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ABSTRACT

AUTOCOXKRELATTION AND POWER SPECTRUM ANALYSIS FOR

X-RAY AND GAMMA RAY SPECTROMETER DATA
by
CHUG-JEN TSAI

The purpose of this thesis is to test the usefulness of autocorre-
lation and power spectrum analysis computer programs for studying signals
from possible X-ray and gamma ray pulsar emitting pulsars such as NP 0532.
For checking the program, simulated data are generated: (1) simulated
random background, (2) simulated square pulse signal above a random back-
ground and (3) a simulated pulsar signal above a random background. These
data are discrete and equally spaced time series.

The results of the analysis, when the simulated pulsar signal repre-
sente a 100¥ intensity increase above the random background, is in good
agreement with an analytical solution. This technigue fails to detect pul-
sar signal if it has an intensity less than 25% above the random background
for a set of 105 data points. The sensitivity of the technique will be
improved for an increased amount of data or increased observation time.
Also if the period is known the parameters used in the analysis may be opti-

mized to increase the sensitivity of the method.



CHAPTER T
INTRODUCTION

1.1 General Aim of Thesis

The emission of X-rays from the pulsar NP 0532 in the Crab Nebula
has been established by the Naval Research Laboratory Group (FRIEDMAN et
al., 1969) by using'the autocorrelation and power spectrum analysis tech—
nique. Similarly, X—ray or gamma ray pulsations of NP 0532 could be ob-
served by power spectrum aﬁalysis for balloon data, where flight times
are several hours long and the random noise background is much larger than
in rocket flights because of the atmospheric photons.

fhe purpose of this thesis is to test the usefulness of a computer
program to calculate the autocorrelation function and power spectrum with
a siﬁulated pulsar signal superimp;sed'on a random background. Before
testing the program for calculating the autocorrelation function and power
spectrum, three kinds of simulated data are generated. These are:

(1) simulated random background, (2) a simuléted square pulse signal on
the random background, and (3) a simulated pulsar signal on the random
background. The first two are subsidiary data for checking the autocorre-

lation function and power spectrum computer programs.



1.2 Review of Observations of Pulsar NP 0532

Pulsars, radio-emitting "stars" having rapid and extremely accu-
rate repetitive changes in luminosity with t@ne, were Qiscovered in 1968
by HEWISH, et al. {(1968). Later, STAELIN and'KEIFENSTEIN (1968) observed
two radio pulsars in the vicinity of the Crab Nebula. Of the pulsars yet
discovered, these two have the 1ong§st {3.745 s.) and shortest periods
(33.09 ms.).

In January of 1969, CdCKE, DISNEY, and TAYLOR (1969) reported the
discovery of optical light flashes from the Crab Nebula. The flashes
occurred with the same periodicity as the fast Crab pulsar (NP 0532) and
were suggested to have originated south of the two central stars in the
Crab Nebula.

X-ray pulsations from NP 0532 as reported by NRL (FRIEDMAN et al.,
1969) indicate that it pulsates at a frequency closely matching the radio
and optical pulsations. About 3% of the total average X-ray power of the
Nebula appears in the pulsed component. The X-ray pulsations have the
form of a main pulse and an inter-pulse, separated by about 12 ms. The
important characteristics of NP 0532 (FRIEDMAN et al., 1969) for radio,

optical and X~ray observations are tabulated in Table 1.



Table 1

Radio Optical X-ray

Average Pulsed 6 x 10"14 8 x 10_12 1.5 x 10_9
P°‘_’;r N (195-430 Mhz) | (4500-85004°) (1-104°%)
{erg cm * sec )
%
U~-B = =1.3
Spectral -9 n 0.4
Index B~V = +0.1
Separation of .
Main Pulse v 14,5 ms 14.0 ms & 12,0 ms
and Interpulse )
Half-power Width ~ 3.0 nis ) 1.4 ms S 2.5 ms
of Main Pulse
Half-power Width 3.0 ms 2 5.0ms
of Interpulse . .
-

¥ U, B, and V are logarithmic intensities (magnitudes)

let, blue, and visual, respectively.

in the ultravio-"



1.3 The Reasons for Using Autocorrelation and Power Spectrum Analysis

for Determining the Pulsar Periods

Autocorrelation and power spectrum analysis reveals information'on
pulsar characteristics in the time and fregquency-domain. Suppose that an
X-ray or gamma ray pulsar has one pulsation period, and the intensity of
the signal is strong with respect to the random background, then the auto-
correlation function will be a periodic function with the same period as
the signal. In the frequency domain, the power spectrum would have a
large value at several definite frequencies corresponding to the pulsar's
fundamental frequency, the first harmonic frequency, etc.

In general, there might be several frequencies in the pulsar in
question or in other words, it might have several pulsation periods. In
this situation the autocorrelation function in the lag time domain is not
a good way to pick up the pulsztion periods. Because the autocorrelation
can be considered as the sum of the.autccorrelation functions for the
separate periods superimposed on the random background, the resultant auto-—
correlation function in the lag time domain might not be easily interpre-
ted. On the contrary, the power spectrum allows one to easily detect those
frequency components present in the pulsar. So long as this spectrum, when
plotted versus frequency, has bumps or large values at several particular
frequencies, one can easily tell which frequencies are the fundamental pul-
- sation frequencies.

The power spectrum analysis determines not only the estimated value
of the period but, it can determine how much power is comtributed by each
frequency component. The power contributed by each component is proportional

to the square of the amplitude of that component.



1.4 Statement of Problem

Knowing the actual characteristics of a typical pulsar such as
NP 0532, we could simulate this data for checking the "autocorrelation
and power spectrum" program. Using ins&ead an idealized pulsar simula-
tion we can study several questions relating to the use of autocorrela-
tion and power spectrum analysis techniques. The basic questions studied
in this thesis are: (1) what is the limitation of using the autocorrela-
tion and power spectrum analysis techniques as the pulsar signal becomes

weak compared to the background? (2) What are the wvarious advantages

and disadvantages of using the technique?



CHAPTER IT

THEORY

2.1 Theory of Autocorrelation and Power Spectrum Analysis

Autocorrelation and power spectrum analysis is a very useful tool
for detecting periodic signals buried in noise and for establishing coher—
ence between random signals. Its applications range from engineering to

radar and astronomy to medical, nuclear, and acoustical research.
(1) Autocorrelation Function

Autocorrelation for any kind of waveform is a measure of the rein-
forcement between two identical waveforms shifted in phase. It is compu-
ted by multiplying one waveform ordinate by ordinate with the other and
finding the average value of the product. If there is no phase shift
involved, the correlation between two identical waveforms is large. In
other words, the autocorrelation function at the zero leg time is large
and a maximum. However, if two waveforms are identical in shape but have
an arbitrary time shift between them, then the correlation between them is
generally small, Hence, autocorrelation is a function of the time shift
between the two identical waveforms. This correlation problem is illustra—
ted in Figures 1 and 2. Figure 1 shows two identical waveforms without any
time lag or phase shift. Figure 2 illustrates two ldentical waveforms with
a lag time or phase shift.

This function can be expressed in terms of a mathematical formula as

the product of the wave x(t) and a delayed version of itself x(t + T) aver-
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aged over T seconds as follows:

: (T
R(n{) ::;;mw :F‘E XCEY) XL+ d't (1)

where T is the lag time. This quantity R(t) is always a real-valued even
function with a maximum at 1=0 and may be either positive, negative or
zero for other values of t. There may be other maxima depending on the
function. Therefore, this function has:

1. Symmetry about =0, i.e. R(t) = R(-1) (2)

2. A maximum at 1=0 equal to the mean square value (X2) &3]

of the signal from which it is derived, i.e. R(0) = X2

and R(0) > R(t) for all T.
Alsc for the special case of a periodic waveform the autocorrelation func—
tion is pericdic and has the same period as the waveform itself. This peri-
odic autocorrelation has the two properties listed above but it will have
maxima whenever the lag time ¢ is equal to an integral number of periods of
the signal.

Tha random noise signal is quite different from the periodic wave-
form. When compared with a time shifted version of itself, only a small
time shift is required to destroy the correlation, and it never recurs.
The autocorrelation function for this case is, therefore, a sharp impulse
which decays from the central maximum t; low values at large time shifts.

Two samples of random noise of the same bandwidth might have quite
different waveforms, but their autocorrelation functionscould be identi-
cal. The autocorrelation function of any signmal, random or periecdic,

depends not on the actual waveform but on its frequency content.
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(2) Power Spectrum

The power spectral density function at frequency fc is defined by

BENDAT (1958) as:

- L (e, %, Af)
G(f,x) ""AI;.TO % ()

where P(fc, %, Af) is the total average power in a given bandwidth Af and
X is a continuous wvariable. Therefore, the above equation represents the
limit of the total average power in a given bandwidth divided by the band-—
width as the bandwidth approaches zero. Suppose x(t} represents an infi-

nite record length, then we can define data with a finite record length as:

x(t) le] < T
XT(t) =

0 otherwise

The total average power of bandwidth Af is defined by BENDAT (1958) as:

for 3 (Al
F(fc;%'df)z Lim J T )/

To00 of T 0!'31 &)
foo 3 :
Where)
T —c2nft od ct nox
fp G0 =£T wre  at=] Twe  at .

AT(f,x) is the direct Fourier transformation of the finite length of data

XT(t) and

s w
[ Ay, 0] = A %) fr (5. %) ' (7

From equations (4) and (5) we observe that since |AT(f,x)|2 is an even
funetion of £, it followe that G{f,x) is an even function for all £. The
notation G(f,x) shows clearly that the power 'spectral demnsity funcgtion de-

pends upeon the particular time record x(t) under examination.
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2.2 The Relation Between the Autocorrelation Function

and the Power Spectrum

Consider an arbitrary real-valued time record x(t) of infinite

extent. Its total energy is defined by

o -5
Total energy = j X (t)dt (8
- o0

If x(t) does not approach zero rapidly enough for large values of t, the
total energy may be infinite; that is, this integral fails to converge.
However, we shall assume that the average power associazted with x(t) is
finite, where the average power is defined by
. { T 2

PV' = LiM =y Xt)dt )

2 T T -
Using Parseval's Theorem as given by KHARKEVICH (1960a), let Al(f,xl)

and A2(f,x2) be the Fourier transformation of real functions xl(t) and

xz(t), respectively. Then

> T A ) f (5%
j 2 (t) 7€) dt =Ipo AG %) A (£%)df (10)
0

For the special case of xl(t) = xz(t) and a finite record

e o 2 oo 2
f X ()dt =f [Ar )] af = 2 (A )[4
LA 0 °

A,
If j XT('I':) dt is convergent, then by (11)
—

o x> L 1A Bl
= lim S.Lf ——n——XT_ﬁt) dt = L:MJ ATT )Iq'JC (12)
—ad ¢

PQV T <0 T 00
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Therefore, from equations (3), (4), (5), (11) and (12)

— T, 2
ko) = Xty = Lim .._f-j Xt)dt .—_-f G df (13)
T

2T
T 2D o

but < /0 .~ dm
Riy=[ R Se)dT = 2] kiv)Sczide
Zod &
because R{(t) and §{(tr) are even functions.
Therefore, by use of the definition of the Dirac delta function §{t)

-x 20fy -

o? od
= 2 R{(z) 2 ~ 14
Rto) j; ¢ L& dF d7 (14)

Comparing (13) and (14)
rcy '-.(: ZW'JC'?."
Ge)=2[ R¥V)e @
-o
Therefore, the power spectrum is the Fourier transform of the autocorre-~

lation funetion. The power gpectrum can be written in another form as

follows Q_{-_{l) = .af.fao R(T) ces 27mfFvdT

Since R(t) is an even function of 7, G(f) is always a real-valued non-
negative function. In short, the autocorrelation function and power spec—

trum are the Fourier transformation pair, i.e.,

R(T) ::foo GFocos 2 d$
° (15)

&) = 4f RO cos2nfe

Autocorrelation Theorem

There is a useful theorem which is stated by BRACEWELL (1965) and
can be used to explain the relation between power spectrum and autocorre-

lation function. If X(t) has thé Fourier transform A(f), then its auto-
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correlation functlon is the Fourier transform of |A(f)}2. i.é:, if

jxu:)g:" 2Tt at = ACH)

then,

8 2 ¢ 27fT
[ 1A e 4 = [ Kt x ety 6
— o) —cd
This autocorrelation function is unnormalized with zero mean. Thus
IA(f)|2 is the power spectrum in equation (16), since the Fourier trans—

formation of the autocorrelation function is the power spectrum, that is
- 2TET
f R(Y) & dz = &)

Conversely, the autocorrelation function is the Fourier transform of G(f)
& ¢RIfT @
f &5 e df =RCY =f X'(t) x(t+7)dt
-y -
from the above equation compared with equation (16) we see that |A(f) |2

is equal to G(f).
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2,3 Derivation of Autocorrelation Function and Power Spectrum

for Computer Programming Use

The functions used in the first two sections of this chapter were
continuous for the convenience of the theoretical treatment. In practice
digital type data are normally used. For eiample, the data obtained by
collecting counts over some time interval At is discrete. Therefore, in
this sense, the simulated data we must use should be discrepe.

The simulated data will be equi-spaced, discrete and for a finite
length record. TFor this reason, the formulas of autocorrelation function
and power spectrum must be transformed. .

Suppose this series of data has a non-zero mean. An estimated
autocorrelation function [I.B.M., Programmer's Manual: System/360
Scientific Subroutine Package, (360A - CM 03X), Version IIT, 59.] may be

expressed as

A { nJel e &
Ry= wogay & 0557 gy = X) an

where:

is the mean value of all the data Xi, j.e. X =

b

n = nunber of observations in the time series Xi

j i, 2, 3, ..... m represents time lags 0, 1, 2, ..... (m-1) and
n is the maximum lag number and the maximum lag time 'I‘m = (m-1) x sampling

time. For programming convenience, we may expand equation (17) into three

terms as follows:

A | (n;jd Vlz’:j*! n-J# J
s e [ XX K —X C ot 2‘[ 18
R h‘j ‘f" 5.—_,- v %*J‘f c.;{ (?t"' p‘fJ + xj ( )
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The middle term can be expressed differently by using X according to the

mathematical steps following:

— %X | (ng‘ﬂx 2’1 x
= — = - . + . X .
=3 o I v=n<jr2 ©
. onH - n
. = Xy = nx — I )fb.
£=1 c=njr : (19)
n:ﬁﬁ ¥i n
ma 2 X, =T x = Zx,
_— | .2.’5 X ,C-“" "
= — o = =T X, + I X.
but X =% vz R ¢=j ")
wjﬂ n — -1
-' g KG"'Q."'I = ‘—I_ i‘(.. = hX — ? KL.
©=l = &= (20}
From equation {19) and equation (20)
~3+: X
”~ (7‘.— -r’zr{.J,)ﬂan (ZX "'f'z (21)
t=f ¢=f c=h®jf2

Substituting equation (21) in equation (18) gives the autocorrelation
function with non—zero mean as follows

| h-J+
R. = I X __X[:mx-(r)( —f-Z.‘ X.)

2 0=+ ¢s Ao Foej C=n e

A+ (n-3+) 5(‘2[}

‘ 2 Pxor T
= *A.,. T X -
-j +f &= A:'+J -} X ( v=/ 1-95.1;-‘]”') (" 4 XJ (22)

Equation (22) is the complete expression for calculating the autocorrela-

tion function with 2 non-zero mean for equi-spaced, discrete data. The
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parenthesis of the second term of this equation is the total sum of the

first (j-1) data samples and the sum of the last (j~1) data samples.
BLACKMAN AND TUKEY (1958a), states that the ensemble average of the

estimated autocorrelation functicn for the discrete case equals the trus

autocorrelation function for the continuous case. So that
-y
ave {Rj} = R(t) = R(jAT1)

Similarly, the average of the raw power spectral density can be expressed

in the form of a Fourier transform, viz., Lo
-« 2T £%

a,vg,f &3 2J [V, (7;57) R(T)]e do

where Vm(T;AT) is a finite Dirac comb, V1z.,

* s AT -
Vo, (T, 4T) = (é"("’f'mfﬁc)-f—“«"'f J(’? JAT)+3 6 (T ~m<T)

- J=-mf

Then 'a'v.gfa—’} = 2j :‘i_'i_'_ &(?4-:144?)‘ R(T) Ces 2ITJC’2‘0('E' -+

Zlymjoami I?5{ph_KA“)RCHJCDSJnf~d?@+4L Jrc H(imév

-0
a=-m+;

e = Jeos 213 <~
Y - T 2 A7) Lo C
— o 4% RIMET) S 2TEMAT + 2ATR(0) + Aa7 52;, R(2
A s A1
QAT E!U&ff?\ }cos 210 mag 4+ 24T &We.f Rb} 4 LT Z c?vaij,
™M J::’

CoS 2§ J 4

If we ignore the averaging (Ave) in the above equation, the raw spectral

density may be expressed as:

SN A ?"A-I
Cm = 247 R,, @S 27f M 4T + 24TF, +44~2~R CoS 20f 4T (23)

where £ is not a continuous variable any more but is now a discrete par-

ticular number.



Let

- J KT . K
2 LT = B

TFJCKJ m A &, J:‘K SLM-“?" (24)

where K=o 4 2, .. m

Then equation {23) becomes,
(25)

In order to get a smoothed power spectrum the lag window and the
spectral window are involved. The lag window 1s the Pourier transform of
the spectral window. Tgere are several Fourier transformation pairs
(BLACKMAN and TUKEY, 1958b) relating these two windows: 1in the following

D denotes lag window and Q denotes spectral window.

Zeroth pair

=1 (T <7,
D)
=0 1> T,
and _ Sin 2mF T,
Qo) = 2T ~ag
First pair (BARTLETT, 1950) |
=1~ IS
D7) |
= 0 AT > T
and Sin IF)CT,,, "
G( f) = Tm )
Second pair (sometimes called "Hannlng")
:i—(ﬁ-c.os_’:”'-_@') |2 <7,
2.0) -

and

0.(5) = £ Guth) + 5 [Qo (5 +35) +Qu 5~ 53]

Third pair ( scmetimes called "Hamming'™)

» __7!_'__‘ /t-' <7
= ¢6.54 4+ 0,46 S T.. [ | Fra,
Dt
3tC) o v > 7,

and

'1
Q, (%) = 0-54 Qo(§)+ 023 [Qet5t 7 )+ Q,(f —zn.]
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. arY
Fourth pair _ 0.42 - 0 k0 €28 .....?.!:.}.:E -+ 0. og a8 ‘—'_}':‘ !?‘I<Tm
e .
D,(T) " -
= 0 { c]?T’m

and

Q1) = 042 Q) c0.25 [ @, )+ Q5= )]
T ood [Q,(F+ 7))+ Q, (£ =]
BENDAT and PIERSOL (1966a) use Hanning (second pair) for smoothing the
ray power spectrum.
The smoothed power spectrumlis the comvolution of Qz(f) and the

true power spectyum. Therefore

G, = o5G, + 0-58{:

3

o235 -+ K=/ m=~|
= o \ - K=, e, -
G, T oSGy +025G, (26)

i o~
= 0.4 é—m-! -+ o4 @'m

KHARKEVICH (1960b) states that,'"Any function £(t) consisting only
of frequencies fren0 to fc can, with any desired accuracy be treated as a
succession of numbers recurring every 5%— seconds." Where fc.in the no~
tation of BLACKMAN and TUKEY is fn' Thi: maximum frequency is also known
as the folding (or Nyquist) frequeney. From the equation (24), when K
equals m then fc =-E%E,which is éhe Nyquist frequency. At in the notation
of BENDAT and PIERSOL (1966b) is h or the time interval between samples.
The resolution bandwidth for power spectrum is defined as B = E%f-. The
B will be small for a given h when m is large. -

An important feature known as "aliasing” enters for observing an
equally spaced, discrete finite record of data. The energy or power at an
arbitrary frequency f cannot in gemneral be separated from that contributed
by different frequencies [BLACKMAN and TUKEY (19258c}]. In other words,
higher frequencies from the original process G(f) may contribute some power

to the estimated power spectrum GA(f) (see Fig. 3). TFigures 3a and 3b in~



G{f)

(a)

(b}

FIGURE 3
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dicate that the powers comntributed by frequencies 2fc—f1 and f1 are indis-

tinguishable, The essential, unavoidable nature of this problem is made
clear by Fig. 4 which illustrates how equally spaced time samples from any

cosine wave could have come from each of many other cosine waves. In

Fig. &, the sampling time AT is 0.2 second; then the Nyquist frequency is

1
2AT

;ls%z eyelefsec., i.e., 2.5 cyelefsec. Clearly, a sinusoidal wave with
frequency 4 cycle/sec. can be fit through the points and a second sinusoi~
dal wave (dotted curve) with a frequency 1 cycle/sec may also fit the given
points, Higher frequegcies may also be present but it is not possible to
know from the measured At whether the power at frequency f [of a2 power spec-
trum in the interval (O,fc)] comes from the principal frequency f.or

2fc—f, sfc+f, éfcuf, éfc+f,.....etc. These higher frequencies are called
aliases of £. Therefore, the aliased power spectrum GA(f) QEfined in the

interval (O,fc) by BLACKMAN and TUKEY (1958d) is all that one may estimate

from the data.

GA(f) may be represented as follows:

G, (©)

G, (£)

G(£) + G(2f_~f) + G(2f +f) + ...etc. st

0

Il

vhere G{f) is the true power spectrum.

Two practical methods exist for handling this aliasing problem
[BENDAT and PIERSOL (1966c¢)]. The first method is to choose h suffici-
ently small so that it is physically unreasonable for data to exist above
the associated Nyquist frequency fc' For the low érequency case of inter-
est, say below 500 HZ., then h = 1 ms would technically be sufficient.

The second method is to filter the data prior to sampling so that no infor-—
mation above the Nyquist frequency is contained in the filtered data. Then
choosing fc as the maximum frequency of interest will give accurate results

for frequencies below fc.
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CHAPTER III
PROGRAMMTING.

The X~ray or Gamma ray spectrum of a pulsar might be in the fomm
of a small signal on the random background. Autocorrelation and power
spectrum analysis has already been used as a tool in conjunction with a
rocket experiment (NRL Group) for detecting the X-ray pulsar (NP 0532)
signal over the general Crab X;ray signal. Similarly, the autocorrelation
and power spectrum technique might be used for balloon experiments. In
order to check the programs for ébmputing the autocorrelation and power
spectral density function before applying them to balloon flight data,
three kinds of simulated data are generated by the computer. The first
one is a simulated random background for discrete data. The second one
is a simulated square pulse signal above a random background. The third

one is a simulated pulsar signal above the random background.
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3.1 The Basic Principle Used for Generating Random Data

A way of generating random data is to use thé time interval dis-
tribution which is derived from the Poisson distribution which gives the
probability distribution in time for a random process wﬁen the average
rate is specified.

The time interval distribution describes the distribution in size
of the time intervals between successive random counts when the mean rate
has the constant value of a counts per unit time. From EVANS (1955) sup-
pose a is the average rate of appearance of photons; then the average
number of counts in a time interval t is at.

When the average rate is a, the probability of observing x counts

in a time interval t can be expressed as follows:
-— X —
(at) —-at
Px(t) ==z ¢
This is simply the Poisson Distributiom. From this equation the

probability that there will be no counts in a time interval t, during which

time there should be at counts on the average, is
P, = (at)® -at_ -at
0 —OT-—E = e

and its differential form is shown as follows:

dp - —at
[#] = de

dt

We at once see that small time intervals between successive random
counts have a higher probability (probabilitf of no counts in a time inter—
val t) of occurring than large time intervals. In other words, this is the
TIME INTERVAL DISTRIBUTION which gives the probability of occurrence of

each time interval.
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Of course, the occurrence of a given time interval is random and
may be represented by a random number. This implieg that the differential
probability of occurrence of a given tiﬁe interval may also be represented
by a random number. .

Now from the random time interval betweeﬁ two successive counts,
the random counts within a definite time interval could be generated.
Those random counts are the simulatgd data I have been using. Suppose all
events (counts) occur randomly along a time axis, the number of random -
counts ig then nothing but the number of counts occurring within a defi-
nite time interval.

Thus, the steps of generating random counts is shown as follows:

1. Generate random npmber between 0 and 1 by use of the SUBROUTINE "RANDU.'
(see Appendix A)

2. Take this random number as the probability of no counts ocecurring in
a time interval ti but one count in ti to ti + dti and generate random

_ 1n UNIT

o time intervals according to the-formula £, = ; where £ is a

random time interval and UNIT is random number betwien 0 and 1.

3. Generate the number of random counts within a given desired sampling
time by observing the sequence of intervals obtained from step 2. The
distribution of the random time intervals is shown in Figure 5 by using
some of the data from the "Random Data" program. The random time inter-
val data‘have been generated under the average counting rate a=1 count/ms.
The total number of random time intervals is l.leOS, but only 1.5x104
are printed out with the form of 1500 numbers of randém time intervals
for each 10th record. In other words, there are 1500 numbers of ran-
dom time‘intervals for 10th, 20th, 30th up to 100th record.

In order to show the distribution of time intervals, the grouping

of the numbers of timeinterval in the range of 0 ~ 0.1 ms,., 0.1 ~ 0.2 ms,.

etc. is tabulated in Table Z.



Table 2

Range of Time Numbers of Time ;ﬁgﬁi}
Interval {(ms) Interval (counts) (Counts)
0.1 0.2 150
0.2 n 0.3 110
0.3 n 0.4 102
0.4 ~ 0.5 84
0.5~ 0.6 82
0.6 n 0.7 72
0.7 ~ 0.8 52 1173
0.8 ~ 0.9 46
0.9 ~ 1.0 62
1.0 4 1.1 50
1.1~ 1.2 59
1.2 1.3 " 41
1.3 o 1.4 38
1.4 o 1.5 33
1.5 n 1.6 37
1.6 v 1.7 27
1.7 % 1.8 40
1.8 ~ 1.9 24
1.9 a4 2.0 17
2.0 ~ 2.1 21
2.1 2.2 16

25



26

' There are only 1173 out of 1500 values of time intervals taken
from the first 1500 values of printed data from the program of "Genera-
ting Random Data.”

Figure 5 is a semilogarithmic plot of the numbers of time inter-
vals in a given sampling time of 1 ms versus the time interval. The
straight line shows that the distribution is. exponential as we expect.
From the slope of the line, we can determine a for checking the '"Random
Data" program.

As T mentioned above a = 1 count/ms gives 1 count within 1 ms on
the average which is a very low value statistically. Therefore the distri-
bution of x counts occur Wit?in-} ms time interval will follow the Poisson
distribution Plt)= ‘%Q—?}—.ﬂ:at . Substituting this value in this
equation, then fk(i):: -?%7" 4[4 ; where Px(l) is a random number be-
cause of x random counts. The slope of the straight line in Fig. 5 is

1.17 cts/ms. The 17% error is due to the limited data (1173), this would

decrease with more data. A least square fit may'give a better result.
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3.2 Brief Statement of the Method for Genmerating a Square Pulse

or a Pulsar Signal Tncluding a Random Background

From Section 3.1, we know that the random background has been gen-~
erated by three steps. .. Once the random background has been generated, the
random counts for either the square pulse.or pulsar signal also could be
generated by the same steps.

The process of constructing simulated data can bé understood by
reference to Figure 6. This shbws the case where in region I the random
counts correspond to an average rate a and are generated by the method
described in Section 3.1. In region II, the random counts are generated
for a new average rate f times the former rate, where f is any positive
real number. To construct the data for a continuous f£low of time, the
1° and then for a time t2 the ran-

dom counts for the new average, fa, are used, then the counts for a again

random counts for a are used for a time t

for t1 are used etc. This procedure constructs the time series for a

pulse which is on for a time t2 and off for a time tl so the period is

tl + t2.

If we set tl = t2 = 20 mg, and a = let/ms, and fa = 2cts/ms, then

the data would be the square pulse with a 100%Z intensity increase over the
random background with period 40 ms. Similarly, a pulsar signal with a
pefiod of 40 ms and a 100% intensity above the random background could be

= 35ms, t, = 5 ms, a = lct/ms,

1

generated in the same way by setting t 9

and fa = 2cts/ms.
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3.3 TFlow Chart for Autocorrelation Function and

Fower Spectrum Computation

We will now discuss the procedure for developing programs to cal-
culate the autocorrelation functicn and power spectrum. It is most conven—
jent to describe this in terms of a flow chart.

The autocorrelation function with nonzero mean for discrete data is

given by
R. = / j: (f/‘t' —x)(?C ) @an
J n-g+ 2= _
where X is the mean value of the data Xy
- n
X =-% X xi
i=1
1 = number of observation in time series Xi
j=1, 2, 3, e m represents time lags 0, 1, 2, ~———— (m-1)

The transformed equation

"j\‘l
b~ / z :>: X, i}

The raw power spectral density function

G 51 =G G (Ke)=24 [R+2 b3 % °°S(w)+w R”‘J (25)

.3=

Wheref=%5. K=0,1; 2 ~~—e—— m
h is the sampling time interval

-

R.j is the estimate of the autocorrelation function at time lag j-1

m is the maximum lag number

=4 .
fc =55 is the Nyquist frequency
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The smoothed power spectrum is given by

A o Pas
= od .
GTo 0 G; t 0 éﬁ L
G = 0a8G  rosG 4 025G, oKtz el g
G =08G, tosg,

It is very cumbersome to calculate the autocorrelation function throughout
all the data. However, we can calculate it for one part of data and then
go through the other part of data. Therefore, it is necessary to mention
what the "read" process is. This process is divided into three steps as
may be seen by referring to the flow chart shown in Figure 7.

(1) 1Initial correction: Read first 500 data values and do calcu--

lations of

oo . £od
RG) = = K Xoajoy 5 Whete d from 1 4o 100 ;  AVER = ‘_:g:’ X,
] =

(see Figure 7, blocks 12, 13, 14, 15, 16, 17, and 18)
(2) Main loop: Read 1000 data wvalues (i.e. half of the data in

first record and half of the data in second record) and do the calculations

of JDS.‘DO IS":-&‘OD

REI= T KiXeujy o WHERR T FW 1 %0 o0 5 pypR =T X,
&= L=

(see Figure 7, blocks 19,20,21, 22, 23, 24, 25, 26, 27, 28, 29) 1In order
to keep reading the data under this form the "read" and "go to" statements
have been used to read the data from 501 to 105—500. ‘ (see Figure 7, blocks
19 and 31)

(3) Final correction. Read the last 500 data values of the last

record (i.e. 100th record) and do the foliowing calculations
X

1w . lﬁr ——
RE1) = I X Xowj, ,‘wh"’m 1 Frem | +o leo ; AVER = T X 5 X= #AVER
c={ ' =]

(see Figure 7, blocks 32, 33, 34, 35, 36, 37, 38, 39, 40, and 41)
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The calculation of the power spectral density has been divided
into two parts. TFirst, calculate the raw power spectral demsity by equa-
tion (25) (see Figure 7, block 63). Second, calculate the smoothed power

spectral density by equation (26) (see Figure 7, blocks 66, 67, and 68).
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CHAPTER IV
EXAMPLE QF SIMULATED DATA

For the purpose of checking the computer result for the autocorrela-—
tion function and power spectrum for the simulated data generated by com-—
puter, the analytical solution for the autocorrelation function and power

spectrum has to be discussed. From the analytical point of view, we use the

average value of the simulated data.

4.1 Avtocorrelation and Power Spectrum for a Random Background

From KORN (1966a) and BENDAT and PIERSOL (1966d), we know that the
random data are not correlated smong themselves. However, there is a corre-
lation among individual terms. TFor example, x(tl), x(tl + 1) are uncorrela-—
ted for every At # 0, therefore, autocorrelation function will be a delta
function at lag time zero, i.e. T = 0 for infinite length of record. The
power spectrum would be a constant over all the frequency range. This is so
called white noise. In other wo;ds, white noise has a constant power spec-
tral density, i.e. G(f) = a, R(1) = ad(t) where a is constant. Unfortun-
ately, such a process for white noise is not physically realizable since the
variance or R(O) is infinite. This is true for only infinite Iength of
record,

In practice, white noise is approximated by various types of wide~
band noise, having approximately constant spectral density over a frequency
band of interest ("band~limited white noise'). From BENDAT and PIERSOL

(1966e), bandwidth limited white moise is a random process with a constant
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power spectrum defined by

]
ut]

G(£) 0<f, -~ B/ £ + (B/2) (27)

=0 otherwise

where fo is the center frequency, and B is the bandwidth. From equation

{15) it follows that the associated autocorrelation function is

R(1) = a cos 2[f df = aB ( WBN")Cos 25 T
: X
5%
For the low-pass white noise, fo = %-, then C(f) becomes
G(f) = a 0<£<B (28)
=0 . otherwise
Sn2TBY
and R{(t) = aB ( TS )

In Figure B, the frequency information we want is in the low range
of frequencies. So the low~-pass white noise is of interest. The aucocor-
relation function for low-pass white noise is a sinc function which looks

like the amplitude of the diffraction pattern for the single slit.
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4.2 Autocorrelation and Power Spectrum Prediction for

the Average Pulse Signal Above an Average Random Background

In this section we discuss a square pulse above the random back-
ground with period T. .If we make this average square pulse signal with a
100% intensity increase over the background for a time T/2 and off for
+he remaining time T/2, then we ask! What will the autocorrelation func—
tion and power spectral density function leok like?

Before analyzing and making this clear, the Autocorrelation theo-

rem will have to be reexamined.

Autocorrelation Theorem

If x(t) has the Fourier transform A(f), then its autocorrelation

A
function -f Xt)X(t*7)4T has the Fourier transform JA(£)|2 , i.e.
o

TR Y ~ )
J [A(-F)]z.e,°2ﬁ§° af _—_j Xt % (& re)dy =R(T) (16)
o) -0

This is the unnormalized autocorrelation function with zero mean.

Suppose there is a rectangle function II(t) which is defined such

. = | 't" <}
that l é
Iit)
=0 . ]| >)£
The Fourier transformation of the function Ii(t) is sine (f) = -—%%%%?i

Therefore, using the Autocorrelation theorem, the R(T) is the Fourier trans-
form of sinc2f function is the triangle function of unit height and area.

This function A(t) is defined that
= | ~{%) i<t
ALY)
=" O {1 >
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These transformations are shown by three solid arrows and one
'
dashed arrow in Fig. 9. Any arrow represents a Fourier transformation.
The lower solid arrow in Fig._9 indicates that power spectrum is trans-
formed to the autocorrelation function and the dashed arrow represents the
inverse transformation.

From the above transformations we know that a II(t) function for
the signal will result in a triangular shaped autocorrelation function,

If you concentrate, the positive side of t axis of II(t), you will have

a straight line together with two axes which can form 45° right triangle,
The autocorrelation function of the average square pulse signal above an
average background will be of a triangular shape along the lag time axis.

For the purpose of making the autocorrelation function of the
square pulse signal clear, we show a plot of the average sqﬁare pulse sig-
nal above the average background, and its autocorrelation function in
Fig. 10. Part {a) of Fig. 10 shows the square pulse signal above an aver-
age background. In order to calculate an autocorrelation function fof
zero mean, we use the data in part (b) of Figure 10 which is made by
shifting the mean value of signal and background. Part (c) of Figure 10
represents the autocorrelation function for the case of zero mean. It is
seen that the pericd of the autocorrelation function is the same as that
of average signal above the average background.

Mathematically speaking, the autocorrelation function qualitatively
can be considered as the product of the same waveform with a lag time %
between each other.

(1) When the lag time T equals zero, the normalized autocorrelation
function must be the maximum value 1 [see Figure 10 (¢), al.

I
4

product is zero [see Figure 10 {c), b].

{2) When the lag time T = s, where T is the period of signal, the
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(3) When the lag time T = %-, i.e., out of phase completely, the
product is minimum value -~ 1 [see Figure 10 (e}, c].

3T
Similarly you will have Riz)=0 , R(T)=1,6 4.

Power Spectrum

There are two ways to calculate the powver spectral density fune-
tion G(f) for the average square pulse above the average background.

(1) The density function G(£) can be considered as the Fourier
transform of the autocorrelation function. In other words, the shape of
G(f) will be sinczf function of the positive range when A(r) is the auto-
correlation function. In this plot there will be several peaks at several
particular frequencies but the amplitude of these peaks will be gradually
smaller and then die out for increasing frequency £.

(2) Ratio of the power of one component to the other:

From the mathematical derivation equation (13} we have the result

Rco) = xv)* ::f ‘5'(5")“':{: where X(t)? is referred to as the time averaged
]

power of the mean power in X{t). Consider

Xty = Q° -+ I' {Q,, oS 2mf it +b Sin2nf,t )

where fn == , and agy a, and bn are the usual Fourier coefficients.

n
T
Then by the orthogonality of the sine and cosike functlons

a &
Ty = Lim = fxct)att._( )f- ?:(a by ) = G LT

T-r00

[}
2 2

a.o e
, Cio=Qa, +5 ).

w here Co =

The amplitﬂde, Cn of a certain frequency, fn can be found out by taking the

2

, . 1
area under the peak above the average noise level and equating it to Ecn .
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2 |
: = — 77 g pf2nit
Theoretically, in the case of a square wave X(t) Trgse ! ("T )
the ratio of the power of the fundamental component to that of first har-

monic component is
a, |
g fe =t iel =3 F)(5)= 9+

-5
Similarly c:‘ : CS =251 ete.
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4.3 Autocorrelation and Power Spectrum Prediction for the

Average Pulsar Signal Above an Average Random Background

The pulsar type signal used is a pulse which is off 35 ms with an
average counting rate 1 count/ms and on 5 ms with an average counting rate
2 count/ms. In order to calculate the autocorrelation function with zero
mean, we have to transform from this [Figure 11 (a)] to the one which forms
the autocorrelation function with zZero mean as shown in (Bb) of Figure 11.
Figure 11 (c) indicates the corresponding autocorrelation function for the
case of (b).

For the same reason as discussed for the autocorrelation of an
average square pulse signal the shape of the autocorrelation function is
triangular. KORY, (1966b) shows that the minimum value is a negative num~
ber -GZ/N = ~-1/8 where o2 is the variance which is equivalent tp autocor-
relation function at zerce lag time, and N is the period divided by the on
time. - For the case (b} Figure 11, the triangle has a base of 10 ms. The
period of autocorrelation is 40 ms which is same as the signal [Figure 11°
(e)]. When the lag time is 40 ms, i.e., the period, the two identical
waveforms are superimposed completely; i.e., the product of two identical
data is maximum and this is the case whenever the lag time is a multiple
number of periods. It is a constant negative number -1/8 for the rest of
ranges except when T is in the range of 005 mg, 35445 ms, 75485 ms, etc.

The simulated data X(t) in Figure 11 (b) has a Fourier series of

the form:
;nﬁt)

2] o0
a .20t 1 o8
Xety=3r+ T &, Sin (S5F) + T byeos (==
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where = —-0.12% 0<'t<"';??‘"T
X(t)
= 0.895 Lr<t <7

= T
a,= ;—v[, X(t)dt =0

2 rT . t
4a,= :f 'g X(t) Sm(':"":,?,r Jdt = ;)-% [ cos (%’f) -U

2 (T 2n7t | ev g TR
= — &) Cos ( = - S gan.
b, T{x) 7 )t =~ o sin (12

=Y

€ = a,+ bn
2 7 2 Y
(L) {[as(;ﬂ ~ 1] +sin (—%ﬁ)j

I

"

2 amh
- ~ CoS§ (—=—)
Yl (=%

Therefore, the ratio of the power in the fundamental frequency to
that of third harmonic frequency is

Ctz -;':—axo.zlas . {57
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similarly
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Using the above result, we can compare the power spectrum calculated by the

program with the simulated average pulsar signal above an'average random

background.
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&4 Computer Results for the Autocorrelation Function and the

Power Spectrum With Several Kinds of Simulated Data

The analyticzl solutions have been . examined in the last three sec-—
tions of this chapter. :In this section, I am going to discuss the autocor-
relation function and power spectrum for the practical data generated by

the computer.

(1) Random Noise

As I mentioned in Section 4.1, R{t) would be infinite at the origin
and zero throughout all the range of lag time t in the plot R{t) vs 1, and
G{f) would be constant throughout all the range of frequency £. In other
‘WOIdS, the autocorrelation function is simply a delta function and the con-
.stant power spectrum is th; so~called white noisge.

Practically, all we can have is a definite length of random data.
Therefore, from equation (28) the autocorrelation function would be an
extremely large value at the origin, but fluctuates with a small deviation
about zero throughout thé whole range of lag time. [see Figure 12 (a)l The
power spectrum also will fluctuate with a small deviation about a constant
mean value throughout the range of low frequency we are interésted in. This
is called low-pass white noise. {[see Figure 13 (a)]

The results of R{t) and G(f) for the simulated random data are shown
in the Figure 12 (a) and Figure 13 (a) respectively. Note the simulated
random data has been generated for the ;verage counting rate, 1 count/ms.
The sample time was 1 ms, and there were 105 data points for total record

_length of 100 sec.
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(2) Square Pulse Signal Above a Random Background

The simulated square pulse signal aboée the random background £lue-
tuates about the average square pulse above the average random background.
In other words, simulated data generated by the computer fluctuates about
the average value which was used in the theoretical amnalysis in SedtiOns’
4.1, 4.2, and 4.3. For this reason the autocorrelatioﬂ function at zero
lag time has an extremely large value which is much larger than that expec-
ted initially as shown in Figure 11 (c).

The data I used is for an average backgrbund rate 1 count/ ms for
20 ms and an increased average rate to 2 counts/ms for 20 ms. In other
words, this is the pulse 20 ms off and 20 ms on with 1007 intensity above
the random background, In order to calculate the autocorrelation function
with the zero mean, the mean value has to be subtracted from each datum.
This square wave would have 1 unit amplitude difference between maximum and
minimum.

( As shown in Section 4.2,—tﬂ; autocorrelation function for this kind
of data gives a result that is almost the same as shown in Figure 10 (c)
except at zero lag time. The shape of R(7) is periodic triangular type with
a period 40 ms which is the same as the period of the square wave. [see
Figure 12 (b)]

The power spectrum G(f) of the average square wave data has the lar-
gest high peak at the fundamental frequency (25 cycles/sec) and a second
peak at the first harmonic frequency (75 cycles/sec) and a third peak at
125 cycles/sec, etc. The shape of G(f) is approximately sinczf function as
shown in Figure 13 (b).

The power ratio of the fundamental component to the first harmonic

component is 9/1 and that of the fundamental component to the second harmon-
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ic component is 25/1 theoretically. ¥rom the plot of G(f)*vs £ (Figure 13),
and Table 3, we calculate the background of G(f) is 3.008 (countSZJHZ). The
computer results gives ?he power ratios 8.558/1 and 25.349/1 with the devia-
tions from the theoretical value of 4.97 and 1.4% respectively. However,
the value of G(f) beyond the third peak at 175 cycles/sec is not so good
compared with the theoretical value. The method of calculation of tﬁe power

ratios is shown in the Appendix D.

F

(3) Pulsar Type Signal Above 2 Random Background

These simulated data are the same as for the case of the square
pulse above a random background data except that the pulse type signal is
off 35 ms and on for 5 ms.’

Like the case of the square pulse signal above random background,
the autocorrelation function has an extremely large value at zero lag time.
This value is different from the one at large!lag times. This extremely
large value is about ten times larger than the_other peak values, becausge
two identical fluctuating pulsar waveforms are completely in phase at the
zero lag time. TIn the Figure 12 (c¢), there are two triangies with peaks at
40 ms and B0 ms, respectively. The base of the triangle is 10 ms.

The calculation of power spectrum can be checked by the power ratio
method. The power gpectrum G(f) of the pulsar type signal above random
background.has the largest peak at the fundamental frequency (25cycle/sec)
and a second peak at the first harmonic frequency G0 cycle/sec) and a
third at 75 cycle/séc. [see Figure 13 (e)]

Theoretically, the power ratio of the fundamental component to the
second harmonic component is 1.57/1, and that of the first harmonic compo-
nent to the third harmonic component is 2/1. From Figure 13 and Table 4,

2
the power spectrum of the random background of G(f) is 2.248 (counts™/HZ).
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The computer results for the power ratio are 1.47/1 for the fundamental
component to the second harmonic component, and 1.81/1 for the first har-
monic component to the third harmonic component. The deviations from the
theoretical average are 64 for the former case and 9.5% for the latter

case,

(4) Smallest Detectable Pulsar Using Autocorrelation

and Power Spectrum Analysis

The autocorrelation and power spectrum measurements for the pﬁlsar
signal with 100% intensity above the random background have been ghown in
section 4.4.3, the result of this analysis Shows that the autocorrelation
function and power spectrum are detectable and predictable.

If we reduce the intensity of signal, can we still detect the auto-
correlation function and power spectrum? What is the smallest detectable
pulsar signal above the random background? Experimentally, for the pulsar
signal with 25% intensity with respect to the random background, the autocor-
relation function is not detectable. It is more or less random. (see
Figure 14) But the power spectrum in the frequency domain is detectable. If
vou plot power spectrum versus frequency in a large scale, you still can see
the several peaks at the several expected f;equencies (see Figure 15). Of
course, this curve is mot as good as for the case with 100%Z intensity pulsar
signal. The values of the power spectrum over all the frequency range are
not fluctuating very much. It can be imagined that the measurement of auto-
correlation function and power spectrum will be getting worse and worse for
reducing the intensity of pulsar signal smaller and smaller. If you keep
reducing the intensity.of signal, finally the result will turn out to be the

case of random background. Then the autocorrelation function and power spec-
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trum would be sinc function and approximately a constant with small devia-

tion, respectively. This result is based upon the short data record of
length 100 sec and the sampling time of l‘ms.

It is interesting that a pulsar with 0.57 intensity above random
background can be detected by use of superimposéd Epoth Analysis as done

by LARRY ORWIG for NP 0532, (1971). -
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CHAPTER V
CONCLUSION AND DISCUSSION

Autocorrelation and power spectrum technique detects periodic sig-
nals from the random noise. However, the power spectrum also determines
the power of each frequency component. For the actual X-ray- or gamma ray
pulsar NP 0532, this method reveals the power of the pulsating component.
0f course, the power of pulsating cémponent of NP 0532 depends on the
photen energy range you are interested in.

The simulated pulsar data for the autocorrelation and power spec-
trum analysis are done for the situation of the pulsar signal with 100%
intensity above the random background. TFor this data, the result of auto-
correlation and power spectrum shows the pulsating period or pulsating
frequency component explieitly.

Reducing the intengity of the signal, the result of autocorrelation
and power spectrum analysis is not as good as for the case of a 100% inten~
sity of pulsar signal. The author has done the case of a 25% intensity of
signal. The result has been shown in Section 4.4.4. The problem arises
from shrinking the intensity of signal above the random noise. The reason
is that the fluctuation of the random background is so large that it buries
the small intensity signal. We define the fluctuation of the random back-
ground as the noise. Therefore, how to reduce Lhe noise (fluctuation) is
our main task. There is one way that can be used to solve this problem.
That is to increase the number of data points or observation time. The
distribution of the number of counts within a unit time interval .obeys the

Poisson distribution. Therefore, the standard deviation o equals square
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root of the mean value of counts.

For a given average counting rate, ¢ is proportional to square root
of observation time. However, the signal is proportional to the observa-
tion time. Then the signal to noise ratio must increase some factor
because of increasing the observation time. For example,’suppose the sig-
nal with 257 intensity on the random background with average counting rate
a and the observation time t, then the signal to noise ratio is —§L

== fiiélgia ==0‘ijzﬁa « In the long run, the signal to noise ratio is

Z t
proportional to the square root of observation time for a given average
counting rate a. |

The power spectral denéity calculated could be increased if we re-
strict the analysis to only the frequency range of interest for the simu-
lated pulsar in the original data or if we restrict the power spectrum
analysis to only the lowest frequency components of interest. The total
power contributed by these low frequency components is equal to the area
bounded by the relevant portion of curve of thé spectrum and the estimated
mean level of the background. The area can be calculated by summing up the
spectrum multiplied by the frequency resolution for the discrete case i.e.
P = ?g G}(&J'ééi . We could reduce the frequency resolution to get a

higher value of the power spectral density for the frequency of interest.

The frequency resolution can be expressed as follows:

l

. =2 rhéft .
Where m is the maximum lag number and At is the sampling time interval.

Af'::

In other words, the frequency resolution can be reduced by increasing the
sample time interval for a given m.

Take the case which I have used for an example. A small signal
above the random background would be able to be detected by increasing the

sampling time to five times longer than used in the original analysis.
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That is, if the sampling time is 5 ms rather than 1 ms the peak in the
power spectral density plot would just be discernible. For the shorter
sampling time a 25% signal is just discernible. With z 5 ms sampling time
a signal of magnitude ‘25ﬁ{/&}; A/!{;ﬁ would be discernible because the

power is proporticonal to the square of the amplitude.
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APPENDIX A
FLOW CHART FOR GENERATING SIMULATED RANDOM DATA

A subroutine RANDU was used to generate the random data, corres-—
ponding to some average rate a. The basic principle and the procedure of
generating random numbers within each specified time interval At is dis-
cussed in section 3.1. From systems/360 scientific subroutine package,
this subroutine is expressed by RANDU (IX, IY, UNIT). IX is the first
entry; this must be any odd integer - mmber with nine or less digits.

After IX entry, IX should be the previous value of IY computed by this sub-
routine. IY is a resultant integral vandom number required for the next
entry to this subro&tine. The range of this number is between 0 and 231.
UNIT is the resultant uniformly distributed, floating point, random number
in the range 0 to 1 which is the output of this subroutine.

The SUBRQUTINE RANDU (IX,.IY, UNIT) is shown as follows:

IY=TX*65539

IF(IY)5,6,6

5 I¥=IY+2147483647+1

6 UNIT = IY

UNIT = UNIT*.4656613E~9
RETURN -

END

- In{UNIT
By use of the time interval distribution UNIT = e ati or ti =_,_Ed;?,“l

a

where a is the average rate taken here as 1 count/ms, a sequence of the ran-
dom time interwval {ti} could be generated. ti stands for the time interval

between the ith. and the (i+l)th counts. From this'{ti} sequence, number of
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counts, Xm can be produced. Xm is the number of counts each characterized

by t_. which satisfies the following relation
J

J
M-l Xt K om (28)

Where m represents integers which have éo bé greater than 1. In other word;,
Xﬁ is equal to j under the equation (28).

Physically, ti is the time interval between two consecutive events.
The simulated random datum Xm is the number of events between a partipular
time m and m + At where At = 1 ms. Note the average time interval between
events (counts) is also 1 ms.

Xm is nothing but the number of 'Addition'. This technique can be
completed by a 'DO' %oop (see Figure 16, blocks 18 and 19) and a testing
statement ZSee Figure 16, block 20). These Xm data are stored in a nine
track tape with 800 bits/inch and with the form of variable record length.
There are 100 records in this tape and each record stores 1000 numbers of

¥

data.
For the purpose of checking X.m and ti’ 10th, 20th, 30th ... 100th's
record of data are printed out by use of the 'Mod' function (see Figure 16

block 23) and testing statement (see Figure 16, block 245.
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APPENDIX B
FLOW CHART FOR GENERATING PULSAR SIGNAL ABGVE TilE RANDOM BACKGROUND

This is almost the same as in the case of the random background,
except it calls for using the RANDU SUBROUTINE twice. The rdndom times ti
and Qti were generated for counting rates of let/ms, and 2cts/ms respec~
tively. Using the same transfcrmation as before, from Qti to Qi’ which
corresponds to Xm above, gives a signal with intensity of 100% increase
over the random background. However, a periodic signal above the random
background can be generated by substituting Qi for the particular values
of Xm. The width of the'signal and its period will determine these par—

- ticular numbers of Xm to be substituted. In Figure 17, blocks 43, 44, 45
and 46, I = 35, 1000, 40; 3 =1, 5; K=X+ 1; (I + I) = Q(X) shows the
method by which a pulsar signal above background can be produced, i.e.
this pulsar signal would have an on time of 5 ms and an off-time of 35 ms.
Similarly, if I = 20, 1000, 40; J = 1, 20 statements correspond-to a
square pulse signal with the same period (40 ms). This signal has an off-
time of 20 ms and an on~time of 20 ms.

In order to test the sum of Xm in each record an additional varia-
ble M (where Mz;;%o; X ) must be considered. This could be printed

out along with Xm and t, every 10th record.
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APPENDIX C
PROGRAMS

There are {ive programs +in thls nppeadix; (1) rhe peogram of goen-
erating random background, (2) the program of generating square pulse sig-
‘nal with 100% intensity above random background, (3) the program of gener—
ating pulsar type signal with 100% intensity above random background,

(4) the program of generating pulsar signal with 25% intensity above ran-
dom background, and (5) the program of calculating autocorrelation function

and power spectyum.
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The Program of Generating Random Background

FOGRTRAN 1V G LEVEL 18 MATN. DATE = 70285
0001 _ DIMENSION TIME{1500),X{30C0),R(1C5},Y(1000)
0002 INTEGER% 4 X,Y
0003 EQUIVALENCE {X,Y)

0004 [X=65549

Q005 DD 200 MINX=1,100
0006 DO 11 l=1, 1500

0007 CALL RANDU{IXsIY,UNIT)
0008 [X=1Y

0009 11 TIME(T3=={ALOG{UNIT))
a010 .-, TX=0.

0011 . DO 70 1=1,1500

- 0012 70 TX=TX+TIME(I)

6013 ' © IE(TX.GT.3C00.)G0 TO 50
6014 po 20 1=1,3000

3015 20 X{1)=C

0Clo - T=0. :

0017 0G 22 1=1,150C

cOLs T=T+T IHE( 1)

0019 J=L+IFIX{T) = ‘

0020 . 22 X(J)=X{J)y+l ! -

0021 WRITE (25) Y

0022 MOD=MINX—10% {MINX/10)
0023 [F(MOD.NE.G) GO TO 200
0024 PRINT 30,MINX

0025 30 FORMAT {?IMINX= *¢,I5)
0026 PRINT 25, (X{I)yI=1,J}
Q027 25 FORMAT{'1%,/(1Xy1011G))
0028 PRINT 26, TIME

0029 26 FORMAT{ 1TINE?,/(1X,1CF10.3))
5030 200 CONTINUE

0031 : END FILE 25

0032 ' sTOP

6033 5¢ PRINT 51,TX

0034 51 FORMAT(' TX IS *,18)
0035 - sTOP

0036 ; END
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The Program'of Generating Square Pulse Signal 71

With 100% Intensity Above Random Background

19 MATN DATE = 71062

DIMENSION TIMF({1500) ,X{3000),R{105),Y(1000)
DIMENSION QTIME{1000},Q(2000)

TNTEGER% 4 X,Y

INTEGFRY &

EQUTVALENCE {X,Y)

I1X=65549

DO 200 MINX=1,100

00O 11 I=1,1500"

CALL RANDUCIX,IY,UNIT)

IX=1Y .
TIME{T)=-(ALOGIUNITY])
Tx=0.

DO 70 1=1,1500
TX=TX+TIME(I)
IF{TX.CT.3000.)G0 TO 50
DY 20 I=1,+,3000

X(11=0

T':-'Oo

DO 22 I=1,1500
T=T+TIME({])
J=1+IFIX(T)
X{JI=x{Ji+1

N 1 1=1,1000

CALL RANDU{I XyIY,UNIT)
IX=TY
QTIME{IY==-{ALOG{UNIT} /2.0}
TX=1.0

6N 2 1=1,1000
TX=TX+QTIMF (L) .

IF {TX.GT.2000.,) GO TO 50
ono3 1=1,2000

QLI Y=0

T=0.0

Do 4 1=1,1000 -
T=T+NTIMCE (1)
J=1+IFIX(T)
QIJII=R(JI+1

K=0

DRy 5 1=20,1000,40

DO % J4=1,20

K=K+1

X{T+J)=0(K)

M= ’

PO 40 1=1,1000
M=M+X(1)})

WRITE (25) Y
MOD=MINX-10% { MT.NX/1 0}
IFIMONJNEL.O)Y GO T2 200

1¢



N49
150
B51
D52
b 53

pos

P57
P58
P59
D60
P61

BS54 -

56

RTRAN IV G LEVEL

30
25
26
200

50
51

19 MAIN

PRINT 30,MINXM |

FORMAT {'IMINX= §,15,/,? M=?*,15])
PRINT 25, {X{I}+1=1,1000)
FORMAT(*1*,/(1X,10110})
PRINT 26,TIME
FORMAT{YTIME 4+ /{1X,10F10.3}}
CONTINLE

EMND FILE 25

STAP

PRINT S1,TX

FORMAT({* TX IS +,18)

sSTRQP

" END

DATE

71062
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JRTRAN IV G LEVEL

001
02
IC03
W4
1085
1606
Q7
wQos
PCO9
NG LO
po1l

BGL3
M 14
15
D16
NC17
NG 18
no19
nG20
NG 21
(322
023
3324
(.25
h(:256
D27
3028
329
G 3G
G311
it 32
3333
G 34
2{*35
1336
137
038
{139
G40
U4l
D42
043
D44
D45
046
10 47
1048

P12 -
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The Program of Generating Pulsar Type Signal

With 100% Intensity Above.Random Background

19 MAIN DATE = T1047

D IMENSION TIME{1:500) , X{3000) sR(105}+Y{1000)

" DIMENSION QTIME(BGO):Q(bOO}

11
70

20

22

40

INTEGER%®4 X,Y
INTEGER®4 Q
EQUIVALENCE {X,VY)
I X=65549
DO 200 MINX=1,100
DO 11 I=1,1500
CALL RANDU{IXsIY,UNIT) .
IX=1Y
TIME(I)=-{ALOG (UNIT})
TX=0.
DO 70 I=1,1500
TX=TX+TIME (I}
IF{TXGT.3000.,)60-TO 50
00 20 I=1,3000"

X(1)=0

T=0.
DO 22 I=1, 1500
T=T+TIME (1)
J=1+IFIX{T)
X{J)=X{d)+1
DO 1 1=1,309
CALL RANDU{IXsIYsUNIT}
IX=1Y -
QTIME (I} =-{A LDG(UN1f3/2 0)
TX=G. 0
DO 2 1=1,300.
TX=TX+QTIME{ 1)
DO 3 1=1,600
Q{1)=0
T=0.0
DO & I=1,300-
T=T+QTIME{I}
J=1+IFIX{T)
Qi) =Q{J)+1
K=0
Do 5 1‘435110(_3{)!4(3
DO 5 J=1,5

K=K+1 .
XCIFII=QUKY
MN=0 - -
DO 40 I=1,1000
M=M+X{I)

WRITE (25) Y
MOD=MINX—10% {MI NX/10)
IF(MODJNE.D) GO TO 200


http:TIME'(I)=-(ALOG(UN.IT

ATRAY IV G LEVEL 19 MATN DATE = 71047

349 PRINT 30,MINX

350 30 FORMAT {'1MINX= ',15)

¥S1 PRINT 27, M

152 27 FORMAT (M= *,110Q)

)} 53 ’ PRINT 25, (X{I),I=1,1000)
154 . 25 FORMAT{Y1%,/{LX,10I10))
185 PRINT 265 TIME

154 26 FORMAT{*TIME "y /{1Xs10F10.3))
Y57 200 CONTINUE ‘
158 END FILE 25

059 5TOP

60 50 PRINT 5L,7TX

L 61 - 51 FORMAT(Y TX IS ,18)

062 . STOP

063 END
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The Program of Generating Pulsar Signal

With 25% Intensity Above Random Background

D R s Lot T PEEL AR

TRAN IV G LEVEL 19 . MAIN DATE = 71092 22/
01 DIMENSION TIMEA{L1500),X{3000),R{105),Y(1000)
02 . DIMENSION QTIME{(1000).,Q(2000)
03 INTEGER=4 X,Y

04 INTEGER® 4 {

0% EQUIVALENCE (X,Y)

06 I X=65549

o7 DO 200 MINX=1,100

¢8 pno11l 1=1,1500

09 CALL RANDU{I XsIY,UNIT)

10 [X=1Y

11 ' 11 TIME(I}=—(ALOG{UNITY)

12 TX=0,

13 DO 70 I=1,1500

14 TO TX=TX+TIME(T)

15 IF{TXGT.3000.3¥G0 TC 50
116 PO 20 1=1,3000 ;

P17 20 X(1)=0

118 T=0. .

19 Do 22 1=1,1500

20 T=T+TIMF (1)

21 J=1+IFIX(T)

22 22 X{J)=X{J}+1

23 DO 1 I=1,1000

24 CALL RANDU(IX,IY,UNIT)

25 ) IX=1Y

26 1 QTIME(I)=-(ALOG(UNIT)Y/1.25)
27 TX=0.0

28 DO 2 I=1,1000

29 . 2 TX=TX+QTIMEL(I)

30 IF (TX.GT.2000.) GO TG 50
31 00 3 1=1,2000

32 -3 Q{I11=0

33 T=0.0

34 DO &4 1I=1,1000

35 . - T=T+QTIME{TI)

36 J=1+IFIX{T)

37 ~—74 Q{JI)=0{J)+1

33 K=0 .

39 -7 DO 5 [=35,1000,40

40 Do 5 J=1,45

41 K=zK+1

42 5 X{I+J)=Q{K).

43 M=0 a

44 . D3 40 I=1,1000

45 40 M=M+X{1)

46 . WRITE (25} Y

&7 MOD=MINX=10% (MINX/10)}

48 IF({MOD.NE.O} GO TO 200



TRAN IV G LEVEL

|
49
50
Pl
52
53

30
25
26
200

50
51

19 ) MAIN

PRINT 30,MINX,M
FORMAT (1% NX= L1654,/ 40 M=*,15)

-PRINT 25, (X{1},I=1,1000)

FORMATL'1%,/7(1%,10110))
PRINT 26, TIME
FORMAT(YTIME ¥4/ (1%;10F10.3))
CONTINUE '
END FILE 25

STOP

PRINT 51,TX

FORMAT(® TX IS %,I8)

STOP

END

DATE

71092
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AN IV G LEVEL

c
1
2

c
3
4
5

c

The Program of Calculating Autocorrelation Function

* and Power Spectrum

16 MAT N

CATE

71095
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[ TP
]

03744y

DIMENSTON X{1000)7Y(1000)1A{10001,R(100) 5{i00),U(100},V(100},

*COSINE(199),RR{100)
COMMON /TSAT /7X,Y

INTEGER®4 X ,Y49A;5,R,AVER

TQUIVALFNCE(X(SOllvA(l))
CALCULATE INITIAL CCRRECTICN

N=100

READ {25} X

S{li=0

NUYBER =0

Do 2 I=1,500 5
AVER=AVER+X{I)

DN 2 J=1,N
R{JI=R{IJII+X{T}*X{I+J-1)
NUMBER=NUMBE 35500

MATN LOGP

READ (25,END =6} Y

on 4 1=1,1000
AVER=AVER+A(T)

DD & J=1,N
R{JI=RIJY+A (I )RA{I+J~]1}
NMUMBER=NUMBER+1000
a5 1=1,1000

X{I)=Y(1)

GO TN 3

"FINISH CALCULATICN FCR LAST RECCRD

DO 7 I=1,500
AVER=AVER+A ()

NUMBER =MUMBER+500
AVE=FLDAT{AVER) /FLOAT (ANUNBER)
AVE 2=AVE*A VE

D0 8 J=1,N

K=501~J ,

N0 8 [=1,K
R{J)=R(JI+A(T)*A(T+J=1)

DO 9 J=2,.N

K=502-J

N 9 I=K,500

SJI=S{JI+A(TY

DO 10 J=1,N
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FORTRAN IV G LEVEL 16 MAT N DATE = 71095
Q045 10 RREJY=A{R(J)+ ST XAVE~AVE2 X (NUMBER+J~1})/ (NUMBER=J +1}
Ql4a6 PRINT 51 ,NUMBER,AVER,AVEZ,R,S
Q047 51 FORMAT (2X+2115,F20.10,/(2X,8115)}
CALCULATE SPECTRAL DENSITY
0048 PI=3.14156265358679
0049 DO 12 I=0,198
00 S0 12 COSINF({I+1)=C0S({I*%PI/9940)
Q051 DO 13 K=1,N "~
00%2 KL=MOD (K,2}
Q053 KM=MOD (K+1,2)
054 VK =2,0%(RR{L)+KL*RR{100) “KM*RR(100) 1}
0055 Do 13 L=2,99
00546 M={Ll=1)%{K-1}
DOST [F{M.GT-198) M=MOD(M,198)
0088 13 VIK)=VIK}I+RR{L) *COSINE(M+1) *4.0
005¢ U{L1)=0,5(V{1)+V(2})
T 0060 DN 14 I=2,4N
Qoal 14 ULI)=C.25%V{I-L}+0.5%V{I)1+0,25%V{I+])
0062 ULL00) =0, 5%{V{(99)+V(100))
Q063 PRINT 504 {{I yRR{I) ¢ VL{I)oU{I)4I=1,N)) .
0064 50 FORMATIV1? 4/ 44X sfI 139X R ,1IXS?V 11X, UY s/ /4 /{2X41543
# (2X,F20.8) 1)) “
006G sTOp
0066 END
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APPENDIX D
CAtCULATIONS OF THE POWER RATIOS

The éower contributed by each frequency component is proportional
to the square of its. amplitude. It may be calculated from the area under
the curve of the relevant portion of the power spectrum i.e. that area
bounded by the curve of the spectrum between specified freguancy limits
and the estimated mean level of the noise background.

The large value peaks were analyzed in this fashion. Each peak
was formed from three consecutive frequencies. This was because the data
had been obtained in a digital form. -

In this experiment the estimated magnitude of the power of the noise
in each frequency éomponent was obtained from the -mean power for the fre-
.quencies 250 v 495 HZ. This was caleculated to be 3.008 (cauntsleZ) for
Table 3 and 2.248 (counts>/HZ) from Table 4.

For square pulse signals above a random background, the power ratio
of the fundamental component to the first harmonic component is 9/1 and
that of the fundamental component to the second harmonic component is 25/1.
These values were calculated as 8.558/1 and 25.349/1.

The pulsar analysis gives power ratios of the fundamental frequency
to the second harmonic component to be 1.57/1 and that of the first-compo-
nent to the third as 2/1. The calculated obtained values Were'i.47/1 andr

1.81/1.



