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To produce a diversity of program material in a limited
 
frequency spectrum, various multichannel, continuous-audio
 
still-video, television transmission-systems, compatible to
 
the existing systems, have been suggested and investigated.
 
In this report, we categorize and describe these alternative
 
systems and identify some of the system parameters and con­
straints. The issues explored are: the number of still
 
picture channels that can be realized in a limited spectrum,
 
the interrelation of various parameters with system con­
straints, and general system considerations.
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STILL-PICTURE TELEVISION TRANSMISSION
 

1. INTRODUCTION
 

Multi-channel television transmission with continuous
 

audio and continuous video gives a wide choice of program
 

selection. With a satellite transmission system, where the
 

cost per channel is high, a limited number of channels may
 

be available for these purposes. To have a diversity of
 

program material for such a case, and where motion is not an
 

important factor for the video information, a multi-channel
 

continuous audio still video format can be considered as an
 

alternative to the standard multi-channel, continuous audio­

video format. The effectiveness of this format for educa­

tional or for any other purposes has yet to be investigated,
 

but some research done (1,2)* is encouraging.
 

A continuous audio- still video format is called the Still-


Picture Format here. The transmission scheme for this, when
 

a standard television receiver is used for display, is called
 

the Still-Picture Television (SPTV) transmission system.
 

*The numbers in parentheses in the text indicate references
 

in the Biblioqraphy.
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SPTV transmission through satellite involves the transmission
 

of information needed for Still-Picture Format to a receiving
 

point, which converts this information into the still-picture
 

format compatible to the display receiver. If, for example,
 

a conventional television receiver is used for signal display,
 

then the information received from satellite has to be pro­

cessed to form a compatible conventional broadcast television
 

format. This processing has to be done either remotely from
 

display equipment, many of which may be connected by cable to
 

the centrally located processor, or processors may be located
 

with a few or each of them, depending upon the various trans­

mission and receiving system considerations.
 

1.1 MAIN OBJECTIVE AND SCOPE 

In the design and construction of any communication system, 

there are several important factors which must be comsidered; 

some are: (1) cost, (2) reliability, (3) simplicity and (4) 

versatility. The main objective of the study reported here 

is to investigate alternative multi-channel, continuous audio, 

still-video television transmission systems compatible with 

existing television transmission systems. This was considered 

in light of the above and other requirements. The aim of such 

a system is to produce a diversity of program material in a 

limited frequency spectrum. The scope of this report is two­

fold: (i) to categorize and describe some alternative systems, 

(ii) to identify some of the system constraints and parameters.
 

The basic transmission systems are assigned three cate­

gories: (i) slow-scan transmission system; (ii) time-shared­
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video, frequency-shared-audio transmission system; and (iii)
 

time-shared-video with time-shared time-compressed audio
 

transmission system. The system concept for each has been
 

described. Relations between such parameters as video frame
 

updating time, number sub-channels, audio bandwidth, and
 

total bandwidth are derived and plotted. Suggestions for the
 

solutions of various technical problems encountered are made.
 

Each system is considered with a view to making it compatible
 

with the existing conventional television display system.
 

Since the system compatibility to the existing system is one
 

of the important parameters, a brief discussion of existing
 

television broadcast standards is given in the next section.
 

1.2 TELEVISION BROADCASTING STANDARDS
 

By television broadcasting standards we mean the picture
 

and transmission standards in use. The United States picture
 

standards define the method by which luminance, chrominance,
 

and synchronization information are formed into a signal
 

suitable for transmission. The transmission standard defines
 

the modulation method and frequency of transmission. A re­

ceiving installation must be compatible with both picture and
 

transmission standards of the broadcast being received.
 

At least twelve different television standards are in
 

use in the world. All of these standards were originally es­

tablished for monochromatic broadcasting. Later, a number of
 

methods were developed for expanding the monochromatic systems
 

to color systems compatible with existing monochrome broadcast
 

facilities and receivers. This compatibility means that a
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color receiver can receive monochrome broadcast while a mono­

chrone receiver can receive the color broadcast. The color
 

broadcasting uses the same Radio Frequency allocations pre­

viously assigned for monochrome. The existing color methods
 

meet these compatibility requirements by adding a chrominance
 

signal to monochrome luminance signal.
 

There are three standard systems for color television
 

NTSC, PAL and SECAM. The existing standards either use 405,
 

525, 625, or 819 lines per television frame. The 525 and
 

625 line standards are the most important ones. This is
 

because of the total number of receivers in the world and
 

present plans for expansion of television broadcasting ser­

vices for 525 and 625 line systems. In the United States and
 

Canada, the 525 line system is used.
 

Table 1.1 shows video and audio signal characteristics
 

of a standard 525 line television broadcasting system. This
 

system uses amplitude modulation with vestigial side-band
 

(AM/VSB). Like most standards, it uses video modulation with
 

negative polarization, i.e., a larger RF amplitude corresponds
 

to a lower luminance. The amplitude reaches a maximum durinq
 

the synchronization pulses and is lowest for white level of
 

the luminance signal. Frequency modulation is used for audio
 

information with the characteristics stated in the table.
 

1.3 SYSTEM PERFORMANCE OBJECTIVES
 

By system performance ob3ectives we mean the grade of
 

service and the quality of picture desired. The International
 

Radio Consultative Committee (CCIR) study (3) proposed
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Table 1.1 Television Broadcast Standards
 

Video Signal Characteristics:
 

Number of lines per field 525 

Nominal video bandwidth, MHz 4.2 

Frame frequency, Frame/sec 30 

Field frequency, Fields/sec 60 

Line frequency, Lines/sec 15,750 

Color subcarrier frequency MHz 3.58 

White level 0 
Relative Blank level, color burst bias 0.71 
video 

voltages Syne pulse top level 1.0 

Color burst amplitude 0.143 

Line period 63.5 

Line blanking monochrome 10.8 
Signal Line blanking color 10.95 

components 
durations Line syne pulse, monochrome 4.95 

sec Line syne pulse, color 4.65 

Color burst NTSC 2.3-3.4 

Rise times Blanking signal, monochrome < 0.64 

(10-90%) Blanking signal, color - 0.48 
lisec Line syne pulse < 0.25 

Audio Signal Characteristics:
 

Audio bandwidth kHz 15
 

Maximum frequency swing kHz ±25
 

Time constant of pre-emphasis psec 
 75
 

Test tone frequency Hz 
 400
 

Pre-emphasis test tone frequency db ±0.2
 

Pre-detection bandwidth kHz 
 200
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definitions of three broadcastinq satellite services: prin­

cipal, rural, and community. Slightly different definitions
 

have been proposed by the study group IV (4). These classifi­

cations and proposed definitions have been considered ade­

quate by some of the papers (5) submitted to the United Nations
 

Working Group on Direct Broadcast Satellite. This report
 

takes an approach similar to that being pursued within the
 

CCIR in discussing various grades of service to principal,
 

rural, and community installations. These definitions are
 

discussed in the following paragraphs.
 

Primary (Principal) Grade of Service is a grade of ser­

vice with a power flux density of sufficient magnitude to
 

enable the general public to receive transmissions directly
 

from satellites by means of individual installations and with
 

a quality comparable to that provided by a terrestrial trans­

mitter to its primary service area. It is assumed to be
 

offered to urban areas where man-made noise level is high and
 

the receiver population is or has the potential of being ex­

tremely high. A field strength of 70 dbu (relative to one
 

microvolt per meter) is considered to be a reasonable estimate
 

(5) for this grade of service This is equal to the CCIR
 

recommendation (6) and is about midway between the FCC Grade
 

A and B (5).
 

Secondary (Rural) Grade of Service is a grade of service
 

with a lower power-flux density than that required for a pri­

mary grade of service. The signals are intended for direct
 

public reception from satellites by means of individual
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installations and with an acceptable quality in sparcely
 

populated areas which are not served, or are inadequately
 

served, by other means and where satellite reception condi­

tions are favorable.
 

Community Grade of Service is a grade of broadcasting
 

service from satellites with a limited power flux density.
 

The signals are intended for group viewing or listening or
 

for reception by a master receiver installation. This grade
 

of service could provide a quality of picture about equivalent
 

to that of primary grade although the signal strength may be
 

considerably lower. This grade of service may be applied for
 

educational and national development purposes (5).
 

Unlike the principal grade of service, no specific sig­

nal strength requirements exist for the other two grades of
 

services. Hence, the performance ob3ectives are established
 

with signal to noise ratio (SNR) as a parameter.
 

1.4 	 SUBJECTIVE PICTURE QUALITY
 

A commonly used picture quality measure is the receiver
 

Signal to Noise Ratio (SNR) and is defined as
 

video voltage2

M -	 (blank-to-whiteN RMS voltage of video noise I 

This quantity is known as "picture SNR", as it compares the 

noise voltage with the voltage range of picture signal. Some 

other definitions of SNR include the synchronization pulse too, 

which increases the picture SNR by about 3db. 

These definitions do not give a meaningful measure of the 

effect of noise on picture quality as sub3ectively experienced 
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by the viewers unless qualified by the video noise spectrum
 

because the noise at the upper end of the video spectrum is
 

less objectionable than equal noise power at the lower end.
 

Weighting networks are used to account for this effect by
 

spectrally weighting the noise according to the perception
 

of an average viewer. The power transfer characteristic of
 

the filter used for 525 line television can be found in the
 

literature (7,9). Thus the new weighted SNR can be defined
 

as:
 

blank-to-white video voltage 


p~=weighted RMS voltage of video noise)
 

where the subscripts p and w refer to power ratio with weigh­

ting. The weighting factor, i.e., ratio by which weighting
 

increases the picture-SNR is:
 

B
fBn vdfv 
W i0= l~ 0vn(fv)

log fBv0vnfv)d
W =10 


vn(f ) W(fv ) df v 

where 

Bv = upper frequency limit of video band 

fv = video frequency 

n(fv) = one sided power spectral density of video 
noise
 

W(fv) = power transfer characteristic of the 
weighting network.
 

A source of information on the subjective effect of
 

random noise on viewer satisfaction with monochrome and color
 

television pictures is the study (8) done for the Federal
 

Communications Commission by the Television Allocations Study
 

2 



Organization (TASO) during the 1950's. Table 1.2 gives the
 

results of this taken from reference 5. These data differ
 

from the CCIR data in two ways: first, they are the signal
 

to noise ratio at the input of the receiver, while the CCIR
 

data are signal to noise ratio in the video channel. Second,
 

the TASO numbers result from tests with both picture and
 

noise present, while the CCIR data refer to noise measurements
 

performed in the absence of signal.
 

The conversion of TASO's SNR to the weighted SNR has
 

been discussed in the literature (7,9). There is a slight
 

variation in the results obtained by various authors, however
 

the relation derived in reference 7 appears reasonable and is
 

used here for conversion purposes. The relation is:
 

0p'w WT
(N~ = (S) + 0. 9 db 

wher =weighted picture-SNR, in db
 

NS = picture-SNR used by TASO to express its 
T test results, in db. 

The values of carrier to noise ratio stated by TASO relate 

to the controlled R F noise in3ected at the test receiver in­

put. Consequently, these figures do not account for camera 

noise, which contributed to the interference rated by TASO's 

viewer panel. Accounting for camera noise (7) in the TASO 

picture-SNR, the last column in the Table 1.2 gives the 

weighted picture-SNR for the desired TASO grade. 

TASO reports that color television requires a slightly 

lower signal-to-noise ratio than monochrome for equal 



Table 1.2 Sub3ective Assessment of 
Signal to Noise Ratio for Television 

TASO MEDIAN MEAN WEIGHTED 
GRADE NAME DESCRIPTION OBSERVER OBSERVER SNR (db) 

(db) (db) 

1 Excellent Extremely high quality, 43 42 45.5 
as good as could be 
desired 

2 Fine High quality providing 33 38 40.2 
enjoyable viewing,
perceptible interference 

3 Passable Acceptable quality, 27 31 32.2 
interference not 
ob]ectionable 

4 Marginal Poor quality; improve- 23 25 2n.9 
ment desired, interference 
somewhat ob3ectionable 

5 Inferior Very poor quality but could 17 19 19.9 
be watched, definitely 
objectionable interference 



-11­

subjective quality (Reference 8, paqe 532 to 534, Figure 40),
 

but opposite results have been reported by Barstow and Chris­

topher (10).
 

It should, however, be noted that the above picture
 

ratings are for conventional television frame rates For
 

still-picture television, where the frame repeating system
 

is used (Section 2.2.6), the noise pattern associated with
 

each frame is also frame repeated, thus producing the "frozen"
 

noise effect. Some research (32) done for a small number of
 

repetitions indicates that the noise level increases rapid­

ly as the number of repetitions are increased followed by a
 

general flattening out or saturation above 60 to 100 milli­

second. This corresponds roughly to the integration period
 

or critical duration of the eye. Below the critical duration,
 

the eye sums "frozen" noise frames and sees increasing gran­

ularity with increasing frame repetition. Above the critical
 

duration the granularity stays constant, but the apparent spa­

tial movement of the noise becomes slightly more noticeable
 

with larger numbers of repetitions. For frame repetition up
 

to 0.1 second, 2 to 3 db apparent increase in the noise level
 

has been reported (32). In the absence of any data for large
 

numbers of repetitions, a series of psychophysical experiments
 

are recommended to get quality ratings for still-picture tele­

vision. Until then we will use the standard scale.
 

1.5 SATELLITE POWER AND PICTURE QUALITY
 

The satellite power requirements depend on. (1) the grade
 

of service desired; (ix) the picture quality desired; (iii)
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the frequency band assigned for the given channel; (iv) the
 

area covered or antenna gain; and (v) the modulation scheme
 

used. The grade of service at the receiving installation
 

has been characterized (5) by the ratio of its antenna gain
 
G
 

to system noise temperature (G/T). The ratios 10 logl0
 

for three grades of service, viz., primary, secondary, and
 

community, are 27, 11, and 3.85 dbu, respectively (5). Pic­

ture quality has already been discussed in terms of TASO
 

grades and the corresponding signal to noise ratios have
 

been given. Now the three other important parameters: fre­

quency band, antenna beamwidth, and modulation scheme have
 

yet to be decided. We shall keep them as parameters and con­

sider for various values of frequency, different modulation
 

schemes (vestigial side band amplitude modulation and frequen­

cy modulation), and a set of beamwidths.
 

Three curves have been drawn [Figures 1.1, 1.2, and 1.3].
 

Figure 1.1 is for vestigial side band-amplitude-modulation
 

(VSB-AM) 0.86 GHz television transmission scheme. It gives
 

the values of satellite effective radiated power (Em') re­

quired for a given picture quality, grade of service and an­

tenna size (antenna beam-width) for a VSB/AM television trans­

mission. The satellite borne antenna is characterized by the
 

width of beam in two orthogonal planes. These beams do not
 

have to be equal, but they have been taken so for convenience.
 

Figures 1.2 and 1.3 give the same information for the
 

frequency modulated 0.86 GHz and 12 GHz carrier respectively.
 

These curves have been derived from the nomograms in reference
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5 with the following assumptions: (i) the receiving antenna
 

is mounted outside. This arrangement overcomes building
 

attenuation losses which could raise the required satellite
 

power by up to several orders of magnitude; (ii) a variety
 

of transmission losses, which exist in the practical system,
 

have been considered. These losses include a pointing loss
 

due to imperfect alignment of the receiving antenna, polari­

zation mismatch losses, ionospheric absorption losses, cloud
 

attenuation, refraction and tropospheric loss, fading, and
 

precipitation loss. A factor of 2 db has been used for these
 

losses and a margin of 3 db has been assumed.
 

As an example of the use of these curves, let us find
 

the satellite power requirements for community grade of ser­

vice with TASO grade 2, given that the satellite antenna
 

beamwidth is 20x20 . From Figure 1.1 we find that for the
 

above requirements, a peak transmitter power of 21 dbw is
 

required for VSB/AM at 0.86 GHz and for the same requirements
 

with frequency modulation at frequencies 0.86 GHz and 12 GHz
 

the average transmitter power is approximately 6 dbw and 15
 

dbw respectively. As another example, if an excellent pic­

ture is desired for a primary grade of service, then the
 

power requirement,at 0.86 GHz frequency modulated system with
 

antenna beamwidth 30x30 , is approximately 36.5 dbw.
 

In the above power considerations, the audio channel
 

power has not been included, which can be considered about
 

10% of the video power (11), per audio channel.
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2. STILL-PICTURE TELEVISION (SPTV) TRANSMISSION
 

2.1 	SLOW-SCAN
 

Basically, slow-scan is a method for reducing the video
 

anformation rate to a value lower than that used for con­

ventional television transmission. Slow-scan television is
 

not new (12,13); however, in recent years there has been an
 

increasing interest in it for applications in various fields
 

including educational and commercial television broadcast
 

(14,15).
 

2.1.1 	General System Concept
 

In a television syster, there is a fixed relationship
 

between the number of lines per field, the number of fields
 

per unit time, the resolution across the line, and the video
 

bandwidth (for a given value of aspect ratio and blanking
 

time ratios). This is as follows (14).
 

2
 

= 2ARHNF/ 2BL
 

where A = aspect ratio (width/height of active picture
 

area)
 

RH = horizontal resolution in number of television
 

lines
 

NF = number of scanning lines per field
 

BL = line blanking factor (active time/total tires)
 

W = bandwidth of the video signal
 

F = television frame rate
 

and F = where TF times per field.

TrF
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The left-hand member of the above equation is a dimen­

tionless function of the aspect ratio horizontal resolution,
 

scanning lines per field and blanking width. It is thus
 

seen that a trade-off is possible between bandwidth and the
 

frame rate. As an example of this, if the conventional tele­

vision standards are considered for picture transmission
 

with a difference of frames presentation time from 1/30th
 

of a second to 10 seconds, then the bandwidth is reduced by
 

a factor of 300. Thus about 300 simultaneous transmissions
 

are possible in one television equivalent channel, neglecting
 

frame identification information and the required audio band­

width. Besides the narrow bandwidth required for slow-scan
 

television, it has the advantage of increased resolution
 

that can be realized from the vidacon tubes; this results
 

because more time is available to discharge the screen as
 

the scan time is increased.Increasing discharge time per­

mits lower beam currents and, as a result, the scanning aper­

ture (or beam size) can be reduced. The resolution of a vi­

dacon tube is limited by the beam size; the resolution is
 

increased as the beam size is decreased.
 

The slow-scan video information can be transmitted and
 

received on a storage screen without the use of any memory
 

unit. However, the viewer has to spend a certain amount of
 

time prior to display of a complete picture. Even if the
 

first picture is removed line by line as the next picture is
 

laid, thus creating the effect of wipe moving, the above
 

problem still exists. Other problems associated with this
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are: (i) while the audio is transmitted continuously the
 

picture takes finite time to appear. Thus arrangements
 

must be made to synchronize the audio with picture. One
 

of the ways in which this can be done is to send the audio
 

with synchronization information, ahead of the video infor­

mation and then synchronize locally the audio and video.
 

(ii) a set of new display apparatus with storage tube is
 

required.
 

The above difficulties can be removed if the slow­

scan information being transmitted through satellite is
 

first stored at a central receiving point, converted into
 

a standard television signal, and then retransmitted to
 

user display receivers. A block diagram of a possible slow­

scan transreceiver is shown in Figure 2.1. Scan converters
 

are used at the transmitter and receiver to convert the stan­

dard signal format to slow-scan and slow-scan to standard
 

format, respectively. The storage element is an important
 

part of the scan converter system. Farr (13) discusses a
 

slow-scan system for which phonograph records can be used
 

as storage elements. Magnetic disc recorders have been
 

suggested as another storage element (16).
 

Deutsch (17) has proposed another narrowband television
 

transmission system. This is basically a slow-scan system 

but not a stall-pacture system. Bandwidth as low as 10 kHz 

has been reported in this case (18) . Deutsch's system takes 

advantage of the low information content of the television 

picture, the tolerance of the human vision for motion
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deterioration, and lower resolution than that used with
 

conventional television. It has been stated (30) that the
 

principal psychological requirements of human vision are
 

satisfied by a video frame frequency of one or two frames
 

per second. To avoid flicker and the illusion of drifting
 

of lines (19), when line scanning is applied with such low
 

frame rates, a pseudo-random dot scan is employed by Deutsch
 

in conjunction with a long persistence phosphorous. Fif­

teen percent dot flicker has been shown to be tolerable.
 

This system, though promising is not compatible with the
 

conventional system, and needs new receiver structures.
 

2.1.2 	Effect of Scanning Speed on the Signal to Noise
 
Ratio of the Camera Tubes
 

The signal amplitude from a camera tube and its band­

width vary directly with the scanning speed. Since the noise
 

power is distributed over the whole frequency, the rms noise
 

voltage must rise in proportion to the square root of band­

width, and hence the square root of scanning velocity. Thus
 

SNR is actually proportional to the square root of scanning
 

speed. Thus for slow-scanning speed, the SNR can be expected
 

to be smaller than at conventional speeds, but this statement
 

can be modified by saying that the SNR of the camera can be
 

made independent of scanning speed if the system parameters
 

are optimized. The validity of the latter statement has been
 

shown by Schreiber (20) by considering the three inherent
 

sources of noise: (i) the signal shot noise; (ii) the ther­

mal noise of the load resistor; (iii) and the amplifier noise.
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The shot noise rms amplitude, inherent in a video
 

tube with plate current I is in /2-eIsF, where e is the
 

electronic charge and F the video bandwidth. The SNR due
 

to this is
 

/S s 1 s
 
(1)
(N)- S\Nlshot noise /2e1 F / F 

s 

As the scanning speed changes Is and F change accor­

dingly, thus making the above SNR independent of scanning
 

speed.
 

The SNR due to the load resistance is
 

N- IR - (2) 

Load resistor rR f4k 

where V4'ER is the rms thermal noise voltage generated
 

due to the load resistor. The above expression can be made
 

independent of the scanning speed if R is made inversely
 
I 
- s
proportional to F, because the ratio is already indepen-

F 

dent of the scanning speed. Now, for a properly designed
 

system, the noise generated within the preamplifier will
 

be small compared to shot noise and the thermal noise, at
 

least at low frequencies. So the amplifier bandwidth must
 

be decreased in proportion to the scanning speed Thus to
 

obtain this independence of scanning speed the load resis­

tor and the amplifier bandwidth must be ad]usted accordingly.
 

It can be easily seen from equation (2) that camera SNR
 

does indeed vary as the square root of scanning speed if the
 

load resistor is not optimized.
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2.2 TIME-SHARED SPTV TRANSMISSION
 

In designing a multi-channel communication system,
 

two parameters, time and frequency, can be utilized as a
 

means of separating the sub-channels. A given amount of
 

time-limited information can be transmitted in either do­

main with a constant time-bandwidth product; that is, if
 

the bandwidth is reduced, the time duration is prolonged and
 

vice versa. Although equal in their capabilities, the two
 

methods differ in many other respects.
 

To create the illusion of motion in the standard tele­

vision transmission format, a number of frames of slightly
 

different spatial variation are transmitted. However, if
 

motion is not a requirement, the same television frame has
 

to be repeated, as long as it is being displayed on the re­

ceiver. Therefore, instead of sending the same television
 

frame repeatedly for still-picture transmission, one frame
 

can be transmitted for each picture, stored at the receiver,
 

and displayed as long as desired by cyclically displaying
 

the stored frame. Each succeeding frame can be sent when
 

the preceding frame is no longer required for display. The
 

time saved by this procedure can be used for sending other
 

unrelated frames. Thus a time-sharing system can be used
 

for sending the still-picture video information. The re­

ceived video information may be stored at a receiving point
 

and formed into a signal compatible with a conventional
 

television receiver.
 

The audio information accompanying each still-frame can
 

either be transmitted by frequency-sharing, placing the audio
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information band above the video frequency band, or by time
 

sharing by expanding its frequency to video frequency level
 

and transmitting along with the video information the corres­

ponding audio.
 

2.2.1 	 Classification
 

Since the audio information of different sub-channels
 

can be separated either in frequency or time domain, the
 

transmission system can be classified into two categories:
 

(i) time-shared-video, frequency-shared-audio, (ii) time­

shared video, time-shared, time-compressed audio.
 

In the time-shared-video, frequency-shared-audio
 

scheme, time division multiplexing (TDM) is used for the
 

video information transmission and frequency division multi­

plexing (FDM) is used for audio information. On the other
 

hand, only TDM is used in the time-shared-video, time-shared,
 

time-compressed audio system. The detailed description and
 

some of the technical problems associated with these systems
 

are discussed in the subsequent sections.
 

2.2.2 	 Time-Shared-Video, Frequency-Shared-Audio, SPTV
 
Transmission System
 

In this system of transmitting still-picture with con­

tinuous audio, time division multiplexing is used to trans­

mit the different still video frames, while frequency divi­

sion multiplexing is used for the continuous audio
 

information accompanying each video slide. The use of
 

several FDM audio channels requires a greater fraction of
 

total bandwidth available compared to single audio in the
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standard television system. If only one television channel
 

equivalent bandwidth is assiqned for such a system, then
 

the expanded audio bandwidth must be accommodated. This can
 

be done either by decreasing the video frame rate, which in
 

turn reduces the video bandwidth thus creating more band­

width for audio, or by using some video bandwidth reduction
 

technique (43,44,45).
 

Each sub-channel of video information consists of still
 

pictures that are updated infrequently. These pictures are
 

time-multiplexed into the transmitted video signal as an
 

ordered sequence of individual frames. Thus, if there are
 

N sub-channels of audio-visual information, frame 1, N+l,
 

2N+l, 3N+1,..., correspond to the sub-channel one, frame 2,
 

N+2, 2N+2,..., correspond to sub-channel two, etc. [See
 

Figure 2.2].
 

11 2 . N-i N N+1l N+2 I . 12N+l 

TH
 

Figure 2.2
 

Timing Diagram for Time-Shared SPTV Video Information
 

The updating time for each video sub-channel, T, is N times
 

the frame time of the transmitted video signal. For example,
 

se.
the updating time with 30 frames/sec is equal to 
N
 

The audio is sent continuously by FDM. A frame synchroni­

zing signal is required to identify the beginning of a frame
 

sequence. The preprocessor then counts frames from the
 

frame synchronizing signal to the frames corresponding to
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the desired sub-channel. This frame must be stored in a
 

video frame buffer. Between updatings of the buffer, the
 

stored video frame corresponding to a single still-picture
 

is read periodically and combined with its companion audio
 

signal to form an audio visual signal compatible with con­

ventional television receivers used for display.
 

2.2.3 General System Considerations
 

The composite still-picture television signal consists
 

of the time-division multiplexed video information along
 

with the frequency division multiplexed audio information.
 

A number of techniques are available to achieve this simul­

taneous transmission of video and audio information. Among
 

these are. (i) separate RF carriers for time-shared video
 

and each audio channel; (11) separate RF carriers for time­

shared video and multiplexed audio information, for example,
 

if W and W are the RE carrier frequencies for time-shared
c c 
v a

video and multiplexed audio information, respectively. The
 

frequency modulated signals are xl(t) = /2 p cos [Wct +
 

dflfta1(u)du] and x2 (t) = /7 pcos[Wcat + df2fta 2(u)du] for 

video and audio information respectively. The notations are: 

x1(t) = video frequency modulated signal 

d = deviation ratio for video
 

al t) = video signal
 

d f = deviation ratio for multiplexed audio, and
 

a2 (t) = multiplexed audio signal and is given by
 

N 

a 2 (t) = A[l + mb (t)] cos W1t 
i=l1
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where m = modulation index 

b (t) = audio signal
 1
 

W = audio sub-carrier frequency.
1
 

(iii) Multiple sound channels in the backporch (21) of the
 

synchronizing pulse of video waveform. This method, however,
 

gives one or two sound channels and receiver complexity is
 

increased. Parameters such as satellite effective isotrop­

ically radiated power (EIRP), RF bandwidth, etc., are not
 

affected. (iv) One RF carrier for both time-shared-video
 

and multiplexed audio information. If frequency modulation
 

is used for RF transmission, the tramsmitted signal can be
 

written as
 

xc (t) = 2p cos[Wct + dffta(u)du] 

where W = carrier frequency 
c 

df = deviation ratio for the combined video and
 

multiplexed audio signal
 

N 

a(t) = a1 (t) + A(l+mb(t)] Cos t 

i=l 

This system has been recommended by the International Radio
 

Consultative Committee (CCIR) for terrestrial microwave
 

systems (22). The ultimate choice of a method for this
 

system depends on the following factors:
 

(a) Transmission base-bandwidth available.
 

(b) Number of still-picture channels required.
 

(c) Receiving and transmitting station complexity consider­

ations.
 

(d) Satellite EIRP considerations.
 



-28-


If a limited frequency spectrum, either in terms of
 

RF bandwidth or base-bandwidth is available, and a sub­

stantial number of still-picture television channels are
 

desired, then from minimum equipment complexity and satel­

lite EIRP considerations, method 4 seems to be a suitable
 

choice. A number of studies done on simultaneous trans­

mission of video with multiple sound channels (23,24) for
 

India, claim that this method is the least costly solution.
 

This method has the advantage that a substantial number of
 

still-picture television (SPTV) channels can be accommodated
 

in a single satellite transponder with only a single RF
 

carrier operation.
 

Once it is decided about the modulation format, the
 

type of modulation for audio sub-carriers and their arrange­

ment above video information has to be looked into so as to
 

avoid the intermodulation products in the video band. The
 

latter part of this problem depends on the first. For
 

example, the frequency modulated sub-carriers have to be
 

considered from a different point of view than the ampli­

tude modulated ones, as the former contains many upper and
 

lower side bands while the latter contains only one upper
 

and one lower side band.
 

Practical and economical considerations (23,24) suggest
 

that audio channel transmission in space broadcasting be
 

done with sub-carriers modulated in accordance with the
 

present standards for the audio carrier modulation. As
 

previously stated, in nearly all television transmission
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systems, the sound carrier is frequency modulated with pre­

detection bandwidth of 200 kHz. If a large number of SPTV
 

channels are required, then the base-bandwidth requirement
 

of this composite channel would be prohibitive For example,
 

a base-bandwidth of at least 8.2 MHz would be required for
 

a 50 channel SPTV system, with 4.2 MHz as video bandwidth.
 

However, when sub-carrier arrangement for frequency modu­

lated sub-carriers is considered, this base-bandwidth re­

quirement greatly increases because the sub-carrier
 

frequencies have to be chosen so that none of the sub-carrier
 

bands overlap the third order products of the intermodulation
 

between other sub-carriers and between any other sound sub­

carrier and the color sub-carrier (23,25). In addition the
 

vadeoto audio carrier spacing of the given television stan­

dard is avoided (6), to simplify the filter requirements,
 

which further increases the SPTV base-bandwidth.
 

The base-bandwidth requirements suggest that a modula­

tion scheme with less complicated sub-carrier arrangement
 

and less sub-carrier bandwidth is desired. This immediately
 

suggests the idea of single-side band modulation scheme.
 

But considerations of equipment complexity and oscillator
 

stability seem to discourage this. However, amplitude mo­

dulation seems to be a reasonable choice. The problem of
 

sub-carrier separation is automatically solved as amplitude
 

modulation contains only the upper and lower side bands,
 

and therefore a separation equal to or little more than
 

twice the audio bandwidth will suffice.
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The base-bandwidth for this system consists of the
 

spectrum 	occupied by the video information along with all
 

the modulated audio sub-carriers above this. Two cases.
 

() with total base-bandwidth fixed and equivalent to one
 

television channel, and (ii) with video base-bandwidth fixed
 

and equal to standard video base-bandwidth can be considered.
 

In either case the sub-carriers are placed above the video
 

base-bandwidth. More details about these are given below.
 

2.2.3.1 	Base Band-width Fixed and Equivalent to One
 
Television Channel Bandwidth
 

If the video scanning rate is reduced by an appropriate
 

amount, the frequency spectrum thus created can be used to
 

accommodate the modulated audio sub-carriers. However, the
 

number of total audio sub-carriers is limited by the maxi­

mum bandwidth which can be allocated for all the audio
 

channels. A relation between the number of sub-channels
 

that can 	be transmitted, the updating time of the picture
 

frame, and the audio base-bandwidth can be derived as
 

follows-


Let N = Number of channels to be transmitted
 

B = Total base-bandwidth
 

Ba = Audio sub-carrier bandwidth
 

K = constant depending on number of television lines,
 

aspect ratio and horizontal resolution.
 

T = channel frame update time (See Figure 3.1).
 

Then the television frame rate is Since the tele­

vision video frequency is directly proportional to the tele­

vision frame frequency, we get the following relation between
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these parameters: B
 
T
 

N= Ba
 

and this can be written as
 

B k(5)
 

Ba + k
 T
where the video bandwidth is
 

f = vk iT (6) 

From these relations, a curve relating the number of
 

channels with frame update time has been prepared (Figure
 

2.3). It can be seen from this curve that for T=10 and Ba=
 

20 kHz, the number of channels, N, is 30; and to obtain
 

this, the television frame frequency has to be reduced to
 

13 frames per second.
 

While this method of transmitting appears to be rea­

sonable, the scan conversion problem seems to discourage
 

it. If video base-bandwidth is kept fixed and the composite
 

base-bandwidth is increased as the number of audio channels
 

are increased, the scan conversion problem is alleviated.
 

The RP bandwidth requirements for the latter case are not
 

much different than for the case in which total base-band­

width is kept fixed for the same transmission quality re­

quirements. Therefore, it seems reasonable to keep the
 

standard base-bandwidth of video with sub-carriers above
 

this. Figure 2.4 shows the base-bandwidth spectrum of the
 

composite signal with time-shared video and frequency-shared
 

equally spaced, amplitude modulated audio information.
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Figure 2.4
 
Base-bandwidth Configuration
 

of Composite Signal
 

For equally spaced carriers above video information,
 

the number of channels and audio bandwidth and video band­

width will determine the total base-bandwidth. The picture
 

updating time is directly related to the number of channels
 

in the sense that for 30 still-picture channels, the up­

dating time will be 30 times the television frame time.
 

Therefore, as the number of still-picture channels incre­

ses, the updating time increases in the same ratio.
 

2.2.4 Transmission and Reception
 

The general transmitter and receiver are shown in
 

Figures 2.5 and 2.6, respectively. Typically, the video
 

time division multiplexing can be obtained by using N+l
 

state counter, in which N states account for N channels
 

and the remaining one state can be utilized for frame syn­

chronization. Each video signal can be connected to a
 

logic switch, which operates only when both the counter and
 

the signal are present. These switches can be opened for
 

one frame period so that one television frame of each video
 

signal sent sequentially. The corresponding guard bands
 

between the ad3acent frames can be ad3usted to match the
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system requirements such as intermodulation effects and
 

crosstalk level. The time division and multiplexed video
 

signal is brought to a suitable power level to recombine
 

this with the frequency division multiplexed audio signal,
 

forming a composite audio-video signal. Finally, the
 

composite signal is modulated and brought to the proper
 

level for transmission to the satellite. The steps invol­

ved in transmission can be summarized as follows:
 

(1) Formulation of FDM video signal along with the frame
 

sequence synchronizing signal.
 

(2) Formation of FDM audio signal.
 

(3) Formation of composite audio-still-video signal.
 

(4) Modulation of composite signal, and final power level
 

ad3ustment for transmission to satellite.
 

The transmitted audio-still-video signal is received
 

at a central receiving station, where it is formed into a
 

compatible audio-still-video signal for the existing con­

ventional receivers. The block diagram of the receiver
 

shows the signal reception and formation of compatible sig­

nal at a central receiving point. Frame sequence synchro­

nizing signals can be used to separate the video frames,
 

while a number of band-pass filters can be used for the
 

audio channel separation. The following steps are involved
 

in the reception and demodulation of the above signal­

(i) Receiving and initial demodulation
 

(ii) Selection of TDM video and FDM audio
 

(iii) Video frame selection and frame repetition until the
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next frame.
 

(iv) Audio signal recovery
 

(v) Formation of audio-still-video signal by synchronizing
 

the proper audio signal to the frame repeated video signal.
 

(vi) Placing the audio-still-video channel in proper fre­

quency band and retransmitting them for contentional recei­

vers.
 

2.2.5 Frame Sequence Synchronization
 

The synchronization of the proper video frame with
 

the audio information is an important issue for the system
 

described above. A composite frame consists of a number of
 

television frames in time T. The period of time preceding
 

transmission slots in the composite frame is designated as
 

the synchronizing period. This assures the composite frame
 

starting time for all frames, thus making the task of frame
 

selection easy The characteristics of the synchronizing
 

burst are­

(a) It must be a signal that is uniquely determined.
 

(b) It must establish a point in the time within a required
 

tolerance.
 

A signal with these characteristics is sent from the
 

transmitting station after each composite frame for a pre­

assigned time period. This signal is then decoded and formed
 

into a synchronizing pulse, which when applied to the N+l
 

counter at the receiver resets it to the original position.
 

Thus, the cycle begins again.
 

A possible decoding arrangement is shown in Fiqure 2.7.
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coupled back to the input of the memory. If one frame is
 

introduced in output and input of the frame memory, then the
 

information previously stored in the memory is recirculated
 

via path B. Thus a frame repeated signal can be taken out
 

at the point 0.
 

Frame memory is an important component of this system.
 

In some of the experiments done at Bell Laboratories (31,32,
 

33) concerning the frame repetition, a number of delay lines
 

have been used for this purpose. For a low resolution, 160
 

line television frame storage system, high speed ultrasonic
 

delay lines have been used (34) Each line has a delay of
 

4.2 milliseconds insertion loss of 34 dbs and a bandwidth
 

of 3 MHz at a midband frequency of 5 -MHz. A number of lines
 

are used to give a total delay of one frame period. The
 

other frame memory that can be suggested is a video mag­

netic recorder in which the writing and reading heads are
 

arranged so that the readout is delayed by a frame period.
 

The detailed technical considerations have to be investi­

gated
 

Subjective measurements of the apparent increase in
 

noise level due to frame repetition (32) indicate that this
 

increase is small. It has been reported to be less than
 

3 dbs when a frame is repeated for less than 10 times.
 

Further investigations about the subjective measurements
 

of noise have to be done if a frame is repeated for a large
 

time.
 

The following questions must be answered before such a
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modulation format can be put into practice: (i) what is the
 

best and most economical frame memory?, (ii) how does the
 

frame repetition affect the video signal quality?; (iii)
 

how exact is the frame sequence synchronization. These
 

questions are hard to answer analytically, but experimental
 

tasks can possibly give reasonable answers.
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3. 	TIME-SHARED-VIDEO, TIME-SHARED COMPRESSED-

AUDIO, SPTV TRANSMISSION
 

in this method of SPTV transmission, time-sharing is
 

used for both video and audio information with the audio
 

information of each sub-channel time-compressed and sent
 

with the corresponding video information. The audio time­

compression is determined by the ratio of video bandwidth
 

to audio bandwidth. The duration of the compressed audio
 

information placed next to its video information is deter­

mined by the product of the composite frame duration and
 

the audio compression ratio. The composite frame duration
 

is defined as the time in which one video frame and its
 

corresponding audio in compressed form is transmitted for
 

each sub-channel. These things will be explained in de­

tail later.
 

Like the time-shared video frequency shared audio,
 

only one R F channel is required for this type of modula­

tion. The sub-channels to be multiplexed are arranged se­

quentially in time, with the video information followed by
 

the corresponding compressed audio information. Time com­

pression is used to expand the bandwidth of audio informa­

tion to the video information bandwidth. The audio
 

information 	to be transmitted is stored during the entire
 

composite frame interval. This information is recovered
 

in a shorter duration and placed next to the sub-channel
 

video frame. At the receiver: first, the video information
 

with compressed audio information of different sub-channels
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separated; then the video and audio of each s.b-channel is
 

separated. The audio is expanded in time and combined with
 

the corresponding video information to form a standard tele­

vision signal.
 

This method offers some inherent advantages in terms
 

of simplicity compared to one discussed previously. These
 

will be clear in the subsequent sections and are mentioned
 

here.
 

3.1 RELATIVE NlERITS
 

1) Unlike the previously described system, where the
 

total base-bandwidth increases as the number of sub-channels
 

are increased, the same base-bandwidth can be used, irres­

pective of the number of channels. Of course, the picture
 

updating time increases as the number of channels increases.
 

Thus the problem of scan conversion considered, to keep the
 

base-bandwidth fixed as the number of channels increases,
 

can be avoided. This may not only offer more simplicity,
 

but may be desirable on economic grounds.
 

2) Each composite frame is complete in the sense that
 

it contains all the audio-visual information required for
 

that part and can be separated independently. Thus a
 

channel selector, which selects the time-shared information
 

along with a synchronizing unit (as discussed in section
 

3.3.1), a frame repeating system and audio storage system
 

can possibly form as a front end receiver augmentation which
 

can make the receivers direct from satellite receiving sys­

tems.
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3) It offers the transmission system flexibility. Un­

like the previous case, in which only one transmitting
 

station can be used at a time due to technical requirements,
 

a number of transmitting stations can transmit simultane­

ously because of the time-sharing techniques of both video
 

and audio information. Of course, the synchronizing re­

quirements become very important and have to be considered
 

carefully.
 

3.2 COMPOSITE FRAME AND TIME ALLOCATIONS
 

Figure 3.1 shows the time allocations for N audio­

still-video channels, allowing necessary time for guard
 

bands and synchronizing bursts. The time axis of the
 

diagram shows composite frame beginning with a synchronizing
 

burst followed by transmission time for each channel. The
 

transmission time for each channel includes the guard bands
 

and the actual message time, which is video with compressed
 

audio. A number of composite frames form the multiplexed
 

system.
 

The duration of the composite frame is determined by
 

the number of channels desired. Corresponding to each
 

channel, one television frame time is assigned for the video
 

information, while the audio information time is determined
 

by the ratio of composite frame time and audio compression.
 

A simple relationship between the number of channels, the
 

composite frame time and the time required for the compres­

sed audio information to be transmitted along with this can
 

be derived as follows:
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vl, v2, v3,.. vN = still video frames transmitted during T.
 

a1 , a2 , a3,..., aN = time-compressed audio information corresponding to
 
each video frame.
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Channel Allocations for Time-Sharing of
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-47-


If 	 N = total number of channels desired,
 

T = composite frame time in seconds,
 

Ca = audio compression factor,
 

t = audio transmission time for each channel in
 a 

one 	composite frame,
 

tf = video transmission time for each channel in
 

one composite frame, then since one television frame con­

sists of an audio information equal to the length of the
 

composite frame, and therefore
 

T = 	 c a " ta (1) 

and also transmission time t, for each channel in one com­

posite frame is
 

t = 	ta + tf, (2)
 

(assuming guard interval, tg<<t a or tf)
 

Again, since N channels are transmitted in T seconds
 

and therefore
 

t +a 	 (3)+ 


From Equation 1, we have
 

T T 
-+ tf 
caa f 

Now, if tf is assumed as the tame for one conventional
 

television frame and c a is found for certain audio frequency
 

desired, a curve relating N and T can be drawn. Figure 12
 

is such a curve in which ca is taken as 400. From this
 

curve it can be seen that for a composite frame time of 10
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seconds, as many as 170 channels can be transmitted simul­

taneously over one equivalent television channel. Since
 

the audio information for each channel has to be stored for
 

one composite frame time, the upper time limitation comes
 

from this storage device.
 

Figure 3.3 shows the relation between the audio com­

pression and the number of channels for different values of
 

T. This gives the corresponding audio compression for cer­

tain values of T, and number of channels.
 

3.3 GENERAL TRANSMISSION AND RECEPTION
 

Figure 3.4 shows the timing diagram of the time-shared
 

video and audio signals. Since the video and compressed
 

audio information are sent sequentially, to synchronize the
 

video information with incoming audio information at the
 

receiver, video frame can be delayed by one frame period,,
 

if this much delay, (one television frame = .33 ms.),
 

is tolerable in audio information, it is not necessary.
 

In the diagram video frame is shown delayed by one tele­

vision frame. At a transmitter and receiver, the three
 

main units, apart from the usual amplifying and modulating
 

or demodulating units, are:
 

1) decoder and synchronizer unit
 

2) audio compression and expansion unit
 

3) video time sharing unit.
 

The block diagrams in Figures 3.5 and 3.6 show the
 

transmitting and receiving scheme of this system. The de­

coding and synchronizing unit gives all the timing signals
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required for video time-sharing and audio-video interleaving
 

in synchronization with other such units. The decoder trans­

forms the incoming synchronization burst to a pulse, which
 

is used to synchronize the synchronizer with other synchro­

nizers.
 

Audio compression and expansion consists of a number
 

of stores. The audio information of each channel is written
 

in the stores and read out at faster speeds. Thus an audio
 

information of a longer duration is reduced to a short
 

duration. An analog time-compression is employed for this
 

method of transmission, in view of the following advantages:
 

1) maximum possible product of bandwidth and number of
 

sound channels,
 

2) minimum storage requirements.
 

If this signal, for example, is first converted
 

into digital form, then into a pulse modulated signal, and
 

if this pulse signal would be transmitted in time-compres­

sion shape, then either the bandwidth or the number of sound
 

channels capable of being transmitted would be substantially
 

smaller and the storage requirements would be substantially
 

higher.
 

The video time-sharing unit is a time-division multi­

plexing unit with an equivalent time slot equal to the time
 

required for one television frame with its time-compressed
 

audio information. A detailed discussion of these units is
 

given in the subsequent sections.
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3.3.1 Synchronization
 

Since there is an interleaving of time-shared video
 

and corresponding time-compressed audio information, like
 

other time-sharing systems, the information on absolute
 

time is very important to ensure the relation between var­

ious channels. The synchronizing burst is one solution.
 

Synchronizing arrangements as suggested by Jacob and
 

Mattern (36) seems to be suitable for this purpose. A syn­

chronizing burst of certain duration is sent from a master
 

controlled station. It is decoded and converted to a pulse
 

at the receiving station. It is then fed into the local
 

synchronizer unit which generates the required timing pulses.
 

A possible synchronizer for a composite frame length
 

of 5 seconds is described here (Figure 3.7). This is based
 

on reference 36. It employs a digital counter controlled
 

by a master clock (crystal oscillator). The counter sup­

plies the actual ON-OFF synchronizing signals that time the
 

system operation. Figure 3.3 gives the number of channels
 

for a frame time of 5 seconds with the desired compression
 

ratio. For a compression ratio assumed as 420, the number
 

of channels comes out to be 110. So 11,000 cycle counter
 

is taken here to be controlled by a clock running at 2.2 MHz.
 

The output of the clock is divided by 1000 providing 2.2 kHz
 

pulses through gate G2 to the 11,000 counter. As long as
 

gate G2 is enabled, the 11,000 cycle counter continues to
 

count through 11,000 cycles, at which time it resets and
 

counts again.
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If the synchronizing pulse is received from the de­

coder, (see Section 2.2.5), then a pulse is applied to the
 

multi-vibrator M-I. In turn, the M-I removes the enabling
 

voltage from G2, resets the counter, and enables the gate
 

G1 to apply the 2.2 kHz pulse to the 5 cycle counter. This
 

counter resets after 5 seconds, resets M-I to its original
 

position, thus enabling the 11,000 cycle counter to begin
 

the count again.
 

Thereafter, the synchronizing pulses come on cycle
 

10,995 of the 11,000 cycle counter. If the crystal oscil­

lator does not maintain its frequency, the synchronizing
 

pulses correct the 11,000 cycle counter by resetting the
 

counter ahead or behind the 10,995 count as required.
 

During the absence of synchronizing pulses, the 11,000
 

cycle counter continues to free-run through 11,000 counts
 

and provides proper synchronization as long as the master
 

clock stays within the required tolerance.
 

The 11,000 cycle counter generates all the timing
 

pulses required for the time-sharing of video and audio
 

information. Timing gates (multiple input AND gates) for
 

each channel develop a group of timing pulses. These pulses
 

define the beginning and end of the frame voltages. These
 

control voltages can be generated by multi-vibrators that
 

are set and reset by appropriate timing pulses.
 

The synchronizer may act as a master control station
 

by selecting a voltage from the 11,000 cycle counter at the
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proper cycle. This voltage would then be applied to the
 

synchronization burst generator that provides the proper
 

burst for transmission.
 

3.3.2 Audio Compression and Decompression Unit
 

This consists of a number of storage elements arranged
 

in parallel (Figure 3.8). The audio information of each
 

channel is written in these and read out at a faster speed
 

in an appropriate time interval. A storage element with
 

simultaneous read and write head is needed for each channel.
 

However, the number can be reduced to only two for all the
 

channels if Flood and Urquhart-Pullen's (35) approach is
 

taken for audio time compression. This is explained as
 

follows-


Figure 3.9 shows an audio time compression expansion
 

unit with two storage elements at each station. At the send­

ing terminal, signals of the N channels are sampled regularly
 

by means of pulse trains, producing the amplitude modulated
 

pulses on the common input lead 'a'. This lead is connected
 

to two gates G1 and G2, which in turn are connected to the
 

storage elements A and B. The output of these is connected
 

to the gates G3 and G4, which operate on receiving the output
 

from gates G5 and G7. The gates GI, G2r G., and G6 are oper­

ated by the write and read waveforms A, B, and C shown in
 

Figure 3.10. When the waveform A is on, storage element A
 

writes through the gate GI, and B reads through G4 which is
 

operated by the gate G6' which in turn is operated by wave­

forms A and C. Gate G6 operates only when A and C both are
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present and tkerefore it operates intermitt~ntly'as shown
 

in the timing diagram of read waveform C. Similarly, when
 

storage element B writes, A reads intermittentlv, providing
 

proper time intervals for video information. The informa­

tion read from the storage element is then transmitted
 

sequentially with video information.
 

At the receiving terminal audio signals received from
 

the common transmission path are extracted from the video
 

waveform and 3ust the inverse of the described modulation
 

format is performed. The incoming intermittent time-compres­

sed signal is written in the storage elements C and D through
 

the gates G7 and G8 and is read at the previously written
 

speed. The original audio signal is recovered from recei­

ved amplitude modulated pulses by demodulating it by a low
 

pass filter.
 

The channel send gates produce samples of each channel
 

with successive samples of the same channel occurring every
 

nth pulse. The samples written in the storage element are
 

shown in Figure 3.11a. The function of the storage elements
 

at the sending and receiving end is to change the order in
 

which samples of the channel occur with faster speed. The
 

faster speed thus creates the time needed for the video
 

information. The sample read out from the storage elements
 

occurs in the order shown in Figure 3.1lb. The R successive
 

samples of the one channel are followed by R samples of the
 

next channel with a video gape in between them. The reverse
 

process takes place at the receiving end.
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If the storage elements consist of rectangular matrix
 

of storage devices as shown in Figure 3.12, input samples
 

can be inserted in a vertical column, so that the success­

ive samples of a channel occupy positions in the same hori­

zontal row, or vice versa. The stored samples are read
 

from each row with higher speed, thus providing the trans­

mitting signal with video information space as shown in
 

Figure 3.11b. Hence, it can be viewed as a reconstitution
 

of the audio time division multiplexing into the speeded
 

audio time-compression multiplexing.
 

It has been said that two storage elements are re­

quired both at the transmitter and receiver. The trans­

mission paths through the storage elements may have
 

slightly different gains, which in turn results in overall
 

gain of every channel varying periodically and thus pro­

ducing a distorted output. A detailed analysis of this is
 

given in section 3.4.3 and it is found that for the distor­

tion level to be 40 dbs below the signal level, the store
 

gains must be within 1.4%. Therefore, to avoid this diffi­

culty, a method that requires only one store seems more
 

suitable. Flood and Urquhart-Pullen (35) have described a
 

method in which one store is used and reading is interwoven
 

with writing by using the vertical columns and horizontal
 

rows of the store alternately.
 

As regards the storage devices which are required at
 

the transmitter as well as the receiver, either cathode ray
 

storage tubes or semiconductor storage devices seem to be
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adequate. The first practical use of cathode ray storage
 

tubes appear to have been in the system of Jacob and Mattern
 

(36). Cathode ray storage tubes have a high resolution and
 

are potentially able to provide required storage (for exam­

ple, Hughes' H-1213 resolution 1600 TV lines per diameter).
 

The use of semiconductor storage devices has been
 

reported by various authors (37,38,39). Analog memory sys­

tems reported by Garsmann (38) and Flood and Urcuhart-Pullen
 

can be realized with integrated circuit techniques and may
 

eventually be prefered to the storage tubes on economic
 

grounds.
 

3.3.3 Video Multiplexing Assembly
 

Figure 3.13 shows the block diagram of a video multi­

plexing assembly. Each channel output is connected to a gate
 

which is operated by the timing signals from the synchro­

nizing unit. The time duration for which each gate re­

mains on is also controlled by the synchronizing unit.
 

The time-shared video obtained here is combined with the
 

speeded time-compressed audio to produce the composite
 

signal.
 

3.4 GENERAL SYSTEM CONSIDERATIONS
 

This is basically a time-shared system with video and
 

analog time-compressed pulse amplitude modulated audio in­

formation sent sequentially. The composite signal is band­

limited to video bandwidth. Since the same transmission
 

path is subjected to both analog video signal and pulse
 

modulated audio signal, the pulse response of the
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transmission path has to be considered.
 

The basic characteristic of an idealized linear sys­

tem may be expressed in the form
 

-3 (W)
H(w) = G(w)e 

where HMn) is transfer function of the system,
 

G(a) is amplitude response of the system,
 

S(w) is phase/frequency characteristics,
 

w is impressed frequency in radians/second.
 

Again, since the system is band-limited, a band pass filter
 

would describe the system characteristics. A transmission
 

path with linear phase/frequency characteristic and Gaussian
 

amplitude response seems to be a reasonable choice. In that
 

case amplitude response is given by
 

GM = exp i_ (wT)21 3.4.1 

The response of the transmission path to short pulse is 

approximate to its impulse response, which is given by 

h(t) = h0 exp (t/)2 3.4.2 

1
where h0 


3.4.1 Audio-Video Crosstalk
 

In the audio time-compression scheme considered here
 

the adjacent transmitted samples are associated with the
 

same channel. The samples of the adjacent audio channel
 

are separated from the previous one by the analog video
 

information. When insufficient bandwidth and nonlinearities
 

of the transfer characteristic of the transmission
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path cause the samples to spread in time, crosstalk is
 

possible, unless a reasonable guard band is alloted between
 

them. The calculation of the crosstalk and guard time can
 

be carried out in several ways as described in reference
 

(41). Staube (42) has given a method of evaluating cross­

talk by considering separately two cases of insufficient
 

high and low bandwidths. We will calculate crosstalk by
 

using the model which we have postulated for the transmis­

sion path (35).
 

The crosstalk ratio, C., is defined as follows
 

Magnitude of The signal of disturbed channel
CT = Magnitude of the signal of disturbing channel
 

If Te = interval between the epochs of pulse amplitude
 

modulated (PAM) audio pulse,
 

Tg = guard interval between the PAM audio and video
 

(Figure 3.1),
 

and p then the crosstalk, considering the Gaus-

Te
 

sian amplitude response, is approximated from equation 3.4.2
 

as follows
 

h0CT 

0 exp Te2T4]3 

3*
(l-IP)Te12
f+1
=exp 


For a system of fixed bandwidth, there is a lower limit
 

on the duration of pulses at the output. This minimum out­

put pulse duration is related to the system bandwidth by (26)
 

Te 2 1 3.4.4
 
2Beq
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where Beq is the system bandwidth and is approximated as
 

follows (40) for Gaussian filter.
 

B -1 1 aGwd
 eq 2r 2G7() -a 
lit 22 

2 a2 2-W 


1 
- Hz 3.4.5
 

2 T T 

and attenuation at this frequency is
 

'Be
.8.686 


2 
= 8686 1 , 6.72 db.

2 --2= 

Therefore, from equations 3.4.3, 3.4.4, and 3.4.5, we get
 

CT = exp (l+p)v27 	 3.4.6
 

Therefore, the crosstalk factor, CT, in dbs.
 

CTdb 	 8.686 [(l+p)] v'2 3.4.7
 

If, for example, a crosstalk attenuation of 100 dbs
 

is assumed, p=3.6, i.e., Tg=3.6Te. Thus, for a required
 

crosstalk attenuation, the value of Tg can be found in
 

terms of Te.
 

3.4.2 	Relation Between Audio Bandwidth and Number of
 
Channels
 

If the 	transmission path bandwidth is B the mini­eq
 

mum separation between their epochs is given by equation
 

3.4.6. For compressed audio transmission, the signal of
 

each channel is stored at the sending terminal for a per­

iod T (see Figure 3.11a), the number of samples stored is
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waveform is a square wave with amplitude equal to the gain
 

difference and period equal to 2T, where T is the composite
 

frame period during which samples are stored in either of
 

the stores. The received waveform is thus distorted as
 

shown in Figure 3.14. The resulting signal to noise ratio
 

can be calculated by considering the distortion waveform
 

as a periodic square wave (35), with period equal to twice
 

the storage time, i.e., 2T, which is amplitude-modulated
 

by the signal.
 

Let us first consider the Fourier cosine series for
 

an unmodulated voltage waveform with period 2T.
 

v(t) = bo + 23bn * coswnt
 

n=l
2wf

where w = and the coefficients bn are given by 

1 2 

bn = 1 jv(t) cosnmtdt 

The power contained in the waveform is the total power
 

contained in the d.c. component and all the harmonics.
 

From Parseval's theorem, the power produced by v(t) in load
 

of unit resistance is
 
a 

v2 bo2 + I bn2 

n=l 

Therefore a 

bo2-- bn2 = TI22T 2v(t)dt2 - 3.4.9 

n=l 

The instantaneous amplitude of the above waveform is deter­

mined by the signal transmitted. For purposes of this anal­

ysis, this may be assumed to be
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vm(t) = A Cos (Wmt + 4) 3.4.10 

The output distortion waveform is thus given by 

vo(t) = vm(t) v(t) 

or 

v (t) = Abocos( Mt + f) + A bn{COS[( m + on)t + 4] 
n= l 

+ cos[(wm - en)t + 4]} 

3.4.11
 

The first term merely represents a change in amplitude of
 

the signal, but the other terms are unwanted products.
 

Since m >w, the distortion products consists of upper and
 

lower sidebands about the signal frequency, each sideband
 

being a series of harmonics of frequency n If the sig­

nal were a complex wave instead of a sinusoid, then such
 

sidebands would be produced about each component of the
 

signal.
 

-2
The total distortion power vn is the total power in
 

the sidebands and thus 
a 

V 2 2= bn2A2 

n=l
 
Substituting from equation 3.4.9
 

V2 A2Tl0 V (t)dt - bo2] 3.4.12
 

The output signal from equation 3.4.10 and 3.4.11 is
 

vs(t) = A(l-bo) cosw t +
 

and the output power is
 

- 2 1 2 2
 
vs = A (1-bo) 3.4.13 
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The output signal to noise ratio of audio is thus
 

- 2 
S s 
N -2v 

-2 2 n 
where vs and Vn are given by equations 3.4.12 and 3.4.13.
 

Now, if the unmodulated amplitude of the waveform,
 
1 

when common storage elements are used, is a, then bo = 

and 
1 f 2T12 td2T v2 12
5f v2 (t~dt = 

0
 
and therefore
 

vvn 
2 A2 2 2 -4 22 

and 

v2 = A21
 
2(1 2
 

therefore
 

- c 2
 
S 2 1 


3.4.14
N - 2 

From equation 3.4.14 it can be seen that for distortion
 

level to be 40 db below audio signal level, the store gains
 

must be equal to within 1.4%.
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4. SUMMARY AND CONCLUSIONS
 

In the study reported here two main modulation formats,
 

time-shared video, time-shared time-compressed audio have
 

been proposed and investigated for still-picture television
 

transmission. The issues explored are- (i) the number of
 

still-picture television channels that can be realized in
 

a limited video bandwidth, (ii) interrelation of various
 

parameters to system constraints, such as maximum display
 

time of still-picture to number of channels and consequent­

ly to the available handwidth, (iii) a possible transmission
 

and reception scheme for each of them, (iv) general system
 

considerations for each system, for example, the trade-off
 

between the picture quality and bandwidth, intermodulation
 

and crosstalk considerations, etc.
 

From this research it is concluded that although all
 

three formats discussed here have the basic characteristics
 

for a real time still-picture transmission, the time-shared
 

video, time-shared time-compressed audio seems to be a pro­

mising one. Independence of the audio-visual information
 

of still-picture channel in a composite frame may be listed
 

as one of the reasons. This gives a possibility of multiple
 

station transmission on the lines suggested by Jacob and
 

Mattern in their TICOSS system (36). Eventual preference
 

of any syitem will have to be decided on experimental and
 

cost analysis.
 

As far as the hardware is concerned, much of the tech­

nology needed for slow-scan is available in commercial
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market, while the other two formats need experimental ex­

ploration to evaluate the system performance for the desired
 

purpose. Subsystems like the frame repeat system, synchro
 

nizaton system need experimental evaluation. The frozen
 

noise problem in the frame repeat system is another issue
 

on which very little has been done and needs to be pursued
 

to evaluate more careful power consideration for various
 

picture qualities. Since some of the hardware needed for
 

the other two formats is either not developed or a very
 

little documentation is available about them and so it is
 

hard to evaluate their performance in terms of cost. There­

fore, it seems hard to compare the actual system performance
 

in terms of cost at this time. All that can be said now is
 

that the formats described here are equally capable of still­

picture television transmission, each with its own technical
 

problems, and various solutions.
 

The still-picture transmission formats considered here
 

are for real time transmission. A non real time format that
 

can be suggested for still-picture transmission can be
 

termed program multiplexed still-picture transmission. The
 

basic principle of this is as follows. The still-pictures
 

comprising a program are sent sequentially over a convention­

al video channel. The audio accompanying this video can be
 

compressed and sent after the video information. The video
 

and compressed audio information is stored at a receiving
 

station. The video and audio information can be then con­

verted to the required format at this receiving station and
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can be retransmitted for user display purposes. Again the
 

actual performance can best be predicted by experimental
 

evaluation along with a detailed technical analysis.
 

The still-picture television transmission schemes pro­

posed in this report are idealized. Before they can be put
 

into practice various technical and economic questions must
 

be answered; some of these are:
 

(1) How does the audio time-compression affect the quality
 

of audio signal?
 

(ii) What are the timing accuracies required for time-shared­

video, time-shared audio" 

(iii) What are the transmitter power trade offs for audio 

compression9 

(iv) What guard-bands and other compensation must be incor­

porated to accommodate oscillator instability?
 

(v) What can be the possible cost of such a system?
 

(vi) How does the timing error affect the number of channels?
 

suitable answers to these and other questions can be
 

obtained by further investigation of the proposed scheme.
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