O, 1, 2.....­ 2, 

Ij 

n=j+2 

n!n'- Pn-j-1 

J 
M-I 

Nzj = 

n=j+ I 

Pn-j(36) 
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Since the W and N matrices are not functions of time, they need be evaluated 

only once (at the beginning of the solution process); provided that a constant 

time interval, A, is used. Equation (35) can then be used to calculate the 

solution step-by-step in time. One advantage of this method is that it permits 

economical use of high-order approximations, which allows relatively long 

time increments.. That is, unless the higher derivatives of Q become very 

complicated to evaluate, the time required to carry out an integration step 

using a sixth order approximation (ie., 1=6) is typically only about 50% greater 

than the time required to effect one step of a third order approximation (1=3). 

In the Substructure Synthesis program, the forcing function, G, is assumed to 

be a piece-wise linear function in time, so that all derivatives of G higher 

than G vanish. Consequently, high-order approximations may be used to 

accurately evaluate W and N matrices with no increase in the time required 

to perform the integration step. 
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Section 3 

COMPUTER PROGRAMS 

3.1 SUBSTRUCTURE FUNCTION GENERATOR PROGRAM 

An accurate representation of the characteristics of individual substruc­

tures is probably the single most important factor in the analysis of a compli­

cated system. During this study a digital program was developed for calculating 

generalized coordinate functions for substructures modeled as networks of 
basic finite elements. The program, which is a modification of the dynamic 

analysis version of the Lockheed developed Structural Network Analysis 

Program, SNAP (Ref s. 1 - 4), provides an extremely fast and accurate means 

of computing any desired set of static or dynamic generalized functions for a 

substructure composed of basic finite elements. The program constructs 

substructure mass and stiffness matrices expressing the kinetic and potential 

energies as quadratic forms in coefficients of the generalized functions. 

For substructure modeling the program contains the following finite 

element formulations: 

" 	 General symmetrical and non-symmetrical Timoshenko beam 
elements including shear and torsional effects, 

* 	 Isotropic, orthotropic, and aeolotropic triangular and- quadri­
lateral membrane and bending elements. 

The computer execution costs achieved by the basic solution routines 

of the program are very close to the minimum that can possibly be attained 

using direct solution procedures. This factor is extremely impdrtant in 

generating functions of large complicated substructures. The program's 
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"size" capacity, e.g., the allowable number of degrees of freedom, etc., is 

extremely large (approximately 12,000 d. o. f. ), and the number of finite 

elements is virtually unlimited. Detailed checks of the numerical accuracy 

associated with the evaluation of every displacement vector are automatically 

executed. There are three checks: (1) a strain energy-external work com­

parison; (2) a total applied force/reaction comparison; and (3) an equilibrium 

check at all joints. The results of these checks should be carefully analyzed 

in all executions, since significant numerical error (usually the result of some 

elements having certain terms in their stiffness matrices much larger than 

corresponding terms in stiffness matrices of elements to which they are con­

nected) is not an uncommon occurrence and may not be apparent from inspec­

tion of the displacements or energy arrays alone. Options are included for 

automatically executing an iterative accuracy improvement procedure and for 

using double precision arithmetic as means of overcoming accuracy problems. 

The Function Generator program has three optional procedures for 

calculating terms of the substructure mass matrix, Mr, of Eq. (1). The 

available options are: (1) the lumped mass method, with distributed structural 

and 	nonstructural mass lumped automatically by the program; (2) the consistent 

mass matrix method (available only for beams and certain membrane elements); 

and (3) a "pseudo-consistent" mass matrix method which is more economical 

computer-wise, but less accurate than the consistent mass matrix method 

(this method is sufficiently accurate in most applications). Nonstructural 

lumped masses are also allowed. 

The generalized function repertoire created automatically by the Function 

Generator progrim includes 

* 	 Rigid body functions. Six rigid body functions are created as 
discussed in Section Z.Z.1. 

* 	 Boundary node motion functions., For a substructure with n 
boundary nodes, 6(n-1) functions of this type are created. 
Each function is calculated by applying a unit motion to the 
appropriate boundary node with all other boundary node motions 
identically equal to zero. 
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* 	 Uniform acceleration modes. Six functions of this type are
 
automatically generated by the program as discussed in
 
Section 2.2.3 with all boundary node motion components
 
identically equal to zero. 

Also included (optionally) are fixed boundary node functions corresponding 

to arbitrary static loadings and/or undamped vibrational modes. 

The user's manual for the Substructure Function Generator program is 

included in Appendix A. 

3.Z SUBSTRUCTURE SYNTHESIS PROGRAM 

As discussed in Section 2, the Substructure Synthesis program contains 

provisions for: (1) determining the undamped modes and frequencies of the 

assembled system, (2) constructing a system damping matrix based on the 

energy dissipation characteristics of individual substructures, and (3) performing 

a damped transient response analysis of the system. The program is arranged 

in a modular fashion, so that routines can be added for handling substructure 

representations in formats other than those supplied via data files created by 

the Function Generator p'rogram (e.g., from test data). 

The matrix notation used in Section 2.2.2 only symbolically represents 

the computations performed by the Synthesis program in forming system mass 

and stiffness matrices. The transformation matrix, Ar, of Eq. (5) is never 

created in its entirety. Only the non-zero parts of the upper triangular 

portions of the substructure mass and stiffness matrices are used in trans­

forming from individual substructure coordinates to system coordinates. During 

the processing of substructure data, individual terms of the system mass and 

stiffness matrices are accumulated in a core-buffer file and eventually stored 

on a secondary storage unit (drum, disc, or magnetic tape) as the buffer is 

filled. Consequently, the degree-of-freedom limitation of the program is 

imposed only by the full-matrix eigenproblem solution routines incorporated 

in the program (Cholesky/Householder). The program is arranged such that 

these routines can be easily replaced, if necessary, by routines with a larger 

size 	capacity. 
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Development of response routines to accommodate a wide variety of 

types of forcing functions was beyond the scope of this study. Forcing func­

tions used in the response analysis are limited to point forces and moments, 

specified'as piecewise linear functions of time, acting at system joints. The 

routines developed for performing the numerical integration procedure outlined 

in Section 2.5.2 are specialized for this type of forcing function. However, 

the program can readily be modified to accommodate virtually any forcing 

function form. All information required to handle distributed loading is 

available in existing internally-gene rated data files. 

All matrix transformations performed by the Substructure Synthesis 

program are carried out in double precision to insure maximum accuracy. 

A user' s manual for the Substructure Synthesis program is included in 

Appendix B. 

3.3 SUBSTRUCTURE DATA FILES 

Communication between the Substructure Function Generator and 

Synthesis programs is accomplished by means of substructure data files which 

are created by the Function Generator program and read as input by the Synthesis 

program. These data files contain all the information required to represent 

the substructures in a system analysis. Magnetic tape, drum or disc units, 

or punched cards may be used to store a substructure data file. 

The 	content of a substructure data file is outlined below: 

* 	 An alphanumeric description of the substructure. This descrip­
tion is used to identify the substructure throughout the Synthesis 
program printout, 

* 	 The total number of nodes in the substructure, 

* 	 The number of and identification of boundary nodes, 

* 	 The number of fixed boundary node functions, 

* 	 "Position coordinates relative to the substructure reference frame 
of all nodes, 
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" 	 Nodal displacement vectors associated with the six rigid body 
functions, 

* 	 Nodal displacement vectors associated with the boundary node 
motion functions, 

* 	 Nodal displacement vectors associated with the six uniform 
acceleration modes, 

* 	 Nodal displacement vectors associated with the other fixed 
boundary node functions, 

* 	 The upper triangular portion of the substructure mass matrix, 
and 

* 	 The upper triangular portion of the substructure stiffness matrix. 
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Section 4 

RESULTS
 

A magnetic tape containing the Substructure Function Generator and 

Synthesis programs was delivered to the NASA Contracting Officer Representa­

tive. The programs are coded in Fortran IV and are compatible with the MSFC 

Univac 1108 system. The tape contains complete files of the symbolic, re­

locatable, and absolute elements for the programs. Also included are several 

example problem data elements which demonstrate proper program usage. 

A lengthy presentation of numerical solutions computed with the programs 

is not within the scope of this report. Execution of the data elements included 

on the tape will produce several complete numerical examples. However, 

results for one typical example are presented below. An early Space Shuttle 

launch configuration is illustrated on Fig. 5. Each vehicle was a substructure 

in the system model. Two system joints interconnected the two substructures. 

The forward joint lies on the symmetry plane, and the aft joint lies off the 

symmetry plane. A half-model on one side of the symmetry plane was used 

to obtain the symmetric modes of the system. The fifteen generalized coordi­

nates used to characterize system motion were: 

* 	 Three motion components (Z displacements, 1 rotation) of the 
forward system joint, 

* 	 Six motion components of the aft system joint, and 

* 	 Coefficients of the first three symmetric vibrational modes of 
each substructure, corresponding to zero boundary node motion. 

Table 1 presents a comparison of the frequencies of the first five symmetric 

elastic modes obtained with the Substructure Synthesis program with results 

obtained with the SNAP/Dynamics program. 
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Table 1
 

FREQUENCY COMPARISON
 

Elastic Mode Substructure Frequency SNAP/Dynamics 
Frequency 

1 2.3179 cps 2.3329 cps 

2 2.6994 cps 2.6488 cps 

3 4.1891 cps 3.8209 cps 

4 4.4330 cps 4.2454 cps 

5 6.9777 cps 6.2128 cps 

The fact that the first mode computed by the Synthesis program is 

slightly lower than that computed by the SNAP/Dynamics program is attributed 

to some small differences in the basic finite element nets employed in the two 

analyses. 

The effects of substructure number and size and substructure generalized 

function selection were investigated during the course of the study. As discussed 

in Section 2.2.3, no general conclusions could be drawn from the results. 

Models composed of a small number of large substructures require more 

generalized functions per substructure than models composed of a large number 

of small substructures. It is generally best to use as many substructures as 

possible. If small substructures are used, it is often sufficient to use only 

uniform acceleration modes as substructure fixed boundary node functions, 

avoiding the expense of computing vibrational modes. In almost all comparisons, 

uniform acceleration modes represented substructure behavior as well as, if 

not better than, vibrational modes. Since uniform acceleration modes can be 

computed at a much lower cost than vibrational modes, they are always in­

cluded in the substructure data files generated by the Function Generator pro­

gram. 
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Appendix A
 

SUBSTRUCTURE FUNCTION GENERATOR PROGRAM
 

USER'S MANUAL
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PART I
 

GENERAL PROGRAM INFORMATION
 

THIS MANUAL DESCRIBES THE INPUT DATA REQUIREMENTS FOR THE LOCKHEED/
 

HUNTSVILLE DEVELOPED SUBSTRUCTURE FUNCTION GENERATOR PROGRAM* THE
 
PROGRAM IS A MODIFICATION OF THE V70E VERSION OF THE -LOCKHEED
 
SNAP/DYNAMICS PROGRAM, AND THE INPUT DATA DESCRIBED HEREIN ONLY
 

SUPPLEMENTS THE DATA REQUIRED BY SNAP/DYNAMICS AS DESCRIBED IN THE
 

SNAP/DYNAMICS USER'S MANUAL, REF. 4. THE PROGRAM IS INTENDED FOR 

USE ONLY BY PERSONS FAMILIAR WITH THE FORMULATIONS AND TECHNIQUES 

UOONI WHICH MOTH TH. SNAP/DYNAMI'CS AND SURSTRUCTURF ANALYSES ARE 
RASED.
 

THIS MANUAL ONLY DESCRIBES THE INPUT DATA WHICH MUST BE SUPPLIED IN
 

ADDITION TO (AND IN SOME INSTANCES, IN PLACE OF) THE DATA REQUIRED
 

BY THE SNAP/DYNAMICS PROGRAM, AND IT CANNOT BE USED WITHOUT A COPY
 

OF THE SNAP/DYNAMICS USER'S MANUAL AT HAND.
 

THE PURPOSE OF THE FUNCTION GENERATOR PROGRAM IS TO CREATE AND STORE
 
ON A DATA FILE INFORMATION THAT IS SUBSEQUENTLY USED BY THE SUBSTRUCTURE
 
SYNTHESIS PROGRAM TO CHARACTERIZE SUBSTRUCTURE BEHAVIOR IN AN ASSEMBLED
 

SYSTEM. THE SUBSTRUCTURE INFORMATION PRIMARILY CONSISTS OF A SET
 

GFNERALIZED DISPLACEMENT FUNCTIONS AND A MASS AND STIFFNESS MATRIX
 

EXPRESSING THE KINETIC AND POTENTIAL ENERGIES OF THE SUBSTRUCTURE AS
 
QUADRATIC FORMS IN COEFFICIENTS OF THE GENERALIZED FUNCTIONS.
 

A SUBSTRUCTURE REFERFNCF FRAME IS ASSOCIATED WITH THE SUBSTRUCTURE
 
AND Is REFERRED TO AS THE GLOBAL REFERENCE FRAME THROUGHOUT THE
 

SNAP/DYNAMICS USER'S MANUAL.
 

A SUB-SET OF THE SUBSTRUCTUREIS NODES ARE DECLARED BOUNDARY NODES BY
 

THE ANALYST THROUGH INPUT CARDS. BOUNDARY NODES ARE THE NODES
 
THROUGH WHICH THF SUBSTRUCTURE IS CONNECTED TO OTHER SUBSTRUCTURES
 

BY THE SUBSTRUCTURE SYNTHESIS PROGRAM (SEE APPENDIX B).
 

THE FUNCTION GENERATOR PROGRAM GENERATES FIVE DISTINCT GROUPS OF
 
SUBSTRI-CTURE GENERALIZED FUNCTIONS. SOME OF THE GROUPS ARE GENERATED
 

AUTOMATICALLY, AND SOME ARE OPTIONALLY COMPUTED ACCORDING TO INPUT
 

DATA. THE FIVE GROUPS OF FUNCTIONS ARE LISTED BELOW IN THE ORDER
 

THEY ARE COMPUTED BY THE 0 ROGRAM. EACH FUNCTION GROUP IS REFERRED
 

TO BY ITS CORRESPONDING GROUP NUMBER IN SUBSEQUENT INPUT DATA
 

GROUP NO. FUNCTION TYPE
 

1 
 RIGID BODY FUNCTIONS. SIX FUNCTIONS ARE AUTOMATICALLY
 
COMPUTED, THREE RIGID BODY DISPLACEMENTS IN DIRECTIONS
 
PARALLEL TO THE AXES OF THE SUBSTRUCTURE REFERENCE
 
FRAME, AND THREE RIGID BODY ROTATIONS ABOUT THE AXES
 
OF THE SUBSTRUCTURE INTRINSIC REFERENCE FRAME (THE ORIGIN
 

OF THE INTRINSIC REFERENCE FRAME IS LOCATED AT BOUNDARY
 

NOOF ONE AND ITS AXES ARE PAPRALLEL TO THE AXFS OF TH-


SUBSTRUCTURE REFERENCE FRAME).
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P BOUNDARY NODE MOTION FUNCTIONS. FOR A SU9STRUCTUPE WITH 

N BOUNDARY NODES, 6*(N I) FUNCTIONS APE COMPUTED 
AUTOMATICALLY. THE' FUNCTIONS CORRESPOND TO THREE UNIT 
DISPLACEMENTS AND THREE UNIT ROTATIONS APPLIED SEPAPATELY 
TO BOUNDARY NODES 2 THRU N WITH ALL OTHER BCUNDARY NODE 
MOTIONS IDFNTICALLY EQUAL TO ZERO. 

3 UNIFORM ACCELERATION MODES. SIX FUNCTIONS ARE COMPUTED 
AUTOMATICALLY WITH ALL BOUNDARY NODE MOTIONS IDENTICALLY 
EQUAL TO ZERO. A DESCRIPTION OF UNIFORM ACCELERATION 

MODES IS PRESENTED IN SECTION 2.2.3 OF THE MAIN TEXT. 

4 STATIC FUNCTIONS (COMPUTED WITH ALL BOUNDARY NODES FIXED). 
FOR EACH FUNCTION. A LOADING CORRESPONDING TO POINT 
FORCES AND MOMENTS ACTING THROUGH SUBSTRUCTURE NODES 
MUT BE SUPPLIED BY CARD INPUT. 

5 VIBRATIONAL MODES (COMPUTED WITH ALL BOUNDARY NODES FIXED). 
AS IN THE SNAP/DYNAMICS PROGRAM, THE VIBRATIONAL MODES ARF 
CALCULATED USING A METHOD ANALOGOUS TO THE STODOLA 
METHOD OF BEAM ANALYSIS. A RAYLEIGH-RITZ ANALYSIS IS 
PERFORMED TO OBTAIN THE INITIAL APPROXIMATIONS FOR 

THE SUBSTRUCTURE MODES. GENERALIZED FUNCTIONS USED 
IN THE PAYLEIGH-PITZ ANALYSIS APE OBTAINED FROM TWO 
SOURCES4 (1) ANY OF THE FUNCTIONS APPEARING IN GROUPS 
1I2,3,OR 4 MAY BE USED IN ADDITION TO. (2) STATIC 
DISPLACEMENT FUNCTIONS COMPUTED BY THE PROGRAM, BASED 
ON STATIC LOADINGS SUPPLIED BY THE USFR. 

A-2
 



LMSC-HREC D225003
 

PART 2
 

INPUT PPOUIRFMENT DIFF=PFNCES
 

BETWEEN
 
SNAP/DYNAMICS AND FUNCTION GENERATOR PPOGPAMS
 

A FUNCTION GENERATOR PROGRAM DATA DECK IS IDENTICAL TO A V70E
 
sNAP/DYNAMICS DATA DECK THROUGH THE 'PLOT SPECIFICATION DECK'
 
(PARAGRAPH F, PAGE 1-9, SECTION I OF SNAP/DYNAMICS VYOE USER'S
 

MANUAL), WITH THE FOLLOWING EXCEPTION.
 

ADDITIONAL DRUM UNIT ASSIGNMENTS APE REQUIRED. THE FOLLOWING
 

CARD SHOULD APPEAR IN THE DATA DECK IMMEDIATELY FOLLOWING
 
THE TWO CARDS DEFINING THE 17 DRUM UNITS REQUIRED BY
 

SNAP/DYNAMICS.
 

LIST= CNUNIT(I).Ir18,21)
 
FOPMAT(4TcT)
 

USAGE OF THE ADDITIONAL UNITS IS SUMMARIZED BELOW. NUNIT(I)
 
IS THE LOGICAL UNIT NUMBER ASSIGNED TO 'UNIT' I.
 

UNIT 	 USAGF
 

18 	 FORCE VECTOR FILE. LENGTH= 6*JT*NGEN. WHERE JT IS THE
 

TOTAL NUMBER OF JOINTS, AND NGFN IS THE NUMBER OF
 
GENEPALIZED FUNCTIONS TO HF COMPUTED.
 

19 	 DISPLACEMENT VECTOR FILE AND TEMPORARY MATRICES STORAGE.
 

SI7E REQUIREMENTS WILL BE THE LARGEST OF 6*JT*NGEN OR
 

NGEN* (NGEN+ I) 

20 	 ELEMENT DEFORMATION FILE (USED ONLY IF DIAGONAL MASS
 

MATRIX OPTION IS NOT IN EFFECT).
 

LENGTH= NGFN*(13*N2+ 19*N3+ 29*N4)4 WHEPE N24 N3 AND
 

N4 ARE THF NUMBER OF 2. 3. AND 4-NODE ELEMENTS IN THE
 

SUBSTRUCTURE MODEL.
 

Pi 	 FILE USED FOR TEMPORARY STORAGE OF MASS AND STIFFNESS
 
MATPTCFS.' LFNGTH= NGEN*(NGEN+1).
 

PARAGRAPH F. PAGE 1-94 SECTION 1 OF THE SNAP/DYNAMICS V7OE USER'S
 
MANUAL IS REPLACED BY THE FOLLOWING
 

F. FUNCTION GENERATOR OUTPUT OPTIONS ARE SPECIFIED NEXT
 

LIST= (KOPT(I) 1=1,3)
 
FOPMAT(3I ,)
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THE OUTPUT INDICATED BELOW IS CAUSED BY VALUES GREATER THAN ZERO OF THE
 
ASOCIATFD OPTIONca
 

I 	 RFSULTING OUTPUT IF KfPT(l).GT.O
 

1 	 JOINT DISPLACFMFNT VECTORS AND ASSOCIATED FORCF VECTORS
 
ARE DISPLAYED AT THE END OF THE PROGRAM PRINTOUT FOR ALL
 

GFNIFPATE) FUNCTIONS. 

p 	 THE SUBSTRUCTURE MASS MATRIX IS PRINTED. 

3 	 THE SUBSTRUCTURE STIFFNESS MATRIX IS PRINTED.
 

G. IDENTIFICATION OF THE NUMBER AND TYPE OF GENERALIZED FUNCTIONS 
TO BR 'tOMPUTFO FOLLOWS 

LIST= NSTATIC, NMODES, NROUND. NAPPOX
 

FnoMAT(4T )
 

NSTATIC IS THE NUMBER OF STATICALLY LOADED FUNCTIONS TO BE INCLUDED
 

IN FUNCTION GROUP 4. NMODES IS THE NUMBER OF VIBRATIONAL MODES
 
COMPUTED IN THE STODOLA ANALYSIS TO BE INCLUDED IN THE GENERALIZED
 
FUNCTION GROUP S. NBOUND IS THE NUMBER OF SUSTRUCTURE NODES TO BE
 
SUBSEQUENTLY DECLARED BOUNDARY NODES. NAPROX IS THE NUMBER OF GENERALIZED
 
FUNCTIONS TO BE USED IN THE RAYLEIGH-RITZ ANALYSIS FOR DETERMINING
 
INITIAL APPROXIMATIONS FOR THE VIBRATIONAL MODES. IF NMODES=O,
 
NAPPOX IS AUTOMATICALLY SET EQUAL TO ZERO. NAPROX SHOULD TYPICALLY
 

ASSUMr A VALUE OF AT LEAST 2*NMODES. 

H. THREE COMPONENTS OF A PROBLEM DEFINITION DECK ARE READ NEXT AS 
SUMMARIZED BELOW, IN THE ORDER IN WHICH THEY APPEAR IN THE DATA 

DECK. 

SFCTION IN WHICH
 
FORMAT IS
 

DEFINEr 	 DESCRIPTION
 

2.l 	 OUTPUT CONTROL
 

3.2 	 FUNCTION CONTROL (NOTE THE COMMENTS DISCUSSED IN
 
PART 3 CONCERNING SECTION 3.2 OF THE SNAP/DYNAMICS
 

USFPS MANUAL5
 
3.2 	 LUMPED MASS DATA
 

I. IDENTIFICATION 	OF THE BOUNDARY NODES IS READ NEXT ACCORDING TO
 

THE FOLLOWING LIST AND FORMAT.
 

LIST= (NODBND(I)fI=INBOUND)
 
FfPMAT(141 )"
 

NODBND(I) IS THE JOINT NUMBER IDENTIFIED AS THE I-TH BOUNDARY NODE.
 
NBOUND WAS PREVIOUSLY INPUT ACCORDING TO PARAGRAPH G ABOVE.
 

J. NSTATIC FORCING FUNCTIONS ARE READ NEXT. THE CORRESPONDING
 
DISPLACEMENT FUNCTIONS MAKE UP THE GENERALIZED FUNCTION GROUP 4.
 

IF NSTATIC=n, NO CARDS APPEAR FOR THIS DATA. THF LIST AND FORWAT
 
REQUIRED FOR EACH STATIC LOADING IS DISCUSSED IN SECTION 3.4
 
(NOTE THE COMMENTS DISCUSSED IN PART 3 CONCERNING SECTION 3.4
 

OF THF :NAO/DYNAMICS MANUAL).
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K. IDENT-IFICATION OF THF FUNCTIONS USED AS GENERALIZED COORDINATES
 

IN THE INITIAL APPROXIMATION RAYLEIGH-RITZ ANALYSIS APPEARS NEXT.
 

IF NMODES AND/OR NAPPOX IS SPECIFIED ZERO ACCORDING TO PARAGRAPH
 

G ABOVE, NO INITIAL APPROXIMATION DATA IS READ. ANY OF THE
 
PREVIOUSLY COMPUTED SUBSTRUCTURE GENERALIZED FUNCTIONS BELONGING
 

TO GPOUPS I THPU 4 CAN HE USED AS PAYLEIGH-RITZ FUNCTIONS ALONG
 

WITH ADDITIONAL FUNCTIONS CORRESPONDING TO STATIC LOADINGS
 

SUPPLIFD BY THE ANALYST VIA INPUT DATA CARDS. FUNCTIONS BELONGING
 

TO GROUPS I AND 2 (RIGID BODY AND BOUNDARY NODE MOTION FUNCTIONS)
 
-

SHOULD NOT BE USED AS RAYLEIGH-PITZ GENFRALIZED FUNCTIONS, 


HOWEVER. FUNCTIONS BELONGING TO GROUPS 3 AND 4 (UNIFORM ACCELERATION
 

MODES AND STATIC FUNCTIONS) MAY BE USED EXTENSIVELY. THE LIST
 

AND FORMAT IDENTIFYING THE RAYLEIGH-RITZ FUNCTIONS FOLLOWS.
 

LIST= (NF(I),NG(I).I=INARROX)
 
FOPMAT(14(13.11))
 

FUNCTION NF(I) OF GROUP NG(I) WILL BE USED AS THE I-TH RAYLEIGH-RITZ
 

FUNCTION. FOR INSTANCE. IF NF(4)=2 AND NG(4)=3 THE SECOND UNIFORM
 

ACCELERATION MODE WILL BE USED AS THE 4TH FUNCTION. IF NG(I)=O.
 

THE I-TH FUNCTION IS CALCULATED ACCORDING TO A STATIC LOADING
 

SUPPLF) VIA INPUT DATA CARDS.
 

A SET OF STATIC LOADING DEFINITION DECKS FOLLOW- ONE DECK MUST
 
APPEAR FOR EACH ZERO VALUE SPECIFIED ABOVE FOR NG(I). THE LIST
 

AND FORMAT REQUIRED FOR EACH STATIC LOADING IS DISCUSSED IN SECTION
 

3.4 (NOTE THE COMMENTS DISCUSSED IN PART 3 CONCERNING SECTION 3.4
 

OF TH SNAP/DYNAMICS MANUAL).
 

L. THE STODOLA PROCESS CONTROL CARDS DISCUSSED IN SECTION 3.5
 

ARE READ NEXT. THESE CARDS APPEAR ONLy IF NMODES DISCUSSED IN
 

0APACRAPH n IS GPFATFP THAN ZFPO.
 

M. THE LAST TWO CARDS OF THE DATA DECK ARE READ NEXT. 

LIST= KTAPE
 
FORMAT( I5)
 

KTAPE IS THE LOGICAL UNIT NUMBER ASSIGNED TO THE SUBSTRUCTURE
 

DATA FILE. KTAPE CAN IDENTIFY A MAGNETIC TAPE. DRUM UNIT. OR
 

PUNCHED CARDS (KTAPE=7 FOR PUNCHED OUTPUT).
 

LIT= (SUPID(I),I=I,12)
 

FORMAT(IPA6)
 

SUBID IS AN ALPHA-NUMERIC IDENTIFICATION OF THE SUBSTRUCTURE. IT
 

IS PLACED AT THE BEGINNING OF THE SUBSTRUCTURE DATA FILE AND USED
 

TO IDENTIFY THE SUBSTRUCTURE THROUGHOUT THE SUBSTRUCTURE SYNTHESIS
 

PROGRAM PRINTOUT.
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PART 3 

COMMENTS CONCERNING
 
PROPER PROGRAM USAGF
 

THE FOLLOWING COMMENTS ARE PERTINENT TO THE USE OF THE SNAP/DYNAMICS
 

usER'q MANUAL IN PPEPARING A DATA DFCK FOR THE SUBSTRUCTURE FUNCTION
 

GENERATOR PROGRAM. THE COMMENTS ARE ARRANGED BELOW ACCORDING TO THE
 

SECTION OF THE SNAP/DYNAMICS USER'S MANUAL TO WHICH THEY PERTAIN.
 

SFCTTON P.4.
 

NON-ZERO VALUES OF JPEF ARE NOT ALLOWED FOR JOINTS THAT ARE USED
 

AS SUBSTRUCTURE BOUNDARY NODES. IT IS ASSUMED IN THE SUBSTRUCTURE
 

SYNTHESIS PROGRAM THAT THE BOUNDARY NODE-MOTION FUNCTIONS CORRESPOND
 

TO DISPLACEMENTS AND ROTATIONS IN DIRECTIONS PARALLFL TO THE
 

cL19STPUCTUPE RFFFPFNCF AXS.
 

zFCTION P.=. 

ALL BOUNDARY NODES MUST RE RESTRAINED WITH A (KC(K)=2.K=I,6)
 

SPECIFICATION. THIS TYPE RESTRAINT IS REQUIRED FOR CALCULATION
 

OF THE BOUNDARY MODF MOTION FUNCTIONS.
 

SFCTION 3.?. 

GMASS IS THE VALUE OF GENERALIZED MASS CONTROLLING NORMALIZATION
 

OF ALL GENERALIZED DISPLACEMENT FUNCTIONS.
 

KF TOD, IAPROX*' AND NFREE ARE IGNORED BY THE FUNCTION GENEPATOR
 

PROGRAM. KEPITZ GOVERNS THE KINETIC ENERGY REPRESENTATIONS FOR
 

ALL CALCULATIONS, A RAYLEIGH-RITZ ANALYSIS IS ALWAYS PERFORMED
 
TO OBTAIN INITIAL APPROXIMATIONS FOR THE VIBRATIONAL MODES, AND
 

THE NATURE OF THE FUNCTIONS CALCULATED BY THE PROGRAM DRECLUDES
 

ANY SPFCIFICATION FOP NFREE.
 

RFCTION 3.4.
 

THE ONLY PART OF SECTION 3.4 PERTINENT TO THE FUNCTION GENERATOR
 

PROGRAM ARE THE LIST AND FORMAT CONTROLLING INPUT OF ONE STATIC
 

LOADING DEFINITION. ANY NUMBER OF CARDS, EACH IN THE FORMAT
 

INDICATED IN SECTION 3.4s MAY APPEAR IN A STATIC LOADING DECK.
 

EACH DECK IS TERMINATED BY A BLANK CARD. IN THE FUNCTION
 
GENERATOR PROGRAM. APPROPRIATE DATA IS READ DEFINI'NG THE NUMBER
 

OF STATIC LOADING DEFINITION DECKS TO BE READ. CONSEQUENTLY,
 

A RLANK CARD DOES NOT FOLLOW THE LAST DECK.
 

THE COMMENTS IN SECTION 3.4 PERTAINING TO RESTARTED RUNS DO NOT
 

APPLY TO THE FUNCTION GENERATOR PROGRAM.
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SECTION 3. . 

THE NUMPEP OF VIBPATIONAL MODES INCLUDED IN A SUBSTRUCTURE DATA 

FILE MAY BE LESS THAN THE NUMBER OF MODES CALCULATED BY MEANS 

OF THE STODOLA ANALYSIS. THE VARIAALF NMODES DISCUSSED IN 

PARAGRAPH G OF RAPT 3 DEFINES THF NUMBER OF MODES TO BE 
INCLUDED IN THE DATA FILE. THESE MODES WILL BE EXTRACTED FROM
 

THOSE COMPUTED IN.THE STODOLA ANALYSIS. SO THAT THE NUMBER OF
 

STODOLA PROCESS CONTROL CARDS MUST AT LEAST EQUAL NMODES.
 

C=CTION 4.
 

FUNCTION GENERATOR PROGRAM RUNS CANNOT BE RESTARTED IN THE
 

SAME MANNER AS SNAP/DYNAMICS RUNS. THE DATA DISCUSSED UNDER
 

PART 'A# OF SECTION 4 IS THE ONLY INFORMATION WRITTEN ON A
 

RESTART TAPE BY THE PROGRAM. CONSEOUENTLY. ALL DATA BEGINNING
 
WITH THAT DISCUSSED UNDER PARAGRAPH F OF PART 2 OF THIS MANUAL
 

MUST APPEAR IN A FUNCTION GERERATOP PROGRAM DATA DECK.
 

C CT!ON .
 

SOLUTION DATA OUTPUT TAPES ARE NORMALLY NOT REQUESTED INt A
 
FUNCTION GENERATOR PROGRAM RUN. IF THE TAPE IS CREATED, THE
 

INFORMATION DISCUSSED IN SECTION 5 IS WRITTEN ON THE TAPE ONLY
 

FOR THF VIRATIONAL MODES COMPUTED DUPING THF FUNCTION
 

GFNEPATION.
 

CFCT!ON s,.
 

THIS SECTION IS NOT APPLI'CABLE TO THE FUNCTION GENEPATOR PROGRAM4.
 

APPENDIX A.
 

ADDITIONAL TAPE AND DRUM ASSIGNMENTS ARE REQUIRED A' FOLLOWS
 

*ASG,T 26,TXXXXX . SOLUTION DATA TAPE (KTAPE) 

IRFWIND 26 

*ASG,T R7,F2/l/TRK/9OO • TEMPORARY DATA FILE 
'AqGT 28qF2/1/TRK/O0 . TEMPORARY DATA-FILE 

'ASG,T ?C,F?/I/TRK/900 . TFMDORAPY DATA rILE 

'ASG,T 30,F2/1/TRK/90O . TEMPORARY DATA FILF
 

THE ADDITIONAL TEMPORARY DATA FILE ASSIGNMENTS CORRESPOND TO THE
 

FOLLOWING INTERNAL UNIT DESIGNATIONS (SEE PART 3)
 

I NUNIT(I)
 

1 27 
Q 28
 

PO pc 

21 30 
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APPFNDIX R.
 

ADDITIONAL DRUM UNIT ASSIGNMENTS ARE REQUIRED. AND A CARD MUST
 
BE INSERTED IMMEDIATELY AFTER THE SNAP/DYNAMICS DRUM UNIT ASSIGNMENTS
 
AC FOLLOWS
 

LIST= (NUNIT(I).I=gi,21)
 

FORMAT(419)
 

PARAGRAPH F, PAGE 8-4 IS REPLACED BY THE FOLLOWING
 

F. 	FUNCTION GENFRATOP OUTPUT OPTIONS
 

LIST= (KOPT(I),I=I,3)
 
FOPMAT(31)
 

G. 	GENFPALIZnD FUNCTION CONTROL
 

LIST= NSTATIC, NMODES. NROUND, NAPDOX
 
FORMAT(419)
 

H. 	NORMAL SNAP/DYNAMICS DATA (SEE PARAGRAPH F, PAGE B-4 OF THE
 

SNAP/DYNAMICS MANUAL)
 

1. 	OUTPUT OPTIONS (SEE TOPIC 1, PARAGRAPH F)
 

P. 	FUNCTION CONTROL (SEE TOPIC 2. PARAGRAPH F)
 

3. 	LUMPED MASS DATA (SEE TOPIC 3, PARAGRAPH F)
 

I. 	BOUNDARY NODE IDENTIFICATION
 

LIST= (NODRND(I), 1=I.NROUND)
 
FODMAT(14I)
 

J. 	STATIC FORCING FUNCTIONS
 

LIST= JO, K. 00* NI, IINC, DO. NJ, JINC, OOJ
 
FORMAT(I412,E114.9,2I9,EIO'.3,2Is.EO.3)
 

TERMINATE EACH DFCK WITH A BLANK CARD.
 
NSTATIC PECKS APE PRESENT
 

K. 	RAYLEIGH-RITZ COOPDINATE IDENTIFICATION
 

LIST= (NF(I),NG(I),I=INAPPOX)
 
FORMAT(14(13,t))
 

ONE STATIC FORCING FUNCTION DECK IS READ FOR EACH ZERO VALUE
 
SPECIFIED FOR NG(1). LIST AND FORMAT FOR EACH FORCING DECK
 
IS GIVPN IN PARAGRAPH J ABOVE.
 

L. 	STODOLA PROCESS CONTROL
 

LIST= N. IAPROX, ITER. CONVRG
 
FOPMAT(31 *Flc5.8)
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Me 'UD3STPUCTUPF OATA FILF TAPE 

LIST= KTAPE 
FROPMAT(I ) 

No SUBSTRUCTUPF IDENTIFICATION
 

LIST= (SUBID(I).I=1.12)
 
FORMAT(IPA6)
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PART I 

GFNERAL PPOGRAM FUNCTION
 

THIS WANUAL DESCRIBES INPUT DATA REQUIRED BY THE SUBSTRUCTURE SYNTHESIVS
 
PROGRAM. IT IS INTENDED FOR USE ONLY BY PERSONS THOROUGHLY FAMILIAR
 

WITH THE MAIN TEXT OF THIS PEPOPT.
 

BEFORE DEFINING SPECIFIC INPUT DATA FORMATS, CERTAIN RELEVANT TERMINOLOGY 

WILL fF SUMAPIZFD. 

A SUBSTRUCTURE REFERENCE FRAME IS ASSOCIATED WITH EACH SUBSTRUCTURE.
 
THE LOCATION OF THE SUBSTRUCTURE RELATIVE TO THIS FRAME IS DEFINED
 

BY THE ANALYST IN EXECUTING THE FUNCTION GENERATOR PROGRAM (SEE
 

APPEN'IX A).
 

THE LOCATION WITHIN THE SYSTEM OF EACH SUBSTRUCTURE IS DEFINED IN
 
THE INPUT DATA BY SPECIFYING THE POSITION AND ORIENTATION OF THE
 
CORRESPONDING SUBSTRUCTURE REFERENCE FRAME, RELATIVE TO THE SYSTEM
 

REFFPrFNCr FRAME.
 

EVERY ROUNDARY NODE OF A SUBSTRUCTURE CONNECTS TO SOMF SYSTEM JOINT,
 
ANy NUMBER OF SUBSTRUCTURES MAY CONNECT TO A PARTICULAR JOINT.
 
INTERCONNECTION DETAILS ARE DEFINED BY SPECIFYING, FOR EACH SUBSTRUCTURE.
 
THE SYSTEM JOINTS TO WHICH ITS BOUNDARY NODES ARE ATTACHED.
 

IF A SYSTEM JOINT DOES NOT COINCIDE GEOMETRICALLY WITH EVERY SUBSTRUCTURE
 

BOUNDARY NODE CONNECTED TO IT, THE LOCATION OF THE JOINT MUST BE GIVEN
 
EXPLICTTLY IN THE INPUT DATA, AND THE PROGRAM WILL ASSUME THAT THE
 

CORRESPONDING JOINT-BOUNDARY NODE INTERCONNECTIONS ARE EFFECTED
 

THROUGH MASSLFSS RIGID LINKS.
 

PART OF THE INPUT TO THE SYNTHESIS PROGRAM CONSISTS OF A SEQUENCE OF
 
SUBSTRUCTURE DATA FILES (ONE FOR EACH SUBSTRUCTURE) GENERATED BY THE
 
FUNCTION GENERATOR PROGRAM (APPENDIX A). THESE FILES MAY BE STORED
 
ON DRUM. MAGNETIC TAPE, OR DATA CARDS. THE INFORMATION CONTAINED IN
 
A SUBSTRUCTURE DATA FILE INCLUDES THE POSITION COORDINATES OF ALL
 
SUBSTRUCTURE JOINTS RELATIVE TO THE SUBSTRUCTURE REFERENCE FRAME.
 
DESCRIPTIONS OF A SET OF GENERALIZED FUNCTIONS USED TO CHARACTERIZE
 
THE SUBSTRUCTURE MOTIONS. MASS AND STIFFNESS MATRICES EXPRESSING THE
 
KINETIC AND POTENTIAL ENERGIES OF THE SUBSTRUCTURE AS QUADRATIC FORMS
 
IN COEFFICIENTS OF THE GENERALIZED FUNCTIONS, AND IDENTIFICATION OF
 

THE SUPSTRUCTURE BOUNDARY NODES. 

TYPICALLY, A SUBSTRUCTURE DATA FILE CONTAINS MANY INDIVIDUAL SUBSTRUCTURE
 
GENERALIZED DISPLACEMENT FUNCTIONS. INCLUDED AMONG THESE ARE SIX
 

UNIFORM ACCELERATION MODES, AND ANY NUMBER OF STATIC DEFORMATIONS
 

AND NATUPAL MODES. PROVISIONS APF INCLUDED IN TH= SYNTHESIS PROGRAM
 
FOR SELECTING ANY PRFCRIBED SUB-SET OF THESE FUNCTIONS FOR USE IN
 
ANALYZING THF ASSEMBLED SY TFM.
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SYSTEM GENERALIZED COORDINATES CONSIST OF MOTION COMPONENTS OF THE
 

SYSTEM JOINTS AND COEFFICIENTS OF INDIVIDUAL SUBSTRUCTURE FIXED
 

BOUNDARY NODE GENERALIZED FUNCTIONS (SEE MAIN TEXT. SECTION 2.2.3).
 

ANY SET OF SYSTEM JOINT MOTION COMPONENTS MAY BE SET IDENTICALLY EQUAL
 

TO ZERO. ALSO. LINEAR RELATIONS MAY BE IMPOSED AMONG SPECIFIED SYSTEM
 

JOINT MOTION COMPONENTS, THIS IS TERMED RELATIVE JOINT MOTION CONST AINT.
 

WHICH IS ESPECIALLY USEFUL IN HANDLING SYSTEMS CONTAINING A LARGE
 

NUMBER OF JOINTS.
 

AFTER FORMING THE SYSTEM MASS AND STIFFNESS MATRICES AND SOLVING FOP
 

THE UNDAMPED SYSTEM MODES AND FREQUENCIES. THE PROGRAM WILL OPTIONALLY
 

FORM A SYSTEM DAMPING MATRIX AND EXECUTE TRANSIENT RESPONSE CALCULATIONS
 

THE SYSTEM DAMPING MATRIX IS FORMED BY SUMMING THE CONTRIBUTIONS TO
 

SYSTEM ENERGY DISSIPATION OF ALL DAMPED SUBSTRUCTURES.
 

THE DAMPING CHARACTERISTICS OF AN INDIVIDUAL SUBSTRUCTURE ARE DEFINED
 

IN THE INPUT DATA BY SPECIFYING THE DAMPING FACTORS ASSOCIATED WITH
 

ANY TWO SUBSTRUCTURE VIBRATIONAL MODES, FOR ANY PRESCRIBED BOUNDARY
 

NODE CONSTRAINT CONDITIONS.
 

SUPPOSE. FOR EXAMPLE. THAT THE ANALYST PRESCRIBES THAT THE DAMPING
 

FACTORS FOR THE FIRST TWO FREE-FREE MODES OF A CERTAIN SUBSTRUCTURE
 

ARE .005 AND .01. THE PROGRAM WILL COMPUTE THE SUBSTRUCTURE'S
 

FREE-FREE MODES, USING GENERALIZED FUNCTIONS STORED IN THE SUBSTRUCTURE
 

DATA FILE, AND PROCEED AS OUTLINED IN SECTION 2.5.1 OF THE MAIN TEXT
 

OF THE REPORT.
 

THE MAXIMUM NUMBER OF SYSTEM DEGREES OF FREEDOM ALLOWED IN THE
 

UNDAMPED EIGENVALUE ANALYSIS IS 75. THE MAXIMUM NUMBER OF SYSTEM
 

DEGREES OF FREEDOM ALLOWED IN THE RESPONSE ANALYSIS IS 60. THE
 

NUMBER OF SUBSTRUCTURES MAKING UP THE SYSTEM IS UNLIMITED.
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NJREF= THE NUMBER OF LOCAL REFERENCE FRAME ORIENTATION
 

SPECIFICATIONS TO BE READ.
 

NOSUB= THE NUMBER OF SUBSTRUCTURES INCLUDED IN THE SYSTEM
 
MODEL.
 

MAXJT= LARGEST NUMBER OF JOINTS IN ANY SUBSTRUCTURE.
 

MAXBND= LARGEST NUMBER OF BOUNDARY NODES APPEARING IN ANY
 

SUBSTRUCTURE.
 

MAXFCN= LARGEST NUMBER OF INDIVIDUAL GENERALIZED FUNCTIONS
 
CREATED FOR ANY SUBSTRUCTURE BY THE FUNCTION GENERATOR
 
PROGRAM. THIS INCLUDES ALL NATURAL NODES. UNIFORM
 

ACCELERATION MODES. AND STATIC FUNCTIONS.
 

NRELTV= THE NUMBER OF RELATIVE JOINT MOTION COORDINATES TO
 

BE INCLUDED.
 

THE KCGEN ARRAy IS USED TO IMPOSE A GENERAL CONSTRAINT TO
 
ALL SY§TEM JOINTS. IF ALL DIRECTION-I DISPLACEMENT COMPONENTS
 
(WITH RESPECT TO JOINT REFERENCE FRAMES) ARE ZERO. SET
 
KCGEN(I)=I, IF ALL DIRECTION-I ROTATION COMPONENTS ARE ZERO.
 
SET KCGEN(I+3)=I. ANY SUBSEQUENT CONSTRAINT OR CONSTRAINT
 
RELEASE SPECIFIED FOR A SYSTEM JOINT OVERRIDES THE KCGEN
 
SPECIFICATION FOR THAT JOINT.
 

WITH THE EXCEPTION OF KCGEN. ALL THE VARIABLES APPEARING ON THE GENERAL
 
CONTROL CARD ARE USED TO ALLOCATE CORE STORAGE FOR VARIOUS ARRAYS
 
REQUIRED DURING CONSTRUCTION OF THE SYSTEM MASS AND STIFFNESS ARRAYS.
 

E. SUBSTRUCTURE DATA FILE UNIT ASSIGNMENTS
 

LIST= (ITAPE(I).1=1,NOSUB)
 
FORMAT(1415)
 

ITAPE(I) IS THE LOGICAL UNIT NUMBER ASSIGNED AS THE DATA
 

FILE UNIT FOR SUBSTRUCTURE I. THIS UNIT IS ASSUMED TO CONTAIN
 
THE DATA FILE CREATED FOR SUBSTRUCTURE I BY THE FUNCTION
 

GENERATOR PROGRAM. IF ITAPECI2=5. THE DATA FILE WILL BE READ
 
FROM PUNCHED CARDS. OTHERWISE. ITAPECI) DEFINES EITHER A
 
DRUM UNIT OR MAGNETIC TAPE.
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PART 2 

INPUT DATA FORMAT
 

THE NOMINAL U-1IO8/ EXEC 8 VERSION OF THE PROGRAM USES 30000 CORE
 
LOCATIONS FOR MAIN DATA STORAGE, ALLOWING APPROXIMATELY 75 DEGREES
 
OF FREEDOM FOR REPRESENTING SYSTEM MOTIONS. THE DEGREE OF FREEDOM
 

LIMITATION IS IMPOSED BY THE EIGENVALUE SOLUTION ROUTINES. AND. SINCE
 

THE PROGRAM IS ASSEMBLED IN A MODULAR FASHION. THESE ROUTINES CAN BE
 

REPLACED. IF NECESSARY, BY ROUTINES WITH A LARGER SIZE CAPACITY.
 

THE COMPONENTS OF A PROBLEM DEFINITION DECK APE OUTLINED BELOW.
 

A. DRUM UNIT ASSIGNMENTS AND BUFFER DIMENSIONS.
 

THE FIRST TWO CARDS IN THE DATA DECK SPECIFY DRUM UNIT
 
ASSIGNMENTS AND BUFFER DIMENSIONS. RESPECTIVELY, AS DESCRIBED
 

IN PARTS.2.1 AND 2.2.
 

B. TITLE CARDS (AT LEAST ONE MUST APPEAR).
 

ANY NUMBER OF TITLE CARDS MAY BE USED. INFORMATION APPEARING
 

IN COLUMNS 2 THROUGH 73 OF THESE CARDS WILL APPEAR AT THE
 
BEGINNING OF THE PRINTED OUTPUT. THE LAST TITLE CARD MUST
 
HAVE A BLANK IN COLUMN lo ALL PRECEEDING CARDS (IF ANY)
 
MUST HAVE A NON-ZERO INTEGER IN COLUMN le
 

C. OUTPUT OPTIONS.
 

A CARD SPECIFYING THE PRINTOUT OPTIONS IS READ NEXT AS
 

DISCUSSED IN PART 2.3e
 

De GENERAL CONTROL CARD
 

LIST= JT. NX. NJREF. NOSUB. MAXJT. MAXBND. MAXFCN.
 
NRELTV. (KCGEN(I)hI=I,6)
 

FORMAT(815,4X.I11)
 

JT= TOTAL NUMBER OF SYSTEM JOINTS
 

NX= THE NUMBER OF SYSTEM JOINTS FOR WHICH THE POSITION
 

COORDINATES ARE TO BE EXPLICITLY DEFINED BY CARD INPUT.
 
IF A SYSTEM JOINT DOES NOT GEOMETRICALLY COINCIDE WITH
 
ALL ATTACHED BOUNDARY NODES, ITS POSITION MUST BE SPECIFIED
 
IN THE INPUT DATA. AS DISCUSSED IN PART 1, IF POSITION
 

COORDINATE DATA IS NOT READ FOR A SYSTEM JOINT* IT IS
 
ASSUMED TO COINCIDE WITH ALL SUBSTRUCTURE BOUNDARY NODES
 
TO WHICH IT IS ATTACHED.
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F. A SEQUENCE OF DECKS SPECIFYING VARIOUS PARTS OF THE PROBLEM
 
DEFINITION APPEAR NEXT, IN THE FOLLOWING ORDER.
 

PART IN WHICH
 
INPUT FORMAT IS
 
DISCUSSED 	 DECK NAME
 

3.1 	 SYSTEM JOINT CONSTRAINTS
 

3.2 	 SYSTEM JOINT POSITION COORDINATES
 
(THIS DECK APPEARS ONLY IF NX.GT.O)
 

3.3 	 LOCAL REFERENCE FRAME ORIENTATION SPECIFICATION DECK
 
(THIS DECK APPEARS ONLY IF NJREFeGT.O)
 

3.4 	 RELATIVE JOINT MOTION CONSTRAINT SPECIFICATIONS
 
(THIS DECK APPEARS ONLY IF NPELTV.GT.O)
 

3.5 	 SUBSTRUCTURE DATA DECKS
 
CONE DECK APPEARS FOR EACH SUBSTRUCTURE)
 

3.6 	 DIRECTLY SPECIFIED SYSTEM MATRIX ENTRIES
 

Go DAMPED RESPONSE 	CONTROL CARD
 

THE NEXT CARD IN THE DATA DECK MAY CONTAIN ANY ALPHA-NUMERIC
 
LIST IN COLUMNS 1 THRU 72o IF THE CHARACTERS 'STOP' APPEAR
 
IN THE FIRST FOUR COLUMNS, THE SOLUTION WILL TERMINATE WITH
 
THE EIGENVALUE ANALYSIS AND NO FURTHER DATA IS REQUPIED.
 
OTHERWISE, THE RESPONSE OF A DAMPED SYSTEM IS COMPUTED, AND
 
THE INFORMATION APPEARING ON THE CARD WILL APPEAR IN THE
 
PRINTOUT AT THE BEGINNING OF THE DAMPED RESPONSE OUTPUT.
 

H. DAMPING CHARACTERISTICS. THE INPUT REQUIREMENTS FOP THIS DECK APE
 

DESCRIBED IN PART 4.
 

le FORCED RESPONSE PROBLEM DEFINTION. THE INPUT REQUIREMENTS FOR
 
THIS DECK ARE DESCRIBED IN PART 5.
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PART 2.1 	 DRUM UNIT ASSIGNMENTS
 

DRUM (OR OTHER SECONDARY DATA STORAGE) UNIT ASSIGNMENTS ARE SPECIFIED
 
ACCORDING TO THE FOLLOWING LIST AND FORMAT.
 

LIST= (NUNIT(1),1=1,10)
 
FOPMAT(IOIS)
 

NUNIT(I) IS THE LOGICAL UNIT NUMBER ASSIGNED TO #UNIT I. NUNIT(I)
 
AND NUNIT(1O) ARE NOT USED BY THE CURRENT VERSION OF THE PROGRAMo
 
USAGE OF THE OTHER UNITS IS SUMMARIZED BELOW.
 

UNIT USAGE 
2 TEMPORARY FILE USED DURING EIGENVALUE ANALYSES. ALSO USED AS 

TEMPORARY STORAGE FOR FORCING FUNCTION DATA. 

3 	 SUBSTRUCTURE PROPERTY FILE
 

4 	 TEMPORARY FILE USED TO STORE ENTRIES TO THE SYSTEM MASS AND
 
STIFFNESS MATRICES,
 

5 	 SUBSTRUCTURE COORDINATE DISPLACEMENT VECTOR FILE. CONTAINS
 
ALL THE DISPLACEMENT VECTORS USED TO REPRESENT INDIVIDUAL
 

SUBSTRUCTURE MOTIONS.
 

6 	 SUBSTRUCTURE DISPLACEMENT VECTORS ASSOCIATED WITH THE UNDAMPED
 
SYSTEM'MODES.
 

7 	 TEMPORARY FILE USED TO STORE ENTRIES TO THE SUBSTRUCTURE MASS
 
AND STIFFNESS MATRICES USED IN SUBSTRUCTURE DAMPING CALCULATIONS.
 

a 	 SUBSTRUCTURE DAMPING MATRIX FILE.
 

9 	 RESPONSE FILE USED TO ACCUMULATE NUMERICAL INTEGRATION RESULTS.
 

FIVE UNIQUE ASSIGNMENTS ARE REQUIRED FOR THE SECONDARY STORAGE UNITS.
 
FOR THE ASSIGNMENTS SHOWN BELOW, NDI. ND2, ND3* ND4, AND NDS ARE UNIQUE
 
DRUM UNIT LOGIC NUMBERS.
 

I NUNIT(I)
 

2 ND1
 
3 ND2
 
4 ND3
 
5 ND4
 
6 NDS
 
7 ND3
 
a ND
 
9 ND4
 

A MAGNETIC TAPE MAY BE USED FOR NUNIT(9) FOR STORAGE OF THE RESPONSE
 
FILE.
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PART 2,2 BUFFER DIMENSIONS
 

THE LENGTHS OF TEN BUFFER STORAGE AREAS ARE SPECIFIED AS FOLLOWS
 

LIST= LREC(I)I=I,1O)
 
FORMAT(I1015)
 

NORMALLY SET LREC(3)=2000, LREC(7)=00. LREC(9)=1000# WITH ALL
 

OTHERS EQUAL TO ZERO. THE PROGRAM AUTOMATICALLY ALLOCATES ALL
 

OTHER BUFFERS ACCORDING TO AVAILABLE CORE.
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"APT o 	 OUTPUT OMTTONS 

TEN PPOGRAV OUTPUT OPTIONS ARE SPECIFIED AS FOLLOWS
 

LrST= (OPT(I),I=I.IO)
 
FnPMAT(IOI3)
 

THE OUTPUT INDICATED BELOW IS CAUSED BY NON-ZERO VALUES OF THE ASSOCIATED
 

OPTIONS.
 

OPT 	 RFSULTING OUTPUT
 

1 .n.,..... 	 SYSTEM JOINT INFORMATION INCLUDING JOINT CONSTRAINTS,
 

POSITIONS. AND REFERENCE FRAME SOFCIFICATIONS
 

2 -,........ 	 SUBSTRUCTURE DEFINITION DATA INCLUDING BOUNDARY NODE
 
POSITION COORDINATES AND DESCRIPTIVE TITLES IDENTIFYING
 

THE NUmBER AND TYPES OF FUNCTIONS APPEARING IN THE
 
SURSTPUCTUDF DATA FILE.
 

3 .......... 	 INDIVIDUAL SUBSTRUCTURE ENERGY MATRICES. THIS OUTPUT
 

IS NORMALLY NOT REQUESTED AND IS OF LITTLF OR NO VALUE
 

TO ANYONF WHO IS NOT FAMILIAR WITH THE TERMINOLOGY
 

INTEQNAL TO THE PDOPA'.
 

4 ....... 	 SYATFM MASS AND STIFFNFSS MATRICES USFD IN THE UNDAMPED
 

=TGENVALUF 	ANALYSTS.
 

6 . ,..... 	ACCURACY CHECKS FOR THE UNDAMPED EIGENVALUE ANALYSIS 

7 ,........ 	 UNDAMPrD FIGFNSOLUTION INFORMATION IN TERMS OF SUB-


STRUCTUPE COORDINATFS, INCLUDING NODE MOTIONS RELATIVE
 
TO LOCAL SUBSTRUCTURE REFERENCE FRAMES AND ENERGY
 
BREAKDOWNS SHOWING THE CONTRIBUTION OF EACH SUBSTRUCTURE
 

TO THE TOTAL SYSTEM KINETIC AND POTENTIAL ENERGIES.
 

R ........ 	 NOT APPLICABLE TO THIS PPOGAM VFRSION
 

9 -.......... 	FORCED PESPONSE NUMERICAL RESULTS APE STORED ON NUNIT(g).
 

THIS OUTPUT IS FOR EXTERNAL USE ONLY AND IS NORMALLY
 
NOT PEOUrSTED.
 

OPT(5) AND 	OPT(10) MUST ASSUME SPFCIFIC VALUES AS FOLLOWS.
 

OPT VALUE 	 RESULTING OUTPUT
 

*O.. N ... 	 PFROURNCIFS AND EIGENVFCTORS FOP THF FIRST N UNDAMPED 
SYSTFM MOFS 

5 ....-. *.. 	 FREQUENCIES AND EIGENVECTORS FOP ALL SYSTEM MODES
 

10 .... N ... 	NUMERICAL INTEGRATION RESPONSE RESULTS ARE PRINTED FOR
 
=VERY N-TH TIMF STEP.
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PART 3.l SYSTEM JOINT CONSTRAINTS
 

THE FIRST CARD IN THE CONSTRAINT DECK SPECIFIES THE NUMBER OF EXPLICIT
 
CONSTRAINT CONDITIONS THAT DIFFER FROM THE GENERAL CONSTRAINT (KCGEN)
 

SPECIFIED ON THE MAIN CONTROL CARD.
 

LIST= NCONST
 
rORMAT(15)
 

NCONST SETS OF CONSTRAINT SPECIFICATIONS FOLLOW. IF NCONSTZO, NO
 
CONSTRAINTS APE READ. THE LISTS AND FORMAT OF EACH OF THE NCONST
 
SPECIFICATIONS FOLLOW
 

LIST= (KC(I)v*I#619N
 
FORMAT(611I14)
 

LIST= (JNTCI)I=1,IN)
 
FORMAT(1415)
 

THE KC ARRAy INDICATES THE CONSTRAINT STATE OF JOINTS JNT(1),,..JNT(N).
 
IF THE DIRECTION-K DISPLACEMENT OF THE JOINT IS IDENTICALLY ZERO. SET
 
KC(K)=I. OTHERWISE. SET KC(K)=O OR LEAVE BLANK. KC(K+3) SIMILIARLY
 
DEFINES DIRECTION-K ROTATIONS (FOR K=1,2,3)o
 

THE LAST CONSTRAINT OR CONSTRAINT RELEASE SPECIFIED FOR A JOINT REPLACES
 
ALL CONSTRAINTS PREVIOUSLY DEFINED FOR THAT JOINT.
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PART 3,2 SYSTEM JOINT POSITION COORDINATES
 

THIS DECK IS PRESENT ONLY IF THE VARIABLE NX ON THE MAIN CONTROL CARD
 
IS GREATER THAN ZERO. THE DECK IS COMPOSED OF NX CARDS EACH OF WHICH
 

IS DEFINED BY THE FOLLOWING LIST AND FORMAT
 

LIST= JNT, (Y(T).I=I.3)
 
FORMAT(15,3EI5.8)
 

X.(I) SPECIFIES THE I-TH POSITION COORDINATE RELATIVE TO THE SYSTEM
 
REFERENCE FRAME OF SYSTEM JOINT JNT. POSITION COORDINATES NEED BE
 
DEFINED ONLy FOR EACH SYSTEM JOINT THAT DOES NOT COINCIDE WITH ALL
 
SUBSTRUCTURE BOUNDARY NODES CONNECTED TO IT. OTHERWISE, THE LOCATIONS
 
OF THE BOUNDARY NODES AUTOMATICALLY LOCATE THE SYSTEM JOINT. ANY
 

SUBSTRUCTURE NODE SUBSEQUENTLY CONNECTED TO JOINT JNT IS ASSUMED TO BE
 
CONNECTED TO JNT BY MEANS OF A RIGID ARM.
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PART 3*3 	 LOCAL REFERENCE FRAME
 

ORIENTATION SPECIFICATION DECK
 

THE PROGRAM USES THE DATA SPECIFIED IN THIS DECK TO CONSTRUCT A
 
'LIBRARY' OF 3 By 3 ORTHOGONAL TRANSFORMATION MATRICES. THESE MATRICES
 

DEFINE THE ORIENTATIONS OF VARIOUS LOCAL REFERENCE FRAMES RELATIVE TO
 
THE SYSTEM REFERENCE FRAME. THE LOCAL REFERENCE FRAMES ARE ASSOCIATED
 

WITH SU9STRUCTURES AND/OR SYSTEM JOINTS. THE NUMBER OF LOCAL REFERENCE
 
FRAME SPECIFICATIONS TO BE READ IS DEFINED BY THE VARIABLE NJREF ON
 

THE MAIN CONTROL CARD. THE CARDS PEQUIRED FOR EACH OF THE NJREF
 
SPECIFICATIONS ARE READ ACCORDING TO THE FOLLOWING LISTS AND FORMATS.
 

LIST= JI,O(3.Jl),J2,Q(3,J2).J3SIGN.NL.NG.NSGN.Q(NLNG).NOJNTS
 

FORMAT(IS.EIS.5. I6.EIS.5.I.S6X,2 II I2,EI5.. 15)
 

IN THE DISCUSSION THAT FOLLOWS, 'GLOBAL FRAME' REFERS TO THE SYSTEM
 

REFERENCE FRAME.
 

ENTRIES TO THE REFERENCE FRAME LIBRARY ARE IDENTIFIED By THE ORDER
 

IN WHICH THEY APE READ. THEREFORE. THE K-TH REFERENCE SPECIFICATION
 

DEFINES THE K-TH MATRIX. THE 0 MATRIX (3 BY 3) INDICATES
 
ORIENTATION RELATIVE TO THE GLOBAL FRAME. Q(I.J) IS THE COSINE OF THE
 

ANGLE BETWEEN THE I-TH 	AXIS OF THE LOCAL FRAME AND THE J-TH AXIS OF THE
 

GLOBAL FRAME (RIGHT-HAND. RECTANGULAR).
 

JI. O(3.J1). J2. O(3.J2), AND J3SIGN SPECIFy THE ORIENTATION OF THE
 
3-AxIS OF THE LOCAL FRAME. Q(3.JX) AND Q(3.J2) ARE ANY TWO DISTINCT
 

ELEMENTS IN THE THIRD ROw OF 0. AND J3SIGN (+I OR -1) GIvES THE SIGN
 

OF THE THIRD ELEMENT.
 

Q(NL.NG) MAY GENERALLY BE ANY ELEMENT IN THE FIRST TWO ROWS OF 0.
 

NSIGN (+I OR -1) GIVES THE SIGN OF 0(3-NL*NG).
 

IN CHOOSING NL AND NG, 	CARE MUST BE TAKEN TO ENSURE A UNIQUE
 

SPECIFICATION. FOR EXAMPLE. IF THE 3-AXIS OF THE LOCAL FRAME
 

WERE CHOSEN TO BE PARALLEL TO THE GLOBAL 2-AXIS (EG Jl=lJ2=3
 

O(3.J1)=.O, Q(3.J2)=O,J3SIGN= +1), THEN THE ORIENTATION OF THE
 

LOCAL 1 AND 2 AXES IS NOT UNIQUELY DETERMINED BY SPECIFICATION
 
THAT 0(1.2) OR 0(2.2) IS ZERO.
 

NOJNTS INDICATES THE NUMBER OF SYSTEM JOINTS FOR WHICH THE ORIENTATION
 

OF THE LOCAL REFERENCE FRAME IS DEFINED BY THIS DIRECTION COSINE MATRIX.
 

IF NOJNTS IS GREATER THAN ZERO. THE FOLLOWING CARD OR CARDS INDICATE
 

WHICH SYSTEM JOINT REFERENCE FRAMES ARE ORIENTED IN THIS MANNER.
 

LIST= (IJNTS(I).I=I.NOJNTS)
 
FOPI*AT(141 )
 

THIS SPECIFICATION IS ONLY REQUIRED FOR THOSE JOINTS WITH LOCAL
 
REFERENCE FRAMES THAT ARE NOT PARALLEL TO THE GLOBAL SYSTEM REFERENCE
 

FRAME.
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PART 3.4 RELATIVE JOINT MOTION
 

CONSTRAINT SPECIFICATIONS
 

THE DATA DESCRIBED 
IN THIS SECTION APPEAR ONLY IF THE VARIABLE NRELTV
 
ON THE MAIN CONTROL CARD IS GREATER THAN ZERO. IF NPELTV IS GREATER
 
THAN ZERO', THERE ARE NRELTV INDEPENDENT LINEAR RELATIONS IMPOSED AMONG
 
VARIOUS JOINT MOTION COMPONENTS. EACH SUCH RELATIVE CONSTRAINT IS DEFINED
 
BY AN ARBITRARY NUMBER OF CARDS, EACH OF WHICH SPECIFIES COEFFICIENTS
 
FOR ONE OR MORE JOINT MOTIONS. A BLANK CARD TERMINATES EACH RELATIVE
 
CONSTRAINT SPECIFICATION. EACH CARD OF A SPECIFICATION IS READ
 
ACCORDING TO.THE FOLLOWING LIST AND FORMAT.
 

LIST=KJNT,JDEL.COEFCDEL.N
 
FORMAT(315,2g15,8,15)
 

EACH CARD DEFINES THE COEFFICIENT OF THE DIRECTION K MOTION OF N
 
SYSTEM JOINTS. FOR K=1,2,39 THE CARD DEFINES DISPLACEMENTS PARALLEL
 
TO THE K-TH AXIS OF THE LOCAL JOINT REFERENCE FRAME. FOR K=4@5969
 
THE CARn DEFINES ROTATIONS ABOUT JOINT REFERENCE FRAME AXIS K--3.
 
FOR I=IN. THE COEFFICIENT OF THE DIRECTION-K MOTION OF JOINT
 
JNT+(I-I)*JDEL IS SET EQUAL TO COEF+(I-1)*CDEL.
 

" SUPPOSE THE J-TH RELATIVE CONSTRAINT IS DEFINED BY A CARD CONTAINING
 

THE FOLLOWING DATA
 

K=2, JNT=3 JDEL=2, COEF=I.O, CDEL=.O. N=3
 

THE TABLE BELOW ILLUSTRATES THE RESULTING JOINT MOTION COEFFICIENTS
 

COEFFICIENT OF 
JOINT DIR-2 DISPLACEMENT 

3 1.0 

5 2.0 
7 3.0 

THE ABOVE EXAMPLE IMPLIES THAT THE DIPECTION-2 DISPLACEMENTS OF
 
JOINTS 3.95AND 7 OCCUR IN A 1-2-3 PROPORTION.
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PART 7,q SUBSTRUCTURE DATA DECK
 

THE FOLLOWING DATA DECK IS READ FOR EACH SUBSTRUCTURE IN THE SYSTEM.
 

UBSTRIUCTURFS ARE IDFNTIFIED BY THE ORDER IN WHICH THESE DATA DECKS 

ARE RFAD. THE SUBSTRUCTURE DEFINED BY THF K-TM DATA DECK IS REFERRED 

Tr Aq THF K-TH StJBSTPUCTUP. 
THE FIRST CARD IN A SUBSTRUCTURE DECK IS READ AS FOLLOWS
 

LIT= NROUND,NINTP
 
FORMATC I )
 

NAOUND IS THE NUMBEP OF BOUNDARY NODES IN THE SUBSTRUCTURE MODEL. 

THI- NUMBER MUST AGREE WITH THE NUMBER OF BOUNDARY NODES USED BY THE 

FUNCTION GENERATOR PROGRAM TO CREATE THE SUBSTRUCTURE GENERALIZED 

IF NROUND DOES NOT AGREE WITH THE NUMBER OF BOUNDARY
FUNCTIONS. 


NODFC IN THE SURcTRUCTURE DATA FILF, A PROGRAM STOP OCCURS. NINTR
 

CONTROLS PRINTOUT OF SUB'TRUCTUQE JOINT MOTIONS.
 

THE NEXT CARD IN A SUBSTRUCTURE DATA DECK IDENTIFIES THE SYSTEM JOINTS
 

TO WHICH TIHE SUBSTRUCTURE BOUNDARY NODES ARE ATTACHED, EITHER DIRECTLY
 

P VIA RIGID ARMS.
 

t TT= (JTCON(I).I=1,IMRUNDl
 
FOPMAT(16I ) 

JTCON(I) IS THE SYSTEM JOINT TO WHICH THE I-TH SUBSTRUCTURE BOUNDARY
 

NODE IS CONNECTED. IF NO EXDLICIT POSITION COORDINATE WAS SPECIFIED 

FOR JTCON(I), IT IS ASSUMED TO COINCIDE WITH BOUNDARY NODE I. EVERY 

BOUNDARY NODE IN THE SUBSTRUCTURE MUST BE CONNECTED TO SOME SYSTEM 

JOINT. IF JTCON(I) IS SPECIFIED LESS THAN 1 OR GREATER THAN JT. A 

PROGRAM STOP OCCURS. THE INDEX I REFERS TO THE SUBSTRUCTURE JOINT
 

THAT WAS DECLARED TO BE THE I-TH BOUNDARY NODE IN THE SUBSTRUCTURE
 
FtNCTTON cENrATOR Ar,ALYSIS.
 

IF NINTR IS GREATER THAN ZERO, A LIST OF SUBSTRUCTURE JOINTS APPEARS NEXT
 

L T= CJTTNTP( I*T=t NINTP)
 
FOrMAT(16T )
 

MOTION COMPONENTS OF THE SUBSTRUCTURE JOINTS REFERENCED ABOVE WILL
 

THE PRINTOUT
BE INCLUDED (ALONG WITH ALL BOUNDARY NODE MOTIONS) IN 


OF THR EIGENVALIFR cOLUTION.
 

THE NEXT CARD IN THE SUBSTRUCTURE DATA DECK DEFINES THE LOCATION AND
 

ORICNTATION OF THE SURSTPUCTURF.
 

LIS;T=IDRFXOIIC)IL3
 
FOPMAT( *,3F1 .R)
 

IDOREF IDENTIFIES THE ORIENTATION OF THE LOCAL SUBSTRUCTURE REFERENCE
 

FRAME RELATIVE TO THE SYSTEM REFERENCE FRAME. THE AXES OF THE
 

TO THE AXES OF THE IDOREF-THSUBSTRUCTURE PEFERENCF FRAME ARE PARALLEL 
IN THE LIBRARY OF LOCAL REFERENCE FRAME ORIENTATION SPECIFICATIONS.
 

IF THE AXES OF THE SUBSTRUCTURE
 
ENTRY 


IDOPEF MUST BE GREATER THAN ZERO. 

REFFRENCE FRAME,
REFERENCE FRAME ARE PARALLEL TO THE AXES CF THE SYSTEM4 


IDOREF SHOULD REFERENCE A 0 MATRIX THAT IS A 3 BY 3 IDENTITY MATRIX.
 

THE SYSTEM
XORIGN(I),1=1,3 ARE THE POSITION COORDINATES, RELATIVE TO 


REFERENCE FRAME, OF THE ORIGIN OF THE SUBSTRUCTURE REFERENCE FRAME.
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THE NEXT CARD IDENTIFIES THE INDIVIDUAL SUBSTRUCTURE FIXED BOUNDARY
 

NODE MOTION FUNCTIONS TO BE USED AS SYSTEM COORDINATES.
 

LIST= (IMODE(I)iI=1=20), (IuFAC( ),1=1.20).. (ISTAT(1)1=l20)
 

FOPMAT(2OIIOX,201,lOX*2011)
 

IF IMODE(I)=O OR BLANK. THE I-TH SUBSTRUCTURE NATURAL MODE WILL BE
 

USED AS A SYSTEM COORDINATE. IF IT EQUALS 1. THE I-TH MODE WILL NOT
 
'BE USED IN A SIMILAR MANNER, IUFAC AND ISTAT IDENTIFY THE UNIFORM
 
ACCELERATION MODES (FIXED BOUNDARY NODE) STATIC FUNCTIONS TO APPEAR
 

AS SYSTEM COORDINATES. SINCE ONLY SIx UNIFORM ACCELERATION MODES ARE
 

POSSIBLE, IUFAC(7) THPU IUFAC(20) ARE IGNORED.
 

THE DATA FILE CREATED BY THE FUNCTION GENERATOR PROGRAM IS READ NEXT.
 

IF THE DATA FILE IS ON PUNCHED CARDS, INSERT THE DECK HERE. IF THE
 

FILE IS ON MAGNETIC TAPE, IT .IS READ AUTOMATICALLY, AND NO DATA CARDS
 

APE REQUIRED.
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PART 3.6 DIRECTLY SPECIFIED
 

SYSTEM MATRIX ENTRIES
 

EACH CARD IN THIS DATA DECK DEFINES AN EXPLICIT ENTRY TO THE SYSTEM
 
MASS AND/OP STIFFNESS MATRICES. THE DECK IS TERMINATED BY A BLANK
 
CARD. IF NO DATA OF THIS TYPE IS TO BE USED, A SINGLE BLANK CARD
 
SHOULD BE USED FOR THE DECK, EACH CARD IS READ ACCORDING TO THE
 
FOLLOWING LIST AND FORMAT.
 

LIST= NI, NJ, K. A, B
 
FORMAT(31542E15.8)
 

THE DIRECTION-K MOTION (IF K.LE.3, DIRECTION K DISPLACEMENT, IF
 
KGT.3, DIRECTION K-3 ROTATION) OF SYSTEM JOINTS NI AND NJ ARE
 
COUPLED IN THE MASS MATRIX BY THE QUANTITY A AND COUPLED IN THE
 
STIFFNESS MATRIX BY THE QUANTITY B. IF NINJ THE QUANTITIES A AND B
 
ARE ADD9D TO DIAGONAL MATRIX TERMS, OTHERWISE THEY APPEAR AS OFF-


DIAGONAL QUANTITIES*
 

AS AN EXAMPLE. ASSUME THAT THE DIPECTION-2 DISPLACEMENTS OF SYSTEM
 
JOINTS 7 AND 9 ARE ELASTICALLY RELATED By A MASSLESS LINEAR SPRING
 
OF STIFFNESS 5.OE+06. THREE DATA CARDS WOULD BE REQUIRED TO
 
CHARACTERIZE THE SPRING.
 

CARD 1. NI=7 NJ=7. K=2. A=OO, B=+6.OE+06
 
CARD 2. NI=7, NJ=9, K=29 A=00, E=-5.OE+06
 
CARD 3. NIr9, NJ=9, K=2. A=0O. B=+,OE+06
 

NOTE THAT IT IS NOT NECESSARY TO DEFINE ELEMENTS THAT APPEAR BELOW
 

THE MATRIX DIAGONAL.
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PART 4
 

DAMPING CHAPACTFPISTIC,
 

A SYSTEM DAMPING MATRIX IS GENERATED ON THE BASIS OF SPECIFIED DAMPING
 

CHARACTERISTICS OF INDIVIDUAL SUBSTRUCTURES. SUBSTRUCTURE DAMPING
 
CHARACTERISTICS ARE SPECIFIED By DEFINING DAMPING FACTORS FOR TWO
 

UNDAMPED SUBSTRUCTURF NATURAL MODES. THE SUBSTRUCTURE MODES ARE
 

CALCULATED ACCORDING TO ANY SPECIFIED BOUNDARY MODE CONRTRAINT
 
CONDITIONS. THE MODES ARE COMPUTED IN A RAYLEIGH-PITZ ANALYSIS USING
 
AS GENERALIZED FUNCTIONS AN APPROPRIATE SET OF FUNCTIONS FROM THE
 

UPSTPUCTURF DATA FILE.
 

ANY SUBSET OF THE CYSTEMIS SUBSTRUCTURES MAY CONTRIBUTE TO THE DAMPING
 
MATRIX. A DECK COMPOSED OF ONE OR MORE CARDS IS PEQUIRED FOP EACH
 

SUBSTRUCTURE CONTRIBUTING TO THE SYSTEM DAMPING. A BLANK CARD TERMINATES
 
ALL DAMPING DATA. THE LISTS AND FORMATS FOR A SINGLE SUBSTRUCTURE
 

DAMPING SPECIFICATION ARE AS FOLLOWS.
 

LIST= NSUB, IPRNT, (KCGEN(I).I=1,6). NCNSTR, (MODE(I),ALFA(I),I=l,2)
 
FORMAT(PT ,4X,6IItl';*2(I ,FI9oS))
 

NSUB INDICATES THAT THE NSUB-TH SUBSTRUCTURE CONTRIBUTES TO THE SYSTEM
 

DAMPING. VALUES OF NSUB APPEARING ON SUCCESSIVE CAPDS MUST BE IN
 

ASCENInING ODER.
 

IPRNT CONTROLS PRINTOUT OF THE EIGENVALUE SOLUTION USED TO COMPUTE
 
THE SUPSTRUCTUE MODES. 

IPPNT=O, NO PRINTOUT
 

IPRNT.GT.O, MASS AND STIFFNESS MATRICES, FIGENVALUES,
 
AND EIGFNVECTORS
 

IPPNT.LT.O, MASS AND STIFFNESS MATRICES, FIGENVALUES,
 

FIGENVECTORS. AND ACCURACY CHFCKS
 

THE KCGFN ARRAY IS USF TO IMPOSE A GENERAL CONSTRAINT TO ALL
 
SUBSTRUCTURE BOUNDARY NODES. IF ALL DIRECTION-I DISPLACEMENTS (WITH
 
RESPECT TO THE LOCAL SUBSTRUCTURE REFERENCE FRAME) ARE ZERO, SET
 
KCGEN(I)=i. IF ALL DIRECTION-I ROTATIONS ARE ZERO, SET KCGEN(I,+3)=I.
 

ANY SUBSEQUENT CONSTRAINT OR CONSTRAINT RELEASE SPECIFIED FOR A
 

POUNDARY NODE OVERRIDES THE KCGEN SPECIFICATION FOR THAT NODE.
 

NCNSTR IS THE NUMBER OF CONSTRAINT SPECIFICATIONS TO FOLLOW THAT
 

DIFFrP FROM KCGFN.
 

ALFA(I) IS THW DAMPING FACTOR ASSUMED FOR THE COMPUTED UNDAMPED
 

SUBSTRUCTURE MODF, MODE(I). IF GM REPRESENTS THE GENERALIZED MASS
 
OF MODE(I), AND GS REPRESENTS THE GENERALIZED STIFFNESS. THE ENERGY
 

ISqIDATION,CONSTANT FOP MODE(I) IS
 

P.f*ALFA(I)*SORT(GM*GS)
 

DAMPING FACTORS NORMALLY RANGE FROM .001 TO .05. A DAMPING FACTOR
 
OF .01 WOULD CONSTITUTE ONE PERCENT OF 'CRITICAL DAMPING'.
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IF NCNSTR IS GREATER THAN ZERO, NCNSTR ADDITIONAL BOUNDARY NODE
 

CONSTRAINTS ARE READ* EACH CONSTRA'INT SPECIFICATION IS READ ACCORDING
 

TO THE OLLOWING LISTS AND FORMATS
 

LIST= (KC(I),I1I,6), N
 

FORMAT(I I,4X, 15)
 

LIST= (NOD(I)I=i.N)
 
FORMAT(1615)
 

THE KC ARRAY DEFINES THE CONSTRAINT OF BOUNDARY NODES NOD-(1).,,.,NOD(N)o
 

IF THE DIRECTION-K DISPLACEMENT OF THE NODE IS IDENTICALLY ZERO* SET
 

KCUK)=I. OTHERWISE SET KC(K) O OR LEAVE BLANK. KC(K+3) SIMILIAPLY
 

THE LAST CONSTRAINT
DEFINES DIRECTION-K ROTATIONS (FOR K=1,2.3). 


SPECIFIED FOR A 
BOUNDARY NODE REPLACES ALL CONSTRAINTS PREVIOUSLY
 

DEFINED FOR THAT NODE.
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1
PART 


FORCED RESPONSE PROBLEM DEFINITION DATA
 

UNDAMPED SYSTEM MODES APE USED AS GENERALIZED FUNCTIONS IN THE
 
FORCED RESPONSE ANALYSIS. THE FIRST TWO CARDS IN THE RESPONSE DATA
 
IDENTIFY THE MODES TO BE USED AND DEFINE CERTAIN NUMERICAL INTEGRATION
 
PARAMETERS.
 

LIST= NMODES, NTEPMS. ADEL* TIMEND
 

FORMAT(2IS*2E15.8)
 

LTST=(MODEID(I)9I=I*NMODES)
 
FORIAT(1615)
 

THE UNDAMPED MODES USED AS GENERALIZED FUNCTIONS ARE
 

MODEID(1), MODEID(2),....MODEID(NMODES)
 

NTERMs IS THE NUMBER OF TERMS TO INCLUDE IN THE TAYLOR SERIES EXPANSIONS
 

FOR CALCULATING THE NUMERICAL INTEGRATION COEFFICIENT MATRICES.
 

NTERMs=6 IS USUALLY SUFFICIENT. IF NTERMS IS LESS THAN OR EQUAL TO
 

ZERO A PROGRAM STOP WILL OCCUR.
 

ADEL IS USED TO COMPUTE THE NUMERICAL INTEGRATION TIME STEP. THE TIME
 

STEP IS CALCULATED BY DIVIDING THE PERIOD ASSOCIATED WITH THE HIGHEST
 

FREQUENCY SYSTEM MODE USED AS A RESPONSE COORDINATE INTO ADEL PARTS,
 

ADEL IS USUALLY SET EQUAL TO 10.
 

TIMEND IS THE TIME AT WHICH THE NUMERICAL INTEGRATION PROCESS IS TO
 

TERMINATE.
 

FORCING FUNCTIONS CONSIST OF POINT FORCES AND MOMENTS DEFINED AS
 
PIECEWISE LINEAR FUNCTIONS OF TIME. ANY NUMBER OF POINT LOADS MAY
 

BE SPECIFIED ACCORDING TO THE FOLLOWING LIST AND FORMAT. A BLANK
 

CARD IS USED TO TERMINATE FORCING FUNCTION DATA.
 

LIST= JNT, K. NPTS
 
FORMAT(315)
 

IF KLE*3. THE FORCING FUNCTION WILL BE APPLIED AS A POINT FORCE IN
 
DIRECTION K AT JOINT JNT. IF K.GT.3. THE FUNCTION WILL BE APPLIED AS
 

A POINT MOMENT IN DIRECTION K-3 AT JOINT JNTe NPTS IS THE NUMBER OF
 
POINTS IN TIME AT WHICH THE FORCING FUNCTION IS DEFINED. THE FUNCTION
 

IS ASSUMED TO VARY LINEARLY BETWEEN TIME POINTS.
 

THE FOLLOWING CARDS DEFINE THE TIME AND THE MAGNITUDE OF THE LOADING
 
AT EACH TIME STATION- THE CARDS ARE READ IN PAIRS (ONE TIME CARD AND
 
ONE LOADING CARD) WITH EIGHT POINTS BEING DEFINED BY EACH CARD PAIR
 
UNTIL ALL NPTS TIME POINTS ARE DEFINED. THE LIST AND FORMAT CONTROLLING
 

INPUT OF A SINGLE PAIR OF CARDS FOLLOWS.
 

B-18 



LMSC-HREC D225003
 

LIST= (TC1)91=198)
 
FORMAT= (8EI0.6)
 

LIST= (F(I).'=1.8)
 
FORMAT= (BEI06)
 

F(I).IS THE MAGNITUDE OF THE POINT LOAD APPLIED AT JOINT JNT IN
 
DIRECTION K AT TIME T(I), THE LAST PAIR OF CARDS IN THE T AND F
 
SPECIFICATION MAy DEFINE LESS THAN EIGHT TIME STATIONS. SUPPOSE
 
THAT NPTS=I3. TWO CARD PAIRS WOULD BE REQUIRED. THE FIRST DEFINING
 
TIME STATIONS 1 THRU 8, AND THE SECOND DEFINING TIME STATIONS 9 THRU 13.
 

FOR EXAMPLE. SUPPOSE THE FOLLOWING DATA WAS READ FOR NPTS7.
 

I= 1 2 3 4 5 6 7
 
T(1)= 0.0 2.0 4.0 5.0 7.0 8.0 8.0
 
F(1)= 1.0 -1.0 1.0 1.0 -1.0 -1.0 0.0
 

A TIME PLOT OF THE RESULTING LOADING FOLLOWS.
 

F
 

060 )- * - - 0 T
..... 7-


THE NON-ZERO INITIAL CONDITION SPECIFICATIONS ARE READ NEXT. UNLESS
 
SPECIFIED OTHERWISE BELOW. THE INITIAL STATE'OF A COORDINATE AND ITS
 
FIRST TIME DERIVATIVE ARE SET EQUAL TO ZERO. A BLANK CARD TERMINATES
 
THE INITIAL CONDITION DECK. EACH NON-ZERO SPECIFICATION IS READ
 
ACCORDING TO THE'FOLLOWING LIST AND FORMAT.
 

LIST= It 0. ODOT
 
FORMAT= (IE.2E5o8)
 

G DEFINES THE INITIAL STATE OF THE I-TH SYSTEM COORDINATE. ODOT
 
DEFINES THE INITIAL DERIVATIVE OF 0 WITH RESPECT TO TIME. THE I-TH
 
SYSTEM COORDINATE IS IDENTIFIED AS THE UNDAMPED SYSTEM MODE MODEID(I)
 
AS DISCUSSED PREVIOUSLY IN THIS SECTION.
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