NASAP-70
USER'S AND PROGRAMMER'S MANUAL

Howard Okrent
Lawrence P. McNamee
NASAP-70 USER'S AND PROGRAMMER'S MANUAL

Prepared by

Howard Okrent
Lawrence P. McNamee

With Contributions and Assistance From

Alfred Tyrill
David Paletz
Steve Grandi
Donnamaie Meyerhoff
Dennis Sesar
Michael Wilson

School of Engineering and Applied Science
University of California
Los Angeles, California
PREFACE

The study for this report was carried out in the Computer Science Department, University of California, Los Angeles, under National Aeronautics and Space Administration Contract NAS 12-2138.

The development of the program and the preparation of this manual was a cooperative effort. We acknowledge the cooperation, patience, and understanding of Dr. W. W. Happ of the Electronics Research Center of NASA. We also express our appreciation to our sister universities and other NASAP-70 participants for their suggestions and help.

Within UCLA the cooperative spirit has also prevailed. Our thanks and appreciation go to: Alfred Tyrill, who programmed the Fast Fourier Transform and plotter; David Paletz, who programmed the algorithm for building optimum circuit trees at a given frequency and the transfer function printout, Steve Grandi, who programmed the sensitivity analysis routines, Mrs. Donnamae Meyerhoff for her excellent survey of transient models and the background study in radiation effects in solid state devices, Dennis Sesar for this critical review of the computational errors and run time limitations of NASAP-70, and Michael Wilson who investigated the application of NASAP-70 to large scale problems.
CONTENTS

Chapter 1 THE NASAP-70 PROJECT

1.0 Introduction .. 1-1
1.1 Capabilities and Limitations 1-1
1.2 Historical Perspective 1-4
1.3 Format of the Manual 1-5

REFERENCES ... 1-7

PART I THE USER'S GUIDE

Chapter 2 A USER'S VIEWPOINT

2.0 Introduction .. 2-1
2.1 Preliminary Considerations and Modeling 2-1
2.2 Circuit Preparation 2-3
2.3 Coding Mechanics 2-9
2.4 Coding Tips 2-57
2.5 NASAP Analysis of Nonlinear DC Circuits 2-59
2.6 Network Partitioning Schemes for NASAP-70 2-70
2.7 Computational Errors 2-82

REFERENCES ... 2-95

Chapter 3 THEORETICAL FOUNDATIONS

3.0 Introduction .. 3-1
3.1 Linear Graph Theory 3-1
3.2 Transformation of a Linear Graph to a Flowgraph— Disjoint Current and Voltage Relationships 3-7
3.3 Flowgraph Theory. Shannon-Happ Formula 3-9
3.4 Transfer Function Formulation 3-11
3.5 Sensitivities Concepts 3-20
3.6 The Svoboda Method for Computing Roots of Polynomials ... 3-26
3.7 A.C. Analysis-Bode Plot 3-34
3.8 Transient Response 3-36

REFERENCES ... 3-45
CHAPTER 1
THE NASAP-70 PROJECT

1.0 Introduction

NASAP-70 is a digital circuit analysis program developed at UCLA with the cooperation and advice of a number of university, industrial, and governmental research groups located in virtually all sections of the United States. The program consists of a number of commonly required circuit analysis routines that are based upon the flowgraph techniques and algorithms of W. W. Happ and others. As was pointed out by Happ, two distinct advantages can be realized: (1) The requirement for writing a set of independent circuit equations is eliminated, and (2) the resulting flowgraph is unique. Because of these characteristics and the modular manner in which the program is constructed, algorithms can easily be mechanized, changed, and expanded for digital computation.

The program documented herein is the final installment of this cooperative project initiated by the Electronics Research Center of NASA four years ago.

1.1 Capabilities and Limitations

NASAP-70 can handle linear circuits consisting of constant-value passive elements, independent and dependent current sources, and independent and dependent voltage sources. The dependent sources must be linearly related to a voltage or current located in another part of the circuit. Nonlinear functional relationships (dependencies) and time-varying parameters cannot be handled in general. However, provisions have been included to accommodate a single nonlinear or external characteristic in resistors as advanced by Haag and Weber.
Central to the NASAP-70 program is its capability to formulate transfer functions from a topological description of the circuit and its numerical specification of components. The format of the input code, selected by a user, dictate the manner by which a transfer function is derived by the program. The following input codes, identified by the names NASAP, TREE, and CIRCUIT, can be employed

1. **NASAP** - directs the program to form its own tree and transfer function.
2. **TREE** - allows a user to define his own tree from which a transfer function can then be constructed by the program.
3. **CIRCUIT** - directs the program to select a tree by which a transfer function is constructed according to a user specified frequency to assure relatively accurate coefficients.

With one minor, but practical exception, a transfer function, relating a voltage across or a current through an element to either a driving voltage or current source, can in general be requested. Any number of transfer function requests can be made in any given computer run. The transfer function formulations are printed out as a ratio of two polynomials in S with numerical coefficients.

In conjunction with a particular transfer function request, a user can ask for

1. **The sensitivity of a transfer function to changes in circuit parameters** - A maximum of twenty valid sensitivity requests can be processed for each circuit. The sensitivity function is printed as a ratio of two polynomials in S with numerical coefficients.
2. **A worst case analysis** - For circuits of twenty elements or less (not counting independent voltage or current sources) a worst case analysis can be formulated as a ratio of two polynomials in S with numerical coefficients. Tolerances for each element can be user-specified or defaulted automatically with 10% values by the program.
3. Poles and zeros of all transfer functions

4. The sensitivity of poles - When pole sensitivity is requested, it is implied that it is formulated for all elements for which a sensitivity request had been issued.

5. Transient response - A user can request a transient response of any transfer function for an impulse, a step function, a sine wave, an exponential, a biased pulse, or pulse train driving function.

6. An A.C. frequency response (Bode Plot)

The output format for the transient, A.C. frequency response, sensitivity and worst case analysis functions can be presented by either tables, printer plots or both. The input data is written on a free-field format. Diagnostics are provided for reading the input circuit description cards. If mistakes are relatively minor, corrections are made automatically by the program and are printed out to inform the user of the changes made. The program will not abort a run unless a serious error (one which cannot be easily interpreted) is encountered. The normal input is by cards. An on-line version of NASAP-70 has been developed but is not documented here.

NASAP-70 has been written completely in FORTRAN IV and has been developed on the IBM 360/91 and run on the SDS Sigma Seven Digital Computers at UCLA. It has been successfully converted to other machines by other research groups at installations across the country. By means of overlays, approximately 32K of core memory is required to handle circuits consisting of 30 elements.

The maximum number of elements that NASAP-70 can accommodate in practice is determined by the number of bits in the computer word. Even though computer words, in essence, are extended by software, circuits with more than 30 elements cannot be handled efficiently by the 32 bit IBM machines. Other machines with longer data words, such as the CDC 6600, can accommodate larger circuit problems.
1.2 Historical Perspective

To properly understand the place that NASAP-70 takes in the computer-aided design field, it is fitting to trace the development of the field, in general, and contrast it with NASAP-70. Typical circuit design programs, such as ECAP, SCEPTRE, NET-1, and CIRCUS derive their conceptual foundation from the treatise of Gabriel Kron, who was the first person to systematize circuit equations for solution by digital techniques.

Kron noted that the topological-algebraic structure of networks could be treated separately in formulating mesh, nodal, and branch equations from a primitive set of ohmic relations. Even to this day, the influence of Kron's pioneering efforts are still being felt in all the major circuit program developments, including NASAP-70.

Kron's ideas, which were presented from an engineering point of view, were formally studied by J. Paul Roth who proved the interrelationship of the topological-algebraic structure of networks from an abstract mathematical position. Even though Kron's work was known for a couple of decades, it never achieved popularity until Seshu and Reed published their papers and a book in which a rigorous proof of network theory was presented in a manner palatable to engineers.

Since that time, the field of computer-aided circuit design has exploded attracting outstanding investigators from many engineering and science fields. Noteworthy among the investigators are Branin, Bashkow, Calahan, Katzenelson, Malmberg, Kuh, Rohrer, Desoer, and many others.

All of these researches advocated the matrix or state space method dealing with circuit problems. NASAP-70, on the other hand, with its flowgraph approach, traces its origin to Claude Shannon who discovered
the topological gain formula while investigating the functional operation of
an analog computer. Shannon's formula which is an analytic equation
for calculating the gain for an open loop system (circuit) was generalized by
W. W. Happ to include closed systems. The Shannon-Happ formula fabri-
cates the backbone of NASAP-70 upon which the transfer function, sensitivity,
and frequency response of a large class of linear systems can be computed.

The NASAP project was started approximately four years ago at the
Electronics Research Center of NASA with the Shannon-Happ formula as a
programming kernel. The first year was devoted to program development
which included transfer function, sensitivity, and A.C. frequency response
capabilities. The second and third years brought further program develop­
ment and application studies into areas of NASA research. This past year
the NASAP project came to a close. The final version of the NASAP program,
called NASAP-70, is documented herein. In addition, seven applications
manuals are being written in the areas of Electronic Filter Design, Instru­
mentation Circuits, Biomedical Circuits, Communication Circuits, and
others.

1.3 Format of the Manual

The manual is divided into two parts (1) A User's Guide, which is
made up of Chapters 2 and 3, and Appendices B and C, and (2) a Programmer's
Manual which consists of Chapters 4 and 5, and the program listing and
dictionary of program variables in Appendix A.

In Chapter 2, the fundamentals of setting up a problem for NASAP-70
are presented without any deep discussion of the theory involved. It has
been written, however, to show the program can be used for large problems,
and how computing time and computational errors can be predicted and
reconciled.

*During World War II, Claude Shannon developed his formula. But because
of wartime restrictions, his work was not published and was virtually
unknown to the academic community. In 1952, Samuel Mason rediscovered
the same formula.
The theory behind NASAP-70 has been reserved for Chapter 3. Appendix B describes the most popular transistor models in use today, and includes a discourse of environmental effects (radiation) on transistor models.

Chapter 4 contains a detailed description of the NASAP program. This chapter should be read in conjunction with Appendix A, the program listing and dictionary of variables. Chapter 5 describes the system requirements for implementing NASAP-70.

The format of the User's Guide and Programmer's Manual has been designed to place those topics which can usually be self-contained in an individual chapter. It is for this reason that all references pertinent to a chapter have been placed at the end of that chapter. The format of the manual also provides a convenient method to add, delete, or change portions of the manual without disrupting larger segments of the entire manual.
REFERENCES

PART I THE USER'S GUIDE

CHAPTER 2

A USER'S VIEWPOINT

2.0 Introduction

This chapter describes the step-by-step procedure of how to prepare a circuit for analysis by NASAP-70. The discussion has been restricted to an explanation of the rudiments of coding and does not include a detailed study of circuit theory or programming. That has been reserved for Chapter Chapters 3, 4 and 5. Examples have been dispersed throughout the discussion. Also included are some design tips from a user's viewpoint of NASAP-70, partitioning schemes, error analysis, and nonlinear techniques.

It must be emphasized, however, that if one is to really achieve a good design, a deeper understanding of circuit theory, and the advantages and limitations of computer methods contained herein are necessary. To that end the user is encouraged to read the articles and books referenced at the end of the chapter.1-4

2.1 Preliminary Considerations and Modeling

Before any problem is coded for a computer run, it is important to make a check on the validity of the circuit itself and the device models. Difficulty usually arises when some physical device, such as a transistor, diode, etc., is replaced by a lumped parameter model made up of some dependent active devices and passive elements, and inserted into the remaining network without really looking for such conflicts as two electrically difference current sources placed in series, or two electrically different voltage sources placed in parallel. In general, no loop in a circuit may consist entirely of voltage sources, including independent and dependent sources, nor should any node be formed entirely of branches in which only independent and dependent current sources are present. If such
a case should occur, it would mean that NASAP-70 (or any other program for that matter) would not be able to formulate a set of independent equations necessary for solution since it violates the fundamental conservation of energy law.

It is also imperative to have a circuit designer select the appropriate model for a physical device. Quite often the model chosen has been derived for one type of operation and is assumed to be valid for another. All models are restricted to some extent. There are A.C., D.C., and transient models, some are considered small signal or large signal, while others are considered low frequency or high frequency. There are also the so-called environmental and radiation-effect models. Generally speaking, all models are appropriate only for the particular application for which they were derived, and if a circuit designer places a model in a universal catch-all role, only misleading results can occur.

In Appendix B descriptions of typical transistor models have been compiled and classified according to the intended use. Also include there is a tabulation of how the model parameters can be calculated from the manufacturer's device specifications. A rather in-depth study of solid-state modeling for a radiation environment is also given.

Besides modeling, other difficulties can appear when a complicated circuit is approximated by reducing the number of circuit. All too often, entire sections of a circuit are replaced by a simple series or parallel circuit, the cumulated practice of which can eliminate critical modes of circuit operations. As is usually the case, the circuit designer is so preoccupied with establishing models or reducing the size of the circuit in order to code it for the computer that he completely loses the physical realization of the problem itself. No matter how carefully a computer program is conceived, its operation can be completely frustrated by improper use by circuit designers who consistently violate sound engineering practice for the sake of accommodating a computer program.
2.2 Circuit Preparation

Once an appropriate circuit configuration has been established, making certain that no physical inconsistencies exist, the step-by-step preparation procedure for coding NASAP-70 can then be carried out. The procedure recommended here is described by means of an example circuit problem shown in Figure 2.1(a) which calls for an A.C. transfer function relating the voltage V_{out} across the inductor to the input voltage V_{in}. The A.C. equivalent circuit is shown in Figure 2.1(b). Note that the battery has been replaced by its internal impedance of zero ohms and the transistor has been modeled by a simple input resistor and a dependent current generator placed in parallel with an output resistor. (High frequency effects are not considered here and actually are not required to illustrate the preparation procedure.)

Assuming that the circuit model in Figure 2.1(b) is adequate for the desired analysis, the initial preparation of coding for NASAP-70 requires that a unique identification be imposed on the topology of the circuit, the circuit elements, and the dependencies. Consequently, the nodes are numbered consecutively starting with the number 1 and the elements are redefined according to a letter-number format, where each component is unambiguously determined, according to type, by one of three possible coding schemes described in section 2.3. No two components can have the same code identifications. Dependencies are indicated on the circuit diagram by a dash line which designates the current or voltage variable upon which the sources are dependent. This is done only as a crutch to remind the designer not to forget it when the circuit information is actually coded.

After the nodes are assigned numbers (topology), and the circuit elements and dependencies are distinguished, as shown in Figure 2.2 for the coding scheme NASAP, the unknown directed current variables must be assigned to each circuit branch element. Generally speaking, the current
(a) CIRCUIT DIAGRAM

(b) A.C. MODEL

Figure 2.1
Figure 2.2 Prepared Circuit Diagram for Coding Scheme NASAP

V1 = 1 volt
R1 = 50 ohms
C1 = 10 μf
R4 = 25 ohms
R3 = 325 ohms

C2 = 10 μf
β = 98
R5 = 2 megohms
R2 = 20,000 ohms
L1 = 1.7 millihenrys

Figure 2.3 Voltage-Current Relationship of Elements

(a) V(t)
(b)
(c) Z
direction in each passive element can be assigned arbitrarily although some
cautions must be exercised in assigning currents to passive elements related
to dependent sources. The current directions in active devices also must
be handled with care so that the proper voltage-current relationship can be
established.

Voltage Sources. The current direction associated with either an independent or dependent voltage source should be established in the positive sense of the voltage rise— from minus to plus—as shown in Figure 2.3(a). (An opposite rule could have been assumed but this would have required that a negative voltage value be read in with the input data. Since such a practice is somewhat unnatural to most circuit designers, it has been avoided here as a matter of good practice rather not that it cannot be done.) Following the current assignment rule as stated presents no difficulty when independent voltage sources are being considered, in general, the same rule can be applied to dependent voltage sources provided the dependency relationships are consistent with the physical phenomena involved. (A number of examples consisting of dependent sources have been included in this chapter and are described in sufficient detail to illustrate how the common current assignment rule for both dependent and independent voltage sources can be adopted.)

Current Source In dealing with either dependent or independent current sources, the positive voltage sense is taken in the direction of positive current flow as shown in Figure 2.3(b). Similar to the discussion concerning dependent voltage sources, the positive sense of the voltage across the dependent current source is the same as that defined for the independent current source provided the dependency relationship is consistent with the physical phenomenon. Examples are included to illustrate the procedure to be employed.

Figure 2.3 summarizes the current-voltage relationship for the dependent and independent active devices and passive elements. If the assignment of the current direction is in agreement with these configurations -
including the dependency considerations described below - the NASAP-70 program can then be properly coded.

Dependencies. A major concern of the NASAP-70 in programming dependency relationships is to assure that the proper sign is attached to the coded dependency parameter. Consider the transistor model shown in Figure 2.4(a) which has been extracted from the diagram of Figure 2.2. For this common emitter circuit, if a current flows into r_1, the dependent current source I_β will generate positive current flow as indicated in Figure 2.4(a). For the case depicted β is taken as a positive number, and thus the current can be expressed as $I_\beta = \beta I_{r_1}$. If the assigned current direction in r_1 is taken as in Figure 2.4(b) while the I_β direction of flow is retained, then the dependency parameter would be $-\beta$, a negative number. Therefore it is important that the physical dependency phenomenon be clearly understood for each device that is being modeled.

Another dependency example is shown in Figure 2.4(c). For this case a dependent voltage source V_μ is considered, where V_μ is linearly related to the voltage V_1 developed across the resistor r_1 as shown. In order to maintain the positive value of the parameter μ in the relation $V_\mu = \mu V_1$, it is necessary that the positive sense of V_1 be taken across r_1 as the physical phenomenon dictates. Thus, this requires that the current through r_1 be assigned so that the desired voltage polarity of V_1 is produced. Alternative measures can be taken, but practicality dictates that it is best to follow one rule because it leads to fewer errors and presents a better means for debugging. The user must be cognizant of the dependency relationship involved and code according to the plan best suited to his own tastes.

Once all the preparation steps are completed to uniquely identify the topology, the circuit elements, and the dependencies, and to assign the current direction in all the circuit elements - the circuit diagram is then ready for coding. Notice, for example, in Figure 2.2 that all the nodes
$I_{\beta} = \beta I_{r_i}$

(a)

$V_\mu = \mu V_1$

(c)

Figure 2.4 Dependency Parameters
are numbered consecutively starting with the number 1. Zero and negative node numbers are not permitted. Also note that all circuit elements have been redefined to conform to the NASAP letter-number coding scheme (see Section 2.31). It must be emphasized that even though some of the elements could have the same value, they still have to be assigned different numbers in their respective letter-number symbol. The dependency relationship is illustrated by a broken line with the associated dependency parameter value placed in the middle of it.

2.3 Coding Mechanics

The general order of a NASAP-70 program deck is shown in Figure 2.5. The first group of cards allows a user to head the output listing with the title information punched on them. No more than ten cards are permitted.

The second group of cards contains the topology information, element designators, the values of the elements, and dependencies of the circuit to be analyzed. Three different circuit description coding rules can be utilized.

The last group of cards contain the desired output requests.

The title, circuit description, and output request cards are separated from each other by control cards. The necessary control card information is dictated by the circuit description format selected by a user.

Any number of individual problems can be processed during a computer run. However, the above mentioned order must be maintained for each problem. The last card of the entire group of cards must be a STOP card. Only one STOP card is allowed.

2.3.1 Circuit Description Codes

The circuit description coding rules are based upon a free-field format whereby each element identifier is written on a programming sheet, one to a line, with its corresponding topological, numerical, and dependency information. Thus a circuit composed of, say, 15 elements will require 15 cards, exclusive of the control and output request cards.
<table>
<thead>
<tr>
<th>Title Cards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Card #1</td>
</tr>
<tr>
<td>Circuit Description Cards</td>
</tr>
<tr>
<td>Topology</td>
</tr>
<tr>
<td>Element Identification</td>
</tr>
<tr>
<td>Numerical Values</td>
</tr>
<tr>
<td>Dependencies</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Card #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Request Cards:</td>
</tr>
<tr>
<td>Transfer Function</td>
</tr>
<tr>
<td>Pole Sensitivity</td>
</tr>
<tr>
<td>Parameter Sensitivity</td>
</tr>
<tr>
<td>Worst Case</td>
</tr>
<tr>
<td>Transient Response</td>
</tr>
<tr>
<td>Poles and Zeros</td>
</tr>
<tr>
<td>Frequency Response</td>
</tr>
<tr>
<td>Nonlinear Parametric Response</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control Card #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP Card</td>
</tr>
</tbody>
</table>

Figure 25
The three different code formats available in defining a circuit to NASAP-70 are identified to the program by punching one of the words: NASAP, TREE, or CIRCUIT on control card #1.

NASAP: For compatibility with other versions of NASAP, control card #1, with NASAP punched on it, will cause the program to accept the circuit description in the form presented in A USER'S GUIDE AND PROGRAMMER'S MANUAL FOR NASAP and CODING INSTRUCTIONS FOR NASAP 69/I.

The NASAP coding of a circuit relieves the user of selecting a tree. Instead, the program automatically builds a tree that results in a transfer function being formed in a minimum of computation time.

The circuit coding requires that six fields of information be set down on each card, and since a free field format is employed, the ordering of the information must be taken into account. This is done by inserting at least one blank to separate the fields from each other, permitting the information to be inputted without regard to column orientation.

The general form of the circuit input data is:

\[
\text{(ELEMENT DESIGNATOR)} \ (\text{ORIGIN NODE}) \ (\text{TARGET NODE}) \ \left(\text{NUMERICAL OR DEPENDENCY VALUE}\right) \ \left(\text{UNITS (OPTIONAL)}\right) \ \left(\text{DEPENDENCY DESIGNATOR}\right)
\]

The parentheses are not allowed on the coding sheets, but are placed here for clarity sake.

The first letter of each ELEMENT DESIGNATOR must conform to the following relationship:

<table>
<thead>
<tr>
<th>ELEMENT DESIGNATOR</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>V Voltage Source</td>
<td>C Capacitor</td>
</tr>
<tr>
<td>I Current Source</td>
<td>L Inductor</td>
</tr>
<tr>
<td></td>
<td>R Resistor</td>
</tr>
</tbody>
</table>

Table 2.1
Any of those letters may be followed by up to 11 alphanumeric characters to bring the total number of characters in the ELEMENT DESIGNATOR to not more than 12.

The second and third fields contain the numbers of the origin node and the target (terminal) node, respectively, of the assigned current flow through the element. The fourth field accepts the numerical value of the circuit element, if the element is not a dependent source, and accepts the dependency parameter value if it is. The numerical values can be expressed in either decimal numbers with or without a decimal point, or in Fortran E-format.

The fifth field is an optional units field that allows a user to operate in other than the MKS system of units. In effect the units field is a scale factor multiplier to the numerical value field. The accepted symbols are given in Table 2-2. No mixing or interchanging of scale factors are permitted. If UNITS is not specified, MKS units are assumed.

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>SCALE FACTOR</th>
<th>MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESISTOR</td>
<td>K</td>
<td>10^3</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>10^6</td>
</tr>
<tr>
<td>CAPACITOR</td>
<td>PF</td>
<td>10^{-6}</td>
</tr>
<tr>
<td></td>
<td>UF</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>INDUCTOR</td>
<td>UH</td>
<td>10^{-6}</td>
</tr>
<tr>
<td></td>
<td>MH</td>
<td>10^{-3}</td>
</tr>
</tbody>
</table>

The sixth field position is employed only if a dependency exists, which is indicated by writing either an I, for current, or V, for voltage, followed by the element identifier of the element upon which the dependency exists.
With the "NASAP" coding rules, the prepared circuit diagram of Figure 2.2 can be coded as shown below:

<table>
<thead>
<tr>
<th>ELEMENT DESIGNATOR</th>
<th>ORIGIN NODE</th>
<th>TARGET NODE</th>
<th>PARAMETER OR DEPENDENCY VALUE</th>
<th>UNITS</th>
<th>DEPENDENCY DESIGNATOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>6</td>
<td>1</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>6</td>
<td>5</td>
<td>0.7</td>
<td>PF</td>
<td></td>
</tr>
<tr>
<td>R4</td>
<td>5</td>
<td>3</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td>3</td>
<td>1</td>
<td>325</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>UF</td>
<td></td>
</tr>
<tr>
<td>I1</td>
<td>4</td>
<td>3</td>
<td>98</td>
<td></td>
<td>IR4</td>
</tr>
<tr>
<td>R5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>2</td>
<td>4</td>
<td>20</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>2</td>
<td>1</td>
<td>1.7</td>
<td>MH</td>
<td></td>
</tr>
</tbody>
</table>

Note the coding peculiar to the dependent current source I1. Since I1 is related to current flow in the resistor R4, the dependency relation is indicated in the sixth field position as IR4 with the dependency parameter β (which is equal to a value of 98) coded in the fourth field. If other dependent sources were present, they too would follow the identical coding scheme.

Control card #2, for the NASAP coding rules, must contain either the word OUTPUT or the word END.

TREE The TREE input code can be employed by a user who wishes to form a transfer function based upon a user-defined tree. Control card #1, with the word TREE on it, alerts the program that the circuit description that follows contains a user-specified tree in addition to the topological, elemental, and dependency information.

The general format of the circuit coding is

ELEMENT IDENTIFIER/DEPENDENCY (ORIGIN-TARGET) = VALUE UNITS
To obtain a worst case function, a card **must** be inserted immediately after control card #2 (the END or OUTPUT cards), with the word, WORST. Tolerance cards must also be provided, since the variation of each element must be known. Tolerance cards have the following format

\[
\text{TOL} = \text{ELEMENT DESIGNATOR} = \text{VALUE}
\]

where \text{ELEMENT DESIGNATOR} is a circuit element, and \text{VALUE} is the relative tolerance \(\frac{\Delta Q}{Q} \) of the element \(Q \). If no TOLERANCE card is provided for an element, a default value of 0.1 (10\%) is assumed.

When a WORST CASE Function is requested, the sensitivity functions for all elements are also printed out automatically. Therefore no SENSITIVITY cards can be present when a WORST card is present. A typical WORST CASE analysis is given in the examples in Appendix C.

POLE SENSITIVITY The sensitivity of the poles of the transfer function is obtained by adding the word POLES to the ROOTS card:

\[
\text{ROOTS, POLES.}
\]

Pole sensitivity in NASAP-70 is defined as

\[
\text{PS} = \frac{dS}{dQ} Q
\]

where \(S_1 \) is a pole and \(Q \) is a circuit parameter whose value changes causing a change in the root \(S_1 \). The sensitivity of the poles are produced for all elements for which a sensitivity request is made (or for all elements if a WORST card is included).
Pole sensitivity function is printed as the ratio of two polynomials in S, just like the parameter sensitivity function and is interpreted similarly.

Plot Requests: Printer plots can be requested of NASAP-70 to produce:

1. transient responses of transfer functions from a group of user-specified standard input functions,
2. a bounded frequency response of transfer functions,
3. and bounded (parameter, pole, and worst case) sensitivity responses.

The plot request is a single card of the form

\[\text{PLOT (option 1/option 2)} \]

where the options are types, parameters, and limits of the printer plots. All options for any one plot request must appear on one card since continuation cards are not allowed. Not all the options are required since defaults are provided. Options may appear in any order on the plot card.

A transient response can be obtained for an impulse, step, sine, exponential, pulse, and pulse train by specifying an option according to

<table>
<thead>
<tr>
<th>OPTION FORMAT</th>
<th>DESIRED INPUT RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = IMPULSE</td>
<td>Impulse</td>
</tr>
<tr>
<td>TYPE = STEP</td>
<td>Step function</td>
</tr>
<tr>
<td>TYPE = SINE</td>
<td>Sine Wave</td>
</tr>
<tr>
<td>TYPE = EXPOENTIAL</td>
<td>Exponential</td>
</tr>
<tr>
<td>TYPE = PULSE</td>
<td>Pulse or Pulse train</td>
</tr>
</tbody>
</table>

To provide control over the format of the printer plot itself the following options can be included.
Table 2.7

<table>
<thead>
<tr>
<th>Option Format</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPLITUDE = a number</td>
<td>Represents the magnitude of any of the waveforms in Table 2.7</td>
</tr>
<tr>
<td>DENSITY = a number</td>
<td>Specifies the number of calculations per plotted output point</td>
</tr>
<tr>
<td>TIME = a number (in secs)</td>
<td>Specifies the duration of the applied input, it must always be present for any transient response request</td>
</tr>
<tr>
<td>STEP = a number (in secs)</td>
<td>Specifies the time between individual calculated points</td>
</tr>
</tbody>
</table>

For the PULSE type option, the following additional options can be employed

Table 2.8

<table>
<thead>
<tr>
<th>Option Format</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIAS = a number</td>
<td>Used in conjunction with the AMPLITUDE option to produce a train of positive and negative pulses</td>
</tr>
<tr>
<td>WIDTH = a number (in secs)</td>
<td>Specifies the duration of a pulse</td>
</tr>
<tr>
<td>CYCLE = a number (in secs)</td>
<td>Specifies the time of one cycle</td>
</tr>
</tbody>
</table>

To illustrate how some of the pulse options are combined, consider the plot statement

PLOT(TYPE=PULSE/AMPLITUDE=10/BIAS=-2/WIDTH=10/CYCLE=15/TIME=30)

The program interprets this statement to mean a pulse train of two pulses (TIME = 30 seconds) where each pulse alternates between +8 and -2 (from AMPLITUDE = 10, BIAS = -2) and each pulse duration is 15 seconds (CYCLE = 15) with a change from a positive to negative amplitude 10 seconds from the beginning of the cycle (WIDTH = 10). Figure 2.12 illustrates the waveform involved.
Figure 2.12 Pulse Wave Options

Options associated with other type inputs are as follows:

Table 2.9

<table>
<thead>
<tr>
<th>TYPE OPTION</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT = a number</td>
<td>Used only with EXPONENTIAL input. It represents the a in K_a^t</td>
</tr>
<tr>
<td>FREQUENCY = a number (in Hz/sec)</td>
<td>Used only with the SINE input to specify the frequency of the sine wave</td>
</tr>
</tbody>
</table>

Table 2.10 summarizes all the type input options and their permissible function and printer graph parameters. Only the first two letters of each word are needed. For instance, AM may be used to abbreviate AMPLITUDE, IM for IMPULSE, etc.

The following default conditions apply
<table>
<thead>
<tr>
<th>TYPE</th>
<th>TRANSIENT OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AMPLITUDE</td>
</tr>
<tr>
<td>IMPULSE</td>
<td>X</td>
</tr>
<tr>
<td>STEP<sup>2</sup></td>
<td>X</td>
</tr>
<tr>
<td>SINE</td>
<td>X</td>
</tr>
<tr>
<td>EXPON</td>
<td>X</td>
</tr>
<tr>
<td>PULSE</td>
<td>X</td>
</tr>
<tr>
<td>(PULSE-TRAIN)</td>
<td></td>
</tr>
</tbody>
</table>

1. The option "frequency" is used here in conjunction with the TYPE option SINE; it is also used as a TYPE option in generating a frequency response (see Table 2.12).

2. Step is used in three senses as a TYPE option to denote a step function, as an increment between plot points (in secs) for transient responses, and as an increment between plot points (in CPS) as given in Table 2.12.
Table 2.11

<table>
<thead>
<tr>
<th>OPTION</th>
<th>DEFAULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE</td>
<td>IMPULSE</td>
</tr>
<tr>
<td>TIME</td>
<td>1 second</td>
</tr>
<tr>
<td>STEP</td>
<td>.01</td>
</tr>
<tr>
<td>AMPLITUDE</td>
<td>1</td>
</tr>
<tr>
<td>DENSITY</td>
<td>1</td>
</tr>
<tr>
<td>CONSTANT</td>
<td>1</td>
</tr>
<tr>
<td>FREQUENCY</td>
<td>1</td>
</tr>
</tbody>
</table>

Inconsistent requests will be ignored and are defaulted from left to right, e.g.,

`PLOT(TYPE = IMPULSE/FREQ = 2)` yields an impulse response.

The printer plot capability can also be employed to produce a frequency plot (Bode) of a transfer function and sensitivity functions. The `PLOT` instruction include the appropriate codes shown below
Table 2.12

<table>
<thead>
<tr>
<th>FORMAT</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TYPE = FREQUENCY</td>
<td>Plots the magnitude and phase of the transfer function</td>
</tr>
<tr>
<td>TYPE = SENSITIVITY</td>
<td>Plots the magnitude and phase of the sensitivity function</td>
</tr>
<tr>
<td>TYPE = WORST</td>
<td>Plots the magnitude of the square worst case tolerance function</td>
</tr>
</tbody>
</table>

EL = Element Designator	Specifies to the program which particular sensitivity function request should be plotted (from a 'SENSITIVITY' or 'WORST' card)
FROM = a number (in CPS)	Specifies the beginning of a frequency, sensitivity, or worst case response plot
TO = a number (in CPS)	Specifies the end of a frequency, sensitivity, or worst case response plot
STEP = a number (in CPS)	Indicates the frequency step increment between individual calculated points

Note that the keyword STEP is used in a different context here than in the transient response case.

To illustrate how the PLOT options can be used, consider the plot statements:

PLOT(TY = FR/FR = 10/TO = 1E3/ST = 1.122)

PLOT(TY = SE/EL = C3/FR = 10/TO = 1ES/ST = 1.22)

taken from the output request statements in Figure 2.7. The first statement requests a frequency plot of the transfer function VR4/VV1, to encompass
the frequency range from 10 to 1000 cps in increments of 1.122 cps. The second statement requests a plot of the sensitivity function of the transfer function \(V_{R4}/V_{V1} \) with respect to the element C3. The frequency range is the same as the first plot statement. Figures 2.13 and 2.14 are plot and table outputs of the two PLOT requests.

Note that the PLOT requests always refer to the previous transfer function request, if more than one such request is made. The sensitivity plot request must include an element option since more than one sensitivity request can be called for in conjunction with a transfer function request. Both the magnitude and phase are printed out.

Control Card #3 can have either the word EXECUTE or END on it.

As another example problem describing PLOT requests, consider the circuit shown in Figure 2.15 taken from the report by Moe and Schwartz. The input code is shown in Figure 2.16 where the transfer function of the voltage across C7 to the drawing voltage source V1 is requested. There are three transients plots requested (1) an impulse response of .5 sec duration, (2) a step response of .5 sec duration, and (3) a 4 cps sine wave response, outputted every .005 second until 9 seconds is reached.

The output plots and tabular data are shown in Figures 2.17 through 2.22.

Figure 2.23 shows a typical deck setup for multiple circuit problems for one computer run. The three different coding schemes are illustrated.

Complete input and output listing of another sample problem can be found in Appendix C. Note only one STOP appears — at the end of the deck.
THE TRANSFORM OF THE RESPONSE IS

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NUMER. COEFFS</th>
<th>DENOM. COEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4.3333E+02</td>
<td>1.0779E+03</td>
</tr>
<tr>
<td>1</td>
<td>-2.1213E+02</td>
<td>5.0339E+02</td>
</tr>
<tr>
<td>2</td>
<td>-2.6115E-03</td>
<td>1.9082E+02</td>
</tr>
<tr>
<td>3</td>
<td>2.4571E+00</td>
<td>1.1334E+02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ.</th>
<th>MAG.</th>
<th>FREQ.</th>
<th>MAG.</th>
<th>FREQ.</th>
<th>MAG.</th>
<th>FREQ.</th>
<th>MAG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.000E-01</td>
<td>1.7541E-01</td>
<td>1.7478E-01</td>
<td>3.4949E-01</td>
<td>4.641E-01</td>
<td>2.7215E-01</td>
<td>1.8120E-01</td>
<td>7.7951E-02</td>
</tr>
<tr>
<td>4.14E-01</td>
<td>1.5451E-01</td>
<td>1.5298E-01</td>
<td>3.3719E-01</td>
<td>4.4290E-01</td>
<td>2.6090E-01</td>
<td>1.5046E-01</td>
<td>7.0756E-02</td>
</tr>
<tr>
<td>4.18E-01</td>
<td>1.8865E-01</td>
<td>1.8712E-01</td>
<td>3.7152E-01</td>
<td>4.5867E-01</td>
<td>2.5918E-01</td>
<td>1.5046E-01</td>
<td>7.0756E-02</td>
</tr>
<tr>
<td>4.43E-01</td>
<td>1.6500E-01</td>
<td>1.6347E-01</td>
<td>3.4949E-01</td>
<td>4.641E-01</td>
<td>2.7215E-01</td>
<td>1.8120E-01</td>
<td>7.7951E-02</td>
</tr>
</tbody>
</table>

GREATEST VALUE = 6.9143E+03 LOWEST VALUE = 0.0 INTERVAL = 6.9143E+03

Figure 2.13a
PLOT Y=SE/EL.C3/FR=1C/FD=1E3/ST=1.1221

SENSITIVITY WITH RESPECT TO C3

THE TRANSFORM OF THE RESPONSE IS ---

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NORM. CCEFFS.</th>
<th>DECRP. CCEFFS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.0</td>
<td>1.4500E 05</td>
</tr>
<tr>
<td>1</td>
<td>2.3837E 03</td>
<td>1.3773E 04</td>
</tr>
<tr>
<td>2</td>
<td>7.0511E 03</td>
<td>1.4415E 04</td>
</tr>
<tr>
<td>3</td>
<td>3.2812E 02</td>
<td>8.1773E 02</td>
</tr>
<tr>
<td>4</td>
<td>2.9242E 02</td>
<td>2.3367E 02</td>
</tr>
<tr>
<td>5</td>
<td>4.0924E 02</td>
<td>4.0924E 02</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>9.8484E 02</td>
</tr>
</tbody>
</table>

FREQ MAG FREQ MAG FREQ MAG FREQ MAG FREQ MAG
1.000E 01 1.47944E-02 1.64E 01 1.01116E-01 9.966E 01 1.30363E 00 3.161E 02 5.6404E+01
1.122E 01 2.35020E-02 3.64E 01 2.41180E-01 1.125E 02 1.40618E 00 3.494E 02 5.47420E+01
1.259E 01 2.35029E-02 3.64E 01 2.41180E-01 1.125E 02 1.40618E 00 3.494E 02 5.47420E+01
1.412E 01 3.71638E-02 5.44E 01 4.41459E-01 1.259E 02 2.40577E 00 6.2070E 02 5.25930E+01
1.585E 01 4.62524E-02 5.41E 01 5.32500E-01 1.412E 02 3.54017E 00 8.283E 02 5.04390E+01
1.776E 01 9.52150E-02 5.40E 01 6.13086E-01 1.585E 02 7.59117E 00 1.009E 02 5.04390E+01
1.994E 02 2.01616E-01 1.41E 02 1.21646E-01 1.776E 02 1.5604E 00 1.418E 02 5.04390E+01
2.238E 02 2.63162E-01 1.41E 02 1.21646E-01 1.994E 02 2.26432E 00 2.264E 02 5.04390E+01
2.512E 02 3.40541E-01 1.41E 02 1.21646E-01 2.238E 02 2.38786E 00 2.387E 02 5.04390E+01
2.817E 02 4.71535E-01 1.41E 02 1.21646E-01 2.512E 02 1.1617E 00 1.162E 02 5.04390E+01
3.162E 02 6.305E-01 1.41E 02 1.21646E-01 2.817E 02 9.996E 01 9.996E 02 5.04390E+01
3.546E 02 9.38394E-01 1.41E 02 1.21646E-01 3.162E 02 1.122E 02 1.122E 02 5.04390E+01
3.975E 02 1.38362E 00 1.41E 02 1.21646E-01 3.546E 02 1.412E 02 1.412E 02 5.04390E+01
4.464E 02 2.01616E-01 1.41E 02 1.21646E-01 3.975E 02 1.585E 02 1.585E 02 5.04390E+01
5.009E 02 2.63162E-01 1.41E 02 1.21646E-01 4.464E 02 1.776E 02 1.776E 02 5.04390E+01
5.620E 02 3.40541E-01 1.41E 02 1.21646E-01 5.009E 02 2.238E 02 2.238E 02 5.04390E+01
6.305E 02 4.71535E-01 1.41E 02 1.21646E-01 5.620E 02 2.512E 02 2.512E 02 5.04390E+01
7.075E 02 6.305E-01 1.41E 02 1.21646E-01 6.305E 02 2.817E 02 2.817E 02 5.04390E+01
7.932E 02 9.38394E-01 1.41E 02 1.21646E-01 7.075E 02 3.162E 02 3.162E 02 5.04390E+01
8.906E 02 1.38362E 00 1.41E 02 1.21646E-01 7.932E 02 3.546E 02 3.546E 02 5.04390E+01

GREATEST VALUE = 2.38716E 00
LEAST VALUE = 0.0
INTERVAL = 2.38716E 00

Figure 2 14a

2-38
<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E+01</td>
<td>1.506E+00</td>
<td>3.146E+01</td>
<td>1.351E+02</td>
<td>9.358E+01</td>
<td>6.214E+00</td>
<td>3.141E+02</td>
<td>6.906E+00</td>
</tr>
<tr>
<td>1.15E+01</td>
<td>1.514E+00</td>
<td>3.174E+01</td>
<td>1.311E+02</td>
<td>1.112E+02</td>
<td>-4.526E+00</td>
<td>1.396E+02</td>
<td>6.417E+00</td>
</tr>
<tr>
<td>1.29E+01</td>
<td>1.528E+00</td>
<td>3.186E+01</td>
<td>1.351E+02</td>
<td>1.299E+02</td>
<td>-3.170E+00</td>
<td>1.479E+02</td>
<td>6.671E+00</td>
</tr>
<tr>
<td>1.41E+01</td>
<td>1.538E+00</td>
<td>3.183E+01</td>
<td>1.351E+02</td>
<td>1.413E+02</td>
<td>-6.366E+00</td>
<td>1.464E+02</td>
<td>-5.337E+00</td>
</tr>
<tr>
<td>1.50E+01</td>
<td>1.551E+00</td>
<td>3.191E+01</td>
<td>1.351E+02</td>
<td>1.392E+02</td>
<td>-6.451E+00</td>
<td>1.465E+02</td>
<td>-6.339E+00</td>
</tr>
<tr>
<td>1.93E+01</td>
<td>1.528E+00</td>
<td>3.192E+01</td>
<td>1.351E+02</td>
<td>1.548E+02</td>
<td>-6.215E+00</td>
<td>1.492E+02</td>
<td>-6.354E+00</td>
</tr>
<tr>
<td>2.23E+01</td>
<td>1.517E+00</td>
<td>3.172E+01</td>
<td>1.367E+02</td>
<td>1.591E+02</td>
<td>-6.366E+00</td>
<td>1.505E+02</td>
<td>-6.354E+00</td>
</tr>
<tr>
<td>2.51E+01</td>
<td>1.501E+00</td>
<td>3.172E+01</td>
<td>1.367E+02</td>
<td>1.601E+02</td>
<td>-7.300E+00</td>
<td>1.506E+02</td>
<td>-6.357E+00</td>
</tr>
<tr>
<td>2.81E+01</td>
<td>1.490E+00</td>
<td>3.172E+01</td>
<td>1.367E+02</td>
<td>1.601E+02</td>
<td>-7.300E+00</td>
<td>1.506E+02</td>
<td>-6.357E+00</td>
</tr>
</tbody>
</table>

GREATEST VALUE = 1.601E+02
LOWEST VALUE = -6.319E+00
INTerval = 1.464E+00

Figure 2 14b
Figure 2.15 Complete Simplified Circuit for Anal.
Complete EOG System with a Four
NASAP (SIMPLIFIED EDG SYSTEM WITH BLINK INPUT)

V1 1 2 0.1166
R1 2 3 1.0
C1 2 3 0.2265F
R2 3 1 0.876
V2 1 4 2.14 VR2
R3 4 5 1.0
C2 5 1 0.0580F
I 1 1 6 1 VC2
I 2 6 1 1 VC4
C3 6 1 0.04459F
V3 1 7 1.0 VC3
R4 7 8 0.02275
C4 8 1 1.0F
V4 1 9 10.99 VC4
R5 9 10 1.0
C5 10 1 0.007496F
V5 1 11 50 VC5
R6 11 12 0.1
R7 12 13 14K
C6 13 14 1.6UF
R8 14 1 15.4K
R9 16 14 1M
R10 14 15 10K
R11 12 16 14K,
R12 15 1 200
I 3 1 15 500 VR9
R13 15 16 10K
C7 16 1 2.0UF
OUTPUT
VC7/VV1
PLOT(TY=IM/TI=0.5)
PLOT(TY=ST/TI=0.5)
PLOT(TY=SI/FR=4/TI=1.0/ST=0.005)
EXECUTE
STOP

Figure 2.16 NASAP — 70 Input Coding
Figure 2.18
Table 1: Transformed Response

<table>
<thead>
<tr>
<th>EXP. ORD.</th>
<th>NUMER. COEFF</th>
<th>DENOM. COEFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.09356E+02</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>9.8552E+19</td>
<td>3.95872E+10</td>
</tr>
<tr>
<td>2</td>
<td>5.69342E+17</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>4.49540E+16</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>2.20442E+16</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>9.2392E+11</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>4.37746E+09</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Table 2: SIGMA = 0.46000E+00

<table>
<thead>
<tr>
<th>TIME (S)</th>
<th>MAG</th>
<th>TIME (S)</th>
<th>MAG</th>
<th>TIME (S)</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.6576E+01</td>
<td>3.2070E+01</td>
<td>8.6000E+01</td>
<td>7.4096E+03</td>
</tr>
<tr>
<td>1.9900E-03</td>
<td>2.5545E+00</td>
<td>6.9400E+00</td>
<td>4.0800E+01</td>
<td>7.4096E+03</td>
<td></td>
</tr>
<tr>
<td>2.9900E-03</td>
<td>4.4601E+00</td>
<td>3.9200E+00</td>
<td>8.7942E+00</td>
<td>7.2950E+03</td>
<td></td>
</tr>
<tr>
<td>3.9900E-03</td>
<td>5.1200E+00</td>
<td>3.3500E+00</td>
<td>4.9500E+00</td>
<td>7.2190E+03</td>
<td></td>
</tr>
<tr>
<td>4.9900E-03</td>
<td>8.1200E+00</td>
<td>3.1100E+00</td>
<td>9.0071E+00</td>
<td>7.1461E+03</td>
<td></td>
</tr>
<tr>
<td>5.9900E-03</td>
<td>1.0977E+00</td>
<td>3.4500E+00</td>
<td>8.2083E+00</td>
<td>7.0763E+03</td>
<td></td>
</tr>
<tr>
<td>6.9900E-03</td>
<td>2.6200E+00</td>
<td>3.5500E+00</td>
<td>8.6464E+00</td>
<td>7.0305E+03</td>
<td></td>
</tr>
<tr>
<td>7.9900E-03</td>
<td>6.5800E+00</td>
<td>3.1900E+00</td>
<td>7.9564E+00</td>
<td>6.9582E+03</td>
<td></td>
</tr>
<tr>
<td>8.9900E-03</td>
<td>1.0000E+00</td>
<td>3.2500E+00</td>
<td>8.0000E+00</td>
<td>6.8227E+03</td>
<td></td>
</tr>
<tr>
<td>9.9900E-03</td>
<td>5.7966E+00</td>
<td>3.5000E+00</td>
<td>8.6000E+00</td>
<td>6.6220E+03</td>
<td></td>
</tr>
<tr>
<td>0.0000E+00</td>
<td>2.5545E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.4067E+03</td>
<td></td>
</tr>
<tr>
<td>0.9900E+00</td>
<td>1.5700E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.4067E+03</td>
<td></td>
</tr>
<tr>
<td>1.9900E+00</td>
<td>1.0000E+00</td>
<td>3.2500E+00</td>
<td>6.0000E+00</td>
<td>6.3777E+03</td>
<td></td>
</tr>
<tr>
<td>2.9900E+00</td>
<td>5.7966E+00</td>
<td>3.0000E+00</td>
<td>8.6000E+00</td>
<td>6.1226E+03</td>
<td></td>
</tr>
<tr>
<td>3.9900E+00</td>
<td>2.5545E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.0000E+00</td>
<td></td>
</tr>
<tr>
<td>4.9900E+00</td>
<td>1.5700E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.4067E+03</td>
<td></td>
</tr>
<tr>
<td>5.9900E+00</td>
<td>1.0000E+00</td>
<td>3.2500E+00</td>
<td>6.0000E+00</td>
<td>6.3777E+03</td>
<td></td>
</tr>
<tr>
<td>6.9900E+00</td>
<td>5.7966E+00</td>
<td>3.0000E+00</td>
<td>8.6000E+00</td>
<td>6.1226E+03</td>
<td></td>
</tr>
<tr>
<td>7.9900E+00</td>
<td>2.5545E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.0000E+00</td>
<td></td>
</tr>
<tr>
<td>8.9900E+00</td>
<td>1.5700E+00</td>
<td>3.9700E+00</td>
<td>8.6590E+00</td>
<td>6.4067E+03</td>
<td></td>
</tr>
<tr>
<td>9.9900E+00</td>
<td>1.0000E+00</td>
<td>3.2500E+00</td>
<td>6.0000E+00</td>
<td>6.3777E+03</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2.20
CONTROL CARD

TITLE CARD

NASAP
VINPUT 1 2 1
IOUTPUT 3 4 1 IR1
R1 2 4 .37M
C23 2 3 2E10 PF
LO 1 4 33

CONTROL CARD

OUTPUT
WORST CASE
TOL=LO= 50
VINOUTPUT/VVINPUT
ROOTS, POLES
PLOT (TYPE = IMPULSE/TIME = 10)
PLOT (TYPE = FR/FR = .01/TO = 1E2)
PLOT (TY=WORST/FR = .01/TO = 1E2)

CONTROL CARD

EXECUTE

ANOTHER OPTIONAL TITLE CARD

CONTROL CARD

TREE
E1 (1-2) = 1
DJ2/IRE1 (3-4) = 1
RE1 (2-4) = .37M
CE, (2-3) = 2E10PF
LJ, (1-4) = 33

CONTROL CARD

END
SENS=RE1
SENS=LJ
VLJ/VE1
PLOT (TY = SI/AM = 2/FR = 10)
PLOT (TY=SE/FR=1E-3/TO=1E6/EL=RE1)

2nd Problem

END

PREVIOUS PAGE BLANK NOT FILMED

2-55
CIRC (5E6)
E1 (1-2) = 1
R2 (2-3) = 2
L3 (3-1) = 1
C4 (3-1) = 4

CONTROL CARD → END
IC4/VE1
ROOTS

CONTROL CARD → END
STOP

Figure 2.23 Sample Data Decks for NASAP-70

Figure 2.24 Example of Outputs Taken Across Two or More Circuit Elements
2.4 Coding Tips

As is usually the case with any application program, a number of design tricks will evolve as the circuit designers become familiar with its operation. Some of these tips are described here.

Outputs Taken Across Two or More Circuit Elements

Quite often a circuit designer needs the transfer function expression taken across more than one circuit element, and with the capabilities of NASAP-70, as many computer runs as there are circuit output elements will be required. To circumvent this difficulty, an extra current source can be inserted across the desired output terminals and the output voltage measured across it (see for example Figure 2.24). This element can be viewed as an ideal voltmeter, that is, a device that extracts a constant value (which is always zero) of current from the circuit. By adding the output current source \((I = 0)\), provision has been made for a general method of solution.

(As an added note, an ideal ammeter which is a short circuit is a voltage source whose voltage is a constant value of zero.)

Total Output Response

This design tip is really a reminder to the circuit designer of how the output response of a circuit should be handled when a number of active devices and energy storage elements are present. For such cases NASAP-70 requires that as many transfer functions as there are active devices and elements with energy stored in them be computed, relating these devices to the output requested. The transient response associated for each transfer function is then computed and summed all together to form the total output response. It is important to note that any charged capacitor with \(V_0\) volts has to be replaced by an uncharged capacitor in series with a battery of \(V_0\) volts.
Also, any inductor \(L \) with an initial current of \(I_0 \) through it has to be replaced by an inductor placed in parallel with a current source \(I_0 \).

These sources are considered like any other active device, and thus their presence must be reflected in the desired output response.

There are approximation-oriented guidelines by which a tree selection procedure should be implemented. For low frequency approximation, capacitors should be chosen as links while inductors should be chosen branches (as much as possible while still retaining a tree structure.) Conversely, high frequency approximation results in inductors chosen as links while capacitors are chosen as branches. The practical underlying
reason is that while a zero is well represented and well behaved on a computer, \(\infty \rightarrow 1/0 \) causes error and havoc on the machine and thus will not be accepted by the algorithm. This means that if one requires low as well as high frequency approximations for the same problem, this problem should be submitted as two problems with two different trees. Similarly, elements with relatively large impedances compared with the circuit (for example, grid-plate tube impedance) should always be chosen links. (To set \(I \rightarrow 0 \) which means grid current equal zero.) On the other hand, elements with relatively small input impedances (\(r_i \) in some transistors) should always be chosen branches (To set \(V \rightarrow 0 \)).

In an approximation, branches can be collapsed or links can be opened without disturbing the tree structure. This fact can be verified by observing the example problems. Hence, by carefully selecting elements to be links or branches, foresight in design can be incorporated into circuit description and a great deal of flexibility in calculations can be achieved.

2.5 **NASAP Analysis of Nonlinear DC Circuits**

The basic procedure for analyzing four classes of nonlinear dependencies is described: (1) Nonlinear controlled source dependent on current or voltage in the circuit, (2) Nonlinear controlled source dependent on a parameter external to the circuit such as temperature, (3) Nonlinear resistor dependent on current or voltage associated with its terminals, and (4) Nonlinear resistor dependent on a parameter external to the circuit.

A method for obtaining models for nonlinear elements is presented and is used to establish a model for an exponential nonlinearity. This model is used in the analysis of transistor bias circuits.

Also included are the analysis procedures for power supply regulator circuits using the real \(s \) evaluation option. This analysis produces results related to the load and line regulation properties of the regulator.

This section has been taken from the work presented in references 9 and 10.

2-59
2.5.1 Modeling Circuit Element Variations

Linear and nonlinear circuit element variations in a resistive circuit can be simulated with the use of the PLOT(TYPE=RE) capabilities of the NASAP program which results in a real variable evaluation of the transfer function. Consider a variable circuit element \(A(x) \) where \(A \) may be a resistor, a current source, or a voltage source and \(x \) may be a current, a voltage, or some external parameter such as temperature. The function \(A(x) \) is approximated by a ratio of polynomials using either approximation methods or trial and error.

\[
A(x) = \frac{P(x)}{Q(x)}
\]

(2.1)

The variable \(x \) is replaced by \(s \) and a circuit is synthesized which has a transfer function or an input impedance given by \(P(s)/Q(s) \). When the TYPE=REAL option is used, this circuit will simulate the variation of the circuit element \(A(x) \) if the range of \(s \) is the same as the expected range of \(x \). It should be noted that since the circuit is used for simulation purposes only, it does not have to be physically realizable, i.e., controlled sources or negative circuit elements may be used.

The method for using this model in computer analysis of a circuit depends on the circuit element and variable which \(A \) and \(x \) represent. In Cases I and II of the discussion which follows it is assumed that \(P(s)/Q(s) \) is realized as an input impedance. If the realization is an input admittance or a transfer function, relatively minor modifications are required.

Case I

\(A \) is a controlled voltage or a current source and \(x \) is a voltage or a current in the circuit.

The dependency function \(A(s) \) is synthesized as an impedance and a current generator of value unity is connected to the impedance. This auxiliary network is hinged to the network which is to be analyzed. The nonlinear dependent source in the network is replaced by a source which is
dependent on the voltage across the auxiliary network. The transfer function $x/\text{independent source}$ is specified and the TYPE=REAL option is used. The solution for the circuit is obtained from the tabular printout or the graphical plot as the value where $x = s$. If x is not the desired output variable, the circuit is recoded with $A(x)$ replaced by its known value from the above solution. The auxiliary network is eliminated and the desired output variable is specified.

This analysis is applicable when the circuit contains no more than one variable source.

To illustrate the method, consider the circuit of Figure 2.25. Let $R = 2$ and assume that V is a function of I_1 and is adequately approximated by

$$V(I_1) = \frac{I_1^2 + I_1 - 5}{I_1 + 1}, \quad 0 \leq I_1 \leq 1 \quad (2.2)$$

A pencil and paper solution results in

$$I_1 = .921, \quad V_0 = .0795 \quad (2.3)$$

For computer analysis an impedance is synthesized for which

$$Z(s) = \frac{s^2 + s - 5}{s + 1} = s - \frac{5}{s + 1} \quad (2.4)$$

A circuit realization of this impedance is shown in Figure 2.26. The auxiliary network is hinged to the basic circuit with $R_2 = 2, I_1 = IR7$ and $V_2 = VR6$. Note that the R_5, R_6 resistance combination is used for voltage measurement only and could be replaced by a single, large valued resistance. The transfer function $IR1/VV1$ is specified and a frequency of .915 to .925 in steps of .001 is specified. The frequency range is chosen on the basis of the expected "ballpark" value of the current $IR1$. If a good estimate of $IR1$ cannot be made, a larger frequency range is specified with larger
The computer analysis results in

\[
\frac{IR_1}{V_1} = -0.25 \frac{-7 - s + s^2}{1 + s}
\]

and the printout table gives \(IR_1 = s \) for \(s = 0.921 \). The value of \(V_2 \) is then obtained as \(V_2 = -1.682 \). The basic circuit is then coded using this value of \(V_2 \) and the result is \(VR_3/V_1 = 0.0795 \).
Case II

A is a controlled voltage or current source and \(x \) is an external parameter which is known to vary over a specified range.

In this case, the controlled source is generally dependent on a current or voltage in the circuit (denoted by \(y \) in this discussion) and the dependency factor is a function of an external parameter \(x \). The \(h_{FE} \) generator in the transistor dc equivalent circuit where \(h_{FE} \) is temperature dependent is an example of this situation. The circuit is coded with \(yA(x) \) replaced by a generator, \(V(s) \), which is dependent on the voltage across the auxiliary network. The desired transfer function is specified and the SIGMA option is used. The computer solution gives the relation between the output variable and \(x \) in functional (replace \(s \) by \(x \)), tabular and graphical forms. This method is applicable for any number of variable sources in the circuit which depend on the same external parameter \(x \).

The circuit of Figure 2.25 is used to illustrate the procedure with \(R = 2 \) and \(V \) dependent on \(I_1 \) and temperature according to

\[
V = I_1 \frac{T^2 + T - 5}{T + 1} \quad 10 \leq T \leq 50
\]

(2.6)

A hand solution results in

\[
V_0 = \frac{T^2 + 3T - 3}{T^2 + 5T - 1}
\]

(2.7)

For computer analysis the nonlinear dependency has the same functional form as in Case I and therefore \(Z(s) \) of Figure 2.26 simulates the temperature dependency. The auxiliary network is hinged to the basic circuit with \(I_1 = IR1 \) and \(V2 = VR6 \). The transfer function \(VR3/VV1 \) is requested and a frequency range of 10 to 50 in steps of 1 is specified. The result is

\[
\frac{VR3}{VV1} = \frac{-3 + 3s + s^2}{-1 + 5s + s^2}
\]

(2.8)
A table is printed out and a graph of the function over the range $s = 10$ to $s = 50$ is plotted.

Case III

A is a resistor and x is the voltage across or the current through the resistor.

The circuit is coded with $R(x)$ replaced by $Z(s)$. The transfer function x/independent source is specified and the TYPE=REAL option is used. The solution for the circuit is obtained from the tabular printout or the graphical plot as the value where $x = s$. If x is not the desired output variable, the circuit is recoded with $R(x)$ replaced by its known value and the desired transfer function is specified. This analysis is applicable when the circuit contains no more than one nonlinear resistance.

In the circuit of Figure 2.25, let $V = -2$ and R be dependent on I_2.

$$R(I_2) = \frac{I_2^2 + 2 - 5}{I_2 + 1} \quad 2 \leq I_2 \leq 4 \quad (2.9)$$

The solution is

$$I_2 = 2.155, \quad V_o = -0.771 \quad (2.10)$$

For computer analysis, the basic circuit of Figure 2.26 is used with R_2 replaced by $Z(s)$ and $V_2 = -2 \, IR7$. The transfer function $IL1/VV1$ is requested and a frequency range of 2.15 to 2.16 in steps of .001 is specified. As in Case I, it may require more than one pass on the computer to determine the proper frequency range and increment which will result in the desired degree of accuracy for $IL1$. The computer analysis gives

$$\frac{IL1}{VV1} = 2.67 \frac{1 + s}{-4.333 + 1.667s + s^2} \quad (2.11)$$

for which $IL1 = s$ at $s = 2.155$. The value of $R(I_2)$ is evaluated as $R(I_2) = .5702$. The basic circuit is recoded using this value of R and the above value for V. The analysis results in $VR3/VV1 = -.771$.

2-64
Case IV

A is a resistor and x is an external parameter which is known to vary over a specified range.

The circuit is coded with R(x) replaced by Z(s) and the desired transfer function is specified. The computer solution gives the relation between the output variable and x. This method is applicable for any number of variable resistances in the circuit which depend on the same external parameter x.

As an example, let V = 2 and R be a function of temperature in the circuit of Figure 2.25.

\[
R(T) = \frac{T^2 + T - 5}{T + 1} \quad 10 \leq T \leq 50
\]

(2.12)

A hand solution gives

\[
V_o = 0.667 \frac{T^2 + 3T - 3}{T^2 + 1.667T - 4.333}
\]

(2.13)

In the computer analysis, the basic circuit of Figure 2.26 is used with R2 replaced by Z(s) and V2 = 2IR7. The frequency range 10 to 50 in steps of 1 is specified and the computer output is

\[
\frac{VR3}{V1} = 0.667 \frac{-3 + 3s + s^2}{-4.333 + 1.667s + s^2}
\]

(2.14)

A table is printed out and a graph of the function over the range s = 10 to s = 50 is plotted.

2.5.2 Modeling Temperature Variations of Transistor Parameters

The parameters of the transistor dc equivalent circuit, hFE, VBE and Ico, are temperature dependent. The functional form of the dependence may vary depending on the construction of the transistor. Generally, graphical plots of the dependencies are available from the manufacturer on request.
Analytical investigations predict the following nominal temperature variations.

\[h_{FE}(T) = h_{FEo}(1 - 25B + BT) \] (2.15)

where \(h_{FEo} \) is the value of \(h_{FE} \) at 25°C

\(T \) is expressed in °C

\(B = 0.02 \) for Ge and 0.013 for Si

\[V_{BE}(T) = V_{BEo} + 25D - DT \] (2.16)

where \(V_{BEo} \) is the value of \(V_{BE} \) at 25°C

\(D = 0.002 \) to 0.0025

\[I_{co}(T) = I_{coo}^2 \frac{T-25}{F} \] (2.17)

where \(I_{coo} \) is the value of \(I_{co} \) at 25°C

\(F = 10 \) for Ge and 7 for Si

The model for temperature variation of \(h_{FE} \) requires

\[Z(s) = 1 - 25B + Bs \] (2.18)

while the \(V_{BE} \) model must satisfy

\[Z(s) = V_{BEo} + 25D - Ds \] (2.19)

Simple series RL circuits will satisfy these relations with \(R = 1 - 25B \) and \(L = B \) for the \(h_{FE} \) model and \(R = V_{BEo} + 25D \) and \(L = -D \) for the \(V_{BE} \) model.

The current generators used to complete the auxiliary networks will have value \(h_{FEo} I_{B} \) for the \(h_{FE} \) model and unity for the \(V_{BE} \) model.

The circuit to simulate \(I_{co} \) variation is somewhat more complicated than the \(h_{FE} \) and \(V_{BE} \) models. As indicated by Equation (2.17), \(I_{co} \) doubles every 10°C for germanium and every 7°C for silicon. A trial and error method results in the following approximating functions for the temperature range 0°C to 75°C.
\[I_{\text{coGe}}(T) = I_{\text{coo}} \frac{T + .471698}{T^2 - 159.394T + 6632.58} \]

\[I_{\text{coSi}}(T) = I_{\text{coo}} \frac{T - 12.5480}{T^2 - 149.500T + 5690.00} \]

Figure 2.27 shows a possible synthesis of the normalized approximating function \(I_{\text{co}}(s)/I_{\text{coo}} \). The values of the elements are listed below.

\[
\begin{array}{|c|c|c|}
\hline
 & \text{Ge} & \text{Si} \\
\hline C & .007783 & .0049346 \\
R_1 & -.8037 & -1.4797 \\
R_2 & .0090349 & -.640268 \\
L & .019154 & .0510255 \\
\hline
\end{array}
\]

Although these circuits model temperature variation of \(I_{\text{co}} \), they do not satisfy the transistor model since \((h_{\text{FE}} + 1)I_{\text{co}}\) is required and \(h_{\text{FE}} \) is also temperature dependent. This product can be modeled with the configuration shown in Figure 2.28. If \(\frac{1}{Y_h(s)} \gg Z(s) \) for the real \(s \) range of interest, then

\[I = h_{\text{FEo}} Y_h(s) Z_{I_{\text{co}}}(s) \]

The control variable which is required for the transistor model is

\[I = \left[h_{\text{FE}}(s) + 1 \right] I_{\text{co}}(s) \]

since \(Z_{I_{\text{co}}}(s) = I_{\text{co}}(s)/I_{\text{coo}} \), the correspondence is

\[h_{\text{FEo}} Y_h(s) = \left[h_{\text{FE}}(s) + 1 \right] I_{\text{coo}} \]

or

\[Y_h(s) = \frac{h_{\text{FE}}(1-25B+Bs) + 1}{h_{\text{FE}}} I_{\text{coo}} \]

A summary of the models is presented in Figure 2.29 where a complete transistor circuit is modeled. The V1, R1 combination is included.
in this model so that V_2, I_4 and I_5 can be constant amplitude controlled sources. If a plot of the collector current is required, the transfer function IR_5/VV_1 is specified. A typical printout for the circuit shown in Figure 2.29 using the (TYPE=REAL) option is included in Appendix C.

2.5.3 Regulation Curves for Power Supply Regulators

The TYPE=REAL option of the NASA-70 program is useful in obtaining power supply regulation curves. In the circuit of Figure 2.30, R_2 is a large valued resistor which is used for measuring voltage across the auxiliary network. The voltage across R_1 is constant, the voltage across L_1 varies linearly with s, and the voltage across R_2 is the sum of V_{R1} and V_{L1}. For
GERMANIUM TRANSISTOR

\[h_{ie} = 1 \text{K} \]
\[h_{oe} = 25 \times 10^6 \text{ mho} \]
\[h_{Feoe} = 50 \]
\[V_{Beo} = 2 \text{v} \]
\[I_{Coo} = 1 \mu\text{a} \]

Figure 2.29 Model for Simulation of Temperature Variation Effects in a Transistor Circuit

*Resistors Included in Model for Voltage Measurement

**Resistor Included in Model for Current Measurement
load regulation data, V is made dependent on V_R1 and I is made dependent on V_L1. Line regulation information is obtained if V depends on V_R2 and I depends on V_R1. If V depends on V_R2 and I depends on V_L1, a regulation curve is obtained for simultaneous variation of line voltage and load current.

2.6 Network Partitioning Schemes for NASAP-70

Assume a general network is partitioned into several smaller subnetworks as shown in Figure 2.31. The input and output variables, X_1 and X_2, can be located arbitrarily. Note that the partitioning conveniently lends itself to transfer function formulations. Subnetwork 1 ports are identified by X_1, I_2, and I_3, the other subnetwork ports are numbered similarly.

2.6.1 N-Port Interconnection Methods

Some interconnection methods are briefly described here to make the discussion self-contained. A detailed description can be found in reference 12.

Laemmel Method The Laemmel Method is employed to connect two subnetworks in cascade as shown in Figure 2.31. This technique utilizes the open circuit impedances of the network. The input and output ports of N_1 and N_2 are in groups of a and b, respectively. The network N_c obtained by cascading N_1 and N_2 has its input and output ports in group a of N_1 and group b of N_2, respectively.
Figure 2.31 A Complex Network Partitioned into Several Smaller Networks

The impedance matrix of subnetwork N_1 is defined as

$$U = \begin{bmatrix} U^{aa} & U^{ab} \\ U^{ba} & U^{bb} \end{bmatrix}$$ \hfill (2.25)

where

$$U^{aa} = (u_{ij}^{aa} \mid i=1 \ldots q, j=1 \ldots q), \quad U^{ab} = (u_{ij}^{ab} \mid i=1 \ldots q, j=q+1 \ldots r).$$

$$U^{ba} = (u_{ij}^{ba} \mid i=q+1 \ldots r, j=1 \ldots q), \quad U^{bb} = (u_{ij}^{bb} \mid i=q+1 \ldots r, j=q+1 \ldots r)$$

are the open circuit impedances relating ports of the subnetworks. Note that the U matrix, and succeeding matrices, are partitioned according to the grouping of the input and output ports.

In a similar manner, the open loop impedance matrix for N_2 is

$$T = \begin{bmatrix} T^{aa} & T^{ab} \\ T^{ba} & T^{bb} \end{bmatrix}$$ \hfill (2.26)

where

$$T^{aa} = (t_{ij}^{aa} \mid i=1 \ldots s, j=1 \ldots s), \quad T^{ab} = (t_{ij}^{ab} \mid i=1 \ldots s, j=s+1 \ldots w).$$
\[T^{ba} = \left(t_{i=s+1}^{j=s+1} \right), \quad T^{bb} = \left(t_{i=s+1}^{j=s+1} \right) \]

are open circuit impedances relating ports in \(N_2 \).

The overall open circuit impedance of \(N_c \), obtained by interconnecting \(N_1 \) and \(N_2 \) (Figure 2.32), can be computed by Laemmel's relations

\[
Z^{aa} = U^{aa} - U^{ab} \left(U^{bb} + T^{aa} \right)^{-1} U^{ba} \tag{2.27}
\]

\[
Z^{ab} = U^{ab} \left(U^{bb} + T^{aa} \right)^{-1} T^{ab} \tag{2.28}
\]

\[
Z^{ba} = T^{ba} \left(U^{bb} + T^{aa} \right)^{-1} U^{ba} \tag{2.29}
\]

\[
Z^{bb} = -T^{ba} \left(U^{bb} + T^{aa} \right)^{-1} T^{ab} + T^{bb} \tag{2.30}
\]

where

\[
T = \begin{bmatrix}
Z^{aa} & Z^{ab} \\
Z^{ba} & Z^{bb}
\end{bmatrix} \tag{2.31}
\]

Laemmel's relations can be applied repeatedly to interconnect subnetworks of the form shown in Figure 2.31. For example, consider the first three subnetworks of row 1. Subnetworks 1 and 2 are combined to form subnetwork 1, 2 as in Figure 2.33(b). Subnetwork 1, 2 is rearranged and connected with subnetwork 3 to form subnetwork 1, 2, 3 of Figure 2.33(d). This process is continued until all subnetworks of row 1 have been interconnected. In an identical manner, the subnetworks of rows 2 are interconnected, producing \(t \) subnetworks. This is depicted in Figure 2.34. The subnetworks are interconnected to reconstruct the original network.
The total number of times the Laemmel method is applied in forming the original network from the group of subnetworks given in Figure 2.31 is \(t_r - 1 \), where \(t \) is number of rows and \(r \) is the number of columns of the subnetworks.

The following guidelines should be adhered to in subdividing a network for an analysis by the Laemmel Method:

1. No mutual coupling should exist between components of different subnetworks,
2. A dependency relationship must be contained within a subnetwork,
3. The port of a subnetwork must be taken across an element which is part of a closed mesh, such as shown in Figure 2.35. (This restriction is due to NASAP-70 rather than to the methods themselves).

Cascade Parameter Method When a network can be partitioned into cascade subnetworks as shown in Figure 2.36, the cascade parameter method\(^{14}\) is usually employed to compute transfer functions rather than the Laemmel method because of the reduction in computing time achieved. The cascade parameters relate the terminal voltages and currents for the overall network by the expression...
where

\[
\begin{bmatrix}
V_I \\
I_I \\
\end{bmatrix} = \begin{bmatrix}
A & B \\
C & D \\
\end{bmatrix} \begin{bmatrix}
V_o \\
-I_o \\
\end{bmatrix}
\] \hspace{1cm} (2.32)

\[
\begin{bmatrix}
A & B \\
C & D \\
\end{bmatrix} = \begin{bmatrix}
A_1 & B_1 \\
C_1 & D_1 \\
\end{bmatrix} \begin{bmatrix}
A_2 & B_2 \\
C_2 & D_2 \\
\end{bmatrix} \cdots \begin{bmatrix}
A_r & B_r \\
C_r & D_r \\
\end{bmatrix}
\] \hspace{1cm} (2.33)

The transmission parameters \(A_1, B_1, C_1, \text{ and } D_1\) for each subnetwork are the inverse voltage transfer ratio, negative inverse of the transfer admittance, the inverse transfer impedance, and the negative inverse current transfer ratio, respectively, of the input port to the output port. \(A_1\) and \(C_1\) are calculated with the output port open, \(B_1\) and \(D_1\) are calculated with the output port shorted. The transmission parameters can be computed by NASAP-70 and are in general ratios of polynomials in \(S\).
Parallel Interconnection Method Another means of network interconnection is the paralleling of ports of networks as shown in Figure 2.37. Murty and Thulasiraman show that two n-port networks described by short circuit admittances and having no internal vertices, can be combined in parallel if their edge and port orientations are identical, and also if their modified cut set matrices with identical row and column order are equal.

Let the short circuit admittance matrices of networks N_1 and N_2 be

$$Y_1 = \begin{bmatrix} Y_{aa}^{1} & Y_{ab}^{1} \\ Y_{ba}^{1} & Y_{bb}^{1} \end{bmatrix}$$

(2.34)

and

$$Y_2 = \begin{bmatrix} Y_{aa}^{2} & Y_{ab}^{2} \\ Y_{ba}^{2} & Y_{bb}^{2} \end{bmatrix}$$

(2.35)

The individual entries of these matrices are defined similar to the Laemmel matrices except that short-circuit admittances are involved.

Assuming the interconnection criteria are satisfied, the short circuit admittance matrix of the combined network is

$$Y_{12} = \begin{bmatrix} Y_{aa} & Y_{ab} \\ Y_{ba} & Y_{bb} \end{bmatrix}$$
\[Y_t = Y_1 + Y_2 = \begin{bmatrix} Y_{1a} + Y_{2a} & Y_{1b} + Y_{2b} \\ Y_{1a} + Y_{2a} & Y_{1b} + Y_{2b} \end{bmatrix} \] (2.36)

Figure 2.37 Parallel Connection of Two N Port Networks

2.6.2 Network Interconnection Examples

The network shown in Figure 2.38 was arbitrarily constructed to illustrate Laemmel's Method. Assume that \(V_2 / I_1 \) is required. Let this network be subdivided into two subnetworks as shown in Figure 2.39

\[\text{Figure 2.38} \]

all \(R = 1K, \)
\(L = 1MH, \)
\(C = 1MF \)
The port equations for subnetwork U are
\[
\begin{bmatrix}
V_a \\
V_b
\end{bmatrix} =
\begin{bmatrix}
U^{aa} & U^{ab} \\
U^{ba} & U^{bb}
\end{bmatrix}
\begin{bmatrix}
I_a \\
I_b
\end{bmatrix}
\] \hspace{1cm} (2.37)

where
\[U^{aa} = (u_{ij} \quad i = 1, \quad j = 1), \quad U^{ab} = (u_{ij} \quad i = 1, \quad j = 2, \; 3),\]
\[U^{ba} = (u_{ij} \quad i = 2, \; 3, \quad j = 1), \quad U^{bb} = (u_{ij} \quad i = 2, \; 3, \quad j = 2, \; 3),\]
\[V_a^U = V_{1a}, \quad V_b^U = V_{2b}, \quad V_3^U = I_1^U, \quad I_2^U = I_3^U = I_b^U.
\]

The port equations for subnetwork T are
\[
\begin{bmatrix}
V_a \\
V_b
\end{bmatrix} =
\begin{bmatrix}
T^{aa} & T^{ab} \\
T^{ba} & T^{bb}
\end{bmatrix}
\begin{bmatrix}
I_a \\
I_b
\end{bmatrix}
\] \hspace{1cm} (2.38)

and those for network Z are
\[
\begin{bmatrix}
V_a \\
V_b
\end{bmatrix} =
\begin{bmatrix}
Z^{aa} & Z^{ab} \\
Z^{ba} & Z^{bb}
\end{bmatrix}
\begin{bmatrix}
I_a \\
I_b
\end{bmatrix}
\] \hspace{1cm} (2.39)
The matrices of (2.38) and (2.39) can readily be defined by an examination of Figures 2.38 and 2.39.

The desired transfer function is

\[
\frac{V_2}{I_1} \bigg|_{I_2=0} = Z_{21} = Z_{ba},
\]

(2.40)

From Equation (2.29) \(Z^{ba} = T^{ba} (U^{bb} + T^{aa})^{-1} U_{ba} \). Therefore the following impedance parameters are computed utilizing NASAP-70 \(t_{31}, t_{32}, t_{11}, t_{12}, t_{21}, t_{22}, u_{22}, u_{32}, u_{33}, u_{21}, \) and \(u_{31} \). Since the subnetworks are lumped, linear and passive, then \(t_{12} = t_{21} \) and \(u_{23} = u_{32} \), hence \(t_{21} \) and \(u_{32} \) need not be computed. The parameters computed are listed.

\[
u_{12} = \frac{+6.872E+10S + 1.000E+09S^3}{+1.000E+18 + 3.000E+15S + 1.002E+12S^2 + 3.000E+06S^3 + 1.000E+00S^4}
\]

(2.41)

Let the denominator of \(u_{12} \) be equal to \(u_{\text{den}} \) then

\[
u_{12} = \frac{+6.872E+10S + 1.000E+09S^3}{u_{\text{den}}}
\]

(2.42)

\[
u_{13} = U_{31} = \frac{1.000E+21 + 1.000E+18S + 1.000E+12S^2}{u_{\text{den}}}
\]

(2.43)

\[
u_{22} = U_{32} = \frac{1.000E+15S + 3.000E+12S^2 + 1.001E+09S^3 + 1.000E+03S^4}{u_{\text{den}}}
\]

(2.44)

\[
u_{33} = U_{33} = \frac{2.000E+21 + 1.001E+18S + 3.000E+12S^2 + 1.000E+06S^3}{u_{\text{den}}}
\]

(2.45)

\[
u_{11} = \frac{1.000E+06 + 1.002E+03S + 3.000E-03S^2 + 1.000E-08S^3}{1.000E+03 + 2.002E+00S + 5.000E-06S^2 + 1.000E-12S^3}
\]

Let the denominator of \(t_{11} \) to be equal to \(t_{\text{den}} \) then
\[t_{11} = \frac{1.000E+06 + 1.002E+03S + 3.000E-03S^2 + 1.000E-09S^3}{t_{den}} \]

\[t_{12} = t_{21} = \frac{-1.000E-09S^3}{t_{den}} \]

\[t_{13} = \frac{1.000E+03S + 2.000E-03S^2}{t_{den}} \]

\[t_{22} = \frac{1.000E+00S + 2.00E-03S^2 + 3.000E-09S^3}{t_{den}} \]

\[t_{23} = t_{32} = \frac{1.000E-09S^3}{t_{den}} \]

Substituting the appropriate matrices elements of (2.37) and (2.38) into (2.29), the transfer impedance \(Z_{21} \) is computed

\[
Z_{21} = Z_{ba} = \begin{bmatrix} T_{31} & T_{32} \end{bmatrix} \begin{bmatrix} U_{22} & U_{23} \\ U_{32} & U_{33} \end{bmatrix} + \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix}^{-1} \begin{bmatrix} U_{21} \\ U_{31} \end{bmatrix}
\]

\[(2.51) \]

A computer program was written in Fortran IV to solve Equation (2.51), the result is

\[
Z_{21} = \frac{+1.34E+38S^2 + 1.001E+39S^3 + 5.010E+36S^4 + 9.036E+33S^5}{+2.000E+48S^9 + 1.301E+48S^7 + 3.009E+43S^2 + 3.026E+40S^3 + 1.333E+35S^4}
\]

\[
+ 2.052E+30S^8 + 2.414E+25S^4 + 2.086E+21S^8 + 1.313E+16S^9 + 2.189E+33S^5 + 4.298E+28S^6 + 2.299E+24S^4 + 2.59E+19S^8 + 1.206E+14S^9
\]

\[
+ 2.908E+10S^{10} + 2.602E+04S^{11} + 9.002E-03S^{12} + 1.000E-09S^{13}
\]

\[
+ 2.811E+08S^{10} + 1.205E+04S^{11} + 1.931E-04S^{12} + 5.201E-11S^{13} + 5.000E-18S^{14}
\]

\[(2.52) \]

Also \(Z_{21} \) was computed directly for network \(Z \) by means of NASAP-70.

This result is

\[2-79 \]
The frequency response of Equations (2.52) and (2.53) was plotted as shown in Figure 2.40. A comparison of the two curves of Figure 2.40 gives an indication of the relative error between the two methods for computing Z_{21}. The peak at the upper frequency range of the curve for (2.52) is a result of solving each of the two networks separately and then combining these results to obtain the solution for the interconnected networks. One possible explanation for this is loss of significance error which can occur when two numbers of similar magnitudes are added.
A cascade connection example illustrates how the computation time increases as the number of cascaded stages increases. The circuit for each stage is shown in Figure 2.41.

The desired transfer function, $I_{\text{out}}/I_{\text{in}}$, can be calculated using NASAP-70. This was done first for one stage, then an identical stage was connected in cascade with this first stage to form a two stage amplifier. A coupling capacitor was placed between the collector of the first stage and the base of the second stage to provide DC isolation. NASAP-70 was again used to compute the transfer function $I_{\text{out}}/I_{\text{in}}$, where I_{out} is the current through the collector resistor of the last stage. This process was continued until five stages had been cascaded. The results, which were calculated by an IBM 360 computer are plotted in Figure 2.42.

From this curve it can be seen that the computer time required increases rapidly as the number of cascaded stages is increased.
Calculations were made to predict the approximate theoretical time required to compute the desired transfer function when the cascaded stages are interconnected by the Cascade Parameter method. It was assumed that 1.1 seconds of CPU time was required to compute each parameter. The CPU time required to multiply the matrices of the individual stages was neglected.

If two stages were cascaded the resultant overall matrix would be

\[
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
= \begin{bmatrix}
A_1 & B_1 \\
C_1 & D_1
\end{bmatrix}
\begin{bmatrix}
A_2 & B_2 \\
C_2 & D_2
\end{bmatrix}
\]

The desired parameter is, \(D = B_2C_1 + D_1D_2 \). To compute \(D \), only \(B_2, C_1, D_1, \) and \(D_2 \) need to be calculated. Hence, the total assumed time required to compute \(D \) is \(4 \times 1.1 = 4.4 \) seconds. The \(D \) parameter for three, four and five cascaded stages was computed in a similar manner. These theoretical computation times are plotted in Figure 2.42. It is evident that if more than four stages are cascaded, then a definite time savings will result if the desired transfer function is computed by the Cascade Parameter method. In the preceding example, the transfer function \(I_{\text{out}}/I_{\text{in}} \) was computed, whereas the parameter \(D \) is defined as, \(D = -I_{\text{in}}/I_{\text{out}} \left| V_{\text{out}} = 0 \right. \). However, the parameter \(D \) can be computed and then inverted to give the desired transfer function.

2.7 Computational Errors

This section is concerned with the computational errors associated with NASAP-70. The impact and effect of errors at individual stages of computation are given, and in some cases recommendations regarding their minimization are also included.

2.7.1 Flowgraph Algorithm Errors

If the flowgraph algorithm and application of the Shannon-Happ formula were implemented utilizing a symbolic, or tagging approach no errors would be introduced into the derived transfer function. The NASAP-70
program discussed here performs all operations on numerical data. Thus, the constraint of digital computing introduces errors. Definition of these errors and how they relate to NASAP-70 follows.

Input/Output Errors

Circuit parameters are input to NASAP-70 in decimal floating point notation. Binary arithmetic units require that the input data be converted to floating point notation compatible with the machine. Errors are introduced in program working data because there is no one-to-one correspondence between fractions of different radices when operations are restricted to a finite wordlength. The magnitude of the error is dependent on machine hardware and the algorithm used to perform the conversion.

After required calculations are completed, the internal binary results are converted back to decimal notation. The conversion effects only the last significant digit of each coefficient and is quite minor. Also, conversion is not performed when further operations are carried out in the transfer function. For these reasons, no attempt is made here to analyze these errors.

An example of actual input/output errors (IBM 360/75) is shown in Figure 2.43.

![Circuit Diagram](image)

Round-off Error

Round-off errors result directly from the finite wordlength of the machine. Errors can occur after both additive and multiplicative operations. The severe additive type errors are called significance loss, and will be described later.

2-83
Multiplying two numbers, each with \(n \) significant digits yields a product significant to \(2n \) places. To store the product it is rounded to \(n \) significant digits. Wilkinson \(^7\) has shown that in a binary rounding system the floating point computation, \(F \chi(X_1, X_2, \ldots, X_n) \), produces the error bound \(E \),

\[
|E| \leq (n-1)2^{-t} + \frac{(n-1)(n-2)2^{-2t}}{2!} + \ldots
\]

(2-54)

where

\[
F \chi(X_1, X_2, \ldots, X_n) = X_1 \cdot X_2 \cdots X_n (1+E)
\]

When computing high order loops, the flowgraph technique requires a number of consecutive multiplications. The round-off errors introduced can contribute significantly to the noise contained in the coefficients of a computed transfer functions. Relation (2-54) shows that increasing the word-length, \(t \), results in a decreasing error ratio, \(E \). It is proposed that double precision arithmetic be utilized in carrying out all required flowgraph multiplications. The round-off noise is located in the lower order digits. In most cases, results of multiplicative operations can be guaranteed to the significance of input data.

An example of round-off error is shown in Figure 2.44. The errors are totally attributed to round-off error because

1. Component values were selected such that the binary equivalent of the input data was exact.
2. Number of calculations and element values indicate no significant loss could have taken place.

Output requested. \(\frac{I_1}{V_1} = T \)

\[
T_{True} = \frac{I_1}{V_1} = \frac{1}{3}
\]

\[
T_{NASAP} = \frac{1}{3 + \frac{2 \times 10^{-5}}{3S^2 + 0.667S + 3 \times 709 \times 10^{-2}}}
\]
Loss of Significance Errors

Loss of significance errors occur during floating point addition operations involving two numbers of opposite sign. The maximum error, E, resulting from the floating point addition $X + Y$ is bounded by

$$|E| \leq \left(1 + \frac{1}{2}\right)2^{-t}$$

where

$$F_b(X + Y) = (X + Y)(1 + E)$$

The error impact is largely dependent on the magnitude and polarity of the parameters involved, and the order in which computations are carried out. Two situations demonstrate the extent of significance loss. First consider a simple floating point addition of two numbers of opposite sign but comparable magnitudes. The resulting sum is located in the low order positions, the same locations affected by conversion and round-off errors. When the sum is left-shift normalized, the true precision of the result is disguised. The second case involves a set of repeated additions where the order of calculation can introduce loss of significance.

Significance loss errors can occur in the calculations associated with the flowgraph technique. Circuits containing elements with values covering a wide range are especially prone. The table below presents three ways in which significance loss can be detected, controlled or eliminated.

<table>
<thead>
<tr>
<th>METHOD</th>
<th>PURPOSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare results of normalized and non-normalized arithmetic</td>
<td>Detection</td>
</tr>
<tr>
<td>Time scaling</td>
<td>Minimization or Elimination</td>
</tr>
<tr>
<td>Optimum tree</td>
<td>Minimization or Elimination</td>
</tr>
</tbody>
</table>
The first approach employs a two pass system with the first pass utilizing regular floating point arithmetic. During the second pass, the arithmetic is changed such that sums are not left-shift normalized. When the number is subsequently required in another calculation, the appropriate number of zeros (necessary to align the two operands) are shifted into the least significant bit positions. This scheme defines a lower bound for the calculation. The results of the two passes are examined and significance loss has occurred if these numbers are not equivalent. The significance of the calculation is considered to be equal to the number of digits which are identical. The calculation of Figure 2.43 is not prone to significance loss,

\[
T = \left(\frac{V_I}{V_R} \right)_{\text{normalized}} = \frac{1.00025}{1.00000S^3 + 2.00000S^2 + 2.00050S + 1.00025}
\]

\[
T = \left(\frac{V_I}{V_R} \right)_{\text{unnormalized}} = \frac{1.00025}{1.00000S^3 + 2.00000S^2 + 2.00050S + 1.00025}
\]

Figure 2.45 is a problem vulnerable to significance loss as is demonstrated below

\[
T = \left(\frac{V_I}{I_I} \right)_{\text{normalized}} = \frac{2.04000 \times 10^{-11}S^2 + 1.10709 \times 10^{-1}S + 7.19903 \times 10^7}{2.04000 \times 10^{-13}S^2 + 7.67740 \times 10^{-4}S + 1.16400 \times 10^4}
\]

\[
T = \left(\frac{V_I}{I_I} \right)_{\text{unnormalized}} = \frac{2.04000 \times 10^{-11}S^2 + 1.10709 \times 10^{-1}S + 7.19903 \times 10^7}{2.04000 \times 10^{-13}S^2 + 7.67827 \times 10^{-4}S + 1.16640 \times 10^4}
\]

Figure 2.46 shows how the span of element magnitudes in Figure 2.45 changes as the time scale is decreased. The particular transfer function was computed and checked for significance loss at the various time scales. The results of the technique although inconclusive, tend to show that time scaling in one technique to combat significance loss.
Compute $T = \frac{V_{R2}}{I_1}$

Figure 2.45

Figure 2.46
Another way of reducing significance loss in the computation of Figure 2.45 is to select an optimal tree. An optimal tree is defined as the tree which, if selected, displays to the program the minimum variance between the magnitudes of the input data. The results of optimal tree selection are plotted above.

Different input trees generally result in varying computational orders. The above definition can be used as a means for reducing computational errors, although the method itself is not foolproof. The third data point in Figure 2.47
is assumed to result from a favorable computational order for the particular
tree selected and, contradictory to the definition of an optimum tree, a
comparably good transfer function was calculated.

Error Prediction

It was shown that the errors associated with transfer function
coefficients are related directly to the number of loops of all orders in the
flowgraph and the number and range of computations required for each loop.
It is desirable to obtain a measure of these parameters before an attempt is
made to derive a particular transfer function. Given the flowgraph model
described by Figure 2.48, it can be shown that there exists, \(F = \frac{1}{\sqrt{5}} \)
\[\left(\frac{1 + \sqrt{5}/2}{1 - \sqrt{5}/2} \right)^{n+2} \] loops of all orders, where \(n = 2m - 1 \) (the
number of passive elements minus one) and \(F = \text{Fibonacci number of order} \ n. \)

If flowgraph loops of all orders are assumed to have numerical
values of the same magnitude, then the equation below is an estimate of the
maximum round-off error contained in a calculated transfer function coeffic-
ient

\[
\frac{\Delta \Sigma(n)}{\Sigma(n)} \approx \frac{2^{-t}}{F_n} \left[\sum_{N=1}^{N_{\text{max}}} \frac{(n-N+1)!}{N!(n-2N+1)!} (NK-1) \right]
\]

where

1. \(\Sigma(n) \) is the sum of all loop values of all orders
2. \(K \) is the number of circuit elements in a particular first order
 loop (=2 for the specific model)
3. \(N_{\text{max}} = \frac{n+1}{2} \) if \(n \) is odd
 \(N_{\text{max}} = \frac{n}{2} \) if \(n \) is even.
In an attempt to predict errors for those circuits which do not exactly correspond to the flowgraph model, Figure 2.49 has been drawn for various values of K. Experience has shown that for practical problems, a good average value of K lies between 2 and 3.

2.7.2 Impact of Coefficient Errors on AC Analysis

The NASAP version utilizes a straightforward technique in deriving the AC Bode plot. The programs produce a frequency response of the form

\[F(s) = \frac{N(s)}{D(s)} = \frac{\sum_{i=0}^{p} a_i s^i}{\sum_{j=0}^{q} b_j s^j} \]
The computed coefficients, a_i and b_j, can be expressed as,

$$a_i = a_i^T + \Delta a_i$$

$$b_j = b_j^T + \Delta b_j$$

where a_i and b_j represent the accumulated coefficient errors a_i^T and b_j^T are the true coefficients, and $F(s)$ as

$$F(s) = F^T(s) + \Delta F(s) = \frac{N^T(s)}{D^T(s)} + \Delta F(s).$$

If $F(s)$ is assumed to be a function of its coefficients a, b for any s, then since

$$f(a^T + \Delta a, b^T + \Delta b) \approx f(a^T, b^T) + \left. \frac{\partial f}{\partial a} \right|_{f^T} \Delta a + \left. \frac{\partial f}{\partial b} \right|_{f^T} \Delta b$$

for $\Delta a \ll a$

$\Delta b \ll b$

it can be shown that

$$\Delta F(s) = \sum_{i=0}^{p} \frac{\Delta a_i}{D^T(s)} s^i - \sum_{j=0}^{p} \frac{F^T(s)}{D^T(s)} \Delta b_j s^j.$$

The computational errors in $F(s)$ are approximated from an initial estimate of coefficient errors by substituting $D(s)$ and $F(s)$ for $D^T(s)$ and $F^T(s)$. These substitutions become quite laborious for functions which are a ratio of two high order polynomials. An alternate approach is taken.

Coefficient errors are not likely to exceed 15 percent of the true coefficient values (this statement is predicated on the assumption that any "large" problems have been partitioned and the steps have been taken to avoid severe significance loss). By randomly perturbing the transfer function coefficient not more than \pm 15 percent and plotting the frequency response curves, the results of the above can be simulated. A band which
most probably contains the true response curve will result. For example, the frequency response curve of Figure 2.50 can be obtained from the circuit shown in Figure 2.43.

![Graph showing frequency response](image)

Figure 2.50

2.7.3 Transient Response Errors

Errors contained in a final time domain solution after application of the Fast Fourier Transform can be attributed to original coefficient errors and algorithm errors.

Given the results of Section 2.7.2

\[f(t) = \mathcal{F}\{F(s)\} = \mathcal{F}\{F^T(s) + \Delta F(s)\} \]

\[= \mathcal{F}\{F^T(s)\} + \mathcal{F}\{\Delta F(s)\} \]

\[= f^T(t) + \Delta f(t) \]

Since the errors due to coefficient deviations are simply an additive function to the time response, an initial approximation of these errors can be transformed directly into an estimate of time response errors.
The digital implementation of the Fast Fourier Transform introduces round-off, discretization and band limiting errors.

Gentleman and Sande20 have described the Fast Fourier Transform round-off error found in a digital environment in terms of the ratio of the Euclidian norm of the error sequence to the Euclidian norm of the input data sequence. Using the Fast Fourier Transform yield an upper bound for the associated Euclidian norm of

$$R \leq 1.06 \sqrt{N} K(2n)^{3/2} 2^{-b}$$

where \(N\) is the number of discrete steps taken, \(n^k=N\) (for NASAP-70 \(n=2\), \(k=12\)), and \(b\) equals the number of bits in the calculation mantissa.

Figure 2.51 shows how discretization and band limiting errors affect the results of a Fast Fourier Transformation. For each curve, the function \(F(s) = s/s + \omega\), was inverted. Discretization errors are demonstrated by the more noisy 'o' curve. Band limiting errors are shown by the poor initial points of both curves.

It should be noted that the errors resulting from coefficient errors dominate those introduced by the Fast Fourier algorithm.

Based upon the error analysis of a typical circuit analysis program such as NASAP-70 the user must be aware of the computational aspects of the algorithms before the results can be considered reliable.
Figure 2.51

- "N = 2^12"
- "Wide Frequency Range"
- "N = 2^6"
- "Narrow Frequency Range"
Note also that the seven circuit elements and four junction points listed in seven skew frames is shown with its corresponding inner graph in Figure 3 (d).

A graph represents a physical connection of junction point in the system and

There are also

A branch is incident with a node if it either enters or

The parent graph, the terminal nodes incident with the removed branches

Note that this definition applies when the branches are removed from

when the removal of all but any one branch of the cut-set removes uncut

two separate parts and at the same time permits the graph to be connected

group of branches which when removed from the graph divides the graph into

circuit design are the concepts of cut-set, tree, and loop. A cut-set is a

The basic properties of linear graph theory which pertain directly to

rejected parts of a separated graph are subgraphs

Given a graph, a graph G' is called to be a subgraph of G if G' contains

The converse of branches and nodes

A system can be defined as a mathematical model that consists of an intercon-

system's graph can be defined as a mathematical model that consists of a physical

Hence a linear graph of a physical

Note that the seven circuit elements and four junction points result in seven

seven elements is shown with its corresponding inner graph in Figure 3 (d).

A graph represents a physical connection of junction point in the system and

The basic properties of linear graph theory which pertain directly to

rejected parts of a separated graph are subgraphs

Given a graph, a graph G' is called to be a subgraph of G if G' contains

The converse of branches and nodes

A system can be defined as a mathematical model that consists of an intercon-

system's graph can be defined as a mathematical model that consists of a physical

Hence a linear graph of a physical

Note that the seven circuit elements and four junction points result in seven

seven elements is shown with its corresponding inner graph in Figure 3 (d).

A graph represents a physical connection of junction point in the system and

The basic properties of linear graph theory which pertain directly to

rejected parts of a separated graph are subgraphs

Given a graph, a graph G' is called to be a subgraph of G if G' contains

The converse of branches and nodes

A system can be defined as a mathematical model that consists of an intercon-

system's graph can be defined as a mathematical model that consists of a physical

Hence a linear graph of a physical

Note that the seven circuit elements and four junction points result in seven

seven elements is shown with its corresponding inner graph in Figure 3 (d).

A graph represents a physical connection of junction point in the system and
Figure 3.2

(a) CIRCUIT DIAGRAM

(b) LINEAR GRAPH

(c) ORIENTED GRAPH (G)

(d) TREE (T)
REFERENCES

6. Gaertner Research Incorporated, "Coding Instructions for NASAP 69/1," Revision No. 1, Contract No. NAS 12-663, Stamford, Conn.

CHAPTER 3
THEORETICAL FOUNDATIONS

3.0 Introduction

Fundamental to any meaningful discussion of a computer-aided circuit analysis/design program is the systematic treatment of the basic concepts behind it. As shown in Figure 3.1, the theoretical treatment for NASAP can be separated into the disciplines of linear graph theory, flowgraph theory, sensitivity analysis, and the relevant numerical techniques and supporting computer algorithms.

Each discipline plays a distinctive role in the operation of the program. Linear graph theory is employed as a convenient mathematical tool to bridge the gap between the circuit designer and the computer. A computer subroutine then transforms the linear graph description of a circuit into flowgraph terms forming the basis of the computer algorithms for subsequent output requests. The transfer function, the principal output request of NASAP-70, is computed from the flowgraph description by means of the Shannon-Happ formula, the other user requests are based upon the transfer function formulation.

As shown in Figure 3.1, the description of each discipline in NASAP is taken in the order of implementation thus the sections are numbered accordingly.

3.1 Linear Graph Theory

The initial step in the formulation of the flowgraph relations is the identification of circuit elements in topological terms. Since this requires some background in linear graph theory, a few definitions and some basic concepts of how they pertain to circuit theory should be stated first. A more elaborate treatment of graph theory can be found in a number of textbooks. A complete exposition can be found in Kuh and Desoer.

The essential constituents of a linear graph are branches and nodes. Each branch, symbolized by a line, represents a physical element of the system from which it is abstracted with its electrical properties. A node in
that a hinged linear graph of Figure 3.4 violates the cut-set definition at the "hinge" and thus circuits of this type should be avoided or separated into two problems.

In simple terms a loop is defined as a collection of branches which form a closed path (ignoring the direction of flow in the branches). A more formal definition can be stated: a set of \(n \) nodes \(A(A_1-----A_n) \) and a set of \(n \) branches \(B(B_1-----B_n) \) which are connected constitutes a loop in a graph \(G \) if \(A \) is in \(G \) and \(B \) is in \(G \), and each branch in \(B \) is incident to two nodes in \(A \) and each node in \(A \) has two branches in \(B \) incident to it. The branches 1-2, 3-2, 4-3, 4-1 form a loop as shown in Figure 3.5. Note that a loop is defined independent of the direction of the arrows.

If a subgraph \(G' \) of a graph \(G \) can be selected such that it consists of only branches and all nodes of \(G \) is connected, and contains no loops, then the subgraph \(G' \) is called a tree \((G' = T) \) (See Figure 3.2(d)). The branches of a tree are called tree branches or just branches, and those branches in \(G \) but not in \(T \) are name links.

A number of fundamental properties concerning trees are now stated without proof. If a connected graph \(G \) has \(n \) nodes and \(b \) branches, then

1. The tree has \((n-1)\) tree branches and \((b-n+1)\) links,

2. A unique path exists along the tree between any two nodes (neglecting the direction of the arrows if it is an oriented graph),

3. Fundamental loops (tie sets) can be formed by taking each link with the unique path in the tree that exists between the two nodes of the link,

4. Fundamental cut sets can be formed by grouping the set of connected links about a tree branch thus forming \((n-1)\) cut sets,

5. The cut set relations form a complementary set to the tie set relation (in matrix notation one is the transpose of the other),

6. Cut set and tie set relations can be expressed unilaterally. Branch currents can be expressed as a function of link currents and link voltages as a function of branch voltages.
Figure 3.3

Linear graph before cut

Linear graph after cut

Figure 3.4

Figure 3.5
3.2 Transformation of a Linear Graph to a Flowgraph—Disjoint Current and Voltage Relationships

Algorithms must provide for the computer a means of producing a consistent set of determinable variables. To a circuit designer this usually means either applying Kirchhoff's voltage law in conjunction with the impedance relationships (Ohm's law) or Kirchhoff's current law in conjunction with the admittance relationships. Another approach has been advocated (originally by Kirchhoff himself) and is used in this manual. Basically it requires that Kirchhoff's current law be applied first, then Kirchhoff's voltage law, and finally Ohm's law and dependencies.

The first step in the procedure requires that all circuit elements, active or passive, dependent or independent, be divided into two groups of current-type or voltage-type elements. Naturally, a voltage source will remain a voltage type element, and a current source will remain a current-type element. Passive elements, which are bilateral in nature, will be replaced by either a voltage-type or current-type element (i.e., replace Ohm's law $I = \frac{V}{Z}$ by either $I \leftarrow \frac{V}{A}$ or $V \leftarrow I \times Z$), the choice being somewhat arbitrary and subject to the conditions that Kirchhoff's two laws have to be applied independently. (Some guidelines will be presented in the example problem of section 3.3.) It should be emphasized that by assigning a voltage or current type element in place of a passive element, the bilateral characteristic is replaced by a unilateral relation.

In the following selection process, Kirchhoff's laws will be applied to two sets of disjoint circuit relations. Tree-link partitioning is accomplished by using a tree structure T in a graph G, where the voltage-current equations are separated into two complimentary sets. The graph G contains as its branches all the circuit elements. The arrow direction corresponds to the direction of assigned current flow. The branches of a tree T (Figure 3.2(d)) are selected to be the voltage elements. The remaining elements (links in T) are chosen to be current elements. For this selection, a voltage at any point
can be calculated as a function of voltage-type elements only. Currents and
impedances need not be considered. Similarly, the current at any element

can be determined as a function of current-type elements only, and therefore
is independent of voltage-type elements and impedances.

Note that the tree-link partition does not restrict one from determining
the voltage of a voltage-type element as a function of currents, voltages, and
Ohm's law. It is particularly important to realize that expressing a voltage as
a function of voltage-type elements does not render a voltage across these elements
constant. It does mean, however, that a consistent set of Kirchhoff's equations can
be written as a function of any voltage in terms of voltage type elements. A simi-
lar statement can be made concerning the current type elements. Namely,

the current expressed as a function of current-type elements does not render
the current through current-type elements constant

Consider \(R_1 \) as a voltage element. The voltage at \(R_1 \) \((V_{R_1})\) is set as a
known variable and the current as an unknown variable, then the applications
of Kirchhoff's laws will yield the set of \((n-1)\) dependent current equations of
one set (voltage) in terms of the other (current) by writing current equations for any \((n-1)\) out of \(n\) nodes.

By Gaussian elimination one obtains \((n-1)\) cut set equations. These equations can be expressed as unilateral current relations, (this will be elaborated in the example).

Since a cut set and tie set are complementary, one obtains Kirchhoff's voltage equations in a unilateral form as a complement of the unilateral current relations.

In summary, the NASAP algorithms make use of the following

1. A tree \(T \) in graph \(G \) divides the elements into two disjoint sets,
2. A tree \(T \) in graph \(G \) allows writing of \((n-1)\) independent current
 equations of one set (voltage) in terms of the other (current) by
 writing current equations for any \((n-1)\) out of \(n\) nodes,
3. By Gaussian elimination one obtains \((n-1)\) cut set equations
 These equations can be expressed as unilateral current relations,
 (this will be elaborated in the example),
4. Since a cut set and tie set are complementary, one obtains Kirchhoff's voltage equations in a unilateral form as a complement of the unilateral current relations,
Current-voltage relations can be made functionally dependent by a set of unilateral elements provided that for each element one of the quantities (current or voltage) is known and the second quantity (voltage or current) is unknown. These are exactly the conditions that the two disjoint current-voltage sets provide.

3.3 Flowgraph Theory: Shannon-Happ Formula

For a set of linear relations that satisfy consistency criteria (to be explained later) there exists a formula by which the solution can be obtained in a noniterative substitution and does not require stability criteria for each relation. This formula was originally developed by Claude Shannon while investigating the functional operation of an analog computer. (Essentially the same formula was rediscovered by S. Mason in 1952.) Shannon's Formula is an analytic expression for calculating the gain of an interconnected set of amplifiers in an analog computing network. W. W. Happ generalized Shannon's work for topologically closed systems. The Shannon-Happ Formula is valid in deriving transfer functions, sensitivities, and error functions. For the particular use intended for this formula, the sensitivity factor \(H \) is set equal to zero.

Flowgraph Notation

Before the Shannon-Happ Formula can be defined explicitly, it is necessary to define the basic concepts of flowgraph for which the equation was derived. The fundamental terms of a flowgraph, namely, node, transmittance, and loop, and how they interact can best be described by example. Consider the equations,

\[
\begin{align*}
\text{a}_{11}x_1 + a_{21}x_2 + x_1 &= x_1 \\
\text{a}_{21}x_1 + a_{22}x_2 + c_2 &= x_2
\end{align*}
\]

and the corresponding flowgraph shown in Figure 3.6.

During World War II Claude Shannon developed his formula. Because of wartime restrictions, his work was not published, and was virtually unknown to the academic community. In 1952, Samuel Mason rediscovered the same formula.
Each node represents a variable, thus x_1 and x_2 are variables and c_1 and c_2 are considered constant inputs. The nodes c_1 and c_2 are called independent nodes. If the arrows leading from c_1 or c_2 were reversed, these nodes would be dependent nodes.

A transmittance is a value assigned to the directed path between two nodes. The node at which the directed line begins is called the origin node, whereas the node at the receiving end is the target node. The transmittance relates the origin node variable. Therefore, in reading the flowgraph, the functional relationship of a variable is the summation of the product of respective incoming transmittances with their node variables. This can be verified by writing out the equation associated with the flowgraph (Figure 3.6) and the original equations. Note that a flowgraph transmittance function such as

\[A \cdot b \rightarrow C \]

will be written as $A \leftarrow b \times C$ on a programming sheet.

A directed loop is defined as a closed path consisting of a sequence of transmittances taken in the direction of the arrow. The sequence must be
taken such that no node is traversed more than once in the closed path. The value of a directed loop is the product of the transmittances forming the directed loop. In the example, three directed loops exist, \((a_{12}, a_{21}), (a_{11}), (a_{22})\). (Note that loop in a flowgraph does depend upon direction whereas in linear graph theory this was not required.)

Distinct types of loops must be defined in the Shannon-Happ Formula:

(a) a first-order loop is a simple directed loop as defined above.
(b) an Nth-order loop is composed of N disjoint first order loops (none of the nodes are common between loops). The value of an Nth order loop is the product of the N first-order loop values comprising the Nth-order loop. In the example, only one second-order loop combination exists, namely, \((a_{11} a_{22})\).
(c) a zeroth-order loop is by definition equal to a value one and has no flowgraph significance. It is a mathematical convenience employed in the Shannon-Happ Formula.

Shannon-Happ Formula

If \(L(0)\) is the value of the zeroth-order loop (always equals one) and \(L(N)\) is the sum of the values of all the loops whose order is \(N\), the Shannon-Happ formula can be expressed as

\[
H = L(0) - L(1) + \ldots + (-1)^N L(N) = 0
\]

which can be written in expanded form

\[
H = 1 + \sum_{r=1}^{N} \sum_{i=1}^{R} L_i(r)(-1)^r = 0
\]

where \(R\) is the number of \(r\)-order loops in the system and \(N\) is the order of the highest loop in the system.

3.4 Transfer Function Formulation

The circuit shown in Figure 3.7 is used to illustrate the circuit analysis techniques. The AC model of this circuit using only linear elements is
shown in Figure 3.8. Note that an extra current source has been inserted at the output (across L). This element can be viewed as a voltmeter as described in section 2.

![Figure 3.7]

Figure 3.7

![Figure 3.8](All Transistors Modeling Parameters Are Represented by Lower Case Letters)

Figure 3.8
For the circuit in Figure 3.7, the output voltage is taken across the inductor \(L \). Since the voltage across \(L \) is one of the variables, the output voltage, \(V_{\text{out}} \), can be expressed directly, that is, \(V_{\text{out}} = V_L \). By adding the output current source (\(I_0 = 0 \)) in Figure 3.8, provision has been made for a general method of solution.

After the equivalent circuit is constructed, its corresponding directed linear graph must be drawn with the assigned current direction in the circuit elements. In the linear graph \(G \) one selects a tree structure \(T \) which must contain all voltage sources (dependent or independent). If the voltage sources form a loop, the circuit's definition is ambiguous and hence cannot be solved. Assuming that the voltage sources do not form a loop, passive elements must be added to complete the tree. To this end, some of the passive devices are made voltage-type elements and thus provide the remaining constituents for the tree (See Figure 3.9). Finally, the current sources and the rest of the passive elements form links. (This operation constitutes the particular selection of either a voltage or current relation for each passive element. That

![Figure 3.9.](image-url)
The next step requires one to obtain the current at the branches (voltage-type elements) as a function of the currents in the links (current-type elements). This entails writing the current equations for (n-1) out of n nodes of T. Then, the current in each branch is found as a function of link currents only by the Gaussian elimination process. By finding branch current as a function of link currents one forms the (n-1) cut sets.

The current equations are written by setting the branch currents on the left-hand side of the equals sign and the link currents on the right-hand side.

For Figure 39, the node current equations can be written as:

Node 6: \[-I_{\text{Vin}} = -I_{R_1} - I_{C_1}\]

Node 5: \[I_{R_1} = I_{C_1}\]

Node 4: \[I_{R_0} = -I_{\beta} + I_{R_2}\]

Node 3: \[-I_{R_1} - I_{R_0} I_{R_3} = I_{\beta} - I_{C_2}\]

Node 2: \[I_L = I_0 - I_{R_2}\]

In compact matrix notation:

\[
\begin{bmatrix}
-1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
I_{\text{Vin}} \\
I_{R_1} \\
I_{C_1} \\
I_{R_0} \\
I_{R_3} \\
I_L
\end{bmatrix}
= \begin{bmatrix}
-1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1
\end{bmatrix}
\begin{bmatrix}
I_{R_1} \\
I_{C_1} \\
I_0 \\
I_{C_2} \\
I_{R_2}
\end{bmatrix}
\]

or

\[A I_T = B I_L\]

where
A is an \((n-1)\times(n-1)\) matrix (\((n-1)\) is the number of branches of the tree),
\(I_T\) is a column vector of \(n\) branch currents,
\(B\) is an \((n-1)\times(m)\) matrix (\(m=b-m+1\) is the number of links),
\(I_L\) is a column vector of \(m\) link currents.

After matrix \(A\) is diagonalized, performing the same operations on \(B\) as an \(A\), the current equations take the form

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
I_{V_{in}} \\
I_{r_0} \\
I_{r_3} \\
I_L \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
\end{bmatrix}
\begin{bmatrix}
I_{r_1} \\
I_C_1 \\
I_\beta \\
I_C_2 \\
I_0 \\
I_{R_2} \\
\end{bmatrix}
\]

Note that the Gaussian elimination is performed on a set of integers,
\((+1, 0, -1)\) and will not entail any loss of significance or introduce any truncation errors.

Following the Gaussian elimination that transforms the current equations into a unilateral set, the flowgraph can be constructed. The first step is forming the current flowgraph relations as shown in the lower part of Figure 3.10. In the diagram (Figure 3.10), two flowgraph nodes are assigned to each element. The bottom nodes correspond to the currents in the elements and the top nodes correspond the voltage across the elements.
The flowgraph voltage relations are constructed by an imaging method based on the current relations. The rules for this technique are:

1. Consider two elements for which there exists current transmittance connecting two current nodes. Form a transmittance connecting the two corresponding voltage nodes. The direction of the voltage transmittance arrow is the reverse of the corresponding current transmittance.

2. If one element is passive and the other is active, the sign attached to the voltage transmittance is the same as the corresponding current transmittance. The sign is reversed if both elements are the same type, that is, both passive or both active. The use of the imaging technique is a consequence of the fact that disjoint sets of current and voltage also form complementary sets since they are complementary cut and tie sets. (The difference in the sign reversal between active and passive elements is due to the fact that conventionally used Kirchhoff's equations are not written in a complementary form, that is, currents are summed to zero \((I_1 + I_2 + I_n = 0)\) while voltages are summed to a nonzero quantity \((V_1 + V_2 + V_n = E)\). Also, Kirchhoff originally stated them in a complementary form.)

After Kirchhoff's current law and Kirchhoff's voltage law have been applied, the current-voltage relations and dependencies and requested transfer...
function are determined by making the input dependent on the output by the relation $\text{Input} \leftarrow P \ast \text{Output}$. This forms a closed flowgraph. The forward transfer function $T = 1/P$ can then be arrived at since the total gain $P \ast T = 1$ as evaluated by use of the Shannon-Happ Formula (for P unknown). This evaluation can be done by separation of products containing P and those terms which do not contain P since no higher powers of P than P^1 can occur.

A transfer function can be evaluated only as a function of a free variable (it cannot be found as a function of a variable which was already set as a determinable variable). The free variables are defined as (1) the current in the independent current source and (2) the voltage across an independent voltage source. The transmittance P will cause one of the free variables to become a determinable variable (that is, it can be included in the evaluation of the Shannon-Happ Formula). The rest of the free variables will be set to zero for the evaluation of the function. A comparison between Figures 3.10 and 3.11 will indicate how this is accomplished. Note that the current-voltage relations in passive elements are taken as impedances for branches and admittances for links.

![Diagram](image-url)
It is important to emphasize the uniqueness of transformations achieved by the algorithm presented herein and its advantages over techniques which are based on solutions of a set of equations. This means that from the representations such as that presented in Figure 3.11 one can reconstruct the original system, thus showing that the algorithmic procedure described above does not incur information loss.

The transfer function $V_{\text{out}}/V_{\text{in}}$ is calculated by use of the Shannon-Happ Formula. In the present example there are nine first-order loops, which are summarized with their node sequence and loop transmittances in Table 3.1.

The higher-order loops are unions of first-order loops that do not intersect and the loop value is the product of the corresponding first-order loop values. Loop substitution into the Shannon-Happ Formula, and the setting of $H = 0$, followed by solving for $T = 1/P$ yields the requested transfer function,

$$
\frac{V_{\text{out}}}{V_{\text{in}}} = T \left[\frac{L_8}{P} \left(1 - L_2 \right) + \frac{L_9}{P} \right] \left[1 - \left(L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 \right)
+ \left(L_1 L_2 + L_1 L_4 + L_1 L_5 + L_1 L_6 + L_2 L_5 + L_2 L_6 + L_3 L_5 + L_3 L_6 \right)
- \left(L_1 L_5 + L_2 L_6 \right) \right]
= - \left[\frac{\beta C_1 L_r}{R_2} \right] S^3 + \left(\frac{\beta C_1 L_r}{R_2} - \frac{C_1 L_{R3}}{R_2} \right) S^2
+ \left\{ \frac{C_1 C_2 L_r R_3}{R_2} S + \left(C_1 C_2 r_1 R_3 + \frac{C_1 L_{R1}}{R_2} + \frac{C_2 L_{R3}}{R_2} + \frac{C_1 L_{R3}}{R_2} \right) S^2 + \left(\frac{C_1 C_2 r_1 R_3}{R_2} + \frac{C_1 r_3 R_3}{R_2} + \frac{C_2 r_3 R_3}{R_2} + \frac{C_1 r_3 R_3}{R_2} \right) S + \left(\frac{R_3}{R_2} + \frac{r_0}{R_2} \right) \right\} .
$$

Although the proof is rather involved (thus not presented here), note that the information necessary to reconstruct the original circuit is given by the flowgraph and by preserving the I_T and I_L vectors in the arrangement of the flowgraph nodes.
The solution \(T = 1/P \) is obtained by placing the loops containing \(P \) and their products in the numerator and those devoid of \(P \) in the denominator.

Since the only arithmetic in the entire algorithm is used in calculating the transfer function performed at the end of the algorithm and essentially is the sum of products, one can control the error and make the solution as accurate as desired. Furthermore, comparison between values of loops is indicative of the significance of each element in the transfer function and is helpful in omitting the elements which have a negligible effect on the final transfer function.

<table>
<thead>
<tr>
<th>Loop Number</th>
<th>Node Sequence</th>
<th>Transmission</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_1</td>
<td>(V_{C_1} I_{C_1} I_{r_1} V_{r_1})</td>
<td>(-C_1 r_1 S)</td>
</tr>
<tr>
<td>L_2</td>
<td>(V_{C_2} I_{C_2} I_{R_3} V_{R_3})</td>
<td>(-C_2 R_3 S)</td>
</tr>
<tr>
<td>L_3</td>
<td>(V_{C_1} I_{C_1} I_{R_3} V_{R_3})</td>
<td>(-C_1 R_3 S)</td>
</tr>
<tr>
<td>L_4</td>
<td>(V_{R_3} V_{R_2} I_{R_2} I_{r_0})</td>
<td>(-R_3/R_2)</td>
</tr>
<tr>
<td>L_5</td>
<td>(V_{r_0} V_{R_2} I_{R_2} I_{r_0})</td>
<td>(-r_0/R_2)</td>
</tr>
<tr>
<td>L_6</td>
<td>(V_{R_2} I_{R_2} I_{L} V_{L})</td>
<td>(-L S/R_2)</td>
</tr>
<tr>
<td>L_7</td>
<td>(I_{r_1} I_{r_0} V_{r_0} V_{r_2} I_{r_2} I_{r_3} V_{r_3} V_{C_1} I_{C_1})</td>
<td>(-\beta C_1 r_0 R_3 S)</td>
</tr>
<tr>
<td>L_8</td>
<td>(V_{in} V_{C_1} I_{C_1} I_{r_0} V_{r_0} V_{R_2} I_{R_2} I_{L} V_{L} V_{I_0})</td>
<td>(-P \left(\frac{\beta C_1 L r_0}{R_2} S^2 \right))</td>
</tr>
<tr>
<td>L_9</td>
<td>(V_{in} V_{C_1} I_{C_1} I_{R_3} V_{R_3} V_{R_2} I_{R_2} I_{L} V_{L} V_{I_0})</td>
<td>(P \left(\frac{C_1 L R_3}{R_2} S^2 \right))</td>
</tr>
</tbody>
</table>
3.5 Sensitivities Concepts

There are three basic sensitivity algorithms employed in NASAP-70. These are parameter sensitivity, worst case (tolerance) analysis, and pole sensitivity. A description of each follows.

3.5.1 Parameter Sensitivity

In section 3.4, the transfer function $T = \frac{1}{P}$ was obtained by keeping track of the loops that contained P and those devoid of P, and forming the ratio of the two expressions. As shown below, the somewhat similar tagging technique in the computer algorithms can produce the sensitivity of the transfer function to changes in a circuit parameter.

Consider the system of Figure 3.12 where X is the input or excitation and Y is the output or response. If the input and output are connected by a transmittance P, then the transfer function can be expressed in terms of P since $P = \frac{X}{Y} = \frac{1}{T}$. This represents a closed system for which the input and output are dependent upon each other. The Shannon-Happ Formula states that the topology equation $H(T)$ must equal zero, thus

$$H(T) = H(T) + TH(T') = 0$$

where $H(T') = \frac{dH}{dT}$ = the portion of H containing T linearly and indicated in the computer algorithm by a tag of $T = 1$, and

$$H(T) + H(T=0) = the portion of H devoid of T$$

and indicated in the computer algorithm by a tag of $T = 0$.

To compute the sensitivity function, consider a circuit that contains a component Q and sustains a desired performance specification T, the transfer function. It is always possible to formulate a closed system containing the two parameters T and Q linearly. The topology equation $H = 0$ is a constraint on the system from which the unknown T is calculated.
If the topology equation H is a function of two parameters T and Q, then

$$H(T, Q) = H(T, Q) + TH(T', Q) + QH(T', Q') + TQH(T', Q')$$

where the coefficients of T and Q are defined as Taylor series coefficients and the terms of the topology equation $H(T, Q)$ are defined as follows

- $H(T, Q) = H(T=0, Q=0) = H(0, 0)$
- $H(T', Q) = H(T=1, Q=0) = H(1, 0)$
- $H(T, Q') = H(T=0, Q=1) = H(0, 1)$
- $H(T', Q') = H(T=1, Q=1) = H(1, 1)$

All of these quantities refer to partial sums of the topology equation which can be tagged and identified in the computer program.

A topological derivation of sensitivity is obtained by taking the total derivation of $H(T, Q)$ above.

$$dH(T, Q) = \left| H(T', Q) + QH(T', Q') \right| dT$$

$$+ \left| H(T, Q') + TH(T', Q') \right| dQ = 0$$

or

$$\frac{dT}{dQ} = - \frac{H(T, Q') + TH(T', Q')}{H(T', Q) + QH(T', Q')}$$

Figure 3.12
since
\[H(T, Q) = \left[H(T, Q) + H(T', Q') \right] + T \left[H(T', Q) + H(T', Q') \right] = 0 \]
and
\[H(T, Q) = \left[H(T, Q) + H(T', Q') \right] + Q \left[H(T, Q') + H(T', Q') \right] = 0 \]
therefore,
\[\frac{Q}{T} = \frac{[H(T, Q) + H(T', Q')][H(T', Q) + H(T', Q')]}{[H(T, Q) + H(T, Q')][H(T, Q') + H(T', Q')]}. \]
The parameter sensitivity is defined by
\[S_T = \frac{d \log T}{d \log Q} = \frac{dT}{dQ} \]
or,
\[S_T = -\frac{H(T', Q) + H(T, Q')}{{H(T, Q) + H(T', Q')}} \]

3.5.2 Worst Case (Tolerance) Analysis

The sensitivity techniques outlined in section 3.5.1 may be used to perform a worst case tolerance analysis on all components of the circuit. Assume that a given circuit specification \(P \) can be specified as a function of \(n \) parameters \(Q_1, Q_2, \ldots, Q_n \),
\[P = f(Q_1, Q_2, \ldots, Q_n) \]
Then for small changes in the parameter, the statistical tolerance \(T_P \) of \(P \) is defined as
\[T_P = \left[\left(\frac{\partial P}{\partial Q_1} Q_1 \right)^2 + \ldots + \left(\frac{\partial P}{\partial Q_n} Q_n \right)^2 \right]^{1/2} \]
\(T_P \) is a measure of the deviation of \(P \) from its mean value due to deviations of the components from their respective mean values.
Using the definition of sensitivity \(T_p \) can be expressed in a more suitable form for utilization of the tagging technique as

\[
\frac{T_p}{P} = \sum_{i=1}^{n} \left[S_{Q_n}^P \frac{dQ_n}{Q_n} \right]^2
\]

where \(\frac{T_p}{P} \) is the functional tolerance.

The sensitivity of \(P \) with respect to each parameter \(Q \) may be calculated as before, then substituted into the \(\frac{T_p}{P} \) expression to derive the tolerance.

3.5.3 Root Sensitivity

When a parameter of a system changes, the locations of the poles will also change. Root sensitivity is defined as a measure of the amount of change a root undergoes, given a percent change in some system parameter.

The following analysis assumes that (1) the system is linear and time invariant, and (2) the transfer function is obtainable and can be expressed by the form

\[
T(S) = \frac{A(S) + KB(S)}{C(S) + KD(S)}
\]

Here, \(A(S), B(S), C(S), \) and \(D(S) \) are polynomial in \(S \) and \(K \) is a system parameter for which the sensitivity is desired.

For differential changes in the parameter \(K \), there will be differential changes in the roots of the characteristic equation, \(C(S) + KD(S) \). The definition of root sensitivity employed in NASAP-70 considers one system parameter, \(K \), and one pole of the transfer function \(S_i \), and is defined as

\[
\mathcal{S}_{i}^{S_{i}} = \frac{dS_{i}}{dK} K
\]
If the transfer function of the system is given above for $T(S)$, then the root sensitivity can be found by evaluating the residue of the transfer function at the poles of the transfer function, or

$$S_1^{S_1} = \frac{-KD(S)}{\frac{\partial}{\partial S} [C(S) + KD(S)]} \bigg|_{S=S_1}$$

Here S_1 is a pole described in the unperturbated system. This operation is performed in the program with simple tagging technique, just as in the parameter sensitivity case.

3.5.4 Sample Calculations

Given the following circuit, the following parameter sensitivity, worst case, and pole sensitive calculations are made.

Diagram:

![Circuit Diagram]

- **NASAP**
 - $V1$ 1 2 1
 - $R1$ 2 3 10
 - $C1$ 3 1 4UF
 - $R2$ 2 1 100

- **END**

- **VC1/VV1**

Loop Analysis:
- **LOOP 1** contains $R1$, $C1$, P has value of $-2.5 \times 10^4 S^{-1}$
- **LOOP 2** contains $R1$, $C1$ has value $2.5 \times 10^4 S^{-1}$
- **ZERO ORDER LOOP** has value 1

Parameter Sensitivity

- $H(P') = -2.5 \times 10^4 S^{-1}$
- $H(P) = 2.5 \times 10^4 S^{-1} + 1$
- $H(P, R1) = 1$
- $H(P', C1) = 0$
- $H(P, C1) = 1$
- $H(P', R1) = 0$
- $H(P, R2) = 2.5 \times 10^4 S^{-1} + 1$
- $H(P', R2) = -2.5 \times 10^4 S^{-1}$
\[S_{Q}^{P} = \frac{H(P', \bar{Q})}{H(P')} - \frac{H(\bar{P}, \bar{Q})}{H(\bar{Q})} \]

\[S_{R1}^{P} = \frac{0}{-2.5 \times 10^{4}S^{-1}} - \frac{1}{2.5 \times 10^{4}S^{-1}+1} = -\frac{1}{2.5 \times 10^{4}S^{-1}+1} \]

\[S_{C1}^{P} = \frac{0}{-2.5 \times 10^{4}S^{-1}} - \frac{1}{2.5 \times 10^{4}S^{-1}+1} = -\frac{1}{2.5 \times 10^{4}S^{-1}+1} \]

\[S_{R2}^{P} = \frac{-2.5 \times 10^{4}S^{-1}}{-2.5 \times 10^{4}S^{-1}} - \frac{2.5 \times 10^{4}S^{-1}+1}{2.5 \times 10^{4}S^{-1}+1} = 1 \]

\[\frac{-6.25 \times 10^{8}S^{-2} - 2.5 \times 10^{4}S^{-1} + 6.25 \times 10^{8}S^{-2} + 2.5 \times 10^{4}S^{-1}}{-6.25 \times 10^{8}S^{-2} - 2.5 \times 10^{4}S^{-1}} = \]

\[\frac{0}{-6.25 \times 10^{8}S^{-2} - 2.5 \times 10^{4}S^{-1}} \]

\[\text{TRANSFER FUNCTION} = \frac{-H(P')}{H(P)} = \frac{2.5 \times 10^{4}S^{-1}}{2.5 \times 10^{4}S^{-1}+1} \]

\[\text{Pole Sensitivity} \]

\[\text{POLE} \ 2.5 \times 10^{4} + S = 0 \]

\[S_1 = -2.5 \times 10^{4} \]

\[\text{Pole Sensitivity} = \left. \frac{\partial}{\partial S} [H(\bar{P})] \right|_{S=S_1} \]

\[\frac{\partial}{\partial S} [H(\bar{P})] = -2.5 \times 10^{4}S^{-2} \]

\[H(\bar{P}, R1') = 2.5 \times 10^{4}S^{-1} \]

\[H(\bar{P}, C1') = 2.5 \times 10^{4}S^{-1} \]

\[H(\bar{P}, R2') = 0 \]

\[\text{Pole Sensitivity to R1} = -\frac{-2.5 \times 10^{4}S^{-1}}{-2.5 \times 10^{4}S^{-2}} = S_1 = -2.5 \times 10^{4} \]
Pole Sensitivity to $C_1 = \frac{-2.5 \times 10^4 S^{-1}}{-2.5 \times 10^4 S^{-2}} = S_1 = -2.5 \times 10^4$

WORST CASE Analysis

$$(TP/P)^2 = \sum_{i=1}^{n} S_i Q_i dQ_i Q_i$$

$$\frac{dR_1}{R_1} = \frac{dC_1}{C_1} = \frac{dC_2}{C_2} = .1$$

$$(TP/P)^2 = \frac{(-1)^2 (.01)}{(2.5 \times 10^4 S^{-1} + 1)^2} + \frac{(-1)^2 (.01)}{(2.5 \times 10^4 S^{-1} + 1)^2} +$$

$$+ \frac{0^2 (.01)}{(-6.25 \times 10^8 S^{-2} - 2.5 \times 10^4 S^{-1})^2}$$

$$= \frac{.02}{(2.5 \times 10^4 S^{-1} + 1)^2} + \frac{0}{(2.5 \times 10^4 S^{-1} + 1)^2 (-2.5 \times 10^4 S^{-1})} =$$

$$= \frac{.02(-2.5 \times 10^4 S^{-1})^2 + 0}{(2.5 \times 10^4 S^{-1} + 1)^2 (-2.5 \times 10^4 S^{-1})^2}$$

$$= \frac{1.25 \times 10^7 S^{-2}}{3.90625 \times 10^{17} S^{-4} + 3.125 \times 10^{13} S^{-3} + 6.25 \times 10^8 S^{-2}}$$

3.6 The Svoboda Method for Computing Roots of Polynomials

Overview of the Algorithm. The flow of control among the various logical routines of the algorithm is depicted in Figure 3.13. After obtaining the input data, the Scanning Routine systematically steps over the Unit Circle evaluating the reduced polynomial at five points on each step. When a criterion for the possible existence of a root at any step is fulfilled, a transfer is made to the Home-in-Routine. The Home-in-Routine approximates the root as closely as possible and then transfers to the Root Examination Routine. Using the Round-off Routine, the Root Examination Routine
Figure 3.13 Flow of Control in Svoboda Algorithm
either rejects the root or refines it (by means of the Home-in-Routine again) and outputs it. Control then passes back to the Scanning Routine which either continues scanning or stops because the required number of roots has been obtained. When a scan is completed, if the maximum number of scans has not yet been reached, the Inversion Routine gains control to "invert" the polynomial, before returning to the Scanning Routine which continues to scan. A detailed discussion of each element of the algorithm follows.

The Scanning Routine The main routine in the Algorithm is the Scanning Routine which moves across the Unit Circle as shown in Figure 3.14. The real and imaginary axes between the ranges (-1, 0), (1, 0) and (0, -1), (0, 1) are divided into sixteenths. The Scanning Routine uses the Polynomial Evaluation Routine to find five points at each step in the scan, the central point and four points one sixteenth above, below, to the left and to the right of the central point. A test is then performed to see if this point may be near a root. The criteria for transferring to the Home-in-Routine to examine a possible root more closely are
1. The value at the central point must be less than the value of any of the four surrounding points.
2. The five points must not be equal in value.

If these criteria are not met, the scan is incremented by one sixteenth and the scanning process is resumed. Scanning is performed from left to right and from bottom to top. When a scan has been completed, that is, when the point (1, 0) has been evaluated, a check is performed to see if the number of scans has exceeded an upper limit. If not, a transfer is made to the Inversion Routine (described below) which performs the inversion of the polynomial and then returns control to the Scanning Routine.

The maximum number of scans allowable is twice the number of roots in the polynomial. Since at least one root must be obtained after each pass of both the "real" polynomial and the "inverted" polynomial (requiring a total of two scans), a number of scans no more than twice the number of roots should be required for the algorithm to work properly. (Usually, considerably fewer scans are required because several roots may be found on any one pass). If this number is exceeded, however, the routine stops automatically.

The problem of evaluating the circumference of the Unit Circle twice (once on a "real" scan and once on an "inverted" scan) is solved by taking two precautions. Firstly, all points evaluated in a "real" scan must be within the Unit Circle, while an "inverted" scan is permitted to violate the boundary of the circumference slightly. This precaution alone, however, is not sufficient to avoid a duplication of roots which lie close to the boundary, therefore, in the Root Examination Routine a check is performed to see if the root under consideration has appeared previously in another scan. This second precaution prevents roots which have been found once by a "real" scan and once by an "inverted" scan from appearing twice.

Polynomial Calculation The Polynomial Calculation Routine uses Horner's Technique to evaluate the polynomial complex value from the coefficients. Basically, Horner's Technique is the iterative evaluation of the expression
\[F_{1+1} = (F_1 + a_{1}) \cdot x \quad 1 \leq i \leq n \]

with \(F_1 = (0, 0) \) and \(F_{n+1} = F_n + a_{n+1} \) the final value, and \(a_i \) is the \(i \)'th coefficient in the polynomial

\[P(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1}. \]

Thus the final value is cumulatively built up in \(F \). If necessary, the complex value \(F \) is divided by previously found roots to form a reduced polynomial value

\[F = \frac{P(x)}{(R_1 - x)(R_2 - x) \cdots (R_m - x)} \]

where \(m \) is the number of roots found previously. In order to avoid overflow, the absolute value of any of the factors \((R_1 - x)\) is not allowed to be less than \(10^{-60} \). The final step is to obtain the residual (the complex absolute value) of \(F \).

\[H = \sqrt{(|Re(F)|^2 + |Im(F)|^2)} \]

The residual is computed for four or five points (the Home-in-Routine does not require the central point to be evaluated each time) on each entry to the Calculation Routine. It is these four or five values \(H \) which are used by the Scanning and Home-in-Routines as the polynomial values at the test points.

Polynomial Inversion In order to obtain all the roots of the polynomial

\[P(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1} \]

by scanning the complex plane within the Unit Circle, at some point a new polynomial is formed from the original one by reversing the order of the coefficients. The roots of this new polynomial are the reciprocals of the roots of the original polynomial, thus effectively bringing inside the Unit Circle all the roots which were previously outside. The Inverted Polynomial is
\[P'(y) = a_{n+1}y^n + a_ny^{n-1} + \cdots + a_2y + a_1. \]

If \(P(r) = 0 \), it is easy to show that

\[P(r) = 1/r^n P(1/r) \]

Therefore \(y = 1/r \) is a root of the new polynomial \(P' \).

Thus, in order to obtain all the roots of a polynomial, the program must deal effectively with two kinds of roots, "real" and "inverted", and must obtain the reciprocal of "inverted" roots before writing them on the output. The Polynomial Inversion routine, simply reverses the order of the coefficients, sets a program variable to point to either the "real" or "inverted" techniques, and returns control to the main program.

Homeing-In Once five points have been obtained which fulfill the criterion for root examination, the homing-in procedure subdivides the distance between the central point and one of the outside points into sixteenths and, using the central points as a starting value, employs the Polynomial Evaluation Routine to compute four new outside test points. These new four points and the central point are then examined for the one having the smallest residual which becomes the central point for a new five point test. If this new central point is the same as the previous central point, the scale is subdivided into sixteenths as before so that the five point test becomes progressively more refined. At each subdivision, a new level of significance is obtained (each significant digit being a Hexadecimal digit because the scale factor is 16). This process of "homeing-in" is continued until either

1. The required number of digits of accuracy is reached or,
2. The residuals of the five points do not differ by a significant amount.

In case 2, the resolution of the computing method and system has been reached and the remaining significant digits, if any, are filled with zeroes. This represents a Stopping Criterion which is independent of any formula for found-off error, \(^{15}\) but depends only on the previously mentioned resolution.
Each time a new step is taken in the Home-in-Routine, three checks are made. Firstly, if the central point should happen to be the origin \((0, 0)\), the scale is expanded (subdivided by sixteenths), this allows for roots which may range over large orders of magnitude. Secondly, if more than sixteen steps should be taken in one direction at the same level of significance the level of significance is dropped so that larger (coarser) steps may be taken. Finally, a check is performed to ensure that the routine does not stray too far out of the Unit Circle. This safeguards against the possibility that the original location presented to the Home-in-Routine was not in the vicinity of a root, in which case it could easily wander outside the Unit Circle. If this condition should be detected, the Home-in is aborted and control is returned to the Scanning Routine.

If either case 1 or case 2 occurs, the Home-in-Routine has reached a successful completion and transfers control to the Root Examination Routine.

Root Examination Procedures The Root Examination Routine first checks to see if the root just found came from the original polynomial coefficients or from a reduced polynomial. If the polynomial was a reduced one, the value of the root can be regarded merely as an approximation. The Home-in-Routine is therefore called again to repeat the latter part of the home-in procedure this time using the original polynomial and using the approximate root as a starting value. This technique ensures that every root is found from the original polynomial and that its accuracy does not depend on the accuracy with which previous roots were found.

After the final root value is obtained, a second check is made, this time on its residual. If the residual is greater than a certain value, the root is considered unreliable and is discarded. If this should occur, control is transferred back to the Scanning Routine. The maximum value of the residual is chosen arbitrarily to be one half the value of \(a_{n+1}\), the constant coefficient in the polynomial.
Having passed these tests, the root value is rounded-off in the Round-off Routine (which is not discussed here because it has no bearing on the actual rootfinding algorithm). If the root is "inverted", its reciprocal is found using floating point division, and this value, after being rounded-off again, becomes the root value. A third check is then performed on the root to see if it has been found on a previous pass. (This check was mentioned previously in connection with the Unit Circle Boundary). If both real and imaginary parts fall within one significant digit of a root found on a different type of pass ("real"), it is rejected as a root but is nevertheless entered, in the same way as acceptable roots, in the list of roots used to form a reduced polynomial. (This prevents its being found again). If the root is not rejected, it is converted from its internal hexadecimal representation to decimal, rounded-off again, and is written on the output.

A final check is made to see if the required number of roots has been obtained. If not, control is returned to the Scanning Routine, otherwise the algorithm terminates.

NOTES

1. In writing this algorithm, it was intended to produce a technique for finding successive roots from the original polynomial and thus eliminate the mutual interdependence of these roots and convergence problems which are commonly found in other methods, (e.g., Newton-Raphson, Muller). However, in the course of investigating the behavior of the algorithm it was discovered that even widely dispersed roots affected the behavior of the polynomial "surface" over a wide range, and it therefore became necessary to use a reduced polynomial as a first approximation to eliminate this interference. Nevertheless, since the final root is always obtained from the original unreduced coefficients, the original algorithm has been effectively retained.
2. Since most major computing machines in this country are based on some multiple of binary arithmetic (and, in particular, hexadecimal arithmetic), a step size of sixteenths was used as the basis for the algorithm. On decimal based machines, it is likely that the algorithm would prove more effective if tenths were to be used.

3. Although no organized test of the algorithm has been performed as yet, it has performed well over a wide class of applications. In particular, 34 of the 36 roots of the 36th degree polynomial given in reference 19 were found to 5 significant digits in Single Precision Arithmetic within 60 seconds on an IBM 360/91.

3.7 A C. Analysis-Bode Plot

At this stage of the program, with the transfer function available as

$$T = \frac{b_1 S^{m-1} + \cdots + b_m}{a_0 S^m + a_1 S^{m-1} + \cdots + a_n},$$

where all the coefficients, a_i and b_i, are known, the A C response is calculated by setting $S = j\omega$ and simplifying the expression to a linear combination of real and imaginary terms

$$T = A(\omega) + jB(\omega).$$

The magnitude of T and the angle $\theta(\omega)$ are computed according to the equations,

$$|T(j\omega)| = \sqrt{A^2(\omega) + B^2(\omega)},$$

and

$$\theta(\omega) = \tan^{-1} \frac{B(\omega)}{A(\omega)}.$$

Now if ω is made to vary, then for each value of ω the $|T(j\omega)|$ and $\theta(\omega)$ can be obtained over the frequency range of interest and thus can be made available for plotting. One commonly employed plot is $|T(j\omega)|$ and $\theta(\omega)$ versus either $\log_{10} \omega$ or ω of Figure 3.15. Another graph, a Bode plot, (see Figure 3.16) consists of the $|T(j\omega)|$ in decibel units and $\theta(\omega)$ in degrees versus the $\log_{10} \omega$, taken over the frequency range specified by the user.

3-34
Figure 3-16
With the complex arithmetic capability of FORTRAN IV, the desired computation can easily be carried out in NASAP-70.

3.8 Transient Response

The transient response routine in NASAP-70 derives its theoretical basis from Fast Fourier Transform methods for the numerical inversion of Laplace Transform. Although the techniques described here follow along the approach presented by Dubner and Abate, it was, however, developed independently at UCLA.

Theory The inverse $f(t)$ of a Laplace Transform $F(s)$ is given by the formula

$$f(t) = \frac{1}{2\pi j} \int_{\sigma-j\infty}^{\sigma+j\infty} F(s) e^{st} \, ds$$

(3.1)

If $F(s)$ is a quotient of polynomials, with all coefficients real, i.e.,

$$F(s) = \frac{\sum_{i=0}^{K} a_i s^i}{\sum_{i=0}^{n} b_i s^i}$$

(3.2)

then $f(t)$ is real, and

$$f(t) = \frac{e^{\sigma t}}{\pi} \int_{0}^{\infty} F(\sigma + j\omega) e^{j\omega t} \, d\omega$$

(3.3)

For the $F(s)$ which are rational, i.e., have $K > n$ in Equation (3.2), it is apparent that Equation (3.3) can be evaluated by a quadrature rule for a specific t, since $\lim_{S \to \infty} F(s) = 0$. However, if $K > n$, a long division can be performed on $F(s)$, to yield

$$F(S) = C_{K-\ell}S^{K-\ell} + C_{K-\ell-1}S^{K-\ell-1} + \cdots + C_0 + R(S)$$

(3.4)

where
\[R(S) = \frac{\sum_{i=0}^{1} a_i S^i}{\sum_{j=0}^{b} b_j S^j} \] (3.5)

All terms of (3.4) represent impulses of varying degrees and can easily be inverted. The only concern is the inversion of \(R(S) \).

Inversion of Equation (3.3) by the trapezoidal rules, gives

\[
f(t) \approx \Delta \omega \left\{ \frac{\text{Re}\{F(\sigma)\}}{2\pi} + \frac{e^{\sigma t}}{\pi} \sum_{k=1}^{n} F(\sigma + jk\Delta \omega)e^{jk\Delta \omega t} \right\} (3.6)
\]

where \(\omega \) is an appropriately chosen sampling interval, and \(\sigma \) is chosen so that the integration path is to the right of all singularities. Since \(\lim_{S \to \infty} F(S) = 0 \), an upper limit \(\nu \) can be chosen for the summation such that \(F(\sigma + j\Delta \omega k) \) is small for \(K > n \). Thus

\[
f(t) \approx \Delta \omega \left\{ \frac{\text{Re}\{F(\sigma)\}}{2\pi} + \frac{e^{\sigma t}}{\pi} \sum_{k=1}^{n} F(\sigma + jk\Delta \omega)e^{jk\Delta \omega t} \right\} (3.7)
\]

(It should be noted that Equation (3.7) is the same expression obtained by Dubner and Abate,22 except that the present derivation did not consider that when \(f(t) \) is known to be real and nonzero for \(t \geq 0 \) only, then

\[
f(t) = \frac{2e^{\sigma t}}{\pi} \int_{0}^{\infty} \text{Re}\{F(\sigma \omega)\} \cos(\omega t) d\omega \] (3.8)

Note that if \(f(t) \) is obtained from the trapezoidal rule for \(m \) different values of \(t \), a total of \(mN \) calculations (evaluations of the term appearing
under the summation) are required. For small \(m \), no difficulty exists, but if \(m \) is large, the machine time could be excessive.

This difficulty is overcome by the use of the Fast Fourier Transform (FFT). The discrete Fourier Transform pair

\[
X(K) = \Delta t \sum_{n=0}^{N-1} x(n) e^{-j2\pi \frac{nK}{N}} \tag{3.8a}
\]

\[
x(n) = \frac{\Delta \omega}{2\pi} \sum_{K=0}^{N-1} X(K) e^{\frac{2\pi nK}{N}} \tag{3.8b}
\]

can be evaluated using the FFT with less than \(N \log_2 N \) calculations if \(N \) is chosen so that \(N = 2^\delta \), where \(\delta \) is a positive integer.

In Equation (3.7), if the following definitions are adopted

\[
Z_K = \begin{cases}
\text{Re}\{F(\sigma)\} & \text{K} = 0 \\
\frac{1}{2} & \text{K} > 0
\end{cases}
\]

and the summation limit is raised to \(N-1 \), where \(N \) is the smallest integral power of 2 greater than \(\nu \), then,

\[
f(t) \approx \frac{\Delta \omega e^{j\sigma t}}{\pi} \sum_{K=0}^{N-1} Z_K e^{jK \Delta \omega t} \tag{3.9}
\]

If it is required that \(f(t) \) is evaluated only at integral multiples of some time interval \(\Delta t \), then \(f(t) \) can be defined by.

\[
f(n\Delta t) \approx \frac{\Delta \omega e^{j\sigma n\Delta t}}{\pi} \sum_{K=0}^{N-1} Z_K e^{jK \Delta \omega \Delta t} \tag{3.10}
\]

for \(n = 0, 1, 2, \ldots \)

Now, if \(\Delta t \Delta \omega = \frac{2\pi}{N} \) is introduced, Equation (3.10) becomes
It is apparent that the form of Equation (3.11) is compatible with Equation (3.8b). It should be noted that the summation in (3.11), considered as a function of \(n \), is periodic, and that \(f(nAt) \) given by (3.11) is an oscillating exponential with period \(NAt \), since

\[
f(nAt) \approx \frac{\Delta \omega}{\pi} \frac{e^{\sigma nAt}}{N} \sum_{K=0}^{N-1} Z_K e^{\frac{j2\pi}{N} nK}
\]

(3.11)

but,

\[
f[(N+n)At] \approx \frac{\Delta \omega}{\pi} \frac{e^{\sigma (N+n)At}}{N} \sum_{K=0}^{N-1} Z_K e^{\frac{j2\pi}{N} nK} \frac{(n+N)K}{N}
\]

(3.12)

Since (3.13) cannot, in general, be true a check of the validity of Equation (3.11) must be made.

If the substitutions \(nAt = t \) and \(K\Delta \omega = \omega \) are made in the inverse transform relation of Equation (3.3) and the upper limit of integration is reduced to \(\omega_0 = N\Delta \omega \), then

\[
f(nAt) = \frac{e^{\sigma nAt}}{\pi} \int_0^N F(\sigma + jK\Delta \omega) e^{jK\Delta \omega t} \Delta \omega dK
\]

(3.14)

Inserting the condition \(\Delta t \Delta \omega = \frac{2\pi}{N} \) yields

\[
f(nAt) = \frac{\Delta \omega}{\pi} \frac{e^{\sigma nAt}}{N} \int_0^\infty F(\sigma + jK\Delta \omega) e^{\frac{j2\pi nK}{N}} dK
\]

(3.15)
The trapezoidal approximation of Equation (3.15) is

\[
f(n\Delta t) \approx \frac{\Delta \omega e^{\sigma n\Delta t}}{\pi} \left\{ \frac{1}{2} \text{Re}\{F(\sigma)\} + \sum_{K=1}^{N-1} F(\sigma + jK\Delta \omega) e^{j2\pi \frac{nK}{N}} + \frac{1}{2} \text{Re}\{F(\sigma + jN\Delta \omega)\} \right\} \quad (3.16)
\]

Since it is assumed that \(F(\sigma + jN\Delta \omega)\) is small, this term can be eliminated from Equation (3.16), thus making it identical with Equation (3.11), as expected. Additionally, the validity of the approximation of Equation (3.15) by Equation (3.16) should be checked. It is a well known rule in quadrature evaluation of integrals that the summation rapidly becomes inaccurate when the sampling interval is made larger than one half the wavelength of the highest frequency component of the integrand. If it is assumed \(F(\sigma + j\omega)\) has a frequency spectrum with all its components having a wavelength much greater than \(\Delta \omega\), then the highest frequency in the integrand of Equation (3.15) will be \(\frac{n}{N}\). The sampling interval in Equation (3.11) = 1, thus the wavelength must be \(\frac{N}{n} \geq 2\) and forcing the range of \(0 \leq n \leq \frac{N}{2}\) on Equation (3.11). This is the same result used by Dubner and Abate. 22

It will be shown later that it is necessary to further restrict \(n\) so that

\[0 \leq n < \frac{N}{4}\).

It is necessary to find a value of the parameter and for which (3.11) will be valid. The method employed in NASAP-70 involved repeated application of the Routh Stability criterion 21 followed by a translation along the real axis.

The Routh criterion involved the construction of a matrix for the transfer function,
\[F(S) = \frac{\sum_{i=0}^{K} a_i S^i}{\sum_{i=0}^{L} b_i S^i} \]

The corresponding matrix is:

\[
\begin{array}{ccccccc}
 b_0 & b_{-1} & b_{-2} & b_{-3} & b_{-4} & \cdots & \\
 b_{-1} & b_{-2} & b_{-3} & b_{-4} & \cdots & \\
 d_{31} & d_{32} & d_{33} & \cdots & \\
 d_{41} & d_{42} & d_{43} & \cdots & \\
 \vdots & \vdots & \vdots & \ddots & \\
 \vdots & \vdots & \vdots & \ddots & \\
\end{array}
\]

The first two rows are made up of the coefficients of the denominator polynomial. If \(L \) is odd, the final element in the first row is \(b_1 \), the second row, \(b_0 \). If \(L \) is even, the final element is \(b_0 \) in the first row, and zero in the second. In either case, the rows have length \(\left[\frac{L}{2} \right] + 1 \). The \(d_{ij} \) are evaluated by

\[
d_{ij} = \frac{d_{i-1,1} d_{i-2,j+1} - d_{i-2,1} d_{i-1,j+1}}{d_{i-1,1}}
\]

The meaning of \(d_{ij} \) for \(i = 1 \) or 2 is obvious. The length of nonzero elements in each row decreases as the row number increases, until in the \((L+1) \) row, only \(d_{L+1} \) is nonzero.

After the matrix is constructed, the first element in each row is examined. If all of them are positive, no singularities are to the right of the imaginary axis. If one or more is zero or negative, then there are one or more singularities with a positive real value. To test a particular \(\sigma_0 \) to determine whether it is to the right of all the poles, \(F(S) \) is shifted by \(\sigma_0 \).
\[F(S + a_0) = \frac{\sum_{i=0}^{K} A_i (S + a_0)^i}{\sum_{i=0}^{L} b_i (S + a_0)^i} \]

where

\[\sum_{i=0}^{L} b_i (S + a_0)^i = \sum_{i=0}^{L} C_i S^i \] (3.19)

and

\[C_i = \sum_{j=i}^{L} b_j a_0^{j-i-1} \left(\begin{array}{c} j \\ i \end{array} \right) \]

The Routh criterion can now be applied to \(C_i \), and if it is stable, then \(a_0 \) can be used in Equation (3.11).

Although the theory is valid at this point, a number of practical problems remain. One of these appears when \(F(S) \) contains a high order polynomial which does not go to zero until \(\omega \) is very large. In these cases, it is possible for some of the calculations involved in obtaining sample values to fall outside the range of numbers representable in a particular machine. To avoid this difficulty, the frequency scaling property of the Laplace transform is used,

\[f(a t) = \frac{1}{a} \mathcal{L}^{-1} \left\{ \frac{F(S)}{a} \right\} \] (3.20)

There also exists the inconvenience for users, resulting from the fact that the choice of \(\Delta \omega \) files \(\Delta t \). It would be much more convenient if \(\Delta t \) could be set to any desired value. To overcome this difficulty, a parameter selection procedure is used. Always setting \(\Delta t = 1 \), gives \(\Delta \omega = \frac{2\pi}{N} \). If a user desires a time step different from one second, the transform is frequency scaled according to Equation (3.20) by the time interval desired, i.e., \(a = \Delta t \).

With these changes, Equation (3.15) becomes
\[f(na) = \frac{2e_{na}}{Na} \sum_{K=0}^{N-1} Z_{K}^{1} e^{\frac{2\pi nK}{N}} \]

(3.21)

where

\[
Z_{K}^{1} = \begin{cases}
\frac{1}{2} \text{Re}\{F(S)\}, & K = 0 \\
F(S) + \frac{2\pi K}{N}, & K > 0
\end{cases}
\]

Inversion of Equation (3.22) yields,

\[F(S) = \sum_{i=1}^{q} C_{i} S^{-i} + R(S) \]

(3.22)

This change introduces a complication, in that the setting of \(\Delta w = \frac{2\pi}{N} \) means \(F(S) \) is sampled until \(w = \frac{2\pi}{a} \), regardless if it may be non-zero at this or higher values of \(w \).

(Note that the choice of \(N \) no longer has any effect on the upper limit of the sampling. Increasing \(N \) merely causes more samples to be taken with the sampling interval, which is set once \(a \) is chosen.

The effect of this high frequency cut-off will vary, depending upon the particular transform being inverted. The cases where the error is the greatest, however, occur near those points at which \(f(t) \) is discontinuous.

In rational transforms, \(f(t) \) is discontinuous only at the origin, if at all. (If the numerator polynomial is of one degree less than the denominator, there is a discontinuity at \(f(0) \). If the difference in degree is greater than one, \(f(t) \) is continuous for all finite \(t \). The usual effect of the high frequency cutoff error is the "rounding of the corners" at \(f(0) \).

A correction procedure can be applied when this error occurs. By carrying out a long division of \(F(S) \), one obtains

\[F(S) = \sum_{i=1}^{q} C_{i} S^{-i} + R(S) \]

Inversion of Equation (3.22) yields,
\[f(t) = \sum_{i=1}^{q} \frac{C_i}{i(1-1)i} t^{i-1} + L^{-1} \{ R(S) \} \] \hspace{1cm} (3.23)

Note Equation (3.23) is a power series expansion for \(F(t) \) taken at \(t = 0 \). In NASAP-70, \(C_i \) is evaluated with \(q = 50 \) in Equation (3.22), following by Equation (3.23) to evaluate the first five time points. During the evaluation of Equation (3.23) a check is made to determine that a smooth series fit is achieved (if the higher order terms in the summation are insignificantly small, then \(L^{-1} \{ R(S) \} \) is not significant because it is \(O(t^q+1) \) near the origin). Also checked is the possibility that some of the terms of Equation (3.23) are \(\gg f(t) \), if this is the case, there will be a loss of significance, and the error correction procedure is bypassed. If it turns out that the series is well behaved, it is used in cases where \(f(t) \) is continuous at the origin.

The theoretical foundations of NASAP just described cannot be considered extensive. But hopefully enough of the concepts have been presented to explain the underlying theme of NASAP. For those persons interested in more of an elaboration of the principle involved, they are encouraged to read the references shown at the end of the chapter.
REFERENCES

PART II A PROGRAMMER'S MANUAL

The Programmer's Guide consists of Chapters 4 and 5 and Appendix A. Chapter 4 describes the algorithms used in NASAP-70 and the general flow of control among the NASAP-70 routines. A user intending to make any modifications to his copy of NASAP should become familiar with that chapter. The Dictionaries in Appendix A are provided to aid in easy identification of the more important names in NASAP-70.

Chapter 5 is designed as a reference for the general user. In particular, the user's attention is directed to Sections 5.4 and 5.5 which should be read before any NASAP-70 problems are run on a computer which is not an IBM 360. These sections describe some important modifications which may be required to make NASAP-70 operate properly on other computers.

Finally, Appendix A contains a program listing of NASAP-70 and Appendix C contains the output generated by sample problems.
CHAPTER 4
NASAP-70 PROGRAMMER'S GUIDE

4.0 Program Organization

4.1 General Description

The NASAP Circuit Analysis program is written entirely in
Fortran IV-H. It is built around a basic program which produces a
circuit tree from the user-supplied circuit data, and then uses this tree
to evaluate the circuit Transfer Function. Additional modules are supplied
which accept a user-defined tree (in a different data format), perform
Sensitivity and Worst Case Analysis, produce Transient and Frequency
Responses, find Poles and Zeroes of the Transfer Function, and perform
automatic scaling on the input data.

Since NASAP-70 is written in Fortran IV, a user familiar with
this language may add his own routines.

The flow of control in NASAP is shown in Figure 4.1. The Main
Program first calls one of the three forms of Circuit Description Analysis.
Each of these makes use of the Card Scanning Utilities. Then the Main
Program can call (optionally) a Sensitivity Analysis routine if requested by
the user. The Automatic Scaler may also be called at this point. The
Transfer Function section is called to build the Flowgraph and compute
the Transfer Function. The remaining sections, Sensitivities, Plotter,
Rootfinder and the Transfer Function section again, may be called optionally.
If more than one circuit description is supplied, any one of the Circuit
Description Analysis routines may be called to restart the whole process.

Only one Circuit Description Analysis routine and the Transfer
Function Section are absolutely required to be called during a NASAP-70
run. The remaining sections are called depending on the particular options
selected by the user in his circuit data cards.
Figure 4.1 Flow of Control in NASAP-70
4.2 Algorithms and Dictionaries

In this section, the general algorithm of each subprogram is described. Instead of a statement by statement analysis of each routine, the algorithm is divided into a number of logical steps for the purpose of description. It is best to refer to a listing of the routine being studied while reading the algorithm description. (See Appendix A) The listing should be used to identify the source statements with the logical steps in the description.

For quick identification of the more important names in NASAP, a dictionary is supplied in Appendix A.

4.2.1 Main Program

The Main Program and Block Data subprogram serve to declare the more important program variables and to provide the flow of control among the modules of NASAP-70 based on the reading of certain NASAP-70 control cards from the Input Data Set.

1. In the Block Data subprogram, three Common Blocks are initialized. Common Block GAG contains an array of 20 variables which is initialized to the Sensitivity tags. These tag values are used in the Sensitivity analysis to identify flowgraph loops and the resulting Sensitivity functions with their corresponding circuit elements. Common block DATA contains an array of 32 variables which is initialized to 32 alphabetic characters. Common block X contains an array of ten variables which is initialized to ten numeric characters. Common blocks DATA and X are used by the card scanning utilities (ASCAN, BSCAN, etc.) and various other routines which examine the NASAP data cards.

2. Upon entry to the Main program the important program control variables are reset beginning with NE (Number of Circuit Elements) and ending with the array SENS (The 50 Sensitivity tags). The page heading is then printed.
3. A card is read and printed, Subroutine SHIFT is called to squeeze out embedded blanks and commas, NE (which currently serves as a heading card counter) is incremented, and the first four characters on the card are checked as follows.

- If they are NASA, NE is reset and Subroutine NASAP is called, followed by a transfer to step 4 below.
- If they are TREE, NE is reset and Subroutine READ is called, followed by a transfer to step 4 below.
- If they are CIRC, NE is reset, ITREE is set (to signal that a tree is to be built by Subroutine FINE) and Subroutine READ is called. Then, provided ERR, the terminal error flag, has not been set, Subroutine FINE is called, followed by a transfer to step 4 below.
- If they are STOP, control is returned to the system monitor.
- If none of these sets of characters appear, the card is assumed to be a title card. If NE is more than ten, a warning is printed, NE is reset and control returns to step 2 above to read another card.

4. Statement 3 checks the ERR flag. If it is set, an error message is printed and control returns to Step 2 above where NASAP-70 is reinitialized. If it is reset, the checklist of elements is printed out so that the user may verify that his data were read correctly. Subroutine CALC is called to check tree legality and to create the current equations. If Subroutine CALC sets the ERR flag (e.g., due to an invalid tree), the error message is printed as before and NASAP-70 is reinitialized. Otherwise, Subroutine SCALER is called to determine if the circuit element values require scaling. If FACTOR is nonzero, then scaling was performed and the scale factor is printed out.

5. If TAG is set, then the user omitted an END card after the circuit description and therefore another card need not be read. Otherwise, a new card is read, Subroutine SHIFT is called and the following tests are made on the first four characters of this card.
If they are SENS, Subroutine SENSIT is called (to analyze Sensitivity cards) and the next statement is skipped so that Subroutine WORST is not called.

If they are WORS, Subroutine WORST is called (to analyze Worst Case tolerance cards).

Subroutine GRAPH is then called to build the flowgraph (except for the unknown transmittance) which is then printed out. Subroutine REDUCE is called for each flowgraph transmittance to handle Sensitivity tags. As a final step, preparatory to servicing Output requests, NPATH (the number of flowgraph transmittances) is incremented to include the unknown transmittance, VPATH(NPATH) (its value) is set to 1.0, S(NPATH) (its tag) is set to 1000, NTIMES (the number of words per block in the BITS array) is set based on 30 bits per word, INP (the Transfer Function request flag) is reset, finally ERR is reset. By transferring to statement 10, step 6, which reads a new Output Request card, is avoided. Control goes to step 7.

6. The INP and ERR flags are reset, a new Output Request is read and Subroutine SHIFT is called.

7. Statement 10 prints the latest Output Request, calls and then analyzes the Output Request as follows

 If the first three letters are END or the first two letters are EX, control goes to step 2 where NASAP is reinitialized.

 If the first three letters are CIRC, TREE or NASA, it is assumed that the user omitted the END card after his Output Requests. Therefore control goes to statement 12 which prints an error message, the NASAP-70 heading, and then returns control to step 2 at a point just after a new card is read (because this card has already been read by accident).

 If INP is 0, no Transfer Function request has yet been read so the next five tests are not performed.

 If the first letter is V or I, this is a Transfer Function request,
therefore control goes to step 8 where the Transfer Function is formed.

If the first four letters are PLOT and ERR has not been set, Subroutine PLOT is called, and if ERR is still not set, Subroutine INVERT is called to perform the plotting. Finally ERR is reset. If the first four letters are ROOT and ERR has not been set, Subroutine ROOTS is called. Subroutine SHIFT is then called so that the succeeding test for a Pole Sensitivity Request will operate on a card of the form ROOTS, POLES.

If the first four letters are POLE and ERR has not been set, Subroutine POLSEN is called.

Control now returns to step 6 after an error message is printed for the cards beginning with SENS, WORS, or TOL.

At this point INP = 0, which means that there has been no previous Transfer Function request. Hence, cards beginning with PLOT, ROOT, SENS, TOL or WORS are meaningless and if the current card is one of these, an error message is printed and control returns to step 6.

8. The card is now considered to be a Transfer Function request, consequently INP is set to signal that a Transfer Function request has been encountered. The number stored in NTIMES is printed and then Subroutine WHAT is called to analyze the Transfer Function request. If the ERR flag has been set, control goes to step 6 to search for another Output Request. Otherwise Subroutine INBIT is called to enter the unknown transmittance into the BITS array and then Subroutine LOOPS is called to solve for the Transfer (and Sensitivity) Functions.

9. The BITS, SMAX1 and SMIN1 arrays are reset before the Sensitivity Functions are entered. Subroutine ANSWER is called to print out the Transfer Function. If NSEN is 0, this means that no Sensitivity Functions are requested. Control then returns to step 6 (except INP and ERR are
not reset), otherwise subroutine SENSC is called. If NWORST is not 0, subroutine WORSTC is called to evaluate the Worst Case Function, and subroutine ANSWER is called to print it. Finally, control returns to step 6 (except INP and ERR are not reset).

4.2.2 Circuit Description Analysis

NASAP-70 offers three techniques of circuit description analysis. The technique selected is determined by the heading card read by the Main program. All the techniques make use of the card scanning utilities which perform various operations on the card image stored in an 80 word array in Common block A.

The User’s Circuit Description may be supplied to NASAP-70 in one of three ways

1. As a circuit description with a tree to be defined by the program for minimum computation time. This is the standard form of NASAP Input Data used in previous versions of the program. It is initiated by a card having the work NASAP.

2. As a circuit description with a tree to be defined by the program for optimum accuracy at a given frequency. This form of input data is new to NASAP. It is initiated by a card having the word CIRCUIT followed by a value in parentheses which represents a frequency in cycles per second.

3. As a circuit description with a user-defined tree. This option, like the CIRCUIT option, uses a new form of input data. It is initiated by a card having the word TREE.

The method of analyzing the Circuit Description Data associated with each of these forms of input is described below.

Card Scanning Utilities

There are eight routines which constitute the card scanning utilities. Subroutines ASCAN(B, I, J), BSCAN(B, I, J) and CSCAN(B, I, J) scan the
card image in Common block A starting at column I until a special character (described below) is encountered. The character is placed in B and the number of the column just before this character is placed in J.

- Subroutine ASCAN scans for (/ -) = blank.
- Subroutine BSCAN scans for U blank M K P O V I.
- Subroutine CSCAN scans for . E + - blank.
- Function ISORT(A) returns the fixed point numeric value of the character stored in A. If A is not numeric, FLAG is set.
- Subroutine MSG(A, I) prints a diagnostic.
- Subroutine NUMBER(N1, N2) stores the floating point value into VPATH(NE) of the number between columns N1 and N2 inclusive, irrespective of the format in which this number is written. If there is an error in the number (e.g., an invalid character), FLAG is set and the value entered into VPATH(NE) is unreliable. For instance, the following numbers are acceptable:

 -1 .73-7 1E2 +0.0009

 but these are not acceptable

 -1A 7..3 1B2 ++.0009

 The algorithm of Subroutine NUMBER is now described in more detail.

1. Upon entry, K (the column pointer) is set to N1, and VPATH(NE) is set to 0. Provided K is less than N2, control passes to step 3 to begin the analysis.

2. This is the error return. When this step gains control, a diagnostic is printed and control is returned to the calling routine.

3. A test is performed on the first character in the field. If it is a -, TAG is set. Subroutine CSCAN is called and if I already points to a special character this number must be less than 1, so control passes to step 5.

4. The digits which form the part of the number greater than 1 are contained between columns I and J inclusive. This step (DO 3) enters them
into VPATH(NE). If FLAG is set for any digit, the error return (step 2) is
given control.

5. If the end of the number field has been reached, control passes to
step 7. If the next character is not the decimal point, control passes to
step 6 which checks for an exponent. Otherwise the digits of the fractional
part of the number are entered into VPATH(NE) (DO 7). If FLAG is set,
step 2 gets control.

6. If the next character is the E of the exponent field, the column pointer
is incremented. If a - is found in the exponent field, EXPO is set. Sub-
routine BSCAN is called to obtain the limits of the exponent field. A diag-
nostic is printed if this field contains more than two digits. The rightmost
two digits are used to enter the exponent value into POW. If EXPO has been
set, the exponent is negative. Lastly, the value in VPATH(NE) is modified
according to the value of the exponent.

7. If TAG has been set, the number was negative so the sign is
reversed. Control then returns to the calling program.

- Subroutine SHIFT left adjusts all characters in Common Block A
 removing blanks and commas.
- Function SORT is the same as ISORT but returns a floating point
 value.

Subroutine NASAP

Subroutine NASAP decodes Circuit Description cards which follow a
NASAP heading card. If no error is detected before the END or OUTPUT
card is reached, a tree is constructed (subject to the constraint of minimum
First Order Loops). Each Circuit Description Card is in the following
format

NAME ORIGIN TARGET VALUE UNITS(optional) DEPENDENCY(optional)

The Data cards are described in more detail in Sec. 4.2. The algorithm
details of Subroutine NASAP follow
1. On entry, NE (the number of elements) is reset to 0.

2. A new card is read into Common block A and Subroutine ASCAN is called repeatedly until the first non-blank character is found. If this character is E or 0, this is the end of the circuit description, so control passes to step 7 where the tree is built. Otherwise NE is incremented, the element name is padded with blanks on the right and entered into the CARD array (which contains the names of all the circuit elements).

3. Subroutine ASCAN is called repeatedly to find the next non-blank character which is the start of the ORIGIN field. Function ISORT is used to enter the value of the origin node into the ORIGIN array. If FLAG is set, control transfers to step 6 which is the error return. A similar procedure is used to enter the value of the TARGET node into the TARGET array.

4. Subroutine BSCAN is called repeatedly to find the next blank character or the first character of the UNITS field, followed by a call to Subroutine NUMBER to enter the value of the VALUE field into VPATH(NE). This value is multiplied by a factor depending on the next one or two non-blank characters (which constitute the UNITS field):

 \[
 \begin{array}{ll}
 U & 10^{-6} \\
 P & 10^{-12} \\
 K & 10^3 \\
 M & 10^6 \\
 MH & 10^{-3}
 \end{array}
 \]

 If the character is a V or I, the DEPENDENCY field is present so Subroutine ASCAN is used to extract the name of the dependency that is then entered into the DEP array (which contains the names of controlling elements). If a DEPENDENCY field is not present, a string of blank characters is entered into the DEP array.

5. GENER(NE) and TYPE(NE) are reset. If the first character of the element name is V or I, the element is active requiring that GENER(NE) be set. If it is V, the element is a voltage source and is immediately required.
to be in the tree, therefore TYPE(NE) is set. Finally, before transferring back to step 2 to read the next card, NNODES and INODE (the maximum and minimum node numbers appearing so far) are set.

6. (The error return). A diagnostic is printed, ERR is set and control is returned to the calling program.

7. Before building the tree, an array N is set up which initially contains the number of elements connected to each node N(I). When N(I) is 0, node I has been connected to the tree. When N(I) is negative, node I is currently being considered for entry into the tree.

8. The next free node having the highest number of elements connected to it is selected for insertion into the tree. Its N entry is reset to 0. Then, all the nodes connected to this one via voltage sources are put under consideration, i.e., N(I) is made negative (DO 23). As long as M is 1 additional nodes have to be considered, consequently step 8 is repeated until M is 0.

9. Each passive element connected to this node is entered into the tree when the other node to which it is connected is not yet under consideration. At the same time, all the nodes connected to this new node via voltage sources are given consideration. (DO 26 and DO 31).

10. The N array is searched for the least value. If this is 0, all possible nodes have been entered into the tree, control returns to the calling program. Otherwise the node is tagged as being processed by subtracting 1000 from its N entry. Then control passes to step 8.

Subroutine NASAP does not perform any checks on the circuit described or the tree it builds (i.e., to see if all nodes are connected to the same tree). If the circuit supplied is valid, then the tree constructed from it will be valid also. If the circuit is invalid, the resulting tree is meaningless. All checking on both program and user constructed trees is performed by Subroutine CALC while solving the current equations. If any invalidity is found, Subroutine CALC prints the appropriate diagnostics.
In general, the tree constructed by Subroutine NASAP produces the minimum number of First Order Loops, and therefore produces a transfer function in minimum computation time. This tree may be described briefly as the "bushiest" tree. For instance, for the circuit shown, two trees are given (solid lines represent the tree) both of which are valid. However, tree 2 is the "bushiest" and would probably result in fewest First Order Loops.

![Tree Diagram](image)

Figure 42

Subroutine READ and Subroutine FINE

In response to reading a heading card beginning with either the word CIRCUIT or the word TREE, Subroutine READ is called to analyze Circuit Description Data. If the heading card was a CIRCUIT card, Subroutine FINE is called to build a tree which results in optimum accuracy at the frequency shown on the CIRCUIT card. If the heading card was a TREE card, Subroutine FINE need not be called because it is assumed that the user has supplied the tree. The format of the circuit description data accepted by Subroutine READ is considerably different from that accepted by Subroutine NASAP. This is because Subroutine READ is designed for a user who has some knowledge of flowgraph theory while Subroutine NASAP is designed for the user interested primarily in the Transfer Function rather than the method of analysis.
CIRCUIT cards have the form:

CIRCUIT (Frequency)

CIRCUIT and TREE circuit description cards have the form

NAME/DEPENDENCY (ORIGIN-TARGET) = VALUE UNITS

(note that DEPENDENCY and UNITS are optional quantities)

Circuit Description Data is described in detail in Sec. 4.2.

1. The first step in Subroutine READ is to reset a number of control variables. Then if this is a CIRCUIT card (TREE=1), the default frequency is set to 1.0, and Subroutines ASCAN and NUMBER are called to scan the CIRCUIT card for the frequency enclosed in the parentheses, if the frequency cannot be found, the appropriate diagnostic is printed.

2. The next card is read and Subroutine SHIFT is called to eliminate blanks and commas. If the card is completely blank or if it starts with the letters PL, the appropriate diagnostic is printed and step 2 is performed again. If the card starts with END, control returns to the calling program. If there are more than 50 elements, the appropriate diagnostic is printed. The TYPE and GENER entries for this element are reset to 0 and the CARD and DEP entries are filled with blanks.

3. The following tests are performed on the first 2 characters in the card buffer (Common block A)

 a. If the first character is E or J, an active source is assumed. Its GENER entry is set to 1. If the first character is E, its TYPE entry is set to 1 also to indicate that it is part of the tree.

 b. If the first character is R, L, C or D, and if the second letter is E, the TYPE entry is set to 1. If the first letter is D, the GENER entry is set to 1 (to show this is a dependent source). Unless TREE is 1 (i.e., unless no user tree is supplied) and if the second letter is not E or J (branch or link) a diagnostic is printed and the second letter is set to J.

 c. If the first letter is V or I, it is assumed that because the user omitted the END card from the circuit description the first Output Request
was read by mistake. Thus, TAG is set to 1 to show that the first Output Request is already in the buffer. A diagnostic is printed and control returns to the calling program.

d. If the first letter is P, it is assumed that a PLOT card has mistakenly been placed in the circuit description. Therefore, a diagnostic is printed and control passes to step 2 to read a new card.

If none of these tests is true, the first letter is set to R and processing proceeds as if test 2 were true.

4. Subroutine ASCAN is called to find the element name. If it is more than 12 characters long, a diagnostic is printed. In the case of an element whose first letter is not D, if the first character after the name is not a left parenthesis, a diagnostic is printed and step 2 gains control to read a new card. In the case of an element having D as the first letter, a diagnostic is printed if a slash is not found after the element name. The element name is then entered into the CARD array. A check is performed of this new name against all the previous names in the CARD list (DO 17). If a match is found, a diagnostic is printed and the program attempts to replace the latest name with another one based on the value of the counter NR. Up to 10 duplications of a name are allowed. If more than 10 have occurred, the ERR flag is set.

5. If this element is not a dependent element (i.e., the first character is not D), step 5 is not performed. Otherwise Subroutine ASCAN is called to extract the Dependency Name. If the character following the Dependency Name is not a left parenthesis, a diagnostic is printed and control passes to step 2 where a new card is read. If the first letter of the Dependency Name is not V or I, a default is assigned and a diagnostic is printed. The Dependency Name is then entered into the DEP array.

6. Subroutine ASCAN is called once to extract the Origin number which is then entered into the ORIGIN array and then again to obtain the Target number which is entered into the TARGET array. In either case, if an
error is detected (FLAG = 1) or if there are more than two digits in the Origin or Target fields, a diagnostic is printed and step 2 gains control to read a new card. If the Origin or Target number is 0, a diagnostic is printed and the number is changed to 99. If the appropriate characters are not found after the Origin or Target nodes, diagnostics are printed.

7. Having reached this point an element is now entered permanently into the list of elements by incrementing NE, the number of elements. NNODES and INODE, the maximum and minimum node numbers, respectively, are set. Subroutine BSCAN and NUMBER are then called to obtain the element value. The characters following the Value field are checked to determine if a Units field is present. If it is not the one (that is, if the next character is blank), then the value in VPATH is not modified. Otherwise the value is multiplied according to the following units

- \(P\text{F} \): \(10^{-12} \)
- \(K \): \(10^3 \)
- \(M\text{F} \): \(10^{-6} \)
- \(M \): \(10^6 \)
- \(\text{MH} \): \(10^{-3} \)
- \(\text{MMF} \): \(10^{-12} \)
- \(\text{MMH} \): \(10^{-6} \)

Subroutine UNITS is called to write out the units detected. Then control is transferred to step 2 to read another card.

In general, Subroutine READ is fairly tolerant of mistakes in circuit description data. Diagnostics are printed whenever reasonable and defaults are supplied whenever possible.

After Subroutine READ returns to the Main program, Subroutine FINE is called to build a tree, if the heading card was a CIRCUIT card (TREE = 1). Essentially, the logic of building this tree is to take the user supplied frequency (written on the CIRCUIT card) and to evaluate the impedance of inductive and capacitive elements according to,

\[
X_c = \left| \frac{1}{j\omega c} \right| \quad X_L = \left| j\omega L \right|
\]
All elements are then ordered by their impedance magnitudes and the tree is built from elements having the lowest impedance, since these elements have the closest approximation to the impedance of a voltage source (i.e., 0 ohms). The value 9.9×10^{30} is used to represent ∞ (i.e., the impedance of a current source).

1. The first step in Subroutine FINE is to evaluate the impedance of each element (DO 1) and to store it in the array Z. The elements are then reordered by increasing values of Z. (DO 4). The number of nodes in the circuit is found, taking into account the possibility that they may not be numbered consecutively (DO 40).

2. All the TAGs are initially reset to 0 (to exclude all elements from the tree). The first element is then entered into the tree immediately. Then the elements are added to the tree one by one, each time checking that the added branches do not conform to closed loops (i.e., that it always remains a tree). As soon as all the nodes are connected, the ordered list of elements is printed and control returns to the calling program.

In this fashion, as many low impedance elements as possible are included in the tree according to the operating frequency defined by the user. This tree is more likely to result in a larger computation time and a greater number of First Order Loops in the Flowgraph when the Transfer Function is calculated. This is offset, however, by increased accuracy in the Transfer Function.

4.2.3 The Transfer Function

Evaluation of the Transfer Function involves calculation of the current equations for the circuit described employing the tree which has been supplied either by the user or derived by the program. From the current equations calculated by Subroutine CALC, Subroutine GRAPH builds the Flowgraph except for the closing transmittance. Each time a Transfer Function Request appears, Subroutine WHAT is called to obtain the closing
transmittance and Subroutine LOOPS is called to evaluate the Transfer Function from the loops in the flowgraph according to the Shannon-Happ formula. Finally, Subroutine ANSWER is called to normalize the Transfer Function and to print it.

The process of evaluating the Transfer Function involves the manipulation of individual bits in a word. The bit manipulation words are stored in an array of 3000 words in Common block BITS. In addition, these words are handled in blocks of varying size depending on the current value of NTIMES. For instance, if NTIMES is three, the blocks consist of three words each. Furthermore, the various routines involved in calculating the Transfer Function address the array in BITS differently. In order to facilitate the addressing and manipulation of these words, a set of six Bit Manipulation Utilities are provided.

1. Subroutine EQUAL (I, J, N, NTIMES) performs operation N (see LOR, LOX, LSTOR) on the blocks of bits identified by I and J and puts the result into block I. The size of the blocks is given by NTIMES (the number of words per block) while different addressing techniques are used depending on the signs of I, J and NTIMES:
 a. If NTIMES is positive and I, J are positive, then they refer to the Ith and Jth blocks in the BITS array.
 b. If NTIMES is positive and I, J are negative, then they refer to the I + 100th and J + 100th blocks.
 c. If NTIMES is negative and I, J are positive, then they refer to the Ith and Jth blocks from the high end of the BITS array.
 d. If NTIMES is negative and I, J are negative, then they refer to the Ith and Jth blocks in the BITS array as in case a.

2. Function LOR(I, J) performs a full-word logical OR on I and J and puts the result in I.

3. Function LOX (I, J) performs a full word logical AND on I and J and subtracts the result from both I and J.
4. Function \texttt{LSTOR} \((I, J)\) sets \(I\) equal to \(J\).

5. Subroutine \texttt{UNPAK}(I, J, NN) takes the block of bits identified by \(I\) (according to the same scheme as Subroutine \texttt{EQUAL}) and searches them starting at bit 1 and proceeding as far as bit NN. When the first 1 bit is found, Function \texttt{LOX} is used to reset it to 0 and the position of this bit is returned in \(J\). If no 1 bits are found, \(J\) gets the value 0.

6. Subroutine \texttt{INBIT}(I, J, NTIMES) takes the block of bits identified by \(I\) (according to the same scheme as Subroutine \texttt{EQUAL}) and sets the bit in position \(J\) to 1. If \(J\) is 0, all the bits in block \(I\) are reset to 0.

All the Bit Manipulation Utilities use only the low order 30 bits of a word. Thus on the IBM 360, the settings of the two high order bits are ignored throughout the bit manipulations. Subroutine \texttt{EQUAL} uses Functions \texttt{LOR}, \texttt{LOX} and \texttt{LSTOR} to perform certain operations. For further information on Functions \texttt{LOR} and \texttt{LOX} see Sec. 4.4.

Subroutine \texttt{CALC} is called by the Main program after the Circuit Description Data has been successfully analyzed. \texttt{CALC} calculates the current equations using Kirchhoff’s equations. At the same time the validity of the tree is checked. If the tree should prove to be invalid, a diagnostic is printed, the ERR flag is set, and control returns to the Main program.

1. Upon entry to Subroutine \texttt{CALC} a page is skipped and \texttt{NTIMES} is set according to the number of elements in the circuit (NE). \texttt{NTIMES} is increased by 1 for every 30 elements, i.e., each bit represents 1 element. The arrays \texttt{NEL} (Number of elements at node \(I\)), \texttt{NBR} (number of branches at node \(I\)) and the \texttt{LINKS} array (the Bit manipulation array in Common block \texttt{BITS}) are reset to 0. Then the \texttt{NEL} array is filled with the number of elements at each node, the \texttt{NBR} array is filled with the number of (tree) branches at each node, \texttt{NB} gets the number of branches in the tree, and by means of Subroutine \texttt{INBIT}, the \texttt{LINKS} array is set up as follows
(DO 1) Each block in the LINKS array represents a node. Each bit in the block represents an element not in the tree (i.e., a link). Blocks in the lower half of the array represent links leaving the node corresponding to that block. Blocks in the upper half of the LINKS array represent links arriving at the node corresponding to that block. Thus, each node has two entries in the LINKS array, one entry in the lower half of the array containing links directed away from the node, and one entry in the upper half of the array containing links directed towards the node. For example, if node 2 of a circuit has elements 1 and 2 directed away, element 1 being a voltage source (i.e., part of the tree), and element 3 directed towards, then block 2 of the LINKS array has bit 2 set while block (2+100=102) has bit 3 set.

2. The next step is to set up the NS and NQ pointers for the BRANCH list while checking the validity of the tree (DO 2). The BRANCH list contains the branches connected to each node, positive if the branch is directed towards, negative if the branch is directed away. NQ(I) points to the beginning of the list of branches for node I. For example, if node 1 has three branches and node 2 has two branches, then NQ(1) = 1, NQ(2) = 4, NQ(3) = 6. The number of nodes, NN, is also counted at this time. If any node has no elements connected to it, the node numbering was not sequential so a warning is printed. If any node has only one element connected to it, the ERR flag is set.

3. The number of branches, NB, is checked against NN, the number of nodes. For a legal tree NB must be exactly equal to NN-1. If this is not true, an appropriate diagnostic is printed and the ERR flag is set. At this point, a test of the ERR flag is performed, if it has been set, control returns to the calling program. Otherwise, the BRANCH list is filled (DO 7) as described in step 2, using NS as a set of temporary pointers.

4. This step performs the actual solution of the current equations which are now contained in the BRANCH and LINKS arrays. Each node
in the circuit has associated with it a current equation. The object is to express the current in each branch in terms of the current in the circuit links. Since there is one less branch than the number of nodes, there is an independent equation for each node except one. Thus, the equations of nodes with more than one branch are gradually reduced until each equation has only one branch. The solution is then complete.

The first step is to find a node with one branch (i.e., the first cut set) and the first node with more than one branch.

If none can be found, all the equations that could be reduced have already been reduced. If this is not every equation, the ERR flag is set, a diagnostic listing the nodes remaining to be reduced is printed, and control returns to the calling program. Otherwise, the remaining multi-branch nodes are checked against the single branch node just found and Subroutine EQUAL is called to either add or subtract the relevant equations (DO 26). The branch is removed from the list of branches at the multi-branch node and when all reductions have been performed, the single node associated with this branch is reset (i.e., NBR is reset to 0) to show that all possible reductions with this branch have been performed. Step 4 is repeated until every equation has been reduced (NBR(I) are all less than or equal to 1).

5. The current equations are printed by searching the BRANCH list for non-empty entries (i.e., where NQ(I) ≠ NQ(I+1)). When one is found, the branch is printed out along with the words from the LINKS array which constitute the current equation. For instance, the equation:

\[I_3 = I_1 - I_4 \]

would be printed as

3 2 16

This list is essentially for debugging purposes. After the current equations are printed, control is returned to the calling program.
The next step in Transfer Function evaluation is the construction of the Flowgraph. This is performed by Subroutine GRAPH which stores the Flowgraph in Common Block PATHS.

a. On receiving control, Subroutine GRAPH initially resets NPATH, the number of paths (or transmittances) in the flowgraph, to 0.

b. A Flowgraph transmittance is inserted for each element which is not an independent source (DO 100). If the element is passive, then the transmittance represents an impedance (if the element is a branch) or an admittance (if the element is a link). NPATH is incremented, the S entry is reset and LPATH is assigned. LPATH(I, 1) is the origin node of transmittance I, LPATH(I, 2) is its target node. Nodes with a number less than or equal to NE are the current nodes, nodes between NE+1 and 2xNE are voltages nodes. Thus if element 3 is an impedance, in a 10 element circuit its transmittance goes from node 3 to node 13 (i.e., the voltage node depends on the current node since \(V = IR \)) and there are 20 nodes in the Flowgraph. Admittances go from voltage to current nodes. A series of tests is performed on the element:

a. If it is a resistor branch, its VPATH value is unchanged, and its S value is 0 (Since it is not frequency dependent).

b. If the element is a resistor link, its admittance is \(\frac{1}{\text{VPATH}} \).

c. If it is an inductor branch or capacitor link, its S value is 1 and its VPATH value is unchanged since \(X_L = sL \) and \(Y_C = sC \).

d. If it is an inductor link or capacitor branch, its S value is -1 and its VPATH value is inverted since \(Y_L = \frac{1}{sL} \) and \(X_C = \frac{1}{sC} \).

3. If the element is a dependent source, a search of the list of element names in CARD is performed (DO 17) to find the name of the controlling element in DEP. If the element is not found, a diagnostic is printed and the element is treated as an independent source. Otherwise a transmittance is inserted from the voltage or current node of the controlling element (according to whether voltage or current dependence has been requested) to the voltage or current node of the dependent source (according to whether it is a voltage or current source).
4. Having completed the transmittances due to the elements, step 4 (DO 1) inserts the transmittances due to current and voltage equations. Although only the current relationships have been calculated, the voltage relationships may be easily obtained from them by a simple rule: If there is a current transmittance between two current nodes there is a corresponding voltage transmittance between the two corresponding voltage nodes. The direction of the voltage transmittance is opposite to that of the current transmittance. If it connects the nodes of two passive elements or two sources, its sign is opposite to that of the current transmittance.

![Flowgraph](image)

Figure 4.3

For example, given the current relationships of Flowgraph (Figure 4.3) the voltage relationships may be easily determined as shown in (b). These Flowgraphs represent the current equations

\[I_1 = I_2 \quad I_3 = -I_2 \]

This method is implemented by searching the BRANCH list for non-empty entries. For each non-empty entry, which represents a branch, Subroutine UNPAK is used to search the corresponding LINKS (alias LBITS) entries for 1 bits. The lower half is searched first for positive links, and when UNPAK returns 0 indicating there are no more 1 bits in the word, the search is switched to the upper half of LINKS which contains negative links.
The transmittances are inserted two at a time (i.e., both current and voltage transmittances are added simultaneously). The S value of these relationships is 0 since they are obviously not frequency dependent. The VPATH values are either +1 or -1 determined as described earlier.

5. Having completed the Flowgraph (except for the unknown transmittance) control returns to the calling program.

The Flowgraph resides in Common block PATHS until a Transfer Function Request is read. Subroutine WHAT is called by the Main program to obtain the closing (unknown) transmittance by analyzing the Transfer Function Request which is in the form

\[
\text{TYPE NAME 1 / TYPE NAME 2}
\]

Subroutine WHAT makes use of the Card Scanning Utilities described in Sec. 4.2.2.

1. Upon receiving control, Subroutine WHAT copies the Flowgraph from its permanent storage in Common block PATHS into an array in Common block BITS (DO 18). Subroutine ASCAN is then called to find the slash which divides the Output field from the Input field. If none is found, the ERR flag is set, a diagnostic is printed and control returns to the calling program. Otherwise the CARD array is searched (DO 2) for the name in the Output field of the Transfer Function Request. If it is not found, a diagnostic is printed, the ERR flag is set, and control returns to the calling program.

2. If the first letter in the Output field (TYPE NAME 1) is not V or I, a diagnostic is printed and defaults are assumed if the element is a branch the default is I (since a branch has independent current), for a link, V is assumed. The unknown transmittance is connected from the voltage or current node (according to the V or I) of the element in the Output field.

3. In a procedure similar to steps 1 and 2, Subroutine ASCAN is called to find the blank at the end of the Input field. If the blank cannot be
found, the error return is taken. Otherwise a search is made for the element name (DO 10), defaults are used for V or I, if necessary, and the transmittance is connected to the voltage or current node of the element in TYPE NAME 2. Subroutine WHAT then returns control to the calling program.

Subroutine WHAT makes no check on the validity of the Transfer Function Request. Only syntax and the legality of the element names are checked. For example,

VR2/VV7 could be a valid request but VR2/IV7 is not, because the voltage across V7 is an independent variable but the current is not. The Transfer Function resulting from the second example will be 0 or meaningless.

After Subroutine WHAT has returned control and the Main program has inserted the Flowgraph in bit representation in Common block BITS using Subroutine INBIT (DO 18), Subroutine LOOPS6 gains control to perform the actual calculation of the Transfer Function from the flowgraph according to the Shannon-Happ formula:

\[1 - \Sigma L_1 + \Sigma L_2 - \Sigma L_3 + \cdots = 0 \]

where the \(L_i \) represent the sums of the values of the loops of order \(i \). A loop of order 1 (First Order Loop) is a Simple Directed Loop defined as a closed path consisting of a sequence of transmittances taken in the direction of the arrow. The sequence must be taken such that no node is traversed more than once in the closed path. The value of the directed loop is the product of the transmittances forming the directed loop. An \(N \)th order loop is composed of \(N \) disjoint First Order Loops, that is, none of which have any nodes in common. The value of an \(N \)th order loop is the product of the \(N \) First-Order Loop values comprising the \(N \)th order loop.

In order to illustrate the operation of Subroutine LOOPS the example Flowgraph shown in Figure 4.4 is employed.
Note that the transmittances joining nodes 1 and 2, and nodes 6 and 7 have the same sign. This flowgraph is represented in the LPATH, VPATH and S arrays of Common block BITS, as shown.

<table>
<thead>
<tr>
<th>I</th>
<th>LPATH(I, 1)</th>
<th>LPATH(I, 2)</th>
<th>VPATH(I)</th>
<th>S(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>3</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1000</td>
</tr>
</tbody>
</table>

NPATH = 13
In addition, the information stored in the LPATH array is also stored in Common block BITS (array LOOP) in a different form.

<table>
<thead>
<tr>
<th>I</th>
<th>LOOP(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>$2^2 + 2^7 = 132$ (Since NTIMES = 1, each transmittance and each loop is contained in only 1 word.)</td>
</tr>
<tr>
<td>2999</td>
<td>$2^8 + 2^3 = 256$</td>
</tr>
<tr>
<td>2998</td>
<td>$2^7 + 2^9 = 640$</td>
</tr>
<tr>
<td>2997</td>
<td>$2^5 + 2^{10} = 1024$</td>
</tr>
<tr>
<td>2996</td>
<td>$2^1 + 2^2 = 6$</td>
</tr>
<tr>
<td>2995</td>
<td>$2^7 + 2^6 = 192$</td>
</tr>
<tr>
<td>2994</td>
<td>$2^3 + 2^2 = 12$</td>
</tr>
<tr>
<td>2993</td>
<td>$2^7 + 2^8 = 384$</td>
</tr>
<tr>
<td>2992</td>
<td>$2^3 + 2^4 = 24$</td>
</tr>
<tr>
<td>2991</td>
<td>$2^9 + 2^8 = 768$</td>
</tr>
<tr>
<td>2990</td>
<td>$2^1 + 2^5 = 34$</td>
</tr>
<tr>
<td>2989</td>
<td>$2^{10} + 2^6 = 1024$</td>
</tr>
<tr>
<td>2988</td>
<td>$2^6 + 2^1 = 66$</td>
</tr>
</tbody>
</table>

Subroutine LOOPS receives these data as input and using the Shannon-Happ formula, the Transfer Function is calculated and stored in the VN array in Common block CIRCIT. VN(I, 1) is the value of the coefficient of the $(I - 51^{th})$ power of S in the denominator. VN(I, 2) is the negative of the value of the coefficient of the $(I - 51^{th})$ power of S in the numerator. SMAX(J) and SMIN(J) are the highest and lowest powers of S in VN(I, J). For example, a Transfer Function such as $\frac{1}{1+2S}$ would be stored as

- SMAX(1) = 1
- SMIN(1) = 0
- VN(51, 1) = 1
- VN(52, 1) = 2
- SMAX(2) = 0
- SMIN(2) = 0
- VN(51, 2) = -1

The LOOP array is used in two ways: the low end is used to store First Order Loops and Higher Order Loops during evaluation; the high end is used to store the Flowgraph Transmittances. Thus, as data are
removed from the high end and transformed, it is reinserted into the low end. Other important variables used in Subroutine LOOPS are the arrays V and LS which contain the values and powers of S of flowgraph loops. These arrays are in Common block SPEED which is used elsewhere as workspace. Subroutine CLEAR is used to remove transmittances which have been marked deleted (i.e., LPATH(I, 1) = 0) from the list of paths.

1. The first step in Subroutine LOOPS performs initialization by resetting important program variables to 0. NN, the number of flowgraph nodes is set to 2 x NE (the number of elements) since each element has 2 nodes (voltage and current) in the flowgraph. NLOOP, the number of loops is reset to 0. VN(51, 1) is set to 1; this is one of the Shannon-Happ formula. The NODE(J) and COUNT(J) arrays (which contain the number of transmittances arriving at and leaving node J) are set up (DO 1).

2. The first step in the algorithm is the elimination of all nodes having only one transmittance directed away (i.e., COUNT = 1) since every transmittance entering this node must ultimately exit through the one leaving transmittance. This transmittance is attached to the end of each entering transmittance (DO 3) by changing the terminating node (LPATH(I, 2)) and calling Subroutine EQUAL to 'OR' in the bits common to both paths. The leaving transmittance is then deleted (LPATH(I, 1) = 0).

At this point the data for the example flowgraph would appear as follows

<table>
<thead>
<tr>
<th>I</th>
<th>LPATH(I, 1)</th>
<th>LPATH(I, 2)</th>
<th>VPATH(I)</th>
<th>S(I)</th>
<th>LOOP(3001-I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>$2^2 + 2^7$</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0.1</td>
<td>0</td>
<td>$2^3 + 2^8$</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>$2^3 + 2^7 + 2^8 + 2^9$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>$2^5 + 2^{10}$</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>$2^1 + 2^2 + 2^7$</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>$2^1 + 2^6 + 2^7$</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>0</td>
<td>$2^2 + 2^3 + 2^7$</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>3</td>
<td>-0.1</td>
<td>0</td>
<td>$2^3 + 2^7 + 2^8$</td>
</tr>
</tbody>
</table>
3. A check is now performed (DO 6) for First Order Loops that may have been created. These are recognized by having identical LPATH entries (i.e., LPATH(I, 1) = LPATH(I, 2), e.g., entry 11 above). Each time one is found, it is stored in the lower half of the LOOP array by means of Subroutine EQUAL and its value is stored in V and LS. NLOOP is incremented. The LPATH entry is marked deleted and the loop is printed, (as a debugging aid). The DO 11 then marks all nodes which have only leaving or only arriving transmittances as deleted since they obviously cannot be contained in any loops. (Entry 9 in the example). Subroutine CLEAR is called to remove deleted entries. Now the data looks like this:

4. If the number of paths remaining (NPATH) is 0, this step is not performed. Otherwise this step combines the remaining paths to generate more First Order Loops. The method is to combine path 1 with path 2 if possible. If this combination is a legal loop, it is stored in the low end of
LOOP. If it is a legal path, it is combined with path 3 and testing continues. If it is not a legal path, the combination 1 and 3 is tested. After the combination of 1 and NPATH has been tested, the procedure begins again with 2 and 3, 2' and 4 and so on until NPATH - 1 and NPATH is reached. During this process all paths are kept in LPATH and the high end of LOOP ORDER(1) is the number of the current transmittance which is being tested against ORDER(2). The ORDER(1) contains the numbers of all the paths from 1 to I being tested. The testing consists of the following:

a. The beginning node of the first path is checked against the ending node of the second. If they are not the same, they cannot be combined (e.g., entries 1 and 3 in the example), so the test fails.

b. The two blocks in LOOP are ANDed and Subroutine UNPAK is called to find the nodes that are common to both.

c. If the ending node of the first path is not the same as the beginning node of the second, this cannot be a loop but it might be a new legal path so test is performed.

d. If N3 is non-zero, there are more than two nodes in common so this cannot be a legal combination - the test fails.

e. If the nodes in common (N1, N2) are the beginning and ending nodes of the two paths, this is a new First Order Loop. It is inserted by incrementing NLOOP and calling Subroutine EQUAL.

f. If more than one node is in common (N2, N3 ≠ 0), this cannot be a new legal path so the test fails. Otherwise Subroutine EQUAL is called to insert the new path and I is incremented so that testing will continue with this latest path.

This step ends when ORDER(1), the pointer to the lowest level path, is pointing to NPATH, the last path.

In the example the following results are obtained from applying these tests.

a. 1 and 2 from a new legal path. This cannot be combined with 3 because node 7 is traversed twice. 1 and 4 however produce a new First Order Loop.
b. 2 and 3 form a new First Order Loop.

c. 3 and 4 form a new path. This new path cannot be combined with 5 because node 7 is traversed twice.

d. 4 and 5 form a new First Order Loop.

Now the data has been changed to First Order Loops.

<table>
<thead>
<tr>
<th>I</th>
<th>LOOP(I)</th>
<th>V(I)</th>
<th>LS(I)</th>
<th>NLOOP = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2^1 + 2^5 + 2^6 + 2^10</td>
<td>10</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2^2 + 2^3 + 2^7 + 2^8 + 2^9</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2^1 + 2^2 + 2^6 + 2^7</td>
<td>10</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2^2 + 2^3 + 2^7 + 2^8</td>
<td>-1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

These First Order Loops may be easily verified by examining the Flowgraph. Notice that the order of the nodes in the loops is irrelevant for the purposes of the program.

5. The values of the First Order Loops are now entered (DO 25) into the Transfer Function array VN according to the Shannon-Happ formula. Tagged values (LS > 500) have the tag of 1000 subtracted and are then entered into the numerator VN(I, 2) instead of the denominator VN(I, 1). The number of First Order Loops is then printed and the calculation of Higher Order Loops is ready to begin.

6. The procedure for the generation of Higher Order Loops is essentially the same as that for generating First Order Loops described in step 4; that is, loop 1 is compared with loop 2. If this creates a new Higher Order Loop, then the value of the new loop is entered into the VN array and it is checked against loop 3 for the possibility of a still higher order loop. When all combinations with loops 1 and 2 have been tried, combinations of 1 and 3 are tried, then 1 and 4 and so on until 1 and NLOOP. Processing then continues with 2 and 3, 2 and 4 and so on. As before, ORDER(1) points to the lowest level loop so that each time it is incremented it is written out, thus serving as a guide to how much
processing remains to be done. (Since this step is often the most time consuming part of the entire NASAP program, this information is very useful). As soon as ORDER(1) is equal to NLOOP, processing is complete and control returns to the calling program with the Transfer Function now in array VN. In the example, Higher Order Loop evaluation would proceed as follows

a. 1 and 2 form a Second Order Loop, its value is entered
(100S^1001) and it is checked against 3 (failure, i.e., M1 \neq 0 because nodes 1, 2, 6, 7 are common to both) and 4 (failure).

Then 1 is checked against 3 (failure) and 4 (success, value \(-10S^{1001}\)).

b. 2 and 3 fails, 2 and 4 fails.

c. 3 and 4 fails.

In several places, instead of manipulating entries in LOOP by means of Subroutine EQUAL, the manipulations are performed directly in Subroutine LOOPS by means of the Equivalence array LOGIC (See Sec. 4.4). This is because in frequently executed statements the time required for execution of the subroutine linkage becomes significant. This is especially true in the ANDing of Higher Order Loops which can increase rapidly with the number of First Order Loops.

With the Transfer Function now in array VN, Subroutine ANSWER is called to format the raw form in VN, normalize it and print it out.

1. Upon entry Subroutine ANSWER writes the page heading on the output. Then VM, the array containing the Function after normalization, is created (DO 2).

2. The arrays NEXP (containing powers of S), AS and ASIGN (containing arithmetic signs) are created (DO 40).

3. The arrays are written out (except for zero coefficients) and the line dividing numerator and denominator is printed to the proper length.
4. Finally the factor after normalization is printed. (Also, as a debugging aid, the original VN array is printed). Control then returns to the calling program. This completes the description of the basic NASAP-70 Transfer Function algorithm. The routines described may be modified by the addition of other options (particularly the Sensitivity and Worst Case option). Nevertheless the basic algorithm remains the same.

4.2.4 Sensitivity and Worst Case

The Sensitivity and Worst Case option involves additions to the basic algorithm for finding the Transfer Function. The basic formulas used for evaluation of the Sensitivity Function, Worst Case Tolerance and Pole Sensitivity are:

FORMULAS USED

SENSITIVITY FUNCTION

\[
S_P^Q = \frac{d\ln(P)}{d\ln(Q)} = \frac{H(P', Q)}{H(P')} - \frac{H(P, Q)}{H(P)} = \frac{H(P)H(P', Q) - H(P')H(P, Q)}{H(P')H(P)}
\]

WORST CASE TOLERANCE

\[
T_p = \left[\frac{\partial P}{\partial Q_1} Q_1^2 + \cdots + \left(\frac{\partial P}{\partial Q_n} Q_n \right)^2 \right]^{1/2}
\]

or

\[
TP/P = \left[\sum_{1=1}^{n} \left(\frac{dQ_1}{Q_1} \right)^2 \right]^{1/2}
\]

\[Q = \text{circuit element value}\]

\[P = \text{dummy transmittance}\]
POLE SENSITIVITY

\[\frac{dS_i}{dQ} = \frac{-KD(S)}{\partial S [C(S)+KD(S)]} \quad S=S_i \]

where Transfer \(F_n = \frac{A(S)+KB(S)}{C(S)+KD(S)} \), \(K \) = circuit element value, and \(S = \) a pole

\[= \frac{-Q H(P',Q')}{\partial S [H(P)]} \quad S=S_i \]

In response to reading a card following the Circuit Description and before the first Output Requests section, beginning with the letters SENS, Subroutine SENSIT is called. If the card begins with WORS Subroutine WORST is called. Subroutine SENSIT and WORST make use of the Card Scanning Utilities described in Sec. 1.2.2.

Subroutine SENSIT processes Sensitivity Request cards which have the form:

\[\text{SENSITIVITY} = \text{Element Name} \]

1. Upon entry Subroutine SENSIT calls Subroutine ASCAN to find the equals sign. If one is not found, a diagnostic is printed and step 5 gains control to read a new card.

2. A search of the CARD array is performed (DO 4) in order to find the Element Name. If it is not found, a diagnostic is printed and step 5 gains control.

3. Otherwise the element is rejected with a diagnostic if it is an independent source, if more than 20 Sensitivity Requests have been made, or if it is another Sensitivity Request for the same element, and step 5 gains control.

4. Having passed all these tests the element is inserted in the list of Sensitivity Requests by incrementing NSEN, the number of Sensitivity.
Requests and by assigning a TAG value to the SENS entry for this element. NSEN, SENS and TAG are in Common block GAG. SENS(I) contains the value of the sensitivity tag assigned to element I from the list of 20 tags, TAG. These tag values are used later to identify various loops during the evaluation of Higher Order Loops in Subroutine LOOPS, and Subroutine REDUCE.

5. A new card is read and Subroutine SHIFT is called. If it is not a Sensitivity Request card control returns to the calling program. Otherwise the card is printed and step 1 regains control to continue processing.

If Subroutine WORST is called, Sensitivity Requests are inserted for each valid request. Thus, if more than 20 Sensitivity Requests results NFLAG is set and the Worst Case Request is ignored.

1. Initially Sensitivity Requests are inserted for all valid elements (i.e., not independent sources) in the DO 1. This is done by inserting a TAG value in SENS(I) for element I.

2. If the number of Sensitivity Requests resulting is greater than 20, NFLAG, an error flag internal to Subroutine WORST, is set and a diagnostic is printed. Otherwise, NWORST, the flag which indicates the Worst Case option has been requested, is set, and the TOL(I) array which contains the Tolerance value for element I is initialized to 0.1.

3. This step looks for cards of the form

\[\text{TOL} = \text{Element Name} = \text{Value} \]

A new card is read and Subroutine SHIFT is called. If the card begins with TOL and NFLAG \(\neq 1 \) (which would indicate that Worst Case analysis has been aborted) then Subroutine ASCAN is called to find the element name which is checked against the list in CARD. If there is no matching element name a diagnostic is printed and step 3 is repeated. Otherwise Subroutine ASCAN and NUMBER are called to determine the Tolerance Value which is inserted in TOL(I) for element I. Then step 3 is repeated.
If NFLAG is 1, the Tolerance Cards are read in step 3 but no other action is taken.

4. If step 3 encounters a card not beginning with TOL and NFLAG is not 1, the table of Tolerance Values is printed. Control then returns to the calling program.

Once the Sensitivity Tags have been inserted in the SENS list then, as the Flowgraph is built by Subroutine GRAPH, the tags are inserted in the S array for each Flowgraph transmittance. Then, in order to write out the correct power of S for each Flowgraph transmittance, these tags must be temporarily removed. This is done by calling Subroutine REDUCE for each transmittance before it is printed by the Main program.

Subroutine REDUCE (I, J, K) removes the tags from the S or LS array. I is the entry in the S or LS array. J is the true power of S returned by Subroutine REDUCE after all the tags have been removed. K is set to 1 if the entry does not contain the dummy transmittance and to 2 if it does.

1. Upon entering Subroutine REDUCE, K is set to 1 and J is set to I. If no Sensitivity Requests were made (NSEN = 0) and step 3 gains control.

2. If Sensitivity Requests were made, these tags are removed in the DO 1 loop. Since the Sensitivity Tags start from 2000 and go up, and since it is necessary to remove the largest tags first, the DO 1 loop is executed from L = 21 - NSEN to 20 and 21-L is used as the index of the TAG array. For example, if two elements are tagged M=21-2=19 then L goes from 19 to 20, i.e., 21-L goes from 2 to 1. An entry contains a tag if the value (with all higher tags removed) is greater than the tag less 500. If it is greater, the tag is subtracted and the search continues.

3. J is checked for the presence of the unknown transmittance tag (1000). Thus if J is greater than 500, 1000 is subtracted from J and K is set to 2.
Processing continues as normal until the steps in Subroutine LOOPS which insert values of First and Higher Order Loops into various arrays. The method of inserting values into VN, the Transfer Function array, has already been described (Sec. 4.2.3). The Sensitivity Functions now involve three additional arrays: VN00, VN01 and VN10 which represent $-H(P, Q)$, $H(P, Q)$ and $-H(\overline{P}, Q)$ in the formulas described previously in this section. The insertion of these values is performed by DO 979 and DO 799 in Subroutine LOOPS. Subroutine REDUCE is called to extract the pertinent tags and the values are inserted in the correct Sensitivity Function arrays based on these tag values. Thus, when Subroutine LOOPS returns control, not only has the Transfer Function been inserted in VN, but also the Sensitivity Functions have been entered into VN00, VN01 and VN10.

After Subroutine LOOPS has returned and Subroutine ANSWER has printed out the Transfer Function, if NSEN is non-zero (indicating the presence of Sensitivity Functions) then Subroutine SENSC is called.

Subroutine SENSC forms the Sensitivity Functions from polynomials produced by Subroutine LOOPS. The Sensitivity Function is equal to

$$\frac{H(P) H(P, Q) - H(P) H(\overline{P}, Q)}{H(P)}$$

where the H functions are stored as follows

- $H(P)$: VN(L, 1)
- $H(P, Q)$: VN01(I, J)
- $-H(\overline{P}, Q)$: VN00(I, J)

J is the element whose sensitivity is being found.

In many cases, $H(P, Q)$ (VN01) is 0 in which case the Sensitivity Function reduces to

$$\frac{-H(\overline{P}, Q)}{H(P)}$$

1. Upon entry to Subroutine SENSC, the DO 305 loop is executed for each circuit element checking to see if it was tagged for sensitivity
(SENS(I)=0). If it was tagged the following steps are performed, otherwise the succeeding element is checked. When all the elements have been checked control returns to the calling program.

2. The DO 306 loop determines the sensitivity number of the element (I). Then the DO 701 loop checks the VN01 array. If it is completely 0, the simplified formula above may be used so VNSEN, the array containing the Sensitivity Function is filled with the appropriate coefficients (DO 703) and Subroutine ANSWER is called to print out VNSEN.

3. If VN01 is not completely 0, then the standard formula must be used to compute VNSEN. Thus Subroutine MULT is called once to multiply VN(I, 1) and VN01(I, II) and again to multiply VN(I, 2) and VN00(I, II) and the results are added, (DO 702) to form the Sensitivity Function numerator. Then Subroutine MULT is called again to multiply VN(I, 1) and VN(I, 2) to form the denominator and then Subroutine ANSWER is called to print VNSEN.

Thus, upon termination of Subroutine SENSC, the information in VN, VN00, VN01 and VN10 has been converted to a set of Sensitivity Functions stored in VNSEN and VN00, VN01 and VN10 are no longer needed. Subroutine SENSC (and also Subroutine WORSTC below) make use of Subroutine MULT(A, B, C, MINA, MAXA, MINB, MAXB). This Subroutine multiplies the two polynomials A, B and puts the result in C. MINA, MAXA and MINB, MAXB are the minimum and maximum powers in polynomials A and B. A, B, C are arrays of length 101 and the index is 51 plus the power of the term. Array C is reset to 0 before multiplication occurs.

After Subroutine SENSC returns control to the Main program, the information in VNSEN is copied from Common block BITS into Common block POLY. This is to release the area in BITS for use as a workspace for use in later routines (e.g., the Plotter). If NWORST is non-zero, a Worst Case has been requested so the Main program calls Subroutine WORSTC.
Subroutine WORSTC computes the square of the Worst Case Tolerance function from the Sensitivity Functions and Tolerances for the elements. This function becomes

\[T_{P/P} = \left[\sum_{i=1}^{n} \left(\frac{P Q_i}{Q_i} \right)^2 \right]^{1/2} \]

The Sensitivity Function for an element can be in one of two forms,

\[S_{Q_1}^P = \frac{A(s)}{H(P)} \quad \text{or} \quad S_{Q_1}^P = \frac{B(s)}{H(P) H(P)} \]

where \(A(s) \) and \(B(s) \) are polynomials in \(S \). Therefore two separate sums are kept, one of \((A(s) \frac{dQ_i}{Q_i})^2 \) and one of \((B(s) \frac{dQ_i}{Q_i})^2 \) and these are combined and put with the proper denominator to produce the square of the function.

1. Upon entry Subroutine WORSTC checks each element to see if a Sensitivity Function exists for that element (DO 10). If a Sensitivity Function exists (SENS(I) \neq 0), then the Tolerance for that element (TOL) is squared and Subroutine MULT is called to square the Sensitivity Function numerator of that element (VNSEN(I, 2, J).

2. The denominator of the Sensitivity Function is now checked (DO 20) to see if it is the same as the Transfer Function denominator. If it is, the squared tolerance (TOL1) and the squared Sensitivity Function numerator (VWORKN) need only be multiplied and added to VW1. If it is not, NDEM is set to 1 and the result of the product is put in VW2.

3. If NDEM is 0, the simplified formula:

\[\frac{VW1}{VN(I, 1)^2} \]

may be used, so VW1 is put into the numerator of VW(DO 40) and Subroutine MULT is called to square VN(I, 1) and enter it in the denominator,
VW(I, 1). If NDEM is non-zero, the standard formula
\[
\frac{VW2 + VW1 \times VN(I, 2)^2}{VN(I, 2)^2 \times VN(I, 1)^2}
\]
must be used. Thus Subroutine MULT is called once to square VN(I, 2) into VWORKN and again to multiply VWORKN and VW1 into the numerator of the Worst Case Function VW(I, 2). Then VW2 is added into the numerator (DO 31). Finally Subroutine MULT is called to multiply VN(I, 1) and VN(I, 2) into VWOKRN and again to square VWORKN into VW(I, 1), the Worst Case Function denominator.

4. The maximum and minimum powers of S in the Worst Case Functions are determined and control then returns to the calling program.

When Subroutine WORSTC returns control, the Main program calls Subroutine ANSWER to print out the Worst Case Function.

The last subprogram of the Sensitivity and Worst Case option is Subroutine POLSEN. This subroutine evaluates the sensitivities of the Poles of the Transfer Function (determined by Subroutine ROOTS described in Sec. 4.2.6) to variations in a circuit parameter. Subroutine POLSEN is called by the Main program when a card of the form

ROOTS, POLES

is read. Subroutine POLSEN then analyzes the roots found by the preceding call to Subroutine ROOTS.

1. If the Poles have not yet been found (NPOLES=0) or there is no Sensitivity Request (NSEN=0), Subroutine POLSEN prints a diagnostic and returns to the calling program.

2. The derivative of the denominator of the Transfer Function is found (DO 5) and stored in VDERIV. This is evaluated at the Real and Imaginary parts of the Poles and is stored in C(Real) and D(Imaginary).
3. For each element, tagged for Sensitivity Analysis, the numerator of the Root Sensitivity Function, \(-QH(\mathbf{F}, Q) (VN10)\) is evaluated at each Pole and then Real and Imaginary points are stored in X and Y. The Real and Imaginary parts of the Pole Sensitivity X/C(L) and Y/D(L) are evaluated and printed.

4. Subroutine Polsen then returns control to the calling program.

Two other routines, Subroutines PLOT and INVERT, of the Plotter also contain some code in connection with the Sensitivity and Worst Case option. These subprograms are described in the following Section 4.2.5.

4.2.5 The Plotter

NASTAP-70 is equipped with extensive plotting capabilities for analysis of the Transfer Function and Sensitivity Functions. When a card beginning PLOT is encountered among the Output Requests, the Main program calls Subroutine PLOT to analyze this card and providing that the analysis of this card was successful (ERR \(\neq 0\)), Subroutine INVERT is called to initiate the plotting. If the plot card TYPE option is FREQ or REAL, the calculation of the points to be plotted is handled entirely within Subroutine INVERT. Any other TYPE option constitutes a call to the Fast Fourier Transform routines. After the points have been calculated, Subroutine PRTPLT writes out the plotted points. (BMOD and AMOD below are fixed and floating point names for the internal plotter option list).

1. Subroutine PLOT initially sets the BMOD list (the internal list of options) to -1 which indicates that the option did not appear on the PLOT card. Subroutine ASCAN is called to find the Left Parenthesis of the PLOT card which should be of the form:

\[
\text{PLOT(Option = Value/Option = Value/Option = Value...)}
\]

If a Left Parenthesis is not found Subroutine MSG is called to print a diagnostic. Subroutine ASCAN is called repeatedly until a Left Parenthesis or a Slash is found. If a Blank is found step 6 gains control to fill in
options which are required by the Plotter but were not specified by the user.

2. Subroutine ASCAN is called to find the equal sign. If an equal sign is not found, Subroutine MSG is called to print a diagnostic. If a Blank or a Right Parenthesis is found, step 6 gains control. If a Slash is detected, step 2 is repeated. At this point, the Option field has been found.

3. Subroutine ASCAN is called to find the Value field. If the first 2 letters in the Option field are TY then BMOD(3) (known elsewhere as NTYPE), the internal code which tells the plotter which type of plot has been requested, is set according to the first 2 letters in the Value field:

 IM 0
 ST 1
 EX 2
 SI 3
 FU 4
 FR 5
 SE 6
 WE 7
 RE 9

 If this is the end of the PLOT card (B is a Blank or a Right Parenthesis), then step 6 gains control. Otherwise step 2 regains control to get the next Option.

4. If the first 2 letters of the Option field are EL, this option is connected with the Sensitivity and Worst Case Option. Thus, the CARD and SENS arrays are searched (DO 31 and DO 37) to match the element name in the Value field and obtain the Sensitivity Tag associated with it. If such a match cannot be obtained, a diagnostic is printed, the ERR flag is set and control returns to the calling program. Otherwise, if this is the end of the PLOT card then step 6 gains control, else step 2 regains control.

5. If this step is reached, the first 2 letters of the Option field are not TY or EL so the Value field contains a number. Hence, Subroutine NUMBER is called to find the number in the Value field. This number is inserted into the correct variable according to the first 2 letters in the Option field.
ST STEP (AMOD(1), the interval between successive plot points)
TI TOTEE (AMOD(2), the interval between the first and last points plotted)
AM AMP1 (AMOD(4), the positive portion of a pulse train)
BI AMP2 (AMOD(5), the negative portion of a pulse train)
CO FREQ1 (AMOD(6), \(a e^{at} \))
CY FREQ1 (AMOD(6), \(f \sin 2\pi ft \))
FR FREQ1 (AMOD(6), starting point for frequency and real plots)
TO FREQ2 (AMOD(7), ending point for frequency and real plots)
WI FREQ2 (AMOD(7), pulse width for a pulse train)
DE N_PLOT (BMOD(8), number of calculated points per printed point)

Then, if the end of the PLOT card has not been reached control returns to step 2.

6. This step completes user options which were not specified, with default values. If an option has not been specified, BMOD IS still -1. If BMOD(3) is more than 5 (i.e., not a Time Response) then these defaults are used:

```
FREQ1 (AMOD(6)) 1
FREQ2 (AMOD(7)) .10^6
STEP (AMOD(1)) \( \frac{FREQ2}{FREQ1} \)
```

If BMOD(3) (NTYPE) is less than 6 and then

If STEP and TOTEE (AMOD(1) and AMOD(2)) are both unspecified,

```
STEP .01 TOTEE 1.0
STEP (AMOD(1)) TOTEE/100
TOTEE (AMOD(2)) . STEP X 100
```

If AMP2 (AMOD(5)) was specified, AMP1 is biased accordingly.

```
FREQ1 (AMOD(6)) 1.0
```

If FREQ2 (AMOD(7)) was specified, NTYPE is set to 5 to indicate a Pulse Train.
7. In all cases, if DEN (BMOD(8)) was unspecified, it is set to 1.

1. If BMOD(3) is 7 (Sensitivity Plot), the arrays containing the numerator (A1) and denominator (B1) of the function to be plotted are filled with the correct Sensitivity Function (DO 50) and a heading is printed. If BMOD(3) is 8 (Worst Case Plot), the arrays are filled with the Worst Case Function and a heading is printed. For all other values of BMOD(3), the arrays A1 and B1 are filled with the Transfer Function. Subroutine PLOT then returns control to the calling program.

Assuming the analysis of the PLOT card was successful (ERR ≠ 1), Subroutine INVERT is called to initiate the plotting process.

1. Upon entry, Subroutine INVERT resets NFLAG (the remainder indicator) to 0, sets STEP to 1 if it was negative, and evaluates NUMTI, the number of points to be plotted. Then, if a Time Response has been requested (NTYPE less than 6), Subroutine INPUT is called to evaluate the transform of the response. Then, in the case of a Time Response, the function to be plotted in A and B is checked. If it is too simple, a diagnostic is printed and the plot is aborted. If it is not rational, the numerator is divided by the denominator and the remainder of this division is used as the function to be plotted. A message to this effect is printed and NFLAG is set to 1.

2. The function in A and B is printed and if NTYPE is less than 6 (a Time Response), the plot axes (ABSC and ORD) are marked 'TIME' and 'MAG' and Subroutine SCALE, ROUTH, SAMPLE, FLIP and ADJUST are called to perform the Fast Fourier Transform. Control then returns to the calling program.

3. In cases where a Time Response has not been requested (NTYPE greater than 5) a further test is made. If NTYPE is not 9 (a REAL plot), NUMTI is calculated for a logarithmic plot instead of a linear plot. Then the points are calculated (DO 4) and entered into the TEE, FCTN (and PH when NTYPE is not 9) arrays. For a REAL plot, the real part of Z,
(i.e., \(\theta \)) is incremented in linear steps. Otherwise, the imaginary part of \(Z \) (i.e., \(jw \)) is incremented in logarithmic steps).

4. After the points have been calculated, ABSC and ORD are labelled 'FREQ' and 'MAG', and Subroutine PRTPLT is called to output the points. In the case of a REAL plot, the Phase must always be 0 so if NTYPE is 9, Subroutine INVERT returns control here. Otherwise, ORD is labelled 'PHA', FCTN is filled with the points from PH and Subroutine PRTPLT is called again before control returns to the calling program.

In the case of Time Response plots (NTYPE less than 6) Subroutine INPUT is called by Subroutine INVERT to evaluate the transform of the response:

1. Upon entry, Subroutine INPUT prints out the quantities associated with each type of plot according to NTYPE.

2. The Transform of the response is calculated as follows:

 NTYPE = 0 **Impulse Response**. No change is required since \(F(jw) = 1 \).

 1 **Step Response**. \(F(jw) = \frac{1}{jw} \) so B, the denominator, is multiplied by \(jw \).

 2 **Exponential**. \(F(jw) = \frac{1}{jw-FREQ1} \) so B is multiplied by \((jw-FREQ1) \).

 3 **Sine Wave**. \(F(jw) = \frac{2\pi x FREQ1}{(jw)^2 + (2\pi x FREQ1)^2} \) so B is multiplied by \((jw)^2 + (2\pi x FREQ1)^2 \) and SCMAG is multiplied by \((2\pi x FREQ1) \).

 4 **Single Pulse**. \(F(jw) = \frac{1}{jw} (1-e^{-jwFREQ2}) \) so B is multiplied by \(jw \) and the tags ISN and NTAY are set to indicate that the factor \((1-e^{-jwFREQ2}) \) is to be included.

 5 **Pulse Train**. \(F(jw) = \frac{1}{jw} (1-e^{-jwFREQ2}) (e^{-jwFREQ1}) \) so B is multiplied by \(1/jw \) and the tags NTAY and ISN are set to show that the additional factors must be included later.

3. After the correct transform has been calculated, Subroutine INPUT returns control to the calling program.

4-44
Later on, Subroutine INVERT begins the Fast Fourier Transform, by calling Subroutine SCALE:

Subroutine SCALE simply readjusts the values of the Fourier Transform coefficients (in A and B) to avoid Floating Point Overflow. Control then returns to the calling program.

The next step in the Fast Fourier Transform is to call Subroutine ROUTH. Subroutine ROUTH uses Subroutine CALCR to find a path along which the integral

$$\frac{1}{2\pi} \int_{0}^{2\pi} F(\sigma + j\omega) e^{(\sigma + j\omega)t} \, d\omega$$

is to be evaluated. This path must lie to the right of any poles in the complex plane. As shown in Figure 4.5, Path 1 is not acceptable while Path 2 is acceptable. This is due to the fact that the Real Part of $S(=\sigma)$ must be negative in $e^{(\sigma + j\omega)t}$

![Figure 4.5](image)

in order for the integral to converge. The upper limit of 2π for the integral is sufficient because after Subroutine SCALE has readjusted the Transform coefficients, all the significant information has been pushed into this range.
1. Subroutine ROUTH uses an initial SIGMA value of 0.0 and calls Subroutine CALCR(LOGI) to see if all the poles lie to the left of the SIGMA value. Subroutine CALCR returns a LOGI value of True if all the poles lie to the left of SIGMA, otherwise, it returns False. Subroutine ROUTH increments the value of SIGMA until Subroutine CALCR returns True. Having found an acceptable value of SIGMA, control returns to the calling program.

2. Subroutine CALCR(LOG1) uses the Routh Stability Criterion to determine whether all poles lie to the left of the current value of SIGMA. If they do, the value returned in logical variable LOG1 is True, otherwise it is False. Upon entry, D(I,J), the Routh Table, is reset to 0(DO 242).

3. The Routh Table is then computed, and the first column (D(1,J)) is checked (DO 245). If any zero or negative values are found, LOG1 gets a value of False and control returns to the calling program.

4. Otherwise LOG1 gets the value True, and control returns to the calling program.

Having found an acceptable SIGMA value, Subroutine INVERT calls Subroutine SAMPLE.

1. Subroutine SAMPLE computes the quantities \(P(\sigma + jw) \) and \(e^{(\sigma + jw)} \) which are stored in RSPNS(I) and EXCMP(I), respectively, (DO 130). As each point is evaluated, the flag ISN is tested to see if the transform requires any modification. (ISN was set by Subroutine INPUT as the Fourier Transform was calculated). Any modification required is performed by means of complex variable ZZ.

2. Subroutine SAMPLE then returns control to the calling program.

With the sample points now in RSPNS and EXCMP, Subroutine INVERT calls Subroutine FLIP, the heart of the Fast Fourier Transform.

1. Upon entry to Subroutine FLIP, the coefficients in the RSPNS array are reordered as prescribed by the Fast Fourier Transform technique (DO 106).
The integral
\[\int_0^{2\pi} F(\sigma + jw)e^{j\omega t} \, dw \]
is computed (DO 110 and DO 108) thus producing the output response samples in RSPNS.

Subroutine ADJUST is called to re-evaluate the first 5 sample points by means of a Taylor Series. The Taylor Series coefficients are computed by Subroutine TAYLOR and entered into the TERM array.

1. Upon entry Subroutine ADJUST enters the Time points into the TEE array and the output sample points into the FCTN array (DO 150).

2. If SIGMA is non-zero, each of the sample points in FCTN is multiplied by the \(e^{\sigma t} \) factor. (DO 153).

3. Subroutine TAYLOR is called to enter the Taylor Series coefficients into the TERM array.

4. If NTAY is non-zero, the Taylor Series coefficients are used to enter the first 5 output points into the FCTN array. If the series fails to converge at any one of the points (FNP(I) greater than 1000) the remaining points of the original 5 are not altered.

5. Subroutine PRTPLT is called to print and plot the data points. Control then returns to the calling program.

Subroutine TAYLOR uses the Transfer Function coefficients A(I) B(I) to obtain a Taylor Series.

1. The Taylor Series is computed term by term and entered into the TERM and POW array. (DO 214). If any term becomes too large (greater than \(10^{60} \)), the Taylor Series is halted and NTAY is reset to zero.

2. Control returns to the calling program.
Subroutine PRTPLT prints and plots the points in the TEE and FCTN arrays.

1. Upon entry Subroutine PRTPLT writes out the points in TEE and FCTN in three columns. If NPLT, the number of points to be plotted from the total number computed (the plot density), is zero, control returns to the calling program.

2. The maximum and minimum plot points are found (DHI, DLO). The points are plotted into the P array and printed out one at a time (DO 182) along with axis labelling for the TEE axis. Control then returns to the calling program.

4.2.6 Rootfinding

The Poles and Zeroes of the Transfer Function are evaluated by means of Subroutine ROOTS. This routine is called by the Main Program in response to reading an Output Request Card containing the word ROOTS.

Subroutine ROOTS is essentially a modified version of the Svoboda Polynomial Rootfinder. In this algorithm, the complex plane is searched for zeroes using a five point test. As a root is detected, the search step size is repeatedly decreased to 1/16 of its previous value until the five points in the five point test do not yield significantly different results. Thus, the root is found to the maximum resolution available from the computer. The original polynomial is used for the final test while the reduced polynomial, having previously found roots divided out, is used for the coarse testing. This technique combines the ability to handle multiple roots while retaining the accuracy of the original unreduced polynomial. The scan is performed initially within the unit circle to obtain roots less than 1.0. The polynomial is then inverted to cause roots which were greater than 1.0 to fall within the unit circle. The five point test used by the algorithm is neither necessary nor sufficient to find all the roots of the polynomial, yet in practice, the algorithm has yielded remarkable results despite its non-rigorous mathematical foundation. The roots produced by this algorithm represent not only the root values themselves but also the
accuracy to which the roots were found, since every non-zero digit in the root is guaranteed correct within the accuracy of the computer. This information is of considerable value when high order polynomials are being evaluated.

Figure 4.6 Flow of Control in Svoboda Algorithm
The flow of control among the various logical routines of the algorithm is depicted in Figure 4.6. After obtaining the input data, the Scanning Routine systematically steps over the Unit Circle evaluating the reduced polynomial (i.e., one having previously found roots divided out) at five points on each step. When a criterion for the possible existence of a root at any step is fulfilled, a transfer is made to the Home-in-Routine. Mathematically, this criterion is neither necessary nor sufficient for the existence of a root. The Home-in-Routine approximates the root as closely as possible and then transfers to the Root Examination Routine. Using the Round-off Routine, the Root Examination Routine either rejects the root or refines it (by means of the Home-in-Routine again) and outputs it. Since refinement always uses the original unreduced polynomial, and since it proceeds by successive significant digits, every non-zero digit printed is guaranteed correct within the accuracy of the computing system. Control then passes back to the Scanning Routine which either continues scanning or stops because the required number of roots has been obtained. When a scan is completed, if the maximum number of scans has not yet been reached, the Inversion Routine gains control to "invert" the polynomial, before returning to the Scanning Routine which continues to scan. A detailed discussion of each element of the algorithm follows.

1. **The Scanning Routine**

The main routine in the Algorithm is the Scanning Routine which moves across the Unit Circle as shown in Figure 4.7. The real and imaginary axes between the ranges (-1, 0), (1, 0) and (0, -i), (0, i) are divided into sixteenths. The Scanning Routine uses the Polynomial Evaluation Routine to find five points at each step in the scan, the central point and four points one sixteenth above, below, to the left and to the right of the central point. A test is then performed to see if this point is near a root. The criteria for transferring to the Home-in-Routine to examine a possible root more closely are.
1. The value at the central point must be less than the value of any of the four surrounding points.

2. The five points must not be equal in value.

Note that the criteria are mathematically insufficient to determine the existence of a root.

If these criteria are not met, the scan is incremented by one sixteenth and the scanning process is resumed. Scanning is performed from left to right and from bottom to top.

When a scan has been completed, that is, when the point \((1, 0)\) has been evaluated, a check is performed to see if the number of scans has exceeded an upper limit. If not, a transfer is made to the Inversion Routine (described below) which performs the inversion of the polynomial and then returns control to the Scanning Routine.

The maximum number of scans allowable is twice the number of roots in the polynomial. Since at least one root must be obtained after each pass of both the "real" polynomial and the "inverted" polynomial (requiring a total of two scans), a number of scans no more than twice the
number of roots not yet found should be required for the algorithm to work properly. (Usually, considerably fewer scans are required because several roots may be found on one pass). If this number is exceeded, however, the routine stops automatically.

The problem of evaluating the circumference of the Unit Circle twice (once on a "real" scan and once on an "inverted" scan) is solved by taking two precautions. Firstly, all points evaluated in a "real" scan must be within the Unit Circle, while an "inverted" scan is permitted to violate the boundary of the circumference slightly. This precaution alone, however, is not sufficient to avoid a duplication of roots which lie close to the boundary, therefore, in the Root Examination Routine a check is performed to see if the root under consideration has appeared previously in another scan. This second precaution prevents roots which have been found once by a "real" scan and once by an "inverted" scan from appearing twice.

2. Polynomial Calculation

The Polynomial Calculation Routine uses Horner's Technique to evaluate the polynomial complex value from the coefficients. Basically, Horner's Technique is the iterative evaluation of the expression

\[F_{i+1} = (F_i + a_i) \cdot x \quad i \text{ goes from } 1 \text{ to } n \]

with \(F_1 = (0, 0) \) and \(F_{n+1} = F_n + a_{n+1} \) the final value. \(a_i \) is the \(i \)th coefficient in the polynomial.

\[P(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1}. \]

Thus the final value is cumulatively built up in \(F \). If necessary, the complex value \(F \) is divided by previously found roots to form a reduced polynomial value

\[F = \frac{P(x)}{(R_1 - x) (R_2 - x) \cdots (R_m - x)} \]

where \(m \) is the number of roots found previously. In order to avoid overflow, the absolute value of any of the factors \((R_i - x) \) is not allowed to be
less than 10^{-60}. The final step is to obtain the residual (the complex absolute value) of F.

$$H = \sqrt{(\text{Re}(F))^2 + (\text{Im}(F))^2}$$

The residual is computed for four or five points (the Home-in-Routine does not require the central point to be evaluated each time) on each entry to the Calculation Routine. It is these four or five values (H) which are used by the Scanning and Home-in-Routines as the polynomial values at the test points.

3. **Polynomial Inversion**

In order to obtain all the roots of the polynomial

$$P(x) = a_1 x^n + a_2 x^{n-1} + \cdots + a_n x + a_{n+1}$$

by scanning the complex plane within the Unit Circle, at some point a new polynomial is formed from the original one by reversing the order of the coefficients. The roots of this new polynomial are the reciprocals of the roots of the original polynomial, thus effectively bringing inside the Unit Circle all the roots which were previously outside. The Inverted Polynomial is

$$P'(y) = a_{n+1} y^n + a_n y^{n-1} + \cdots + a_2 y + a_1.$$

If $P(r) = 0$, it is easy to show that

$$P(r) = 1/r^n P(r) = P'(1/r)$$

Therefore, $y = 1/r$ is a root of the new polynomial P'.

Thus, in order to obtain all the roots of a polynomial, the program must deal effectively with two kinds of roots, "real" and "inverted," and must obtain the reciprocal of "inverted" roots before writing them on the output. The polynomial Inversion routine, simply reverses the order of the coefficients, sets a program variable to point to either the "real" or "inverted" techniques, and returns control to the main program.
4. **Home-ing In**

Once five points have been obtained which fulfill the criterion for root examination, the homing-in procedure subdivides the distance between the central point and one of the outside points into sixteenths and, using the central points as a starting value, employs the Polynomial Evaluation Routine to compute four new outside test points. These new four points and the central point are then examined for the one having the smallest residual which becomes the central point for a new five point test. If this new central point is the same as the previous central point, the scale is subdivided into sixteenths as before so that the five point test becomes progressively more refined. At each subdivision, a new level of significance is obtained (each significant digit being a Hexadecimal digit because the scale factor is 16). This process of "home-ing in" is continued until either

1. The required number of digits of accuracy is reached or,

2. The residuals of the five points do not differ by a significant amount.

In case 2, the resolution of the computing method and system has been reached and the remaining significant digits, if any, are filled with zeroes. This represents a Stopping Criterion which is independent of any formula for round-off error, but depends only on the previously mentioned resolution.

Each time a new step is taken in the Home-in-Routine, three checks are made. Firstly, if the central point should happen to be the origin (0, 0), the scale is expanded (subdivided by sixteenths), this allows for roots which may range over large orders of magnitude. Secondly, if more than sixteen steps should be taken in one direction at the same level of significance the level of significance is dropped so that larger (coarser) steps may be taken. Finally, a check is performed to ensure that the routine does not stray too far out of the Unit Circle. This safeguards against the possibility that the original location presented to the Home-in-Routine was not in the vicinity...
of a root, in which case it could easily wander outside the Unit Circle. If this condition should be detected, the Home-in is aborted and control is returned to the Scanning Routine.

If either case 1 or case 2 occurs, the Home-in-Routine has reached a successful completion and transfers control to the Root Examination Routine.

5. Root Examination Procedures

The Root Examination Routine first checks to see if the root just found came from the original polynomial coefficients or from a reduced polynomial. If the polynomial was a reduced one, the value of the root can be regarded merely as an approximation. The Home-In-Routine is therefore called again to repeat the latter part of the home-in procedure this time using the original polynomial and using the approximate root as a starting value. This technique ensures that every root is found from the original polynomial and that its accuracy does not depend on the accuracy with which previous roots were found.

After the final root value is obtained, a second check is made, this time on its residual. If the residual is greater than a certain value, the root is considered unreliable and is discarded. If this should occur, control is transferred back to the Scanning Routine. The maximum value of the residual is chosen arbitrarily to be one half the value of a_{n+1}, the constant coefficient in the polynomial.

Having passed these tests, the root value is rounded-off in the Round-off Routine (which is not discussed here because it has no bearing on the actual rootfinding algorithm). If the root is "inverted" its reciprocal is found using floating point division, and this value, after being rounded-off again, becomes the root value. A third check is then performed on the root to see if it has been found on a previous pass. (This check was mentioned previously in connection with the Unit Circle Boundary). If both real and imaginary parts fall within one significant digit of a root found on the other
type of pass ("real") it is rejected as a root but is nevertheless entered, in the same way as acceptable roots, in the list of roots used to form a reduced polynomial. (This prevents its being found again). If the root is not rejected, it is converted from its internal hexadecimal representation to decimal, rounded-off again, and is written on the output.

A final check is made to see if the required number of roots has been obtained. If not, control is returned to the Scanning Routine, otherwise the algorithm terminates.

Because the algorithm lacks a rigorous mathematical foundation, it cannot be guaranteed to find all the roots. However, every root detected is guaranteed accurate within the accuracy of the computing system, it is independent of the technique used to find the roots.

4.2.7 The Automatic Scaler

The Main program always calls the Automatic Scaler, Subroutine SCALER, before the Flowgraph is constructed. Subroutine SCALER examines the element values in the VPATH list and if the range of exponents of Inductors and Capacitors is too large, the values are multiplied by 10^{FACTOR} where FACTOR is an integer which is determined so as to minimize the range of exponents. If no such FACTOR can be found, a warning is printed.

Since the element values are modified after scaling, the 'S' symbol which appears in the Transfer Function must be reinterpreted. For example, if FACTOR is determined to be 3, a capacitor of value $(10^{-3} \text{s})^{-1}$ becomes

$$(10^{-3} \text{s} \times 10^3)^{-1} = (s)^{-1}$$

thus the new s is 10^{-3} times the true s. Therefore, wherever 's' appears in the Transfer Function $10^3 s$ must be substituted. Similarly, all the plots and roots obtained by operating on this scaled transfer function must be modified.

4-56
1. Upon entry to Subroutine SCALER, all elements containing s (i.e., inductors and capacitors) are checked (DO 1). The sum of their exponents is entered into D. At the same time, the sum of their exponents scaled by 10^{-1} is entered into DL and the sum of their exponents scaled by 10 is entered into DR.

2. If D is less than 60 and FACTOR is 0, no scaling need be done so Subroutine SCALER returns. Otherwise, D, DL, and DR are compared to see whether FACTOR should be incremented or decremented for minimum D. If D is not already minimum, FACTOR is adjusted and then control passes back to step 1 for another iteration. If D is already minimum, FACTOR is checked to see if it is still 0. If it is, no scaling could be performed so a warning is printed and control returns to the calling program.

3. If FACTOR is non-zero, all the inductors and capacitors are multiplied by 10^{FACTOR} (DO 5). Control then returns to the calling program.

4.3 Modular Organization

NASAP-70 has been designed in order to facilitate easy insertion of additional routines and removal of supplied routines. Each module is called from the main routine. In general, three modifications are required:

1. The insertion or deletion of a Fortran CALL statement which transfers to the routines to be inserted or deleted.

2. The addition or removal of the routines themselves.

3. Using the Dictionary of Variables, conflicts in variable names may be eliminated in the case of insertions, and Common blocks and variables no longer required may be removed in the case of deletions.

If these steps are followed, users having a working knowledge of Fortran should have little difficulty adding new capabilities to their versions of NASAP-70.
4.3.1 Removal of Supplied Routines

Under certain circumstances it may be desirable to remove some of the routines supplied with NASAP-70 (e.g., in order to run in less than 32K words). For proper operation NASAP-70 requires only one of the circuit description analysis routines and the Transfer Function routines. Thus, the following modules may be removed:

Either Subroutine NASAP or Subroutine READ.
Subroutine FINE.
Sensitivities and Worst Case option.
Plotting package.
Rootfinder.
Automatic Scaler.

For instance, if the Sensitivities and Worst Case option is to be omitted, all the references to Subroutines SENSC, WORSTC, MULT, SENSIT, WORST, and POLSEN should be deleted, as well as those routines themselves. Finally, Common blocks POLY and WORST1 and references to their variables should be removed.

4.3.2 Addition of User Routines

A user who is familiar with the operation of NASAP-70 may desire to add some of his own options to the supplied program, e.g., for further analysis of the Transfer Function. If any scanning of card images is to be performed, it is wise to become acquainted with the card scanning utilities ASCAN, BSCAN, CSCAN, SHIFT, NUMBER, etc. If bit manipulation is to be performed the utilities LOR, LOX, UNPAK, etc., are available. Finally, if operations are to be performed on the Transfer or Sensitivity Functions, the method of storage of these data in the 'VN' arrays should be examined (4.2.3 and 4.2.4).

If NASAP-70 is used with the Overlay structure, all user-written routines should be called by the main program only. This will eliminate troubles due to calling routines not in core. In general, workspace is
available in the following Common blocks:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BITS</td>
<td>4095</td>
<td>Words</td>
</tr>
<tr>
<td>SPEED</td>
<td>2048</td>
<td>Words</td>
</tr>
</tbody>
</table>

This may not be true at all times, however, so the user should consult the Dictionary of Variables to ensure that he does not erase any useful data.
REFERENCES

PRÉCEDING PAGE BLANK NOT FILMED

4-61
CHAPTER 5
SYSTEM REQUIREMENTS

5.0 Computer Requirements

NASAP-70 requires a computer with no less than a 32K word memory to run, using the Overlay Structure in Section 5.3. For some computers having unusually large System Monitors the supplied program may be too large anyway. If this should be the case, some of the supplied options may have to be removed or restricted, e.g., the Sensitivity option could be reduced to handling fewer than 20 elements. This would decrease the size of Common block POLY. On computers with more than 32K words, the Overlay Structure may be neglected entirely. This would not only simplify the loading procedure but also decrease running times.

NASAP-70 needs no additional scratch units other than a card reader and line printer.

5.1 Running a NASAP Problem from the Source Deck

NASAP-70 is distributed as a Fortran source deck. The program must be compiled and loaded in order to run any problems on it. If no changes are to be made, this process may be performed directly. In the case of a machine with a smaller memory, the user may wish to use the Overlay Structure described in Section 5.3. When a user possesses a machine with a very limited memory, some modifications to the source deck may be necessary (e.g., Removal of some supplied routines, reduction of COMMON sizes). Guidelines for these changes are given in Section 4.3.2.

If a user possesses a machine which has a Fortran compiler which uses "backwarding addressing" (e.g., IBM 7094) he should ensure that all COMMON blocks are adjusted to the correct lengths as described in Section 5.5. Further, care should be taken to correct any problems with the Fortran AND function (Section 5.4).
Having made any necessary changes in the source deck, the program may be compiled and loaded. If the machine on which the program is to be run is not IBM 360 compatible, it is strongly suggested that the sample problems be run and verified with the solutions given before any large-size user problems are attempted.

Here is the IBM/360 control card deck for running NASAP from the source deck 13,14

```/*
// NASAP JOB (Installation dependent data).
// STEP1 EXEC FORTHCLG, PARM. LKED='XREF, LIST, OVLY'
// FORT, SYsin DD *
Fortran Source Decks go here.

//LKED, SYsin DD *
INSERT MAIN
OVERLAY ONE
INSERT ASCAN, BSCAN, CSCAN, ISORT, MSG, NUMBER, SHIFT, SORT
OVERLAY TWO
INSERT NASAP, SENSIT, WORST
OVERLAY TWO
INSERT READ, UNITS
OVERLAY TWO
INSERT WHAT, PLOT
OVERLAY ONE
INSERT FINE, SCALER, POLSEN
OVERLAY ONE
INSERT EQUAL, LOR, LOX, LSTOP, UNPAK
OVERLAY THREE
INSERT CALC, INBIT, GRAPH
OVERLAY THREE
INSERT LOOPS, CLEAR, REDUCE
OVERLAY ONE
INSERT MULt, SENSc, ANSWER, WORSTc.
OVERLAY ONE
INSERT INVERT
OVERLAY FOUR
INSERT INPUT, SAMPLE, FLIP
OVERLAY FOUR
INSERT ADJUST, TAYLOR, PRTPLT
OVERLAY FOUR
INSERT SCALE, ROUTH, CALCR
OVERLAY ONE
*/
```

5-2
5.2 **NASAP-70 Input Data**

The input data consists of three sections

1. Title Cards (Optional)
2. Circuit Description
3. Sensitivity and Worst Case Section (Optional)
4. Output Requests.

1. Up to 10 Title Cards are allowed. They are printed in the output listing exactly as they are read.

2. The Circuit Description section may be in one of three forms depending on the format of the first card
 a. NASAP
 b. TREE
 c. CIRCUIT (Operating Frequency)

 a. For compatibility with other versions of NASAP, this heading card will cause the program to accept the circuit description in the form described in the previous NASAP User's Guide. This data format corresponds to the following conventions:

 Each card contains one circuit element. The first letter describes the element and must be one of the following

 - V Voltage Source
 - I Current Source
 - C Capacitor
 - L Inductor
 - R Resistor.
Each of these letters may be followed by up to 11 alphanumerical characters to bring the total number of characters in the element name to not more than 12.

The card format is as follows.

NAME ORIGIN TARGET VALUE UNITS (optional) DEPENDENCY (optional)

NAME refers to the previously described element name. ORIGIN and TARGET refer to the origin and target node numbers of the element. VALUE is the element value in any format. UNITS is optional and must be one of the following:

UF
PF
MH
UH
K
M

If UNITS is not specified, MKS units are assumed. DEPENDENCY is also optional and represents the name of some other element appearing in the circuit description, preceded by the letter V or I to denote dependency on voltage or current.

At least one blank must appear between each of the data fields on the card, otherwise the data is freefield. The last card in the circuit description must contain either the word OUTPUT or the word END.

This form of circuit description relieves the user of the need to organize the tree. Instead, the program automatically builds a tree which results in minimum computation time.

b. For a user-defined tree, a different input format is used. Following the TREE card are the circuit description cards. The last card in this section must be a card with the word END. The first 1 or 2 letters on each circuit description card must be one of the following:
E Independent Voltage Source
J Independent Current Source
CE Capacitor Branch
CJ Capacitor Link
LE Inductor Branch
LJ Inductor Link
RE Resistor Branch
RJ Resistor Link
DE Dependent Voltage Source
DJ Dependent Current Source

Each of these may be followed by up to 10 or 11 alphanumeric characters to bring the total to not more than 12.

The data card format is as follows

NAME (ORIGIN - TARGET) = VALUE UNITS (Optional)
or
NAME/DEPENDENCY (Optional) (ORIGIN - TARGET) = VALUE UNITS (Optional)

NAME refers to the element name described above. DEPENDENCY is one of the letters V or I to denote voltage or current dependence, followed by the name of the controlling element. ORIGIN and TARGET are the origin and target node numbers. VALUE is the element value. The optional UNITS field must be one of the following

MF
MMF
PF
MH
MMH
K
M

If the units are not specified, MKS units are assumed. All input cards are free-field. Blanks and/or commas may be used freely and are
ignored by the program. All other punctuation must appear exactly as shown.

c. For a tree constructed for optimum accuracy at a specific frequency, the CIRCUIT card is used in conjunction with the operating frequency in cps enclosed in parentheses. The input data format is identical with that used after a TREE card except for the format of Capacitor, Resistor and Inductor names where it is no longer possible to differentiate between branches and links

C Capacitor
R Resistor
L Inductor.

If no operating frequency is specified, a default of 1 cps is supplied.

3. SENSITIVITY INPUT REQUESTS

SENSITIVITY FUNCTION.

To obtain the sensitivity of the transfer function to a particular circuit element, a sensitivity request card is required. These cards must immediately follow the 'END' or 'OUTPUT' cards terminating the circuit description. The format of the sensitivity request card is as follows:

SENSITIVITY = 'ELEMENT NAME',

or

SENS = 'ELEMENT NAME'

where 'ELEMENT NAME' is the name of a circuit element.

Sensitivity request for independent voltage and current sources are ignored. Also, a maximum of twenty valid sensitivity requests may be processed for each circuit.

The sensitivity function (in terms of S) is printed in the same format as the transfer function.
WORST CASE ANALYSIS:

A worst case analysis can be provided for circuits of twenty elements or less (not counting independent voltage or current sources). To obtain this analysis, a card must be provided immediately after the 'END' or 'OUTPUT' cards terminating the input description in the following format:

WORST

To obtain a worst case analysis, the tolerance of each element must be known. These values may be provided by 'TOLERANCE' cards which have the following format:

TOL = 'ELEMENT NAME' = 'VALUE'

where 'ELEMENT NAME' is the name of a circuit element, and 'VALUE' is the relative tolerance \(\frac{\Delta Q}{Q} \) for this element. If no 'TOLERANCE' card is provided for an element, a default value of .1 (10%) is assumed for the tolerance.

As well as a function of \(S \) giving the square of the worst case tolerance, sensitivity functions for all the elements are also printed. Thus no 'SENSITIVITY' cards may be present when a 'WORST' card follows the circuit description.

4. The Output Requests section may contain:
 a. Transfer Function requests
 b. Plot requests. (optional)
 c. Roots Requests. (optional).

Any number of Transfer Function requests may appear and any number of Plot requests may be included following a single Transfer Function request. Only one Roots request may appear after each Transfer Function request. The last card in the Output Requests section must be a card containing either the word END or the word EXECUTE.
a. The Transfer Function requests have the following format

\[\text{TYPE NAME 1} / \text{TYPE NAME 2} \]

where \text{TYPE NAME} is the name of an element which has appeared in the Circuit Description, preceded by the letter \text{V} or \text{I} to denote whether Voltage or Current is desired. \text{TYPE NAME 2} must be an Independent Source.

b. The plot request is a single card of the following form:

\[\text{PLOT (Option = Value} / \text{Option = Value}) \]

The following options are available

1. \text{TYPE = IMPULSE} for impulse response
 \begin{itemize}
 \item \text{STEP} for a step function
 \item \text{SINE} for a sine wave input
 \item \text{EXPONENTIAL} for an exponential input
 \item \text{PULSE} for a pulse or pulse train
 \item \text{FREQUENCY} for a frequency response
 \item \text{SENS} for a sensitivity function plot
 \item \text{WORST} for a worst case function plot
 \item \text{REAL} for a transfer function plot with \(\sigma \) as the independent variable
 \end{itemize}

2. \text{AMPLITUDE} = a number

 represents the magnitude of any of the waveforms.

3. \text{BIAS} = a number

 may be used only with \text{PULSE} to obtain a train of positive and negative pulses. It is combined with \text{AMPLITUDE}. e.g.,

 \text{AMPLITUDE} = 10
 \text{BIAS} = -2
4. **CONSTANT** = a number

may be used only with **EXPONENTIAL**. It represents \(a \) in \((Ke^{at}) \).

5. **FREQUENCY** = a number (in Hz/s.)

may be used only with **SINE** to specify the frequency of the sine wave.

6. **DENSITY** = a number

 to specify the number of calculated points per plotted point.

7. **TIME** = a number (in Secs.)

 should always appear with a time response. It specifies the duration of the plot.

8. **WIDTH** = a number (in Secs.)

 may be used only with **PULSE** to specify the duration of a pulse.

9. **CYCLE** = a number (in Secs.)

 may be used only with **PULSE** to specify the time of 1 cycle,

e.g., \(\text{WIDTH} = 10 \)

 \(\text{CYCLE} = 15 \)

 gives:
10. \texttt{STEP = a number (in Secs.)}\hfill
\begin{itemize}
 \item specifies the time between individual calculated points. It may be
 used with any \texttt{TYPE} option.
\end{itemize}

11. \texttt{FROM = a number, TO = a number} \hfill
\begin{itemize}
 \item specifies the beginning and ending points of a frequency response
 \((= \omega/2\pi)\), sensitivity, worst case or real plot. \((= o)\).
\end{itemize}

12. \texttt{ELEMENT = an element name for which a sensitivity function has} \hfill
\begin{itemize}
 \item been requested may be used only with \texttt{SENS} to identify the sensitivity
 function to be plotted.
\end{itemize}

Only the first 2 letters of each word are used, therefore, \texttt{AM} may be used
as an abbreviation for \texttt{AMPLITUDE}, \texttt{IM} for \texttt{IMPULSE}, etc.

Since continuation cards are not allowed, all the options for any one
plot request must appear on one card. Not all the options are required
since defaults are provided, e.g.:

\texttt{PLOT(TIME = 1)} produces an \texttt{IMPULSE} response of 100 steps and of
duration 1 sec.

\textbf{Defaults}

\begin{itemize}
 \item \texttt{TYPE = IMPULSE}
 \item \texttt{TIME = 1 sec.}
 \item \texttt{STEP = .01}
 \item \texttt{AMPLITUDE = 1}
 \item \texttt{DENSITY = 1}
 \item \texttt{CONST = 1}
 \item \texttt{FREQ = 1}
\end{itemize}

The options may appear in any order on the Plot card. Inconsistent requests
will be ignored, e.g., \texttt{TYPE = IMPULSE, FREQ = 2} yields an Impulse
response.
c. To obtain the roots of the numerator and denominator of the Transfer Function, a card with the word ROOTS must appear after the Transfer Function request.

The sensitivity of the poles of the transfer function may be obtained by adding the word 'POLES' to a 'ROOTS' card

ROOTS, POLES

The sensitivity of the Poles are produced for all elements for which a sensitivity request had been issued (or all elements if a 'WORST' card was included).

Several complete problems may run at one time. To terminate the execution of NASAP, a card containing the word STOP is used.

NASAP-70 can handle.

Up to 50 elements
Up to 50 circuit nodes
Up to 20 sensitivity requests

The circuit nodes should be numbered consecutively starting with 1 for best efficiency. This is not required, however. When more than 30 circuit elements are to be analyzed, the time required for the computation in Subroutine LOOPS begins to increase sharply. This effect is due to the presence of more than 2 words per block in Common Block BITS.

5.3 Overlay Organization

The recommended Overlay Structure is shown in Figure 5.1. This is not required for running NASAP but when included, it decreases the overall program size. However, the Overlay Structure is required to allow the program to fit into a computer with only a 32K word memory.
OVERLAY STRUCTURE FOR NASAP-70

<table>
<thead>
<tr>
<th>MAIN</th>
<th>ROOTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASCAN</td>
<td>FINE</td>
</tr>
<tr>
<td>ESCAN</td>
<td>SCALER</td>
</tr>
<tr>
<td>CSCAN</td>
<td>PLSN</td>
</tr>
<tr>
<td>ISORT</td>
<td></td>
</tr>
<tr>
<td>MSG</td>
<td>UNPAK</td>
</tr>
<tr>
<td>NUMBER</td>
<td></td>
</tr>
<tr>
<td>SHIFT</td>
<td></td>
</tr>
<tr>
<td>SORT</td>
<td></td>
</tr>
<tr>
<td>NASAP</td>
<td>READ</td>
</tr>
<tr>
<td>SENSIT</td>
<td>UNITS</td>
</tr>
<tr>
<td>WORST</td>
<td>PLCT</td>
</tr>
<tr>
<td></td>
<td>CALC</td>
</tr>
<tr>
<td></td>
<td>LOOPS</td>
</tr>
<tr>
<td></td>
<td>INBIT</td>
</tr>
<tr>
<td></td>
<td>CLEAR</td>
</tr>
<tr>
<td></td>
<td>GRAPL</td>
</tr>
<tr>
<td></td>
<td>REDUCE</td>
</tr>
</tbody>
</table>

Figure 5.1
5.4 The Fortran AND and OR Functions

NASAP-70 requires the ability to perform a full word AND and OR on fixed point word variables in Fortran. This has been accomplished on the IBM 360 by means of the Fortran Logical .AND. and .OR. functions. The fixed point variables are given Logical type aliases and the AND or OR is performed on these logical type names. For example

```
LOGICAL A, B, C
EQUIVALENCE (A, I) (B, J), (C, K)
I = 12
J = 20
C = A .AND. B
```

would yield a value of 4 in K. On many other compilers a Logical type .AND. and .OR. does not operate on all the bits in the word. If NASAP-70 is compiled on such a system it will give incorrect results.

On systems which do not have the full word Logical .AND. and .OR., often another function is available for the same task. If no such facility is provided, the user must write his own AND and OR functions in Assembler Language. In either case statements of the type

```
C = A. AND. B
```

must be replaced by statements of the type

```
K = IAND (I, J)
```

This logical .AND. and .OR. is used in the following subprograms

```
Subroutine LOOPS
Function LOR
Function LOX
```

These are the only routines which are affected by the logical type .AND. and .OR., but the user must ensure that these changes have been made before he attempts to run any NASAP-70 problems on a machine which is not IBM 360 compatible.
5.5 Compatibility Among Various Computers

Apart from the Fortran Logical type. .AND. and .OR. functions described in the previous section, there are other facts about the IBM 360 Fortran compilers which could be a source of trouble on other computers.

The origins of Common Blocks on the IBM 360 are computed from the first variable in the block. On some compilers, however, the origin is computed from the last variable in the block, (e.g., IBM 7094). This allows occurrences of Common Blocks with the same name to have different lengths on the IBM 360. On compilers which compute the origin from the last variable (i.e., "backward addressing") all the occurrences of the same Common Block must be adjusted to the same length (with dummy variables if necessary) before compilation.

The test of the index in a DO loop is performed at the bottom of the DO. Thus in the following group of statements, the DO is executed once.

\[
N1 = 3 \\
N2 = 2 \\
DO 1 I = N1, N2
\]

Further, in the case of the abnormal termination of a DO loop, the index variable retains its most recent value. NASAP has been programmed to avoid these problems with DO statements but they are mentioned here nevertheless to illustrate the way in which the IBM Fortran compilers handle special DO conditions.

Finally, a zero value for the index of a Fortran Computed GO TO is not treated as an error. Instead, execution proceeds with the statement following the GO TO. For example

\[
N = 0 \\
GO TO (1, 2), N \\
N = 2 \\
1 \quad N = 1 - N
\]
\[N = N + 7 \]

would yield \(N = 6 \).

NASAP-70 is designed for IBM 360 compatible computers therefore some modification will be required if it is to be run on computers which are not IBM 360 compatible.
APPENDIX A

A.1 PROGRAM LISTING

C BLOCK DATA
H.F,OKRENT, U+CL+A, 1967, UCA

INTEGER GAG
COMMON/GAG/GAG(20), NSEN, SENS(50)
COMMON/VNC(101,20), VN(101,20), VNI(101,20), SMAX(20), SMIN(20)

COMMON/DATA/X(32)
COMMON/SPEED/Y(248)
COMMON/BITS/F(14,50)
COMMON/X(8,10)

DATA GAG/2000,4000,6000,8000,10000,12000,14000,16000,18000,20000

common/NSRST/J, NERS, VN(101,2), E(50), SMAX(2), SAV(20)
COMMON/GAG/GAG(20), NSEN, SENS(50)

DIMENSION VNESEN(101,2), vmax(20), vnmin(20), VN(101,2)
COMMON/TREE/TREE

COMMON/NTAG/TAG
COMMON/A(180)

COMMON/ERR/ERR, FACTOR

COMMON/SPEED/V(1000), LS(1000), NL66P

COMMON/PATHS/C(300,2), VPATH(300), S(300), RPATH

COMMON/CIRCUIT/CARD(50,12), TYPE(50), GENER(50), ORIGIN(50), TARGET(5)

COMMON/INPUT/SVC[INPUT,SVC,SMAX,SMIN]

COMMON/NTIMES/NTIME

COMMON/BITS/BITS(1460)

DIMENSION DEP(50,13), NPATH(300,2)

COMMON/PATH/V(360), X, SMAX, SMNS(100)

EQUIVALENCE (VNESEN(1,1), B1ITS(1)), (SMAX(1), BITS(1404)),

1(INODESITS(3652), MPATH(1,1), B1TS(3001)), (PATHS, BITS(3551)),

2(INODESITS(3652)), (MPATH(1,1), B1TS(3001))

EQUIVALENCE (TYPE(1), VN(1,1))

NE=0
ITREE=0
INODES=0
PATH=0

ERR=0

A-1

NOT REPRODUCIBLE
Program Description

A network analysis and systems application program.

Code Snippet

```
C READ(5100) A...
WRITE(6,200) A...
CALL NASAP...
CALL READ...
```

Functionality

The program reads input data and performs network analysis. It includes calls to subroutines for data processing and error handling. The output is written to a file for further analysis.

Notes

- The program was developed at UCLA ENGR. DEPT. 0 and is part of the Network Analysis and Systems Application suite.
- The input format is described in subsequent comments.

Input Format

1. **Card 1**: Title card
 - Specifies the number of cards following.
 - Format: (TITLE) ***MORE THAN 10 TITLE CARDS NOT ALLOWED***

2. **Card 2**: Element data card
 - Format: (ELEMENT NUMBER, ELEMENT NAME, DEPENDENCY [IF ANY])

Example

```
10
20 40 50
```

Output Format

- The output includes warning messages and printed data.
- Errors are handled with specific routines.

Additional Information

- The program supports multiple input and output file handling.
- Error checking and correction mechanisms are implemented to ensure data integrity.

References

- UCLA Network Analysis and Systems Application Suite
- UCLA ENGR. DEPT.

License and Acknowledgments

- All rights reserved.
- This program is distributed for educational and research purposes.

Contact Information

- For further assistance, contact the UCLA ENGR. DEPT.
- Support email: engrdept@ucla.edu

Disclaimer

- This program is provided "as is" without warranty of any kind.
- Use at your own risk.

Version Information

- Version 1.0
- Last updated: [Date]

Further Details

- Detailed documentation available upon request.
- Source code and additional resources available on the UCLA website.
CALL CALC

IF(ERF.EQ.1)GO TO 9

CALL SCALE

IF(FACTOR.NE.0)WRITE(6,409)FACTOR

409 FORMAT(1X,7X,AS,' AS A RESULT OF AUTOMATIC SCALING THE TRUE S')

110 TO THE I4,1 POWER TIMES THE PROGRAM DEFINED S.*1

IF(TAG.EQ.1)GO TO 301

READ(5,100)A

301 CALL SHIFT(A)

CALL SENSIT

GO TO 300

300 CALL GRAPH

WRITE(6,250)

250 FORMAT(1,PLBNGRAPH/1 FROM 1,1 TO 1,8X,1,ST,9X,VALUE1)

DB 521 I=1,NPATH

CALL REDUCE(I,I,K)

521 WRITE(6,251)I,NPATH(I),IPATH(I),I1,VPATH(I)

251 FORMAT(1X,13=219,1PE20.8)

NPATH=NPATH+1

WRITE(NPATH,100)

NPATH=1+1

VPATH=VPATH+1

S(NPATH)=0

NTIMES=((1/50)+1)

GO TO 250

17 INP=0

ERR=0

16 READ(5,1000)A

10 WRITE(6,205)A

205 FORMAT(13=70X1)

19 IF((A(1).NE.A).AND.(A(2).NE.A) .AND.(A(3).NE.R) .AND.(A(4).NE.E)) CALL SHIFT(A)

TAG=0

IF((A(1).EQ.E).AND.(A(2).EQ.AN).AND.(A(3).EQ.D)) GO TO 7

10 GO TO 12

10 GO TO 12

10 GO TO 12

IF(IP.EQ.0)GO TO 13

10 IF(IP.EQ.0)GO TO 14

10 IF(IP.EQ.0)GO TO 15

10 IF(IP.EQ.0)GO TO 16

10 IF(IP.EQ.0)GO TO 17

10 IF(IP.EQ.0)GO TO 18

10 IF(IP.EQ.0)GO TO 19

10 IF(IP.EQ.0)GO TO 20

CALL PLOT

IF(ERF.EQ.1)CALL INVERT

A-3
ERR = 0
1. (ERR.EQ.0)) CALL ROOTS
UCLA1560
CALL SHIFT(A)
UCLA1570
UCLA1580
*CALL POLSEN
UCLA1590
UCLA1600
*GO TO 610
UCLA1610
WRITE(6,302)
UCLA1620
302 FORMAT(/10X, **** SENSITIVITY OR WORST CASE REQUESTS MUST IMMEDIATELY
UCLA1630
FOLLOW THE CIRCUIT DESCRIPTION AND REQUEST IGNORED)
UCLA1640
GO TO 14
UCLA1650
WRITE(6,302)
UCLA1660
UCLA1670
*GO TO 611
UCLA1680
WRITE(6,302)
UCLA1690
GO TO 14
UCLA1700
WRITE(6,312)
UCLA1710
312 FORMAT(/10X, **** TOLERANCE CARDS MUST IMMEDIATELY FOLLOW THE WORST
UCLA1720
*CASE CARD--CARD IGNORED!)
UCLA1730
GO TO 14
UCLA1740
WRITE(6,210)
UCLA1750
10 FORMAT(/10X, *** MISSING END OF PROBLEM CARD SIMULATED BY PRO
UCLA1760
10RAM, 1)
UCLA1770
WRITE(6,206)
UCLA1780
UCLA1790
*GO TO 16
UCLA1800
WRITE(6,206)
UCLA1810
16 FORMAT(/10X, **** PLOT, ROOT AND POLE SENSITIVITY REQUESTS MUST FOL
UCLA1820
10LOW THEIR CORRESPONDING OUTPUT REQUESTS +1/15*, REQUEST IGNORED*)
UCLA1830
GO TO 14
UCLA1840
WRITE(6,207)
UCLA1850
UCLA1860
*GO TO 304
UCLA1870
WRITE(6,206)
UCLA1880
UCLA1890
*GO TO 315
UCLA1900
WRITE(6,312)
UCLA1910
UCLA1920
*GO TO 16
UCLA1930
WRITE(6,302)
UCLA1940
302 FORMAT(/10X, NTIMES
UCLA1950
WRITE(6,207)
UCLA1960
40 FORMAT(/10X, *** TOLERANCE CARDS MUST IMMEDIATELY FOLLOW THE WORST
UCLA1970
*CASE CARD--CARD IGNORED!)
UCLA1980
GO TO 14
UCLA1990
WRITE(6,206)
UCLA2000
40 FORMAT(/10X, **** PLOT, ROOT AND POLE SENSITIVITY REQUESTS MUST FOL
UCLA2010
10LOW THEIR CORRESPONDING OUTPUT REQUESTS +1/15*, REQUEST IGNORED*)
UCLA2020
GO TO 14
UCLA2030
WRITE(6,302)
UCLA2040
40 FORMAT(/10X, NTIMES
UCLA2050
WRITE(6,207)
UCLA2060
A-4
SUBROUTINE CSCA(B,J) UCLA2600
H,F,8KRENT UCLA2610
J,C,L,A. 1967 UCLA2620
COMM.N/A(A(80) UCLA2630
REAL UCLA2640
MINUS UCLA2650
INTEGER UCLA2660
DATA/N(2),E8MOD(I1),PNT,BLANK,PLUS/ UCLA2670
MINUS UCLA2680
COMM/FLAG/FLAG UCLA2690
C/PATH/PATH(300),VPATH(300),S(300),NEXT UCLA2700
A-6 UCLA2710

FUNCTION ISORTIC --- UCLA2720
H,F,BKRENT UCLA2730
J,C,L,A. 1967 UCLA2740
INTEGER FLAG UCLA2750
COM4K/FLAG/FLAG UCLA2760
Cem'IOK/ X/BC10) . UCLA2770
FLAG UCLA2780
ISORT=I-1 UCLA2790
IF(A.EQ.B(I))RETURIJ- UCLA2800
FLAG UCLA2810
RETURN UCLA2820
END UCLA2830

SUBROUTINE MESSAGE(A,J) UCLA2840
H,F,KRENT UCLA2850
J,C,L,A. 1967 UCLA2860
WRITE(6,00)1A UCLA2870
** CHARACTER,13,1 WAS EXPECTED TO BE 'A2', CARD IGNORED,) UCLA2880
RETURN UCLA2890
END UCLA2900

SUBROUTINE NUMBER(j,N) UCLA2910
H,F,8KRENT UCLA2920
J,C,L,A. 1967 UCLA2930
COMMON/DATA/AM8D(I1),E8MOD(I1),PNT,BLANK,PLUS/ UCLA2940
MINUS UCLA2950
COMM/FLAG/FLAG UCLA2960
C/PATH/PATH(300),VPATH(300),S(300),NEXT UCLA2970
A-6 UCLA2980
155x671] 1 1

TAG=0

VPATH(E)=0

IF(K.LE.NE)GO TO 1

IF(VPATH(NE).LT.10.)VPATH(NE)=.0

IF(TAG.EQ.0)VPATH(E)=-VPATH(NE)

WRITE(6,200)K,VPATH(NE)

FORMAT(10X,'**** VALUE CANNOT BE COMPLETELY DETERMINED DUE TO AN ERROR IN CHARACTER. VALUE ASSUMED TO BE ,E16.8')

RETURN

I=1

CHECK FOR OR SIGNS

IF(A(I).EQ.MINUS)TAG=-1

IF((A(I).EQ.MINUS).AND.(A(I+1),EQ.PLUS))I=I+1

CALL CSCAN(B,I,J)

IF(J.GT.N2)J=N2

IF(J.LT.I)GO TO 2

DO 7:I,J

VPATH(E)=VPATH(E)+(SORT(A(K))*(10.**(I-K)))

IF(FLAG.EQ.1)GO TO 8

CONTINUE

7 C ,JTINUE

8 IF(J,GE,N2)G TO 4

IF(E.EQ.E)J=J+1

C EVALUATE THE EXPONENT

EXP=0

IF(A(J+1).EQ.MINUS)EXP=1

IF((A(J+1),EQ.PLUS).AND.(A(J+1),EQ.MINUS))J=J+1

I=J+2

CALL BSCAN(B,I,K)

IF(K.GT.2)K=N2

IF(K-I.LE.13)A(7)=

WRITE(4,11) EXP

IF(VPATH(E).LT.10.)VPATH(E)=10.

FORMAT(10X,'**** EXPONENTS WITH MORE THAN 2 DIGITS ARE NOT ALLOWED')

10 ONLY THE LAST 2 WILL BE USED, I)

10

IF(EQ.SORT(A(K)))

IF(FLAG.EQ.1)GO TO 4

A-7
IF(.EQ.*1) T= 10
K=1
PR=P+*(10*I+1)ET(1) K=1
IF(F.AND.EQ.*1) T= 4
IF(F.AND.EQ.*1) P.*=F
VPATH('E')=VPATH('E')*(10.*P+B)
5 IF(F.AND.EQ.*1) VPATH('E')=VPATH('E') RETURN
ENDIF
SUBROUTINE SHIFT(A)
C

K=1
IF(FIAG.EQ.0) T= 4
10 IF(FIAG.EQ.0) T= 4
IF(A.IF.GE.0) RETURN
A=E+E
IF(A.EQ.0) RETURN
ENDIF
SUBROUTINE SORT(A)
C

FUNCTION SORT(A)
C
SORT=IS9PT(A)
RETURN
ENDIF
SUBROUTINE ASAP
C

END
SUBROUTINE IRT(A)
C

IF(A.EQ.0) RETURN
REJ=.FALSE.
IF(A.EQ.0) REJ=.FALSE.
IF(A.EQ.0) REJ=.FALSE.
IF(A.EQ.0) REJ=.FALSE.
REJ=.FALSE.
4 IF(A.EQ.0) RETURN
RE
1 IF(A(I))EQ.5)GO TO 17
IF(A(I))EQ.0)GO TO 17
NE=NE+1
03<1<1+1
L=L+K
CARD(NE,K)=A(L)
IF(LGT(I,J)CARD(NE,K)=BLANK CONTINUE
I=J+1
4 CALL ASCAN(P,J,K)
IF(I=NE=1-1)GO TO 5
I=I+2
IF(I=72)GO TO 6
GO TO 4
5 IF(NE=1)ISRT(A(I))
IF(FLAG.EQ.1)GO TO 6
IF(I GT.72)GO TO 5
I=I+1
6 CALL ASCAN(P,J,K)
IF(J=NE=1-1)GO TO 7
I=J+2
IF(I=72)GO TO 8
GO TO 5
7 TARGET(NE)=ISRT(A(I))
IF(FLAG.EQ.1)GO TO 8
IF(I GT.72)GO TO 6
I=I+1
8 CALL BSCAN(5,J,K)
IF(J=NE=1-1)GO TO 9
I=I+2
GO TO 7
9 K=72
10 CALL NUMBER(I,J)
14 IF(I=EQ.BLANK)GO TO 11
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-6
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-12
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
IF(I=EQ.AV)VPATH(NE)=VPATH(NE)*1.E-3
11 I=I+1
12 CALL BSCAN(5,J,K)
GO TO 14
13 CALL BSCAN(5,J,K)
GO TO 14
16 CALL BSCAN(5,J,K)
GO TO 14
GO TO 12
12 NE15=11,J
L=I+J
DEP(NE1)=A(I)
IF(I GT K)DEP(NE1)=BLANK
CONTINUE
GENE(I)=0
TYPE(NE1)=0
IF((APD(NE1) EQ 0 OR (CARD(NE1) EQ 1)) GENER(NE1)=1
IF((CARD(NE1) EQ 1) OR TYPE(NE1)=1
NNODES=40(NNAD= TARGET(NE1) ORIGIN(NE1))
INODE=MINTD(NDDF, TARGET(NE1) ORIGIN(NE1))
GO TO 19
17 N=DEP(NE1)
GO TO 19
18 CONTINUE
N=0
D=1
J=ORIGIN(I)
J=TARGET(I)
N(J)=N(J)+1
J=ORIGIN(I)
D=1
J=TARGET(I)
CALL ASCAN(B,1, J)
IF (B.F.EQ.0) GOTO 3
WRITE(*,102)
102 FORMAT (/10X,'**** EQUALS SIGN NOT FOUND--REQUEST IGNORED.')
GOTO 2
C FIND CIRCUIT ELEMENT
3 K=J+2
L=K+11
DO 4 L=K+2
4 E=I,J
IF (A(E),NE,CARD(I,J)) GOTO 4
5 CONTINUE
C CHECK FOR INVALID ELEMENT (INDEPENDENT SOURCE)
IF (GENE(I),E.G.0) GOTO 9
IF (TYP(I),E.G.BLANK) GOTO 9
WRITE(6,105)
105 FORMAT (/10X,'**** INVALID ELEMENT TYPE--REQUEST IGNORED.')
GOTO 2
C CHECK FOR TOO MANY REQUESTS
9 NE1=NE1+1
IF (NE1.LE.LIMIT) GOTO 10
WRITE(6,109)
109 FORMAT (/10X,'**** TOO MANY SENSITIVITY REQUESTS--REQUEST IGNORED.')
GOTO 2
C CHECK FOR DUPLICATE REQUESTS
10 IF (SENS(I),E.G.0) GOTO 11
WRITE(6,104)
104 FORMAT (/10X,'**** DUPLICATE REQUEST--REQUEST IGNORED.')
GOTO 2
C INSERT SENSITIVITY TAGS
11 NSEN=NSEN+1
SENS(I)=TAG(NSEN)
GOTO 2
C ELEMENT NOT FOUND IN CIRCUIT
4 CONTINUE
C SUBROUTINE WORST
 INTEGER TAGSENS
 COMMON/A/A,(2J+7)H (2)
 COMMON/CIRCUIT/CARD(50,12),TYPE(50),GENER(50),ORIGIN(50),
 *TARGET(50),INPUT,OUTPUT,NE
 COMMON/AGG/TAG(20),NESS,SENS(50)

 INTEGER K,E,I,J,L
 REAL A(1000)

 CALL ASCAN(B(1,J))
 IF (B.F.EQ.0) WRITE(*,102)
 WRITE(*,102)

 CONTINUE
 READ(*,105)
 GOTO 2
C S* GRANDI U.C.L.A* ----- 1969
C PROCESSES WORST CASE REQUESTS
C

 A-12
COMMON/RITS/LBITS(3000),DEP(50:13)
COMMON/WORST,NAMES,TAN(101:2),TSL(50)
COMMON/PATHS/LPATH(600),VPATH(300)

DATA LIMIT/20/

C

INITIALIZE

NFLAG=0

WRITE(6,100)

100 FORMAT('1J8OAl)

C

INSERT SENSITIVITY TAGS FOR ALL VALID ELEMENTS

DO 1 I=1,NE

IF(GENER(I)=EQ.0)GO TO 2

IF(DEP(I)=NE.BLA\K)GO TO 2

GO TO 1

2 NSEN=NSEN+1

IF(NSEN=GT.LIMIT)GO TO 3

SENS(I)=TAG(NSEN)

1 CONTINUE

NWRST=1

GO TO 11

3 NSEN=SEN-I

WRITE(6,110)

11 DO 4 I=1,NE

4 TEL(I)=1

WRITE(6,101)

101 FORMAT('/10X','**** TOO MANY ELEMENTS FOR A WORST CASE ANALYSIS--REQUEST IGNORED')

NFLAG=1

GO TO 10

C

SET ALL TOLERANCES TO *1 DEFAULT

10 READ(5,103)

103 FORMAT(80A1)

C

RFAL TOLERANCE CARDS

CALL SHIFT(A)

C

IF CARD NOT TOLERANCE, RETURN

IF(*4(I)=NE.*T)GO TO 12

WRITE(6,113)

113 FORMAT(1,80A1)

C

CHECK FOR EQUALS SIGN

CALL ASCAN(B,J)

C

BAD CARD

7 WRITE(6,102)

102 FORMAT('/10X','**** ERROR IN TOLERANCE CARD--REQUEST IGNORED')

GO TO 10

C

BRAIN *CIRCUIT ELEMENT

CALL ASCAN(B,K,J)

C

0*TAIN *CIRCUIT ELEMENT

CALL ASCAN(B,K,J)

C

5 K=J+2

6 L=J-K+1

A-13
IF(L.GT.t?) LTL2
NE1=NE
DO & I=1,NE1
DO 9 I=1,L
III=II+1
IF(CARD(I,II).NE.A(I,III)) GO TO 8
9 CONTINUE
C OBTAIN TOLERANCE VALUE
NE=NE+1
M=J+2
CALL ASCAN(B,J+)M
CALL NUMBER(M,N)
TOL(I)=VPATH(NE)
NE=NE+1
GO TO 10
GO TO 7
C WRITE TOLERANCE TABLE
12 IF(FLAG.EQ.1)RETURN
WRITE(6,120)
120 FORMAT(//' ELEMENT NAME',10X,'TOLERANCE'/)
DO 13 I=1,NE
IF(SENS(I).EQ.0) GO TO 13
WRITE(A,21)(CAD(TJ),J=1,12),TOL(I)
121 CONTINUE
RETURN
END
SUBROUTINE READ
C H-F. OKPENT ANALYSES FREE FIELD CIRCUIT DESCRIPTION CARDS
COMMON/TREE/TREE INTEGER TYPE,GENER
COMMON/TAG/TAG INTEGER ORIGNETAR3ET
COMMON/ERR/ERR INTEGER TAGEPPFLAG,OUTPUT
COMMON/A/A(80) CHAR
COMMON/X/X(10) CHAR
COMMON/Y/Y(80) CHAR
COMMN/FLAG/FLAG REAL LEFT,MINUS
COMMON/PATHS/LPATH(300,2),VPATH(300),S(300),FREQ
NE=0
MP=0
ERR=0
INPUT=0
OUTPUT=0
IF(TREE.EQ.0) GO TO 49

CALL ASCAN(8,1,I)
CALL ASCII(RIGHTJ,I+1)
WRITE(A,200)
GO TO 56
IF((A(1).EQ.AJ)) GOTO 2
IF((A(1).EQ.AJ)) GOTO 6
A-15
IF(A(1).EQ.P) GO TO 53
WRITE(6,220)
UCLA7910
220 FORMAT(10X,'**** ELEMENT TYPE (FIRST CHARACTER) CANNOT BE IDENTIFIED, DEFAULT VALUE IS R.
A(1)=R
GO TO 5
UCLA7920
6 WRITE(6,203)
UCLA7930
203 FORMAT(10X,'**** ELEMENT TYPE CANNOT BE IDENTIFIED, END OF DATA.
1! CARD ASSUMED TO BE MISSING, ABOVE CARD BECOMES FIRST OUTPUT
UCLA7940
21 FORMAT(1X,TAG=1,RETURN)
UCLA7950
UCLA7960
UCLA7970
UCLA7980
223 FORMAT(10X,'**** PLOT REQUESTS MUST FOLLOW THE CORRESPONDING OUTPUT.
IT REQUESTED, PLOT REQUEST IGNORED AND DEFAULT PLOT ASSUMED.
UCLA7990
GO TO 11
G6 TO 11
UCLA8060
UCLA8070
C
UCLA8080
UCLA8090
UCLA8100
UCLA8110
UCLA8120
UCLA8130
UCLA8140
UCLA8150
UCLA8160
UCLA8170
UCLA8180
UCLA8190
UCLA8200
UCLA8210
UCLA8220
UCLA8230
UCLA8240
UCLA8250
UCLA8260
UCLA8270
UCLA8280
UCLA8290
UCLA8300
UCLA8310
UCLA8320
UCLA8330
UCLA8340
UCLA8350
UCLA8360
UCLA8370
UCLA8380
UCLA8390
UCLA8400
UCLA8410
UCLA8420
UCLA8430
A -16
IF(NE*EQ*0)GO TO 16
DB17=1,NE
DB18K=1,12
IF(CARD(J,K)*NE*CARD(NE+1,K))GO TO 17
CONTINUE
NR=R+1
IF(NP*GT*10)EPR=1
DB10K=3*11
CARD(NE+1,K)=CN*MA
CARD(NE+1,12)=AC*NR
WRITE(6,PO77)(CARD(I,E+1),K=1,12)
IF(NR.EQ.2)GO TO 17
IF(CAR'.(JK).NE.CARD(NE+IK)GO TO 17
CONTINUE
NR=',R+1
IF(NP.GT.10)EPR=1
DELETE=3
CARD(NE+1,K)=CBMA
CARD(NE+1,12)=AC*NR
WRITE(6,PO77)(CARD(CPR+IK)-K1I1 2)
FORMAT(IOX,'**** DUPLICATE NAME ENCOUNTERED. PROGRAM ASSIGNS THE NEW NAME')
NAME='121/10X',*** WARNING--RESULTS ARE UNRELIABLE.')
GO TO 16
CONTINUE
IF(A(1)*N*EQ*+*DG*NE*=20
IF(DEP(NE+1,1)*EQ*PNT)GO TO 20
C INSERT DEPENDENCY NAME
I=I+2
CALL ASCAN(B,I,J)
M=1
IF(B.EQ.LEFT)GO TO 21
CALL MSG(LEFT,J+1)
GO TO 11
IF((A(1).EQ.,A(1))OR.(A(I),EQ,AJ))GO TO 15
IF(A(I).EQ.E)DEP(NE+1,1)=AI
IF(A(2).EQ.AJ)DEP(NE+1,1)=AI
WRITE(6,PO77)DEP(NE+1,1)
FORMAT(10X,'**** DEPENDENCY TYPE (FIRST LETTER OF DEPENDENCY NAME)' ILLEGAL- PROGRAM ASSIGNS ',AI)
M=2
IF(J+M.GT.13)J=13+1-M
DB2K=J+1
DB2K=J+1
M=1
IF(A(J).EQ.AK)GO TO 21
IF(J=L+1)J=1
CALL ASCAN(B,J,K)
M=1
WRITE(6,PO77)BRIGIN
NODE IF(J*LT*1)GO TO 6
WRITE(6,PO8)0
FORMAT(10X,'**** MORE THAN 99 NODES NOT ALLOWED. CARD IGNORED')
GO TO 11
BRIGIN(NE+1)=ISORT(A(J))
IF(FLAG*EQ*1)GO TO 29
IF(NE+1*NE+1+1)IF(FLAG*EQ*0)GO TO 28
WRITF(6,PO29)
FORMAT(10X,'**** ILLEGAL CHARACTER IN BRIGIN NUMBER. CARD IGNORED')
GO TO 11
IF(BRIGIN(NE+1).NE.0)GO TO 46
GO TO 11
}
A-17
FORMAT(10X, '**** NODE O NOT ALLOWED. 99 SUBSTITUTED. 1/10X, '**** WA

IF(NODES+RESULTS ARE UNRELIABLE**)

IF(NODES=1) 99
CALL MSO(MINUS,J+1)
GO TO 11

C E TRACT TARGET NODE

I=J+2
CALL ASCAN(B,I,J)
IF(J+LT+1)J=1
IF(J+GTR+1)G0 TO 27
TARGET(N+1)=ISORT(A(J))
IF(FLAG.EQ.1)G0 TO 30
IF(J=NE.1)TARGET(N+1)=TARGET(N+1)+(10*ISORT(A(J)))
IF(FLAG.EQ.0)G0 TO 31

WRITE(6,211)

FORMAT(10X, '**** ILLEGAL CHARACTER IN TARGET NUMBER, CARD IGNORED')

1) GO TO 11

GO TO 47
TARGET(N+1)=99

GO TO 27

FORMAT(10X, '**** MISSING RIGHT PARENTHESES INSERTED BY PROGRAM**) WRITE(6,210)

IF((B+NE.EQU).AND.((A(J+2)+NE.EQU)))WRITE(6,212)

IF(B+NE.EQU.1) TARGET(N+1)=TARGET(N+1)+(10*ISORT(A(J)))
IF(FLAG.EQ.0)GO TO 31

WRITE(6,211)

FORMAT(10X, '**** FOLLOWING RIGHT PARENTHESES IS MISSING BUT HAS BEEN INSERTED BY PROGRAM**)

I=J+2
IF(B+EQ.BLANK)I=J+1
IF(A(J+2)+EQ.FOU)I=J+3

C CARD IS NOT SUFICICIENTLY IN ORDER FOR CONSIDERATION

NE=NE+1
NNO=AXO(ORIGIN(NE),TARGET(NE),NNODES)
INNO=MINO(ORIGIN(NE),TARGET(NE),NODE)

CALL BSCAN(B,I,J)
CALL NUMBER(I,J)
K=0
IF((B+EQ.BLANK).OR.(B+EQ.AI).OR.(B+EQ.B))G0 TO 33
IF(B+EQ.P)G0 TO 34
K=12
CALL UNITS('PF')
G0 TO 33

34 IF(B+NE+AK)G0 TO 35
K=3
CALL UNITS('K')
G0 TO 33

35 B=AI(J+2)
IF(B+NE+F)G0 TO 36
K=6
CALL UNITS('MF')
G0 TO 37

A-18
36 IF((B.NE.BLANK).AND.(B.NE.AI).AND.(B.NE.E)) GO TO 32
37 IF(B.NE.H) GO TO 33
38 IF(B.NE.H) GO TO 33
39 K=6
CALL UNITS('H')
GO TO 33
40 IF(A(J)) IF(B.NE.F) GO TO 34
41 K=12
CALL UNITS('H')
GO TO 33
42 V=-3 CALL UNITS('M')
GO TO 33
43 IF(P.NE.AM) GO TO 33
44 q=A(J)+!
IF(B.NE.) GO TO 35
45 K=-12
CALL UNITS('M')
GO TO 33
46 VPATHE(N)=VPATH(E)*(10**K)
GO TO 11
END
SUBROUTINE UNITS(A)
WRITE(6,10) A
RETURN
END
SUBROUTINE WHAT
C DEFDEF OUTPUT REQUESTS 1967
C INTEGER S
C INTEGER TYPE
C INTEGER TAG, ERR
C COMMON/TAG/TAG
C COMMON/ERR/ERR
C COMMON/A(20)
C COMMON/PAT+/SAVE(1201)
C COMMON/CIRCUIT/CARD(50,12), VN(202), NE
C REAL LFFT
C COMMON/DATA/C, AI, R, AL, A, J, D, SLASH, LEFT, AV, AN(7) + BLANK
C COMMON/TIATMS, ATIMES
C COMMON/BITS/LRITS(3000), LPATH(300,2), VPATH(300), S(300), NPATH
C MOD(99), TYPE(10)
C DIMENSION ISAVE(1201)
C EQUIVALENCE (LPATH(11), ISAVE(1))
C DBlS+I=11201
C ISAVE(I)=ISAVE(I-1)
C SET START, S, P6INTER
C I=2
C SET 1201 FOR THE SLASH
CALL ASCAN(P, I, J)
IF((B*E#SLASH).AND.(J.GE.I))GO TO 1
WRITE(A*20C)

200 FORMAT(I6X,** ILLEGAL NAME IN OUTPUT FIELD, CARD IGNORED**)
3 ERR=1
RETURN
1 IF(J=I.GT.11)J=I+1

2 CONTINUE
GO TO 5
3 CONTINUE
13 WRITE(6,201)(A(K),K=I,J)
201 FORMAT(5X*,*** I1,12A1)
WRITE(6,202)
202 FORMAT(5X*,IS AN UNDEFINED ELEMENT NAME* CARD IGNORED**)
GO TO 3
5 IF(I.GE.2)GO TO 6

8 LPATH(*PATHI+1)=N+(4*{TYPE(N)-1})
3=AV
IF(TYPE(N).EQ.I)B=AI
WRITE(A*203B)
203 FORMAT(5X*,** OUTPUT ELEMENT HAS ILLEGAL DEPENDENCY TYPE, PROGRUCL10270
1AM ASSIGN **,A1,**,1)
GO TO 7
6 IF(A(1).EQ.AV)LPATH(NPATH,1)=N+4
IF(A(1).EQ.AI)LPATH(NPATH,1)=N
IF(LPATH(NPATH,1).EQ.019)GO TO 8
7 I=J+3
B=A(I+1)
I1=J+2
CALL ASCAN(B,I,J)
WRITE(6,204)
204 FORMAT(I6X,** ILLEGAL NAME IN INPUT FIELD* CARD IGNORED**)
GO TO 3
9 IF(J=I.GT.11)J=I+1

10 CONTINUE
GO TO 12
12 IF(I.GE.N+3)GO TO 14

16 LPATH(NPATH+2)=A+1{TYPE(N)}
B=AV

A-20

NOT REPRODUCIBLE
14 IF(A(I-1).EQ.AV)LPATH(NPATH,2)=N+NE
15 RETURN
END
SUBROUTINE PLPT
C H.F. OKRENT U.C.L.A. 1967
INTEGER SIMAX1,SMIN1,GAG,GAG1,SSENS1;SMA52,SMIN2,BMOD(8),S
REAL LERTMINUS
DIMENSION SIMAX(2),SMIN(2)
COMMON/CIRCUIT/CARD(50,12),VN(101,2),NE,SMAX,SMIN
COMMON/PATHS/LPATH(600),VPATH(300),S(300),NPATH
COMMON/PLY/VSENS(101,2),VNQD(200),SMAX(20),SMIN(20)
COMMON/BITS/F(4,96)
COMMON/CNT(50),CNFR,CMN(101,2),CMTY
COMMON/A/A(80)
COMMON/SPEED/F(2,2048)
COMMON/PolY/VSENS(101,2),VNQD(200),SMAX(20),SMIN(20)
COMMON/ERR/ERR
EXTERNAL (AMNDB(1),BMOS(1))
I=0
I2=0
NE=NE
NE=PATH+1
DBL=1+8
1 BMOS(I)=1
I=1
6 CALL ASCAN(B,1)
4 IF(B NE LEFT) CALL MSG(LEFT,1)
IF(B,EQ,BLANK) GO T3 2
IF(B,EQ,SLASH) GO T4
CALL ASCAN(B,3)
GO T5
3 CALL ASCAN(B,1)
2 IF(B NE EQ) CALL MSG(EQ,1)
IF(B,EQ,SLASH) GO T3
GO T4
2 J=J+1
GO T3
12 K=J+2
5 CALL ASCAN(B,K,L)
GO T7
K=1

GO TO 6

7 IF(A(J+2).NE.0.R.+(A(I+3).NE.Y))GO TO 8
 IF(A(J+2).EQ.1.AND.(A(J+3).EQ.1.AM))MOD(3)=0
 IF(A(J+2).EQ.0.E.AND.(A(J+3).EQ.T))MOD(3)=1
 IF(A(J+2).EQ.0.E.AND.(A(J+3).EQ.X))MOD(3)=2
 IF(A(J+2).EQ.0.E.AND.(A(J+3).EQ.A1))MOD(3)=3
 IF((J+2).EQ.1.P.1A.D.(A(J+3).EQ.E))MOD(3)=4
 IF(A(J+2).EQ.F.1.AND.(A(J+3).EQ.R))MOD(3)=6
 IF(A(J+2).EQ.AS.1.AND.(A(J+3).EQ.E))MOD(3)=7
 IF(A(J+2).EQ.W.1.AND.(A(J+3).EQ.B))MOD(3)=8
 IF(A(J+2).EQ.R.1.AND.(A(J+3).EQ.E))MOD(3)=9
 GO TO 9

8 IF(A(I+2).EQ.E.)AND.(A(I+3).EQ.A1))GO TO 20
 CALL NUMBER(J+2,L)
 IF((A(I+2).EQ.AS).AND.(A(I+3).EQ.AI))AMOD(1)=VPATH(NE)
 IF((A(I+2).EQ.X.1.AND.(A(I+3).EQ.AI))AMOD(2)=VPATH(NE)
 IF((A(I+2).EQ.A1.1.AND.(A(I+3).EQ.X))AMOD(4)=VPATH(NE)
 IF((A(I+2).EQ.X.1.AND.(A(I+3).EQ.A1))AMOD(5)=VPATH(NE)
 IF((A(I+2).EQ.A.1.AND.(A(I+3).EQ.A))AMOD(6)=VPATH(NE)
 IF((A(I+2).EQ.A.1.AND.(A(I+3).EQ.A))AMOD(7)=VPATH(NE)
 IF((A(I+2).EQ.A.1.AND.(A(I+3).EQ.A))AMOD(8)=VPATH(NE)

9 IF(B.EQ.BLANK).OR.(B.EQ.RIGHT)GO TO 2

GO TO 3

2 IF(BMOD(2).LT.6)GO TO 4
 IF(BMOD(2).EQ.1)AMOD(1)=1
 IF(BMOD(2).EQ.7)AMOD(7)=1
 IF(BMOD(2).EQ.8)AMOD(8)=1

GO TO 15

14 IF(BMOD(1).NE.-1).OR.(BMOD(2).NE.-1)GO TO 16
 AMOD(1)=0

GO TO 10

10 IF(BMOD(1).EQ.-1)AMOD(1)=AMOD(2)/AMOD(1)
 IF(BMOD(2).EQ.-1)AMOD(2)=1
 IF(BMOD(3).EQ.-1)AMOD(3)=0
 IF(BMOD(4).EQ.-1)AMOD(4)=1
 IF(BMOD(5).EQ.-1)AMOD(5)=1
 IF(BMOD(6).EQ.-1)AMOD(6)=1
 IF(BMOD(7).EQ.-1)AMOD(7)=1
 IF(BMOD(8).EQ.-1)AMOD(8)=1

GO TO 15

15 IF(BMOD(1).EQ.-1)AMOD(1)=1
 IF(BMOD(2).EQ.-1)AMOD(2)=1
 IF(BMOD(3).EQ.-1)AMOD(3)=1
 IF(BMOD(4).EQ.-1)AMOD(4)=1
 IF(BMOD(5).EQ.-1)AMOD(5)=1
 IF(BMOD(6).EQ.-1)AMOD(6)=1
 IF(BMOD(7).EQ.-1)AMOD(7)=1
 IF(BMOD(8).EQ.-1)AMOD(8)=1

GO TO 16

16 GO TO 17

17 K=50

A1(J)=VM(K+2)

GO TO 18

18 D1(J)=VM(K+2)
J=I+1
DB I [I]=J>50
A1[I]=O.O
B[1(I)]=O.O
25 NE='H1
RETURN
20 M=J-1,
 IF(M > I*12)M=12
 DB 31 M2=I*NE1
 DB 30 M1=1
 IF(CARD(M2,M1)>A(J+1+M))GB TO 31
30 CONTINUE
 I1=I2
 GB TO 35
31 CONTINUE
 M=M+1
 IF(MGT.12)M=12
 DO 31 M=1,IE
 CONTINUE
35 IF(SENS(I1).NE.O)GO TO 36
 WRITE(6,100)
 100 FORMAT(/10X,**** INVALID REQUEST FOR SENSITIVITY OR WORST CASE TOLERANCE****)
 ERR=1
 GO TO 25
36 DO 37 N=jNSEN
 IF(SENS(I1).NE.GAG(N))GO TO 37
 J=I
 DO 30 J=1,IE
 A(I)=VNS(K,2,12)
 30 81(J)=VNS(K,1,12)
 J=I+l
 DO 50 J=I,IE
 AL(J)=0.O
 50 B(J)=0.O
 WRITE(6,101)(CARD(I1),I=j,12)
 101 FORMAT('10X,S9.4,S9.4',I=1,12)
 GO TO 25
21 IF(I+12.O)GB TO 99
 I=SMX(I1+I2)+SMN(I2)+1
 DB 50 J=1,1
 K=50+SMN(I2)+J
 A[I]=VNS(K,2,12)
 J=I+l
 DB 51 I=J,50
 A[I]=O.O
 51 B[I]=O.O
 WRITE(6,102)(CARD(I1),I=1,12)
 102 FORMAT('10X,S9.4,S9.4',I=1,12)
 GO TO 25
22 IF(I+12.O)GB TO 99
 I=SMX+SMN(I2)+1
 DB 50 J=1,1
 K=50+SMN(I2)+J
 A[I]=VNS(K,2)
 40 B[I]=VNS(K,1)
 J=I+l
 DB 41 I=J,50
 A[I]=O.O
 41 B[I]=O.O
 WRITE(6,102)
 102 FORMAT('10X,10X,WORST CASE TOLERANCE****')
SUBROUTINE FINE

DAVID PALETZ

C

U.C.L.A. 1967

INTEGER ORIGIN,TARGET,ORIGIN,TARGET,DUM,GENER

INTEGER ERR,ERR

INTEGER CARD(50,12),PATH(300),Z(100),8Z(100),ORIGIN(50),TARGET(50)

INPUT,OUTPUT

COMMON/CIRCUIT/CARD(50,12),PATH(300),Z(100),8Z(100),ORIGIN(50),TARGET(50)

COMMON/ERR/ERR

COMMON/PATHS/CARD(S100),PATH(3000),DEP(50,30),NODE,LINE(132),INDIC(50)

COMMON/LOG3O),NUMB(50),INDIC(100),JUNK(18),REMARKS

1H(300)

WRITE(6,99)W

99 FOR NATIONAL DEPARTMENT OF INFINITY.

C

J=1

DO 1 I=1,NE

IF(CARD(I,J)=E)Z(I)=D.

IF(CARD(I,J)=A)Z(I)=9.9E30

IF(CARD(I,J)=C)Z(I)=Z(I)/VPATH(I)*W

IF(CARD(I,J)=AL)Z(I)=Z(I)*VPATH(I)

GO TO 2

1 CONTINUE

C

ARGUING THE ELEMENTS IN A SEQUENCE OF INCREASING RESISTANCE

J=1

DO 4 I=1,NE

IF(Z(I)=Z(J))3P3,4

DUMMY=Z(J)

Z(I)=Z(I)-DUMMY

IF(Z(J)=Z(I))3P3,4

4 CONTINUE

C

CALCULATING THE RESISTANCE, IN OHMS, OF THE ELEMENTS.

C 9.9E30 STAYS FOR INFINITY.

J=1

DO 1 I=1,NE

IF(CARD(I,J)=E)Z(I)=D.

IF(CARD(I,J)=A)Z(I)=9.9E30

J-1

1 CONTINUE

C

ARRANGING THE ELEMENTS IN A SEQUENCE OF INCREASING RESISTANCE

J=1

DO 4 I=1,NE

IF(Z(I)=Z(J))3P3,4

DUMMY=Z(J)

Z(I)=Z(I)-DUMMY

IF(Z(J)=Z(I))3P3,4

4 CONTINUE

C

9.9E30 STAYS FOR INFINITY.

C

C

C

END
DETERMINING HOW MANY NODES THERE ARE IN THE CIRCUIT.

J=1

DO 40 I=2,50,2
N=I-1
INDIC(N)=BRIGN(J)
INDIC(I)=TARGT(J)
J=J+1
IF(J.GT.NE)GO TO 47
40 CONTINUE

NUMB(J)=INDIC(1)
NUMB(2)=INDIC(2)
J=2

DO 41 I=3,NUMB
NTAG=1
DO 44 N=1,J-1
IF(INDIC(I).EQ.NUMB(N).NTAG=0
44 CONTINUE
IF(NTAG.EQ.1)GO TO 45
41 CONTINUE
G6 T4 46
45 J=J+1
NUMB(J)=INDIC(1)
G6 TA 42

NUM=J

C DETERMINING THE ELEMENTS THAT FORM TREE, I.E., HAVING TAG 1

I=1
INDIC(I)=0
9 TAG(I)=0
INDIC(1)=BRIGN(1)
INDIC(2)=TARGT(1)
TA3(I)=1
L = 3
I = 2
J = I

IF (ORIGIN(I) + INDIC(J)) G0 TO 10
IF (TARGET(I) + INDIC(J)) G0 TO 11
J = J + 1
IF (J >= 50) G0 TO 20
G0 TO 17
I = I + 1
G0 TO 16
10 BUM(I) = TARGET(I)
G0 TO 18
11 BUM(I) = ORIGIN(I)
18 IF (TARGET(I) + EQ + G) G0 TO 34
IF (INDIC(L)) 33, 32, 33
32 IF (L + NUMB) G0 TO 12
TAG(I) = L
INDIC(L) = BUM(I)
G0 TO 13
33 DB 31, NN = 1, 50
IF (INDIC(NN) + EQ + G) G0 TO 30
CONTINUE
G0 TO 34
30 L = NN
G0 TO 32
34 I = I + 1
G0 TO 16
12 WRITE(6, 100)
100 FORMAT /// THE TREE IS FORMED BY THE ELEMENTS THAT HAVE TAU
36 I = I
WRITE(6, 101)
101 FORMAT /// ELEMENT NUMBER, ELEMENT NAME, ORIGIN NODE, TARGET NODE, VALUE
DB 7, T = 1, 132
7 LINE(I) = BLANK
DB 2, I = 1, 120
8 LINE(I) = MINUS
WRITEx(6, 104)(LINE(I), I = 1, 120)
104 FORMAT(120A1)
5 CONTINUE
RETURN
END
SUBROUTINE SCALER
H = FKRENT

C H = FKRENT

INTEGER FACTOR
COMMON/ERR/ERRFACTOR
COMMON/CIRCUIT/CARD(50, 12), BMD(202), NE
COMMON/PATHS/LPATH(600), VPATH(300), S(300), NPATH
COMMON/INPUT/AC, AMSD(2), AL

A-26
FACTCR = 0
D = 0
DL = 0
DF = 0
C(E1, 1) = NE
IF(CARD(I, 1) .NE. AC) AND (CARD(I, 1) .NE. AL) GO TO 1
IF(VPATH(I) .EQ. 0) GO TO 1
A = AL + G10(ADSI(VPATH(I)))
D = ABS(A + FLOAT(FACT9R))
DL = DL + (A + FLOAT(FACT9R - 1))
DR = DR + (A + FLOAT(FACT9R - 1))
1 CONTINUE
IF((D.LT.60.) AND (FACT9R .EQ. 0)) RETURN
IF(DL.LT.D) GO TO 3
IF(DR.LT.D) GO TO 4
IF(FACT9R .EQ. 0) GO TO 6
D0 5 I = 1 NE
IF((CARD(I, 1) .NE. AC) AND (CARD(I, 1) .NE. AL)) GO TO 5
VPATH(I) = VPATq(I) * 10 ** FACT9R
5 CONTINUE
IF(D.LT.60.) AND (FACT9R .EQ. 0) RETURN
IF(DL.LT.D) GO TO 3
IF(DR.LT.D) GO TO 4
IF(FACT9R .EQ. 0) GO TO 6
D = DL
FACT9R = FACT9R - 1
G0 TO P
4 D = DR
FACT9R = FACT9R + 1
G0 TO 8
END
SUBROUTINE POLSEN
C
C. GRANDI UCL. A 1969

C COMPUTE THE SENSITIVITES OF THE POLES OF THE TRANSFER FUNCTION

C
INTEGER SENS, GAG
INTEGER SMAX, SMAX1, SMIN1, SMAX0, SMIN0, SMAX00, SMIN00, SMAX01, SMIN01
* SMAX00
COMPLEX POLE
COMMON/POLY/VN01(101, 20), VN00(101, 20), VN10(101, 20), SMAX0(20),
* SMINC1(20), SMAX00(20), SMIN00(20), SMAX10(20), SMIN10(20)
COMMON/SPEED/POLE(50), NPOLES
COMMON/CIRCT/CARD(50, 12), VN(101, 20), NE, SMAX, SMIN
COMMON/GAG/GAG(2), NSEN, SENS(50)
DIMENSION SMIN1(2), SMAX1(2)
COMMON VDERIV(111), A(50), B(50), C(50), D(50)

RETURN IF RAALS OR SENSITIVITY FCN NOT PREVIOUSLY FOUND
IF((NPOLES .NE. 0) AND (NSEN .NE. 0)) GO TO 1
WRITE(*, 100)
100 FORMAT(/10X, '**** NO SENSITIVITY REQUEST NOT PREVIOUSLY
* METHODE REQUEST IGNORED****')

C
A - 27
C
RETURN
TAKF DERIV. OF DENOMINATOR OF TRANSFER FUNCTION

1
I1=SMIN(1)+51
I2=SMAX(1)+51
D0 5 I=I1..I2
5 VDERIV(I-1)*(I-51)*VN(I,1)

C
EVALUATE IT AT THE POLES

D0 7 K=1..50
7 P(K)=51
D0 6 L=1..NPOL1ES
A(L)=REAL(POLF(L))
B(L)=AIMAG(POLC(L))
D0 6 K=I1..I2
5 VDERIV(K-1)*A(L)**(K-52)+C(L)
D0 6 L=1..NPOL1ES
C(L)+VDERIV(K-1)*A(L)**(K-52)+D(L)

6 CONTINUE

C
FIND SENSITIVITY FCNS FOR ALL SPECIFIED ELEMENTS

D0 2 I=1..NE
5 VDERIV(I)*D(Q)+E(Q)
D0 3 J=1..NSEN
C(SENS(I)+EQ.Q)EQ.0 GO TO 4
3 CONTINUE
4 WRITL(6,01)(CARD(IK),K112)
101 FORMAT(.ISENSITIVITY OF POLES TO '12AI///)
WRITE(6,102)
102 FORMAT(15XIPOLESt,24XtSENSITIVITYs//9XlREAC;,10XlIMAG14X,\ REULU14)

C
EVALUATE NUMERATOR OF ROOT SENSITIVITY FCN AT THE POLES

D0 10 L=1..NPOL1ES
X=0
Y=0
I=SHIN1O(J)+51
J=SPAX1O(J)+51
D0 10 K=I1..I2
5 V1 1,1*I2
IF(A(L)+EQ.0)GO TO 110
5 X=X+VN1O (KJ)*A(L)**(K-51)
110 CONTINUE

C
OBTAIN ANSWER5 (PREVENTING ZER0DIVIDE)

IF(C(L)+NE.0)GO TO 12
P=0
12 GO TO 23
23 IF(D(L)+NE.0)GO TO 13
P=X/Y
5 Y/D(L)
0=0
G0 TO 14
14 WRITL(6,103)(A(L),B(L),P,G)
103 FORMAT(6X,1PE11.4,3X,1PE11.4,6X,1PE11.4,3X,1PE11.4)
A-28
CONTINUE
RETURN
END

SUBROUTINE EQUAL(I,J,N,NTIMES)
COMMON/BITS/K(3000)
IF(NTIMES*GT.0)GO TO 2
IF(I.LT.0)I1=IABS(I)-1+IABS(NTIMES)
IF(J.LT.0)J1=IABS(J)-1+IABS(NTIMES)
IF(I.GT.0)I1=300+NTIMES*I
IF(J.GT.0)J1=300+NTIMES*J
GO TO 3
2 I2=1
J2=1
IF(I.LT.0)I2=99
IF(J.LT.0)J2=99
I1=NTIMES*(IABS(I)+I2)
J1=NTIMES*(IABS(J)+J2)
3 NI=IABS(NTIMES)
MJ=IABS(NTIMES)
PL=IABS(KH)
RETURN
END

FUNCTION LOR(I,J)
LOGICAL K1,K2,L1,L2
EQUIVALENCE (K1,K),(L1,L)
LOR=O
K=I
L=J
K1=K.O.R.L1
I=K
RETURN
END

FUNCTION LAX(I,J)
LOGICAL K1,L1,M1
EQUIVALENCE (K1,K),(L1,L),(M1,M)
LAX=O
K=I
L=J
L1=K1.O.R.L1
J=J.M
L=K
RETURN
END

FUNCTION LSBR(I,J)
LSBR=O
I=J
RETURN
END
NBR(I)=0
CALL INBIT(I,0,TIMES)
30 CALL INBIT(-I,0,TIMES)
C FORM EQUATION
D91=I,NE
J=P16VNC(I)
K=TARGET(I)
NFL(J)=NEL(J)+1
NEL(K)=NEL(K)+1
IF(TYPE(I).EQ.1) GO TO 29
CALL INBIT(J,K,TIMES)
CALL INBIT(-K,-I,TIMES)
GO TO 1
29 NBR(J)=NBR(J)+1
NBR(K)=NBR(K)+1
CONTINUE
300 FORMAT(1X,10I10)
C CHECK TREE LEGALITY AND ENTER BRANCHES
D01=INNODE,MNODES
NS(I+1)=NS(I)+ABR(I)
NC(I+1)=NC(I)+1
IF(NEL(I).NE.0) GO TO 3
WRITE(6,202)I
202 FORMAT(1X,'**k*'NODE',I3,' IS ISOLATED DUE TO NON-CONSECUTIVE NUMERATING--PROGRAM INEFFICIENCY WILL RESULT*)
GO TO 2
3 NN=NN+1
IF(NBR(I).NE.0) GO TO 4
ERR=1
WRITE(6,203)
203 FORMAT(1X,'**k*'NODE',I3,' IS CONNECTED TO ONLY ONE ELEMENT, SOLUTION IS IMPOSSIBLE*)
4 IF(ABR(I).EQ.0) GO TO 2
ERR=1
WRITE(6,204)
204 FORMAT(1X,'**k*'TREE IS UNDER-DEFINED (THERE ARE TOO FEW BRANCHES), SOLUTION IS IMPOSSIBLE*)
5 CONTINUE
IF(ERR.GT.1) RETURN
D97=I,NE
IF(TYPE(I).EQ.0) GO TO 7
J=TARGET(I)
K=TARGET(J)
L=45(J)

A-31
BRANCH(L)=-I UCL16380
L=NS(K) UCL16390
BRANCH(L)=I UCL16400
NS(J)=NS(J)+1 UCL16410
NS(K)=NS(K)+1 UCL16420
CONTINUE UCL16430
JNODE=INODE+1 UCL16440
25 K=0 UCL16450
J=0 UCL16460
C SEARCH FOR THE FIRST CUT-SET AND EQUATION UCL16470
DO22 J=JNODE,NNODES UCL16480
IF((6.EQ.0).AND.(NSR(I).GT.1))J=I UCL16490
IF((K.EQ.O).AND.(J.NE.0))GO TO 24 UCL16500
22 CONTINUE UCL16510
C IF NONE IS FOUND, SOLUTION IS COMPLETE UCL16520
IF(K.EQ.o)GO TO 23 UCL16530
ERR=1 UCL16540
WRITE(6,207) UCL16550
207 FORMAT(4X,13) UCL16560
RETURN UCL16570
24 N3=NO(J) UCL16580
DO26 I=K,NNODES UCL16590
IF(NBR(I).LE.1)G8 TO 26 UCL16600
L=NSR(I) UCL16610
N5:NO(I)+L-1 UCL16620
DO81 I=L UCL16630
N44=Q(I)+M-1 UCL16640
IF(IABS(BRANCH(N3)).NE.IABS(BRANCH(N4)))GO TO 8 UCL16650
N1=I UCL16660
N2=1 UCL16670
IF((BRANCH(N3)*BRANCH(N4))LT.0)GO TO 13 UCL16680
N1=1 UCL16690
N2=1 UCL16700
13 CALL EQUAL(I,J,N1,LOR,NTIMES) UCL16710
CALL EQUAL(-I,J,N2,LOR,NTIMES) UCL16720
CALL EQUAL(I,-J,LOR,NTIMES) UCL16730
BRANCH(N4)=BRANCH(N5) UCL16740
NBR(I)=NBR(I)-1 UCL16750
GO TO 26 UCL16760
8 CONTINUE UCL16770
26 CONTINUE UCL16780
NBR(J)=0 UCL16790
GO TO 25 UCL16800
23 DO10 I=JNODE,NNODES UCL16810
IF((NO(I).EQ.NO(I+1)))GO TO 10 UCL16820
J=NO(I) UCL16830
K=NTIMES*(I-1) UCL16840
N=NTIMES*(I+99) UCL16850
10 CONTINUE UCL16860
207 FORMAT(10X,**** SOLUTION IS IMPOSSIBLE DUE TO A LOOP CONCERNING THE FOLLOWING NODES =) UCL16870
RETURN UCL16880
208 FORMAT(85X,13) UCL16890
RETURN UCL16900
N3=NO(J) UCL16910
DO26 I=K,NNODES UCL16920
IF(NBR(I).LE.1)G8 TO 26 UCL16930
L=NSR(I) UCL16940
N5=NO(I)+L-1 UCL16950
DO81 I=L UCL16960
N44=Q(I)+M-1 UCL16970
IF(IABS(BRANCH(N3)).NE.IABS(BRANCH(N4)))GO TO 8 UCL16980
N1=1 UCL16990
N2=1 UCL17000
13 CALL EQUAL(I,J,N1,LOR,NTIMES) UCL17010
CALL EQUAL(-I,J,N2,LOR,NTIMES) UCL17020
CALL EQUAL(I,-J,LOR,NTIMES) UCL17030
BRANCH(N4)=BRANCH(N5) UCL17040
NBR(I)=NBR(I)-1 UCL17050
GO TO 26 UCL17060
8 CONTINUE UCL17070
26 CONTINUE UCL17080
NBR(J)=0 UCL17090
GO TO 25 UCL17100
23 DO10 I=JNODE,NNODES UCL17110
IF((NO(I).EQ.NO(I+1)))GO TO 10 UCL17120
J=NO(I) UCL17130
K=NTIMES*(I-1) UCL17140
N=NTIMES*(I+99) UCL17150
10 CONTINUE UCL17160
207 FORMAT(10X,**** SOLUTION IS IMPOSSIBLE DUE TO A LOOP CONCERNING THE FOLLOWING NODES =) UCL17170
RETURN UCL17180
13 CALL EQUAL(I,J,N1,LOR,NTIMES) UCL17190
CALL EQUAL(-I,J,N2,LOR,NTIMES) UCL17200
CALL EQUAL(I,-J,LOR,NTIMES) UCL17210
BRANCH(N4)=BRANCH(N5) UCL17220
NBR(I)=NBR(I)-1 UCL17230
GO TO 26 UCL17240
8 CONTINUE UCL17250
26 CONTINUE UCL17260
NBR(J)=0 UCL17270
GO TO 25 UCL17280
23 DO10 I=JNODE,NNODES UCL17290
IF((NO(I).EQ.NO(I+1)))GO TO 10 UCL17300
J=NO(I) UCL17310
K=NTIMES*(I-1) UCL17320
N=NTIMES*(I+99) UCL17330
10 CONTINUE UCL17340
207 FORMAT(10X,**** SOLUTION IS IMPOSSIBLE DUE TO A LOOP CONCERNING THE FOLLOWING NODES =) UCL17350
RETURN UCL17360
A-32
SUBROUTINE INBIT(I, NTIMES)
COMMON/BITS/K(3000)
N=1
L=1
J=1
IF(I.LT.0)GO TO 9
M=NTIMES*(IABS(I)+N)+1
IF(NTIMES.LT.0)M=3001*(IABS(NTIMES)+I)
IF(J.EQ.0)GO TO 3
L=L+30
M=M+1
GO TO 2
K(M)=K(M)+(2**L)
RETURN
3 =M.
N=IABS(NTIMES)
0=I,N
4
K(M+F)=O
GO TO 5
END
SUBROUTINE GRAPH
COMMON/DATA/CAI,RALEAJDAMOD(2),AVBMOD(6),pNTBLANK
INTEGER BRANCHADDR
INTEGER GENER
INTEGER TYPEPTYP
DIMENSION BRANCH(200),ADDR(lo0)
COMMON/GAG/GAG(20),NSENSENS(50)
COMMON/BITS/LBITS(3000),DEP(50,13),NNDESIN6EXMOD(648),TYPCSO)
COMMON/CIRCIT/CARDC(50),TYPE(50),AGENER(50),ORIGIN(SO),TARGET(5
10),INPUTBUTPUT,NE
COMMON/PATHS/LPATH(3002),VPATH(300),S(300),NPATH
EQUIVALENCE (LBITS(501),BRANCH(1))= (LBITS(701),ADDR(1))
NPATH=0
D6 =0 I=1,NE
TYP(I)=TYPE(I)
S(NPATH+1)=0
VPATH(NPATH+1)=VPATH(I)
IF(DEP(I)+NE+BLANK)GO TO 11
IF(GENER(I)+EQ.+1)GO TO 100
C INSENT PATHS DUE TO IMPEDANCES
NPATH=NPATH+1
LPATH(NPATH+1)=I
LPATH(NPATH+2)=I+NE
IF(TYPE(I)+EQ.+1)GO TO 12
A-33
LPATH(NPATH\(+1\))=I+NE
LPATH(NPATH\(+2\))=I

12 IF(CARD(I,J)\(+NE\)+R)GO TO 13
IF(TYPE(I)\(+EQ\)+1)GO TO 10
GO TO 14

13 S\(\langle NPATH\rangle\)=I+NE
UCL17460

14 IF(CARD(I,J)\(+NE\)+AL)GO TO 15
IF(TYPE(I)\(+EQ\)+1)GO TO 10
GO TO 16

15 IF(TYPE(I)\(+EQ\)+0)GO TO 10
S(NPATH)\(+S\)(NPATH)
UCL17480

16 VPATH(NPATH)\(+S\)\(+1\),\(+VPATH\)(NPATH)
GO TO 10

C INSERT PATHS DUE TO DEPENDENT ELEMENTS

11 IF(DEP(I,J)\(+EQ\)+PNT)GO TO 10
D817J=I,NE
L=J
D818K=I,12
IF(CARD(J,K)\(+NE\)\(+DEP(I,K+1))GO TO 17
CONTINUE
200 FORMAT(10X,'***** I,J2 DEPENDS ON NON-EXISTENT ELEMENT, DEPEND
INCY IS IGNORED.*****')
GO TO 10

17 CONTINUE
GO TO 19

19 NPATH=NPATH+1
LPATH(NPATH\(+1\))=L
IF(DEP(I,J)\(+EQ\)+PNT)GO TO 10
LPATH(NPATH\(+2\))=I
IF(TYPE(I)\(+EQ\)+1)LPATH(NPATH\(+2\))=I+NE
GO TO 10
S(NPATH)=S(NPATH)\(+SENS(I))

100 CONTINUE

C INSERT CURRENT AND VOLTAGE RELATIONSHIPS

JNODE\(+1\)=JN0DE \(+1\)
D817J=JN0DE,JN0DE \(+1\)
M=0
X=1.
N=1
IF(ADDR(I)\(+EQ\)+ADDR(I+1))GO TO 1
L=ADDR(I)
IF(BRANCH(L)\(+LT\)+0)N=I
K=IABS(BRANCH(L))
M=M+1
GO TO 1

6 IF(M\(+GE\)+3)GO TO 1

4 CALL UNPAK(I\(+N\),J,NE)
IF(J)3,J\(+3\)

3 IF(J)3,J\(+3\)
LPATH(NPATH\(+1\))=K
LPATH(NPATH\(+1\))=K+NE
LPATH(NPATH\(+1\))=J
VPATH(NPATH\(+1\))=X

A-34
LPATH(NPATH,2)=J4NR
UCL17970
VPATH(NPATH)=X
UCL17980
IF(GENER(K)>EQ.GENER(J)) VPATH(NPATH)=X
UCL17990
5 S(NPATH-1)=0
UCL18000
S(NPATH)=0
UCL18010
UCL18020
1 CONTINUE
UCL18030
RETURN
UCL18040
END
UCL18050

SUBROUTINE LOPPS
UCL18060
H+F.RKRENT J+C.L+A. 1967
UCL18070
C OBTAINS THE SUM OF EACH ORDER OF LOOPS
UCL18080
LOGICAL LOGIC(300),LOGIC1
UCL18090
INTEGER SMIN,SMAX,SMIN1,SMAX1,SMIN0,SMAX0,SMIN10,SMAX10
UCL18100
*SMAXC
UCL18110
INTEGER GAGC,COUNT(100),FLAG,SENS,ORDER
UCL18120
EXTERNAL LRSTOR
UCL18130
C EMN/GAG/GAG(2n),NSEN/SENS(5n)
UCL18140
C EMN/POLY/VNO1(1120),VNO0(1120),SMAX1(20),SMAX0(20)
UCL18150
*MIN0(20),SMAX0(20),SMIN0(20),SMAX10(20),SMIN10(20)
UCL18160
C EMN/LRSTOR/CARD(5012),VNO(112),NE,SMAX,SMIN
UCL18170
C EMN/SPEED/V(1100),LS(1000),NL0OP
UCL18180
C EMN/SNARE/SENS/1000
UCL18190
C EMN/SIT/SIT(300),LPHAT(300,2),VPHAT(300),S(300),NPATH,ORDER(300)
UCL18200
100)NODE(100)
UCL18210
C EMN/FLAG/FLAG
UCL18220
C EMN/FLAGS/FLAGS(5n)
UCL18230
DIMENSION VNO(1120),VNO0(1120),VM10(2020)
UCL18240
DIMENSION VM(202)
UCL18250
EQUIVALENCE (VNO(111),VM01(1))
UCL18260
EQUIVALENCE (VNO(111),VM00(1))
UCL18270
EQUIVALENCE (LORD(1),COUNT(1))
UCL18280
500 WRITE(6,300)LPATH(NPATH),LPHAT(NPATH,2)
UCL18290
FORMAT(6,200)NODE,113; THE UNKNOWN TRANSMITTANCE GOES FROM NODE113, TO I3
UCL18300
C INITIALIZE
UCL18310
N=2*NE
UCL18320
DO1=1,2
UCL18330
NODE(I)=0
UCL18340
DO2=1,202
UCL18350
VM(I)=0.0
UCL18360
VMO0(I)=0.0
UCL18370
VM01(I)=0.0
UCL18380
VM00(I)=0.0
UCL18390
VM10(I)=0.0
UCL18400
VM01(I)=0.0
UCL18410
VM00(I)=0.0
UCL18420
VM10(I)=0.0
UCL18430
VM01(I)=0.0
UCL18440
VM00(I)=0.0
UCL18450
VM10(I)=0.0
UCL18460
VM01(I)=0.0
UCL18470
VM00(I)=0.0
UCL18480
VM10(I)=0.0
UCL18490
A-35
C FIND HOW MANY TRANSMITTANCES LEAVE NODE J

DO 1,J=1,2
C TRANSMITTANCE

COUNT(J)=COUNT(J)+1
C OBTAIN THE FIRST NODE WITH ONE LEAVING TRANSMITTANCE

DO 3,J=1,NPATH
K=LPATH(J,1)
IF (COUNT(J)-1).EQ.3,3,3
FORM THE UNIQUE PATH

DO 4,J=1,NPATH
IF (LPATH(J,2).NE.LPATH(I,1)) GO TO 5
CALL EQUAL(J,1,LRP,-NTIMES)
V(J)=V(J)*V(J) + VPATH(I)
S(J)+S(I), 1=LPATH(J,1)
LPATH(J,1)=LPATH(I,1)
4 CONTINUE

5 CONTINUE
LPATH(I,1)=J
C STORE ANY LOOPS THAT MAY HAVE BEEN FORMED

DO 6,J=1,NPATH
IF (LPATH(J,1).NE.LPATH(J,2)) GO TO 6
NLORP=NLORP+1
CALL EQUAL(-NLORP,J,LSTOR,-NTIMES)
V(NLORP)=VPATH(J)
LS(NLORP)=S(J)
JJ=NTIMES*NLORP-1)
WRITE(6999)(LS(OP(II+JJ),II=INTINES),LS(NLOOP)
999 FORMAT(1X,2120/1G4,20)
6 CONTINUE

A-36
IF(NODE(J).EQ.O) LPATH(I,J)=0

IF(K.GE.0) G0 TO 11
IF(COUNT(K).EQ.O) LPATH(I,1)=0
CONTINUE
CALL CLEAR
IF(NPATH.EQ.O) GO TO 27
C BEGIN MATCHING UNIQUE PATHS
12 ORDER(I+1)=ORDER(I)
IF(ORDER(I+1).GE.NPATH) GO TO 27
9 ORDER(I+1)=ORDER(I+1)+1
IF(ORDER(I).GE.NPATH) GO TO 27
8 I=I+1
G0 TO 9
8 IF(I.LE.O) G0 TO 7
N=ORDER(I)
M=ORDER(I+1)
L=NPATH+1
IF(LPATH(N,1).NE.LPATH(M,1)) G0 TO 9
I=NTIMES*NLOOP
J=3000.(NTIMES*M)
K=3000.(NTIMES*N)
DO 2MM, M=ORDER(I+M), ORDER(I+M)
702 LOGIC(I+MM)=LOGIC(I+MM).AND.LOGIC(K+MM)
CALL UNPAK(NLOOP,I,N1,NN)
CALL UNPAK(NLOOP+1,N2,NN)
CALL UNPAK(NLOOP+1,N3,NN)
IF(LPATH(N,2).NE.LPATH(M,1)) G0 TO 32
IF(N3.NE.O) G0 TO 22
I=NPATH(N,2)
J=NPATH(N,1)
K=NPATH(M,2)
IF(LPATH(N,2).NE.LPATH(M,2)) G0 TO 33
IF((LPATH(N,1).EQ.N1).AND.(LPATH(N,2).EQ.N2)) G0 TO 32
IF((LPATH(N,1).EQ.N1).AND.(LPATH(N,2).EQ.N2)) G0 TO 33
GO TO 9
32 NLOOP=NLOOP+1
CALL EQUAL(NLOOP,N1,LSTOR,-NTIMES)
CALL EQUAL(NLOOP,N2,LSTOR,-NTIMES)
V(NLOOP)=VPATH(N)*VPATH(M)
S(N)=S(N)+S(M)
LPATH(N,1)=LPATH(M,1)
LPATH(N,2)=LPATH(M,2)
7 I=I+1
G0 TO 12
C ENTER FIRST ORDER L00P VALUES

A-37
DO 251 J=1,NLOOP
IF (NSEN.EQ.0) GO TO 780
I=LSI
K8=1-NSEN
DO 929 K9=K8,20
L8C=21-K9
IF (J.GT.GAG(L8C)) GO TO 998
CALL REDUCE(J, K9) "
IF (K2.EQ.2) GO TO 830
VNO0(K3+51,L8C)=VNO0(K3+51,L8C)+V(I)
SMAX0(L8C)=MAX0(SMAXO(L8C),K3)
SMINO(L8C)=MINO(SMIN0(L8C),K3)
GO TO 979
800 VNO0(K3+51,L8C)=VNO0(K3+51,L8C)+V(I)
SMAX0(L8C)=MAX0(SMAX0(L8C),K3)
SMINO(L8C)=MINO(SMINO(L8C),K3)
GO TO 979
998 J=J-GAG(L8C)
CALL REDUCE(J, K9, K2) "
IF (K2.EQ.2) GO TO 979
VNO0(K3+51,L8C)=VNO0(K3+51,L8C)+V(I)
SMAX0(L8C)=MAX0(SMAX0(L8C),K3)
SMINO(L8C)=MINO(SMINO(L8C),K3)
GO TO 979
979 CONTINUE
280 J=LG(I)
CALL REDUCE(J, K9, K)
SMAX(K)=MAX2(SMAX(K), K9)
SMIN(K)=MIN2(SMIN(K), K9)
VNO0(K3+51,K)=VNO0(K3+51,K)+V(I)
CONTINUE
C OBTAIN HIGHER ORDER LOOP VALUES
S=T L00P ORDER POINTER
14 I=1
WRITE(6,990)NLOOP
990 FORMAT(NB-6P FIRST ORDER LOOP S, I)
17 ORDER(I+1)=ORDER(I)
C CHECK FOR MORE FIRST ORDER LOOPS
IF (I.EQ.0) WRITE(6,999) ORDER(1)
IF (ORDER(1).GT.NLOOP) RETURN
16 ORDER(I+1)=ORDER(I+1)+1
IF (ORDER(I+1).GT.NLOOP) GO TO 18
I=I-1
GO TO 16
18 IF (I.LE.0) GO TO 24
N=ORDER(I)
M=ORDER(I+1)
L=NB0P+1
IF (I.GT.1) N=L-1
I1=NTIMES(L-1)
J1=NTIMES(M-1)
K1=NTIMES(N-1)
DO 20 I=1,NTIMES
A-38
SUBROUTINE CLEAR
C - F. EXPENT 1967
INTEGER
C(NPATH),JPATH(300),LPATH(300),MPTH(300),SMAX(K),SMIN(K),
EXTERNAL LSMPH
COMMON/NTJIES/NTIIMES
N=0
GO TO 1
C
A39
SUBROUTINE REDUCE(I,J,K)
INTEGER TAG
M=21-NSEN
DB 1 L=L*20
IF(J+TAG(21-L)-500)J=J+TAG(21-L)
1 CONTINUE
2 IF(J<500)RETURN
J=J-1000
K=2
RETURN
END

SUBROUTINE MULT(A,B,C)
DIMENSION A(101),B(101),C(101)
ZER0 ANSER
1 C(I)=0.0
LIMITS OF MULTIPLICATION
IMINA=MINA+51
IMAXA=NMAX+51
IMIXS=NMIN3+S1
IMAXS=NMAX+51
MULTIPLY
DO 2 J=IMINB,IMAXB
2 C(I+J-51)=C(I+J-51)+A(I)*B(J)
RETURN
END

SUBROUTINE SENSC
DIMENSION SMIN(20),SMAX(20)
*SMAX0(20),SMAX0(20),SMIN0(20),SMAX0(20),SMIN0(20)
COMMAND/CIRCl/C(50,12),VNI(101,2),NE,SMAX,SMIN
DA 3-5 II=I,NSEN
DB 356 II=I,NSEN
IF(SEI = SI) GO TO 630
306 CONTINUE

C CHECK FOR ZER0 VN01
C GO TO 710
307 DE 701 I=1,101
IF(VN01(I,II) .NE. 0.0) GO TO 710
701 CONTINUE

C NAN ZERO VN01
C GO TO 720
710 CALL MULT(VN(I,II),VN01(I,II),SMIN(I),SMAX(I),SMIN01(II),
*SMAX01(II))
CALL MULT(VN(I,II),VN00(I,II),B,SMIN(2),SMAX(2),SMIN00(II),
*SMAX00(II))
DE 722 I=1,101

C NON ZERO VN01
C GO TO 703
720 DE 703 I=1,101
VNSEN(I,II)=VN00(I,II)
703 VNSEN(I2,II)=VN00(I,II)

800 CALL ANSWER(VNSEN(I,II),SMAX1(II),SMIN1(II),I1)
305 CONTINUE
RETURN
END
SUBROUTINE ANSWER(VN,SMAX,SMIN,ITAG)

DAVID PALETZ U.C.L.A. 1967

DIMENSION VN(101,2)
I/C/P/CARD(50,12)
CR/P/B/SPEED/EXP(100,2),AS(100,2),ASQN(100,2),LINE(132)
NUM(50),JUNK(19)
INTEGER BLANK,SMAX,SMIN,ASIGNPLUS,MINUS,A,NLINE
COMMON/SPACE/CAS(100),NSBMBD(5L)BLANK,PLUS,MINUS,A
COMMON/X/IDEC(10)
COMMON/SD/SFT/FL(4096),VM(101,2)
DO I=1,100
AS(I,1)=NS
AS(I,2)=NS
1 I
L=51+SMIN
K=SMAX+SHIN
C SKIP A PAGE AND WRITE HEADING
IF(ITAG EQ 0) WRITE(6,201)
201 FORMAT('TRANSFER FUNCTION;//')
IF(ITAG EQ -1) WRITE(6,220)
220 FORMAT('SQUARE OF WORST CASE TOLERANCE;//')
IF(ITAG GT 0) WRITE(6,240)(CARD(ITAGJ)+J+1,12)
210 FORMAT(11,'SENSITIVITY TO T0,12A1//')
C SETTING THE NUMERATOR IF J=2 AND THE DENOMINATOR WHEN J=1

11 KK=51+SMAY
3 IF(VN(KK,J).GE.0) GO TO 7
 K=K+1
 GO TO 3
7 IF(J.EQ.2) FAN=VN(KK,J)
 IF(J.EQ.1) FAD=VN(KK,J)
 IF(J.EQ.2) FAN=VM(I,J)
 VM(I,J)=VM(I,J)/FAN
 IF(J.EQ.2 .AND. ITAG.EQ.0 .AND. VN(I,J).GE.0) VM(I,J)=VM(I,J)/FAN
 IF(J.EQ.1) VM(I,J)=VM(I,J)/FAD
 IF(VM(I,J).LT.0) VM(I,J)=-VM(I,J)
 ASIGN(I,J)=MINUS
GO TO 5
6 NEXP5(I,J)=0
 AS(I,J)=BLANK
5 L=L+1
 CONTINUE
4 IF(NEXPS(N,J).LE.10) GO TO 41
 LEXPS=NEXPS(N,J)
 NUM(N,3)=IDEC(LEXPS)
 NUM(N,2)=IDEC(LEXPS/10)
 NUM(N,1)=BLANK
 GO TO 40
41 IF(NEXPS(N,J).LE.100) GO TO 42
 LEXPS=NEXPS(N,J)
 NUM(N,3)=IDEC(LEXPS)
 NUM(N,2)=IDEC(LEXPS/10)
 NUM(N,1)=BLANK
 GO TO 40
42 LEXPS=NEXPS(N,J)
 NUM(N,3)=IDEC(LEXPS)
 NUM(N,2)=IDEC(LEXPS/10)
 NUM(N,1)=BLANK
 GO TO 40
40 CONTINUE
MEND
8 NEND=NREG+7
 IF(J=AD.GE.K) GO TO 9
WRITE(6,202)((VUM(I,J),I=1,3),J=NBEG,NEND)
202 FORMAT(1H0,8(1I3,3A1))
WRITE(6,204)((ASIG(I,J),VM(I,J),AS(I,J)),I=NBEG,NEND)
204 FORMAT(1H8(A1,1PE10+3*A1,2X))
 I=1,NBEG+8
9 TO 10
 WRITE(6,202)((VUM(I,J),I=1,3),I=NBEG,NEND)
 WRITE(6,204)((ASIG(I,J),VM(I,J),AS(I,J)),I=NBEG,NEND)
 IF(J.EQ.1)GO TO 10
 IF(K.EQ.8)GO TO 13
WRITE THE DIVISION LINE
IF(K.GE.8)GO TO 13
 LEND=K
9 TO 14
13 LEND=8
16 LTOTAL=LEND*14
 DB 15 L=1,L=32
15 LINE(I)=BLANK
 DB 16 I=1,LTOTAL
16 LINE(I)=MINUS
 WRITE(6,203)(LINE(I),I=1,LTOTAL)
203 FORMAT(1H32A1)
 L=SUM1+SMIN
 IF(J.EQ.1)GO TO 11
 K=SMAX-SMIN+1
 J=1
60 TO 11
 FACT IS THE FUNCTION FACTOR
10 FACT=FAN/FAD
 WRITE(6,205)FACT
205 FORMAT(1H3X,1PE10+3//)
 WRITE(6,209)VM
209 FORMAT(1X,1PE13.5)
 RETURN
 END
SUBROUTINE HORSTC
C
C S. GRANDI U.C.L.A. 1969
C CALCULATES WORST CASE TOLERANCE
C
C INTEGER S,MAXI,SMAXI,SMIN1,SMAX1
C CMAX,CMIN,CSMAX,CSMIN,CSM3,CSM7
C CMAX1,CMAX2,CMAX3,CMAX4,CMAX5,CMAX6,CMAX7
C CMAX8,CMAX9,CMAX10,CMAX11
C CSMAX1,CSMAX2,CSMAX3,CSMAX4,CSMAX5
C CSMAX6,CSMAX7,CSMAX8,CSMAX9,CSMAX10
C CSMAX11,CSMAX12,CSMAX13,CSMAX14,CSMAX15
C CSMAX16,CSMAX17,CSMAX18,CSMAX19,CSMAX20
C CSMAX21,CSMAX22,CSMAX23,CSMAX24,CSMAX25
C CSMAX26,CSMAX27,CSMAX28,CSMAX29,CSMAX30
C CMAXI,CMAXI1,CMAXI2
C CMAXI3,CMAXI4,CMAXI5,CMAXI6
C CMAXI7,CMAXI8,CMAXI9,CMAXI10,CMAXI11
C CSMAXI1,CSMAXI2,CSMAXI3,CSMAXI4
C CSMAXI5,CSMAXI6,CSMAXI7,CSMAXI8,CSMAXI9
C CSMAXI10,CSMAXI11,CSMAXI12,CSMAXI13
C INITIALIZE
C
 I=5,IV(J)+51
C J=CMAX(I)+51
C NDC=M0
C MAX1=0
C MAX2=0
C NIN=0
C NV=0
C
A-43
DO I=1,101
VX1(I)=0.0
VX2(I)=0.0
VY(I,1)=0.0
VY(I,2)=0.0

C

1

GET SENSITIVITY SENSITIVITY FCNS FOR ALL VALID ELEMENTS
NSEN=0
D 1 G K=1,NE
IF(SENS(K)+EQ.0)GO TO 10

C

SQUARE THE TOLERANCE
TOL1=TOL(K)*TOL(K)
NSEN=NSEN+1

C

SQUARE SENSITIVITY FUNCTION
CALL MULT(VNSEN(1,1,NSEN),VSEN(1,2,NSEN),VWRKRN,
*SMIN1(NSEN1),SMAX1(NSEN1),SMIN1(NSEN1),SMAX1(NSEN1))
VMAX1=SMIN1(NSEN1)+SMIN1(NSEN1)
SMAX1=SMIN1(NSEN1)+SMAX1(NSEN1)

C

5FTAIN SENSITIVITY SENSITIVITY FCNS FOR ALL
VALID ELEMENTS
UCL2790
NSEN=NSEN+1

C

10 IF(SENS(K).EQ.0)GO TO 21

C

10 CONTINUE

C

DENOM. SAME AS TRANSFER FUNCTION
UCL22990

11 DO J=1,J1

C

DIFX =VM1(J)*VX1(J)+TOL1*VWRKRN(J)

C

12 DO J=1,J2

C

IF(VJ(J)).NE.0.0)GO TO 21

C

CONTINUE

C

DENOM NOT SAME AS TRANSFER FCN
UCL23050

11 IF(XDEM.EQ.0)GO TO 30

C

30 BOTH TYPES PRESENT
CALL MULT(VX1,1,2,VX2,1,2,VWRKRN,SMIN2,SMAX2,SMIN2,SMAX2)
VY1=SMIN2+SMIN2
VY2=SMAX2+SMAX2

C

DO I=1,101
VY(I,1)=VY2(I,1)+VY2(I)

C

CALL MULT(VW(I,1,2),VW(I,1,2),VWRKRN,VMIN2,SMAX2,SMIN2,SMAX2)

C

DO I=1,101

C

A-44
SUBROUTINE INVERT

A. R. Tyrrill, UCLA, 6/21/68

COMMON ZCA(50),PC(50),S1,G2
DIMENSION FCTN(512),TEE(512),PH(512)
COMPLEX

DATA FREQ,AMAG,PHI,TIME/*FREQ, /MAG,PHI, TIME*/

112 FORMAT (2X, 12, 3X, IP2E20,5) UCL23660
12 FORMAT('0',22XI+ '.IP2E20.5) UCL23670
14 FOR LAT **X** THE PLOT IS OF THE NON-CONSTANT REMAINDER TERM

ONLY

NFLAG=0
IF (STEP LE. 0.0) STEP = 1.0
SCFREQ = STEP
NF(I) = 1
D9 116 I = 2x 11
116 NF(I) = E**F(I-1)
INTS = TOTEE/STEP
IF (INTS GT. 10) INTS = 10
IF (NF(I) - INTS) 117, 118, 118

A-45

NOT REPRODUCIBLE
117 CONTINUE
118 I = 10
119 NXFR = I + 1
120 DO 119 I = 1, NXFR
121 IF (I .GT. 10) GOTO 120
122 CONTINUE
123 MRY = 51 - I
124 CONTINUE
125 MRNUM = 51 - 1
126 MRYAX = MA(0) .OR. MBR
127 IF (MRYAX) 110, 111
128 CONTINUE
129 IF (TYPE .GT. 5) GO TO 112
130 IF (TYPE .LE. 5) CALL INPUT
131 RETURN
132 IF (TYPE .GT. 5) GO TO 113
133 CALL SCALE
134 CALL ROUTHE
135 CALL SAMPLE
136 CALL FLIP
137 CALL ADJUST
138 RETURN
IF(MTI.GT.0) MTI=MTI-1
IF(MTI.LE.0,MTI=100)

G=MTI*CA(J)
G2=(G2+CA(J))*Z

IF(MTI.GE.8) RETURN

$\text{CALL} PRTPLT$
RETURN
2 = 1,1PE12.5, 1 SEC 1
24760
322 F09=AT (20X), 1 PULSE TRAIN, WAVELENGTH = 1, 1PE12.5, 1 SEC, 5X, UCL24770
2 PULSE DURATION = 1, 1PE12.5, 1 SEC, 33X, 1 TOTAL MAG = 1, 1PE12, UCL24780
368, 1X, 1 BACKGROUND = 1, 1PE12.5)
UCL24790
WRITE (6, 310)
G0 TO (311, 312, 313, 314, 315), NTYE
WRITE (6, 316) AMP1
G0 TO 320
311 WRITE (6, 317) AMP1
G0 TO 320
312 WRITE (6, 318) AMP1, FREQ1
G0 TO 320
313 WRITE (6, 319) AMP1, FREQ1
G0 TO 320
314 WRITE (6, 321) AMP1, FREQ1
G0 TO 320
315 WRITE (6, 322) FREQ1, FREQ2, AMP1, AMP2
320 ISP = 1
NTAY = 1
SCNAG = AMP1
GE TO (305, 301, 303, 305, 305), NTYE
RETURN
300 RETURN
301 IM 302 I = 1, 48
302 B(50-1) = B(49-1) - B(50-1)*FREQ1
B(1) = -5(1)*FREQ1
UCL24990
RETURN
303 IF (FREQ1 .LE. 0.0) FREQ1= 1.0
UCL25000
6MEGA = FREQ1*6.2831853
UCL25010
AMGSO = 6MEGA**2
UCL25020
SCMAG = SCMAG*6MEGA
UCL25030
DO 304 I = 1, 43
UCL25040
304 B(51-I) = B(49-I) + B(51-I)*AMGSO
UCL25050
B(1) = 5(1)*AMGSO
UCL25060
B(2) = 5(2)*AMGSO
UCL25070
RETURN
305 IM 306 I = 1, 48
306 B(50-1) = B(49-1)
UCL25100
B(1) = 0.0
UCL25110
IF (FREQ1 .LE. 0.0) FREQ1= 1.0
UCL25120
T1 = FREQ1
UCL25130
IF (NTYPE=4) 308, 307, 309
UCL25140
307 ISP = 2
UCL25150
IF (T1 .LE. 5*STEP) NTAY = 0
UCL25160
RETURN
308 RETURN
309 ISP = 3
UCL25160
T3 = AMP2/AMP1
UCL25170
IF (FREQ2 .LE. 0.0) R0, FREQ2, GE, FREQ1) FREQ2 = 0.5*FREQ1
UCL25180
T2 = FREQ2
UCL25190
IF (T2 .LE. 5*STEP) NTAY = 0
UCL25200
RETURN
END
UCL25210
SUBROUTINE SAMPLE
UCL25220
C A R TYNRILL, UCLA, 6/21/68
UCL25230
A4-9
SUBROUTINE ADJUST

C A. R. TYRRILL, UCLA; 6/21/68

COMPLEX RSPNS(2048)

DIMENSION FNP(4)

COMMON/BITS/RSPNSFACTL(50),TERM(50),NXFR(P5W(50)),NXTSTEP,
BTOTEE,TYPEA,AMP1,AMP2,FREQ1,FREQ2,NPLAT,
NUMFFTNUMTINFSO,NR(11),MOR,MORNUM,TNTSN,ISNJ,SCMAG,SCFREQ,1,0GA,
2T12,T3,D416(6),ABSC,6RD

COMMON/SPEED/FCTN(512),TEE(512)

DLW.' 2.0*SCMAG/SCFREQ

DO 108 I = 1, NUMT

TEE(I) = (FLBAT(I-1))*SCFREQ

150 FCTN(I) = DLW*(REAL(RSPNS(I)))

IF (SIGMA) 151, 153, 151 -

151 SGQ = SIGMA/SCFREQ

DO 152 I = 1, NUMT

152 FCTN(I) = FCTN(I)*EXP(SIGA*TEE(I))

153 CALL TAYLOR

DLW = SCMAG/SCFREQ

FCTN(1) = TERM(2)*DLW

IF (NTAY) 156, 158, 159 -
FACTL(2) = 1.0
DO 1, 4 I = 0, 5
FACTL(I) = FACTL(I-1) * (I-2) * 0.25
DO 5 I = 2, 5
155
TERM(I) = TERM(I) / FACTL(I)
DO 6 J = 2, 5
FNP(I) = FNP(I) * TERM(J) * P(H(J))
IF (ABS(FNP(I)) > -1.0E+03) GO TO 156
158 PE(J+1) = P(J) * I * 0.25
157 FCNL(I+1) = FCNL(I) * DLW
156 CALL PRTPLT
RETURN
END
SUBROUTINE TAYLOR
C A. R. TYRRILL, UCLA, 6/21/68
C DIMENSION SYMBOL(5),straße/ST(MC),AP(0406),B(50),TERM(50),NFR,A(50),XTOTFE, UCL26390
C FREQ,SCFREQ,SIGMA,2TJTRT,0MOD(6),ARCORD
C DATA SYMBOLl
C,",X","*",111
C FORMAT(/11X,1PE10.3,1PE13.5,
C,10E13.5,1PE13.5,1PE13.5,1PE13.5)
C 159 FACTL(2) = 1.0
C 154 FACTL(I) = FACTL(I-1) * (I-2) * 0.25
C 153 I = 2, 5
C 155 TERM(I) = TERM(I) / FACTL(I)
C 156 CALL PRTPLT
C RETURN
C END
C SUBROUTINE PRTPLT
C A. R. TYRRILL, UCLA, 6/21/68
C DIMENSION SYMBOL(5),straße/ST(MC),AP(0406),B(50),TERM(50),NFR,A(50),XTOTFE, UCL26390
C FREQ,SCFREQ,SIGMA,2TJTRT,0MOD(6),ARCORD
C DATA SYMBOLl
C,",X","*",111
C FORMAT(/11X,1PE10.3,1PE13.5,
C,10E13.5,1PE13.5,1PE13.5,1PE13.5)
183 FORMAT (10X, 122A1)
191 FORMAT (4(1PE16.3, 1PE16.5)
194 WRITE(6,194) (ASCII(i), I=1,4)
196 NFO = , JUII
198 J = NFO + 1
200 JJ = JUII + J
190 WRITE (6, 191) TEE(I), FCTN(I), TEE(J), FCTN(J), TEE(JJ), FCTN(JJ)
210 IF (NPL0T .LE. 0) RETURN
212 L = 0;
214 DL9 = DLI
216 IF (FCTN(I) .GT. DHI) DHI = FCTN(I)
218 IF (FCTN(I) .LT. DL) DLO = FCTN(I)
216 CONTINUE
220 DGP = (DHI - DL)/(115+0
222 KZERO = 14.5 - (DL/DGP)
224 IF (KZERO .LT. 11) 177, 177, 178
226 IF (132-KZERO) 177, 177, 179
228 KZERO = 1
230 DOE 120 I = 11, 132
232 P(I) = SYMBOL(2)
234 WRITE (6, 183) DHI, DLO, DGP
236 LL = C
238 DOE 182 I = 1, NUMTI, NPL0T
240 K = ((FCTN(I) - DL)/(DGP) + 14.5
242 P(I) = SYMBOL(3)
244 IF (LL) 185, 185, 188
246 P(J) = SYMBOL(1)
248 DOE 184 J = 10, 132
250 P(J) = SYMBOL(1)
252 IF (LL) 185, 185, 188
254 DOE 1 IV1 = 1, 3
256 P(I+1) = SYMBOL(2)
258 P(KZERO+1) = SYMBOL(2)
260 P(KZERO-1) = SYMBOL(2)
262 P(I) = SYMBOL(2)
264 P(J) = SYMBOL(5)
266 P(J) = SYMBOL(5)
268 P(J) = SYMBOL(5)
270 P(J) = SYMBOL(5)
272 P(I) = SYMBOL(5)
274 WRITE (6, 183) (SYMBOL(2), I=11,132)
276 RETURN
278 END SCALE
C A. R. TAYLOR, UCLA, 6/21/68
280 COMMON/BITS/F1(4096),S(50),C(50),NXFR,A(50),NXTI,STEP,T0TEE,
282 ANTYPE,AMP1,AMP2,MPE01,FREQ2,NPL0T
A - 52
```
NUMFRINUMTIANF(ii,)NR(l),MORiORNUMNTAYISN;SCMAGjSCFREQ;SIGMA UCL27410
T,TI'T3,DMBD(6)sABSCORD UCL27420
MRLO
z
MR
- 1 UCL27430
IF (SCFREQG-.0)
231, 232, 231 UCL27440
231 DO
233 I = 1,MLe
UCL27450
232 DO
233 J = 1A
I
UCL27460
234 A(I) = A(MOR-I)*SCFREO
UCL27470
235 SCMAG = 1.0/B(MOR)
UCL27480
DO
234
UCL27490
235 A(I) = A(I)/A(MORNUM)
UCL27500
RETURN
UCL27510
END UCL27520
SUROLUTINE
ROUTH
UCL27530
A. R. TYRRILLs UCLA, 6/21/68 UCL27540
LOGICAL LOG1 UCL27550
COMMON/BITS/DINn(50,50),D(26,50),AMoD(296)
UCL27560
1 ,B(50),C(50),NXFRA(50)jNRTITPEPTE*
UCL27570
NMFRA(11),NR(11),MORNUM,NTAY,ISN,SCMAG,SCFREG,SIGMA
UCL27580
1 ,B(50),C(50),NXFRA(50)jNRTITPEPTE*
UCL27590
CALL CALCR(LOG1)
UCL27600
IF (LOG1) GO
TE
UCL27610
SIIA SIGMA +
SISTORY
UCL27620
GO
to
232
UCL27630
SIGTRY (-O,1)*SITRY
UCL27640
SHIFT 0.0035*NXFRA
UCL27650
SIGMA SIGMA
UCL27660
CALL CALCR(LOG1)
UCL27670
IF (SIGMA+SHIFT)
R36s 236s.235 UCL27680
235 IF (LOG1)
UCL27690
SIGMA = SIGMA
UCL27700
RETURN
UCL27710
SIGMA = 0.0
UCL27720
RETURN
UCL27730
END
UCL27740
SUBROUTINE CALCR (LOG1) --
UCL27750
A. R. TYRRILL UCLA, 6/21/68
UCL27760
LOGICAL LOG1
UCL27770
COMMON/BITS/DINn(50,50),D(26,50),AMoD(296)
UCL27780
1 ,B(50),C(50),NXFRA(50)jNRTITPEPTE*
UCL27790
C.A. R. TYRRILL UCLA, 6/21/68
UCL27800
LOGICAL LOG1
UCL27810
COMMON/BITS/DINn(50,50),D(26,50),AMoD(296)
UCL27820
1 ,B(50),C(50),NXFRA(50)jNRTITPEPTE*
UCL27830
A-53
```
LOGI = TRUE.

IF (SIGMA -LT. 1.0E-04 .AND. SIGMA GT. 1.0E-04) SIGMA = 0.0

C(MOR) = B(MeR)

MRLO = MOR - 1

DO 248 I = 1, MRLO

C(1) = B(I)

II = I + 1

DE 243 J = II, MR

T = B(J)*BINO(IJ)*SIGPNC(J-I)

D(1,0) = T

MH = (MR + 1)/2

DO 243 I = 1, II

D(1,1) = C(MOR-2-(!-))

MH = MH/2

MH = MH + (HOR + 1)/2

00 244 J = 3, NOR

D(1,2) = C(MOR+1.2*I)

00 245 J = 4, NOR

D(1,3) = VDCJ'i)*D(I+1,J'+2)*Dc1,Jw2)*D(I+1jJ.i))/0(1,Si)

IF (D(1,J)) 247, 247, 245

CONTINUE

RETURN

END

SUBROUTINE ROOTS

COMPLEX*16 Q

DIMENSION SMIN(2),SMAX(2)

INTEGER SMAX,SMI,

COMPLEX D(50,2)

REAL A(50),C,YMA,,YMINSXMAXJXMINH(5),E

DIMENSION N1(5),NRT(50,3,2),IN(2),JN(2)

COMPLEX P(50);SSNSSSWSEFJFNFSPFE,FWV(5),W()
EQUIVALENCE (G,H(1)),(F,V(1)),(S,N(1))
'DPL2L=0
DO25N9=1,2
&5SMAX(Y9)=S1NY(N9)+1
N6=SM1N(N9)+1
N7=SMAX(N9)+1
D60J=0.7
IF(VN(N9)+NE.E0)G8 TO 1
40 CONTINUE
G8 TO 25
1 N6=1
DO5P=1,N6,N7
J=N7+N6+1
IF(VN(J)+NE.E0)G8 TO 53
52 CONTINUE
50 TO 25
N7=J
N=N7+N6+1
IF(N.LT.1)G8 TO 25
M=N
WRITE(6,203)
203 FOR1AT(1X,203)M
206 FOR1AT(1X,5X,45)
WRITE(6,205)
205 FOR1AT(1X,45)
C=0.E0
D8I=1
J=N7+1
A(I)=VN(J,N9)
2 R(I)=CPLX(A(I),0.E0)
45 L=1
C.... THE SCANNING ROUTINE.....
31 XMV=1.E0
YMV=SRT(ABS(1+2*(XM**2)))+6.25E+2
NR9T=JN(3-L)

A-55
THE CALCULATION ROUTINE -- USING HÖRNER'S TECHNIQUE

THE CRITERION FOR FINDING A ROOT --
THE RESIDUAL AT THE CENTRAL POINT MUST BE LESS THAN THAT OF
THE FOUR SURROUNDING POINTS.

HOWEVER, IF ALL 5 POINTS ARE EQUAL, THIS POINT MUST BE REJECTED.

THE HOME-IN ROUTINE.................................
SS = COMPLEX(FLOAT(Nq) * C, FLOAT(NINX) * C)
SH = COMPLEX(FLOAT(NR-NX) * C, FLOAT(NI) * C)
SE = COMPLEX(FLOAT(NR+NX) * C, FLOAT(NI) * C)

C*** BRANCH TO THE CALCULATION ROUTINE.

! 7 =
GO TO 33

302 FORMAT(1X,4E20.8)
10 F=AN H(1),H(2),H(3),H(4),H(5))
D811=1.5
IF(E.EQ.H(1))GO TO 12
11 CONTINUE
WRITE(6,303)

303 FORMAT(1X,ERROR+)
1P GO TO (13,17,20,22,23),I
C*** IF THE DESIRED ACCURACY HAS BEEN REACHED, EXIT THE HOME-IN
C*** ROUTINE.
13 IF(J.GE.6)GO TO 15
J=J+1
GO TO 32
17 NI=NI+NX
GO TO 21
20 NI=NI-NX
GO TO 28
23 NR=NR+NX
GO TO 28
28 IF((J.GE.1)AND.(MOD(NR,NX+16),EQ.0))J=J+1
GO TO 14
14 S=H(I)
G=H(1)
IF(CABS(S)*GT.2.E0)GO TO 46
GO TO 32

C******** Root Examination Routine,...
15 IF((NTAG.EQ.0))GO TO 43
C*** CHECK THE LAST FEW STEPS, BUT THIS TIME WITHOUT DIVIDING OUT
C*** THE ROOTS
16 NTAG=0
F=(O.E0.E0) D850=1.4
50 F=F+B(I)*S
F=F+B(N)
G=CABS(F)
DBG9=1.7
J=MAX0(7+1.2)
IF((MOD(NR,16)*1.E0).OR.(MOD(NI,16)*1.E0))GO TO 32
49 CONTINUE
43 NTAG=1(I)
IF(G.GE.CABS(P)/2.0E0)GO TO 46
K=K
N2=16
29 IF((NR/N2**7.E0).AND.(NI/N2**7.E0))GO TO 34
IF(MOD(NR,N2).GE.N2/2)NR=NR+N2
IF(MOD(NR,N2).LE.(N2/2))NR=NR-N2

A-57
IF(MOD(NR,K).GE.K/2)NR=NR+K
IF(MOD(NR,K).LE.(-K/2))NR=NR-K
IF(MOD(NR,K).GE.K/2)NI=NI+K
IF(MOD(NR,K).LE.(-K/2))NI=NI-K
NR=NR-MOD(NR,K)
NI=NI-MOD(NI,K)
RETURN TO THE PROPER POINT.

IF(NR=0)GO TO 18
K=JN(L)
NRT(K1,L)=NR
NRT(K2,L)=NI
NRT(K3,L)=NEXP

C-------------PERFORM THE CONVERSION FROM HEX TO DECIMAL.----------
N3=NI
C=FLOAT(NR)*(16.**((NEXP-7)))
E=FLOAT(NI)*(16.**((NEXP-7)))
NEXP=ALOG10(A**N3*(ABS(C)*ABS(E)))
NI=E*(16.**((7-NEXP)))
M=1
N2=10
C.. BRANCH TO THE ROUND-OFF ROUTINE AGAIN

GO TO 29

37 U=M

Q=DCPLX(DFLOAT(NR)*1.D-6,DFLOAT(NI)*1.D-6)
K=4EXP-1
WRITE(6,200)Q,K
WRITE(6,200)Q,K

200 FORMAT(4X,2F15.9,111)

C INSERT POLES IN COMMON BLOCK

IF(N9.NE.1)GO TO 5
NPOLES=NPOLES+1
POLE(NPOLES)=0*(10**K)
WRITE(6,205)

5 IF(J(J)+J(J+1).LT.4)GO TO 44

36 WRITE(6,205)

GO TO 25

44 IN(L)=IN(L)+1
J=IN(L)

D(J)=S

CONTINUE

IF(YNIN.GE.YMAX)GO TO 6
K=KR+XMIN=KP*6.25E-2
YMIN=ABS(1*E0-(XMIN**2))=6.25E-2
IF(YMIN+LE.1.EQ)GO TO 8

6 KP=KP+1

C.. CONTINUE THE SCAN*

46 IF(YMIN+GE.YMAX)GO TO 6
K=K+1
YMIN=N*X+6.25E-2
IF(L*EQ.1)GO TO 7
IF(YMIN+LT.YMAX)GO TO 7

6 KP=KP+1

KP=KP+1

C.. THE INVERSION ROUTINE..

10 L=3-L
K=N*

35 IF(J(J)+I(J).LT.1)GO TO 45

J=N+I
B(J)=T
S(J)=T

C.. BACK TO THE SCANNING ROUTINE

10 IF(L*EQ.2)GO TO 31

GO TO 45

25 CONTINUE

C.. CONTINUE

99 RETURN

STOP C

A-59
A. 2. NASAP-70 DICTIONARY

A. 2.1 Dictionary of Variables

A(I) In Common A. An array of 80 elements containing the 80 characters of the most recently read data card.

A(I) In Common BITS. An alias for A1(I).

A(I) In Subroutine ROOTS. The coefficients of the polynomial being evaluated.

A(I) In Subroutine POLSEN. The real part of the Ith pole.

ABSC In Common BITS. The abscissa label for Subroutine PRTPLT.

ADDR(I) In Common BITS. An alias for NQ(I) used in Subroutine GRAPH.

AMOD(I) In Common BITS. The list of plot control variables STEP to NPLT.

AMP1 In Common BITS. The positive portion of a pulse train.

AMP2 In Common BITS. The negative portion of a pulse train.

AS(I, J) In Subroutine ANSWER. Alphanumeric array of S1's used in printing Transfer and Sensitivity Functions.

ASIGN (I, J) In Subroutine ANSWER. Alphanumeric array of signs used in printing Transfer and Sensitivity Functions.

A1(I) In Common BITS. Numerator of function to be plotted. The coefficient of S1-1.

B(I) In Subroutine POLSEN. The imaginary part of the Ith pole.

B(I) In Common BITS. An alias of B1(I).

B(I) In Subroutine ROOTS. A Complex type array of the polynomial coefficients.

BITS(I) In Common BITS. Array of words used in logical bit manipulations.

BINO(I) In Common BITS. A list of Binomial Coefficients used in Subroutines ROUTH and CALCR.

B MOD(I) In Subroutine PLOT. An integer type alias for AMOD(I).

B RANCH(I) In Common BITS. The list of branches connected to each circuit node. Used in Subroutines CALC and GRAPH.

B 1(I) In Common BITS. Denominator of function to be plotted. The coefficient of S1-1.

C(I) In Subroutine POLSEN. The derivative of the Transfer Function Denominator evaluated at the real part of the Ith pole.

C(I) In Common BITS. An alias for POW(I).

CA(I) In Subroutine INVERT. A Complex type alias for A1(J) with CA(1) the coefficient of the highest power of S.

CB(I) In Subroutine INVERT. A Complex type alias for B 1(J) with CB(1) the coefficient of the highest power of S.

CARD(I, J) In Common CIRCUIT. Array containing the J characters of the Ith element name.

CONST In Subroutine INVERT. The quotient resulting when the numerator of the transform is divided by the denominator.

COUNT(I) In Subroutine LOOPS. The number of transmittances leaving flowgraph node I.
D(I) In Subroutine POLSEN. The derivative of the Transfer Function Denominator evaluated at the imaginary part of the I th pole.
D(I, J) In Common BITS. The Routh Table built by Subroutine CALCR.
D(I, J) In Subroutine ROOTS. List of roots used for forming the reduced Polynomial.
D In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR.
DEP(I, J) In Common BITS. Array containing the J characters of the name of the element controlling the I th element.
DGP In Subroutine PRTPLT. The ordinate interval.
DHI In Subroutine PRTPLT. The maximum ordinate value.
DL In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR-1.
DLO In Subroutine PRTPLT. The minimum ordinate value.
DR In Subroutine SCALER. The sum of the element value exponents scaled by FACTOR+1.
ERR In Common ERR. = 1 when a serious error is detected. = 0 otherwise.
EXCMP(I) In Common SPEED. Contains the e^{(\sigma+j\omega)} points calculated by Subroutine SAMPLE.
EXPO In Subroutine NUMBER. = 1 when the exponent is negative. = 0 otherwise.
FACT In Subroutine ANSWER. The normalizing factor of the Transfer or Sensitivity Function.
FACT(I) In Common BITS. Used in computing Taylor Series coefficients.
FACTOR In Common ERR. Contains the Scaling Factor determined by Subroutine SCALER.
FAD In Subroutine ANSWER. The normalizing factor of the function denominator.
FCTN(I) In Common SPEED. The ordinate points for Subroutine PRTPLT.
FAN In Subroutine ANSWER. The normalizing factor of the function numerator.
F, FE, FN, FS, FW In Subroutine ROOTS. The function values at the five points of the five point test
FLAG In Common FLAG. = 1 when Function ISORT fails to convert a numeric character its value. = 0 otherwise.
FNP(I) In Subroutine ADJUST. Used in computing the Taylor Series corrections to the first five plot points.
FREQ In Common PATHS. The frequency used by Subroutine FINE to build a circuit tree.
FREQ1 In Common BITS. a in eat, f in Sin 2\pi ft, starting point for frequency plots.
FREQ2 In Common BITS. Pulse width in a pulse train, ending point for frequency plots.

GAG(I) In Common GAG. Contains the list of values to be used as Sensitivity Tags.

GENER(I) In Common CIRCUIT. = 0 if the I'th element is passive. = 1 if the I'th element is active.

INDIC(I) In Subroutine FINE. Used during circuit tree building.

IN(I) In Subroutine ROOTS. Number of discontinuities found on a type I pass.

INODE In Common BITS. The lowest node number in the circuit.

INP In Main Program. = 1 when a Transfer Function Request has been read. = 0 otherwise

ISN In Common BITS. = 2 for a pulse response. = 3 for a pulse train response. = 1 otherwise.

ITAG In Subroutine ANSWER. = -1 for a Worst Case Function. = 0 for a Transfer Function. Else, Sensitivity Function for element number ITAG.

ITREE In Common TREE. = 1 when Subroutine FINE is to be called to build a tree. = 0 otherwise.

JN(I) In Subroutine ROOTS. Number of roots found on a type I pass.

KI In Subroutine ROOTS. Counter for the imaginary axis.

KR In Subroutine ROOTS. Counter for the real axis.

KZERO In Subroutine PRTPLT. The location of the zero axis on the print line.

LIMIT In Subroutine SENSIT, WORST. The maximum number of Sensitivity Requests that can be handled.

LINE(I) In Subroutine FINE. Used for output formatting.

LINKS(I) In Subroutine ANSWER. Used for printing the dividing line.

LOGIC(I) In Common BITS. A Logical Type alias for LOOP(I). Used in Subroutine LOOPS.

LOGIC1 In Subroutine LOOPS. A Logical type alias for M1.

LOG1 In Subroutines ROUTH and CALCR. = TRUE if the current SIGMA value lies to the right of all poles in the complex plane. = FALSE otherwise.

LOOP(I) In Common BITS. Area for logical bit manipulations during flowgraph loop evaluation.

LPATH(I, J) In Common BITS, PATHS. LPATH(I, 1) is the origin node of the I'th flowgraph transmittance. LPATH(I, 2) is the target node of the I'th flowgraph transmittance.

LS(I) In Common SPEED. Contains the S value and tags of the I'th loop in the flowgraph.

MOR In Common BITS. Number of coefficients in the transform denominator.

MORNUM In Common BITS. Number of coefficients in the transform numerator.
MPATH(I, J) In the Main Program. An alias for LPATH(I, J).
MRMAX In Subroutine INVERT. Number of coefficients in the transform.
M1 In Subroutine LOOPS. Used during Higher Order Loop evaluation.
N(I) In Subroutine NASAP. Used during circuit tree building.
NB In Subroutine CALC. Number of branches in the circuit tree.
NBR(I) In Subroutine CALC. Number of branches at circuit node I.
NDEM In Subroutine WORST. = 0 if the simplified formula can be used. = 1 for the standard formula.
NE In Common CIRCUIT. Number of elements in the circuit.
NEL(I) In Subroutine CALC. Number of elements at circuit node I.
NEXP In Subroutine ANSWER. The magnification factor for homing-in.
NEXPS(I, J) In Subroutine ANSWER. Array containing powers of S.
NFLAG In Subroutine WORST. = 1 when Worst Case analysis has been aborted. = 0 otherwise.
NFLAG In Subroutine INVERT. = 1 when the transform is not rational.
NI In Subroutine ROOTS. The hexadecimal imaginary part of the root.
NINDIC(I) In Subroutine FINE. Used during circuit tree building.
NLOOP In Common SPEED. Number of loops in the flowgraph.
NN In Subroutine LOOPS. Number of nodes in the circuit.
NN In Subroutine CALC. Number of nodes in the circuit.
NNODES In Common BITS. The highest node number in the circuit.
NODE(I) In Subroutine LOOPS. The number of flowgraph transmittances arriving at flowgraph node I.
NPATH In Common PATHS. Number of transmittances in the flowgraph.
NPlot In Common BITS. Number of calculated points per printed point.
NPOLES In Common SPEED. Number of poles in the Transfer Function.
NQ(I) In Common BITS. The beginning of the list of branches for node I in the BRANCH array. Used in Subroutine CALC.
NR In Subroutine ROOTS. The hexadecimal real part of the root.
NR In Subroutine READ. Number of duplicate elements names.
NRT(I, J, K) In Subroutine ROOTS. The hexadecimal list of roots.
NS(I) In Subroutine CALC. Initially the same as NQ(I). Used during the calculation of the current equations.
NSEN In Common GAG. Number of elements tagged for Sensitivity Analysis.
NTAY In Common BITS. = 1 if a Taylor Series is to be used to compute the first five plot points. = 0 otherwise.
NTIMES In Common NTIMES. Number of words per block to be used in logical bit manipulation in Common BITS.
NUM(I, J) In Subroutine ANSWER. Alphanumeric array of S exponents.
NUMB(I) In Subroutine FINE. Used during tree building.
NUMNOD In Subroutine FINE. Number of circuit nodes.
NUMFR In Common BITS. Number of points along the w axis.
NUMTI In Common BITS. Number of calculated points in the plot.
NWORST In Common WORST. = 1 if a Worst Case analysis is to be performed. = 0 otherwise.
NX In Subroutine ROOTS. The step size of the Home-in routine.
N1 In Subroutine LOOPS. The first node in a Higher Order Path. Detected by Subroutine UNPAK.
N2 In Subroutine LOOPS. The second node in a Higher Order Path. Detected by Subroutine UNPAK.
N3 In Subroutine LOOPS. The third node in a Higher Order Path. Detected by Subroutine UNPAK.
OCARD(I, J) In Subroutine FINE. The ordered CARD array.
OGENER(I) In Subroutine FINE. The ordered GENER array.
OORIGIN(I) In Subroutine FINE. The ordered ORIGIN array.
ORD In Common BITS. The ordinate label for Subroutine PRTPLT.
ORDER(I) In Subroutine LOOPS. A pointer to the location of the I' th order loop or transmittance in the LOOP area.
ORIGIN(I) In Common CIRCIT. Origin circuit node of the I' th element.
OTARGT(I) In Subroutine FINE. The ordered TARGET array.
OVPATH(I) In Subroutine FINE. The ordered VPATH array.
OZ(I) In Subroutine FINE. The ordered Z array.
P(I) In Subroutine PRTPLT. Used to format the print line during plotting.
P In Subroutine POLSEN. The Real part of the Pole Sensitivity.
PH(I) In Subroutine INVERT. Array of phase points in a frequency plot.
POLE(I) In Common SPEED. The I' th pole of the Transfer Function, a Complex number.
POW In Subroutine NUMBER. Used to hold the exponent value.
POW(I) In Common BITS. Part of the Taylor Series computed by Subroutine TAYLOR.
Q In Subroutine POLSEN. The Imaginary part of the Pole Sensitivity.
RSPNS(I) In Common BITS. The points F(a+jw) computed by Subroutine SAMPLE. The work array for the Fast Fourier Transform in Subroutine FLIP.
S, SE, SN, SS, SW In Subroutine ROOTS. The five points of the five point test.
S(I) In Common BITS. PATHS. Contains the S value and tags of the I' th flowgraph transmittance.
SCFREQ In Common BITS. The frequency scale factor.
SCMAG In Common BITS. The amplitude scale factor.
SENS(I) In Common GAG. Numerical Sensitivity Tag for the I' th element.
SIGMA In Common BITS. The real part of S, the complex frequency.
SIGPOW(I) In Subroutine CALCR. An array of powers of SIGMA σ^I.
SMAX(I) In Common CIRCIT. SMAX(1) Highest s power in Transfer function Denominator, VN(I, 1). SMAX(2) Highest s power in Transfer Function Numerator, VN(I, 2).

SMAX00(J) In Common POLY. Highest s power in -\(H(\vec{P}, \bar{Q}) \), VN00(I, J), for the J'th element.

SMAX01(J) In Common POLY. Highest s power in \(H(P', Q) \) VN01(I, J), for the J'th element.

SMAX1(K) In Common BITS, POLY. Highest s power in Sensitivity Function for K'th element, VNSEN(I, J, K).

SMAX10(J) In Common POLY. Highest s power in -\(H(\vec{P}, Q') \), VN10(I, J), for the J'th element.

SMAX2 In Common WORST1. Highest s power in Worst Case Function, VW(I, J).

SMIN(I) In Common CIRCIT. SMIN(1) Lowest s power in Transfer Function Denominator, VN(I, 1). SMIN(2), Lowest s power in Transfer Function Numerator, VN(I, 2).

SMIN00(J) In Common POLY. Lowest s power in -\(H(\vec{P}, \bar{Q}) \), VN00(I, J), for the J'th element.

SMIN01(J) In Common POLY. Lowest s power in \(H(P', Q) \) VN01(I, J), for the J'th element.

SMIN1(K) In Common BITS, POLY. Lowest s power in Sensitivity Function for K'th element, VNSEN(I, J, K).

SMIN10(J) In Common POLY. Lowest s power in -\(H(\vec{P}, Q') \), VN10(I, J), for the J'th element.

SMIN2 In Common WORST1. Lowest s power in Worst Case Function, VW(I, J).

STEP In Common BITS. The interval between successive plot points.

SPOW(I) In Subroutine SAMPLE. The value of S1-I.

TAG In Common TAG. A utility flag used by the Main Program.

TAG In Subroutine NUMBER. = 1 when the number is negative. = 0 otherwise.

TARGET(I) In Common CIRCIT. Target circuit node of the I'th element.

TAG(I) In Common GAG. An alias for GAG(I).

TAG(I) In Subroutine FINE. An alias for the TYPE array.

TEE(I) In Common SPEED. The abscissa points for Subroutine PRTPLT.

TERM(I) In Common BITS. The coefficients of the Taylor Series computed by Subroutine TAYLOR.

TOL(I) In Common WORST1. Tolerance value for the I'th element.

TOTEEM In Common BITS. The interval between the first and last points plotted.

TREE In Common TREE. = 1 when Subroutine FINE is to be called to build a circuit tree. = 0 otherwise.

TYP(I) In Subroutine GRAPH. An alias for TYPE(I).

TYPE(I) In Common CIRCIT. = 0 if the I'th element is a Current Source (Link). = 1 if the I'th element is a Voltage Source (Branch
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, T2, T3</td>
<td>In Common BITS. Coefficients for the pulse response transforms.</td>
</tr>
<tr>
<td>V(I)</td>
<td>In Common SPEED. The value of the I^th loop in the flowgraph.</td>
</tr>
<tr>
<td>VDERIV(I)</td>
<td>In Subroutine POLSEN. The symbolic derivative of the Transfer Function Denominator. I=51+ power of s.</td>
</tr>
<tr>
<td>VM(I, J)</td>
<td>In Subroutine ANSWER. The Function after normalization.</td>
</tr>
<tr>
<td>VN(I, J)</td>
<td>In Common CIRCUIT. VN(I, 1) Transfer Function Denominator. VN(I, 2) Negative Transfer Function Numerator. I=51+ power of s.</td>
</tr>
<tr>
<td>VPATH(I)</td>
<td>In Common BITS, PATHS. Value of the I^th flowgraph transmittance.</td>
</tr>
<tr>
<td>VN00(I, J)</td>
<td>In Common POLY. -H(\bar{P}, \bar{Q}) for the J^th element. I=51+ power of s.</td>
</tr>
<tr>
<td>VN01(I, J)</td>
<td>In Common POLY. H(P', \bar{Q}) for the J^th element. I=51+ power of S.</td>
</tr>
<tr>
<td>VN10(I, J)</td>
<td>In Common POLY. -H(\bar{P}, Q') for the J^th element. I=51+ power of S.</td>
</tr>
<tr>
<td>VPATH(I)</td>
<td>In Common PATHS. Value of the I^th flowgraph transmittance.</td>
</tr>
<tr>
<td>W</td>
<td>In Subroutine FINE. An alias for FREQ.</td>
</tr>
<tr>
<td>X</td>
<td>In Subroutine POLSEN. The Numerator of the Real part of the Pole Sensitivity Function. -QH(\bar{P}, Q) or VN10(I, J) evaluated at a pole.</td>
</tr>
<tr>
<td>Y</td>
<td>In Subroutine POLSEN. The Numerator of the Imaginary part of the Pole Sensitivity Function. -QH(\bar{P}, Q) or VN10(I, J) evaluated at a pole.</td>
</tr>
<tr>
<td>Z(I)</td>
<td>In Subroutine FINE. The impedance of the I^th element.</td>
</tr>
</tbody>
</table>
A. 2. 2 Dictionary of Subprograms

ADJUST In the Plotter. Re-evaluates the first 5 sample points via a Taylor Series.

ANSWER In the Transfer Function package. Prints Transfer and Sensitivity Functions normalized and formatted.

BLOCK DATA Part of the Main Program. Initializes Common Blocks DATA, X and GAG.

CALC In the Transfer Function Package. Evaluates current equations from the circuit tree.

CALCR In the Plotter. Uses the Routh Stability Criterion to determine if the current SIGMA value is acceptable.

CLEAR In the Transfer Function package. Removes transmittances in the Flowgraph which have been marked deleted.

EQUAL A Bit Manipulation Utility. Performs various operations on blocks of word in Common Block BITS.

FINE A Circuit Description Analysis routine. Builds a circuit tree for a user-specified frequency.

FLIP In the Plotter. Computes the Fast Fourier Transform coefficients.

GRAPH In the Transfer Function package. Builds the Flowgraph except for the unknown transmittance.

INBIT A Bit Manipulation Utility. Sets bits in blocks of words in Common Block BITS.

INPUT In the Plotter. Evaluates the transform of the response.

INVERT In the Plotter. Controls the execution of the Plot Request.

ISORT A Card Scanning Utility. Converts numeric characters to fixed binary values.

LOOPS In the Transfer Function package. Computes Transfer and Sensitivity Functions from the Flowgraph, via the Shannon-Happ formula.

LOR A Bit Manipulation Utility. Performs 'OR'ing.

LOX A Bit Manipulation Utility. Performs 'AND'ing and subtracts the result from the arguments.
LSTOR: A Bit Manipulation Utility. Copies one word into another.
MAIN: The Main Program. Controls execution of NASAP-70.
MULT: In the Sensitivities and Worst Case package. Multiplies polynomials.
NASAP: A Circuit Description Analysis Routine. Interprets the standard form of circuit description data and builds a circuit tree for minimum computation time.
PLOT: In the Plotter. Interprets Plot Request Cards.
POLSEN: In the Sensitivities and Worst Case package. Computes Pole sensitivities.
PRTPLT: In the Plotter. Prints and plots the calculated response points.
READ: A Circuit Description Analysis routine. Interprets the special form of circuit description data.
REDUCE: In the Sensitivities and Worst Case package. Decodes tags from the S or LS arrays.
ROUTH: In the Plotter. Finds an acceptable SIGMA value.
SAMPLE: In the Plotter. Computes the initial Fast Fourier Transform points.
SCALE: In the Plotter. Scales the Fast Fourier Transform coefficients.
SCALER: The Automatic Scaler. Re-adjusts, if necessary, circuit data values to avoid floating overflow.
SENSC: In the Sensitivities and Worst Case package. Computes Sensitivity Functions.
SENSIT: In the Sensitivities and Worst Case package. Interprets Sensitivity Request Cards.
SORT: A Card Scanning Utility. Converts numeric characters to floating binary values.
TAYLOR: In the Plotter. Computes Taylor Series coefficients.
UNITS: A Circuit Description Analysis routine. Prints a message.
<table>
<thead>
<tr>
<th>UNPAK</th>
<th>A Bit Manipulation Utility. Removes bits from blocks in Common block BITS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WHAT</td>
<td>In the Transfer Function package. Interprets Transfer Function Request cards.</td>
</tr>
<tr>
<td>WORST</td>
<td>In the Sensitivities and Worst Case package. Interprets Tolerance Cards.</td>
</tr>
<tr>
<td>WORSTC</td>
<td>In the Sensitivities and Worst Case Package. Computes the Worst Case function.</td>
</tr>
</tbody>
</table>
A. 2. 3 Dictionary of Common Blocks

A The Card Buffer. Contains the last card read.

BITS The area for bit manipulations. Also used to hold the Fast Fourier Transform coefficients.

CIRCIT Contains data compiled from the circuit description.

DATA Contains alphanemic characters.

ERR Contains the Error flag and scaling factor.

FLAG Contains a utility flag.

GAG Contains Sensitivity Tags.

NTIMES Contains the number of words per block in BITS.

PATHS Contains the Flowgraph paths.

POLY Contains polynomials used to compute Sensitivity and Worst Case Functions.

SPEED Contains Flowgraph loops. Also used by the plotter.

TAG Contains a utility flag.

TREE Contains the switch for building a tree for user-supplied frequency.

WORST1 Contains data for Worst Case Analysis.

X Contains numeric characters.

In the interest of saving space, some Common Blocks (especially BITS) are used for various purposes at different times.
APPENDIX B
MODELS FOR COMPUTER AIDED CIRCUIT DESIGN/ANALYSIS PROGRAMS:
PART I. COMMON TRANSISTOR MODELS, A SURVEY

By Donnamae E. Meyerhoff†

INTRODUCTION

The analysis of circuits by computer depends upon the ability of the analyst to appropriately simulate device performance by a model consisting of the recognized parameters of the CAD program being utilized. The analyst must work with a lumped model of the device in question if he is to remain within the limits of a CAD program, and he must also select appropriate approximations to be made in the representation of the device behavior. These approximations must be such that they simplify analysis while maintaining an acceptable level of validity in the results 1, 2

A model is a mathematical entity with precise definitions of its variables and their relationships. It is never completely equivalent to the physical device, rather, the behavior of the model approximates that of the physical device. 2 The development of a semiconductor model requires:
(1) formulation of the ideal voltage-current equations and definition of the topology of the model, (2) modification for actual device performance, (3) invention of techniques for measurement from which model parameters may be extracted, (4) the extraction of those parameters 3

An ideal model will (1) incorporate parameters either measurable or derivable, as from a manufacturer's data sheet,* (2) involve parameters acceptable to the given CAD program (facilitating analysis), (3) be sufficiently simplified to be comprehensive, to promote invention and design, and to be economical, (4) be complex enough to assure a tolerable degree of accuracy in the simulation of device performance over the operating

† Northrop Corporate Laboratories, this work was prepared while the author was with TRW Systems Group, California
* Used with discretion

B-1
The less complicated the model, the more restricted its range of application.

The primary concern of the circuit analyst is with the characterization of the external behavior of the device (functional modeling) without detailed simulation of internal processes (physical modeling) although an understanding of the internal processes must be assumed. The selection of an appropriate model and its parameter values to correspond to given device operating conditions (temperature, biasing, load, etc.) for the circuit under consideration is the critical step in analysis, with or without computer assistance as the model finally selected will be the limiting factor in the degree of accuracy of the results.

The following discussion is concerned with transistor models and their representation in present general purpose CAD programs. Diodes are more easily represented and are omitted here for brevity.

Transistors were selected to demonstrate CAD program modeling because the majority of circuit analysis is still primarily concerned with them, and because their models are presently the primary building block of Integrated Circuit modeling. It should be emphasized that there is no single transistor model capable of simulating all regions of operation for all applications, a model this capable would be prohibitively complex.

This description of modeling is divided into two sections: (1) small signal (linear, incremental) models, and (2) large signal (nonlinear) models. The models are not derived here, the reader is referred to the appropriate references for the derivations.

SMALL SIGNAL MODELS

A small signal is defined as an AC signal significantly smaller in peak to peak amplitude than the DC bias upon which it is superimposed. Small signal transistor models are intended to simulate the behavior of a transistor at a specific operating point in the linear region of operation.
The transistor model is constructed of parameters that remain relatively constant over the voltage and current swings encountered. These parameters are then assumed constant for the analysis.

The small signal models are not versatile, large signal swings may not be accurately analyzed (due to the lack of parameter variation and the linearity of the model), saturation and cut off are not represented. The model is valid only in the active region. Although it is limited in its application, the small signal model provides a straightforward method for simulating transistor performance when the operating restrictions have been satisfied.

A family of small signal models composed of \(h, y, z, \) and \(r \) parameters (see for examples References 7 to 10) exists for the user and the most commonly applied models are given here. The input formats for the models for the CAD programs which accept them are also presented. The common emitter configuration is used in most cases to facilitate comparison.

Low Frequency Models. The two commonly used configurations are the Hybrid and the Tee using \(h \) and \(r \) parameters respectively.
The Hybrid Model is considered the best model for small signal representation because (1) the \(h \) parameters are real numbers at low frequencies, (2) the parameters may be easily obtained by measurement when required or from the device static characteristic curves, (3) if the \(h \) parameter of one configuration is available, the conversion to another configuration is relatively simple. The Hybrid Model is valid for any configuration at low frequencies, for a device operating in the active region.

\[
\begin{align*}
B & \quad r_b \quad I_b \\
\beta_N I_D \text{ or } \alpha_N I_C \\
r_e \quad I_e \\
C
\end{align*}
\]

Figure B.2 Tee Model Equivalent Alternate of the Hybrid Model

Program Models. SCEPTRE has a prestored hybrid model for small signal analysis. The program accepts the voltage generator (EA) described as a function of the voltage across \(h_0 \) (R2 in the diagram below) and the current generator (JB) described as a function of the current through \(h_0 \) (R1 below).

\[
\begin{align*}
EA &= F(VR2) \\
JB &= F(IR1)
\end{align*}
\]

Figure B.3 SCEPTRE Representation – Hybrid Model (Prestored)
If the Tee model is preferred, SCEPTRE will accept a user-description for that model without requiring modifications in the representation. ECAP, however, will not accept a nonlinear dependency and requires the conversion of the hybrid model voltage generator into a DC bias and some resistance such that the branch* resulting is a linear approximation of the performance of the original generator. The current source is dependent linearly on the current through R1 and it is not modified.12

*branch – one impedance with or without a source between two nodes, ECAP requires a "dummy" impedance in parallel with an I source, and in series with a V source, 1K is used.
High Frequency Models \[F \ll \frac{2D_b}{w^2} \] The two most commonly used configurations are the Hybrid-Pi (Figure B-5) and the Modified-Tee (Figure B-6). Their parameters are not frequency dependent and most manufacturers provide data for one of them.

![Diagram of Hybrid Pi and Modified Tee configurations](image)

Figure B 5 Hybrid Pi

This circuit is known to give results in excellent agreement with experiment in the range dc to limiting frequency of the device, that frequency where the gain is significantly reduced and operation is no longer validly assumed linear.

The reduced version of the circuit is justified when source or load impedances or other factors or uncertainties swamp the effects of various parameters. Parameters \(r_{b'c} \) and \(r_{ce} \) are considered approximate opens in Figure B-5b, \(C_{b'e} \) and \(C_{b'c} \) are lumped and include \(C_T \).

The Modified Model is generally used for common base circuits, and is limited in transient response analysis in range of operating biases and bandwidth. The Simplified Tee uses one base resistance, and \(r_c \) is an approximate open.
Program Models
ECAP will accept the Hybrid-PI in either form, although the reduced version is the most commonly used. The current dependency is linear and the elements must be single valued.
SCEPTRE has no prestored Hybrid-Pi but the user may enter a model which describes the current generator as a function of $I_{rb'}e'$, and which is not restricted to single valued elements.

There are numerous other small signal models, the ones presented above are the most commonly applied to small signal analysis. There are more complex circuits for device simulation at higher operating frequencies and for noise analysis.

LARGE SIGNAL MODELS

A large signal is defined as an AC signal with a peak to peak amplitude that exceeds the DC bias upon which it is superimposed. Large signal transistor models are intended to simulate the behavior of a transistor when its operation encompasses more than one region of operation, or when its operation enters the nonlinear portion of the device characteristics.

There are four regions of operation for a transistor (See References 13 - 17.) They are:

I. **Cut-off Region** Collector current cut-off or collector voltage saturation, both junctions are reverse biased, only small reverse saturation currents flow across the junctions

$$I_e < 0 \quad V_{EB} << -\frac{kT}{q} \quad V_{CB} << -\frac{kT}{q}$$

The transistor behaves as an open (nonconducting) switch.

II. **Normal Active Region** Emitter junction forward biased, collector junction reverse biased, $0 < I_e < -\frac{I_C}{\alpha}$

$$V_{CB} << -\frac{kT}{q}$$

III. **Saturation Region** Collector current saturation or collector voltage cut off, both junctions carry a forward bias, $I_e < -\frac{I_C}{\alpha}$
the voltages across the junctions are in the millivolt range. The transistor behaves as a closed (conducting) switch.

IV. **Inverse Active Region.** Emitter reverse biased, collector forward biased, similar to normal active with emitter and collector interchanged, low reverse current gain.

Large signal operation for transistors includes power applications and switching (an extreme case where the device goes rapidly from Region III to Region I and vice versa, and generally includes the first three regions of operation.\(^{14}\)

Small signal models dealt only with Region II. The parameters were assumed to remain constant and operation was approximately linear. Large signal modeling is complicated by the variation of parameter values with changes in voltage and current, the thermal and power limitations that must be accounted for, and the nonlinear behavior of the device.\(^7,9\)

There are three primary models used for large signal analysis: (1) the Beaufoy-Sparkes Charge Control model; (2) the Ebers-Moll model, (3) the Linnell-Lumped model.

In their paper "Comparison of Large Signal Models for Junction Transistors,"\(^4\) Hamilton et al, had the following conclusions about the three models.

First, the three models are all described by two first order ordinary differential equations. The main difference in the equations is in the dependent variables. The same four measurements provide the values for parameters for Ebers-Moll and the Beaufoy-Sparkes models and determine the characteristics equation of the Lumped model. (Table B-1 shows parameter conversion for #1 and #2, and Figure B-14 demonstrates equation similarity for #2 and #3.)

Second, although each model is derived by means of approximations made at different stages of the theoretical development, the final overall
degree of approximation is the same. The models have the same natural frequencies and give the same results for transient problems. Therefore, as far as numerical results are concerned, the three models are equivalent.

Last, the Charge Control model is considered more cumbersome in application that the Ebers-Moll model, the Lumped model is considered the most general in development approach.

The Ebers-Moll Model. The well-known Ebers-Moll equations for device operation are given below. They are valid for any transistor in low level injection, regardless of shape, which has negligible voltage drop everywhere but the junctions. They are also valid for a graded base region device. 18

The Ebers-Moll model for Regions I, and II is based on these equations of ideal device operation. To more closely approximate actual device performance resistances \(r_b', r_e', r_c' \) must be added. The model is completed for high frequency by adding \(C_{be}', C_{bc} \).

Program Models: Two CAD programs have prestored versions of the Ebers-Moll model for the first three regions of operation, NET-1, and SCEPTRE. The Ebers-Moll based model is the only model available with NET-1 for circuit analysis, and it requires all of its parameters be prestored for each device prior to its use in analysis, a requirement that has been found to be too restrictive.

SCEPTRE uses a more flexible prestored Ebers-Moll model. The user must have access to \(I_{CO}, I_{EO}, \theta_N, \theta_I \) to describe \(J_1 \) and \(J_2 \) (current generators) or may enter tables of laboratory measurement data. \(R_{bb} \) and \(R_{cc} \) may be omitted from separate representation when measurements are used since they are included in the values for \(J_1 \) and \(J_2 \). If \(\alpha_1 \sim 0 \), \(JA \) may be omitted.
a) IDEALIZED EQUATIONS

\[I_E = \frac{I_{EO}}{1 - \alpha N} \left(e^{\lambda V_{EB}} - 1 \right) + \frac{\alpha I_{CO}}{1 - \alpha N} \left(e^{\lambda V_{CB}} - 1 \right) \]

\[I_C = \frac{\alpha N I_{EO}}{1 - \alpha N} \left(e^{\lambda V_{EB}} - 1 \right) - \frac{I_{CO}}{1 - \alpha N} \left(e^{\lambda V_{CB}} - 1 \right) \]

\[I_B = -I_C - I_E \]

\[\alpha N I_{EO} = \alpha I_{CO} \]
reciprocity requirement

\[\lambda = \frac{q}{\eta KT} \quad \eta = 1 \]
valid when the transition region has no effect

\[\eta \approx 1 \]
for germanium, \(\eta \approx 2 \) for silicon, \(1 \leq \eta \leq 3 \)

b) IDEALIZED MODELS

TERMINAL CURRENT CONTROL TERMINAL VOLTAGE CONTROL

\[I_{CS} = \frac{I_{CO}}{1 - \alpha N} \]

\[I_{ES} = \frac{I_{EO}}{1 - \alpha N} \]

\[I_F = I_{ES} \left(e^{\frac{qV_{EB}}{KT}} - 1 \right) \]

\[I_R = I_{CS} \left(e^{\frac{qV_{CB}}{KT}} - 1 \right) \]

Figure B 8 Ebers–Moll Equations and Idealized Models (PNP)
Figure B 9 Ebers-Moll Model for Regions I, II, High Frequency

Figure B 10 NET-1 Transistor Model
Charge Control Model. The concepts of charge control may be briefly summarized as (1) the base charge \(q_B \) may be defined uniquely by the past behavior of the base current, (2) the collector current is proportional to the base charge, is controlled by the base charge. The active region model and its equations are given in Figure B-12.17, 20, 21

The similarity of the charge control model and more familiar parameters is seen by the relations

\[
\tau_{BF} \approx \frac{h_{fe}}{\omega_T} = \frac{1}{\omega_B} \quad h_{fe} \approx \frac{\tau_{BF}}{\tau_F} \quad \text{(Forward Injection)}
\]

\(\text{Figure B.11 SCEPTRE Prestored Model} \)
The similarity of the charge control model and more familiar parameters is seen by the relations

\[
\begin{align*}
\tau_{BF} & \approx \frac{q_B}{I_{b} + I_{CO}} \\
\tau_{F} & \approx \frac{q_B}{I_{c} - I_{CO}} \\
\beta & \approx \frac{\tau_{BF}}{\tau_{F}}
\end{align*}
\]

Program Models: CIRCUS includes a radiation-pulse current generator in its prestored charge control model. CIRCUS requires that the user define 13 single valued parameters and 4 parameters that are single valued or tabled. The program equations are
\[C_{be} = \frac{\alpha_1}{N_1 (\theta_1 - V_{be})} + \theta_N T_{CN} (I_N + I_{cs}) \]

\[C_{bc} = \frac{\alpha_N}{N_2 (\theta_2 - V_{bc})} + \theta_I T_{CI} (I_I + I_{cs}) \]

\[I_{be} = \left(\frac{1}{\beta_N + 1} \right) I_N - I_I \]

\[I_{bc} = -I_N + \left(\frac{1}{\beta_I + 1} \right) I_I \]

\[I_N = I_{es} \left(e^{\theta_N V_{be}} - 1 \right) \]

\[I_I = I_{cs} \left(e^{\theta_I V_{bc}} - 1 \right) \]

\[\beta_N, T_{CN} = f(I_N) \quad \beta_I, T_{CI} = f(I_I) \]

\(N_1, N_2 \) are proportionality constants

These parameters may be converted to Ebers-Moll parameters

TABLE B-1

CHARGE CONTROL TO EBERS-MOLL CONVERSION RELATIONS

<table>
<thead>
<tr>
<th>Charge-Control</th>
<th>Ebers-Moll</th>
<th>Charge-Control</th>
<th>Ebers-Moll</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{es})</td>
<td>(\frac{\alpha_N I_{es}}{1 - \alpha_N \alpha_1})</td>
<td>(T_{CI})</td>
<td>(\frac{10^{-9}}{2\pi \alpha_N F_I})</td>
</tr>
<tr>
<td>(I_{cs})</td>
<td>(\frac{\alpha_I I_{cs}}{1 - \alpha_N \alpha_1})</td>
<td>(\theta_N)</td>
<td>(\frac{38.9 (298)}{M_e (T + 273)} = \frac{q}{M_e K_T})</td>
</tr>
<tr>
<td>(T_{CN})</td>
<td>(\frac{10^{-9}}{2\pi \alpha_N F_N})</td>
<td>(\theta_I)</td>
<td>(\frac{38.9 (298)}{M_c (T + 273)} = \frac{q}{M_c K_T})</td>
</tr>
</tbody>
</table>

Other parameters correspond directly.
The Linvill Lumped Model. The Linvill model uses lumped elements to represent paths through which charge will flow in a transistor, the rate and amount of this charge-flow being governed by hole and electron concentrations and voltage. The lumped elements are given in terms of length dimensions and electrical constants. A reduced lumped diffusion model for a transistor is given in Figure B-14.

Figure B 13 CIRCUS Prestored Charge Control Model – NPN

Figure B 14 Linvill’s Two Lump Transistor Model

\[I_{pp}, I_{pp}^{*} = \text{radiation induced pulse-currents} \]
Equations Showing Parallel to Ebers-Moll Model:

\[I_e = \frac{-I_{EO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_e}{M_e} \theta} - 1 \right) - T_N \frac{d}{dt} \left[\frac{I_{EO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_e}{M_e} \theta} - 1 \right) \right] \]

\[+ \frac{\alpha_N I_{CO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_c}{M_c} \theta} - 1 \right) + \frac{d}{dt} \left(C_{je} V_e \right) \]

\[I_c = \frac{-I_{CO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_c}{M_c} \theta} - 1 \right) - T_I \frac{d}{dt} \left[\frac{I_{CO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_c}{M_c} \theta} - 1 \right) \right] \]

\[+ \frac{\alpha_N I_{EO}}{1 - \alpha_N \alpha_I} \left(e^{\frac{V_e}{M_e} \theta} - 1 \right) + \frac{d}{dt} \left(C_{jc} V_c \right) \]

where:

\[I_{EO} \Delta \equiv -p_n \left(G_{r1} + \alpha_I G_{r2} \right) \]

\[I_{CO} \Delta \equiv -p_n \left(G_{r2} + \alpha_N G_{r1} \right) \]

\[T_N \Delta \equiv \frac{C_h}{G + G_{r1}} \quad T_I \Delta \equiv \frac{C_h}{C + G_{r2}} \quad \alpha_N \Delta \equiv \frac{G_d}{G_{r1} + G_d} \quad \alpha_I \Delta \equiv \frac{G_d}{G_{r2} + G_d} \]

\[G_{r1}, G_{r2} \text{ recombination centers} \]

\[C_h, C_2 \text{ storance} \]

\[P_{cc}, P_{ce} \text{ excess holes in collector, emitter, } \]

\[P_{cx} \Delta \equiv p_n \left(e^{\frac{V_x}{M} \theta} - 1 \right) \]

Program Models A version of the Linvill model has been developed for use as the prestored model for the TRAC program. The model and its parameters are shown in Figure B-15. The model is dependent on past values of \(V_{cb}, V_{eb} \left(V_{cb}^{-1} = V_C^{-1}, V_{eb}^{-1} = V_E^{-1} \right. \) for the \(j \)th step)
\[R_C = \frac{m_c \theta (1 - \alpha_R \alpha_N)}{V_c / m_c \theta} \]
\[R_E = \frac{m_e \theta (1 - \alpha_R \alpha_N)}{I_{co} (V_E / m_e \theta)} \]
\[I_C = \frac{(e^{V_c / m_c} - 1) I_{CO}}{1 - \alpha_R \alpha_N} \]
\[I_E = \frac{I_{EB}}{1 - \alpha_R \alpha_N} (e^{V_E / m_e} - 1) \]

\(I_{ppe}(t), I_{ppc}(t) = \text{radiation induced pulse currents} \)

Figure B 15 TRAC Model — Prestored Lumped Model—NPN
SUMMARY

The most commonly used small signal models, the Modified Tee and the Hybrid-Pi, have been presented with a description of the CAD programs that accept them. The three large signal models have also been briefly presented with a discussion of the CAD programs that have incorporated them.

The Hybrid-Pi is suitable for AC and small signal transient analysis and is the most effectively used model for ECAP.

Large signal analysis requires a degree of complexity ECAP cannot accept without a loss of efficiency and accuracy. NET-l attempted analysis with only a complex Ebers-Moll model with extensive data requirements and this has been found severely restrictive. TRAC has attempted analysis with only a complex version of the Linvill model and has met the same restrictions. CIRCUS attempts analysis with a charge-controlled model with less stringent requirements, is more effective but is also restricted. Some piece-wise linear modeling may be effected but this is generally cumbersome, especially without a dependent current source.

SCEPTRE is the first major program to combine the features of the prestored models and the flexibility of the user-derived models. SCEPTRE is capable of both small and large signal analysis with its prestored models.

It should be reemphasized that there is no single model capable of all analysis since such a model would be cumbersome and overly complex for any given analysis just as there is no ideal CAD program to perform analysis. The selections of the model and the program are both determined from considerations of the application of the device, the availability of parameter data and the accuracy requirements of the solution among others.

Table B-II presents a summary of some major CAD programs and the models included in this paper, Table B-III is a summary of symbols applied throughout the text.
<table>
<thead>
<tr>
<th>Model:</th>
<th>NASAP</th>
<th>ECAP</th>
<th>SCEPTRE</th>
<th>CIRCUS</th>
<th>TRAC</th>
<th>NET-1</th>
<th>PREDICT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid</td>
<td>E</td>
<td>E</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Tee</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>High Frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hybrid-Pi</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Modified Tee</td>
<td>E</td>
<td>E</td>
<td>E</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Large Signal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charge Control</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>P</td>
<td>N</td>
<td>N</td>
<td>E</td>
</tr>
<tr>
<td>Ebers-Moll</td>
<td>D</td>
<td>D</td>
<td>P</td>
<td>D</td>
<td>N</td>
<td>P</td>
<td>E</td>
</tr>
<tr>
<td>Linnell Lumped</td>
<td>D</td>
<td>D</td>
<td>E</td>
<td>D</td>
<td>P</td>
<td>N</td>
<td>E</td>
</tr>
</tbody>
</table>

Key:
- E Engineer Derived
- P Prestored Model
- D Inefficient, difficult
- N Not acceptable
TABLE B-III
KEY TO SYMBOLS USED IN TEXT

A manufacturer's data sheet typically contains information on I_{co}, $V_{CE(sat)}$, $V_{BE(sat)}$, $h_{FE(Beta)}$, C_{ob} and f_{T}, as well as stress limits for the device. Many also include the small signal parameters h_{re}, h_{le}, h_{oe}, h_{fe} (AC amplification). Based on this information and the knowledge of what load current is desired (small signal operating point or large signal – maximum stress on the device) the designer/analyst must derive the parameter values (or functions of values) for the selected device.

The following is a tabulation of the symbols used in this paper and their definitions. Those parameters necessary for analysis include the generally applied approximation for their computation.

- $B, B'; b, b'$: Base terminal, suffix-parameter related to base characteristics
- C, C', c, c': Collector terminal, suffix-parameter related to collector characteristics
- $C_{b'c}$: Capacity from base internal point to collector, generally labeled C_{ob} on data sheet
- $C_{b'e}$: Capacity from base internal point to emitter
 \[C_{b'e} \approx \frac{1}{W_{T}r_{e}} \approx \frac{g_{m}}{2\pi f_{T}} \]
- C_{c}, C_{e}: Collector, emitter capacity - large signal symbol
- C_{ge} or C_{de} (C_{sc} or C_{dc}): Diffusion capacity of emitter, collector, corresponds to $C_{b'e}$, $C_{b'c}$
- C_{T}: Transition capacity, $C_{T} \ll C_{b'e}$ and \(\cdot \cdot \cdot \) generally omitted
- E, E', e, e': Emitter terminal, suffix-parameter related to base characteristics
- f_{α}: Alpha cut off frequency, $f_{\alpha} \approx \frac{\beta_{0}f_{T}}{\beta}$
- f_{β}: Beta cut off frequency
- f_{T}: Current gain - bandwidth product

B-21
Transconductance, \(g_m = \frac{\alpha \pi}{r_e} \), \(g_m = \frac{h_{fe}}{1 + h_{fe}} \), for germanium, room temp. \(h_{fe} \gg I_E \) in ma, \(g_m \approx \frac{I_e}{26} \) ma.

Input impedance, small signal, \(\approx \frac{\Delta V_{in}}{\Delta I_{in}} \left| \Delta V_{out} = 0 \right. \)

Feedback voltage ratio, small signal,
\[
\frac{\Delta V_{in}}{\Delta V_{out}} \left| \Delta I_{in} = 0 \right.
\]

Current transfer ratio, small signal, \(\frac{\Delta I_{out}}{\Delta I_{in}} \left| V_{out} = 0 \right. \)
\(\beta \approx h_{fe} \)

Output admittance, small signal, \(\frac{\Delta V_{out}}{\Delta I_{out}} \left| \Delta I_{in} = 0 \right. \)

Collector to Base saturation current when \(I_E = 0 \)

Emitter to Base saturation current when \(I_c = 0 \)

Boltzmann's Constant (\(8.63 \times 10^{-5} \) ev/°K)

Emitter, collector proportionality constants (\(1 \leq M_x \leq 3 \)) (emission constant)

Electron density

Hole density

Electron charge (\(1.6 \times 10^{-19} \) coulomb)

Control charge in base region

Components of \(r_{bb'} \), base resistance generally \(r_{bb'} \approx 0 \) compared to circuit components \(r_{bb'} = h_{ie} - r_{bb'}e \)

Small signal base resistance, Tee configuration,
\(r_b \approx h_1 - \frac{h_{fe} r}{h_0} \)
$r_{b'c}$
Resistance-base internal point to collector, generally very large, appears as an open to a CAD program. Generally omitted,
$$r_{b'c} = \frac{r_{b'e}}{h_{re}} = \frac{1}{g_{b'c}}$$

$r_{b'e}$
Resistance-base internal point to emitter, $r_{b'e} \approx (\beta+1) r_e$

r_c, r_{CL}, r_{ce}
Collector resistance $\approx \frac{1}{h_o}$, also appears as an open generally omitted

r_e
Emitter resistance, $\approx \frac{h_r}{h_o} \approx \frac{kT}{q} e^{\frac{-26mV}{27°C}}$

S_B
Base store

T
Absolute temperature - °Kelvin

V_T
Electron-volt equivalent of temperature, $V_T = \frac{kT}{q}$

α_I
Inverted current gain

α_N
Normal current gain

α_o
Low frequency α_N

β_I
Inverted Beta $\approx \frac{\alpha_I}{1-\alpha_I}$

β_N
Normal Beta $\approx \frac{\alpha_N}{1-\alpha_N}$

β_o
Current gain at edge of saturation

λ
Symbol for simplification (also θ), $\lambda = \frac{1}{\eta V_T}$

η
Parameter accounting for recombination of carriers in the junction transition region, dependent on material

$1 \leq \eta \leq 3$
$\eta \approx 1$ for germanium

$\phi_{e'}, \phi_c$
Junction voltages ($V_{b'e'}$, $V_{b'c}$)

ω_{o}
Alpha cut off frequency, radians
\[\omega_T \approx \frac{\omega}{1.2} = 2\pi \lambda_T \] current gain bandwidth product

- \(\tau_{BF} \) Base charge time constant
- \(\tau_F \) Collector charge control time constant

Typical Values of \(h \) parameters

(common Emitter Configuration)

\[
\begin{align*}
 h_{ie} & \quad 1,100 \\
 h_{re} & \quad 2.5 \times 10^{-4} \\
 h_{fe} & \quad 50 \\
 1/h_{oe} & \quad 40K
\end{align*}
\]

ADDITIONAL REFERENCES

PART II. TRANSISTOR MODELS FOR HOSTILE (WEAPON) ENVIRONMENT EFFECTS

INTRODUCTION

The present concern of circuit specialists, both designers and analysts, has been the degradation of systems upon exposure to nuclear radiation, specifically that resulting from the detonation of a weapon.

The inability of system shielding to be effective for all radiations makes it necessary to design and analyze for the generation of radiation-induced transient and permanent effects in semiconductor devices. There is no laboratory procedure capable of providing either the mixture or the intensity of the radiations produced in a real weapon environment, which may consist of any mixture of photons, charged particles or neutrons. As a result, it becomes necessary to turn to the computer. Several computer circuit analysis programs, such as SCEPTRE, CIRCUS, and TRAC, have been developed specifically for the analysis of transient radiation effects on circuits.

The purposes of this paper are (1) to describe the first order radiation effects in semiconductor material in terms of the weapon environment, (2) to describe the physical interactions which produce the altered device behavior, and (3) to discuss the computer program models available for the analysis of an exposed device. The discussion is primarily in terms of bipolar transistors. Because of the practical complexity of a discussion of a weapon or space radiation environment, such a discussion is not attempted here.

THE FIRST ORDER EFFECTS

Radiations consist of high energy photons such as gamma rays and energetic particles such as neutrons, electrons and fission fragments.

The effects initiated by the high energy photons are primarily transient ionization and excitation of the absorbing material. The effects initiated by the energetic particles, specifically neutrons, are primarily localized bulk...
displacements, disruptions of the crystal lattice structure along the particle path. Because of the obvious complexity of a simultaneous discussion of each radiation expected in an incident environment, the two classes of radiation will be discussed separately.

IONIZATION

The ionization effects of a pure photon environment result from the interaction of the photons and the atomic electrons of the absorbing material. The photon-atomic electron interaction produces charged particles which in turn produce ionization through further interactions.

The three primary photon-atomic electron interaction processes are \(1, 2\)

1. **The Photoelectric Effect** The inelastic collision of a photon and an atomic electron, the photon energy is absorbed by the electron which is ejected from the atom if the photon energy exceeds the binding energy of the electron. The extent of the photoelectric interaction is dependent on both the photon energy and the atomic number of the absorbing material and is most important at low photon energies for materials of high atomic number.

2. **The Compton Effect** The elastic collision of a photon and an atomic electron of the absorbing material in which part of the photon energy is transferred to the electron, both the electron and a reduced-energy photon are scattered. The Compton effect is most important in an energy range between 100 KeV and 4 MeV and is more significant for materials with a high atomic number.

3. **Pair-Production** The interaction of the electric field of the atomic nucleus (or the field of an atomic electron) and a photon in which the photon energy (when \(E > 1.02 \text{ MeV}\)) is absorbed in the formation of an electron-positron pair. The positron is rapidly annihilated by an
electron with the interaction resulting in the production of two lower-energy photons. Pair-production is most important for high photon energies and is especially important for heavy elements. It is the major reaction process for high energies.

The result of each of these three major interaction processes is the production of one or more secondary electrons. The Coulomb interaction of these electrons produces additional ionization and excitation. Successive generation of the interactions ceases when low energy electrons are produced which do not have sufficient energy to continue the production of ionization or excitation. These last-order electrons will lose energy by elastic scatterings until they are either captured or thermalized.

Diagram:

- Photon-atom interactions →
 - Secondary electron production
 - Excitation
 - Ionization
 - Low order electrons (low energy)
 - Captured
 - Thermalized

Coulomb interaction and successively generated interactions

Interactions Produced in a Photon Environment

Ionization is also created by energetic particles. The ionization effects of a primary beam of charged particles (electrons, positrons) are identical to the ionization effects of the secondary electrons produced by photon irradiations. Heavy charged particles (protons, fission fragments) create ionization along the primary particle path of such a high intensity that electron-positron charge recombination occurs rapidly. The net effect of the heavy particles is less than the effect of an equivalent, more uniformly distributed energy deposition.

Neutrons are heavy uncharged particles that produce ionization only through secondary processes. Neutron ionization effects are a function of neutron energy. The important neutron interaction processes are (1) elastic scattering - a collision of a neutron and a nucleus with transfer of...
kinetic energy, and (2) inelastic scattering - a collision of a high energy neutron and a nucleus with conversion of some of the neutron kinetic energy into excitation energy in the struck nucleus. The excited nucleus returns to its stable state by emitting the excess energy as a photon \(^1,^2\)

Ionization produces primarily transient effects in the incident material, displacement produces primarily permanent effects

DISPLACEMENT

For the typical energetic neutrons produced in nuclear reactions, the production of atomic displacements is the principal interaction process through which neutron energy is dissipated. Displacement effects are the result of defects in the crystal lattice structure that introduce additional energy states in the energy band gap. These defects behave either as additional recombination centers, which can produce a reduction in minority carrier lifetime or they can alter the impurity concentration of the affected material, which can produce alterations in the physical properties of the material. Large defect clusters result from a neutron interaction in which a large amount of the neutron kinetic energy is transferred to a single atom. \(^4\)

Ionization and displacement defects can produce significant alterations in the electrical behavior of the affected material.

MANIFESTATION OF THE EFFECTS

The most significant result of the three primary photon-interaction processes is the production of free electron-hole pairs. The number of electron-hole pairs created in semiconductor material is proportional to the amount of energy absorbed from the radiation environment. The differences between the exposure and absorbed radiation environments can be a complex function of the equilibrium radiation environment at the specimen. The complex prediction of carrier generation rate may be simplified by considering the energy deposition to be uniform throughout the geometry of the device if the incident particle or photon energy exceeds 200 KeV. For photon or electron irradiation between 1 to 5 MeV, the absorbed dose is essentially identical to the exposure dose \(^3\)
Radiation induced carrier generation in the bulk semiconductor will increase the minority and majority carrier densities.

\[\Delta n = \Delta p = g_0 \gamma(t) \]

(B-1)

The change in majority and minority carriers is seen to be equal and therefore the relative effect on minority carrier density is greater. The minority carrier density increase results in the junction photocurrents and secondary photocurrents in diodes and transistors.

Displacement damage in the bulk semiconductor introduces a number of recombination centers, which is generally assumed to be proportional to the integrated neutron flux. The primary result is the reduction of minority carrier lifetime.\(^{(4)}\)

\[\frac{1}{\tau_F} = \frac{1}{\tau_0} + \frac{\Phi}{K} \]

(B-2)

where \(\tau_F \) is the new lifetime
\(\tau_0 \) is the initial lifetime
\(K \) is the lifetime damage constant
\(\Phi \) is the integrated neutron flux

In terms of device performance, the reduction in minority carrier lifetime produces a transient reduction in the forward gain of a transistor that is not completely recovered. The damage value of Beta for a single radiation pulse may be obtained from the Messenger-Spratt Equation.\(^{(4)}\)

\[\frac{1}{\beta_F} = \frac{1}{\beta_0} + 0.194 \frac{\Phi}{\frac{\tau}{\alpha} K} \]

(B-3)

The detailed analysis of displacement damage in transistors is complicated by the variation of the common emitter current gain (\(\beta \)) with the injection level.
THE PHYSICAL DESCRIPTION

In semiconductor material, electrical currents are the result of the motion of either holes or electrons and are associated with two independent mechanisms (1) Drift motion, the result of charged particles being acted upon by an electric field, and (2) Diffusion, the result of the tendency of carriers to diffuse from regions of high charge concentration to regions of low concentration. The net current density is the sum of the drift and diffusion component currents.\(^5\)

Carrier density that is greater than the equilibrium carrier density is termed excess carrier density. Excess carriers can be introduced by electrical, optical, thermal or radiation injection mechanisms. Excess carriers are opposed by the recombination process (mutual annihilation) by which holes and electrons are removed from circulation as charge carriers. The net rate of recombination of excess holes and electrons is approximately

\[
\begin{align*}
\text{n-type} & \quad \text{Rate} = \frac{P_n(x) - P_0}{\tau_p} = \frac{n_n(x)}{\tau_p} \\
\text{p-type} & \quad \text{Rate} = \frac{n_n(x) - n_0}{\tau_n} = \frac{P^p(x)}{\tau_n}
\end{align*}
\]

\[(B-4)\]
\[(B-5)\]

for one dimensional, conductive, extrinsic, homogeneous material operating with a low injection rate.

The carrier generation rate by external mechanisms, \(g\), has been shown to be \(g = g_o \gamma(t)\) for ionizing radiation, where \(\gamma(t)\) is the exposure in radians.

The continuity of current requires
The equations of current flow are.

\[J_{\text{holes}} = q \mu_p p(x) E - q D_p \frac{\partial p}{\partial x} \]
\[J_{\text{electrons}} = q \mu_n n(x) E + q D_n \frac{\partial n}{\partial x} \]
\[I = A \left(J_{\text{holes}} + J_{\text{electrons}} \right) \]

and the presence of the electric field requires the application of Gauss' Law:

\[\frac{\partial E}{\partial x} = \rho(x) = \frac{q}{\varepsilon} \left[N_d(x) - N_a(x) + p(x) - n(x) \right] \]

The terminal relationships of a device may be derived from these equations. To demonstrate briefly the relationship of the physical behavior and the transistor models available for computer aided analysis, the equations of an ideal diode and an ideal PNP transistor are included. Because of the complexity of the equations, worst case steady state conditions are primarily discussed.

AN IDEAL DIODE

The current appearing at the terminals of this device will be related to the internal redistribution of the carriers upon application of a bias potential. The following analysis is based on an abrupt junction device composed of homogeneous n-type and p-type material with a transition or space charge layer surrounding the junction of width W.
For forward bias, assuming carrier flow by diffusion only

\[J_n^{(o)} = \frac{q D_n P_n}{L_n} \left(e^{qV/KT} - 1 \right) = \frac{q D_n P_n}{L_n} n^{(o)} \quad \text{(B-12)} \]

\[\text{sine } I = A \left(J_n^{(o)} + J_e^{(o)} \right), \text{ substituting } L_n = \sqrt{D_n \tau_n} \text{ and including similar expressions for the electrons} \]

\[I_{\text{diode forward}} = A q \left(\frac{L_n P_n}{\tau_n} + \frac{L_p P_n}{\tau_p} \right) \left(e^{qV/KT} - 1 \right) \quad \text{(B-13)} \]

\[= I^r_s \left(e^{qV/DT} - 1 \right) \quad \text{(B-14)} \]

Adding the effects of the space charge region contribution to reverse current, for reverse bias

\[I_{\text{diode reverse}} = A q \left(\frac{L_n P_n}{\tau_n} + \frac{L_p P_n}{\tau_p} + \frac{W}{\tau_o} \right) \quad \text{(B-15)} \]

\[= I^r_s \]

In a steady state ionizing radiation environment where the carrier generation is increased by \(g_0 \gamma(t) \) the equation for reverse bias becomes\(^3\)

\[I_d = A q \left[L_n \left(\frac{P_n}{\tau_n} + g_0 \gamma(t) \right) + L_p \left(\frac{n p c}{\tau_p} + g_0 \gamma(t) \right) + W \left(\frac{n_1}{\tau_0} + g_0 \gamma(t) \right) \right] \quad \text{(B-16)} \]

The equilibrium diode photocurrent can be seen to be

\[I_{d p p} = A q g_0 \gamma^\prime \left[L_n + L_p + W \right] \quad \text{(B-17)} \]

For pulsed transient photoresponse, the complexity of the equation is considerably increased\(^3\)

A step function

\[I_{d p p}(t) = A q \left[L_n \text{ erf} \left(\frac{t}{\tau_n} \right) \frac{1}{2} + W u(t) \right] \quad \text{(B-18)} \]

Figure B-16 diagrams the minority-carrier concentrations for forward and reverse bias, demonstrating the increase in minority carrier density.
Junction hole concentration increase due to ionization concentration

\[n'_p(a) = n_{po} \left(\frac{qV/kT}{e} - 1 \right) \]

Space Charge Region

\[n_{po}, P_{no} = \text{equilibrium concentrations} \]

(a) MINORITY CARRIER CONCENTRATIONS - FORWARD BIAS

IONIZATION EFFECT
\[\Delta n_p = g \tau_n \]
\[\Delta P_n = g \tau_p \]

(b) MINORITY CARRIER CONCENTRATIONS - REVERSE BIAS

NORMAL

![Diagram of P-N Junction Ideal Diode](image)

(d) FIRST ORDER APPROXIMATE MODEL

(c) TYPICAL ALTERATION OF V-I CHARACTERISTIC

Figure B 16 P-N Junction Ideal Diode (1,2,3)
as a result of ionizing radiation absorption Figure B-16c diagrams the alterations of a diode V-I characteristic. A current generator \(i_{dp}(t) \) placed across the junction in parallel with the high frequency model of the device has proven satisfactory as a first-order approximation model.

THE TRANSISTOR MODELS

There are three large signal nonlinear models (1) Ebers-Moll, (2) the Beaufoy-Sparkes Charge Control, and (3) the Linvill Lumped Model, that have been modified for radiation effect computer analysis.

EBERS-MOLL

A reversed biased ideal PNP transistor with abrupt junctions, \(W_{\text{base}} < L_{\text{base}} \) that is extrinsic and homogeneous in all three regions and that is operating with a low injection level is diagramed in Figure B-17. For the cut-off mode \(V_{EB} << \frac{K T}{q}, V_{CB} << \frac{K T}{q} \), bias conditions are

\[
\begin{align*}
I_C &= q A_j c \left[L_c \frac{n_{co}}{\tau_{nc}} + \frac{W_b}{2} \frac{p_{bo}}{\tau_{pb}} + x_c \frac{n_1}{\tau_{oc}} \right] \quad (B-19) \\
I_E &= q A_j e \left[L_e \frac{n_{eo}}{\tau_{ne}} + \frac{W_b}{2} \frac{p_{bo}}{\tau_{pb}} + x_e \frac{n_1}{\tau_{oe}} \right] \quad (B-20) \\
I_B &= -I_E - I_C \quad (B-21)
\end{align*}
\]

When ionizing radiation effects are included the equation for equilibrium effects (steady state) are

\[
\begin{align*}
I_c^* &= q A_j c \left[L_c \left(\frac{n_{co}}{\tau_{nc}} + g_o(\gamma) \right) + \frac{W_b}{2} \left(\frac{p_{bo}}{\tau_{pb}} + g_o(\gamma) \right) + x_c \left(\frac{n_1}{\tau_{oc}} + g_o(\gamma) \right) \right] \\
&= I_c + I_{ppc} \quad (B-22)
\end{align*}
\]
MINORITY CONCENTRATIONS IN THE CUTOFF MODE - PNP

MINORITY CONCENTRATIONS IN THE ACTIVE MODE - PNP

\[P_b'(a) = P_{b0} \left(e^{\frac{qV_{EB}}{KT}} - 1 \right) \]
\[n_e'(a) = n_{e0} \left(e^{\frac{qV_{EB}}{KT}} - 1 \right) \]
\[P_b'(w) = P_{b0} \left(e^{\frac{qV_{CB}}{KT}} - 1 \right) \]
\[n_c'(a) = n_{c0} \left(e^{\frac{qV_{CB}}{KT}} - 1 \right) \]

"Figure B 17 PNP Ideal Transistor Minority Carrier Concentrations"
Similar to the diode approximation, current generators representing I_{ppe} and I_{ppc} placed across the junctions of a transistor high frequency nonlinear model provide a satisfactory first order approximation model.

A nonlinear model (capable of cutoff-active-saturation representation) is necessary because the photocurrents could be sufficient to turn on the device. The photocurrent generators generally replace the I_{CO}, I_{EO} leakage current generators in the nonlinear models. The equations for active region operation may be derived by assuming all current is from diffusion and neglecting the space charge layer generation and recombination, then

$$I_E = qA_{je} \left[-D_b \frac{dP_b'}{(o)} + D_c \frac{d_n'}{(o)} \right]$$

(B-25)

$$I_C = qA_{jc} \left[+D_b \frac{dP_b'}{(o)} - D_c \frac{d_n'}{(o)} \right]$$

(B-26)

Since $P_b'(o), n_e'(o), n_c'(o)$ are linearly dependent upon $(e^{qV_{EB}/KT})$ and $(e^{qV_{CB}/KT})$ the form of the classic Ebers-Moll equations is readily verified.

$$I_E = I_{ES} \left(e^{\frac{qV_{EB}}{KT} - 1} \right) - \alpha_R I_{CS} \left(e^{\frac{qV_{CB}}{KT} - 1} \right)$$

(B-27)

$$I_C = -\alpha_F I_{ES} \left(e^{\frac{qV_{EB}}{KT} - 1} \right) + I_{CS} \left(e^{\frac{qV_{CB}}{KT} - 1} \right)$$

(B-28)

$$I_B = -I_E - I_C$$

(B-29)
From the cutoff condition
\[I_{E\text{off}}' = -\left(1 - \alpha_F\right) I_{ES} + I_{\text{ppe}} \] (B-30)
cutoff:
\[I_{C\text{off}}' = -\left(1 - \alpha_R\right) I_{CS} + I_{\text{ppe}} \] (B-31)

Using the same procedure, the equations for general operation under radiation exposure may be developed
\[I_{E}'(\gamma) = I_E + I_{\text{ppe}}(\gamma) \] (B-32)
\[I_{C}(\gamma) = I_C + I_{\text{ppe}}(\gamma) \] (B-33)

The photocurrent effects on the device and circuit are compounded by multiplication of the photocurrent. The secondary photocurrent so produced could damage the device if it is sufficiently large.

Figure B-18a diagrams the Ebers-Moll PNP Transistor model and modifications to include the junction capacitance, bulk resistance and the photocurrent generators, B-18b shows the version incorporated in the SCEPTRE program

Charge Control

The characterization of the ideal transistor described above is in terms of excess minority carriers. An alternate description is in terms of minority-carrier charge density distribution. Figure B-19 is a diagram of charge density distribution for the active region of operation. The total distribution for the four regions of operation is also shown. This is a direct relationship between this internal charge distribution and the operating region.

Assuming the ideal device for simplicity and recombination processes occur only in the base and are defined by a uniformly constant lifetime \(\tau_B \), for steady state conditions the stored excess minority carrier charge \(+ q_B \) and the equal majority carrier charge \(- q_B \) are maintained by the base current \(I_B \). \(I_B \) is defined as a sustaining current which supplies majority electrons at a rate equal to their loss due to recombination in the base. For transient operation, the stored base charge changes with time.
\[I_F = I_{ES} \left(e^{\frac{qV_{EB}}{KT}} - 1 \right) \]
\[I_R = I_{CS} \left(e^{\frac{qV_{CB}}{KT}} - 1 \right) \]

\((a) \) EBERS-MOLL DEVICE MODEL (NPN)
(TERMINAL VOLTAGE CONTROL)

NOTE: \(I_{pc} (t) >> I_{pe} (t) \) generally

\[I_{CO} = (1 - \alpha_R \alpha_F) I_{CS} \]
\[I_{EO} = (1 - \alpha_R \alpha_F) I_{ES} \]
\[\theta_N = \frac{q}{\eta KT} \]

\((b) \) SCEPTRE EBERS-MOLL MODEL (PNP)
(TERMINAL CURRENT CONTROL)

Figure B 18 The Ebers–Moll First-Order Approximation to \(\gamma \) Effects
Figure B.19 Excess Minority Carrier Concentrations in the Base Region (PNP)
\[I_B = - \left(\frac{q_B}{\tau_B} + \frac{dq_B}{dt} \right) \] \hspace{1cm} \text{(B-34)}

The stored base charge is composed of forward and reverse components of stored minority carrier charge as shown in Figure 4:

\[q_B = q_F + q_R \] \hspace{1cm} \text{(B-35)}

Therefore

\[I_B = - \left(\frac{q_F}{\tau_{BF}} + \frac{dq_F}{dt} \right) + \left(\frac{q_R}{\tau_{BR}} + \frac{dq_R}{dt} \right) \] \hspace{1cm} \text{(B-36)}

By assuming that the base charge is limited to relatively slow variations, \(I_c \) and \(I_e \) may be defined. For DC steady state, forward injection only:

\[I_c = - \frac{\beta_F q_F}{\tau_{BF}} = - \frac{q_F}{\tau_F} \] \hspace{1cm} \text{(B-37)}

For slow variations in \(q_B \), \(I_c \approx I_c \) and

\[I_e = - I_c - I_b = q_F \left(\frac{1}{\tau_{BF}} - \frac{1}{\tau_F} \right) + \frac{dq_F}{dt} \] \hspace{1cm} \text{(B-38)}

Similar equations can be written for reverse injection \(I_E = - \frac{q_R}{\tau_R} \) and the total expression for terminal currents of an ideal device become

\[I_c = - \frac{q_F}{\tau_F} + q_R \left(\frac{1}{\tau_R} + \frac{1}{\tau_{ER}} \right) + \frac{dq_R}{dt} \] \hspace{1cm} \text{(B-39)}

\[I_e = q_F \left(\frac{1}{\tau_F} + \frac{1}{\tau_{BF}} \right) + \frac{dq_F}{dt} - \frac{q_R}{\tau_R} \] \hspace{1cm} \text{(B-40)}

\[I_B = I_c - I_e \] \hspace{1cm} \text{(B-41)}

(To include saturation, an increase in the base charge is represented by \(\frac{q_{BS}}{\tau_{BS}} \) and \(\frac{dq_{BS}}{dt} \) in parallel with \(\frac{q_F}{\tau_{BS}} \) \(\frac{dq_F}{dt} \))
Leakage currents i_{EO}, i_{CO} are included and space charge layer charge storage is represented by the terms $c_{be} \frac{dV_{eb}}{dt}$ and $C_{ob} \frac{dV_{cb}}{dt}$. In the complete model as shown in Figure B-20 CIRCUS incorporates the charge control model as its radiation model and represents the photocurrents by current generators placed in parallel with i_{EO}, i_{CO} exactly as represented in the Ebers-Moll model. The CIRCUS model and its equations are shown in Figure B-21.

THE LUMPED MODEL

The third approach to describing device behavior is the Linvill approach of lumped modeling. The simplest model is the 2-lump model shown in Figure 7. The model is based on a description of excess minority carrier behavior similar to the Ebers-Moll approach. The model shown has parameter definitions that correspond to the charge-control model parameters. Terminal equations for the ideal device are

$$
\begin{align*}
1_c &= -H_D p_{b'}(o) + \left(\frac{H_D + H_{CR}}{H_D} \right) p_{b'}(w) + S_R \frac{dp_{b'}(w)}{dt} + C_{ve} \frac{dV_{EB}}{dt} - i_{EO} \\
1_e &= -H_D p_{b'}(w) + \left(\frac{H_D + H_{CF}}{H_D} \right) p_{b'}(o) + S_F \frac{dp_{b'}(o)}{dt} + C_{ve} \frac{dV_{EB}}{dt} - i_{CO} \\
1_b &= -1_c - 1_e
\end{align*}
$$

where the space charge layer charge storage is represented as well as the leakage currents. The radiation version replaces i_{EO}, i_{CO} with i_{ppe}, i_{ppc} as in the other models. TRAC employs the Linvill model for analysis and the TRAC representation is given in Figure B-22.

CONCLUSIONS

The three program models discussed are first-order approximations for representation of ionizing radiation effects. The three models use identical approaches to the representation of the junction photocurrents i_{ppe}, i_{ppc}.
\[q_{BF} = \frac{qV_e}{e nKT} - 1 \]
\[q_{BR} = \frac{qV_c}{e nKT} - 1 \]

\[r_E = 0. \]

\[V_E = i_b r_b + V_e \]
\[V_C = i_c r_c - V_c + V_e \]

\[i_C = -\frac{q_F}{\tau_F} + q_R \left(\frac{1}{\tau_R} + \frac{1}{\tau_{BR}} \right) + \frac{dq_R}{dt} + C_{ob} \frac{dV_c}{dt} - i_{CO} \]
\[i_E = q_F \left(\frac{1}{\tau_{BF}} + \frac{1}{\tau_F} \right) + \frac{dq_F}{dt} - \frac{q_R}{\tau_R} + C_{b'e} \frac{dV_e}{dt} - i_{EO} \]
\[i_B = -i_C - i_E \]

Figure B.20 PNP Charge-Control Model for Normal and Inverse Operation
The figure shows a CIRCUIT Model (Charge Control) and Parameters for PNP Device. The equations for the parameters are as follows:

- $C_{be} \triangleq \frac{A_1}{(\phi_1 - V_e)^{n_1}} + \theta_N T_{CN} (I_N + I_{es})$
- $C_{bc} \triangleq \frac{A_2}{(\phi_2 - V_c)^{n_2}} + \theta_R T_{CR} (I_R + I_{cs})$
- $I_N = I_{es} (e^{\theta_N V_e} - 1)$
- $I_R = I_{cs} (e^{\theta_R V_c} - 1)$
- $I_{be} \triangleq \left(\frac{1}{\beta_N} + 1 \right) I_N - I_R$
- $I_{bc} \triangleq -I_N - \left(\frac{1}{\beta_R} + 1 \right) I_R$

Single Valued Parameters:
- $\beta_N = F(I_N)$
- $\beta_R = F(I_R)$
- $T_{CN} = F(I_N)$
- $T_{CR} = F(I_R)$

The parameters include R_b, R_E, R_c, A_1, A_2, n_1, n_2, ϕ_1, ϕ_2, I_{es}, I_{cs}, θ_N, θ_R.

Figure B.21: CIRCUIT Model (Charge Control) and Parameters — PNP Device
Terminal Currents

\[i_C (\dot{\gamma}) = -H_D P_b^1(o) + \left(H_D + H_{CR} \right) P_b^1(w) + S_F \frac{dP_b^1(w)}{dt} + C_{VC} \frac{dV_c}{dt} - 1_{ppe} \]

\[i_E (\dot{\gamma}) = -H_D P_b^1(w) + \left(H_D + H_{CF} \right) P_b^1(o) + S_F \frac{dP_b^1(o)}{dt} + C_{VE} \frac{dV_c}{dt} - 1_{ppe} \]

\[i_B (\dot{\gamma}) = -1_C (\gamma) - i_E (\gamma) \]

\[q_F = S_F P_b^1(o) \]

\[q_R = S_R P_b^1(w) \]

\[P_b^1(o) = P_{bo} \left(e^{qV_e/nKT} - 1 \right) \]

\[P_b^1(w) = P_{bo} \left(e^{qV_c/nKT} - 1 \right) \]

For analysis without \(1_{ppe} \), \(1_{ppc} \)
delete the current generators

Figure B 22 Linvill Two-Lump Model – PNP Including Radiation Pulse Currents
DEFINE:

\[\alpha_E = \frac{H_D}{H_D + H_{CF}} \quad \alpha_R = \frac{H_D}{H_D + H_{CR}} \]

\[I_{EO} = -P_{bo}(H_{CF} + \alpha_R H_{CR}) \quad I_{CO} = -P_{bo}(H_{CR} + \alpha_F H_{CF}) \]

\[T_F = \frac{S_E}{H_{CF} + H_D} \quad T_R = \frac{S_B}{H_{CR} + H_D} \]

THEN:

\[\begin{align*}
 l_E &= \frac{I_{EO}}{1 - \alpha_F \alpha_R} \left(e^{\theta e V_E} - 1 \right) - T_F \frac{d}{dt} \left[\frac{I_{EO}}{1 - \alpha_F \alpha_R} \left(e^{\theta e V_E} - 1 \right) \right] \\
 &+ \frac{\alpha_R I_{CO}}{1 - \alpha_F \alpha_R} \left(e^{\theta c V_C} - 1 \right) + C_{je} \frac{dV_E}{dt} - i_{ppe}(t) \\
 l_C &= \frac{-I_{CO}}{1 - \alpha_F \alpha_R} \left(e^{\theta c V_C} - 1 \right) - T_R \frac{d}{dt} \left[\frac{I_{CO}}{1 - \alpha_F \alpha_B} \left(e^{\theta c V_C} - 1 \right) \right] \\
 &+ \frac{\alpha_F I_{EO}}{1 - \alpha_F \alpha_R} \left(e^{\theta e V_E} - 1 \right) + C_{jc} \frac{dV_C}{dt} - i_{ppc}(t) \\
 l_B &= -l_E - l_C
\]

Figure B.23 TRAC Representation of the Linvill Two-Lump Model — PNP —
Including Radiation Photocurrents (prestored)
The variations of Beta with time, injection level and radiation exposure for a given device is complex. A general approach has evolved because most programs require the Beta be either single valued or expressed as a function of current in a simple table. Beta is first computed for the injection level and other 'normal' operating conditions. A degraded Beta for the given flux level is computed from Equation (3) and then degraded by a factor of 2 or 3 to provide a worst-case analysis. (The actual transient loss may be this great or greater with a recovery of Beta to its damage value β_F, dependent upon the device and its exposure.) This approximate analysis is sufficient to indicate the presence of difficulties in the circuit under analysis.

SCEPTRE allows the programming of Beta as a function (equation or tabled expression) and CIRCUS allows a table (Beta $N = F(I_n)$). The more elaborate expressions for Beta are justified when sufficient laboratory data exists to warrant the increased computer computation time.
TABLE OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, (A_{jc}, A_{je}, A_{base})</td>
<td>junction area</td>
</tr>
<tr>
<td>(C_{jc}, C_{je})</td>
<td>incremental capacitance of the junction</td>
</tr>
<tr>
<td>(C_{VC}, C_{VE})</td>
<td>nonlinear charge store of the junction</td>
</tr>
<tr>
<td>(D, D_n, D_{pb})</td>
<td>charge-carrier diffusion constant (e, p for electrons in p-material, e, b, c for a transistor to denote emitter, base or collector)</td>
</tr>
<tr>
<td>E</td>
<td>electric field</td>
</tr>
<tr>
<td>(g_o)</td>
<td>carrier generation rate at equilibrium</td>
</tr>
<tr>
<td>(H_{CP}, H_{CR})</td>
<td>forward and reverse combination parameter of the Linvill model</td>
</tr>
<tr>
<td>(H_D)</td>
<td>the diffusance parameter of the Linvill model</td>
</tr>
<tr>
<td>(I_{co}, I_{EO})</td>
<td>the collector and emitter junction saturation current (opposite junction open)</td>
</tr>
<tr>
<td>(I_{cs}, I_{ES})</td>
<td>the collector and emitter junction saturation current (opposite junction shorted)</td>
</tr>
<tr>
<td>(I_S)</td>
<td>Saturation current of an ideal diode</td>
</tr>
<tr>
<td>J</td>
<td>electric current density</td>
</tr>
<tr>
<td>K</td>
<td>damage constant</td>
</tr>
<tr>
<td>(K, k)</td>
<td>Boltzmann's Constant</td>
</tr>
<tr>
<td>L</td>
<td>Charge carrier diffusion length (see D)</td>
</tr>
<tr>
<td>(N_a, N_d)</td>
<td>accepter (donor impurity concentration</td>
</tr>
<tr>
<td>(n(p))</td>
<td>electron (hole) concentration</td>
</tr>
<tr>
<td>(n'(p'))</td>
<td>excess electron (hole) concentration</td>
</tr>
<tr>
<td>(\eta_i)</td>
<td>intrinsic carrier concentration</td>
</tr>
<tr>
<td>q</td>
<td>magnitude of the electronic charge</td>
</tr>
<tr>
<td>(q_B)</td>
<td>total excess minority carrier charge stored in the case (q_B = q_F + q_R) (forward and reverse components)</td>
</tr>
<tr>
<td>(q_{VE}, q_{VC})</td>
<td>junction space charge layer charge (at (V_g = 0))</td>
</tr>
<tr>
<td>(r_B, r_E, r_C)</td>
<td>large signal bulk resistances</td>
</tr>
<tr>
<td>T</td>
<td>absolute temperature</td>
</tr>
<tr>
<td>W</td>
<td>Width of the base region</td>
</tr>
<tr>
<td>(x, x', x'')</td>
<td>longitudinal coordinate in one dimensional transistor model</td>
</tr>
</tbody>
</table>
\(\alpha_F(\alpha_R) \) large signal forward (reverse) injection common base short circuit gain

\(\beta_F(\beta_R) \) large signal forward (reverse) injection common emitter short circuit current gain

\(\gamma(t) \) ionizing radiation

\(\epsilon \) dielectric permittivity

\(\eta \) base width modulation factor

\(\mu \) charge carrier mobility

\(\rho \) space charge concentration

\(\tau \) lifetime of excess charge carriers

\(\theta \) \(\theta = q/\eta K T \)
BIBLIOGRAPHY

APPENDIX C
CURRENT CODING EXAMPLES

Given: The Equivalent Circuit Diagram of a Telemetry Transmitter

![Telemetry Transmitter Circuit](image)

Figure C 1 Telemetry Transmitter Circuit

![Equivalent Circuit of Telemetry Transmitter for NASAP Analysis](image)

Figure C 2 Equivalent Circuit of Telemetry Transmitter for NASAP Analysis
Input Codes:

NASAP Input Code

NASAP PROBLEM TELEMETER
I1 1 2 1.0
C1 1 2 100UF
R1 1 2 20K
C2 2 3 2UF
R2 2 3 100
R3 1 3 220
L1 4 1 0.25
C3 2 4 2.0UF
C4 3 1 47UF
C5 3 4 10UF
I2 4 3 0.3 IR2
OUTPUT
WORST CASE
I1/I1
PLOT(TY=FR/FR=80/TO=126)
PLOT(TY=RE/FR=O/TO=100)
ROOTS, POLES
END
PLOT(TY=SE/FR=80/TO=126/EL=DJ1)
PLOT(TY=SE/FR=80/TO=126/EL=CJ3)
PLOT(TY=SE/FR=80/TO=126/EL=LE3)
PLOT(TY=SE/FR=80/TO=126/EL=KE3)
EXECUTE
TREE NASAP PROBLEM TELEMETER
J1(1-2)=1.0
CJ1(1-2)=100MF
RE1(1-2)=20K
CJ2(2-3)=2MF
RJ2(2-3)=100
RE3(1-3)=220
LE1(4-1)=0.25
CJ3(1-4)=LOMF
CE4(3-1)=47MF
CJ5(3-4)=10MF
DJ2/IRJ2(4-3)=0.3
END
WORST CASE
I1/I1
PLOT(TY=FR/FR=80)/TO=126)
PLOT(TY=RE/FR=O/TO=100)
ROOTS, POLES
END
PLOT(TY=SE/FR=80/TO=126/EL=DJ3)
PLOT(TY=SE/FR=80/TO=126/EL=CJ3)
PLOT(TY=SE/FR=80/TO=126/EL=LE3)
PLOT(TY=SE/FR=80/TO=126/EL=KE3)
CIRC(1E6)NASAP PROBLEM TELEMETER
J1(1-2)=1.0
C1(1-2)=100MF
R1(1-2)=20K
C2(2-3)=2MF
R2(2-3)=100
R3(1-3)=220
L1(4-1)=0.25
C3(2-4)=2.0MF
C4(3-1)=47MF
C5(3-4)=10MF
DJ2/IR2(4-3)=0.3
END
WORST CASE
IL1/I1
PLOT(TY=FR/FR=80/TO=126)
PLOT(TY=RE/FR=0/TO=100)
ROOTS, POLES
END
PLOT(TY=SE/FR=80/TO=126/EL=CJ1)
PLOT(TY=SE/FR=80/TO=126/EL=EJ3)
PLOT(TY=SE/FR=80/TO=126/EL=LE1)
PLOT(TY=SE/FR=80/TO=126/EL=KE3)
EXECUTE
STOP
NASAP

NETWORK ANALYSIS AND SYSTEMS APPLICATION PROCRAY

THIS VERSION WAS DEVELOPED AT UCLA ENGR. DEPT.

NASAP PROBLEM TELEMETRY

<table>
<thead>
<tr>
<th>ELEMENT NUMBER</th>
<th>ELEMENT NAME</th>
<th>DEPENDENCY (IF ANY)</th>
<th>ORIGIN NODE</th>
<th>TARGET NODE</th>
<th>VALUE</th>
<th>TAG</th>
<th>GENER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R1</td>
<td></td>
<td>1</td>
<td>2</td>
<td>1.00000000E+00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>R2</td>
<td></td>
<td>1</td>
<td>2</td>
<td>9.99999320E-03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>R3</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2.00000000E+04</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C1</td>
<td></td>
<td>2</td>
<td>3</td>
<td>1.00000000E+06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C2</td>
<td></td>
<td>2</td>
<td>3</td>
<td>2.00000000E+06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C3</td>
<td></td>
<td>2</td>
<td>4</td>
<td>4.9999958E+06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>C4</td>
<td></td>
<td>3</td>
<td>1</td>
<td>5.99999742E+06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>C5</td>
<td></td>
<td>3</td>
<td>4</td>
<td>5.99999843E+01</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

OUTPUT

<table>
<thead>
<tr>
<th>ELEMENT NUMBER</th>
<th>ELEMENT NAME</th>
<th>VALUE</th>
<th>TAG</th>
<th>GENER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>304</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1536</td>
<td>2096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2048</td>
<td>1280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WORSTCASE

ELEMENT NAME Tolerance

C1 0.1000
R1 0.1000
C2 0.1000
R2 0.1000
R3 0.1000
L1 0.1000
C3 0.1000
C4 0.1000
C5 0.1000
I2 0.1000

FLOWGRAPH

FROM TO S VALUE
2 13 -1 1.000000039E+04
14 3 0 4.55999878E-05
15 4 1 1.55999886E-05
16 5 0 5.95599791E-03
6 17 -1 0 2.20000000E-02
7 18 1 2.49999881E-01
19 8 -1 1 1.55999886E-05
20 9 1 4.69999990E-05
21 10 -1 1 9.59999929E-06
5 11 0 2.59999983E-01
4 2 0 1.00000000E 00
13 15 0 1.00000000E 00
5 2 0 1.00000000E 00
13 16 0 1.00000000E 00
8 2 0 1.00000000E 00
13 19 0 1.00000000E 00
1 2 0 1.00000000E 00
13 12 0 1.00000000E 00
3 2 0 1.00000000E 00
13 14 0 1.00000000E 00
9 6 0 1.00000000E 00
17 20 0 1.00000000E 00
10 6 0 1.00000000E 00
17 21 0 1.00000000E 00
4 6 0 1.00000000E 00
17 15 0 1.00000000E 00
5 6 0 1.00000000E 00
17 16 0 1.00000000E 00
11 6 0 1.00000000E 00
17 22 0 1.00000000E 00
8 7 0 1.00000000E 00
18 19 0 1.00000000E 00
10 7 0 1.00000000E 00
18 21 0 1.00000000E 00
11 7 0 1.00000000E 00
18 22 0 1.00000000E 00
IL/Ill

NTIMES = 1

THE UNKNOWN TRANSMITTANCE GOES FROM NODE 24588 TO 5999

1180224 288000
3057108 746000
3089892 754000
786816 192000
3057108 146000
3089892 754000
3091540 1778000
2360448 576000
2600180 1658000
462628 1234000
2559200 1648000
1626548 1274000
239732 1662000
2305254 1587000
75942 1042999
239862 1083000
198752 1072000
40980 10000
237684 58000
237684 58000
2270422 555000
73764 17999
2303206 563000
532740 130000
532870 131000
2229312 544000
163920 40000
196704 48000

C-6
NO. OF FIRST ORDER LOOPS = 29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
TRANSFER FUNCTION

\[5 \times 8818E 04 + 4 \times 282E C1S \times 1 \times 000E 005 + 0 \times 0 + 0 \times 0\]

\[2 \times 540E 09 + 1 \times 5C9E C2S + 3 \times 55A5E C3S \times 3 \times 150E 025 + 1 \times 0000E 005\]

THE FACTOR FICT Factor = \[-8 \times 7E0E C3\]
SENSITIVITY TC C1

\[0.0 \quad + \quad 1.54E \quad 0.0 \quad + \quad 3.62E \quad 0.5 \quad + \quad 2.69E \quad 0.2 \quad + \quad 1.00E \quad 0.5 \]

\[2.94E \quad 0.9 \quad + \quad 1.50E \quad 0.5 \quad + \quad 3.54E \quad 0.5 \quad + \quad 3.55E \quad 0.2 \quad + \quad 1.00E \quad 0.5 \]

THE FUNCTION FACTOR = \(-5.67E-01\)
SENSITIVITY TO A1

- \(1.040E13 \) \(+ 4.0453E05 \) \(+ 2.0765E05 \) \(+ 2.0533E02 \) \(+ 1.0000E00 \) \(+ 0.00 \)

\[2 \quad 3 \quad 4 \quad 5 \quad 6 \]

THE FUNCTION FACTOR = \(4.0365E-01 \)

<table>
<thead>
<tr>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>4.5192E-01</td>
<td>-1.00514E-03</td>
<td>-2.058241E-06</td>
<td>-3.09255E-09</td>
<td>-1.04576E-11</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>2.01975E-01</td>
<td>-3.52979E-04</td>
<td>-1.005157E-06</td>
<td>-2.08655E-09</td>
<td>-3.07685E-12</td>
<td>0.00</td>
<td>-0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
</tr>
</tbody>
</table>

C-10

\[2 \quad 3 \quad 4 \quad 5 \quad 6 \]
SENSITIVITY TC C2

\[\begin{align*}
0.0 &+ 4.905E 11S + 2.154E 10S + 2.266E 09S + 4.656E 08S + 5.740E 07S +
\end{align*} \]

\[\begin{align*}
0.0 &+ 1.000E 06S + 2.034E 14S - 1.504E 13S - 4.258E 13S + 2.841E 05S +
\end{align*} \]

\[\begin{align*}
0.0 &+ 3.422E 02S + 1.000E 00S - 2.982E-06 - 3.592E-09 + 6.065E-01 - 2.663E-02
\end{align*} \]

THE FUNCTION FACTOR = \(-1.017E-C1\)
SENsITIVITY TO R2

\[2 \times 10^9 + 7 \times 10^6 C_9 + 1 \times 10^7 C_6 + 4 \times 10^5 C_5 + 3 \times 10^3 C_2 \times 10^5 + 1 \times 10^0 C_0 + 0 \times 0 \]

--

\[- 2 \times 10^{14} - 1 \times 10^{13} C_9 - 4 \times 10^9 C_6 + 9 \times 10^7 C_5 + 2 \times 10^4 C_2 \times 10^5 + 3 \times 10^2 C_0 \times 10^0 + 1 \times 10^0 C_0 + 0 \times 0 \]

THE FUNCTION FACTOR = 4 \times 10^3 C_2
SENSITIVITY TO R3

\[1.698 \times 10^8 + 4.028 \times 10^8 + 1.257 \times 10^8 + 1.352 \times 10^8 + 1.000 \times 10^8 + 0.0 \]

\[-2.913 \times 10^5 - 1.298 \times 10^5 - 9.828 \times 10^4 + 2.517 \times 10^4 + 1.352 \times 10^4 + 3.272 \times 10^3 + 1.000 \times 10^3 + 0.0 \]

THE FUNCTION FACTOR = \(-2.4 \times 10^6\)
SENSITIVITY TC Li

\[
0.0 + 0.0 - 9.143 \times 10^{-8} S - 3.844 \times 10^{-7} S - 1.060 \times 10^{-5} S + 3.422 \times 10^{-2} S + 1.000 \times 10^{-6} S
\]

\[
- 2.913 \times 10^{-14} - 1.504 \times 10^{-4} + 4.045 \times 10^{-4} + 9.579 \times 10^{-3} + 2.041 \times 10^{-5} + 3.422 \times 10^{-2} + 1.000 \times 10^{-6}
\]

THE FUNCTION FACTOR = 1.00 CE CO
SENSITIVITY TO C3

\[C_0 \cdot 1.494 \times 10^2 + 6.454 \times 10^3 + 3.64 \times 10^5 + 6.985 \times 10^6 + 7.934 \times 10^8 + 7.934 \times 10^{10} + 1.000 \times 10^{12} \]

\[-2.913 \times 10^4 - 1.504 \times 10^6 - 4.28 \times 10^8 - 2.84 \times 10^{10} - 5.34 \times 10^{12} + 1.000 \times 10^{14} \]

THE FUNCTION FACTOR = \(-6.494 \times 10^{-1}\)
SENSITIVITY TC C4

\[0_6 \times 0 + 1_6 \times 698E \ 11S + 4_6 \times 826E \ 11S + 1_2 \times 257E \ 09S + 1_3 \times 352E \ 06S + 3_2 \times 272E \ 03S + 1_0 \times 000E \ 00S \]

\[- 2_6 \times 913E \ 14 - 1_5 \times 504E \ 13S - 4_6 \times 268E \ 10S + 9_5 \times 575E \ 07S + 2_6 \times 641E \ 05S + 3_4 \times 422E \ 02S + 1_0 \times 000E \ 00S \]

THE FUNCTION FACTOR = \[2_4 \times 485E-01 \]

C-16
Sensitivity to C5

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>12S</td>
<td>2.0</td>
<td>13S</td>
<td>11S</td>
<td>6.0</td>
</tr>
<tr>
<td>3.0</td>
<td>7.0</td>
<td>376E</td>
<td>0.0</td>
<td>5S</td>
<td>1.0</td>
</tr>
<tr>
<td>4.0</td>
<td>1.0</td>
<td>000E</td>
<td>0.0</td>
<td>0S</td>
<td>1.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.0</td>
<td>35S</td>
<td>0.0</td>
<td>7</td>
<td>576E</td>
</tr>
<tr>
<td>6.0</td>
<td>2.913E</td>
<td>14</td>
<td>1.54E</td>
<td>13S</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Function Factor

\[5.513E - 01 \]

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[5.513E - 01 \]
SENSITIVITY TO I2

\[2 \times 926E \ 11 + 1 \times 594E \ 10S + 1 \times 877E \ 08S + 4 \times 53E \ 05S + 3 \times 790E \ 02S + 1 \times 000E \ 005 + 0,0 \]

- \[2 \times 913E \ 14 - 1 \times 504E \ 13S - 4 \times 258E \ 10S + 5 \times 757E \ 07S + 2 \times 841E \ 05S + 3 \times 422E \ 02S + 1 \times 000E \ 005 \]

THE FUNCTION FACTOR = \[5 \times 523E \ 02 \]

\[
\begin{array}{cccccccc}
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3.05790E \ 03 & 1.57855E \ 02 & 1.95485E \ 03 & 4.6970E \ 03 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
-3.04800E \ 03 & 0.0 & 0.0 & 0.0 \\
\end{array}
\]
SQUARE CF WORST CASE TOLERANCE

\[\frac{3.082 \times 10^{28}}{3.406 \times 10^{27}} + \frac{2.323 \times 10^{26}}{3.244 \times 10^{24}} + \frac{3.197 \times 10^{22}}{3.070 \times 10^{20}} + \frac{1.376 \times 10^{18}}{7.727 \times 10^{16}} + \frac{3.456 \times 10^{15}}{1.990 \times 10^{13}} + \frac{7.276}{1.070} \]

\[\frac{8.463 \times 10^{28}}{8.760 \times 10^{27}} + \frac{2.512 \times 10^{26}}{2.075 \times 10^{24}} + \frac{1.237 \times 10^{22}}{1.166 \times 10^{20}} + \frac{2.613 \times 10^{18}}{5.455 \times 10^{16}} + \frac{3.456 \times 10^{15}}{1.000} \]

THE FUNCTION FACTOR = \[2.737 \times 10^{-2} \]
The Transform of the Response Is

<table>
<thead>
<tr>
<th>Exp of S</th>
<th>Numer Coeffs</th>
<th>Common Coeffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.0000E-01</td>
<td>1.01930E-02</td>
</tr>
<tr>
<td>1</td>
<td>-1.2547E-02</td>
<td>2.21768E-00</td>
</tr>
<tr>
<td>2</td>
<td>3.00255E-04</td>
<td>1.38103E-02</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>1.33138E-05</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>3.45773E-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freq</th>
<th>Mag</th>
<th>Freq</th>
<th>Mag</th>
<th>Freq</th>
<th>Mag</th>
<th>Freq</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E 01</td>
<td>7.11011E-02</td>
<td>1.25375E-01</td>
<td>1.004E 02</td>
<td>1.57465E-00</td>
<td>1.125E 02</td>
<td>8.70447E-02</td>
<td></td>
</tr>
<tr>
<td>8.036E 01</td>
<td>7.22272E-02</td>
<td>1.24472E-01</td>
<td>1.009E 02</td>
<td>9.62326E-01</td>
<td>1.130E 02</td>
<td>8.34591E-02</td>
<td></td>
</tr>
<tr>
<td>8.073E 01</td>
<td>7.34040E-02</td>
<td>1.20650E-01</td>
<td>1.013E 02</td>
<td>7.11794E-01</td>
<td>1.135E 02</td>
<td>8.01249E-02</td>
<td></td>
</tr>
<tr>
<td>8.110E 01</td>
<td>7.46347E-02</td>
<td>1.16178E-01</td>
<td>1.018E 02</td>
<td>5.56839E-01</td>
<td>1.140E 02</td>
<td>7.70179E-02</td>
<td></td>
</tr>
<tr>
<td>8.147E 01</td>
<td>7.59231E-02</td>
<td>1.126E-01</td>
<td>1.022E 02</td>
<td>4.56448E-01</td>
<td>1.145E 02</td>
<td>7.41151E-02</td>
<td></td>
</tr>
<tr>
<td>8.184E 01</td>
<td>7.72731E-02</td>
<td>1.081E-01</td>
<td>1.027E 02</td>
<td>3.86102E-01</td>
<td>1.151E 02</td>
<td>7.13971E-02</td>
<td></td>
</tr>
<tr>
<td>8.221E 01</td>
<td>7.86956E-02</td>
<td>1.036E-01</td>
<td>1.032E 02</td>
<td>3.34095E-01</td>
<td>1.136E 02</td>
<td>6.84788E-02</td>
<td></td>
</tr>
<tr>
<td>8.258E 01</td>
<td>8.01756E-02</td>
<td>1.036E-01</td>
<td>1.036E 02</td>
<td>2.94064E-01</td>
<td>1.161E 02</td>
<td>6.64578E-02</td>
<td></td>
</tr>
<tr>
<td>8.296E 01</td>
<td>8.17364E-02</td>
<td>1.036E-01</td>
<td>1.041E 02</td>
<td>2.62310E-01</td>
<td>1.166E 02</td>
<td>6.41941E-02</td>
<td></td>
</tr>
<tr>
<td>8.334E 01</td>
<td>8.33828E-02</td>
<td>1.036E-01</td>
<td>1.046E 02</td>
<td>2.36511E-01</td>
<td>1.172E 02</td>
<td>6.20635E-02</td>
<td></td>
</tr>
<tr>
<td>8.372E 01</td>
<td>8.51545E-02</td>
<td>1.036E-01</td>
<td>1.053E 02</td>
<td>2.15134E-01</td>
<td>1.177E 02</td>
<td>6.00435E-02</td>
<td></td>
</tr>
<tr>
<td>8.410E 01</td>
<td>8.69432E-02</td>
<td>1.036E-01</td>
<td>1.055E 02</td>
<td>1.97132E-01</td>
<td>1.182E 02</td>
<td>5.81314E-02</td>
<td></td>
</tr>
<tr>
<td>8.458E 01</td>
<td>8.87841E-02</td>
<td>1.036E-01</td>
<td>1.060E 02</td>
<td>1.81769E-01</td>
<td>1.188E 02</td>
<td>5.63485E-02</td>
<td></td>
</tr>
<tr>
<td>8.510E 01</td>
<td>9.06961E-02</td>
<td>1.036E-01</td>
<td>1.065E 02</td>
<td>1.68502E-01</td>
<td>1.193E 02</td>
<td>5.46378E-02</td>
<td></td>
</tr>
<tr>
<td>8.564E 01</td>
<td>9.26774E-02</td>
<td>1.036E-01</td>
<td>1.070E 02</td>
<td>1.56932E-01</td>
<td>1.199E 02</td>
<td>5.30126E-02</td>
<td></td>
</tr>
<tr>
<td>8.623E 01</td>
<td>9.47093E-02</td>
<td>1.036E-01</td>
<td>1.076E 02</td>
<td>1.46751E-01</td>
<td>1.204E 02</td>
<td>5.14664E-02</td>
<td></td>
</tr>
<tr>
<td>8.684E 01</td>
<td>9.68206E-02</td>
<td>1.036E-01</td>
<td>1.080E 02</td>
<td>1.37725E-01</td>
<td>1.209E 02</td>
<td>4.99506E-02</td>
<td></td>
</tr>
<tr>
<td>8.746E 01</td>
<td>9.90310E-02</td>
<td>1.036E-01</td>
<td>1.085E 02</td>
<td>1.29669E-01</td>
<td>1.215E 02</td>
<td>4.85903E-02</td>
<td></td>
</tr>
<tr>
<td>8.812E 01</td>
<td>1.01415E-01</td>
<td>1.036E-01</td>
<td>1.090E 02</td>
<td>1.22346E-01</td>
<td>1.220E 02</td>
<td>4.72208E-02</td>
<td></td>
</tr>
<tr>
<td>8.880E 01</td>
<td>1.03413E-01</td>
<td>1.036E-01</td>
<td>1.094E 02</td>
<td>1.15905E-01</td>
<td>1.226E 02</td>
<td>4.59712E-02</td>
<td></td>
</tr>
<tr>
<td>8.945E 01</td>
<td>1.05307E-01</td>
<td>1.036E-01</td>
<td>1.098E 02</td>
<td>1.09795E-01</td>
<td>1.232E 02</td>
<td>4.47479E-02</td>
<td></td>
</tr>
<tr>
<td>9.011E 01</td>
<td>1.07193E-01</td>
<td>1.036E-01</td>
<td>1.103E 02</td>
<td>1.04578E-01</td>
<td>1.237E 02</td>
<td>4.35762E-02</td>
<td></td>
</tr>
<tr>
<td>9.093E 01</td>
<td>1.09061E-01</td>
<td>1.036E-01</td>
<td>1.107E 02</td>
<td>9.66354E-02</td>
<td>1.243E 02</td>
<td>4.25451E-02</td>
<td></td>
</tr>
<tr>
<td>9.184E 01</td>
<td>1.10804E-01</td>
<td>1.036E-01</td>
<td>1.110E 02</td>
<td>9.50964E-02</td>
<td>1.249E 02</td>
<td>4.13783E-02</td>
<td></td>
</tr>
<tr>
<td>9.274E 01</td>
<td>1.12527E-01</td>
<td>1.036E-01</td>
<td>1.113E 02</td>
<td>9.30121E-02</td>
<td>1.254E 02</td>
<td>4.03578E-02</td>
<td></td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>8.006E</td>
<td>01</td>
<td>4.17559E</td>
<td>01</td>
<td>3.662E</td>
<td>01</td>
<td>1.004E</td>
<td>02</td>
</tr>
<tr>
<td>8.036E</td>
<td>01</td>
<td>4.16588E</td>
<td>01</td>
<td>9.002E</td>
<td>01</td>
<td>1.009E</td>
<td>02</td>
</tr>
<tr>
<td>8.073E</td>
<td>01</td>
<td>4.15178E</td>
<td>01</td>
<td>9.044E</td>
<td>01</td>
<td>1.013E</td>
<td>02</td>
</tr>
<tr>
<td>8.110E</td>
<td>01</td>
<td>4.13711E</td>
<td>01</td>
<td>9.085E</td>
<td>01</td>
<td>1.018E</td>
<td>02</td>
</tr>
<tr>
<td>8.147E</td>
<td>01</td>
<td>4.12362E</td>
<td>01</td>
<td>9.126E</td>
<td>01</td>
<td>1.022E</td>
<td>02</td>
</tr>
<tr>
<td>8.184E</td>
<td>01</td>
<td>4.10661E</td>
<td>01</td>
<td>9.166E</td>
<td>01</td>
<td>1.027E</td>
<td>02</td>
</tr>
<tr>
<td>8.221E</td>
<td>01</td>
<td>4.09554E</td>
<td>01</td>
<td>9.210E</td>
<td>01</td>
<td>1.032E</td>
<td>02</td>
</tr>
<tr>
<td>8.258E</td>
<td>01</td>
<td>4.08159E</td>
<td>01</td>
<td>9.251E</td>
<td>01</td>
<td>1.036E</td>
<td>02</td>
</tr>
<tr>
<td>8.296E</td>
<td>01</td>
<td>4.06716E</td>
<td>01</td>
<td>9.294E</td>
<td>01</td>
<td>1.041E</td>
<td>02</td>
</tr>
<tr>
<td>8.334E</td>
<td>01</td>
<td>4.05356E</td>
<td>01</td>
<td>9.336E</td>
<td>01</td>
<td>1.046E</td>
<td>02</td>
</tr>
<tr>
<td>8.372E</td>
<td>01</td>
<td>4.03571E</td>
<td>01</td>
<td>9.378E</td>
<td>01</td>
<td>1.051E</td>
<td>02</td>
</tr>
<tr>
<td>8.410E</td>
<td>01</td>
<td>4.02579E</td>
<td>01</td>
<td>9.421E</td>
<td>01</td>
<td>1.055E</td>
<td>02</td>
</tr>
<tr>
<td>8.448E</td>
<td>01</td>
<td>4.01190E</td>
<td>01</td>
<td>9.464E</td>
<td>01</td>
<td>1.060E</td>
<td>02</td>
</tr>
<tr>
<td>8.487E</td>
<td>01</td>
<td>3.99802E</td>
<td>01</td>
<td>9.507E</td>
<td>01</td>
<td>1.065E</td>
<td>02</td>
</tr>
<tr>
<td>8.525E</td>
<td>01</td>
<td>3.98417E</td>
<td>01</td>
<td>9.550E</td>
<td>01</td>
<td>1.070E</td>
<td>02</td>
</tr>
<tr>
<td>8.564E</td>
<td>01</td>
<td>3.97034E</td>
<td>01</td>
<td>9.594E</td>
<td>01</td>
<td>1.075E</td>
<td>02</td>
</tr>
<tr>
<td>8.603E</td>
<td>01</td>
<td>3.95652E</td>
<td>01</td>
<td>9.627E</td>
<td>01</td>
<td>1.080E</td>
<td>02</td>
</tr>
<tr>
<td>8.642E</td>
<td>01</td>
<td>3.94273E</td>
<td>01</td>
<td>9.661E</td>
<td>01</td>
<td>1.085E</td>
<td>02</td>
</tr>
<tr>
<td>8.682E</td>
<td>01</td>
<td>3.92856E</td>
<td>01</td>
<td>9.695E</td>
<td>01</td>
<td>1.090E</td>
<td>02</td>
</tr>
<tr>
<td>8.721E</td>
<td>01</td>
<td>3.91522E</td>
<td>01</td>
<td>9.722E</td>
<td>01</td>
<td>1.095E</td>
<td>02</td>
</tr>
<tr>
<td>8.761E</td>
<td>01</td>
<td>3.90149E</td>
<td>01</td>
<td>9.750E</td>
<td>01</td>
<td>1.099E</td>
<td>02</td>
</tr>
<tr>
<td>8.801E</td>
<td>01</td>
<td>3.88791E</td>
<td>01</td>
<td>9.859E</td>
<td>01</td>
<td>1.104E</td>
<td>02</td>
</tr>
<tr>
<td>8.841E</td>
<td>01</td>
<td>3.87413E</td>
<td>01</td>
<td>9.949E</td>
<td>01</td>
<td>1.109E</td>
<td>02</td>
</tr>
<tr>
<td>8.881E</td>
<td>01</td>
<td>3.86048E</td>
<td>01</td>
<td>9.994E</td>
<td>01</td>
<td>1.115E</td>
<td>02</td>
</tr>
<tr>
<td>8.921E</td>
<td>01</td>
<td>3.84636E</td>
<td>01</td>
<td>9.994E</td>
<td>01</td>
<td>1.120E</td>
<td>02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00E</td>
<td>02</td>
</tr>
<tr>
<td>1.125E</td>
<td>02</td>
</tr>
<tr>
<td>1.30E</td>
<td>02</td>
</tr>
<tr>
<td>1.35E</td>
<td>02</td>
</tr>
<tr>
<td>1.40E</td>
<td>02</td>
</tr>
<tr>
<td>1.45E</td>
<td>02</td>
</tr>
<tr>
<td>1.51E</td>
<td>02</td>
</tr>
<tr>
<td>1.56E</td>
<td>02</td>
</tr>
<tr>
<td>1.61E</td>
<td>02</td>
</tr>
<tr>
<td>1.66E</td>
<td>02</td>
</tr>
<tr>
<td>1.72E</td>
<td>02</td>
</tr>
<tr>
<td>1.77E</td>
<td>02</td>
</tr>
<tr>
<td>1.82E</td>
<td>02</td>
</tr>
<tr>
<td>1.88E</td>
<td>02</td>
</tr>
<tr>
<td>1.93E</td>
<td>02</td>
</tr>
<tr>
<td>1.99E</td>
<td>02</td>
</tr>
<tr>
<td>2.04E</td>
<td>02</td>
</tr>
<tr>
<td>2.09E</td>
<td>02</td>
</tr>
<tr>
<td>2.15E</td>
<td>02</td>
</tr>
<tr>
<td>2.20E</td>
<td>02</td>
</tr>
<tr>
<td>2.26E</td>
<td>02</td>
</tr>
<tr>
<td>2.32E</td>
<td>02</td>
</tr>
<tr>
<td>2.37E</td>
<td>02</td>
</tr>
<tr>
<td>2.43E</td>
<td>02</td>
</tr>
<tr>
<td>2.49E</td>
<td>02</td>
</tr>
<tr>
<td>2.54E</td>
<td>02</td>
</tr>
<tr>
<td>4.8157E</td>
<td>02</td>
</tr>
<tr>
<td>4.8279E</td>
<td>02</td>
</tr>
<tr>
<td>4.9400E</td>
<td>02</td>
</tr>
<tr>
<td>4.8522E</td>
<td>02</td>
</tr>
<tr>
<td>4.8643E</td>
<td>02</td>
</tr>
<tr>
<td>4.8764E</td>
<td>02</td>
</tr>
<tr>
<td>4.8884E</td>
<td>02</td>
</tr>
<tr>
<td>4.9005E</td>
<td>02</td>
</tr>
<tr>
<td>4.9125E</td>
<td>02</td>
</tr>
<tr>
<td>4.9244E</td>
<td>02</td>
</tr>
<tr>
<td>4.9364E</td>
<td>02</td>
</tr>
<tr>
<td>4.9483E</td>
<td>02</td>
</tr>
<tr>
<td>4.9601E</td>
<td>02</td>
</tr>
<tr>
<td>4.9720E</td>
<td>02</td>
</tr>
<tr>
<td>4.9838E</td>
<td>02</td>
</tr>
<tr>
<td>4.9956E</td>
<td>02</td>
</tr>
<tr>
<td>5.0073E</td>
<td>02</td>
</tr>
<tr>
<td>5.0190E</td>
<td>02</td>
</tr>
<tr>
<td>5.0307E</td>
<td>02</td>
</tr>
<tr>
<td>5.0424E</td>
<td>02</td>
</tr>
<tr>
<td>5.0540E</td>
<td>02</td>
</tr>
<tr>
<td>5.0656E</td>
<td>02</td>
</tr>
<tr>
<td>5.0771E</td>
<td>02</td>
</tr>
<tr>
<td>5.0886E</td>
<td>02</td>
</tr>
<tr>
<td>5.1001E</td>
<td>02</td>
</tr>
<tr>
<td>Value</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.000E+00</td>
<td>GREATEST VALUE</td>
</tr>
<tr>
<td>-1.510E+00</td>
<td>LOWEST VALUE</td>
</tr>
<tr>
<td>-1.676E+00</td>
<td>INTERVAL</td>
</tr>
</tbody>
</table>

Greatest value: 4.000E+00
Lowest value: -1.510E+00
Interval: -1.676E+00
The Transform of the Response is ---

<table>
<thead>
<tr>
<th>EXP of S</th>
<th>NUMER COEFFS</th>
<th>DENOM COEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.0000E01</td>
<td>1.001930E02</td>
</tr>
<tr>
<td>1</td>
<td>-1.92555E02</td>
<td>5.21768E00</td>
</tr>
<tr>
<td>2</td>
<td>3.03895E04</td>
<td>1.31318E02</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>1.31318E05</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>3.45773E08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-2.54219E-01</td>
<td>2.54219E-01</td>
<td>-1.27087E-01</td>
<td>4.0817E-01</td>
<td>-7.73230E-02</td>
<td>7.5225E-01</td>
<td>-5.27031E-02</td>
</tr>
<tr>
<td>1.047E 00</td>
<td>-2.97423E-01</td>
<td>2.97423E-01</td>
<td>-1.24523E-01</td>
<td>4.9220E-01</td>
<td>-7.59075E-02</td>
<td>7.5225E-01</td>
<td>-5.10132E-02</td>
</tr>
<tr>
<td>2.192E 00</td>
<td>-2.83964E00</td>
<td>2.83964E00</td>
<td>-1.31318E00</td>
<td>5.0260E-01</td>
<td>-7.45320E-02</td>
<td>7.4532E-01</td>
<td>-4.14038E-02</td>
</tr>
<tr>
<td>3.141E 00</td>
<td>-2.69357E01</td>
<td>2.69357E01</td>
<td>-1.31318E01</td>
<td>5.1315E-01</td>
<td>-7.31975E-02</td>
<td>7.4532E-01</td>
<td>-4.03238E-02</td>
</tr>
<tr>
<td>4.189E 00</td>
<td>-2.52278E01</td>
<td>2.52278E01</td>
<td>-1.31318E01</td>
<td>5.2353E-01</td>
<td>-7.19002E-02</td>
<td>7.4532E-01</td>
<td>-3.96435E-02</td>
</tr>
<tr>
<td>5.237E 00</td>
<td>-2.31891E01</td>
<td>2.31891E01</td>
<td>-1.31318E01</td>
<td>5.3383E-01</td>
<td>-7.06385E-02</td>
<td>7.4532E-01</td>
<td>-3.89101E-02</td>
</tr>
<tr>
<td>6.284E 00</td>
<td>-2.22120E01</td>
<td>2.22120E01</td>
<td>-1.31318E01</td>
<td>5.4412E-01</td>
<td>-6.94183E-02</td>
<td>7.4532E-01</td>
<td>-3.82078E-02</td>
</tr>
<tr>
<td>7.330E 00</td>
<td>-1.33443E-01</td>
<td>1.33443E-01</td>
<td>-1.31318E01</td>
<td>5.5430E-01</td>
<td>-6.82172E-02</td>
<td>7.4532E-01</td>
<td>-3.75120E-02</td>
</tr>
<tr>
<td>8.377E 00</td>
<td>-1.05214E01</td>
<td>1.05214E01</td>
<td>-1.31318E01</td>
<td>5.6450E-01</td>
<td>-6.70549E-02</td>
<td>7.4532E-01</td>
<td>-3.68303E-02</td>
</tr>
<tr>
<td>1.424E 00</td>
<td>-1.19255E05</td>
<td>1.19255E05</td>
<td>-1.31318E01</td>
<td>5.7471E-01</td>
<td>-6.59320E-02</td>
<td>7.4532E-01</td>
<td>-3.61241E-02</td>
</tr>
<tr>
<td>1.607E 01</td>
<td>-1.50459E01</td>
<td>1.50459E01</td>
<td>-1.31318E01</td>
<td>5.8490E-01</td>
<td>-6.48206E-02</td>
<td>7.4532E-01</td>
<td>-3.55071E-02</td>
</tr>
<tr>
<td>1.153E 01</td>
<td>-1.27276E01</td>
<td>1.27276E01</td>
<td>-1.31318E01</td>
<td>5.9510E-01</td>
<td>-6.37460E-02</td>
<td>7.4532E-01</td>
<td>-3.48649E-02</td>
</tr>
<tr>
<td>1.297E 01</td>
<td>-1.77462E01</td>
<td>1.77462E01</td>
<td>-1.31318E01</td>
<td>6.0530E-01</td>
<td>-6.26893E-02</td>
<td>7.4532E-01</td>
<td>-3.42381E-02</td>
</tr>
<tr>
<td>1.361E 01</td>
<td>-1.71578E01</td>
<td>1.71578E01</td>
<td>-1.31318E01</td>
<td>6.1554E-01</td>
<td>-6.16173E-02</td>
<td>7.4532E-01</td>
<td>-3.36174E-02</td>
</tr>
<tr>
<td>1.466E 01</td>
<td>-1.66423E01</td>
<td>1.66423E01</td>
<td>-1.31318E01</td>
<td>6.2588E-01</td>
<td>-6.05680E-02</td>
<td>7.4532E-01</td>
<td>-3.30134E-02</td>
</tr>
<tr>
<td>1.573E 01</td>
<td>-1.62833E03</td>
<td>1.62833E03</td>
<td>-1.31318E01</td>
<td>6.3621E-01</td>
<td>-5.95088E-02</td>
<td>7.4532E-01</td>
<td>-3.24158E-02</td>
</tr>
<tr>
<td>1.675E 01</td>
<td>-1.55631E04</td>
<td>1.55631E04</td>
<td>-1.31318E01</td>
<td>6.4655E-01</td>
<td>-5.84599E-02</td>
<td>7.4532E-01</td>
<td>-3.18332E-02</td>
</tr>
<tr>
<td>1.780E 01</td>
<td>-1.51231E01</td>
<td>1.51231E01</td>
<td>-1.31318E01</td>
<td>6.5688E-01</td>
<td>-5.74334E-02</td>
<td>7.4532E-01</td>
<td>-3.12640E-02</td>
</tr>
<tr>
<td>1.883E 01</td>
<td>-1.46315E01</td>
<td>1.46315E01</td>
<td>-1.31318E01</td>
<td>6.6720E-01</td>
<td>-5.64085E-02</td>
<td>7.4532E-01</td>
<td>-3.06928E-02</td>
</tr>
<tr>
<td>1.990E 01</td>
<td>-1.42423E01</td>
<td>1.42423E01</td>
<td>-1.31318E01</td>
<td>6.7752E-01</td>
<td>-5.53865E-02</td>
<td>7.4532E-01</td>
<td>-3.01509E-02</td>
</tr>
<tr>
<td>2.094E 01</td>
<td>-1.38642E01</td>
<td>1.38642E01</td>
<td>-1.31318E01</td>
<td>6.8785E-01</td>
<td>-5.43636E-02</td>
<td>7.4532E-01</td>
<td>-3.02708E-02</td>
</tr>
<tr>
<td>2.198E 01</td>
<td>-1.34856E01</td>
<td>1.34856E01</td>
<td>-1.31318E01</td>
<td>6.9818E-01</td>
<td>-5.33427E-02</td>
<td>7.4532E-01</td>
<td>-3.04928E-02</td>
</tr>
<tr>
<td>2.304E 01</td>
<td>-1.31247E01</td>
<td>1.31247E01</td>
<td>-1.31318E01</td>
<td>7.0851E-01</td>
<td>-5.23218E-02</td>
<td>7.4532E-01</td>
<td>-3.07046E-02</td>
</tr>
<tr>
<td>2.304E 01</td>
<td>-1.31247E01</td>
<td>1.31247E01</td>
<td>-1.31318E01</td>
<td>7.0851E-01</td>
<td>-5.23218E-02</td>
<td>7.4532E-01</td>
<td>-3.07046E-02</td>
</tr>
<tr>
<td>2.304E 01</td>
<td>-1.31247E01</td>
<td>1.31247E01</td>
<td>-1.31318E01</td>
<td>7.0851E-01</td>
<td>-5.23218E-02</td>
<td>7.4532E-01</td>
<td>-3.07046E-02</td>
</tr>
</tbody>
</table>
POLYNOMIAL ROOTFINDER

POLYNOMIAL OF DEGREE 4

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Real Part</th>
<th>Imaginary Part</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1019299927E 03</td>
<td>0.864150000</td>
<td>0.000000000</td>
<td>2</td>
</tr>
<tr>
<td>0.5217660593E 01</td>
<td>0.000000000</td>
<td>0.260000000</td>
<td>2</td>
</tr>
<tr>
<td>0.1381032541E 01</td>
<td>0.000000000</td>
<td>-0.260000000</td>
<td>2</td>
</tr>
<tr>
<td>0.3457331168E 01</td>
<td>0.000000000</td>
<td>-0.260000000</td>
<td>2</td>
</tr>
</tbody>
</table>

ACCURACY REQUESTED -- 6 SIGNIFICANT FIGURES

POLYNOMIAL OF DEGREE 2

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Real Part</th>
<th>Imaginary Part</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2999998474E 02</td>
<td>0.864150000</td>
<td>0.000000000</td>
<td>2</td>
</tr>
<tr>
<td>0.129561115E 01</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>2</td>
</tr>
<tr>
<td>0.3035952145E 03</td>
<td>0.000000000</td>
<td>0.000000000</td>
<td>2</td>
</tr>
</tbody>
</table>

ACCURACY REQUESTED -- 6 SIGNIFICANT FIGURES
Sensitivity of Poles to C_1

Poles

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.0642E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E+02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E+02$</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-6.8345E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-5.1133E+01$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-4.5883E+01$</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to R_1

Poles

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.0642E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E+02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E+02$</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-3.3773E+02$</td>
<td>0.0</td>
</tr>
<tr>
<td>$1.3254E-04$</td>
<td>$-2.7139E-01$</td>
</tr>
<tr>
<td>$1.3254E-04$</td>
<td>$-1.8254E-01$</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to C_2

Poles

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.0642E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E+02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E+02$</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.8731E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$9.7225E-09$</td>
<td>$-1.3517E+01$</td>
</tr>
<tr>
<td>$9.7225E-09$</td>
<td>$2.3186E+01$</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to R_2

Poles

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.0642E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E+02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E+02$</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.9912E+02$</td>
<td>0.0</td>
</tr>
<tr>
<td>$6.9677E-03$</td>
<td>$-1.2029E+02$</td>
</tr>
<tr>
<td>$6.9677E-03$</td>
<td>$-2.0787E+02$</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to R_3

Poles

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-2.0642E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E+02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E+02$</td>
</tr>
</tbody>
</table>

Sensitivity

<table>
<thead>
<tr>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6.2044E+01$</td>
<td>0.0</td>
</tr>
<tr>
<td>$1.0021E-04$</td>
<td>$-3.5429E+02$</td>
</tr>
<tr>
<td>$1.0021E-04$</td>
<td>$2.3329E+02$</td>
</tr>
</tbody>
</table>

C-27
Sensitivity of Poles to L_1

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>$-3.6441E-02$</td>
<td>0.00</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E-02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E-02$</td>
</tr>
<tr>
<td>$-2.0642E+00$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to C_3

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>$-3.6441E-02$</td>
<td>0.00</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E-02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E-02$</td>
</tr>
<tr>
<td>$-2.0642E+00$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to C_4

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>$-3.6441E-02$</td>
<td>0.00</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E-02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E-02$</td>
</tr>
<tr>
<td>$-2.0642E+00$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to C_5

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>$-3.6441E-02$</td>
<td>0.00</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E-02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E-02$</td>
</tr>
<tr>
<td>$-2.0642E+00$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to I_2

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td></td>
</tr>
<tr>
<td>$-3.6441E-02$</td>
<td>0.00</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$6.2601E-02$</td>
</tr>
<tr>
<td>$7.0000E-03$</td>
<td>$-6.2601E-02$</td>
</tr>
<tr>
<td>$-2.0642E+00$</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Plot Type=SE/FR=80/TC=126/EL=C1
SENSITIVITY WITH RESPECT TO C1

<table>
<thead>
<tr>
<th>EXP OF 5</th>
<th>NUMER COEFS</th>
<th>DENOM COEFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.01930E-02</td>
</tr>
<tr>
<td>1</td>
<td>-3.66000E-01</td>
<td>5.21768E-00</td>
</tr>
<tr>
<td>2</td>
<td>-1.29800E-02</td>
<td>1.38103E-02</td>
</tr>
<tr>
<td>3</td>
<td>-9.32950E-06</td>
<td>1.35138E-05</td>
</tr>
<tr>
<td>4</td>
<td>-3.34896E-08</td>
<td>3.45776E-08</td>
</tr>
</tbody>
</table>

### FREQ	MAC
8.000E 01 | 8.5262E-01
8.036E 01 | 8.5512E-01
8.073E 01 | 8.5144E-01
8.110E 01 | 8.5056E-01
8.147E 01 | 8.4813E-01
8.184E 01 | 8.4625E-01
8.221E 01 | 8.4473E-01
8.258E 01 | 8.4262E-01
8.295E 01 | 8.3946E-01
8.332E 01 | 8.3619E-01
8.372E 01 | 8.3374E-01
8.410E 01 | 8.3046E-01
8.448E 01 | 8.2706E-01
8.487E 01 | 8.2378E-01
8.525E 01 | 8.2066E-01
8.563E 01 | 8.1774E-01
8.603E 01 | 8.1478E-01
8.642E 01 | 8.1196E-01
8.682E 01 | 8.0932E-01
8.721E 01 | 8.0676E-01
8.761E 01 | 8.0431E-01
8.801E 01 | 8.0196E-01
8.841E 01 | 7.9972E-01
8.881E 01 | 7.9768E-01
8.921E 01 | 7.9572E-01

### FREQ	MAG
1.004E 02 | 1.49763E-01
<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E 01</td>
<td>-1.07238E 02</td>
<td>8.962E 01</td>
<td>-1.07257E 02</td>
<td>1.004E 02</td>
<td>-1.072113E 02</td>
<td>1.0125E 02</td>
<td>-1.073742E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.036E 01</td>
<td>-1.072403E 02</td>
<td>9.002E 01</td>
<td>-1.073005E 02</td>
<td>1.009E 02</td>
<td>-1.072459E 02</td>
<td>1.0130E 02</td>
<td>-1.073767E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.073E 01</td>
<td>-1.072425E 02</td>
<td>9.044E 01</td>
<td>-1.073034E 02</td>
<td>1.013E 02</td>
<td>-1.072669E 02</td>
<td>1.0135E 02</td>
<td>-1.073791E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.110E 01</td>
<td>-1.072447E 02</td>
<td>9.086E 01</td>
<td>-1.073664E 02</td>
<td>1.018E 02</td>
<td>-1.072815E 02</td>
<td>1.0140E 02</td>
<td>-1.073815E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.147E 01</td>
<td>-1.072470E 02</td>
<td>9.126E 01</td>
<td>-1.073654E 02</td>
<td>1.022E 02</td>
<td>-1.072923E 02</td>
<td>1.0145E 02</td>
<td>-1.073839E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.184E 01</td>
<td>-1.072492E 02</td>
<td>9.168E 01</td>
<td>-1.073126E 02</td>
<td>1.027E 02</td>
<td>-1.073009E 02</td>
<td>1.0151E 02</td>
<td>-1.073863E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.221E 01</td>
<td>-1.072514E 02</td>
<td>9.210E 01</td>
<td>-1.073159E 02</td>
<td>1.032E 02</td>
<td>-1.073080E 02</td>
<td>1.0156E 02</td>
<td>-1.073887E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.258E 01</td>
<td>-1.072537E 02</td>
<td>9.252E 01</td>
<td>-1.073193E 02</td>
<td>1.036E 02</td>
<td>-1.07314E 02</td>
<td>1.0161E 02</td>
<td>-1.073910E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.296E 01</td>
<td>-1.072559E 02</td>
<td>9.294E 01</td>
<td>-1.073230E 02</td>
<td>1.041E 02</td>
<td>-1.073195E 02</td>
<td>1.0166E 02</td>
<td>-1.073933E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.334E 01</td>
<td>-1.072582E 02</td>
<td>9.336E 01</td>
<td>-1.073269E 02</td>
<td>1.046E 02</td>
<td>-1.073243E 02</td>
<td>1.0172E 02</td>
<td>-1.073956E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.372E 01</td>
<td>-1.072605E 02</td>
<td>9.378E 01</td>
<td>-1.073311E 02</td>
<td>1.051E 02</td>
<td>-1.073286E 02</td>
<td>1.0177E 02</td>
<td>-1.073979E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.410E 01</td>
<td>-1.072628E 02</td>
<td>9.421E 01</td>
<td>-1.073357E 02</td>
<td>1.055E 02</td>
<td>-1.073326E 02</td>
<td>1.0182E 02</td>
<td>-1.074002E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.448E 01</td>
<td>-1.072652E 02</td>
<td>9.464E 01</td>
<td>-1.073407E 02</td>
<td>1.060E 02</td>
<td>-1.073366E 02</td>
<td>1.0188E 02</td>
<td>-1.074024E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.486E 01</td>
<td>-1.072675E 02</td>
<td>9.507E 01</td>
<td>-1.073464E 02</td>
<td>1.065E 02</td>
<td>-1.073400E 02</td>
<td>1.0193E 02</td>
<td>-1.074047E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.525E 01</td>
<td>-1.072699E 02</td>
<td>9.550E 01</td>
<td>-1.073530E 02</td>
<td>1.070E 02</td>
<td>-1.073433E 02</td>
<td>1.0199E 02</td>
<td>-1.074069E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.564E 01</td>
<td>-1.072722E 02</td>
<td>9.594E 01</td>
<td>-1.073607E 02</td>
<td>1.075E 02</td>
<td>-1.073466E 02</td>
<td>1.0204E 02</td>
<td>-1.074091E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.603E 01</td>
<td>-1.072746E 02</td>
<td>9.637E 01</td>
<td>-1.073703E 02</td>
<td>1.080E 02</td>
<td>-1.073497E 02</td>
<td>1.0209E 02</td>
<td>-1.074114E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.642E 01</td>
<td>-1.072771E 02</td>
<td>9.681E 01</td>
<td>-1.073828E 02</td>
<td>1.085E 02</td>
<td>-1.073527E 02</td>
<td>1.0215E 02</td>
<td>-1.074135E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.682E 01</td>
<td>-1.072795E 02</td>
<td>9.725E 01</td>
<td>-1.074001E 02</td>
<td>1.090E 02</td>
<td>-1.073555E 02</td>
<td>1.0220E 02</td>
<td>-1.074157E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.721E 01</td>
<td>-1.072828E 02</td>
<td>9.770E 01</td>
<td>-1.074267E 02</td>
<td>1.095E 02</td>
<td>-1.073584E 02</td>
<td>1.0225E 02</td>
<td>-1.074179E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.761E 01</td>
<td>-1.072852E 02</td>
<td>9.814E 01</td>
<td>-1.074748E 02</td>
<td>1.099E 02</td>
<td>-1.073611E 02</td>
<td>1.0232E 02</td>
<td>-1.074201E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.801E 01</td>
<td>-1.072876E 02</td>
<td>9.858E 01</td>
<td>-1.075543E 02</td>
<td>1.104E 02</td>
<td>-1.073638E 02</td>
<td>1.0237E 02</td>
<td>-1.074222E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.841E 01</td>
<td>-1.072901E 02</td>
<td>9.904E 01</td>
<td>-1.074962E 02</td>
<td>1.109E 02</td>
<td>-1.073669E 02</td>
<td>1.0243E 02</td>
<td>-1.074244E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.881E 01</td>
<td>-1.072925E 02</td>
<td>9.949E 01</td>
<td>-1.072149E 02</td>
<td>1.115E 02</td>
<td>-1.073691E 02</td>
<td>1.0249E 02</td>
<td>-1.074265E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.921E 01</td>
<td>-1.072950E 02</td>
<td>9.994E 01</td>
<td>-1.071442E 02</td>
<td>1.120E 02</td>
<td>-1.073716E 02</td>
<td>1.0254E 02</td>
<td>-1.074287E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75943E+02</td>
<td>Lowest Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.74622E+02</td>
<td>Greatest Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.05134E+00</td>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C-32
SENSITIVITY WITH RESPECT TO TC 12

THE TRANSFORM OF THE RESPONSE IS

<table>
<thead>
<tr>
<th>EXP OF S</th>
<th>NUMER CEFFS</th>
<th>DENOM CEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-3.0648E 03</td>
<td>3.0579E 03</td>
</tr>
<tr>
<td>1</td>
<td>-1.66E 03</td>
<td>1.5789E 02</td>
</tr>
<tr>
<td>2</td>
<td>-1.954E 00</td>
<td>4.211E 01</td>
</tr>
<tr>
<td>3</td>
<td>-4.69E 03</td>
<td>-1.0051E 03</td>
</tr>
<tr>
<td>4</td>
<td>-5.98E 03</td>
<td>-2.582E 04</td>
</tr>
<tr>
<td>5</td>
<td>-6.10E 03</td>
<td>-3.592E 09</td>
</tr>
<tr>
<td>6</td>
<td>0.00E 00</td>
<td>-1.049E 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E 01</td>
<td>1.540E 02</td>
<td>8.562E 01</td>
<td>1.554E 00</td>
<td>1.004E 02</td>
<td>2.439E 00</td>
<td>1.125E 02</td>
<td>1.060E 02</td>
</tr>
<tr>
<td>8.036E 01</td>
<td>1.528E 05</td>
<td>9.003E 01</td>
<td>1.559E 00</td>
<td>1.009E 02</td>
<td>3.500E 00</td>
<td>1.130E 02</td>
<td>1.061E 00</td>
</tr>
<tr>
<td>8.073E 01</td>
<td>1.537E 04</td>
<td>9.566E 01</td>
<td>1.566E 00</td>
<td>1.013E 02</td>
<td>1.024E 00</td>
<td>1.135E 02</td>
<td>1.062E 00</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>1.526E 03</td>
<td>9.616E 01</td>
<td>1.572E 00</td>
<td>1.016E 02</td>
<td>9.003E 00</td>
<td>1.140E 02</td>
<td>1.063E 00</td>
</tr>
<tr>
<td>8.147E 01</td>
<td>1.537E 02</td>
<td>9.516E 01</td>
<td>1.560E 00</td>
<td>1.022E 02</td>
<td>8.507E 00</td>
<td>1.145E 02</td>
<td>1.064E 00</td>
</tr>
<tr>
<td>8.184E 01</td>
<td>1.534E 02</td>
<td>9.566E 01</td>
<td>1.566E 00</td>
<td>1.027E 02</td>
<td>8.764E 00</td>
<td>1.151E 02</td>
<td>1.063E 00</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>1.534E 02</td>
<td>9.516E 01</td>
<td>1.566E 00</td>
<td>1.032E 02</td>
<td>8.939E 00</td>
<td>1.156E 02</td>
<td>1.063E 00</td>
</tr>
<tr>
<td>8.258E 01</td>
<td>1.533E 02</td>
<td>9.516E 01</td>
<td>1.566E 00</td>
<td>1.036E 02</td>
<td>9.149E 00</td>
<td>1.161E 02</td>
<td>1.064E 00</td>
</tr>
<tr>
<td>8.296E 01</td>
<td>1.527E 02</td>
<td>9.624E 01</td>
<td>1.566E 00</td>
<td>1.041E 02</td>
<td>9.344E 00</td>
<td>1.166E 02</td>
<td>1.065E 00</td>
</tr>
<tr>
<td>8.334E 01</td>
<td>1.532E 02</td>
<td>9.536E 01</td>
<td>1.566E 00</td>
<td>1.046E 02</td>
<td>9.526E 00</td>
<td>1.171E 02</td>
<td>1.066E 00</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>1.519E 02</td>
<td>9.578E 01</td>
<td>1.566E 00</td>
<td>1.051E 02</td>
<td>9.666E 00</td>
<td>1.177E 02</td>
<td>1.067E 00</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>1.517E 02</td>
<td>9.516E 01</td>
<td>1.567E 00</td>
<td>1.056E 02</td>
<td>9.803E 00</td>
<td>1.182E 02</td>
<td>1.068E 00</td>
</tr>
<tr>
<td>8.448E 01</td>
<td>1.516E 02</td>
<td>9.516E 01</td>
<td>1.567E 00</td>
<td>1.060E 02</td>
<td>9.951E 00</td>
<td>1.187E 02</td>
<td>1.069E 00</td>
</tr>
<tr>
<td>8.487E 01</td>
<td>1.517E 02</td>
<td>9.516E 01</td>
<td>1.567E 00</td>
<td>1.065E 02</td>
<td>1.006E 00</td>
<td>1.193E 02</td>
<td>1.070E 00</td>
</tr>
<tr>
<td>8.526E 01</td>
<td>1.532E 02</td>
<td>9.590E 01</td>
<td>1.567E 00</td>
<td>1.070E 02</td>
<td>1.015E 00</td>
<td>1.199E 02</td>
<td>1.071E 00</td>
</tr>
<tr>
<td>8.564E 01</td>
<td>1.528E 02</td>
<td>9.554E 01</td>
<td>1.567E 00</td>
<td>1.075E 02</td>
<td>1.023E 00</td>
<td>1.204E 02</td>
<td>1.072E 00</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>1.533E 02</td>
<td>9.637E 01</td>
<td>1.567E 00</td>
<td>1.080E 02</td>
<td>1.030E 00</td>
<td>1.209E 02</td>
<td>1.073E 00</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>1.532E 02</td>
<td>9.617E 01</td>
<td>1.567E 00</td>
<td>1.085E 02</td>
<td>1.036E 00</td>
<td>1.215E 02</td>
<td>1.075E 00</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>1.534E 02</td>
<td>9.725E 01</td>
<td>1.567E 00</td>
<td>1.089E 02</td>
<td>1.041E 00</td>
<td>1.220E 02</td>
<td>1.077E 00</td>
</tr>
<tr>
<td>8.721E 01</td>
<td>1.536E 02</td>
<td>9.770E 01</td>
<td>1.567E 00</td>
<td>1.094E 02</td>
<td>1.046E 00</td>
<td>1.225E 02</td>
<td>1.078E 00</td>
</tr>
<tr>
<td>8.761E 01</td>
<td>1.536E 02</td>
<td>9.814E 01</td>
<td>1.567E 00</td>
<td>1.099E 02</td>
<td>1.047E 00</td>
<td>1.232E 02</td>
<td>1.079E 00</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>1.541E 02</td>
<td>9.859E 01</td>
<td>1.547E 00</td>
<td>1.104E 02</td>
<td>1.052E 00</td>
<td>1.237E 02</td>
<td>1.081E 00</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>1.543E 02</td>
<td>9.136E 01</td>
<td>1.547E 00</td>
<td>1.104E 02</td>
<td>1.053E 00</td>
<td>1.242E 02</td>
<td>1.083E 00</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>1.546E 02</td>
<td>9.596E 01</td>
<td>1.547E 00</td>
<td>1.111E 02</td>
<td>1.058E 00</td>
<td>1.247E 02</td>
<td>1.084E 00</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>1.550E 02</td>
<td>9.954E 01</td>
<td>1.547E 00</td>
<td>1.120E 02</td>
<td>1.060E 00</td>
<td>1.254E 02</td>
<td>1.085E 00</td>
</tr>
<tr>
<td>8.961E 01</td>
<td>1.555E 02</td>
<td>7.050E 01</td>
<td>1.547E 00</td>
<td>1.039E 02</td>
<td>1.061E 00</td>
<td>1.261E 02</td>
<td>1.086E 00</td>
</tr>
</tbody>
</table>

FRQ

MAG
<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00E</td>
<td>9.325E</td>
<td>8.04E</td>
<td>9.00E</td>
<td>1.00E</td>
<td>9.44E</td>
<td>1.01E</td>
<td>9.78E</td>
<td>1.35E</td>
<td>1.06E</td>
</tr>
<tr>
<td>8.03E</td>
<td>9.211E</td>
<td>8.04E</td>
<td>9.479E</td>
<td>1.09E</td>
<td>6.23E</td>
<td>1.30E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.07E</td>
<td>9.055E</td>
<td>8.04E</td>
<td>9.44E</td>
<td>1.01E</td>
<td>7.80E</td>
<td>1.35E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.10E</td>
<td>9.773E</td>
<td>9.05E</td>
<td>9.45E</td>
<td>1.01E</td>
<td>6.08E</td>
<td>1.40E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.14E</td>
<td>8.856E</td>
<td>9.12E</td>
<td>9.35E</td>
<td>1.02E</td>
<td>7.97E</td>
<td>1.45E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.18E</td>
<td>9.731E</td>
<td>9.14E</td>
<td>9.34E</td>
<td>1.02E</td>
<td>3.96E</td>
<td>1.51E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.33E</td>
<td>8.320E</td>
<td>9.38E</td>
<td>9.36E</td>
<td>1.04E</td>
<td>2.06E</td>
<td>1.72E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.37E</td>
<td>9.566E</td>
<td>9.37E</td>
<td>9.36E</td>
<td>1.05E</td>
<td>1.84E</td>
<td>1.77E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.41E</td>
<td>9.791E</td>
<td>9.42E</td>
<td>9.38E</td>
<td>1.05E</td>
<td>1.65E</td>
<td>1.82E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.44E</td>
<td>9.775E</td>
<td>9.46E</td>
<td>9.41E</td>
<td>1.06E</td>
<td>1.50E</td>
<td>1.88E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.56E</td>
<td>9.721E</td>
<td>9.54E</td>
<td>9.36E</td>
<td>1.07E</td>
<td>1.15E</td>
<td>2.04E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.60E</td>
<td>9.765E</td>
<td>9.63E</td>
<td>9.27E</td>
<td>1.08E</td>
<td>1.08E</td>
<td>2.09E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.64E</td>
<td>9.612E</td>
<td>9.61E</td>
<td>9.31E</td>
<td>1.08E</td>
<td>1.00E</td>
<td>2.15E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.72E</td>
<td>9.652E</td>
<td>9.77E</td>
<td>9.53E</td>
<td>1.09E</td>
<td>0.88E</td>
<td>2.26E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.76E</td>
<td>9.632E</td>
<td>9.61E</td>
<td>9.59E</td>
<td>1.09E</td>
<td>0.82E</td>
<td>2.32E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.80E</td>
<td>9.605E</td>
<td>9.59E</td>
<td>9.24E</td>
<td>1.10E</td>
<td>0.78E</td>
<td>2.37E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.84E</td>
<td>9.563E</td>
<td>9.64E</td>
<td>9.27E</td>
<td>1.10E</td>
<td>0.73E</td>
<td>2.43E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.88E</td>
<td>9.562E</td>
<td>9.94E</td>
<td>9.27E</td>
<td>1.11E</td>
<td>0.69E</td>
<td>2.49E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
<tr>
<td>8.92E</td>
<td>9.562E</td>
<td>9.94E</td>
<td>9.30E</td>
<td>1.12E</td>
<td>0.66E</td>
<td>2.54E</td>
<td>5.09E</td>
<td>5.09E</td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity with respect to C3

The transform of the response is ---

<table>
<thead>
<tr>
<th>EXPo</th>
<th>UP S</th>
<th>NUMERo COEFFS</th>
<th>DERCMo COEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>2.65790E+03</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.4E+01</td>
<td>1.97855E+02</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.0E+01</td>
<td>4.51912E+01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.0E+02</td>
<td>-1.00514E+03</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.0E+02</td>
<td>-2.95241E+06</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.0E+08</td>
<td>-2.95256E+09</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6.0E+15</td>
<td>-1.04976E+11</td>
<td></td>
</tr>
</tbody>
</table>

FREQ MAC FREQ MAG FREQ MAG FREQ MAG
8.000E+01 9.02167E-01 8.462E+01 1.44782E+00 1.004E+02 1.19754E+01 1.125E+02 3.84041E+01
8.036E+01 1.02435E+00 9.003E+01 1.46664E+00 1.009E+02 7.05730E+00 1.130E+02 3.70437E+01
8.073E+01 1.01205E+00 9.046E+01 1.52939E+00 1.013E+02 4.85639E+00 1.135E+02 3.59235E+01
8.110E+01 1.02207E+00 9.065E+01 1.57612E+00 1.018E+02 3.81401E+00 1.140E+02 3.50224E+01
8.147E+01 1.03252E+00 9.126E+01 1.62768E+00 1.022E+02 3.05132E+00 1.145E+02 3.43154E+01
8.184E+01 1.04341E+00 9.168E+01 1.66485E+00 1.027E+02 2.51799E+00 1.151E+02 3.37600E+01
8.221E+01 1.05475E+00 9.210E+01 1.74685E+00 1.032E+02 2.12368E+00 1.156E+02 3.33950E+01
8.258E+01 1.06669E+00 9.251E+01 1.82602E+00 1.036E+02 1.82156E+00 1.161E+02 3.31406E+01
8.296E+01 1.07915E+00 9.294E+01 1.90259E+00 1.041E+02 1.58307E+00 1.166E+02 3.29935E+01
8.334E+01 1.09221E+00 9.336E+01 1.97566E+00 1.046E+02 1.39028E+00 1.172E+02 3.29552E+01
8.372E+01 1.10592E+00 9.378E+01 2.06080E+00 1.051E+02 1.23159E+00 1.177E+02 3.29936E+01
8.410E+01 1.12034E+00 9.421E+01 2.22333E+00 1.055E+02 1.09940E+00 1.182E+02 3.31020E+01
8.448E+01 1.13552E+00 9.464E+01 2.36673E+00 1.060E+02 9.87030E+00 1.188E+02 3.32889E+01
8.487E+01 1.15155E+00 9.507E+01 2.54243E+00 1.065E+02 8.91470E+00 1.193E+02 3.34846E+01
8.525E+01 1.16844E+00 9.550E+01 2.72555E+00 1.070E+02 8.09941E+00 1.199E+02 3.37412E+01
8.564E+01 1.18634E+00 9.594E+01 3.01550E+00 1.075E+02 7.36331E+00 1.204E+02 3.40307E+01
8.603E+01 1.20532E+00 9.637E+01 3.34539E+00 1.080E+02 6.76691E+00 1.209E+02 3.43469E+01
8.642E+01 1.22546E+00 9.681E+01 3.68919E+00 1.085E+02 6.23037E+00 1.215E+02 3.46045E+01
8.682E+01 1.24658E+00 9.725E+01 4.34466E+00 1.090E+02 5.76277E+00 1.220E+02 3.50316E+01
8.721E+01 1.26856E+00 9.770E+01 5.26114E+00 1.095E+02 5.35220E+00 1.226E+02 3.54067E+01
8.761E+01 1.29143E+00 9.814E+01 6.70878E+00 1.099E+02 5.00068E+00 1.232E+02 3.57839E+01
8.801E+01 1.31526E+00 9.859E+01 8.31976E+00 1.103E+02 4.69306E+00 1.237E+02 3.61618E+01
8.841E+01 1.34083E+00 9.904E+01 1.06229E+00 1.106E+02 4.42729E+00 1.243E+02 3.65566E+01
8.881E+01 1.37528E+00 9.949E+01 6.46236E+00 1.110E+02 4.19152E+00 1.249E+02 3.69483E+01
8.921E+01 1.41200E+00 9.994E+01 2.53580E+00 1.112E+02 4.00479E+00 1.254E+02 3.73409E+01
<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00E</td>
<td>1.56E</td>
<td>8.56E</td>
<td>1.64E</td>
<td>1.00E</td>
<td>1.67E</td>
<td>1.12E</td>
<td>6.15E</td>
<td>8.07E</td>
<td>1.56E</td>
</tr>
<tr>
<td>8.03E</td>
<td>1.56E</td>
<td>8.00E</td>
<td>1.65E</td>
<td>1.00E</td>
<td>2.84E</td>
<td>1.30E</td>
<td>6.53E</td>
<td>8.07E</td>
<td>1.56E</td>
</tr>
<tr>
<td>8.11E</td>
<td>1.56E</td>
<td>9.04E</td>
<td>1.65E</td>
<td>1.01E</td>
<td>4.05E</td>
<td>1.35E</td>
<td>6.91E</td>
<td>8.11E</td>
<td>1.56E</td>
</tr>
<tr>
<td>8.14E</td>
<td>1.57E</td>
<td>9.12E</td>
<td>1.64E</td>
<td>1.01E</td>
<td>3.29E</td>
<td>1.40E</td>
<td>7.29E</td>
<td>8.14E</td>
<td>1.57E</td>
</tr>
<tr>
<td>8.18E</td>
<td>1.57E</td>
<td>9.16E</td>
<td>1.66E</td>
<td>1.02E</td>
<td>8.09E</td>
<td>1.57E</td>
<td>6.02E</td>
<td>8.18E</td>
<td>1.57E</td>
</tr>
<tr>
<td>8.22E</td>
<td>1.57E</td>
<td>9.21E</td>
<td>1.67E</td>
<td>1.03E</td>
<td>9.59E</td>
<td>1.56E</td>
<td>7.01E</td>
<td>8.22E</td>
<td>1.57E</td>
</tr>
<tr>
<td>8.25E</td>
<td>1.58E</td>
<td>9.25E</td>
<td>1.68E</td>
<td>1.03E</td>
<td>1.18E</td>
<td>1.66E</td>
<td>9.02E</td>
<td>8.25E</td>
<td>1.58E</td>
</tr>
<tr>
<td>8.33E</td>
<td>1.58E</td>
<td>9.34E</td>
<td>1.65E</td>
<td>1.04E</td>
<td>1.46E</td>
<td>1.72E</td>
<td>9.61E</td>
<td>8.33E</td>
<td>1.58E</td>
</tr>
<tr>
<td>8.41E</td>
<td>1.59E</td>
<td>9.42E</td>
<td>1.67E</td>
<td>1.05E</td>
<td>1.85E</td>
<td>1.82E</td>
<td>9.88E</td>
<td>8.41E</td>
<td>1.59E</td>
</tr>
<tr>
<td>8.44E</td>
<td>1.59E</td>
<td>9.46E</td>
<td>1.67E</td>
<td>1.06E</td>
<td>2.07E</td>
<td>1.88E</td>
<td>1.01E</td>
<td>8.44E</td>
<td>1.59E</td>
</tr>
<tr>
<td>8.48E</td>
<td>1.60E</td>
<td>9.50E</td>
<td>1.67E</td>
<td>1.06E</td>
<td>2.30E</td>
<td>1.93E</td>
<td>1.03E</td>
<td>8.48E</td>
<td>1.60E</td>
</tr>
<tr>
<td>8.52E</td>
<td>1.60E</td>
<td>9.55E</td>
<td>1.67E</td>
<td>1.07E</td>
<td>2.55E</td>
<td>1.99E</td>
<td>1.06E</td>
<td>8.52E</td>
<td>1.60E</td>
</tr>
<tr>
<td>8.56E</td>
<td>1.60E</td>
<td>9.55E</td>
<td>1.67E</td>
<td>2.80E</td>
<td>1.20E</td>
<td>1.08E</td>
<td>8.56E</td>
<td>1.60E</td>
<td>1.60E</td>
</tr>
<tr>
<td>8.60E</td>
<td>1.60E</td>
<td>9.63E</td>
<td>1.67E</td>
<td>2.09E</td>
<td>10.26E</td>
<td>1.60E</td>
<td>8.60E</td>
<td>1.60E</td>
<td>1.60E</td>
</tr>
<tr>
<td>8.64E</td>
<td>1.61E</td>
<td>9.68E</td>
<td>1.67E</td>
<td>3.36E</td>
<td>1.21E</td>
<td>1.60E</td>
<td>8.64E</td>
<td>1.61E</td>
<td>1.61E</td>
</tr>
<tr>
<td>8.68E</td>
<td>1.61E</td>
<td>9.72E</td>
<td>1.67E</td>
<td>3.67E</td>
<td>1.22E</td>
<td>1.60E</td>
<td>8.68E</td>
<td>1.61E</td>
<td>1.61E</td>
</tr>
<tr>
<td>8.84E</td>
<td>1.63E</td>
<td>9.90E</td>
<td>1.67E</td>
<td>5.02E</td>
<td>1.24E</td>
<td>1.60E</td>
<td>8.84E</td>
<td>1.63E</td>
<td>1.63E</td>
</tr>
<tr>
<td>8.88E</td>
<td>1.63E</td>
<td>9.94E</td>
<td>1.67E</td>
<td>5.39E</td>
<td>1.24E</td>
<td>1.60E</td>
<td>8.88E</td>
<td>1.63E</td>
<td>1.63E</td>
</tr>
<tr>
<td>8.92E</td>
<td>1.64E</td>
<td>9.98E</td>
<td>1.67E</td>
<td>5.77E</td>
<td>1.25E</td>
<td>1.60E</td>
<td>8.92E</td>
<td>1.64E</td>
<td>1.64E</td>
</tr>
</tbody>
</table>
GREATEST VALUE = 1.76766E 02
LOWEST VALUE = -1.79928E 02
INTERVAL = 3.11900E 00

C - 40
Sensitivity with Respect to TC 1.1

The transform of the response is ---

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NUMER. COEFFS</th>
<th>DENOM. COEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2.057906</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1.078556</td>
</tr>
<tr>
<td>2</td>
<td>4.038537E-03</td>
<td>4.05192E-01</td>
</tr>
<tr>
<td>4</td>
<td>1.01132E-06</td>
<td>-2.05241E-06</td>
</tr>
<tr>
<td>5</td>
<td>-3.59256E-09</td>
<td>-3.59256E-09</td>
</tr>
<tr>
<td>6</td>
<td>-1.04976E-11</td>
<td>-1.04976E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.909E 01</td>
<td>1.0608E 00</td>
<td>8.962E 01</td>
<td>4.2226E 00</td>
<td>1.009E 02</td>
<td>6.9743E 01</td>
<td>1.125E 02</td>
<td>4.6334E 00</td>
</tr>
<tr>
<td>8.736E 01</td>
<td>1.0512E 00</td>
<td>9.009E 01</td>
<td>4.4327E 00</td>
<td>1.009E 02</td>
<td>4.1417E 01</td>
<td>1.130E 02</td>
<td>4.6856E 00</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>1.05452E 00</td>
<td>9.006E 01</td>
<td>4.6426E 00</td>
<td>1.013E 02</td>
<td>3.0305E 01</td>
<td>1.138E 02</td>
<td>4.3942E 00</td>
</tr>
<tr>
<td>8.475E 01</td>
<td>1.05985E 00</td>
<td>9.024E 01</td>
<td>4.8533E 00</td>
<td>1.018E 02</td>
<td>2.3961E 01</td>
<td>1.146E 02</td>
<td>4.22009E 00</td>
</tr>
<tr>
<td>8.104E 01</td>
<td>2.06523E 00</td>
<td>9.168E 01</td>
<td>5.0533E 00</td>
<td>1.022E 02</td>
<td>1.9818E 01</td>
<td>1.154E 02</td>
<td>4.10035E 00</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>2.06433E 00</td>
<td>9.210E 01</td>
<td>5.3466E 00</td>
<td>1.032E 02</td>
<td>1.6979E 01</td>
<td>1.161E 02</td>
<td>3.93822E 00</td>
</tr>
<tr>
<td>8.250E 01</td>
<td>2.06633E 00</td>
<td>9.253E 01</td>
<td>6.2256E 00</td>
<td>1.036E 02</td>
<td>1.4709E 01</td>
<td>1.169E 02</td>
<td>3.8526E 00</td>
</tr>
<tr>
<td>8.296E 01</td>
<td>2.07148E 00</td>
<td>9.294E 01</td>
<td>6.6748E 00</td>
<td>1.041E 02</td>
<td>1.2841E 01</td>
<td>1.176E 02</td>
<td>3.79516E 00</td>
</tr>
<tr>
<td>8.394E 01</td>
<td>2.08911E 00</td>
<td>9.336E 01</td>
<td>7.1365E 00</td>
<td>1.046E 02</td>
<td>1.0781E 01</td>
<td>1.184E 02</td>
<td>3.70051E 00</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>2.08199E 00</td>
<td>9.379E 01</td>
<td>7.7483E 00</td>
<td>1.051E 02</td>
<td>9.3026E 00</td>
<td>1.192E 02</td>
<td>3.6298E 00</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>2.07656E 00</td>
<td>9.421E 01</td>
<td>8.1649E 00</td>
<td>1.055E 02</td>
<td>9.1627E 00</td>
<td>1.198E 02</td>
<td>3.54129E 00</td>
</tr>
<tr>
<td>8.449E 01</td>
<td>2.07217E 00</td>
<td>9.464E 01</td>
<td>8.6023E 00</td>
<td>1.060E 02</td>
<td>8.5311E 00</td>
<td>1.204E 02</td>
<td>3.46766E 00</td>
</tr>
<tr>
<td>8.478E 01</td>
<td>2.07299E 00</td>
<td>9.497E 01</td>
<td>1.0141E 01</td>
<td>1.065E 02</td>
<td>7.9596E 00</td>
<td>1.210E 02</td>
<td>3.40428E 00</td>
</tr>
<tr>
<td>8.525E 01</td>
<td>2.07227E 00</td>
<td>9.550E 01</td>
<td>1.1282E 01</td>
<td>1.070E 02</td>
<td>7.5098E 00</td>
<td>1.216E 02</td>
<td>3.35283E 00</td>
</tr>
<tr>
<td>8.564E 01</td>
<td>2.07153E 00</td>
<td>9.585E 01</td>
<td>1.2651E 01</td>
<td>1.075E 02</td>
<td>7.0911E 00</td>
<td>1.222E 02</td>
<td>3.30282E 00</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>2.07106E 00</td>
<td>9.627E 01</td>
<td>1.3758E 01</td>
<td>1.080E 02</td>
<td>6.7150E 00</td>
<td>1.228E 02</td>
<td>3.2563E 00</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>2.07067E 00</td>
<td>9.661E 01</td>
<td>1.4857E 01</td>
<td>1.085E 02</td>
<td>6.3884E 00</td>
<td>1.234E 02</td>
<td>3.21092E 00</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>3.07153E 00</td>
<td>9.728E 01</td>
<td>1.6072E 01</td>
<td>1.089E 02</td>
<td>6.0907E 00</td>
<td>1.240E 02</td>
<td>3.16485E 00</td>
</tr>
<tr>
<td>8.721E 01</td>
<td>3.07452E 00</td>
<td>9.770E 01</td>
<td>2.4135E 01</td>
<td>1.094E 02</td>
<td>5.8219E 00</td>
<td>1.246E 02</td>
<td>3.11716E 00</td>
</tr>
<tr>
<td>8.761E 01</td>
<td>3.07564E 00</td>
<td>9.814E 01</td>
<td>3.2571E 01</td>
<td>1.099E 02</td>
<td>5.5700E 00</td>
<td>1.252E 02</td>
<td>3.07044E 00</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>3.07671E 00</td>
<td>9.859E 01</td>
<td>4.0839E 01</td>
<td>1.104E 02</td>
<td>5.3560E 00</td>
<td>1.258E 02</td>
<td>3.02311E 00</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>3.07656E 00</td>
<td>9.904E 01</td>
<td>4.8742E 01</td>
<td>1.109E 02</td>
<td>5.1216E 00</td>
<td>1.263E 02</td>
<td>2.97106E 00</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>3.07648E 00</td>
<td>9.949E 01</td>
<td>5.4426E 01</td>
<td>1.115E 02</td>
<td>4.9320E 00</td>
<td>1.269E 02</td>
<td>2.92468E 00</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>3.07653E 00</td>
<td>9.994E 01</td>
<td>6.0451E 01</td>
<td>1.120E 02</td>
<td>4.7928E 00</td>
<td>1.275E 02</td>
<td>2.87015E 00</td>
</tr>
</tbody>
</table>
GREATEST VALUE = 3.4434E 02
LOWEST VALUE = 0.0
INTERVAL = 2.9943E 60

<table>
<thead>
<tr>
<th>Value</th>
<th>X</th>
<th>8.05E 01</th>
<th>8.37E 01</th>
<th>8.71E 01</th>
<th>9.18E 01</th>
<th>9.65E 01</th>
<th>1.00E 02</th>
<th>1.05E 02</th>
<th>1.10E 02</th>
<th>1.15E 02</th>
<th>1.20E 02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.000E 01</td>
<td>1.78506E 02</td>
<td>8.562E 01</td>
<td>1.76356E 02</td>
<td>1.004E 02</td>
<td>-1.95429E-01</td>
<td>1.125E 02</td>
<td>-8.99090E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.036E 01</td>
<td>1.75680E 02</td>
<td>9.003E 01</td>
<td>1.79058E 02</td>
<td>1.009E 02</td>
<td>-1.63555E-01</td>
<td>1.130E 02</td>
<td>-8.87521E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.073E 01</td>
<td>1.79811E 02</td>
<td>9.044E 01</td>
<td>1.76660E 02</td>
<td>1.013E 02</td>
<td>-1.48256E-01</td>
<td>1.135E 02</td>
<td>-8.75682E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.110E 01</td>
<td>1.79813E 02</td>
<td>9.055E 01</td>
<td>1.78662E 02</td>
<td>1.018E 02</td>
<td>-1.38599E-01</td>
<td>1.140E 02</td>
<td>-8.64930E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.147E 01</td>
<td>1.79815E 02</td>
<td>9.126E 01</td>
<td>1.76633E 02</td>
<td>1.022E 02</td>
<td>-1.32524E-01</td>
<td>1.145E 02</td>
<td>-8.53314E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.184E 01</td>
<td>1.79817E 02</td>
<td>9.168E 01</td>
<td>1.76655E 02</td>
<td>1.027E 02</td>
<td>-1.27623E-01</td>
<td>1.151E 02</td>
<td>-8.42311E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.221E 01</td>
<td>1.79819E 02</td>
<td>9.210E 01</td>
<td>1.76676E 02</td>
<td>1.032E 02</td>
<td>-1.23769E-01</td>
<td>1.156E 02</td>
<td>-8.31641E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.258E 01</td>
<td>1.79821E 02</td>
<td>9.221E 01</td>
<td>1.76670E 02</td>
<td>1.036E 02</td>
<td>-1.20408E-01</td>
<td>1.161E 02</td>
<td>-8.20624E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.296E 01</td>
<td>1.79823E 02</td>
<td>9.264E 01</td>
<td>1.76672E 02</td>
<td>1.041E 02</td>
<td>-1.17670E-01</td>
<td>1.166E 02</td>
<td>-8.10410E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.334E 01</td>
<td>1.79825E 02</td>
<td>9.326E 01</td>
<td>1.76874E 02</td>
<td>1.046E 02</td>
<td>-1.15117E-01</td>
<td>1.172E 02</td>
<td>-8.00000E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.372E 01</td>
<td>1.79827E 02</td>
<td>9.378E 01</td>
<td>1.76766E 02</td>
<td>1.051E 02</td>
<td>-1.12834E-01</td>
<td>1.177E 02</td>
<td>-7.89902E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.410E 01</td>
<td>1.79829E 02</td>
<td>9.421E 01</td>
<td>1.76678E 02</td>
<td>1.055E 02</td>
<td>-1.10650E-01</td>
<td>1.182E 02</td>
<td>-7.79770E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.448E 01</td>
<td>1.79831E 02</td>
<td>9.464E 01</td>
<td>1.76681E 02</td>
<td>1.060E 02</td>
<td>-1.08604E-01</td>
<td>1.187E 02</td>
<td>-7.70124E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.486E 01</td>
<td>1.79833E 02</td>
<td>9.507E 01</td>
<td>1.79803E 02</td>
<td>1.065E 02</td>
<td>-1.06949E-01</td>
<td>1.193E 02</td>
<td>-7.60295E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.525E 01</td>
<td>1.79835E 02</td>
<td>9.550E 01</td>
<td>1.79866E 02</td>
<td>1.070E 02</td>
<td>-1.05274E-01</td>
<td>1.199E 02</td>
<td>-7.50936E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.564E 01</td>
<td>1.79837E 02</td>
<td>9.594E 01</td>
<td>1.75903E 02</td>
<td>1.075E 02</td>
<td>-1.03586E-01</td>
<td>1.204E 02</td>
<td>-7.41185E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.603E 01</td>
<td>1.79839E 02</td>
<td>9.637E 01</td>
<td>1.76553E 02</td>
<td>1.080E 02</td>
<td>-1.02031E-01</td>
<td>1.209E 02</td>
<td>-7.31212E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.642E 01</td>
<td>1.79841E 02</td>
<td>9.681E 01</td>
<td>1.76585E 02</td>
<td>1.085E 02</td>
<td>-1.00549E-01</td>
<td>1.215E 02</td>
<td>-7.23273E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.682E 01</td>
<td>1.79842E 02</td>
<td>9.725E 01</td>
<td>1.79903E 02</td>
<td>1.089E 02</td>
<td>-9.90711E-02</td>
<td>1.220E 02</td>
<td>-7.14133E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.721E 01</td>
<td>1.79844E 02</td>
<td>9.770E 01</td>
<td>1.75910E 02</td>
<td>1.094E 02</td>
<td>-9.75906E-02</td>
<td>1.226E 02</td>
<td>-7.05210E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.761E 01</td>
<td>1.79846E 02</td>
<td>9.814E 01</td>
<td>1.78921E 02</td>
<td>1.099E 02</td>
<td>-9.62740E-02</td>
<td>1.232E 02</td>
<td>-6.96591E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.801E 01</td>
<td>1.79848E 02</td>
<td>9.855E 01</td>
<td>1.75941E 02</td>
<td>1.104E 02</td>
<td>-9.49546E-02</td>
<td>1.237E 02</td>
<td>-6.87708E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.841E 01</td>
<td>1.79850E 02</td>
<td>9.904E 01</td>
<td>1.75987E 02</td>
<td>1.109E 02</td>
<td>-9.36335E-02</td>
<td>1.243E 02</td>
<td>-6.79095E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.881E 01</td>
<td>1.79852E 02</td>
<td>9.949E 01</td>
<td>1.76868E 02</td>
<td>1.115E 02</td>
<td>-9.23575E-02</td>
<td>1.249E 02</td>
<td>-6.70989E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.921E 01</td>
<td>1.79854E 02</td>
<td>9.995E 01</td>
<td>-5.16724E-01</td>
<td>1.120E 02</td>
<td>-9.11562E-02</td>
<td>1.254E 02</td>
<td>-6.62280E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity with Respect to R3

The transform of the response is:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.2895E+01</td>
<td>3.0579E+03</td>
</tr>
<tr>
<td>1</td>
<td>1.219E+05</td>
<td>1.5768E+02</td>
</tr>
<tr>
<td>2</td>
<td>2.1745E+01</td>
<td>4.1198E+01</td>
</tr>
<tr>
<td>3</td>
<td>3.4153E+04</td>
<td>-1.0051E+03</td>
</tr>
<tr>
<td>4</td>
<td>8.2673E+07</td>
<td>-2.5621E+06</td>
</tr>
<tr>
<td>5</td>
<td>2.5264E+10</td>
<td>-3.9253E+09</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>-1.4978E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freq</th>
<th>Mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00E 01</td>
<td>2.3514E-01</td>
</tr>
<tr>
<td>0.036E 01</td>
<td>2.3414E-01</td>
</tr>
<tr>
<td>0.01E 01</td>
<td>2.2175E-01</td>
</tr>
<tr>
<td>0.22E 01</td>
<td>2.2237E-01</td>
</tr>
<tr>
<td>0.43E 01</td>
<td>2.1331E-01</td>
</tr>
<tr>
<td>0.64E 01</td>
<td>2.3046E-01</td>
</tr>
<tr>
<td>0.85E 01</td>
<td>2.2562E-01</td>
</tr>
<tr>
<td>1.06E 01</td>
<td>2.2649E-01</td>
</tr>
<tr>
<td>1.26E 01</td>
<td>2.2737E-01</td>
</tr>
<tr>
<td>1.47E 01</td>
<td>2.2836E-01</td>
</tr>
<tr>
<td>1.68E 01</td>
<td>2.2962E-01</td>
</tr>
<tr>
<td>1.89E 01</td>
<td>2.3010E-01</td>
</tr>
<tr>
<td>2.10E 01</td>
<td>2.3058E-01</td>
</tr>
<tr>
<td>2.31E 01</td>
<td>2.2672E-01</td>
</tr>
<tr>
<td>2.52E 01</td>
<td>2.2512E-01</td>
</tr>
<tr>
<td>2.73E 01</td>
<td>2.2397E-01</td>
</tr>
<tr>
<td>2.94E 01</td>
<td>2.2262E-01</td>
</tr>
<tr>
<td>3.15E 01</td>
<td>2.2136E-01</td>
</tr>
<tr>
<td>3.36E 01</td>
<td>2.2015E-01</td>
</tr>
<tr>
<td>3.57E 01</td>
<td>2.1899E-01</td>
</tr>
<tr>
<td>3.78E 01</td>
<td>2.1784E-01</td>
</tr>
<tr>
<td>4.00E 01</td>
<td>2.1665E-01</td>
</tr>
<tr>
<td>4.22E 01</td>
<td>2.1549E-01</td>
</tr>
<tr>
<td>4.43E 01</td>
<td>2.1438E-01</td>
</tr>
<tr>
<td>4.65E 01</td>
<td>2.1328E-01</td>
</tr>
<tr>
<td>4.87E 01</td>
<td>2.1222E-01</td>
</tr>
<tr>
<td>5.09E 01</td>
<td>2.1120E-01</td>
</tr>
<tr>
<td>5.31E 01</td>
<td>2.1022E-01</td>
</tr>
<tr>
<td>5.53E 01</td>
<td>2.0927E-01</td>
</tr>
<tr>
<td>5.75E 01</td>
<td>2.0835E-01</td>
</tr>
<tr>
<td>5.97E 01</td>
<td>2.0745E-01</td>
</tr>
<tr>
<td>6.19E 01</td>
<td>2.0658E-01</td>
</tr>
<tr>
<td>6.41E 01</td>
<td>2.0575E-01</td>
</tr>
<tr>
<td>6.64E 01</td>
<td>2.0495E-01</td>
</tr>
<tr>
<td>6.87E 01</td>
<td>2.0417E-01</td>
</tr>
<tr>
<td>7.10E 01</td>
<td>2.0343E-01</td>
</tr>
<tr>
<td>7.33E 01</td>
<td>2.0273E-01</td>
</tr>
<tr>
<td>7.56E 01</td>
<td>2.0206E-01</td>
</tr>
<tr>
<td>7.79E 01</td>
<td>2.0141E-01</td>
</tr>
<tr>
<td>8.02E 01</td>
<td>2.0078E-01</td>
</tr>
<tr>
<td>8.25E 01</td>
<td>2.0016E-01</td>
</tr>
<tr>
<td>8.48E 01</td>
<td>2.0156E-01</td>
</tr>
<tr>
<td>8.71E 01</td>
<td>2.0299E-01</td>
</tr>
<tr>
<td>8.94E 01</td>
<td>2.0444E-01</td>
</tr>
<tr>
<td>9.17E 01</td>
<td>2.0591E-01</td>
</tr>
<tr>
<td>9.40E 01</td>
<td>2.0741E-01</td>
</tr>
<tr>
<td>9.64E 01</td>
<td>2.0894E-01</td>
</tr>
<tr>
<td>9.88E 01</td>
<td>2.1050E-01</td>
</tr>
<tr>
<td>1.01E 02</td>
<td>2.1209E-01</td>
</tr>
<tr>
<td>1.03E 02</td>
<td>2.1370E-01</td>
</tr>
<tr>
<td>1.06E 02</td>
<td>2.1534E-01</td>
</tr>
<tr>
<td>1.08E 02</td>
<td>2.1692E-01</td>
</tr>
<tr>
<td>1.11E 02</td>
<td>2.1855E-01</td>
</tr>
<tr>
<td>1.13E 02</td>
<td>2.2022E-01</td>
</tr>
<tr>
<td>1.16E 02</td>
<td>2.2194E-01</td>
</tr>
<tr>
<td>1.18E 02</td>
<td>2.2369E-01</td>
</tr>
<tr>
<td>1.21E 02</td>
<td>2.2548E-01</td>
</tr>
<tr>
<td>1.23E 02</td>
<td>2.2730E-01</td>
</tr>
<tr>
<td>1.26E 02</td>
<td>2.2915E-01</td>
</tr>
<tr>
<td>1.28E 02</td>
<td>2.3103E-01</td>
</tr>
<tr>
<td>1.31E 02</td>
<td>2.3294E-01</td>
</tr>
<tr>
<td>1.33E 02</td>
<td>2.3488E-01</td>
</tr>
<tr>
<td>1.36E 02</td>
<td>2.3685E-01</td>
</tr>
<tr>
<td>1.39E 02</td>
<td>2.3885E-01</td>
</tr>
<tr>
<td>1.41E 02</td>
<td>2.4089E-01</td>
</tr>
<tr>
<td>1.44E 02</td>
<td>2.4297E-01</td>
</tr>
<tr>
<td>1.46E 02</td>
<td>2.4509E-01</td>
</tr>
<tr>
<td>1.49E 02</td>
<td>2.4726E-01</td>
</tr>
<tr>
<td>1.51E 02</td>
<td>2.4947E-01</td>
</tr>
<tr>
<td>1.54E 02</td>
<td>2.5172E-01</td>
</tr>
<tr>
<td>1.56E 02</td>
<td>2.5399E-01</td>
</tr>
<tr>
<td>1.59E 02</td>
<td>2.5630E-01</td>
</tr>
<tr>
<td>1.61E 02</td>
<td>2.5864E-01</td>
</tr>
<tr>
<td>1.64E 02</td>
<td>2.6099E-01</td>
</tr>
<tr>
<td>1.66E 02</td>
<td>2.6336E-01</td>
</tr>
<tr>
<td>1.68E 02</td>
<td>2.6576E-01</td>
</tr>
<tr>
<td>1.71E 02</td>
<td>2.6820E-01</td>
</tr>
<tr>
<td>1.73E 02</td>
<td>2.7068E-01</td>
</tr>
<tr>
<td>1.75E 02</td>
<td>2.7319E-01</td>
</tr>
<tr>
<td>1.77E 02</td>
<td>2.7574E-01</td>
</tr>
<tr>
<td>1.80E 02</td>
<td>2.7833E-01</td>
</tr>
<tr>
<td>1.82E 02</td>
<td>2.8095E-01</td>
</tr>
<tr>
<td>1.84E 02</td>
<td>2.8360E-01</td>
</tr>
<tr>
<td>1.87E 02</td>
<td>2.8628E-01</td>
</tr>
<tr>
<td>1.89E 02</td>
<td>2.8899E-01</td>
</tr>
<tr>
<td>1.91E 02</td>
<td>2.9173E-01</td>
</tr>
<tr>
<td>1.93E 02</td>
<td>2.9450E-01</td>
</tr>
<tr>
<td>1.96E 02</td>
<td>2.9731E-01</td>
</tr>
<tr>
<td>1.98E 02</td>
<td>3.0015E-01</td>
</tr>
<tr>
<td>2.00E 02</td>
<td>3.0302E-01</td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>8.000E 01</td>
<td>-8.7665E 00</td>
</tr>
<tr>
<td>8.036E 01</td>
<td>-9.00115E 00</td>
</tr>
<tr>
<td>8.073E 01</td>
<td>-9.4275E 00</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>-9.9504E 00</td>
</tr>
<tr>
<td>8.147E 01</td>
<td>-1.5657E 00</td>
</tr>
<tr>
<td>8.184E 01</td>
<td>-1.00340E 01</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>-1.03221E 01</td>
</tr>
<tr>
<td>8.258E 01</td>
<td>-1.06238E 01</td>
</tr>
<tr>
<td>8.294E 01</td>
<td>-1.09357E 01</td>
</tr>
<tr>
<td>8.331E 01</td>
<td>-1.12710E 01</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>-1.16184E 01</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>-1.19833E 01</td>
</tr>
<tr>
<td>8.448E 01</td>
<td>-1.23667E 01</td>
</tr>
<tr>
<td>8.487E 01</td>
<td>-1.27699E 01</td>
</tr>
<tr>
<td>8.525E 01</td>
<td>-1.31942E 01</td>
</tr>
<tr>
<td>8.564E 01</td>
<td>-1.36412E 01</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>-1.41128E 01</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>-1.46102E 01</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>-1.51366E 01</td>
</tr>
<tr>
<td>8.721E 01</td>
<td>-1.56528E 01</td>
</tr>
<tr>
<td>8.761E 01</td>
<td>-1.62820E 01</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>-1.69064E 01</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>-1.75692E 01</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>-1.82736E 01</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>-1.90220E 01</td>
</tr>
</tbody>
</table>
NASAP

NETWORK ANALYSIS AND SYSTEMS APPLICATION PROGRAM

THIS VERSION WAS DEVELOPED AT UCLA ENGR DEPT.

Tree

NASAP PROBLEM TELEMETER

<table>
<thead>
<tr>
<th>J1(1-2)</th>
<th>1.0</th>
<th>C1(1-2)</th>
<th>100MF</th>
</tr>
</thead>
<tbody>
<tr>
<td>REL(1-2)</td>
<td>200</td>
<td>REL(2-3)</td>
<td>2.000000E05</td>
</tr>
<tr>
<td>C1(2-3)</td>
<td>2.000000E05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2(2-3)</td>
<td>1.000000E00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LE1(4-1)</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1(2-4)</td>
<td>2.000000E00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REL(3-4)</td>
<td>1.000000E00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R2(3-4)</td>
<td>1.000000E00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Elements

<table>
<thead>
<tr>
<th>Element Number</th>
<th>Element Name</th>
<th>Node</th>
<th>Node</th>
<th>Value</th>
<th>Tag</th>
<th>Gener</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J1</td>
<td>1</td>
<td>2</td>
<td>1.00000000E+00 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CJ1</td>
<td>1</td>
<td>2</td>
<td>9.99999320E-05 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>REL</td>
<td>1</td>
<td>2</td>
<td>2.00000000E-04 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CJ2</td>
<td>2</td>
<td>3</td>
<td>1.00000000E-06 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RJ2</td>
<td>2</td>
<td>3</td>
<td>1.00000000E-06 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>REL</td>
<td>1</td>
<td>3</td>
<td>2.00000000E-02 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>LE1</td>
<td>4</td>
<td>1</td>
<td>2.9999981E-01 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CJ3</td>
<td>2</td>
<td>4</td>
<td>1.00000000E-06 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>CJ4</td>
<td>3</td>
<td>4</td>
<td>4.6999949E-05 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CJ5</td>
<td>3</td>
<td>4</td>
<td>2.999999429E-06 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DJ2</td>
<td>4</td>
<td>3</td>
<td>2.99999853E-01 0.00000000E-00 0.00000000E+00 0.00000000E+00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element Number</th>
<th>Element Name</th>
<th>Node</th>
<th>Node</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>304</td>
<td>2</td>
<td>0.00000000E-00 0.00000000E-00 0.00000000E-00 0.00000000E-00</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1536</td>
<td>2056</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-7</td>
<td>2048</td>
<td>1280</td>
<td></td>
</tr>
</tbody>
</table>
WORSTCASE

ELEMENT NAME TOLERANCE
CJ1 0.1000
RE1 0.1000
CJ2 0.1000
RJ2 0.1000
RE3 0.1000
LE1 0.1000
CJ3 0.1000
CJ4 0.1000
CJ5 0.1000
DJ2 0.1000

FLOWGRAPH

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>S</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>9.89959320E-05</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>0</td>
<td>2.00000000E-04</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>1</td>
<td>1.09959886E-06</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>9.89959715E-03</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>0</td>
<td>2.00000000E-04</td>
</tr>
<tr>
<td>7</td>
<td>18</td>
<td>1</td>
<td>2.09959881E-01</td>
</tr>
<tr>
<td>19</td>
<td>8</td>
<td>1</td>
<td>1.09959886E-06</td>
</tr>
<tr>
<td>20</td>
<td>9</td>
<td>1</td>
<td>4.09959650E-05</td>
</tr>
<tr>
<td>21</td>
<td>10</td>
<td>1</td>
<td>9.09959429E-06</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>0</td>
<td>2.09959853E-01</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>1</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>1</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>17</td>
<td>22</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>1</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
<tr>
<td>18</td>
<td>22</td>
<td>0</td>
<td>1.00000000E-00</td>
</tr>
</tbody>
</table>
The unknown transmittance goes from node 7 to 1:

<table>
<thead>
<tr>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180224</td>
<td>288001</td>
</tr>
<tr>
<td>3065304</td>
<td>148004</td>
</tr>
<tr>
<td>3098088</td>
<td>756003</td>
</tr>
<tr>
<td>786816</td>
<td>192002</td>
</tr>
<tr>
<td>3065304</td>
<td>748004</td>
</tr>
<tr>
<td>3058088</td>
<td>756003</td>
</tr>
<tr>
<td>3100136</td>
<td>1780003</td>
</tr>
<tr>
<td>2360448</td>
<td>576002</td>
</tr>
<tr>
<td>2608376</td>
<td>1660003</td>
</tr>
<tr>
<td>870824</td>
<td>1236002</td>
</tr>
<tr>
<td>2559260</td>
<td>1480002</td>
</tr>
<tr>
<td>1C34744</td>
<td>1276003</td>
</tr>
<tr>
<td>247928</td>
<td>1084001</td>
</tr>
<tr>
<td>2313450</td>
<td>1589001</td>
</tr>
<tr>
<td>84138</td>
<td>1045000</td>
</tr>
<tr>
<td>248558</td>
<td>1685001</td>
</tr>
<tr>
<td>198752</td>
<td>1672000</td>
</tr>
<tr>
<td>49176</td>
<td>12001</td>
</tr>
<tr>
<td>245800</td>
<td>60001</td>
</tr>
<tr>
<td>245880</td>
<td>60001</td>
</tr>
<tr>
<td>2278618</td>
<td>557002</td>
</tr>
<tr>
<td>81560</td>
<td>20000</td>
</tr>
<tr>
<td>2311402</td>
<td>565001</td>
</tr>
<tr>
<td>540936</td>
<td>132001</td>
</tr>
<tr>
<td>541066</td>
<td>133001</td>
</tr>
<tr>
<td>2229312</td>
<td>544001</td>
</tr>
<tr>
<td>163920</td>
<td>40001</td>
</tr>
<tr>
<td>196704</td>
<td>48000</td>
</tr>
</tbody>
</table>
NO. OF FIRST CEREBAL LOOPS= 26

\[
\begin{array}{cccccccccccccccccccccccccccc}
\end{array}
\]

TRANSFER FUNCTION

\[
5.681 \times 10^{-4} + 4.20 \times 10^{-4} + 3.0 \times 10^{-4} + 2.948 \times 10^{-4} + 2.8 \times 10^{-4}
\]

THE FUNCTION FACTOR = -8.78×10^{-4}
SENSITIVITY TO C1

\[
\begin{align*}
C_0 &= 1.141E \times 10^3 - 6.947E \times 10^5 + 2.766E \times 10^2 \\
&+ 2.541E \times 10^2 + 1.000E \times 10^0 \\
&- 2.018E \times 10^4 - 1.504E \times 10^3 \\
&+ 9.575E \times 10^5 + 2.084E \times 10^5 + 3.422E \times 10^2 + 1.000E \times 10^0
\end{align*}
\]

THE FUNCTION FACTOR = 9.671E-C1
SENSITIVITY TO REL

\[1.154 \times 10^8 + 3.882 \times 10^5 + 2.956 \times 10^5 + 1.000 \times 10^5 + 0.0 \]

\[2.948 \times 10^{-1} + 1.50 \times 10^{-5} + 3.594 \times 10^{-2} + 3.10 \times 10^{-4} \]

\[2.948 \times 10^{-1} + 1.50 \times 10^{-5} + 3.594 \times 10^{-2} + 3.10 \times 10^{-4} \]

THE FUNCTION FACTOR = \(-4.336 \times 10^{-1}\)
SENSITIVITY TO CJ2

\[0.0 + 4.9 \times 10^{-5} + 1.154 \times 10^3 + 2.666 \times 10^2 + 6.858 \times 10^1 + 7.400 \times 10^0 + 1.000 \times 10^0 \]

\[-2.913 \times 10^{-14} - 1.050 \times 10^{-13} - 4.288 \times 10^{-12} + 9.515 \times 10^{-11} + 2.811 \times 10^{-10} + 3.422 \times 10^{-10} + 1.000 \times 10^{-9} \]

THE FUNCTION FACTOR = -1.178E-11
SENSITIVITY TO RJ2

\[3.543 \times 10^9 + 7.8 \times 10^5 + 1.0267 \times 10^5 + 4.279 \times 10^5 + 3.403 \times 10^5 + 1.0000 \times 0.0 + 0.0 \]

\[-2.913 \times 10^9 - 1.504 \times 10^5 - 4.0296 \times 10^5 + 9.575 \times 10^5 + 2.041 \times 10^5 + 3.422 \times 10^5 + 1.0000 \times 0.0 \]

THE FUNCTION FACTOR = \[4.0332 \times 0.0 \]
SENSITIVITY TO RES

\[1.659E \ 11 + 4.828E \ 11S + 1.235E \ 09 + 1.352E \ 06S + 2.272E \ 03S + 1.000E \ 00S + 0.0 \]

\[- 2.613E \ 14 - 1.564E \ 13S - 4.578E \ 10S + 9.575E \ 07S + 2.841E \ 05S + 3.422E \ 02S + 1.000E \ 00S \]

THE FUNCTION FACTOR = \(-2.40E \ 01\)
Sensitivity to LE1

\[
0.0 \quad + \quad 0.0 \quad - \quad 9.0144E \quad 00S \quad - \quad 3.844E \quad 07S \quad - \quad 1.060E \quad 05S \quad + \quad 3.422E \quad 02S \quad + \quad 1.000E \quad 00S
\]

\[
- \quad 2.913E \quad 14 \quad - \quad 1.504E \quad 13S \quad - \quad 4.0259E \quad 10S \quad + \quad 9.975E \quad 07S \quad + \quad 2.841E \quad 05S \quad + \quad 3.422E \quad 02S \quad + \quad 1.000E \quad 00S
\]

The function factor = \(1.000E \quad 00\)
SENSITIVITY TO CJ3

0*0 + 1.494E 12S + 6.454E 10S + 3.640E 08S + 6.854E 06S + 7.000E 04S + 1.000E 02S

- 2.913E 14 - 1.564E 13S - 4.278E 11S + 9.575E 09S + 2.841E 07S + 3.422E 05S + 1.000E 03S

THE FUNCTION FACTOR = -6.454E-01
SENSITIVITY TO CJ4

\[0_{0.0} + 1.0658E + 1.257E + 1.352E + 3.0272E + 1.000E \]

\[0_{0.0} + 1.0658E + 1.257E + 1.352E + 3.0272E + 1.000E \]

THE FUNCTION FACTOR = 2.489E-01
SENSITIVITY TO CJ5

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>5.02E-12</th>
<th>2.13E-11</th>
<th>6.53E-08</th>
<th>7.56E-05</th>
<th>1.02E-03</th>
<th>1.00E+00</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

THE FUNCTION FACTOR = 5.51E-01

<table>
<thead>
<tr>
<th></th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note: The table represents the sensitivity of the function to CJ5, with the values indicating the change in the function factor for each change in the CJ5 value.
SENSITIVITY TO DJ2

\[2 \times 10^2 \times 1.899 + 10^3 \times 10 \times 10^4 + 10^5 \times 10^6 \]

\[- 2 \times 10^6 \times 1.5 \times 10^7 + 10^8 \times 10^9 + 10^10 \times 10^{11} \]

THE FUNCTION FACTOR = \(9.923 \times 10^2 \)
Square of Worst Case Tolerance

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 6.070E 12S</td>
<td>+ 9.990E 08S</td>
<td>+ 1.666E 06S</td>
<td>+ 5.955E 02S</td>
<td>+ 1.000E 00S</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Function Factor = 2.737E-02
The transform of the response is ---

<table>
<thead>
<tr>
<th>EXP. of S</th>
<th>NUMER. COEFFS.</th>
<th>DENOM. COEFFS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-2.59596E-02</td>
<td>1.04394E-01</td>
</tr>
<tr>
<td>1</td>
<td>6.61799E-04</td>
<td>2.7627E-02</td>
</tr>
<tr>
<td>3</td>
<td>0.0000000</td>
<td>2.6627E-05</td>
</tr>
<tr>
<td>4</td>
<td>0.0000000</td>
<td>6.91544E-08</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E-01</td>
<td>7.01100E-02</td>
<td>8.962E-01</td>
<td>1.2537E-01</td>
<td>1.004E-02</td>
<td>1.5750E-00</td>
<td>1.125E-02</td>
<td>8.7046E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.036E-01</td>
<td>7.2226E-02</td>
<td>9.003E-01</td>
<td>1.3446E-01</td>
<td>1.009E-02</td>
<td>9.8251E-01</td>
<td>1.130E-02</td>
<td>8.3460E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.073E-01</td>
<td>7.3603E-02</td>
<td>9.044E-01</td>
<td>1.4064E-01</td>
<td>1.013E-02</td>
<td>7.1188E-01</td>
<td>1.135E-02</td>
<td>8.0126E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.110E-01</td>
<td>7.4624E-02</td>
<td>9.085E-01</td>
<td>1.4617E-01</td>
<td>1.016E-02</td>
<td>5.5690E-01</td>
<td>1.140E-02</td>
<td>7.7019E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.147E-01</td>
<td>7.5922E-02</td>
<td>9.126E-01</td>
<td>1.5254E-01</td>
<td>1.022E-02</td>
<td>4.5648E-01</td>
<td>1.145E-02</td>
<td>7.4119E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.184E-01</td>
<td>7.7272E-02</td>
<td>9.168E-01</td>
<td>1.6045E-01</td>
<td>1.027E-02</td>
<td>3.8613E-01</td>
<td>1.150E-02</td>
<td>7.1398E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.258E-01</td>
<td>8.0174E-02</td>
<td>9.251E-01</td>
<td>1.7625E-01</td>
<td>1.036E-02</td>
<td>2.9408E-01</td>
<td>1.161E-02</td>
<td>6.4515E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.334E-01</td>
<td>8.3318E-02</td>
<td>9.336E-01</td>
<td>2.0146E-01</td>
<td>1.046E-02</td>
<td>2.3652E-01</td>
<td>1.172E-02</td>
<td>6.0055E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.372E-01</td>
<td>8.4114E-02</td>
<td>9.378E-01</td>
<td>2.1302E-01</td>
<td>1.051E-02</td>
<td>2.1514E-01</td>
<td>1.177E-02</td>
<td>5.8152E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.410E-01</td>
<td>8.6942E-02</td>
<td>9.421E-01</td>
<td>2.3127E-01</td>
<td>1.055E-02</td>
<td>1.9714E-01</td>
<td>1.182E-02</td>
<td>5.6349E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.448E-01</td>
<td>9.0038E-02</td>
<td>9.464E-01</td>
<td>2.5392E-01</td>
<td>1.060E-02</td>
<td>1.8177E-01</td>
<td>1.188E-02</td>
<td>5.4535E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.487E-01</td>
<td>9.8955E-02</td>
<td>9.507E-01</td>
<td>2.7323E-01</td>
<td>1.065E-02</td>
<td>1.6850E-01</td>
<td>1.193E-02</td>
<td>5.2635E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.566E-01</td>
<td>9.9271E-02</td>
<td>9.561E-01</td>
<td>3.3541E-01</td>
<td>1.075E-02</td>
<td>1.4675E-01</td>
<td>1.204E-02</td>
<td>5.0160E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.761E-01</td>
<td>9.8933E-02</td>
<td>9.816E-01</td>
<td>4.7052E-01</td>
<td>1.103E-02</td>
<td>1.0958E-01</td>
<td>1.230E-02</td>
<td>4.8748E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.841E-01</td>
<td>9.9628E-02</td>
<td>9.904E-01</td>
<td>5.4095E-01</td>
<td>1.113E-02</td>
<td>9.8509E-02</td>
<td>1.240E-02</td>
<td>4.8429E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.881E-01</td>
<td>1.0039E-01</td>
<td>9.949E-01</td>
<td>5.7652E-01</td>
<td>1.118E-02</td>
<td>9.7048E-02</td>
<td>1.245E-02</td>
<td>4.8278E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.000E 01</td>
<td>4.180E 02</td>
<td>8.032E 01</td>
<td>3.622E 01</td>
<td>1.004E 02</td>
<td>-1.450E 02</td>
<td>1.125E 02</td>
<td>-1.481E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.036E 01</td>
<td>4.165E 02</td>
<td>8.066E 01</td>
<td>3.617E 01</td>
<td>1.005E 02</td>
<td>-1.456E 02</td>
<td>1.130E 02</td>
<td>-1.487E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.073E 01</td>
<td>4.151E 02</td>
<td>8.099E 01</td>
<td>3.611E 01</td>
<td>1.006E 02</td>
<td>-1.462E 02</td>
<td>1.135E 02</td>
<td>-1.494E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.110E 01</td>
<td>4.137E 02</td>
<td>8.142E 01</td>
<td>3.605E 01</td>
<td>1.007E 02</td>
<td>-1.468E 02</td>
<td>1.140E 02</td>
<td>-1.499E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.147E 01</td>
<td>4.124E 02</td>
<td>8.178E 01</td>
<td>3.600E 01</td>
<td>1.008E 02</td>
<td>-1.474E 02</td>
<td>1.145E 02</td>
<td>-1.505E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.184E 01</td>
<td>4.110E 02</td>
<td>8.215E 01</td>
<td>3.594E 01</td>
<td>1.009E 02</td>
<td>-1.480E 02</td>
<td>1.151E 02</td>
<td>-1.511E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.221E 01</td>
<td>4.098E 02</td>
<td>8.253E 01</td>
<td>3.588E 01</td>
<td>1.010E 02</td>
<td>-1.486E 02</td>
<td>1.156E 02</td>
<td>-1.517E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.258E 01</td>
<td>4.086E 02</td>
<td>8.291E 01</td>
<td>3.582E 01</td>
<td>1.011E 02</td>
<td>-1.492E 02</td>
<td>1.161E 02</td>
<td>-1.522E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.396E 01</td>
<td>4.074E 02</td>
<td>8.334E 01</td>
<td>3.576E 01</td>
<td>1.012E 02</td>
<td>-1.498E 02</td>
<td>1.166E 02</td>
<td>-1.528E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.334E 01</td>
<td>4.063E 02</td>
<td>8.372E 01</td>
<td>3.570E 01</td>
<td>1.013E 02</td>
<td>-1.504E 02</td>
<td>1.172E 02</td>
<td>-1.533E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.372E 01</td>
<td>4.052E 02</td>
<td>8.410E 01</td>
<td>3.564E 01</td>
<td>1.014E 02</td>
<td>-1.510E 02</td>
<td>1.177E 02</td>
<td>-1.539E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.410E 01</td>
<td>4.041E 02</td>
<td>8.448E 01</td>
<td>3.558E 01</td>
<td>1.015E 02</td>
<td>-1.516E 02</td>
<td>1.182E 02</td>
<td>-1.545E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.448E 01</td>
<td>4.030E 02</td>
<td>8.487E 01</td>
<td>3.552E 01</td>
<td>1.016E 02</td>
<td>-1.522E 02</td>
<td>1.188E 02</td>
<td>-1.550E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.525E 01</td>
<td>4.019E 02</td>
<td>8.564E 01</td>
<td>3.546E 01</td>
<td>1.017E 02</td>
<td>-1.528E 02</td>
<td>1.199E 02</td>
<td>-1.556E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.564E 01</td>
<td>4.008E 02</td>
<td>8.624E 01</td>
<td>3.540E 01</td>
<td>1.018E 02</td>
<td>-1.534E 02</td>
<td>1.204E 02</td>
<td>-1.562E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.624E 01</td>
<td>4.000E 02</td>
<td>8.682E 01</td>
<td>3.534E 01</td>
<td>1.019E 02</td>
<td>-1.540E 02</td>
<td>1.209E 02</td>
<td>-1.568E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.682E 01</td>
<td>4.000E 02</td>
<td>8.721E 01</td>
<td>3.528E 01</td>
<td>1.020E 02</td>
<td>-1.546E 02</td>
<td>1.215E 02</td>
<td>-1.574E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.721E 01</td>
<td>4.000E 02</td>
<td>8.761E 01</td>
<td>3.522E 01</td>
<td>1.021E 02</td>
<td>-1.552E 02</td>
<td>1.220E 02</td>
<td>-1.580E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.761E 01</td>
<td>4.000E 02</td>
<td>8.801E 01</td>
<td>3.516E 01</td>
<td>1.022E 02</td>
<td>-1.558E 02</td>
<td>1.225E 02</td>
<td>-1.586E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.801E 01</td>
<td>4.000E 02</td>
<td>8.841E 01</td>
<td>3.510E 01</td>
<td>1.023E 02</td>
<td>-1.564E 02</td>
<td>1.230E 02</td>
<td>-1.592E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.841E 01</td>
<td>4.000E 02</td>
<td>8.881E 01</td>
<td>3.504E 01</td>
<td>1.024E 02</td>
<td>-1.570E 02</td>
<td>1.235E 02</td>
<td>-1.598E 02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.881E 01</td>
<td>4.000E 02</td>
<td>8.921E 01</td>
<td>3.498E 01</td>
<td>1.025E 02</td>
<td>-1.576E 02</td>
<td>1.240E 02</td>
<td>-1.604E 02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRACEBACK FOLLOW:- ROUTINE

STANDARD FIXUP

ENTRY PCLT= C121C518

STANDARD FIXUP TAKEN , EXECUTION CONTINUING

THE TRANSFORM OF THE RESPONSE IS ---

<table>
<thead>
<tr>
<th>EXPoF $</th>
<th>NUE= CCEFs$</th>
<th>CENp CCEFs$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$-6.000000E+01$</td>
<td>$2.000000E+02$</td>
</tr>
<tr>
<td>1</td>
<td>$-5.956800E+00$</td>
<td>$1.000000E+01$</td>
</tr>
<tr>
<td>2</td>
<td>$0.000000E+00$</td>
<td>$2.000000E+02$</td>
</tr>
<tr>
<td>4</td>
<td>$0.000000E+00$</td>
<td>$5.000000E+02$</td>
</tr>
</tbody>
</table>

FREQ | **MAG** | **FREQ** | **MAG** | **FREQ** | **MAG** | **FREQ** | **MAG** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>$-2.94319E-01$</td>
<td>$2.468E-01$</td>
<td>$-1.787E-01$</td>
<td>$4.817E-01$</td>
<td>$-7.72306E-02$</td>
<td>$7.325E-01$</td>
<td>$-5.27028E-02$</td>
</tr>
<tr>
<td>$1.047E 00$</td>
<td>$-2.79430E-01$</td>
<td>$2.513E-01$</td>
<td>$-1.45230E-01$</td>
<td>$4.522E-02$</td>
<td>$-7.59075E-02$</td>
<td>$7.330E-01$</td>
<td>$-5.19132E-02$</td>
</tr>
<tr>
<td>$2.094E 00$</td>
<td>$-5.5956E-01$</td>
<td>$2.618E-01$</td>
<td>$-1.21884E-01$</td>
<td>$5.026E-02$</td>
<td>$-7.45330E-02$</td>
<td>$7.435E-01$</td>
<td>$-5.11403E-02$</td>
</tr>
<tr>
<td>$3.141E 00$</td>
<td>$-5.5956E-01$</td>
<td>$2.725E-01$</td>
<td>$-1.05931E-01$</td>
<td>$5.131E-02$</td>
<td>$-7.31971E-02$</td>
<td>$7.539E-01$</td>
<td>$-5.03383E-02$</td>
</tr>
<tr>
<td>$4.189E 00$</td>
<td>$-2.53975E-01$</td>
<td>$2.527E-01$</td>
<td>$-1.05931E-01$</td>
<td>$5.596E-02$</td>
<td>$-7.19505E-02$</td>
<td>$7.344E-01$</td>
<td>$-5.06432E-02$</td>
</tr>
<tr>
<td>$5.238E 00$</td>
<td>$-2.21092E-01$</td>
<td>$2.932E-01$</td>
<td>$-1.12749E-01$</td>
<td>$5.340E-02$</td>
<td>$-7.06585E-02$</td>
<td>$7.745E-01$</td>
<td>$-4.91318E-02$</td>
</tr>
<tr>
<td>$6.283E 00$</td>
<td>$-2.22110E-01$</td>
<td>$3.037E-01$</td>
<td>$-1.01014E-01$</td>
<td>$5.445E-02$</td>
<td>$-7.91132E-02$</td>
<td>$7.855E-01$</td>
<td>$-4.82076E-02$</td>
</tr>
<tr>
<td>$9.424E 00$</td>
<td>$-1.57555E-01$</td>
<td>$3.351E-01$</td>
<td>$-8.02777E-02$</td>
<td>$5.759E-02$</td>
<td>$-7.59230E-02$</td>
<td>$8.168E-01$</td>
<td>$-4.61261E-02$</td>
</tr>
<tr>
<td>$L.476E 01$</td>
<td>$-1.00496E-01$</td>
<td>$3.456E-01$</td>
<td>$-7.00186E-02$</td>
<td>$5.864E-02$</td>
<td>$-6.48205E-02$</td>
<td>$8.272E-01$</td>
<td>$-4.55071E-02$</td>
</tr>
<tr>
<td>$L.525E 01$</td>
<td>$-1.63726E-01$</td>
<td>$3.560E-01$</td>
<td>$-9.34312E-02$</td>
<td>$5.969E-02$</td>
<td>$-5.37460E-02$</td>
<td>$8.377E-01$</td>
<td>$-4.48649E-02$</td>
</tr>
<tr>
<td>$L.621E 01$</td>
<td>$-1.71578E-01$</td>
<td>$3.770E-01$</td>
<td>$-9.42166E-02$</td>
<td>$6.178E-02$</td>
<td>$-5.16773E-02$</td>
<td>$8.588E-01$</td>
<td>$-4.36174E-02$</td>
</tr>
<tr>
<td>$L.666E 01$</td>
<td>$-1.66042E-01$</td>
<td>$3.876E-01$</td>
<td>$-9.22636E-02$</td>
<td>$6.283E-02$</td>
<td>$-5.06809E-02$</td>
<td>$8.691E-01$</td>
<td>$-4.30114E-02$</td>
</tr>
<tr>
<td>$L.717E 01$</td>
<td>$-1.60823E-01$</td>
<td>$3.981E-01$</td>
<td>$-9.03124E-02$</td>
<td>$6.387E-02$</td>
<td>$-4.97088E-02$</td>
<td>$8.796E-01$</td>
<td>$-4.24160E-02$</td>
</tr>
<tr>
<td>$L.767E 01$</td>
<td>$-1.55647E-01$</td>
<td>$4.086E-01$</td>
<td>$-8.84536E-02$</td>
<td>$6.492E-02$</td>
<td>$-4.87599E-02$</td>
<td>$8.901E-01$</td>
<td>$-4.18332E-02$</td>
</tr>
<tr>
<td>$L.926E 01$</td>
<td>$-1.40822E-01$</td>
<td>$4.406E-01$</td>
<td>$-8.33653E-02$</td>
<td>$6.802E-02$</td>
<td>$-4.46045E-02$</td>
<td>$9.215E-01$</td>
<td>$-4.01458E-02$</td>
</tr>
<tr>
<td>$2.034E 01$</td>
<td>$-1.31247E-01$</td>
<td>$4.621E-01$</td>
<td>$-7.98156E-02$</td>
<td>$7.016E-02$</td>
<td>$-4.13625E-02$</td>
<td>$9.424E-01$</td>
<td>$-3.90708E-02$</td>
</tr>
</tbody>
</table>
SVOBOGA POLYNOMIAL ROOTFINDER

POLYNOMIAL OF DEGREE 4

<table>
<thead>
<tr>
<th>Real Part</th>
<th>Imaginary Part</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.64414E00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.00000E00</td>
<td>6.2601E00</td>
<td>2</td>
</tr>
<tr>
<td>0.00000E00</td>
<td>-6.2601E00</td>
<td>2</td>
</tr>
<tr>
<td>-2.0642E00</td>
<td>0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

ACCURACY REQUESTED -- 6 SIGNIFICANT FIGURES

<table>
<thead>
<tr>
<th>Real Part</th>
<th>Imaginary Part</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.9366E01</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>3.364E05</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>

POLYNOMIAL OF DEGREE 2

<table>
<thead>
<tr>
<th>Real Part</th>
<th>Imaginary Part</th>
<th>Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.9366E00</td>
<td>0.0</td>
<td>2</td>
</tr>
<tr>
<td>3.364E05</td>
<td>0.0</td>
<td>2</td>
</tr>
</tbody>
</table>
Sensitivity of Poles to CJ1

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>-3.6441E C2 0.0</td>
<td>6.8342E-01 0.0</td>
</tr>
<tr>
<td>8.0000E-03 6.2601E 02</td>
<td>5.5618E-03 -2.6411E 02</td>
</tr>
<tr>
<td>8.0000E-03 -6.2601E 02</td>
<td>-5.9182E-03 1.7452E 02</td>
</tr>
<tr>
<td>-2.0642E 01 0.0</td>
<td>5.9171E 01 0.0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to RE1

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>-3.6441E C2 0.0</td>
<td>5.2617E-02 0.0</td>
</tr>
<tr>
<td>8.0000E-03 6.2601E 02</td>
<td>-1.9173E 01 -2.4059E 02</td>
</tr>
<tr>
<td>8.0000E-03 -6.2601E 02</td>
<td>-1.9173E 01 1.4154E 02</td>
</tr>
<tr>
<td>-2.0642E 01 0.0</td>
<td>3.8550E-01 0.0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to CJ2

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>-3.6441E C2 0.0</td>
<td>1.8731E-01 0.0</td>
</tr>
<tr>
<td>8.0000E-03 6.2601E 02</td>
<td>-3.1010E-05 -8.2186E 00</td>
</tr>
<tr>
<td>8.0000E-03 -6.2601E 02</td>
<td>-3.1010E-05 1.7644E 01</td>
</tr>
<tr>
<td>-2.0642E 01 0.0</td>
<td>2.5615E-02 0.0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to RE2

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>-3.6441E C2 0.0</td>
<td>-2.9912E 02 0.0</td>
</tr>
<tr>
<td>8.0000E-03 6.2601E 02</td>
<td>-1.9445E 01 -7.0625E 02</td>
</tr>
<tr>
<td>8.0000E-03 -6.2601E 02</td>
<td>-1.9445E 01 1.6652E 02</td>
</tr>
<tr>
<td>-2.0642E 01 0.0</td>
<td>-3.2568E 00 0.0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to RE3

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>Imag</td>
</tr>
<tr>
<td>-3.6441E C2 0.0</td>
<td>6.2044E 01 0.0</td>
</tr>
<tr>
<td>8.0000E-03 6.2601E 02</td>
<td>-2.0464E-01 -2.4163E 02</td>
</tr>
<tr>
<td>8.0000E-03 -6.2601E 02</td>
<td>-2.0464E-01 1.8059E 02</td>
</tr>
<tr>
<td>-2.0642E 01 0.0</td>
<td>1.6571E 01 0.0</td>
</tr>
</tbody>
</table>

C-71
Sensitivity of Poles to LE1

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>IMAG</td>
</tr>
<tr>
<td>(-3.6441E \cdot 2)</td>
<td>0</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(-8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(-2.0642E \cdot 01)</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to CJ3

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>IMAG</td>
</tr>
<tr>
<td>(-3.6441E \cdot 2)</td>
<td>0</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(-8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(-2.0642E \cdot 01)</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to CJ4

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>IMAG</td>
</tr>
<tr>
<td>(-3.6441E \cdot 2)</td>
<td>0</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(-8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(-2.0642E \cdot 01)</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to CJ5

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>IMAG</td>
</tr>
<tr>
<td>(-3.6441E \cdot 2)</td>
<td>0</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(-8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(-2.0642E \cdot 01)</td>
<td>0</td>
</tr>
</tbody>
</table>

Sensitivity of Poles to DJ2

<table>
<thead>
<tr>
<th>Poles</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAL</td>
<td>IMAG</td>
</tr>
<tr>
<td>(-3.6441E \cdot 2)</td>
<td>0</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(8.0000E \cdot 03)</td>
<td>(-8.2601E \cdot 02)</td>
</tr>
<tr>
<td>(-2.0642E \cdot 01)</td>
<td>0</td>
</tr>
</tbody>
</table>

C-72
Sensitivity with respect to C1

The transform of the response is:

<table>
<thead>
<tr>
<th>Exp. of S</th>
<th>Numer. coeffs</th>
<th>Cenc. coeffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.2231E-04</td>
</tr>
<tr>
<td>1</td>
<td>4.631E+02</td>
<td>6.2142E+02</td>
</tr>
<tr>
<td>2</td>
<td>1.156E+03</td>
<td>1.0947E+03</td>
</tr>
<tr>
<td>3</td>
<td>-2.9210E-03</td>
<td>-4.9205E-03</td>
</tr>
<tr>
<td>4</td>
<td>-1.1233E-05</td>
<td>-1.1925E-05</td>
</tr>
<tr>
<td>5</td>
<td>-1.0320E-06</td>
<td>-1.8570E-06</td>
</tr>
<tr>
<td>6</td>
<td>-6.6662E-11</td>
<td>-6.1990E-04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E-01</td>
<td>8.6525E-01</td>
<td>8.962E-01</td>
<td>8.73E-01</td>
<td>1.004E-02</td>
<td>1.4617E-00</td>
<td>1.125E-02</td>
<td>9.6355E-01</td>
</tr>
<tr>
<td>8.039E-01</td>
<td>8.6526E-01</td>
<td>9.632E-01</td>
<td>8.7157E-01</td>
<td>1.009E-02</td>
<td>1.2729E-00</td>
<td>1.130E-02</td>
<td>9.6254E-01</td>
</tr>
<tr>
<td>8.073E-01</td>
<td>8.834E-01</td>
<td>8.944E-01</td>
<td>8.6952E-01</td>
<td>1.013E-02</td>
<td>1.1776E-00</td>
<td>1.135E-02</td>
<td>9.6161E-01</td>
</tr>
<tr>
<td>8.110E-01</td>
<td>8.6502E-01</td>
<td>9.665E-01</td>
<td>8.6953E-01</td>
<td>1.018E-02</td>
<td>1.2359E-00</td>
<td>1.140E-02</td>
<td>9.6076E-01</td>
</tr>
<tr>
<td>8.147E-01</td>
<td>8.6444E-01</td>
<td>9.126E-01</td>
<td>8.6601E-01</td>
<td>1.022E-02</td>
<td>1.1882E-00</td>
<td>1.145E-02</td>
<td>9.5990E-01</td>
</tr>
<tr>
<td>8.184E-01</td>
<td>8.6480E-01</td>
<td>9.166E-01</td>
<td>8.6367E-01</td>
<td>1.027E-02</td>
<td>1.1437E-00</td>
<td>1.151E-02</td>
<td>9.5924E-01</td>
</tr>
<tr>
<td>8.221E-01</td>
<td>8.8463E-01</td>
<td>9.210E-01</td>
<td>8.6103E-01</td>
<td>1.032E-02</td>
<td>1.1046E-00</td>
<td>1.156E-02</td>
<td>9.5861E-01</td>
</tr>
<tr>
<td>8.296E-01</td>
<td>8.8523E-01</td>
<td>9.264E-01</td>
<td>8.5475E-01</td>
<td>1.041E-02</td>
<td>1.0039E-00</td>
<td>1.166E-02</td>
<td>9.5776E-01</td>
</tr>
<tr>
<td>8.603E-01</td>
<td>8.8124E-01</td>
<td>9.637E-01</td>
<td>8.0902E-01</td>
<td>1.080E-02</td>
<td>8.7912E-00</td>
<td>1.220E-02</td>
<td>9.5385E-01</td>
</tr>
<tr>
<td>8.881E-01</td>
<td>8.7581E-01</td>
<td>9.954E-01</td>
<td>2.642E-00</td>
<td>1.119E-02</td>
<td>9.6586E-00</td>
<td>1.249E-02</td>
<td>9.5284E-01</td>
</tr>
<tr>
<td>8.921E-01</td>
<td>8.7439E-01</td>
<td>9.994E-01</td>
<td>2.3675E-00</td>
<td>1.120E-02</td>
<td>9.6467E-00</td>
<td>1.254E-02</td>
<td>9.5270E-01</td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>8.000E 01</td>
<td>7.061846E 00</td>
<td>8.0962E 01</td>
<td>7.032422E 00</td>
<td>1.0004E 02</td>
<td>7.078587E 00</td>
<td>1.0012E 02</td>
<td>6.025863E 00</td>
</tr>
<tr>
<td>8.036E 01</td>
<td>7.0555E 00</td>
<td>9.003E 01</td>
<td>6.55440E 00</td>
<td>1.0009E 02</td>
<td>7.0516E 00</td>
<td>1.0013E 02</td>
<td>6.023376E 00</td>
</tr>
<tr>
<td>8.073E 01</td>
<td>7.07457E 00</td>
<td>9.0044E 01</td>
<td>6.45464E 00</td>
<td>1.0013E 02</td>
<td>7.02122E 00</td>
<td>1.0013E 02</td>
<td>6.020915E 00</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>7.05265E 00</td>
<td>9.0065E 01</td>
<td>6.93550E 00</td>
<td>1.0019E 02</td>
<td>7.10594E 00</td>
<td>1.0014E 02</td>
<td>6.010407E 00</td>
</tr>
<tr>
<td>8.147E 01</td>
<td>7.03027E 00</td>
<td>9.0126E 01</td>
<td>6.90545E 00</td>
<td>1.0022E 02</td>
<td>7.07748E 00</td>
<td>1.0014E 02</td>
<td>6.01600E 00</td>
</tr>
<tr>
<td>8.184E 01</td>
<td>7.0573E 00</td>
<td>9.0166E 01</td>
<td>6.74375E 00</td>
<td>1.0027E 02</td>
<td>6.99101E 00</td>
<td>1.0015E 02</td>
<td>6.013702E 00</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>7.04955E 00</td>
<td>9.021E 01</td>
<td>6.84071E 00</td>
<td>1.0032E 02</td>
<td>6.92006E 00</td>
<td>1.0016E 02</td>
<td>6.011348E 00</td>
</tr>
<tr>
<td>8.258E 01</td>
<td>7.04230E 00</td>
<td>9.021E 01</td>
<td>6.66659E 00</td>
<td>1.0036E 02</td>
<td>6.85921E 00</td>
<td>1.0016E 02</td>
<td>6.009668E 00</td>
</tr>
<tr>
<td>8.296E 01</td>
<td>7.04034E 00</td>
<td>9.0294E 01</td>
<td>6.76647E 00</td>
<td>1.0041E 02</td>
<td>6.80586E 00</td>
<td>1.0016E 02</td>
<td>6.005605E 00</td>
</tr>
<tr>
<td>8.334E 01</td>
<td>7.01752E 00</td>
<td>9.0326E 01</td>
<td>6.13537E 00</td>
<td>1.0046E 02</td>
<td>6.75791E 00</td>
<td>1.0017E 02</td>
<td>6.004386E 00</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>7.03446E 00</td>
<td>9.037OE 01</td>
<td>6.6889E 00</td>
<td>1.0051E 02</td>
<td>6.71432E 00</td>
<td>1.0017E 02</td>
<td>6.002054E 00</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>7.037152E 00</td>
<td>9.0421E 01</td>
<td>6.64292E 00</td>
<td>1.0055E 02</td>
<td>6.67391E 00</td>
<td>1.0018E 02</td>
<td>5.99826E 00</td>
</tr>
<tr>
<td>8.448E 01</td>
<td>7.03824E 00</td>
<td>9.0464E 01</td>
<td>6.55221E 00</td>
<td>1.0060E 02</td>
<td>6.63639E 00</td>
<td>1.0018E 02</td>
<td>5.97969E 00</td>
</tr>
<tr>
<td>8.487E 01</td>
<td>7.03248E 00</td>
<td>9.057E 01</td>
<td>6.5381E 00</td>
<td>1.0065E 02</td>
<td>6.60091E 00</td>
<td>1.0019E 02</td>
<td>5.95327E 00</td>
</tr>
<tr>
<td>8.52E 01</td>
<td>7.02012E 00</td>
<td>9.0520E 01</td>
<td>6.46888E 00</td>
<td>1.0070E 02</td>
<td>6.56714E 00</td>
<td>1.0019E 02</td>
<td>5.93094E 00</td>
</tr>
<tr>
<td>8.556E 01</td>
<td>7.02773E 00</td>
<td>9.0554E 01</td>
<td>6.3919E 00</td>
<td>1.0075E 02</td>
<td>6.53476E 00</td>
<td>1.0020E 02</td>
<td>5.90874E 00</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>7.02532E 00</td>
<td>9.0637E 01</td>
<td>6.2553E 00</td>
<td>1.0080E 02</td>
<td>6.50382E 00</td>
<td>1.0020E 02</td>
<td>5.88666E 00</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>7.02209E 00</td>
<td>9.0681E 01</td>
<td>6.1708E 00</td>
<td>1.0085E 02</td>
<td>6.47308E 00</td>
<td>1.0021E 02</td>
<td>5.86469E 00</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>7.020445E 00</td>
<td>9.0725E 01</td>
<td>6.09727E 00</td>
<td>1.0089E 02</td>
<td>6.44474E 00</td>
<td>1.0022E 02</td>
<td>5.84279E 00</td>
</tr>
<tr>
<td>8.72E 01</td>
<td>7.01766E 00</td>
<td>9.077C 01</td>
<td>6.01166E 00</td>
<td>1.0094E 02</td>
<td>6.41643E 00</td>
<td>1.0022E 02</td>
<td>5.82102E 00</td>
</tr>
<tr>
<td>8.76E 01</td>
<td>7.01544E 00</td>
<td>9.0814E 01</td>
<td>5.24777E 00</td>
<td>1.0099E 02</td>
<td>6.38887E 00</td>
<td>1.0023E 02</td>
<td>5.79938E 00</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>7.01255E 00</td>
<td>9.0859E 01</td>
<td>4.0486E 00</td>
<td>1.0104E 02</td>
<td>6.36198E 00</td>
<td>1.0023E 02</td>
<td>5.77775E 00</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>7.010301E 00</td>
<td>9.09C4E 01</td>
<td>-5.6798CE 00</td>
<td>1.0109E 02</td>
<td>6.33544E 00</td>
<td>1.0024E 02</td>
<td>5.75629E 00</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>7.01064E 00</td>
<td>9.0949E 01</td>
<td>-1.26772E 02</td>
<td>1.0115E 02</td>
<td>6.30950E 00</td>
<td>1.0024E 02</td>
<td>5.7349E 00</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>7.0245E 00</td>
<td>9.0954E 01</td>
<td>8.94966E 00</td>
<td>1.0120E 02</td>
<td>6.2899E 00</td>
<td>1.0025E 02</td>
<td>5.71396E 00</td>
</tr>
</tbody>
</table>
PLCT (TV=IE/FP=EC/TC=126/BL=CJ2)

SENSITIVITY WITH RESPECT TO DJ2

THE TRANSFER OF THE RESPONSE IS ---

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NUMER. COEFFS.</th>
<th>DENOM. COEFFS.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1.2192E+04</td>
<td>1.2231E+04</td>
</tr>
<tr>
<td>1</td>
<td>-9.66412E+02</td>
<td>6.31421E+02</td>
</tr>
<tr>
<td>2</td>
<td>-7.18329E+00</td>
<td>1.680477E+00</td>
</tr>
<tr>
<td>3</td>
<td>-1.67226E+02</td>
<td>-4.60257E+00</td>
</tr>
<tr>
<td>4</td>
<td>-1.99598E+05</td>
<td>-1.31256E+05</td>
</tr>
<tr>
<td>5</td>
<td>-1.66674E+06</td>
<td>-1.43701E+08</td>
</tr>
<tr>
<td>6</td>
<td>-9.6</td>
<td>-1.49994E+11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E 01</td>
<td>1.54CC0E 00</td>
<td>8.962E 01</td>
<td>1.55487E 00</td>
<td>1.000E 02</td>
<td>2.44042E 00</td>
<td>1.125E 02</td>
<td>1.06081E 00</td>
</tr>
<tr>
<td>8.036E 01</td>
<td>1.50880E 00</td>
<td>9.003E 01</td>
<td>1.55585E 00</td>
<td>1.001E 02</td>
<td>1.39109E 00</td>
<td>1.130E 02</td>
<td>1.04150E 00</td>
</tr>
<tr>
<td>8.073E 01</td>
<td>1.73724E 00</td>
<td>9.044E 01</td>
<td>1.55564E 00</td>
<td>1.002E 02</td>
<td>1.02453E 00</td>
<td>1.135E 02</td>
<td>1.06290E 00</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>1.70631E 00</td>
<td>9.065E 01</td>
<td>1.57224E 00</td>
<td>1.003E 02</td>
<td>9.00334E 01</td>
<td>1.140E 02</td>
<td>1.08305E 00</td>
</tr>
<tr>
<td>8.147E 01</td>
<td>1.55746E 00</td>
<td>9.126E 01</td>
<td>1.56132E 00</td>
<td>1.004E 02</td>
<td>8.70706E 01</td>
<td>1.145E 02</td>
<td>1.06326E 00</td>
</tr>
<tr>
<td>8.184E 01</td>
<td>1.53495E 00</td>
<td>9.168E 01</td>
<td>1.55160E 00</td>
<td>1.005E 02</td>
<td>8.76556E 01</td>
<td>1.151E 02</td>
<td>1.06324E 00</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>1.53465E 00</td>
<td>9.210E 01</td>
<td>1.55568E 00</td>
<td>1.006E 02</td>
<td>8.53946E 01</td>
<td>1.156E 02</td>
<td>1.09301E 00</td>
</tr>
<tr>
<td>8.258E 01</td>
<td>1.53356E 00</td>
<td>9.252E 01</td>
<td>1.51949E 00</td>
<td>1.007E 02</td>
<td>9.16488E 01</td>
<td>1.161E 02</td>
<td>1.06259E 00</td>
</tr>
<tr>
<td>8.296E 01</td>
<td>1.53277E 00</td>
<td>9.294E 01</td>
<td>1.52646E 00</td>
<td>1.008E 02</td>
<td>9.36376E 01</td>
<td>1.166E 02</td>
<td>1.08198E 00</td>
</tr>
<tr>
<td>8.334E 01</td>
<td>1.53230E 00</td>
<td>9.336E 01</td>
<td>1.53243E 00</td>
<td>1.009E 02</td>
<td>9.52597E 01</td>
<td>1.172E 02</td>
<td>1.09122E 00</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>1.53159E 00</td>
<td>9.378E 01</td>
<td>1.53636E 00</td>
<td>1.010E 02</td>
<td>9.68804E 01</td>
<td>1.177E 02</td>
<td>1.06030E 00</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>1.53114E 00</td>
<td>9.421E 01</td>
<td>1.57522E 00</td>
<td>1.011E 02</td>
<td>9.83009E 01</td>
<td>1.182E 02</td>
<td>1.09295E 00</td>
</tr>
<tr>
<td>8.448E 01</td>
<td>1.53106E 00</td>
<td>9.464E 01</td>
<td>1.57130E 00</td>
<td>1.012E 02</td>
<td>9.53904E 01</td>
<td>1.188E 02</td>
<td>1.08078E 00</td>
</tr>
<tr>
<td>8.487E 01</td>
<td>1.53178E 00</td>
<td>9.507E 01</td>
<td>1.55336E 00</td>
<td>1.013E 02</td>
<td>9.00613E 00</td>
<td>1.193E 02</td>
<td>1.05676E 00</td>
</tr>
<tr>
<td>8.525E 01</td>
<td>1.53207E 00</td>
<td>9.550E 01</td>
<td>1.55336E 00</td>
<td>1.014E 02</td>
<td>9.01544E 00</td>
<td>1.199E 02</td>
<td>1.05529E 00</td>
</tr>
<tr>
<td>8.564E 01</td>
<td>1.53256E 00</td>
<td>9.594E 01</td>
<td>1.55666E 00</td>
<td>1.015E 02</td>
<td>9.02349E 00</td>
<td>1.204E 02</td>
<td>1.05383E 00</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>1.53329E 00</td>
<td>9.637E 01</td>
<td>1.93041E 00</td>
<td>1.016E 02</td>
<td>9.00304E 00</td>
<td>1.209E 02</td>
<td>1.05221E 00</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>1.53424E 00</td>
<td>9.681E 01</td>
<td>2.02133E 00</td>
<td>1.017E 02</td>
<td>9.03642E 00</td>
<td>1.215E 02</td>
<td>1.05051E 00</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>1.53546E 00</td>
<td>9.725E 01</td>
<td>2.13784E 00</td>
<td>1.018E 02</td>
<td>9.04157E 00</td>
<td>1.220E 02</td>
<td>1.04872E 00</td>
</tr>
<tr>
<td>8.721E 01</td>
<td>1.53655E 00</td>
<td>9.770E 01</td>
<td>2.26102E 00</td>
<td>1.019E 02</td>
<td>9.04596E 00</td>
<td>1.224E 02</td>
<td>1.04685E 00</td>
</tr>
<tr>
<td>8.761E 01</td>
<td>1.53886E 00</td>
<td>9.814E 01</td>
<td>2.37373E 00</td>
<td>1.020E 02</td>
<td>9.04970E 00</td>
<td>1.232E 02</td>
<td>1.04491E 00</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>1.54110E 00</td>
<td>9.859E 01</td>
<td>3.40735E 00</td>
<td>1.021E 02</td>
<td>9.05286E 00</td>
<td>1.237E 02</td>
<td>1.04250E 00</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>1.54377E 00</td>
<td>9.904E 01</td>
<td>9.1394E 00</td>
<td>1.022E 02</td>
<td>9.05505E 00</td>
<td>1.243E 02</td>
<td>1.04083E 00</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>1.54651E 00</td>
<td>9.949E 01</td>
<td>1.25852E 00</td>
<td>1.023E 02</td>
<td>9.05767E 00</td>
<td>1.249E 02</td>
<td>1.03870E 00</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>1.55056E 00</td>
<td>9.994E 01</td>
<td>7.05567E 00</td>
<td>1.024E 02</td>
<td>9.05943E 00</td>
<td>1.254E 02</td>
<td>1.03650E 00</td>
</tr>
</tbody>
</table>
GREATEST VALUE = 1.62105E 02
GREATEST VALUE = -1.780380
INTERVAL = 3.955E00

<table>
<thead>
<tr>
<th>Value</th>
<th>1.62105E 02</th>
<th>-1.780380</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity with respect to TC CJ3

The transform of the response is

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NUMER. COEFFS</th>
<th>DENOM. COEFFS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 000E 01</td>
<td>9.93158E-01</td>
<td>6.86E 01</td>
<td>1.44785E 00</td>
<td>1.006E 02</td>
<td>1.1578E 00</td>
<td>1.15E 02</td>
<td>3.64085E 01</td>
</tr>
<tr>
<td>8 036E 01</td>
<td>1.00242E 00</td>
<td>9.003E 01</td>
<td>1.4681E 00</td>
<td>1.009E 02</td>
<td>7.0565E 00</td>
<td>1.130E 02</td>
<td>3.70435E 00</td>
</tr>
<tr>
<td>8 073E 01</td>
<td>1.01246E 00</td>
<td>9.044E 01</td>
<td>1.5293E 00</td>
<td>1.018E 02</td>
<td>4.9556E 00</td>
<td>1.135E 02</td>
<td>3.59231E 00</td>
</tr>
<tr>
<td>8 110E 01</td>
<td>1.02259E 00</td>
<td>9.085E 01</td>
<td>1.5768E 00</td>
<td>1.022E 02</td>
<td>3.8151E 00</td>
<td>1.140E 02</td>
<td>3.50220E 00</td>
</tr>
<tr>
<td>8 147E 01</td>
<td>1.03282E 00</td>
<td>9.126E 01</td>
<td>1.6274E 00</td>
<td>1.027E 02</td>
<td>3.051E 00</td>
<td>1.149E 02</td>
<td>3.49219E 00</td>
</tr>
<tr>
<td>8 184E 01</td>
<td>1.04306E 00</td>
<td>9.168E 01</td>
<td>1.6848E 00</td>
<td>1.032E 02</td>
<td>2.1755E 00</td>
<td>1.151E 02</td>
<td>3.3756E 00</td>
</tr>
<tr>
<td>8 221E 01</td>
<td>1.05440E 00</td>
<td>9.210E 01</td>
<td>1.7466E 00</td>
<td>1.038E 02</td>
<td>2.1380E 00</td>
<td>1.156E 02</td>
<td>3.3394E 00</td>
</tr>
<tr>
<td>8 258E 01</td>
<td>1.06668E 00</td>
<td>9.251E 01</td>
<td>1.8021E 00</td>
<td>1.044E 02</td>
<td>1.8217E 00</td>
<td>1.161E 02</td>
<td>3.3140E 00</td>
</tr>
<tr>
<td>8 296E 01</td>
<td>1.07914E 00</td>
<td>9.294E 01</td>
<td>1.8618E 00</td>
<td>1.050E 02</td>
<td>1.5831E 00</td>
<td>1.166E 02</td>
<td>3.2991E 00</td>
</tr>
<tr>
<td>8 334E 01</td>
<td>1.09222E 00</td>
<td>9.334E 01</td>
<td>1.9254E 00</td>
<td>1.056E 02</td>
<td>1.3903E 00</td>
<td>1.172E 02</td>
<td>3.29549E 00</td>
</tr>
<tr>
<td>8 372E 01</td>
<td>1.1C951E 00</td>
<td>9.378E 01</td>
<td>2.0057E 00</td>
<td>1.061E 02</td>
<td>1.2316E 00</td>
<td>1.177E 02</td>
<td>3.29933E 00</td>
</tr>
<tr>
<td>8 410E 01</td>
<td>1.12033E 00</td>
<td>9.421E 01</td>
<td>2.0832E 00</td>
<td>1.065E 02</td>
<td>1.0999E 00</td>
<td>1.181E 02</td>
<td>3.3107E 00</td>
</tr>
<tr>
<td>8 448E 01</td>
<td>1.15551E 00</td>
<td>9.464E 01</td>
<td>2.2683E 00</td>
<td>1.069E 02</td>
<td>9.8705E-01</td>
<td>1.186E 02</td>
<td>3.32088E 00</td>
</tr>
<tr>
<td>8 486E 01</td>
<td>1.19122E 00</td>
<td>9.507E 01</td>
<td>2.4523E 00</td>
<td>1.073E 02</td>
<td>8.9146E-01</td>
<td>1.192E 02</td>
<td>3.34646E 00</td>
</tr>
<tr>
<td>8 525E 01</td>
<td>1.16843E 00</td>
<td>9.550E 01</td>
<td>2.7534E 00</td>
<td>1.076E 02</td>
<td>8.9354E-01</td>
<td>1.190E 02</td>
<td>3.3740E 00</td>
</tr>
<tr>
<td>8 564E 01</td>
<td>1.16833E 00</td>
<td>9.594E 01</td>
<td>3.1545E 00</td>
<td>1.078E 02</td>
<td>7.3835E-01</td>
<td>1.200E 02</td>
<td>3.4030E 00</td>
</tr>
<tr>
<td>8 603E 01</td>
<td>1.20530E 00</td>
<td>9.637E 01</td>
<td>3.4533E 00</td>
<td>1.080E 02</td>
<td>6.7669E-01</td>
<td>1.202E 02</td>
<td>3.4346E 00</td>
</tr>
<tr>
<td>8 642E 01</td>
<td>1.22947E 00</td>
<td>9.681E 01</td>
<td>3.7889E 00</td>
<td>1.082E 02</td>
<td>6.2304E-01</td>
<td>1.205E 02</td>
<td>3.4644E 00</td>
</tr>
<tr>
<td>8 682E 01</td>
<td>1.24530E 00</td>
<td>9.723E 01</td>
<td>4.1372E 00</td>
<td>1.084E 02</td>
<td>5.7628E-01</td>
<td>1.210E 02</td>
<td>3.5031E 00</td>
</tr>
<tr>
<td>8 721E 01</td>
<td>1.26583E 00</td>
<td>9.767E 01</td>
<td>4.5092E 00</td>
<td>1.086E 02</td>
<td>5.3528E-01</td>
<td>1.226E 02</td>
<td>3.5407E 00</td>
</tr>
<tr>
<td>8 761E 01</td>
<td>1.29432E 00</td>
<td>9.816E 01</td>
<td>4.9176E 00</td>
<td>1.089E 02</td>
<td>5.0063E-01</td>
<td>1.232E 02</td>
<td>3.5783E 00</td>
</tr>
<tr>
<td>8 801E 01</td>
<td>1.32056E 00</td>
<td>9.869E 01</td>
<td>5.3557E 00</td>
<td>1.091E 02</td>
<td>4.6932E-01</td>
<td>1.237E 02</td>
<td>3.6168E 00</td>
</tr>
<tr>
<td>8 841E 01</td>
<td>1.34981E 00</td>
<td>9.924E 01</td>
<td>5.8013E 00</td>
<td>1.093E 02</td>
<td>4.3725E-01</td>
<td>1.242E 02</td>
<td>3.6554E 00</td>
</tr>
<tr>
<td>8 881E 01</td>
<td>1.37925E 00</td>
<td>9.989E 01</td>
<td>6.2521E 00</td>
<td>1.095E 02</td>
<td>4.0912E-01</td>
<td>1.249E 02</td>
<td>3.6940E 00</td>
</tr>
<tr>
<td>8 921E 01</td>
<td>1.41217E 00</td>
<td>9.954E 01</td>
<td>6.7396E 00</td>
<td>1.098E 02</td>
<td>4.0074E-01</td>
<td>1.254E 02</td>
<td>3.7340E 00</td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00E 01</td>
<td>1.56058E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.03E 01</td>
<td>1.56141E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.06E 01</td>
<td>1.56224E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.09E 01</td>
<td>1.56310E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.12E 01</td>
<td>1.56397E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.15E 01</td>
<td>1.56485E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.18E 01</td>
<td>1.56575E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.21E 01</td>
<td>1.56667E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.24E 01</td>
<td>1.56761E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.27E 01</td>
<td>1.56857E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.30E 01</td>
<td>1.56955E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.33E 01</td>
<td>1.57055E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.36E 01</td>
<td>1.57157E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.39E 01</td>
<td>1.57261E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.42E 01</td>
<td>1.57368E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.45E 01</td>
<td>1.57477E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.48E 01</td>
<td>1.57589E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.52E 01</td>
<td>1.57704E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.56E 01</td>
<td>1.57822E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.60E 01</td>
<td>1.57943E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.64E 01</td>
<td>1.58068E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.68E 01</td>
<td>1.58195E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.72E 01</td>
<td>1.58325E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.76E 01</td>
<td>1.58459E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.80E 01</td>
<td>1.58595E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.84E 01</td>
<td>1.58735E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.88E 01</td>
<td>1.58879E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.92E 01</td>
<td>1.59026E 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GREATEST VALUE = 1.7615E 02
LOWEST VALUE = -1.7615E 02
INTERVAL = 3.5230E 00

<table>
<thead>
<tr>
<th>Value</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.7615</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

C-84
PLCT(1Y=SEIFR=eC/TC=126/EL=LEI)

SENSITIVITY WITH RESPECT TC LEI

The transform of the response is ---

<table>
<thead>
<tr>
<th>EXP. OF S</th>
<th>NUMER. COEFFS</th>
<th>DEAER. COEFFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.22316E-04</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>6.31421E-02</td>
</tr>
<tr>
<td>2</td>
<td>3.83956E-02</td>
<td>1.60477E-00</td>
</tr>
<tr>
<td>3</td>
<td>1.01422E-03</td>
<td>-4.62057E-03</td>
</tr>
<tr>
<td>4</td>
<td>-1.45302E-06</td>
<td>-1.92566E-05</td>
</tr>
<tr>
<td>5</td>
<td>-3.84371E-08</td>
<td>-4.19904E-11</td>
</tr>
<tr>
<td>6</td>
<td>-4.19904E-11</td>
<td>-4.19904E-11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.00E 01</td>
<td>1.08068E-00</td>
<td>9.03E 01</td>
<td>1.35302E-00</td>
<td>1.080E 02</td>
<td>6.97633E-01</td>
</tr>
<tr>
<td>8.03E 01</td>
<td>1.89409E-00</td>
<td>9.05E 01</td>
<td>4.43268E-00</td>
<td>1.080E 02</td>
<td>6.42864E-01</td>
</tr>
<tr>
<td>8.10E 01</td>
<td>1.59549E-00</td>
<td>9.04E 01</td>
<td>5.65150E-00</td>
<td>1.080E 02</td>
<td>1.130E-02</td>
</tr>
<tr>
<td>8.11E 01</td>
<td>1.09687E-00</td>
<td>9.03E 01</td>
<td>5.95816E-00</td>
<td>1.080E 02</td>
<td>2.39437E-01</td>
</tr>
<tr>
<td>8.12E 01</td>
<td>2.06252E-00</td>
<td>9.03E 01</td>
<td>5.46276E-00</td>
<td>1.080E 02</td>
<td>1.31450E-01</td>
</tr>
<tr>
<td>8.22E 01</td>
<td>2.12340E-00</td>
<td>9.03E 01</td>
<td>5.46276E-00</td>
<td>1.080E 02</td>
<td>1.31450E-01</td>
</tr>
<tr>
<td>8.23E 01</td>
<td>2.16625E-00</td>
<td>9.03E 01</td>
<td>5.46276E-00</td>
<td>1.080E 02</td>
<td>1.31450E-01</td>
</tr>
<tr>
<td>8.24E 01</td>
<td>2.51410E-00</td>
<td>9.03E 01</td>
<td>6.67354E-00</td>
<td>1.080E 02</td>
<td>1.84602E-01</td>
</tr>
<tr>
<td>8.33E 01</td>
<td>2.31387E-00</td>
<td>9.03E 01</td>
<td>7.17338E-00</td>
<td>1.080E 02</td>
<td>1.69436E-01</td>
</tr>
<tr>
<td>8.37E 01</td>
<td>2.39158E-00</td>
<td>9.03E 01</td>
<td>7.46876E-00</td>
<td>1.080E 02</td>
<td>1.56074E-01</td>
</tr>
<tr>
<td>8.40E 01</td>
<td>2.46792E-00</td>
<td>9.03E 01</td>
<td>8.16130E-00</td>
<td>1.080E 02</td>
<td>1.16120E-01</td>
</tr>
<tr>
<td>8.44E 01</td>
<td>2.54813E-00</td>
<td>9.03E 01</td>
<td>8.92233E-00</td>
<td>1.080E 02</td>
<td>1.02620E-01</td>
</tr>
<tr>
<td>8.48E 01</td>
<td>2.53219E-00</td>
<td>9.03E 01</td>
<td>9.01461E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.52E 01</td>
<td>2.72676E-00</td>
<td>9.03E 01</td>
<td>1.02814E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.56E 01</td>
<td>2.81767E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.60E 01</td>
<td>2.91002E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.62E 01</td>
<td>3.02066E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.68E 01</td>
<td>2.14147E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.72E 01</td>
<td>3.26416E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.76E 01</td>
<td>3.35567E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.80E 01</td>
<td>3.53633E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.84E 01</td>
<td>3.68884E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.88E 01</td>
<td>3.85241E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
<tr>
<td>8.92E 01</td>
<td>4.02649E-00</td>
<td>9.03E 01</td>
<td>1.05935E-00</td>
<td>1.080E 02</td>
<td>7.90568E-00</td>
</tr>
</tbody>
</table>
GREATEST VALUE = 3.43754E 02
LOWEST VALUE = 0.0
INTERVAL = 2.58951E 00
<table>
<thead>
<tr>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
<th>FREQ</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.000E 01</td>
<td>1.79837E 02</td>
<td>8.562E 01</td>
<td>1.75656E 02</td>
<td>1.004E 02</td>
<td>-2.027234E-01</td>
<td>1.125E 02</td>
<td>-9.03177E-02</td>
</tr>
<tr>
<td>8.036E 01</td>
<td>1.79809E 02</td>
<td>9.003E 01</td>
<td>1.75658E 02</td>
<td>1.009E 02</td>
<td>-1.68618E-01</td>
<td>1.130E 02</td>
<td>-8.90664E-02</td>
</tr>
<tr>
<td>8.073E 01</td>
<td>1.79811E 02</td>
<td>9.044E 01</td>
<td>1.75660E 02</td>
<td>1.012E 02</td>
<td>-1.51651E-01</td>
<td>1.135E 02</td>
<td>-8.79326E-02</td>
</tr>
<tr>
<td>8.110E 01</td>
<td>1.79813E 02</td>
<td>9.083E 01</td>
<td>1.75662E 02</td>
<td>1.016E 02</td>
<td>-1.41631E-01</td>
<td>1.140E 02</td>
<td>-8.67979E-02</td>
</tr>
<tr>
<td>8.147E 01</td>
<td>1.79815E 02</td>
<td>9.122E 01</td>
<td>1.75664E 02</td>
<td>1.022E 02</td>
<td>-1.31640E-01</td>
<td>1.145E 02</td>
<td>-8.56667E-02</td>
</tr>
<tr>
<td>8.184E 01</td>
<td>1.79817E 02</td>
<td>9.161E 01</td>
<td>1.75666E 02</td>
<td>1.027E 02</td>
<td>-1.21672E-01</td>
<td>1.151E 02</td>
<td>-8.45574E-02</td>
</tr>
<tr>
<td>8.221E 01</td>
<td>1.79819E 02</td>
<td>9.220E 01</td>
<td>1.75668E 02</td>
<td>1.028E 02</td>
<td>-1.15444E-01</td>
<td>1.156E 02</td>
<td>-8.34391E-02</td>
</tr>
<tr>
<td>8.258E 01</td>
<td>1.79821E 02</td>
<td>9.261E 01</td>
<td>1.75701E 02</td>
<td>1.036E 02</td>
<td>-1.22914E-01</td>
<td>1.161E 02</td>
<td>-8.23924E-02</td>
</tr>
<tr>
<td>8.296E 01</td>
<td>1.79822E 02</td>
<td>9.294E 01</td>
<td>1.75735E 02</td>
<td>1.043E 02</td>
<td>-1.16838E-01</td>
<td>1.166E 02</td>
<td>-8.13072E-02</td>
</tr>
<tr>
<td>8.334E 01</td>
<td>1.79825E 02</td>
<td>9.336E 01</td>
<td>1.75758E 02</td>
<td>1.046E 02</td>
<td>-1.13171E-01</td>
<td>1.172E 02</td>
<td>-8.02982E-02</td>
</tr>
<tr>
<td>8.372E 01</td>
<td>1.79827E 02</td>
<td>9.378E 01</td>
<td>1.75777E 02</td>
<td>1.051E 02</td>
<td>-1.13633E-01</td>
<td>1.177E 02</td>
<td>-7.92832E-02</td>
</tr>
<tr>
<td>8.410E 01</td>
<td>1.79829E 02</td>
<td>9.421E 01</td>
<td>1.75800E 02</td>
<td>1.055E 02</td>
<td>-1.17501E-01</td>
<td>1.182E 02</td>
<td>-7.82904E-02</td>
</tr>
<tr>
<td>8.448E 01</td>
<td>1.79831E 02</td>
<td>9.464E 01</td>
<td>1.75821E 02</td>
<td>1.060E 02</td>
<td>-1.09711E-01</td>
<td>1.188E 02</td>
<td>-7.72626E-02</td>
</tr>
<tr>
<td>8.487E 01</td>
<td>1.79833E 02</td>
<td>9.507E 01</td>
<td>1.75853E 02</td>
<td>1.065E 02</td>
<td>-1.07330E-01</td>
<td>1.193E 02</td>
<td>-7.63029E-02</td>
</tr>
<tr>
<td>8.525E 01</td>
<td>1.79835E 02</td>
<td>9.550E 01</td>
<td>1.75886E 02</td>
<td>1.070E 02</td>
<td>-1.05946E-01</td>
<td>1.199E 02</td>
<td>-7.53452E-02</td>
</tr>
<tr>
<td>8.564E 01</td>
<td>1.79837E 02</td>
<td>9.594E 01</td>
<td>1.75911E 02</td>
<td>1.075E 02</td>
<td>-1.04348E-01</td>
<td>1.204E 02</td>
<td>-7.44328E-02</td>
</tr>
<tr>
<td>8.603E 01</td>
<td>1.79839E 02</td>
<td>9.637E 01</td>
<td>1.75935E 02</td>
<td>1.080E 02</td>
<td>-1.02699E-01</td>
<td>1.209E 02</td>
<td>-7.35039E-02</td>
</tr>
<tr>
<td>8.642E 01</td>
<td>1.79841E 02</td>
<td>9.681E 01</td>
<td>1.75960E 02</td>
<td>1.085E 02</td>
<td>-1.01147E-01</td>
<td>1.215E 02</td>
<td>-7.25805E-02</td>
</tr>
<tr>
<td>8.682E 01</td>
<td>1.79843E 02</td>
<td>9.723E 01</td>
<td>1.75966E 02</td>
<td>1.089E 02</td>
<td>-9.96634E-02</td>
<td>1.220E 02</td>
<td>-7.16563E-02</td>
</tr>
<tr>
<td>8.721E 01</td>
<td>1.79845E 02</td>
<td>9.767E 01</td>
<td>1.75975E 02</td>
<td>1.094E 02</td>
<td>-9.82193E-02</td>
<td>1.226E 02</td>
<td>-7.07533E-02</td>
</tr>
<tr>
<td>8.761E 01</td>
<td>1.79847E 02</td>
<td>9.811E 01</td>
<td>1.75992E 02</td>
<td>1.099E 02</td>
<td>-9.67685E-02</td>
<td>1.232E 02</td>
<td>-6.98442E-02</td>
</tr>
<tr>
<td>8.801E 01</td>
<td>1.79849E 02</td>
<td>9.859E 01</td>
<td>1.76004E 02</td>
<td>1.104E 02</td>
<td>-9.53704E-02</td>
<td>1.237E 02</td>
<td>-6.90120E-02</td>
</tr>
<tr>
<td>8.841E 01</td>
<td>1.79851E 02</td>
<td>9.904E 01</td>
<td>1.76015E 02</td>
<td>1.109E 02</td>
<td>-9.40755E-02</td>
<td>1.243E 02</td>
<td>-6.81387E-02</td>
</tr>
<tr>
<td>8.881E 01</td>
<td>1.79853E 02</td>
<td>9.954E 01</td>
<td>1.76024E 02</td>
<td>1.115E 02</td>
<td>-9.27687E-02</td>
<td>1.249E 02</td>
<td>-6.72821E-02</td>
</tr>
<tr>
<td>8.921E 01</td>
<td>1.79855E 02</td>
<td>9.994E 01</td>
<td>1.76034E-01</td>
<td>1.120E 02</td>
<td>-9.14843E-02</td>
<td>1.254E 02</td>
<td>-6.64654E-02</td>
</tr>
</tbody>
</table>
GREATEST VALUE = 1.7999E 02
LOWEST VALUE = -1.79644E 02
INTERVAL = 3.1271E 00
PLCTTY=SE/FR=EC/TC=126/EL=RE3

SENSITIVITY WITH RESPECT TC RE3

THE TRANSFORM OF THE RESPONSE IS ---

<table>
<thead>
<tr>
<th>EXPo OF S</th>
<th>NUMERa COEFFSa</th>
<th>DENOM COEFFSb</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.71E00</td>
<td>1.22E00</td>
</tr>
<tr>
<td>1</td>
<td>4.87E00</td>
<td>6.21E00</td>
</tr>
<tr>
<td>2</td>
<td>1.26E00</td>
<td>1.80E00</td>
</tr>
<tr>
<td>3</td>
<td>1.36E00</td>
<td>-1.02E00</td>
</tr>
<tr>
<td>4</td>
<td>3.30E00</td>
<td>-1.19E00</td>
</tr>
<tr>
<td>5</td>
<td>1.01E00</td>
<td>-1.43E00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>-4.19E00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
<th>FREQ</th>
<th>MAG</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0E+01</td>
<td>2.31E-01</td>
<td>9.42E-01</td>
<td>2.74E-01</td>
<td>1.04E-01</td>
<td>1.80E02</td>
<td>1.12E02</td>
<td>1.28E02</td>
</tr>
<tr>
<td>8.05E+01</td>
<td>2.31E-01</td>
<td>9.02E+00</td>
<td>2.67E-01</td>
<td>1.00E-01</td>
<td>7.31E02</td>
<td>1.13E02</td>
<td>1.27E02</td>
</tr>
<tr>
<td>8.07E+01</td>
<td>2.31E-01</td>
<td>6.42E+00</td>
<td>2.60E-01</td>
<td>1.01E-01</td>
<td>5.03E02</td>
<td>1.15E02</td>
<td>1.25E02</td>
</tr>
<tr>
<td>8.10E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.11E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.12E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.13E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.14E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.15E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.16E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.17E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.18E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.19E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.20E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.21E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.22E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.23E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.24E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.25E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.26E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.27E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.28E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.29E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.30E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>8.31E+01</td>
<td>2.31E-01</td>
<td>6.35E+00</td>
<td>2.57E-01</td>
<td>1.05E-01</td>
<td>6.39E02</td>
<td>1.19E02</td>
<td>1.24E02</td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
<td>FREQ</td>
<td>PHA</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>0.000E 01</td>
<td>-6.76579E 00</td>
<td>0.062E 01</td>
<td>-4.56122E 01</td>
<td>1.004E 02</td>
<td>1.02997E 02</td>
<td>1.125E 02</td>
<td>3.81304E 01</td>
</tr>
<tr>
<td>0.036E 01</td>
<td>-9.00136E 00</td>
<td>0.043E 01</td>
<td>-2.66726E 01</td>
<td>1.009E 02</td>
<td>9.87016E 01</td>
<td>1.120E 02</td>
<td>3.72159E 01</td>
</tr>
<tr>
<td>0.073E 01</td>
<td>-9.04264E 00</td>
<td>0.046E 01</td>
<td>-2.15820E 01</td>
<td>1.013E 02</td>
<td>9.43805E 01</td>
<td>1.135E 02</td>
<td>3.63607E 01</td>
</tr>
<tr>
<td>0.110E 01</td>
<td>-9.64982E 00</td>
<td>0.066E 01</td>
<td>-3.55492E 01</td>
<td>1.016E 02</td>
<td>9.00995E 01</td>
<td>1.140E 02</td>
<td>3.55613E 01</td>
</tr>
<tr>
<td>0.147E 01</td>
<td>-7.55751E 00</td>
<td>0.126E 01</td>
<td>-2.35561E 01</td>
<td>1.022E 02</td>
<td>8.58987E 01</td>
<td>1.145E 02</td>
<td>3.48129E 01</td>
</tr>
<tr>
<td>0.184E 01</td>
<td>-1.03042E 01</td>
<td>0.168E 01</td>
<td>-2.47129E 01</td>
<td>1.027E 02</td>
<td>8.16328E 01</td>
<td>1.151E 02</td>
<td>3.41113E 01</td>
</tr>
<tr>
<td>0.221E 01</td>
<td>-1.03224E 01</td>
<td>0.210E 01</td>
<td>-3.93123E 01</td>
<td>1.032E 02</td>
<td>7.79353E 01</td>
<td>1.156E 02</td>
<td>3.36932E 01</td>
</tr>
<tr>
<td>0.258E 01</td>
<td>-1.06240E 01</td>
<td>0.251E 01</td>
<td>-2.20178E 01</td>
<td>1.036E 02</td>
<td>7.42291E 01</td>
<td>1.161E 02</td>
<td>3.28348E 01</td>
</tr>
<tr>
<td>0.296E 01</td>
<td>-0.18539E 01</td>
<td>0.294E 01</td>
<td>-2.85043E 01</td>
<td>1.041E 02</td>
<td>7.07317E 01</td>
<td>1.166E 02</td>
<td>3.22536E 01</td>
</tr>
<tr>
<td>0.334E 01</td>
<td>-1.12712E 01</td>
<td>0.336E 01</td>
<td>-3.61700E 01</td>
<td>1.046E 02</td>
<td>6.74521E 01</td>
<td>1.172E 02</td>
<td>3.17064E 01</td>
</tr>
<tr>
<td>0.372E 01</td>
<td>-1.16187E 01</td>
<td>0.378E 01</td>
<td>-3.17240E 01</td>
<td>1.051E 02</td>
<td>6.43913E 01</td>
<td>1.177E 02</td>
<td>3.11913E 01</td>
</tr>
<tr>
<td>0.410E 01</td>
<td>-1.25835E 01</td>
<td>0.421E 01</td>
<td>-3.17471E 01</td>
<td>1.056E 02</td>
<td>6.15450E 01</td>
<td>1.182E 02</td>
<td>3.07056E 01</td>
</tr>
<tr>
<td>0.448E 01</td>
<td>-1.23655E 01</td>
<td>0.464E 01</td>
<td>-3.33330E 01</td>
<td>1.060E 02</td>
<td>5.85060E 01</td>
<td>1.187E 02</td>
<td>3.02475E 01</td>
</tr>
<tr>
<td>0.487E 01</td>
<td>-1.27700E 01</td>
<td>0.507E 01</td>
<td>-3.73724E 01</td>
<td>1.065E 02</td>
<td>5.64631E 01</td>
<td>1.193E 02</td>
<td>2.98149E 01</td>
</tr>
<tr>
<td>0.525E 01</td>
<td>-1.31944E 01</td>
<td>0.550E 01</td>
<td>-3.57635E 01</td>
<td>1.070E 02</td>
<td>5.42049E 01</td>
<td>1.199E 02</td>
<td>2.94063E 01</td>
</tr>
<tr>
<td>0.564E 01</td>
<td>-1.36415E 01</td>
<td>0.594E 01</td>
<td>-4.15641E 01</td>
<td>1.075E 02</td>
<td>5.21781E 01</td>
<td>1.204E 02</td>
<td>2.90199E 01</td>
</tr>
<tr>
<td>0.603E 01</td>
<td>-1.41131E 01</td>
<td>0.637E 01</td>
<td>-4.35436E 01</td>
<td>1.080E 02</td>
<td>5.01895E 01</td>
<td>1.209E 02</td>
<td>2.86545E 01</td>
</tr>
<tr>
<td>0.642E 01</td>
<td>-1.46107E 01</td>
<td>0.681E 01</td>
<td>-4.73157E 01</td>
<td>1.085E 02</td>
<td>4.80474E 01</td>
<td>1.215E 02</td>
<td>2.83057E 01</td>
</tr>
<tr>
<td>0.682E 01</td>
<td>-1.51567E 01</td>
<td>0.725E 01</td>
<td>-5.30354E 01</td>
<td>1.090E 02</td>
<td>4.67594E 01</td>
<td>1.220E 02</td>
<td>2.79812E 01</td>
</tr>
<tr>
<td>0.721E 01</td>
<td>-1.56931E 01</td>
<td>0.770E 01</td>
<td>-5.35143E 01</td>
<td>1.094E 02</td>
<td>4.52343E 01</td>
<td>1.226E 02</td>
<td>2.76711E 01</td>
</tr>
<tr>
<td>0.761E 01</td>
<td>-1.62822E 01</td>
<td>0.816E 01</td>
<td>-5.48340E 01</td>
<td>1.099E 02</td>
<td>4.38213E 01</td>
<td>1.232E 02</td>
<td>2.73711E 01</td>
</tr>
<tr>
<td>0.801E 01</td>
<td>-1.65655E 01</td>
<td>0.855E 01</td>
<td>-6.02557E 01</td>
<td>1.104E 02</td>
<td>4.25113E 01</td>
<td>1.237E 02</td>
<td>2.70984E 01</td>
</tr>
<tr>
<td>0.841E 01</td>
<td>-1.75694E 01</td>
<td>0.904E 01</td>
<td>-6.43427E 01</td>
<td>1.109E 02</td>
<td>4.12947E 01</td>
<td>1.243E 02</td>
<td>2.68416E 01</td>
</tr>
<tr>
<td>0.881E 01</td>
<td>-1.82737E 01</td>
<td>0.949E 01</td>
<td>-6.80964E 01</td>
<td>1.115E 02</td>
<td>4.01638E 01</td>
<td>1.249E 02</td>
<td>2.65834E 01</td>
</tr>
<tr>
<td>0.921E 01</td>
<td>-1.90299E 01</td>
<td>0.994E 01</td>
<td>-7.17134E 01</td>
<td>1.120E 02</td>
<td>3.91111E 01</td>
<td>1.254E 02</td>
<td>2.63454E 01</td>
</tr>
</tbody>
</table>

```
NASAP TEMPERATURE STABILITY FIXED BIAS
V1 5 1 20 VR1
V2 5 4 1 VR9
R1 2 1 1
R2 1 3 510K
R3 3 4 1K
R4 6 5 40K
R5 1 6 5K
R6 3 7 +5
R7 3 8 10K
R8 8 9 +25
R9 8 10 10K
R10 10 11 1
R11 11 13 +923M
R12 10 13 +8037
R13 10 12 +090349
C1 11 13 +022UF
C2 10 13 +007893
L1 7 8 +02
L2 9 10 +002
L3 12 13 +019154
I1 1 2 1
I2 6 5 1 VR7
I3 6 5 1 IR10
I4 8 3 50 IR3
I5 10 8 1 VR1
I6 15 10 50 VR1
BPUT
IR5/IR1
PL5T(TYPE=REAL/FROM=.5/T0=.5/STEP=.1)
RUNTS
END
```
NETWORK ANALYSIS AND SYSTEMS APPLICATION PROGRAM

THIS VERSION WAS DEVELOPED AT UCLA ENGR. DEPT.

NASAP TEMPERATURE STABILITY FIXED BIAS

V1 5 1 2C VR1
V2 5 4 1 VR9
R1 2 1 1
R2 1 3 510K
R3 3 4 1K
R4 6 5 40K
R5 1 6 5K
R6 3 7 .5
R7 3 8 10K
R8 8 9 .25
R9 8 10 10K
R10 10 11 1
R11 11 13 .0923M
R12 10 13 -.8037
R13 10 12 .0090349
C1 11 13 .02UF
C2 10 13 .007783
L1 7 8 .02
L2 9 10 -.002
L3 12 13 .019154
I1 1 2 1
I2 6 5 1 VR7
I3 6 5 1 IR10
I4 8 3 50 IR3
I5 10 8 1 VR1
I6 13 10 50 VR1

OUTPLT

C-94
<table>
<thead>
<tr>
<th>ELEMENT NUMBER</th>
<th>ELEMENT NAME</th>
<th>DEPENDENCY (IF ANY)</th>
<th>ORIGIN NODE</th>
<th>TARGET NODE</th>
<th>VALUF</th>
<th>TAG</th>
<th>GENER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V1</td>
<td></td>
<td>5</td>
<td>1</td>
<td>2.00000000E01</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>V2</td>
<td></td>
<td>5</td>
<td>4</td>
<td>1.00000000E00</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>R1</td>
<td></td>
<td>2</td>
<td>1</td>
<td>1.00000000E00</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>R2</td>
<td></td>
<td>1</td>
<td>3</td>
<td>5.00000000E05</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>R3</td>
<td></td>
<td>3</td>
<td>4</td>
<td>1.00000000E03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>R4</td>
<td></td>
<td>6</td>
<td>5</td>
<td>4.00000000E06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>R5</td>
<td></td>
<td>1</td>
<td>6</td>
<td>5.00000000E03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>R6</td>
<td></td>
<td>3</td>
<td>7</td>
<td>1.00000000E04</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>R7</td>
<td></td>
<td>3</td>
<td>8</td>
<td>1.00000000E04</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>R8</td>
<td></td>
<td>8</td>
<td>9</td>
<td>2.00000000E01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>R9</td>
<td></td>
<td>8</td>
<td>10</td>
<td>1.00000000E04</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>R10</td>
<td></td>
<td>10</td>
<td>11</td>
<td>1.00000000E00</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>R11</td>
<td></td>
<td>11</td>
<td>13</td>
<td>1.92259800E06</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>R12</td>
<td></td>
<td>10</td>
<td>13</td>
<td>8.03699672E-01</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>R13</td>
<td></td>
<td>10</td>
<td>12</td>
<td>9.0348068E-03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>C1</td>
<td></td>
<td>11</td>
<td>13</td>
<td>1.9969339E-01</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>C2</td>
<td></td>
<td>10</td>
<td>13</td>
<td>7.8299198E-03</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>L1</td>
<td></td>
<td>7</td>
<td>8</td>
<td>9.9999598E-02</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>L2</td>
<td></td>
<td>9</td>
<td>10</td>
<td>1.9999986E-03</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>L3</td>
<td></td>
<td>12</td>
<td>13</td>
<td>1.5539861E-02</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>VR2</td>
<td></td>
<td>1</td>
<td>5</td>
<td>1.00000000E00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>VR7</td>
<td></td>
<td>6</td>
<td>5</td>
<td>1.00000000E00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>IR10</td>
<td></td>
<td>9</td>
<td>3</td>
<td>5.00000000E01</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>IR3</td>
<td></td>
<td>3</td>
<td>8</td>
<td>1.00000000E00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>V11</td>
<td></td>
<td>10</td>
<td>8</td>
<td>1.00000000E00</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>V8</td>
<td></td>
<td>13</td>
<td>10</td>
<td>5.00000000E01</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The table contains values in scientific notation, indicating the relationships and properties of elements, such as their node numbers and connectivity. The VALUF column lists numerical values, possibly representing some form of measurement or property associated with each element node. The TAG and GENER columns are placeholders for tags or generating information, which might be used for further analysis or context.