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ABSTRACT 

AUTOCORRELATION AND POWER SPECTRUM ANALYSIS TOR 

X-RAY AND GAMMA RAY SPECTROMETER DATA 

by 

CHUG-JEN TSAI
 

The purpose of this thesis is to test the usefulness of autocorre­

lation and power spectrum analysis computer programs for studying signals
 

from possible X-ray and gamma ray pulsar emitting pulsars such as NP 0532.
 

For checking the program, simulated data are generated: (1) simulated
 

random background, (2) simulated square pulse signal above a random back­

ground and (3) a simulated pulsar signal above a random background. These
 

data are discrete and equally spaced time series.
 

The results of the analysis, when the simulated pulsar signal repre­

sents a 100% intensity increase above the random background, is in good
 

agreement with an analytical solution. This technique fails to detect pul­

sar signal if it has an intensity less than 25% above the random background
 

for a set of 105 data points. The sensitivity of the technique will be
 

improved for an increased amount of data or increased observation time.
 

Also if the period is known the parameters used in the analysis may be opti­

mized to increase the sensitivity of the method.
 

ix 



CHAPTER I
 

INTRODUCTION
 

1.1 General Aim of Thesis
 

The emission of X-rays from the pulsar NP 0532 in the Crab Nebula
 

has been established by the Naval Research Laboratory Group (FRIEDMAN et
 

al., 1969) by using the autocorrelation and power spectrum analysis tech­

nique. Similarly, X-ray or gamma ray pulsations of NP 0532 could be ob­

served by power spectrum analysis for balloon data, where flight times
 

are several hours long and the random noise background is much larger than
 

in rocket flights because of the atmospheric photons.
 

The purpose of this thesis is to test the usefulness of a computer
 

program to calculate the autocorrelation function and power spectrum with
 

a simulated pulsar signal superimposed'on a random background. Before
 

testing the program for calculating the autocorrelation function and power
 

spectrum, three kinds of simulated data are generated. These are:
 

(1) simulated random background, (2) a simulated square pulse signal on
 

the random background, and (3) a simulated pulsar signal on the random
 

background. The first two are subsidiary data for checking the autocorre­

lation function and power spectrum computer programs.
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1.2 Review of Observations of Pulsar NP 0532
 

Pulsars, radio-emitting "stars" having rapid and extremely accu­

rate repetitive changes in luminosity with time, were discovered in 1968
 

by HEWISH, et al. (1968). Later, STABLIN and KEIFENSTEIN (1968) observed 

two radio pulsars in the vicinity of the Crab Nebula. Of the pulsars yet 

discovered, these two have the longest (3.745 s.) and shortest periods 

(33.09 ms.).
 

In January of 1969, COCKE, DISNEY, and TAYLOR (1969) reported the
 

discovery of optical light flashes from the Crab Nebula. The flashes
 

occurred,with the same periodicity as the fast Crab pulsar (NP 0532) and
 

were suggested to have originated south of the two central stars in the
 

Crab Nebula.
 

X-ray pulsations from NP 0532 as reported by NRL (FRIEDMAN et al., 

1969) indicate that it pulsates at a frequency closely matching the radio 

and optical pulsations. About 5% of the total average X-ray power of the 

Nebula appears in the pulsed component. The X-ray pulsations have the 

form of a main pulse and an inter-pulse, separated by about 12 ms. The 

important characteristics of NIP 0532 (FRIEDMAN et al., 1969) for radio, 

optical and X-ray observations are tabulated in Table 1.
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Table I 

Radio Optical X-ray 

-

6 x 10-14 8 x '1012 1.5 x 10-9
 Average Pulsed 


) ° )
Power (195-430 Mhz) (4500-8500A° (1-10A 

(erg cm- 2 sec- 1 ­

U1-B = -1.3
 
Spectral -2 0.4
 

Index B-V = +0.1 

Separation of
 
12.0 msMain Pulse n,14.5 ms 14.0 ms 

and Interpulse
 

Half-power Width 3. s 1.4 ms - 2.5 is
 

of Main Pulse
 

Half-power Width 3.0 ms < 5.0 ms 

of Interpulse 

U, B, and V are logarithmic intensities (magnitudes) in the ultravio-'
 

let, blue, and visual, respectively.
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1.3 'The Reasons for Using Autocorrelation and Power Spectrum Analvsis
 

for Determining the Pulsar Periods
 

Autocorrelation and power spectrum analysis reveals information on
 

pulsar characteristics in the time and frequency-domain. Suppose that an
 

X-ray or gamma ray pulsar has one pulsation period, and the intensity of
 

the signal is strong with respect to the random background, then the auto­

correlation function will be a periodic function with the same period as
 

the signal. In the frequency domain, the power spectrum would have a
 

large value at several definite frequencies corresponding to the pulsarts
 

fundamental frequency, the first harmonic frequency, etc.
 

In general, there might be several frequencies in the pulsar in
 

question or in other words, it might have several pulsation periods. In
 

this situation the autocorrelation function in the lag time domain is not
 

a good way to pick up the pulsation periods. Because the autocorrelation
 

can be considered as the sum of the-autocorrelation functions for the
 

separate periods superimposed on the random background, the resultant auto­

correlation function in the lag time domain might not be easily interpre­

ted. On the contrary, the power spectrum allows one to easily detect those
 

frequency components present in the pulsar. So long as this spectrum, when
 

plotted versus frequency, has bumps or large values at several particular
 

frequencies, one can easily tell which frequencies are the fundamental pul­

•sation frequencies.
 

The power spectrum analysis determines not only the estimated value
 

of the period but, it can determine how much power is contributed by each
 

frequency component. The power contributed by each component is proportional
 

to the square of the amplitude of that component.
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1.4 Statement of Problem
 

Knowing the actual characteristics of a typical pulsar such as 

NP 0532, we could simulate this data for checking the "autocorrelation 

and power spectrum" program. Using instead an idealized pulsar simula­

tion we can study several questions relating to the use of autocorrela­

tion and power spectrum analysis techniques. The basic questions studied 

in this thesis are: (1) what is the limitation of using the autocorrela­

tion and power spectrum analysis techniques as the pulsar signal becomes 

weak compared to the background? (2) What are the various advantages 

and disadvantages of using the technique?
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CHAPTER II
 

THEORY
 

2.1 Theory of Autocorrelation and Power Spectrum Analysis
 

Autocorrelation and power spectrum analysis is a very useful tool
 

for detecting periodic signals buried in noise and for establishing coher­

ence between random signals. Its applications range from engineering to
 

radar and astronomy to medical, nuclear, and acoustical research.
 

(1) Autocorrelation Function
 

Autocorrelation for any kind of waveform is a measure of the rein­

forcement between two identical waveforms shifted in phase. It is compu­

ted by multiplying one waveform ordinate by ordinate with the other and
 

finding the average value of the product. If there is no phase shift
 

involved, the correlation between two identical waveforms is large. In
 

other words, the autocorrelation function at the zero lag tine is large
 

and a maximum. However, if two waveforms are identical in shape but have
 

an arbitrary time shift between-them, then the correlation between them is
 

generally small. Hence, autocorrelation is a function of the time shift
 

between the two identical waveforms. This correlation problem is illustra­

ted in Figures 1 and 2. Figure 1 shows two identical waveforms without any
 

time lag or phase shift. Figure 2 illustrates two identical waveforms with
 

a lag time or phase shift.
 

This function can be expressed in terms of a mathematical formula as
 

the product of the wave x(t) and a delayed version of itself x(t + T) aver­
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FIGURE 1
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FIGURE 2
 



aged over T seconds as follows:
 

Ldm _Lf XCt) N( t f7 ) dt 1 

where T is the lag time. This quantity R(T) is always a real-valued even 

function with a maximum at T=O and may be either positive, negative or
 

zero for other values of T. There may be other maxima depending on the
 

function. Therefore, this function has:
 

1. 	Symmetry about T=O, i.e. R(T) = R(-t) (2) 

2. 	A maximum at T=O equal to the mean square value (j2) (3)
 

of the signal from which it is derived, i.e. R(O) = R2
 

and R(O) > R(r) for all r. 

Also for the special case of a periodic waveform the autocorrelation func­

tion is periodic and has the same period as the waveform itself. This peri­

odic autocorrelation has the two properties listed above but it will have 

maxima whenever the lag time r is equal to an integral number of periods of 

the signal.
 

The random noise signal is quite different from the periodic wave­

form. When compared with a time shifted version of itself, only a small
 

time shift is required to destroy the correlation, and it never recurs.
 

The autocorrelation function for this case is, therefore, a sharp impulse
 

which decays from the central maximum to low values at large time shifts.
 

Two samples of random noise of the same bandwidth might have quite
 

different waveforms, but their autocorrelation functiorscould be identi­

cal. The autocorrelation function of any signal, random or periodic,
 

depends not on the actual waveform but on its frequency content.
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(2) Power Spectrum 

The power spectral density function at frequency f is defined by
c 

BENDAT (1958) as:
 

r fm ) (4) 

where P(f c, x, Af) is the total average power in a given bandwidth Af and
 

x is a continuous variable. Therefore, the above equation represents the
 

limit of the total average power in a given bandwidth divided by the band­

width as the bandwidth approaches zero. Suppose x(t) represents an infi­

nite record length, then we can define data with a finite record length as:
 

x(t) [ti < T 

Tt 0 otherwise
 

The total average power of bandwidth Af is defined by BENDAT (1958) as:
 

-'"- o _-F (5) 

where
 

T -Od
AT C X) T dt XC e 6 

AT(f,x) is the direct Fourier transformation of the finite length of data
 

XT(t) and 

A4, x Aj: t X ) T CTr ) (7) 

From equations (4) and (5)we observe that since IAT(f,x)I 2 is an even 

function of f, it follows that G(f,x) is an even function for all f. The 

notation G(f,x) shows clearly that the power -spectral density function de­

pends upon the particular time record x(t) under examination. 



2.2 The Relation Between the Autocorrelation Function
 

and the Power Spectrum
 

Consider an arbitrary real-valued time record x(t) of infinite
 

extent. Its total 	energy is defined by 
Total energy = j -O (8) 

If x(t) does not approach zero rapidly enough for large values of t, the
 

total energy may be infinite; that is, this integral fails to converge.
 

However, we shall assume that the average power associated with x(t) is
 

finite, where the average power is defined by
 

PaV=Limf X t)a 	 (9) 

Using Parseval's Theorem as given by KHARKEVICH (1960a), let A1 (f,x1 )
 

and A2(f,x 2) be the Fourier transformation of real functions x1(t) and
 

x2 (t), respectively. Then
 

0
 

For the special case of x1 (t) = x2 (t) and a finite record
 

f X(t)clt = JIA (S, a-f -.2jI .TUX)di (11) 

If 	 X T 6ttd(t is convergent, then by (11)
 

xfim a f A T 	 (12) 

7-; 	 7->o(T 
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Therefore, from equations (3), (4), (5), (11) and (12) 

(o) - X -cT = " t)d = 44-d d (13)
 
0
T T-r 

butb 

because R(r) and 6(r) are even functions.
 

Therefore, by use of the definition of the Dirac delta function S(r)
 

g~).2 RZ)f td d (14) 

Comparing (13) and (14)
 

1)(7f) = 2J b. R 

Therefore, the power spectrum is the Fourier transform of the autocorre­

lation function. The power spectrum can be written in another form as 

follows 6T0P 4 g(r) CocjZir_ Ct 

Since R(T) is an even function of -, G(f) is always a real-valued non­

negative function. In short, the autocorrelation function and power spec­

trum are the Fourier transformation pair, i.e., 

o (15) 
(j= .4JfRCt)C.os -f:,d 

Autocorrelation Theorem
 

There is a useful theorem which is stated by BRACEWELL (1965) and
 

can be used to explain the relation between power spectrum and autocorre­

lation function. If X(t) has the Fourier transform A(f), then its auto­
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correlation function is the Fourier transform of IA(f)1 2 . i.6., if
 

j:X~t)~ dt A# 

then, 

j ~ ~ -r d 6t- xz~)C*+946(6 

This autocorrelation function is unnormalized with zero mean. Thus
 

IA(f)1 2 is the power .spectrum in equation (16), since the Fourier trans­

formation of the autocorrelation function is the power spectrum, that is
 

Conversely, the autocorrelation function is the Fourier transform of G(f)
 

J(~ dL Lit) 
from the above equation compared with equation (16) we see that IA(f)1 2
 

is equal to G(f).
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2.3 	Derivation of Autocorrelation Function and Power 'Spectrum
 

for Computer Programming Use
 

The functions used in the first two sections of this chapter were 

continuous for the convenience of the theoretical treatment. In practice 

digital type data are normally used. For example, the data obtained by 

collecting counts over some time interval At is discrete. Therefore, in 

this sense, the simulated data we must use should be discrete. 

The simulated data will be equi-spaced, discrete and for a finite 

length record. For this reason, the formulas of autocorrelation function 

and power spectrum must be transformed. 

Suppose this series of data has a non-zero mean. An estimated 

autocorrelation function [I.B.M. Programmer's Manual: System/360 

Scientific Subroutine Package, (360A - CM 03X), Version II, 59.] may be 

expressed as 

-------r--C 	)("<'+ .--Z)(17)
 

where: 

R is the mean value of all the data X., i.e. X =1 

= 
n number of observations in the time series X. 

j = 1, 2, 3. ..... m represents time lags 0, 1, 2. ..... (m-l) and 

m is the maximum lag number and the maximum lag time T = (m-1) x sampling
m
 

time. For programming convenience, we may expand equation (17) into three
 

terms as follows:
 

Yn-i,A 	 CwX.yrt.,-T a4 9±f,(+z2- (18)C 	 2Z(vc -I- J 
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The middle term can be expressed differently by using X according to the
 

mathematical steps following:
 

n X 

-. -g= (19) 

n-jt( Vtz 

and X.. X C: 

but -1Z ) 

ZN.. - ri.=Xz 
(20)
 

From equation (19) and equation (20)
 

* 5-l )-1. 
~rcz'77 1 /' 21+ (21) 

Substituting equation (21) in equation (18) gives the autocorrelation
 

function with non-zero mean as follows
 

+ C - j) 

D--5 
- Z (22)
 

Equation (22) is the complete expression for calculating the autocorrela­

tion function with a non-zero mean for equi-spaced, discrete data. The
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parenthesis of the second term of this equation is the total sum of the
 

first (j-l) data samples and the sum of the last (j-1) data samples.
 

BLACKMAN AND TUKEY (1958a), states that the ensemble average of the
 

estimated autocorrelation function for the discrete case equals the true
 

autocorrelation function for the continuous case. So that
 

ave {Rj} = R(r) = R(jAT) 

Similarly, the average of the raw power spectral density can be expressed
 

in the form of a Fourier transform, viz., tarr& 
00 

where Vm(t;At) is a finite Dirac comb, viz.,
 

- j -I .47 
vmvt;Az)~~~&~Tma)47r RS(7-J-&7)+rrtY- iZ

35-M tj 

Then f .2f v l atnre b isnowf dis-r 

il'e
 

- COS27T9QA' 

If we ignore the averaging (Ave) in the above equation, the raw spectral
 

density may be expressed as:
 

R COS~A~ (23)c0 Z2fIMZ1C-# 24dZ-R-zM-/ r4cS 21ffj4-d 

where f is not a continuous variable any more but is now a discrete par­

ticular number.
 



Let
 

2irfjLZ7= 7-, ) (24) 

Then equation (23) becomes,
 

A-~ 2101
 
+f 2"in) (25) 

In order to get a smoothed power spectrum the lag window and the
 

spectral window are involved. The lag window is the Fourier transform of
 

the spectral window. There are several Fourier transformation pairs
 

(BLACRM0AN and TUKEY, 1958b) relating these two windows: in the following
 

D denotes lag window and Q denotes spectral window.
 

Zeroth pair < 

> T 

and S;h 27ff T 

First"pair (BARTLETT, 1950)
 

uT<
and
 

=0 '>I? 
and S;ni --tf T 

0j0=- 7,m( r )
-

Second pair (sometimes called "Hanning")
 

- ( -I- cos- /O7 < T 
s n- o InI 

and
 
rt o7C 

Third pair (sometimes called "Hamming") r 
0 .'4 4 o.44 (os -r4 

-jfoo+ + 4 )LQf(QCf 

and 

-O.-4 0 f)f + Q,, (f 
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Fourth pair o.4Z -t0-o, C0g _ + Oa T <ric 

and
 

BENDAT and PIERSOL (1966a) use Hanning (second pair) for smoothing the
 

raw power spectrum.
 

The smoothed power spectrum is the convolution of Q2 (f) and the
 

true power spectrum. Therefore
 

A b.S~-t- C­

r i '~ T h rn-/ (26) 

KfIARKEVICH (1960b) states that,"Any function f(t) consisting only
 

of frequencies frcmO to f can, with any desired accuracy be treated as a
 
e
 

1 
succession of numbers recurring every - seconds." Where f An the no­

cC
 
C 

tation of BLACKMAAN and TUKEY is f . This maximum frequency is also known 
n 

as the folding (or Nyquist) frequency. From the equation (24), when K 

equals m then f = --L- which is the Nyquist frequency. Kr in the notation 

of BENDAT and PIERSOL (1966b) is h or the time interval between samples.
 

The resolution bandwidth for power spectrum is defined as B - The
 

B will be small for a given h when m is large.
 

An important feature known as "aliasing" enters for observing an
 

equally spaced, discrete finite record of data. The energy or power at an
 

arbitrary frequency f cannot in general be separated from that contributed
 

by different frequencies [BLACKMAN and TUKEY (1958c)]. In other words,
 

higher frequencies from the original process G(f) may contribute some power
 

to the estimated power spectrum GA(f) (see Fig. 3). Figures 3a and 3b in­
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G(f) 

fl fc 2f"fI" 
"(a) 

G(f) 

(b) f fc 

FIGURE 3 
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dicate that the powers contributed by frequencies 2fc-f and f are indis­

tinguishable. The essential, unavoidable nature of this problem is made
 

clear by Fig. 4 which illustrates how equally spaced time samples from any
 

cosine wave could have come from each of many other cosine waves. In
 

Fig. 4, the sampling time AT is 0.2 second; then the Nyquist frequency is 

1 --­
2A-~ 0 cycle/sec., i.e., 2.5 cycle/sec. Clearly, a sinusoidal wave with
 

frequency 4 cycle/sec. can be fit through the points and a second sinusoi­

dal wave (dotted curve) with a frequency 1 cycle/sec may also fit the given
 

points. Higher frequencies may also be present but it is not possible to
 

know from the measured AT whether the power at frequency f [of a power spec­

trum in the interval (0,fe)] comes from the principal frequency f-or
 

2fc-f, sf +f, 4f -f, 4f +f...... etc. These higher frequencies are called
 

aliases of f. Therefore, the aliased power spectrum GA(f) defined in the
 

interval (O,fc) by BLACKMAN and TUKEY (1958d) is all that one may estimate
 

from the data.
 

GA(f) may be represented as follows:
 

GA(f) =G(f) + G(2fc-f) + G(2f +f) + 
...etc. 0<IfI<f
 

GA~f) = 0 

where G(f) is the true power spectrum.
 

Two practical methods exist for handling this aliasing problem
 

[BENDAT and PIERSOL (1966c)]. The first method is to choose h suffici­

ently small so that it is physically unreasonable for data to exist above
 

the associated Nyquist frequency fc For the low frequency case of inter­

est, say below 500 HZ., then h = 1 ms would technically be sufficient.
 

The second method is to filter the data prior to sampling so that no infor­

mation above the Nyquist frequency is contained in the filtered data. Then
 

choosing f as the maximum frequency of interest will give accurate results
 
c 

for frequencies below f.
 
C 
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A f:4 A f 

'AI 0. 2 - -

I I 

I saf-At=o.a -

One second 

FIGURE 4 



22 

CHAPTER III
 

PROGRAMMING, 

The X-ray or Gamma ray spectrum of a pulsar might be in the form
 

of a small signal on the random background. Autocorrelation and power
 

spectrum analysis has already been used as a tool in conjunction with a
 

rocket experiment (NRL Group) for detecting the X-ray pulsar (NP 0532)
 

signal over the general Crab X-ray signal. Similarly, the autocorrelation
 

and vower spectrum technique might be used for balloon experiments. In
 

order to check the programs for computing the autocorrelation and power
 

spectral density function before applying them to balloon flight data,
 

three kinds of simulated data are generated by the computer. The first
 

one is a simulated random background for discrete data. The second one
 

is a simulated square pulse signal above a random background. The third
 

one is a simulated pulsar signal above the random background.
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3.1 The Basic Principle Used for Generating'Random Data
 

A way of generating random data is to use the time interval dis­

tribution which is derived from the Poisson distribution which gives the
 

probability distribution in time for a random process when the average
 

rate is specified.
 

The time interval distribution describes the distribution in size
 

of the time intervals between successive random counts when the mean rate
 

has the constant value of a counts per unit time. From EVANS (1955) sup­

pose a is the average rate of appearance of photons; then the average
 

number of counts in a time interval t is at.
 

- When the average rate is a, the probability of observing x counts 

in a time interval t can be expressed as follows: 

- x 
(at -~atP() S.
x 

This is simply the Poisson Distribution. From this equation the
 

probability that there will be no counts in a time interval t, during which
 

tine there should be at counts on the average, is
 

00
PO (at)0 e-at = -at 
Ol e = e 

and its differential form is shown as follows:
 

-
o = ae lt 

-Weat once see that small time intervals between successive random
 

counts have a higher probability (probability of no counts in a time inter­

-val t) of occurring than large time intervals. in other words, this is the
 

TINE INTERVAL DISTRIBUTION which gives the probability of occurrence of
 

each time interval.
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Of course, the occurrence of a given time interval is random and
 

may be represented by a random number. This implies that the differential
 

probability of occurrence of a given time interval may also be represented
 

by a 	random number.
 

Now from the random time interval between two successive counts,
 

the random counts within a definite time interval could be generated.
 

Those random counts are the simulated data I have been using. Suppose all
 

events (counts) occur randomly along a time axis, the number of random
 

counts is then nothing but the number of counts occurring within a defi­

nite time interval.
 

Thus, the steps of generating random counts is shown as follows:
 

1. 	Generate random number between 0 and 1 by use of the SUBROUTINE 'RANDU.'
 

(see Appendix A)
 

2. 	Take this random number as the probability of no counts occurring in
 

a time interval t. but one count in t. to t. + dt. and generate random 

in UNIT 
-	 time intervals according to the--formula t. _ ; where t. is a
 

a 

random time interval and UNIT is random number between 0 and 1.
 

3. 	Generate the number of random counts within a given desired sampling
 

time by observing the sequence of intervals obtained from step 2. The
 

distribution of the random time intervals is shown in Figure 5 by using
 

some of the data from the "Random Data" program. The random time inter­

val data have been generated under the average counting rate a=l count/ms.
 

The total number of random time intervals is 1.5x105, but 
only 1.5x104
 

are 	printed out with the form of 1500 numbers of random time intervals
 

for 	each 10th record. In"other words, there are 1500'numbers of ran­

dom 	time intervals for 10th, 20th, 30th up to 100th record.
 

In order to show the distribution of time intervals, the grouping
 

of 	the numbers of time ,interval in the range of 0 4s 0.1 m ,, 0.1 , 0.2 msj, 

etc. 	is tabulated in Table 2.
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Table 2 

Total 
Range of Time Numbers of Tie Number
 

Interval ems) Interval (counts) (Counts)
 

0.1 "'0.2 150 

0.2 n 0.3 110 

0.3 ' 0.4 102 

0.4 0.5 84
 

0.5 0.6 82
 

0.6 -u 0.7 72 

0.7 u 0.8 62 1173 

0.8 0.9 46
 

0.9 1.0 62
 

1.0 1.1 50
 

1.1 1.2 59
 

1.2 1.3 41
 

1.3 u 1.4 38 

1.4 N1.5 33
 

1.5 1-6 37
 

1.6 1.7 27
 

1.7 1.8 40
 

1.8 1.9 24
 

1.9 2.0 17
 

2.0 2.1 21
 

2.1 2.2 16
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There are only 1173 out of 1500 values of time intervals taken
 

from the first 1500 values of printed data from the program of "Genera­

ting Random Data."
 

Figure 5 is a semilogarithmic plot of the numbers of time inter­

vals in a given sampling time of 1 ms versus the time interval. The 

straight line shows that the distribution is exponential as we expect. 

From the slope of the line, we can determine a for checking the "Random 

Data" program.
 

As I mentioned above a = 1 count/ms gives 1 count within 1 ms on
 

the average which is a very low value statistically. Therefore the distri­

bution of x counts occur within 1 ms time interval will follow the Poisson
 

distribution Y - z Substituting this value in this 

equation, then 7.C±- - ; where Px(1) is a random number be­

cause of x random counts. The slope of the straight line in Fig. 5 is
 

1.17 cts/ms. The 17% error is due to the limited data (1173), this would
 

decrease with more data. A least square fit may give a better result.
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3.2 Brief Statement of the Method for Generating a Square Pulse 

or a Pulsar Signal Including a Random Background 

From Section 3.1, we know that the random background has been gen­

erated by three steps. -Once the random background has been generated, the
 

random counts for either the square pulse or pulsar signal also could be
 

generated by the same steps.
 

The process of constructing simulated data can be understood by
 

reference to Figure 6. This shows the case where in region I the random
 

counts correspond to an average rate a and are generated by the method
 

described in Section 3.1. In region II, the random counts are generated
 

for a new average rate f times the former rate, where f is any positive
 

real number. To construct the data for a continuous flow of time, the
 

random counts for a are used for a time t1 , and then for a time t2 the ran­

dom counts for the new average, fa, are used, then the counts for a again
 

for t1 are used etc. This procedure constructs the time series for a
 

pulse which is on for a time t2 and off for a time t1 so the period is
 

t1 + tl
2
 

If we set t1 = t2 = 20 ms, and a = lct/ms, and fa = 2cts/ms, then
 

the data would be the square pulse with a 100% intensity increase over the
 

random background with period 40 ms. Similarly, a pulsar signal with a
 

period of 40 ms and a 100% intensity above the random background could be
 

generated in the same way by setting t1 = 35 ms, t2 = 5 ms, a = lct/ms,
 

and fa = 2cts/ms.
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3.3 Flow Chart for Autocorrelation Function and
 

Power Spectrum Computation
 

We will now discuss the procedure for developing programs to cal­

culate the autocorrelation function and power spectrum. It is most conven­

ient to describe this in terms of a flow chart.
 

The autocorrelation function with nonzero mean for discrete data is
 

given by 

---- r ( - ) - X) (17) 

where X is the mean value of the data xi, 

n 1
i=l
 

n = number of observation in time series X.
1 

j = 1, 2, 3,----------- m represents time lags 0, 1, 2, --------- (r-1) 

The transformed equation 

A in 3+1-I o' -

R~- +(iv~3~cxi27~x (22) 

The raw power spectral density function
 

=Cr ty~ u3 (25) 

where f =- m . K =0,'1; 2 -------- i 
h is the sampling time interval
 

R. is the estimate of the autocorrelation function at time lag j-1
J
 

a is the maximum lag number
 

fc = 2 is the Nyquist frequency

c 2h
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The smoothed power spectrum is given by
 
A 0S&doS 

0- t 4q -+- 0 (26) 

It is very cumbersome to calculate the autocorrelation function throughout
 

all the data. However, we can calculate it for one part of data and then
 

go through the other part of data. Therefore, it is necessary to mention
 

what the "read" process is. This process is divided into three steps as
 

may be seen by referring to the flow chart shown in Figure 7.
 

: 

(i) Initial correction: Read first 500 data values and do calcu-­

lations of 
too Soo 

~ ~ LJII&ee J r-6 1'-*0 t(00 AVER =rI')( 

(see Figure 7, blocks 12, 13, 14, 15, 16, 17, and 18)
 

(2) Main loop: Read 1000 data values (i.e. half of the data in
 

first record and half of the data in second record) and do the calculations
 

of 4Sowee10t J0 
R - X AVER =Z c 

(see Figure 7, blocks 19,20,21, 22, 23, 24, 25, 26, 27, 28, 29) In order 

to keep reading the data under this form the "read" and "go to" statements 

have been used to read the data from 501 to 105-500. - (see Figure 7, blocks 

19 and 31)
 

(3) Final correction. Read the last 500 data values of the last
 

record (i.e. 100th record) and do the following calculations
 

see Figurex, 3, (f, /,00; ZX0b j -, vr, 4A1VC;A 

(see Figure 7, blocks 32, 33, 34, 35, 36, 37, 38, 39, 40, and 41)
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The calculation of the power spectral density has been divided
 

into two parts. First, calculate the raw power spectral density by equa­

tion (25) (see Figure 7, block 63). Second, calculate the smoothed power
 

spectral density by equation (26) (see Figure 7, blocks 66, 67, and 68).
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CHAPTER IV
 

EXAMPLE OF SIMULATED DATA
 

For the purpose of cliecking the computer result for the autocorrela­

tion function and power spectrum for the simulated data generated by com­

puter, the analytical solution for the autocorrelation function and power
 

spectrum has to be discussed. From the analytical point of view, we use the
 

average value of the simulated data.
 

4.1 Autocorrelation and Power Spectrum for a Random Background
 

From KORN (1966a) and BENDAT and PIERSOL (1966d), we know that the 

random data are not correlated among themselves. However, there is a corre­

lation among individual terms. For example, x(t1), x(tI + T) are uncorrela­

ted for every At # 0, therefore, autocorrelation function will be a delta 

function at lag time zero, i.e. T = 0 for infinite length of record. The 

power spectrum would be a constant over all the frequency range. This is so 

called white noise. In other words, white noise has a constant power spec­

tral density, i.e, G(f) = a, R(T) = a6(T) where a is constant. Unfortun­

ately, such a process for white -noise is not physically realizable since the
 

variance or R(0) is infinite. This is true for only infinite length of
 

record.
 

In practice, white noise is approximated by various types of wide­

band noise, having approximately constant spectral density over a frequency 

band of interest ("band-limited white noise"). From BENDAT and PIERSOL 

(1966e), bandwidth limited white noise is a random process with a constant 
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power spectrum defined by
 

G(f) = a 0 < f - (B/2) < f < f + (B/2) (27) 

= 0 otherwise 

where f is the center frequency, and B is the bandwidth. From equation
 

(15) 	it follows that the associated autocorrelation function is
 

R(t) = cos 211f df = aB ( - ) Cos 2zl7T 

7B 
For the low-pass white noise, fo = then G(f) becomes 

G(f) 	= a 0 < f < B (28)
 

= 0 otherwise
 

2 7TA 
and R(T) = aB 

In Figure 8, the frequency information we want is in the low range
 

of frequencies. So the low-pass white noise is of interest' The aucocor­

relation function for low-pass white noise is a sinc function which looks
 

like the amplitude of the diffraction pattern for the single slit.
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4.2 Autocorrelation and Power Spectrum Prediction for
 

the Average Pulse Signal Above an Average Random Background
 

In this section we discuss a square pulse above the random back­

ground with period T. If we make this average square pulse signal with a
 

100% intensity increase over the background for a time T/2 and off for
 

,the remaining time T/2, then we ask: What will the autocorrelation func­

tion and power spectral density function look like? 

Before analyzing and making this clear, the Autocorrelation theo­

rem will have to be reexamined. 

Autocorrelation Theorem 

If x(t) has the Fourier transform A(f), then its autocorrelation 

function j Xct)X(tX'()t has the Fourier transform IA(f)1 2 , i.e. 

• 2 2f = xt)X(tt"1 7 -- RQ7 (16) 

This is the unnormalized autocorrelation function with zero mean.
 

Suppose there is a rectangle function II(t) which is defined such
 

that
 

The Fourier transformation of the function II(t) is sinc (f) = rft
 

Therefore, using the Autocorrelation theorem, the R(r) is the Fourier trans­

form of sinc2f function is the triangle function of unit height and area.
 

This function A(T) is defined that
 

ACt) 
- ) jz;'j' 
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These transformations are shown by three solid arrows and one
 

dashed arrow in Fig. 9. Any arrow represents a Fourier transformation.
 

The lower solid arrow in Fig. 9 indicates that power spectrum is trans­

formed to the autocorrelation function and the dashed arrow represents the
 

inverse transformation.
 

From the above transformations we know that a II(t) function for
 

the signal will result in a triangular shaped autocorrelation function.
 

If you concentrate, the positive side of t axis of II(t), you will have,
 

a straight line together with two axes which can form 450 right triangle.
 

The autocorrelation function of the average square pulse signal above an
 

average background will be of a triangular shape along the lag time axis.
 

For the purpose of making the autocorrelation function of the
 

square pulse signal clear, we show a plot of the average square pulse sig­

nal above the average background, and its autocorrelation function in
 

Fig. 10. Part (a) of Fig. 10 shows the -square pulse signal above an aver­

age background. In order to calculate an autocorrelation function for
 

zero mean, we use the data in part (b) of Figure 10 which is made by
 

shifting the mean value of signal and background. Part (c) of Figure 10
 

represents the autocorrelation function for the case of zero mean. It is
 

seen that the period of the autocorrelation function is the same as that
 

of average signal above the average background.
 

Mathematically speaking, the autocorrelation function qualitatively
 

can be considered as the product of the same waveform with a lag time T
 

between each other.
 

(1) When the lag time T equals zero, the normalized autocorrelation
 

function must be the maximum value 1 [see Figure 10 (c), a].
 

T 
(2) When the lag time T = 1 , where T is the period of signal, the 

product is zero [see Figure 10 (c), b]. 
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T
 

(3) When the lag time T = - , i.e., out of phase completely, the 

product is minimum value - 1 	[see Figure 10 (c), c].
 

Similarly you will have R(--t)-0 , R(T) . 

Power Spectrum
 

There are two ways to calculate the power spectral density func­

tion G(f) for the average square pulse above the average background.
 

(1) The density function G(f) can be considered as the Fourier
 

transform of the autocorrelation function. In other words, the shape of
 

G(f) will be sinc2f function of the positive range when A(T) is the auto­

correlation function. In this plot there will be several peaks at several
 

particular frequencies but the amplitude of these peaks will he gradually
 

smaller and then die out for 	increasing frequency f.
 

(2) Ratio of the power of one component to the other:
 

From 	the mathematical derivation equation (13) we have the result
 

2
g) mT J S-Xf)d where X(t) is referred to as the time averaged 

power of the mean power in X(t). Consider 

_L.t 'C (a.,Cc'S 2'Tf,gt +hhaS j11Z 7flfnt) 

where f R , and a0, an and b are the usual Fourier coefficients. 

Then by the orthogonality of the sine and cosine functions 

-T
 
2 

Whzere c0 " ~ ~ CC 

The amplitude, Cn of a certain frequency, fn can be found out by taking the
 

r 2
 
area under the peak above-the average noise level and equating it to _
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Theoretically, in the case of a square wave X(t) = 2 . 

the ratio of the power of the fundamental component to that of first har­

monic component is 

Similarly etc.
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4.3 Autocorrelation and Power Spectrum Prediction for the
 

Average Pulsar Signal Above an Average Random Background
 

The pulsar type signal used is a pulse which is off 35 ms with an
 

average counting rate l count/ms and on 5 ms with an average counting rate
 

2 count/ms. In order to calculate the autocorrelation function with zero
 

mean, we have to transform from this [Figure 11 (a)] to the one which forms
 

the autocorrelation function with zero mean as shown in (b) of Figure 11. 

Figure 11 (c) indicates the corresponding autocorrelation function for the 

case of (b).
 

For the same reason as discussed for the autocorrelation of an
 

average square pulse signal the shape of the autocorrelation function is
 

triangular. KORN.(1966b) shows that the minimum value is a negative num­

2
ber -a2/N = -1/8 where a is the variance which is equivalent to autocor­

relation function at zero lag time, and N is the period divided by the on 

time. - For the case (b) Figure 11, 'the triangle has a base of 10 ms. The 

period of autocorrelation is 40 ms which is same as the signal [Figure 11­

(0]. When the lag time is 40 ms, i.e., the period, the two identical 

waveforms are superimposed completely; I.e., the product of two identicai
 

data is maximum and this is the case whenever the lag time is a multiple
 

number of periods. It is a constant negative number -1/8 for the rest of
 

ranges except when T is in the range of O'5 ms, 35'45 ms, 75'.85 ms, etc. 

The simulated data X(t) in Figure 11 (b) has a Fourier series of
 

the form:
 
C4a-i 0 00an 

J: an + 2 *S 
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where -0. 12 <t < T 

ct o<t0 = < T 

T J'K tJ S;n(Z 
7J 

)d ' [o Taf T 

bs60 = rO-iK() ( )dt -----I (-
L Tt TV ) /7 

2. =- . a_>+ 

IT 7OL7_ 

( Jj -cos )­-

Therefore, the ratio of the power in the fundamental frequency to
 

that of third harmonic frequency is
 

7t /____ _ 9 

similarly 

C.44.- -- I 

Using the above result, we can compare the power spectrum calculated by the
 

program with the simulated average pulsat signal above an average random
 

background.
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4;4 	Computer Results for the Autocorrelation Function and the
 

Power Spectrum With Several Kinds of Simulated Data
 

The analytical solutions have been . examined in the last three sec­

tions of this chapter. -In this section, I am going to discuss the autocor­

relation function and power spectrum for the practical data generated by 

the computer. 

.(I) Random Noise
 

As I mentioned in Section 4.1, R(t) would be infinite at the origin
 

and zero throughout all the range of lag time r in the plot R(T) vs T, and
 

G(f) would be constant throughout all the range of frequency f. In other
 

words, the autocorrelation function is simply a delta function and the con­

stant power spectrum is the so-called white noise.
 

Practically, all we can have is a definite length of random data.
 

Therefore, from equation (28) the autocorrelation function would be an
 

extremely large value at the origin, but fluctuates with a small deviation
 

about zero throughout the whole range of lag time. [see Figure 12 (a)] The
 

power spectrum also will fluctuate with a small deviation about a constant
 

mean value throughout the range of low frequency we are interested in. This
 

is called low-pass white noise. [see Figure 13 (a)]
 

The results of R(T) and G(f) for the simulated random data are shown
 

in the Figure 12 (a) and Figure 13 (a) respectively. Note the simulated
 

random data has been generated for the average counting rate, 1 count/ms.
 

The sample time was 1 ms, and there were 105 data points for total record
 

length of 100 sec.
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(2) Square Pulse Signal Above a Random Background
 

The simulated square pulse signal above the random background fluc­

tuates about the average square pulse above the average random background.
 

In other words, simulated data generated by the computer fluctuates about
 

the average value which was used in the theoretical analysis in Sections
 

4.1, 4.2, and 4.3. For this reason the autocorrelation function at zero
 

lag time has an extremely large value which is much larger than that expec­

ted initially as shown in Figure 11 (c).
 

The data I used is for an average background rate 1 count/ ms for
 

20 ms and an increased average rate to 2 counts/ms for 20 ms. In other
 

words, this is the pulse 20 ms off and 20 ms on with 100% intensity above
 

the random background. In order to calculate the autocorrelation function
 

with the zero mean, the mean value has to be subtracted from each datum.
 

This square wave would have 1 unit amplitude difference between maximum and
 

minimum.
 

As shown in Section 4.2, the autocorrelation function for this kind
 

of data gives a result that is almost the same as shown in Figure 10 (c)
 

except at zero lag time. The shape of R(T) is periodic triangular type with
 

a period 40 ms which is the same as the period of the square wave. [see
 

Figure 12 (b)]
 

The power spectrum G(f) of the average square wave data has the lar­

gest high peak at the fundamental frequency (25 cycles/sec) and a second
 

peak at the first harmonic frequency (75 cycles/sec) and a third peak at
 

125 cycles/sec, etc. The shape of G(f) is approximately sinc2f function as
 

shown in Figure 13 (b).
 

The power ratio of the fundamental component to the first harmonic
 

component is 9/1 and that of the fundamental component to the second harmon­
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ic component is 25/1 theoretically. From the plot of G(f) vs f (Figure 13), 

and Table 3, we calculate the background of G.(f) is 3.008 (counts2/HZ). The
 

computer results gives the power ratios 8.558/1 and 25.349/1 with the devia­

tions from the theoretical value of 4.9% and 1.4% respectively. However,
 

the value of G(f) beyond the third peak at 175 cycles/sec is not so good
 

compared with the theoretical value. The method of calculation of the power
 

ratios is shown in the Appendix D.
 

(3) Pulsar Type Signal Above a Random Background
 

These simulated data are the same as for the case of the square
 

pulse above a random background data except that the pulse type signal is
 

off 35 ms and on for 5 ms.'
 

Like the case of the square pulse signal above random background, 

the autocorrelation function has an extremely large value at zero lag time. 

This value is different from the one at largE lag times. This extremely 

large value is about ten times larger than the other peak values, because 

two identical fluctuating pulsar waveforms are completely in phase at the 

zero lag time. In the Figure 12 (c)', there are two triangles with peaks at 

40 ms and 80 ms, respectively. The base of the triangle is 10 ms. 

The calculation of power spectrum can be checked by the power ratio
 

method. The power spectrum G(f) of the pulsar type signal above random
 

background has the largest peak at the fundamental frequency (25cycle/sec)
 

and a second peak at the first harmonic frequency $0 cycle/sec) and a
 

third at 75 cycle/sec. [see Figure 13 (c)]
 

Theoretically, the power ratio of the fundamental component to the
 

second harmonic component is 1.57/1, and that of the first harmonic compo­

nent to the third harmonic component is 2/1. From Figure 13 and Table 4.
 

the power spectrum of the random background of G(f) is 2.248 (counts2/Z).
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7 0.10707951 11.80975492 
8 0.06996548 2.99213219 
Q 0.04641684 3.111 58371 

10 0.0397S3?? 3.057qo5 
i- 0.00867817 3.0?%:j658 1 

12 -0.01015049 2 .QW052085 
13 -0.04252198 2 P5753155 
14 -0.06766814 304165 459 

--0.0 ' 144B6 4 ',4? 1701 
-0.I1213052 r.222?7573 

17 -0. 1A5482?fl 1.7')302216 
i1 -0. 16Q0041 z. P, ?151?3 
10 -0.18556464 3.09q 49774 
.20 -0"21 144891 3.04004669 
21'"0-.?4250412 2 .°404,2 14 
22 -0.21030223 2.0093,+535 
23 -0.13263578 .2.-0762615 
24 -0.15310770 - 2.c, 473625 
25 -0.13339764 3.Z-6560805 

26 -0.12215799 ' 3...'(6395321 
27 -0.04528q77 3.28068620 
2A -0.06813085 Z 2.92237759 
2q -0.04189673 ,q2. 01464672 
30 -0.01596829 2.-4388039 

-! -0.00061018 0 2. -9R85006 
32 6.02920001 * 2. 6302090 
33' 0.04318444 2 .,16668205 
34 0.07140726 2 . f-6'- 16771 
35 0.02506513 3.430 24731 

-36 0.10541668 -3.f46500950 
37 (. 13342428 3.22032967 
3 0.15617090 3.07000446 
39 0.1'409 1 15 3.001082z-2 
40 0.21716279 2.. 34i,35 S 
hi 0. 2'20 7 Ri3 '. .9,35142 
42 0.Z( ,9372 3.08365154 
43 0.19459249 3.0Q661770 
A4 0.16136748 3. 1090660 

45 0.14315361 3.2053P727 
46 0.11523497 3.25720119 
47 0.00401387 2. 920 19814 
4p 0.06061661 2.21436 31 
4') 0.0843407 ?.,"079294 2 
50 O.O1875231 2.0241291-q 
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81 u -0.00031841-. .. 2.09'526 6 
52 -0.02269282 2.15785427 
53 -0.04548740 2.71131458 
54 -0.06685668 2.08-3 749 50 
,55 -0.09799669 3. 11750989 
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A 
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-0. 74672 
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06 
07 
9q 
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-0. 14215893 
-0.15275878 

- 3.05253220( 
2.')4/3751 
3.0 5138 58 
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..2 0.08200514 2.24841f64 1 
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4 0.03336975 2.319 53049 
5 0.01275801 3.80827808 
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38 0.02969724 2.22111607 
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40 0. 0 8022875 2.18391705 
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43 0.05794246 2.30425739 
44 0.02888179 2.35) 13866 
45 0.00863192 2.36390305 
46 -0.01216547 2.25334454 
47 -0.01331612 2.17950630 

48 -0.01524717 2.26031399 
49 -0.01596766 2.12 19507 
50 -0.01313644. 2.42072296 
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52 
53 

-0.01482943 
-0.01630285 

" 2.249201772.2024359 

54 -0.01557263 2.27754116 
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62 
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2.41C)71129 
2.55776882 



55
 

The computer results for the power ratio are 1.47/1 for the fundamental
 

component to the second harmonic component, and 1.81/1 for the first har­

monic component to the third harmonic component. The deviations from the
 

theoretical 	average are 6% for the former case and 9.5% for the latter
 

case.
 

(4) 	Smallest Detectable Pulsar Using Autocorrelation
 

and Power Spectrum Analysis
 

The autocorrelation and power spectrum measurements for the pulsar
 

signal with 100% intensity above the random background have been shown in
 

section 4.4.3, the result of this analysis shows that the autocorrelation
 

function and power spectrum are detectable and predictable.
 

If we reduce the intensity of signal, can we still detect the auto­

correlation function and power spectrum? What is the smallest detectable
 

pulsar signal above the random background? Experimentally, for the pulsar
 

signal with 25% intensity with respect to the random background, the autocor­

relation function is not detectable. It is more or less random. (see
 

Figure 14) But the power spectrum in the frequency domain is detectable. If
 

you plot power spectrum versus frequency in a large scale, you still can see
 
e 

the several peaks at the several expected frequencies (see Figure 15). Of
 

course, this curve is not as good as for the case with 100% intensity pulsar
 

signal. The values of the power spectrum over all the frequency range are
 

not fluctuating very much. It can be imagined that the measurement of auto­

correlation function and power spectrum will be getting worse and worse for
 

reducing the intensity of pulsar signal smaller and smaller. If you keep
 

reducing the intensity of signal, finally the result will turn out to be the
 

case of random background. Then the autocorrelation function and power spec­
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trum would be sine function and approximately a constant with small devia­

tion, respectively. This result is based upon the short data record of
 

length 100 sec and the sampling time of 1 ms.
 

It is interesting that a pulsar with 0.5% intensity above random
 

background can be detected by use of superimposed'Epoch Analysis as done
 

by LARRY ORWIG for NP 0532; (1971).
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CHAPTER V
 

CONCLUSION AND DISCUSSION
 

Autocorrelation and power spectrum technique detects periodic sig­

nals from the random noise. However, the power spectrum also determines
 

the power of each frequency component. For the actual X-rayor gamma ray
 

pulsar NP 0532, this method reveals the power of the pulsating component.
 

Of course, the power of pulsating component of NP 0532 depends on the
 

photon energy range you are interested in.
 

The simulated pulsar data for the autocorrelation and power spec­

trum analysis are done for the situation of the pulsar signal with 100%
 

intensity above the random background. For this data, the result of auto­

correlation and power spectrum shows the pulsating period or pulsating
 

frequency component explicitly.
 

Reducing the intensity of the signal, the result of autocorrelation
 

and power spectrum analysis is not as good as for the case of a 100% inten­

sity of pulsar signal. The author has done the case of a 25% intensity of 

signal. The result has been shown in Section 4.4.4. The problem arises 

from shrinking the intensity of signal above the random noise. The reason 

is that the fluctuation of the random background is so large that it buries 

the small intensity signal. We define the fluctuation of the random back­

ground as the noise. Therefore, how to reduce the noise (fluctuation) is 

our main task. There is one way that can be used to solve this problem. 

That is to increase the number of data points or observation time. The 

distribution of the number of counts within a unit time interval obeys the 

Poisson distribution. Therefore, the standard deviation a equals square 
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root of the mean value of counts.
 

For a given average counting rate, o is proportional to square root
 

of observation time. However, the signal is proportional to the observa­

tion time. Then the signal to noise ratio must increase some factor
 

because of increasing the observation time. For example, suppose the sig­

nal with 25% intensity on the random background with average counting rate
 

a and the observation time t, then the signal to noise ratio is P1 

0,25 Ztt =- 2i t In the long run, the signal to noise ratio is
 

proportional to the square root of observation time for a given average
 

counting rate a.
 

The power spectral density calculated could be increased if we re­

strict the analysis to only the frequency range of interest for the simu­

lated pulsar in the original data or if we restrict the power spectrum
 

analysis to only the lowest frequency components of interest. The total
 

power contributed by these low frequency components is equal to the area 

bounded by the relevant portion of-turve of the spectrum and the estimated 

mean level of the,background. The area can be calculated by summing up the
 

spectrummultiplied by the frequency resolution for the discrete case i.e. 

P = C 4. . We could reduce the frequency resolution to get a 

higher value of the power spectral density for the frequency of interest. 

The frequency resolution can be expressed as follows:
 

Where m is the maximum lag number and At is the sampling time interval. 

In other words, the frequency resolution can be reduced by increasing the
 

sample time interval for a given m.
 

Take the case which I have used for an example. A small signal
 

above the random background would be able to be detected by increasing the
 

sampling time to five times longer than used in the original-analysis.
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That is, if the sampling time is 5 ms rather than 1 ms the peak in the 

power spectral density plot would just be discernible. For the shorter 

sampling time a 25% signal is just discernible. With a 5 ms sampling time 

a signal of magnitude 4/s-- ^1l7 would be discernible because the 

power is proportional to the square of the amplitude. 
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APPENDIX A
 

FLOW CHART FOR GENERATING SIMULATED RANDOM DATA 

A subroutine RANDU was used to generate the random data, corres­

ponding to some average rate a. The basic principle and the procedure of
 

generating random numbers within each specified time interval At is dis­

cussed in section 3.1. From systems/360 scientific subroutine package,
 

this subroutine is expressed by RANDU (IX, IY, UNIT). IX is the first
 

entry; this must be any odd integer- number with nine or less digits.
 

After IX entry, IX should be the previous value of IY computed by this sub­

routine. IY is a resultant integral random number required for the next
 

entry to this subroutine. The range of this number is between 0 and 231.
 

UNIT is the resultant uniformly distributed, floating point, random number
 

in the range 0 to I which is the output of this subroutine.
 

The SUBROUTINE RANDU (IX,.IY, UNIT) is shown as follows:
 

IY=IX*65539
 

IF(IY)5,6,6
 

5 IY=IY+2147483647+l
 

6 UNIT = IY
 

UNIT = UNIT*.4656613E-9
 

RETURN
 

END
 
-at in (UNIT) 

By use of the time interval distribution UNIT = e-ati or t i 

where a is the average rate taken here as 1 count/ms, a sequence of the ran­

dom time interval {t i } could be generated. ti stands for the time interval 

between the ith,and the (i+l)th counts. From this {t i sequence, number of 
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counts, Xm can be-produced. Xmnis the number of counts each characterized 

by t. which satisfies the following relationj 

niIKri.< 1 (28).
 

Where m represents integers which have to be greater than 1. In other words,
 

is equal to j under the equation (28).

m 

Physically, t. is the time interval between two consecutive events.
 

The simulated random datum Xm is the number of events between a particular
 

time m and m + At where At 1 ms. Note the average time interval between
 

events (counts) is also I ms.
 

X is nothing but the-number of rAddition'. This technique can be
 

completed by a 'DO' loop (see Figure 16, blocks 18 and 19) and a testing
 

statement (see Figure 16, block 20). These X data are stored in a nine
 

track tape with 800 bits/inch and with the form of variable record length.
 

There are 100 records in this tape and each record stores 1000 numbers of
 

data.
 

For the purpose of checking Xm and ti, 10th, 20th, 30th ... 100th's
 

record of data are printed out by use of the 'Mod' function (see Figure 16
 

block 23) and testing statement (see Figure 16, block 24).
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START MOD TRUEOD
12 TRE24 	 TRUE 6 
3000 50NE.O0 

1FALSE 
01 13 PRINT 	 PIN 2AS 

P R IN TEN D RETURN 	 2
 

MINX
 
BEGIN DO LOOP 


00 MTNX=1,100 127
 

03 	 RETURN TO PRINT
 

BEGIN DO LOOP15
 
,2 28
11 =1,1500 


0 LOO LST=(X(I),
 
YES 16I=1,J)
 

RANDU 2
 
(IX,IY,UNIT) 17PRINT
 

26 
BEGIN DO LOOP 

05 22 I=1,1500 0 30 

Ix=IY 
18 IST=TIM 

11 06 IT+TIM:ME (I) 200 31
 

TIME (I) =V II 
(T) 	 20N 31N
 
-(ALOG(UNIT) 	 219OF
 

(J)=x(J)+i YES 3
 
NO N 07 
 END FILE
 
OF 
 25
 

DO LOG
 

4 ESo 08 20 

TX~o.OF HALT 
o
22 192FlwCar
A

* 	09 0 LOO RETURN TO 
SYSTEMYES 21 


BEGIN DO LOO 

710 I=1,15001 
 WRITE TO DEV
 

251IN
 
10 INTERNAL FORMAT
 

X=TX±TIME(I) FROM THE LIST, FIGURE .16
 

FlowGeneratingChart for 
Random 

NO 11 LIT Y 	 BackgroundLN 

OF MOD=MINX-

SLOOP 110*(MINX/10)
 

TyLLjES
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APPENDIX B 

FLOW CHART FOR GENERATING PULSAR SIGNAL ABOVE TIlE RANDOM BACKGROUND 

This Is almost the same as in the case of the random background, 

except it calls for using the RANDU SUBROUTINE twice. The random times t.

1 

and Qti were generated for counting rates of lct/ms, and 2cts/ms respec­

tively. Using the same transformation as before, from Qti to Qi, which 

corresponds to X above, gives a signal with intensity of 100% increase 

over the random background. However, a periodic signal above the random 

background can be generated by substituting Qi for the particular values 

of X . The width of the signal and its period will determine these par­m 

ticular numbers of Xm to be substituted. In Figure 17, blocks 43, 44, 45
 

and 46, I = 35, 1000, 40; J = 1, 5; K = K + 1; X(I + J) = Q(K) shows the 

method by which a pulsar signal above background can be produced, i.e. 

this pulsar signal would have an on time of 5 ms and an off-time of 35 ms. 

Similarly, if I = 20, 1000, 40; J = 1, 20 statements correspond to a 

square pulse signal with the same period (40 ms). This signal has an off­

time of 20 ms and an on-time of 20 ms.
 

In order to test the sum of X in each-record an additional varia­m 
lo 

ble M (where M r X"'t ) must be considered. This could be printed 

out along with Xm and ti every 10th record. 
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STARTT-0. Q()OWRITE TO DEV 
UFrERIIAI. FOP'MAT 

03 
 I4[{ TIlELIST 

IEM1 DO LOOP 3 r 

22 1-l,1500 'IF 

H) 1.0031 
2 18 1-% LST-Y 

BEGIN DO [0o] " 37 

00 HimX 10 I--I+IFIX(T) TO.0 

}l0D. N X­

03 22 19 38 10OQH:Sx/1O) 

MOIN DO LOn B0N DO LOD 
11 1-1,1500 X(i)X(J)+l 4 1 56 

04 39NE 
0 

56
XDU(IK 2 T-T4QTIXE(1) FALSE 
IY,UHIT NO 20 J1I+IFIX(T) 57 

Y0S 
 40 FRIT 3 

0 -1
 
11 06 1 1-1,1000 LIST-MINX,M
 

MOIN DO LOOP 


TIHEI)-- I 
41


(ALOG(UNIT)) 


FF. DUJor 
T0 ,YES
 

'0 22
.ON07 26 42 6 
OF .

LOIXY KG Is-(X(I).I

YES I-1.1I000) 
YS 08 

4 
TX-O.QI:I -

B II DO LOOT 
09 ,. 28 .1-35.1000.I' 

LMIN DO LOG OF 
70 1-1,1500 -62 

YES
 
10 IECIN DO LOl'
 

10 ~5 J-1.5
 
TX
 

LX-TX+TINE(I) 
 4
 
63200K -tI 

BEGIN DO LoD' m
 

ho0 N 11 2 1-1,1000 A6YES 
OF "(I+J) 6t 

IN: END FILE 
NES TRE 25
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APPENDIX C
 

PROGRAMS
 

lippLildlX: 1g'iiiiiJ]lh(rI( miro C .vo )rt1F~rlt N Ln' ts1 (I) V1it io:l 41 tI­

erating random background, (2) the program of generating square pulse sig­

nal with 100% intensity above random background, (3) the program of gener­

ating pulsar type signal with 100% intensity above random background, 

(4) the program of generating pulsar signal with 25% intensity above ran­

dom background, and (5) the program of calculating autocorrelation function
 

and power spectrum.
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The Program of Generating Random 'Background
 

FORTRAN IV G LEVEL 18 MAIN, DATE = 70285 

0001 DIMENSION TIME(1500),X(3000),R(IC5),Y(1000) 
0002 INTEGER*4 X,Y 
0003 EQUIVALENCE (.X,Y) 
0004 IX=65549 
0005 DO 260 MINX=1,100 
0006 DO 11 1=1,1500 
0007 CALL RANDU(IX,IY,UNIT) 
0008 IX=IY 
0009 11 TIME(I)=-(ALUG(UNIT).) 
0010 TX=O. 
0011 

"0012 
D0 70 1=1,1500 

70 TX=TX+TIME(I) 
0013 IF(TX.GT.3000.GO TO 50 
0014 DO 20 1=1,3000 
0015 20 X(I)=0 
O010 T=O. 
0017 00 22 I=1,1500 
0018 T=T+TIIAE(I) 
0019 J=1+IFIX(T) - -­
0020 22 X(J)=XJ)+l 
0021 WRITE (25) Y 
0022 MOD=MINX-10*(,MINX/10) 
0023 EF(NOD.NE.O) GO TO 200 
0024 PRINT 30,MINX 
0025 30 FORMAT ('IMINX= '15) 
0026 PRINT 25, (X(I),l=l,J) 
0027 25 FORMAT('I',/(IX,10II)) 
0028 PRINT 26,TIME 
0029 26 FORMAT( 'TIME',/( IX, 1CF1O.3)} 
0030 200 CONTINUE 
0031 END FILE 25 
0032 STOP 
0033 50 PRINT 51,TX 
0034 51 FORMAT(' TX IS Q,I8) 
0035 STOP 
0036 END 



71 The Program of Generating Square Pulse Signal 


With 100% Intensity Above Random Background
 

TRAN IV G LEVEL 

01 
02 
)3 
04 

,05 
06 
07 
08 
09 
10 
11 11 

12 
13 
14 70 
15 
16 

19 MAIN DATE 7'1062 

DIMENSION TIMF(1500),X(3000),R(1o5),Y(aO00)
 
DIMENSION QTIME(1000,Q(2000)
 
INTEGER*4 X,Y
 
INTEGFR*4 0
 

EQUIVALENCE (X,Y)
 
IX=65549
 
DO 200 MINX=1,100
 
DO 11 1=1,1500-

CALL RANDU(IX,IY,UNIT)
 
IX=IY
 
TIME(I)=-(ALOG(UNIT))
 

TX=O.
 
DO 70 1=1,1500
 
TX=TX+TIME(1)
 
IF(TX.CT.3000)GO TO 50
 
DO 20 I=1,3000
 

17 20 X(I)=O
 
18 T=O. 
19 DO 22 1=1,1500
 
20 T=T+TIME(I)
 
21 J=1+IFIX(T)
 
22 22 X(J)=X(J)+I
 
23 O0 1 1=1,1000 
24 CALL RANOU(IX,IY,UNIT) 
29 IX=IY
 
26 1 QTIMFE(I)=-(ALOG(UNIT)/2.0)
 
27 TX=O.O
 
28 nn 2 1=1,1000
 
29 2 TX=TX+QTIMF(I)
 
30 IF (TX.GT.2000.) GO TO 50
 
i DO) 3 I=1,2000
 
32 3 0(1)=0
 
33 T=0.0
 
34 DO 4 f=1,1000
 
5 T=T+QTIM I)
 
6 J=I+IFIX(T)
 

17 4 Q(J)=Q(J)+1
 
38 K=0
 
39 DO 5 1=20,1000,40 
0 00 5 J=1,20 

K=K+I 
2 5 X(I+J)=O(K)" 
+3 M=O 
4 [)(1 40 1=1,1000 

+5 40 M=M+X(1) 
P6 WRITE (25) Y 
7 "MOO=mINX-10': (MINX/10 
8 IF(MOO.NE.0) GO TO 200
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TR4N IV G LEVEL 19 MAIN DATE = 71062 

4q
qo0 

PRINT 30,MINX,M
30 FORMAT (11MINX= ',5 /' M=3115) 

51 
52 
53 
54-
5C200 

PRINT 25? (X(I1I=1,1000) 
25 FORV ATU1',/(1X,10I10)) 

PRINT 26,TIME 
26 FORMATi'TIME',/(1X,IOFO..3)) 

CONTINIJ 
56 
157 
58 
50 
60 
61 

END FILE 25 
STP 

50 PRINT 51,TX 
51 FORMATC' TX 

STOP 
END 

IS "18) 



73 
The Program of Generating Pulsar Type Signal
 

With 100% Intensity Above.Random Background
 

3RTRAN IV G LEVEL 19 MAIN DATE = 71047 

"001 DIMENSION TIME(1-500),X(3000),R(105).,Y{IO00) 
100 2 DIMENSION QTIMEC300),Q(600)' 
)C03 INTEGER*4 XY 
)NO , 4INTEGERS4 Q 
)06O5 EQUIVALENCE (X,'Y1 
)006 IX=65549 
k07 DO 200 MINX=1,100
 
xOO8 DO 11 1=1,1500
 
)C09 CALL RANDU(IXVIY,UNIT).
 
C10 IX=IY 

'011 11 TIME'(I)=-(ALOG(UN.IT.) 
0i12 TX=0.
 
013 Do 70 I=1,1500
 
.1"14 70 TX=TX+TIME()
 
015 IF(TX.GT.3000.)GO-TO 50
 
r116 DO 20 1=1,3000-

X17 20 X(I)=0
 
0)18 T=O.
 
10 19 DO 22 I=i,1500­
.020 T=T+TIMEC{I)
 
.021 J=I+IFIX(T)
 
"S22 22 X(J)=X(J)+1
 
'023 DO 1 1=1,300
 
1324 CALL RANDU(IXIIY,UNIT)
 
C25 IX=IY
 
026 1 QTIME (I=-,ALOG(UNI T)/2.0)
 
027 TX=0.0
 
1028 DO 2 I=1,300,
 
A029 2 TX=TX+QTIME(I)
 
030 IF (TX.GT.600.O). GO TO 50
 
C031 Do 3 1=1,600
 
)C32 3 Q(I)=O
 
3033 T=O.0
 
0G34 DO 4 I=1,300­
) 35 T=T+QTIME(I) 

)036 J=I+IFIX(T) 
1037 4 Q(J)=Q(J)t+l 
.038 K=O 
2039 DO 5 1=35,1000,40 
3040 DO 5 J=l,5 
'041 K=K+I 
.042 5 X(I+J)=QQ() 
043 M=6 ­
)044 DO 40 I=1,1000
 
DC45 40 M=M+X(I)
 
)046 WRITE (25) Y
 
'j047 MOD=MINX-10*(MINX/10)
 
3048 IF(MOD.NE.0) GO TO 200
 

http:TIME'(I)=-(ALOG(UN.IT
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TRAN IV G LEVEL 19 MAIN DATE = 71047 2 

D49 PRINT 30,MINX 
'50 30 FORMAT ('1MINX= ',15) 
)51 PRINT 27, M 
152 27 FORMAT ('M= ,I1O) 
553 PRTNT 25, (X(I),1=17,1000) 

)54 25 FORMAT('I1,/(1X,101O)) 
)55 PRINT 26,TIME 
)56 26 FORMAT('TIME',/tlXlOF1O.3.3) 
•57 200 CONTINUE 
1)58 END FILE 25 
059 STOP 

S6050 PRINT 51,TX 
:61 51 FORMAT(' TX IS 9,18) 
q62 
063 

STOP 
END 



75
 
The ?rograu of Generating Pulsar Signal
 

With 25% Intensity Above Random Background
 

TRAN IV G LEVEL 10 MAIN DATE = 71092 22i 

01 DIMENSION TIME(1500),X(3000),R(lO5),Y(1000) 
02 , DIMENSION QTIME(1000,Q2000) 
03 INTEGER*4 X,Y 
04 INTECER*4 Q 
05 EQUIVALENCE (XY) 
06 IX=65549 
07 D 200 MINX=1,100 
08 DO 11 1=1,3500 
09 CALL RANDU(IX,IYUNIT) 
10 IX=IY 
11 11 TIME(I)=-(ALOG(UNIT)) 

12 TX=O. 
13 no 70 1=1,1500 
14 70 TX=TX+TIME(I) 
15 IF(TX.GT.3000.)GO TO 50 
)16 D(O 20 1=1,3000 
17 20 X(I)=O 
1 T=O. 
19 00 22 I=1,1500 
20 T=T+TIMF (I) 
21 J=1+IFIX(T) 
22 22 X(J)=X(J)+l 
23 DO 1 1=1,1000 
24 CALL RANDU(IX,IY,UNIT) 
25 .IX=I Y 
26 1 QTIME(I.)=-(ALOG(UNIT)/l.25) 
27 TX=0.0 
28 DO 2 I=1;i000 
29 2 TX=TX+QTIME(I) 
30 IF (TX.GT.2000.) GO TO 50 
31 00 3 I=1,2000 
32 -3 O(I)=O 
33 T=0.0 
34 00 4 1=1,1000 
35 T=T+QTIME(I) 
36 J=I+IFIX(T) 
37 -4 Q(J)=O(J)+I 
38 K=0 
39 " DO 5 1=35,1000,40 
40 00 5 J=1,5 

41 K=K+1 
4 2 5 X(I+J)=Q(K). 
43 1=0 I 
44 DO 40 I=1,1000 
45 40 M=M+X(1) 
46 WRITE (25) Y 
47 MOD=MINX-10*(MINX/10) 

48 IF(MOD.NE.0) GO TO 200 
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TRAN IV G LEVEL 19 MAIN DATE = 71092 22/ 

49 PRINT 30,MI NX,M 
-'0 
51 
52 
53 
54 
55 

", 

30 FORMAT ('itl fNX= 1,I5,/, M:' 
-PRINT 25, (X(I),I=1,1000) 

25 FORMAT('l,/(1X,1OIl0)) 
PRINT 26,TIME 

26 FORMAT( 'TIME v,/(1Xj1OFLO.3)) 
200 CONTINUE 

v15) 

,6 
57 

END FILE 
STOP 

25 

58 
59 
60 

50 PRINT 51,TX 
51 FORMAT(' TX.IS 

STOP 
',18) 

61 END 



The Program of Calculating Autocorrelation Function
 

and Power Spectrum
 

\N IV G LEVEL i 	 MAIN DATE = 71095 03/44o 

DIMENSION X(1000) ,Y(1000) ,A(1000),R(100),S(i002,U(100),V100),
 
*COSINE(199) ,RR(100)
 

COIMMON /TSAI /XY
 
INTEGER*4 XY',A S,R,AVER 
EQUIVALENCE (X(501),A(1))
 

C CALCULATE INITIAL CCRRECTICN
 
N=100
 
READ (25) X
 
S(1)=O
 
R(1)=O
 
DO 1 I=2,N
 
S(1)=O
 
R(1)=Q
 
K=TI-I
 
00 1 J=1,K
 

1 S(I)=S(I)+X(J)
 
AVER=O
 
NU"MBER=O 
DO 2 I=1,50()
 
AVER=AVER+X( I)
 
00 2 J=I,N
 

2 R(J)=R(J)+X(I)*X(I+J-I)
 
NUMBER=NUMBE2 500
 

C MAIN LOOP
 
3 	 READ (25,CND=6) Y
 

0I0 4 I=1,1000
 
AVER=AVER+A (I)
 
0 4 J=l,N
 

-4 	R (J) =R (J)+A ( I ) --A (I+ J-1)
 
NUM "ER =NUMBE R+ 000
 
00 5 1=1,1000 

5 	X(I)=Y(I)

GO To 
3
 

C FINISH CALCULATICN FOR LAST RECORD
 
6 DO 7 I=1,500
 
7 AVER=AVER+A(I)
 

NUMBE R =NUMBE R+5 00 
AVE=FLIAT(AVER) /FLOAT(UWBER)
 
AVE 2=AVE*AVE 
DO 8 J=1,N
 
K=501-J "
 
g0 8 I=1,K
 

8 R (J)=R(J)+A(I)*A(I+J-1)
 
SDO 9 J=2,N
 
K=502-J
 
)O 9 I=K.,500
 

9 S(J)=S(J)+A(I).
 
D 10 J=1,N
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FORTRAN IV G LEVEL 19 MAIN DATE = 71095 

0045 10 RR( = ( S(+S(J) *AVE-AVE2* (NUMBER+J-1f/ (NUMBER-J +1) 
00'A6 PRINT 51,NUMBERAVERAVE2,R,S 
0047 51 FORMAT (2X,2115,F20.10,/(2X,8I15)) 

C CALCULATE SPECTRAL DENSITY 
0048 PI=3.14159265358979 
0049 D0 12 1=0,198 
O0 (" 12 COSINF(I+1)=COS(I*PI/990) 
0051 DO 13 K=I,N 
0052 KL=MOD(K,2) 
0053 KM=MfD(K+1,2) 
0054 V(K)=2.0*(RR(1-)+KL*RR(100)-KM*RR(100) 
005 DO 13 L=2,99 
0056 M=(L-1)* (K-1) 
0057 IF(M.GT.198) M=MCD(M,198) 
0058 13 V(K)=V(K)+RR(L)'*CSINE(M+1)*4.0 
0059 U(i)=0.5'(V(I)+V(2)) 
0060 On 14 I=2,N 
0061 14 U(I )=C.25*V(I-1)+0.5tV(I )+0.25'V(I+1) 
0062 U(100)=0.5.- (V(99)+V(100)) 
0063 
0064 

PRINT 50,( (I,RR(I) ,V(I),U(I) ,I=I,N)) 
50 FORMATCI1 ,/,4XI9 ,9X, 'R ,1X,,V,IXUul//,/C2X,I5,3 
*(2X,F20.8))) 

0065 STOP 
0066 END 
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APPENDIX D
 

CALCULATIONS OF THE POWER RATIOS
 

The power contributed by each frequency component is proportional
 

to the square of its amplitude. It may be calculated from the area under
 

the curve of the relevant portion of the power spectrum i.e. that area
 

bounded by the curve of the spectrum between specified frequency limits
 

and the estimated mean level of the noise background.
 

The large value peaks were analyzed in this fashion. Each peak
 

was formed from three consecutive frequencies. This was because the data
 

had been obtained in a digital form.
 

In this experiment the estimated magnitude of the power of the noise
 

in each frequency component was obtained from themean power for the fre­

quencies 250 N 495 HZ. This was calculated to be 3.008 (counts2/HZ) for
 

Table 3 and 2.248 (counts2/HZ) from Table 4.
 

For square pulse signals above a random background, the power ratio
 

of the fundamental component to the first harmonic component is 9/1 and
 

that of the fundamental component to the second harmonic component is 25/1.
 

These values were calculated as 8.558/1 and 25.349/1.
 

The pulsar analysis gives power ratios of the fundamental frequency
 

to the second harmonic component to be 1.57/1 and that of the first-compo­

nent to the third'as 2/1. The calculated obtained values were 1.47/1 and
 

1.81/1.
 


