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SECTION. I
 

HIGHLIGHTS OF THE CELESCOPE EXPERIMENT
 

C. A. Lundquist 



PRECEDING PAGE BLANK NOT FILMED 

HIGHLIGHTS OF THE CELESCOPE EXPERIMENT 

The principal objective of the Celescope experiment is to measure the 

ultraviolet magnitudes of very many stars in a statistically significant frac­

tion of the sky (see, for example, Davis (1965); Whipple and Davis (1960)). 

During its operational life on the Orbiting Astronomical Observatory (OAO II), 

the four ultraviolet-sensitive television cameras carried by the experiment 

indeed achieved the desired statistical sky survey by recording some 8500 

television pictures of stellar fields, each 20 X 2 ° , covering a total of 10% 

of the sky (see, for example, Davis (1970)). The stellar data will soon be 

cataloged in other documents. Recorded here are the pertinent engineering 

experience and the performance evaluation of the Celescope experiment, in 

the hope that this information will be useful to later experimenters. 

The design, fabrication, and operation of the Celescope experiment 

manifest its astronomical objectives. Because the objective is observation 

of a significant fraction of the sky, image tubes that view an adequate area 

at each exposure were the natural choice for detectors on the telescopes. 

But there were no ultraviolet-sensitive television canera tubes in existence 

when Celescope was initiated in 1959, and there was no design of a system to 

use them in a laboratory photometer, let alone a stellar photometer for space­

flight. Nor was there an Orbiting Astronomical Observatory with well-defined 

characteristics into which the photometer must fit. Thus, the engineering 

experience of Project Gelescope started from scratch, evolved through most 

of the first decade of the space age, and culminated in OAO II. 

Within the sky area observed, magnitude measurement of some several 

thousand stars is a reasonable statistical sample. Because stars become 

increasingly more numerous with decreasing apparent brightness, the tele­

vision cameras must record stars 104 times dimmer than the brightest ultra­

violet stars. This requirement sets the sensitivity threshold and the dynamic 

range required and satisfied by the Celescope hardware. 
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The sensitivity is achieved by specially produced ultraviblet-sensitive 

television tubes that employ the secondary electron conduction (SEC) prin­

ciple in an electron-image storage target. The development of these 

Westinghouse Uvicon tubes from a starting point where the SEC principle 

was a new laboratory discovery, to final successful flight operation, is a 

technological triumph of Celescope. 

As must be expected, this pioneering development of the first SEC tele­

vision cameras had its share of perplexing hurdles, and the resulting tubes 

have characteristics that make stringent demands on interface engineering, 

orbital operations, and data processing. The ultimate success of the 

Celescope experiment demonstrates that engineering solutions in a total­

system context were found for all problems that arose. The Celescope 

experience supports the subsequent selection of tubes based on the SEC prin­

ciple for other space missions, particularly in as much as later applications 

of such tubes benefit from continuing development by their manufacturers. 

As a stellar photometer, the Uvicon with its electronics derives its 

remarkable dynamic range from the property that the brightness of a star is 

registered on the target as an electron image that increases in both charge 

density and spatial extent as a function of the brightness of the star. Thus, 

in its digitized format, the image of a star is a matrix of charge-density 

values. The brighter the star, the more elements the matrix contains. 

The digitization of the television picture requires special circuitry because 

the OAO spacecraft systems cannot accommodate rapid transmission of a tele­

vision picture. This design consideration is satisfactorily met by a technique 

labeled superscan by EMR, in which the readout electron beam is off the re­

maining image most of the time. When the system is ready for data input, the 

beam is swiftly deflected to the next image point to be sampled, the charge 

is measured for a small region around the point, and the beam swings back 

off the image to wait for the next cycle. 

The arithmetic sum (Sigma) of the values above background for the 

matrix elements of a star image is taken as the primary Celescope measure 
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that can generate inconsistent Sigma values and magnitudes. That this does 

not happen appreciably is a validation of the mechanical and thermal design 

of the telescope systems. 

The Celescope experiment incorporates many engineering concepts to 

enhance reliability. Much of the electronic circuitry is quad-redundant at 

the module level; these systems were operating noimally when checked 

26 months after launch. The high-voltage power supplies in the flight package 

give no indication of arcing problems; the adopted design and potting proce­

dures can be recommended for future uses. Although there are four tele­

scopes in the experiment and four ultraviolet spectral bands to be covered, 

these are not related in a one-to-one fashion. Instead, a filter configuration 

bisects the camera field so that each half responds to a different spectral 

band; thus, for redundancy each spectral band is observed by two camera 

tubes. However, this concept is not an unqualified success, because star 

images overlapping the dividing line cannot be used. 

The most troublesome problem involving reliability concerns protection 

of the Uvicon target from accumulating a charge of such size that electro­

static forces puncture or rupture the target material. (Fortunately, recent 

SEC tube designs avoid this phenomenon. ) The Celescope project had to use 

tubes susceptible to this limitation and therefore had to compensate for it by 

circuitry design and operational procedures. Even so, one tube suffered 

target damage early in orbital operations. Although this caused a decrease 

in operational efficiency, no qualitative loss resulted. Because of the redun­

dant filter configuration, data continued to be taken in all four spectral bands 

until observations were discontinued. 

After 17 months of operation (40% longer than the nominal objective) 

Gelescope sensitivity reached a level below which further routine observations 

were unjustified. On April 26, 1970, Celescope was turned off, while still 

in operable condition. It was turned on again briefly on February 2, 1971, 

and found to be in the same condition as 9 months earlier. It may still be 

operated and take further data if objectives arise for which its sensitivity is 

adequate. 
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of the ultraviolet magnitude of the star. The processing of the Celescope 

observations then requires that the correspondence between Sigma and 

stellar magnitude be accurately known as a function of image position on the 

camera photocathode and target, of time, and of temperature and other sys­

tem parameters. This is equivalently a description of the full Celescope 

system response and hence is a vital aspect of the engineering. 

The correspondence between Sigma and ultraviolet magnitude is far from 

linear. An initial mathematical model for it was generated from extensive 

laboratory measurements made before the OAO launch. When the experiment 

was in orbital operation, most parameters in the model were redetermined, 

and their temporal evolution derived from the stellar observations themselves. 

For this purpose, the telescopes were periodically directed toward standard 

star areas. Procedures for differential improvement of model parameters 

were implemented with the condition that multiple observations of the same 

star at different epochs, at different exposure times, and at different posi­

tions on the television picture should yield the same magnitude within expected 

system accuracies. 

These mathematical procedures not only generate the parameters needed 

for data processing but also yield retrospective engineering information on 

the time dependence of system sensitivity. The photometric sensitivity 

decreases with time, as was generally anticipated before launch. 

The most useful indication of the accuracy of the processed stellar data 

comes from the scatter in the magnitude values for multiple observations for 

each of some 1500 stars. For the different cameras and spectral bands, the 

standard deviation of this scatter ranges between 0.1 and 0.Z mag. This is 

in substantial agreement with the 0. 1 -mag accuracy goal established early 

in the Celescope design. Such accuracy over a dynamic range of 104 is a 

noteworthy engineering feat. 

Image focus might have profoundly degraded this accuracy but did not. 

A change in the optical or electronic focus affects the image size in a way 
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The subsequent sections of this report relate in some detail the aspects 

of Celescope engineering and performance that seemed most significant to 

their authors. Section II, by Dr. Yasushi Nozawa, addresses particularly 

the engineering problems and their solutions for the benefit of later experi­

ments. A tabulation of the major engineering conclusions can be found in 

the first paragraphs of Dr. Nozawa's paper, and other conclusions are collected 

at the end of each chapter. 

Section III, by the staff of EMR, summarizes broadly their view­

points on Celescope engineering. EMR was the major design and fabrication 

contractor for the experiment package and supporting ground equipment. 

Section IV, by Dr. William Deutschman, describes briefly the data­

processing procedures implemented for Celescope observations. His paper 

recognizes that the production and application of appropriate procedures 

and computer software are an integral part of the total engineering picture 

of an enterprise suihh as Celescope. 

Finally, Section V identifies the very many people who over the years 

contributed to the final success of the project. 
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CHAPTER I 

INTRODUCTION 

1. 1 General 

The purposes of this report are: 

1. To provide a commentary on the engineering experience gained with 

Project Celescope in television mapping of the celestial sphere in the ultra­

violet. 

Z. To discuss some problem areas encountered and the actions taken 

to overcome them. 

3. To present information of value to similar future endeavors. 

For the reader who is not familiar with Project Celescope, a brief 

description of this experiment and of the capabilities of the OAO satellite 

is included as Appendix A. Details of the Celescope experiment are given 

in the text wherever pertinent and useful. 

Many internal Celescope reports were prepared during the project 

performance. They give the results of specific tests and investigations and 

contain a wealth of useful information on the instrumentation. Because they 

are not easily accessible, we have avoided referencing them here. We have 

included in this report, however, sufficient information from them so that 

the reader need not consult the originals. (A list of these internal reports 

is included as Appendix B.) Published Celescope reports, on the contrary, 

are freely cited. 

It is not our intention here to undertake a scientific discussion on the 

astrophysical data obtained by Celescope (that aspect of the project will be 

presented elsewhere by staff scientists). Nor is it intended to provide a sys­

tematic description of the instrumentation used. Published accounts exist, 

and the interested reader is referred to them. 
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For convenience, this section is divided into parts A and B. In general, 

part A deals with characteristics of hardware, and part B describes supple­

mentary characteristics of the total system, consisting of spacecraft hard­

ware and computer software. The distinction between characteristics of 

hardware and software is somewhat arbitrary, since our knowledge of the 

hardware depends upon information displayed and printed out by the software. 

Nevertheless, we distinguish between them for convenience. The main role 

of the data-processing system (software) is to transform the data generated 

by the hardware into a format convenient to the user. In order to perform 

this function, any anomalies or temporal changes in hardware characteristics 

must be compensated for in the software. When there are complicated 

nonlinearities and temporal changes, a major software effort may have to 

be devoted to compensating for them. 

1. 2 Summary and Conclusion 

Before proceeding to the principal text of Section II, we summarize the 

highlights of the engineering experience gained with Project Celescope. For 

the reader who is familiar with this Project, the terms used and the issues 

addressed are understandable. Those who are not familiar with Celescope 

will find an explanation of the terms and issues in the chapters that follow. 

Celescope has accomplished a great deal, and some of its engineering 

concepts are as advanced today as 10 years ago, when they were first con­

ceived by the Project staff and its industrial contractors. There have been 

problems, as always there are in complex electronic-optical systems that 

push technological frontiers in a space environment. 

The following points highlight our experience with the performance of 

the Celescope experiment: 

1. Optical, mechanical, and thermal design of the telescopes proved 

fully satisfactory in terms of image quality and stability. 

2. Contamination-control procedures during ground operations were 

fully successful. 

11-4
 



3. Positional stability of star images in the final television pictures 

was not completely satisfactory, and careful attention to factors affecting it, 

such as magnetic fields, is necessary. 

4. The lack of an opaque shutter as opposed to the electronic shutter 

we employed prevented us from using a significant number of dark experi­

mentation periods. 

5. High-voltage power supplies, ion traps, and associated circuitry 

(anti-arcing) performed perfectly. 

6. Quad-redundancy design in Celescope produced a reliable operation 

of the electronic package, but at the cost of some increase in power and 

weight. 

7. Superscan readout performed well. 

8. The calibrator lamps proved to be valuable for providing a record 

of Celescope performance from the time the flight telescopes were first 

assembled, through all phases of subsystem and system testing, to well after 

launch. 

9. The calibrator lamps carried initial calibration data into orbit, but 

did not provide thereafter sufficient data for accurately establishing the time 

dependence of the photometer response. 

10. Prqtection against target-material breakdown (crossover) is a 

critical requirement. The Celescope techniques proved to be satisfactory 

for three of our four cameras. 

11. For some methods of preventing target-material breakdown and, in 

particular, the method used in Celescope, the output signal becomes critically 

dependent on the focus of a stellar image on the target. 

12. Uvicon sensitivity during orbital operations decreased with time. 

Nevertheless, the useful life of the Celescope experiment significantly 

exceeded the prelaunch goal of 1 year in orbit for gathering scientific data. 

13. Scattered sunlight severely limited Celescope's opportunities for 

daylight observations. 
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14. Geocorona seriously interfered with Celescope measurements in 

the spectral band that includes 1216 A. 

The following conclusions based on experience with analyses of the data 

from orbit are included for completeness. 

1. Calibration of the Uvicons in orbit was possible and necessary. 

2. Our photometric accuracy, after orbital calibration, is better than 

0. 2 mag. 

3. The use of two filters, one for each half of the field of view, posed 

significant data-reduction problems. It also required us to reject many 

stars that were observed near the dividing line. 

4. Excessive manual intervention in the data-reduction system was 

necessary because the housekeeping data were on a different data channel 

from the video data and the camera number was not included with the video 

data. 

Our overall conclusion is that the Celescope experiment system success­

fully demonstrated the capability of a versatile and precise, space-borne 

astronomical television photometer. 
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CHAPTER 2 

TARGET -MATERIAL BREAKDOWN 

IN UVICON IMAGE TUBES 

2. 1 Introduction 

The Uvicon image tubes, which are the main sensors of the Celescope 

experiment, were the first operational television camera tubes to use the 

Secondary Electron Conduction (SEC) principle. As the Uvicon tubes were 

innovative in many ways, in the course of the project we experienced the 
usual unavoidable difficulties that are encountered in extending a technological 

frontier. Among many problems, the most critical and time consuming was 

what we sometimes called plague, or destructive crossover, or simply cross­

over. Since the word "crossover" does not give an accurate description of 

the phenomenon and is very confusing, the problem will be referred to here­

after as target-material breakdown. 

The Uvicon program began in 1960 with SAO's issuing of a subcontract 

to Westinghouse Research Laboratories for development of television camera 

tubes having the characteristics required for the Celescope experiment: two 

ultraviolet spectral responses, with sharp long-wavelength cutoffs near 

Z000 and 3000 A; photometric accuracy of 10% for measuring the brightnesses 

of stars between 0 and 10th mag with exposure times of 60 sec; clear separa­

tion of star images 0. 6 mm apart on the photocathode; a fully usable field of 

view 20 square; and satisfactory operation throughout the specified prelaunch 

testing sequence, leading to prediction of survival through the launch phase 

and of satisfactory operation during 1 year in orbit. 

The photometric requirement could not be met by any type of television 

camera tube available in 1960. Westinghouse originally hoped that satisfactory 

Also read as Secondary Electron Conductivity or Secondary Emission Con­
ductivity.
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Uvicons could be built using the EBIC principle (Electron Bombardment 

Induced Conductivity). By the end of 1961, Westinghouse had built and tested 

several Ebic-type Uvicons, none of which had satisfactory photometric sen­

sitivity. By that time, engineers at the Research Laboratory had sufficiently 

investigated the phenomenon of secondary electron conduction to become con­

vinced that Uvicons utilizing the SEC principle could meet the SAO specifica­

tions. 

The first Uvicon tube based on the SEC principle was manufactured in 

February 1962. Probably the first experience of target-material breakdown 

occurred on May 22, 1962, during the acceptance test at Electro-Mechanical 

Research, Inc., which was the prime contractor for the Celescope experi­

ment. The target was completely ruptured, and the Uvicon tube became 

unusable. We suffered many similar failures, but each failure gave us some 

new insight into the problem. We also undertook a special investigation 

specifically aimed at preventing the recurrence of the phenomenon. By the 

time of system assembly of the Celescope experiment, the principal modes 

of target-material breakdown were well understood, and methods for its pre­

vention were incorporated into the system design and operational principles 

of Celescope. 

Despite precautions, in the early period of orbital operation the Celescope 

experiment suffered a series of target-material breakdowns, and, as a result, 

camera 2 finally ceased functioning. 

The objective of this chapter is to review all related information on 

target-material breakdown and to serve as reference for future enterprises. 

In the first three sections, the basic principles of the SEC target and Uvicon, 

which are necessary for an understanding of the target-material breakdown, 

will be explained. The following sections describe methods of prevention 

and their effects. The last sections describe some actual experiences of 

target-material breakdown and discuss their causes. 
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2.2 Uvicon Structure and Operational Principles 

The Uvicon tube is a type of SEC image tube. It consists of two major 

parts as shown in Figure 1: an imaging section and a readout-gun (or scan­

ning) section. The faceplate (the front end of the imaging section) is made 

of lithium fluoride (LiF), which is transparent to ultraviolet light. The 

inner surface of the faceplate is the photocathode. It is backed by a semi­

transparent film of metal used in the generation of the electrical field, which 

is an essential part of the electron optics. When photons enter through the 

faceplate, they form an image on the photocathode surface. The photocathode 

produces photoelectrons from the photon image. When high voltage is applied 

to the electron lenses in the imaging section, these phot6electrons are 

accelerated toward the target plane. If no high voltage is applied to the elec­

tron lenses, photoelectrons will not be directed toward the target; therefore, 

the high voltage acts as a shutter to control image formation at the target. The 

photoelectron image formed at the target is similar to the optical image but 

reduced in size by half. The photoelectrons, which have an energy of about 

7 keV, penetrate the target support structure and produce an image of positive 

charge on the target, according to the SEC principle. The process of generating 

a positive-charge image on the target is called an exposure. After completion 

of the exposure, readout is begun. Readout is the process of discharging the 

target by use of the readout electron beam from the readout gun. The dis­

charge current from the signal plate in the target is the output signal, which 

is a measure of the original number of incident photons. The readout-gun 

section is identical to the normal Vidicon gun except that it has been made 

more rugged for space application. The low-energy electron beam generated 

by the cathode in the gun section is directed toward the target by a set of 

electron lenses in the gun section. It is made to scan the target surface by 

the application of deflection voltages across the deflection plates in the gun. 

From its conception, the Uvicon was intended for space applications. 

Therefore, some features not essential for ground use are incorporated. One 

of them is all-electrostatic operation. The imaging of photoelectrons on the 

target surface is accomplished by electrostatic means, and the readout beam 
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Figure 1. Schematic diagram of Uvicon tube. 



is focused and deflected electrostatically. All-electrostatic operation meets 

the requirements of limited electrical power and stringent magnetic clean­

ness. One of the disadvantages of an all-electrostatic tube is that the stability 

of the image position is susceptible to external magnetic disturbances, which 

include the earth's magnetic field, despite careful magnetic shielding. The other 

disadvantage is the need for a high-curvature faceplate, which introduced 

problems in design and manufacturing of the tube. Figure 2 shows a photo­

graph of the Uvicon. 

The necessity of utilizing electrostatic rather than electromagnetic 

focusing and deflection should be carefully reviewed before these requirements 

are imposed for future space flights. 

The operation of the Uvicon follows a fixed sequence of four major phases: 

priming, exposure, readout, and standby. Priming brings the exit surface 

of the target to the equilibrium potential of the cathode by means of a low­

energy electron beam from the cathode. In this process, at least 10 to 20 

frames of scanning of the entire target surface are required. Also, to, avoid 

dangerous transients of potential charge, the potential of the target is gradually 

changed in several steps. The priming process also eliminates any residual 

charges from the previous exposure or any other operation. After priming, 

the potential distribution in the tube is set in such a way that the Uvicon can 

be exposed to the light with high voltage on without any danger to it. At 

exposure time, the high voltage is applied to the electron lenses in the 

imaging section of the Uvicon. After exposure, i. e. , after the high voltage 

is turned off, the readout process begins. It extracts the positive charge 

from the target in the form of a discharge current. Since the readout process 

erases the charge pattern, only the first frame contains useful data. After 

readout, the Uvicon is ready for another cycle of priming or for the standby 

mode. 

Each phase of the operation cycle is distinguished by a particular voltage 

configuration in the Uvicon tubes. We defined five different modes of camera 
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status, corresponding to the different voltage configurations: high velocity, 

polarize low, polarize high, expose, and readout. The actual voltage con­

figurations in polarize high and readout are identical; the distinction made 

is one of function only, and the names are often used interchangeably. These 

distinctions in camera mode refer to the status of the electron-gun (scanning) 

section. For the imaging section, there are two different modes; high­

voltage on and high-voltage off. Normally, the imaging section is kept on 

high-voltage off. Only during exposure is high-voltage on applied, and it 

must be used with the expose mode in the electron-gun section. Because of 

the fixed nature 6f its use, the mode of the imaging section is seldom men­

tioned explicitly. 

Table 1 indicates the voltage configurations in the Uvicon tube during 

different camera modes. Table 2 indicates the actual status of the camera 

in different phases of operation. The Uvicon tubes in the Celescope experiment 

are controlled through telemetered commands. Table 3 lists the representa­

tive commands for Celescope operation, and Tables 4 and 5 show an example 

of one operational cycle for one Uvicon tube. The basic structure of the 

operational sequence in Celescope depends mainly on the timing requirement 

of scanning_ and the voltage constraints of techniques for preventing target­

material breakdown. In the following section, the scanning method, which 

is unique, will be described in detail. Thenin succeeding sections, the pre­

vention of target-material breakdown will be discussed. 

2. 3 Digital Scanning System in Celescope 

Video data from Celescope can be transmitted in real time in two different 

ways through the OAO communications channels. One is real-time analog 

transmission with a system bandwidth of 6Z. 5 kHz. The other is real-time 

digital t-ransmission with a rate of 5 X 10 4 bits/sec in the form of PCM NRZ. 

See, Nozawa, Y. A digital television system for satellite-borne ultraviolet 
photometer, Advances in Electronics and Electron Physics, ed. by J. D. 
McGee, D. McMullan, and E. Kahan, vol. 22, pp. 865-874, Academic Press, 
New York, 1966. 
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Table 1. Target-G5 voltage configuration. 

Camera 
mode 

High velocity 

Polarize low 

Polarize high 

Expose 

Readout 

Voltage 

G5 (V) 

+180 

+180 

+180 

-241 

+180 

(GND = 0 V) 

Target (V) 

+180 

-250 

-241 

-241 

-Z41 

Potential difference 
from cathode 

G5 (V) Target (V) 

+430 +430 

+430 0 

+430 + 9 

+ 9 + 9 

+430 + 9 
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Table 2. Operation phase and status of camera. 

Operation Readout 
phase Camera mode Imaging section beam Filament 

Camera off High velocity High-voltage off Off Off 

Turn on High velocity High-voltage off On Off 

High velocity High-voltage off On On 

Standby High velocity High-voltage off Off On 

High velocity High-voltage off On On 

High velocity High-voltage off Off On 

Polarize low High-voltage off Off On 

Polarize low High-voltage off On On 

Priming Polarize low High-voltage off Off On 

Polarize high High-voltage off Off On 

Polarize high High-voltage off On On 

Polarize high High-voltage off Off On 

Expose High-voltage off Off On 

Expose Expose High-voltage on Off On 

Expose High-voltage off Off On 

Readout High-voltage off Off On 

Readout Readout High-voltage off On On 

Readout High-voltage off Off On 

High velocity High-voltage off Off On 

High velocity High-voltage off Off On 

Turn off High velocityHigh velocity High-voltageHigh-voltage 
off
off 

Ofn
On 

On
On 

High velocity High-voltage off On Off 
High velocity High-voltage off Off Off 

Power off Prime power (+28 V) is off 
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Table 3. List of control commands for Celescope. 

Command formatFunctional classification 
of commands Syllable 1 Syllable 2 

Camera-mode selection 	 High velocity, polarize low 
readout, or mode expose 

Sweep-mode selection Sweep 
Individual 

camera- Gun-voltage on/off
control 

Camera N Beam, filament, or medium­
voltage power supply 

control (N=1,2,3,or 4 

commands Imaging-section control Expose 

Calibrator control Calibration lamp 

Gun-voltage-level Beam focus adjustor 

adjustment Astigmatism 

Redundant power supply +6, +18, or -12 V 

Redundant digital-sweep Horizontal BC, vertical BC, 
generator horizontal out, or vertical out 

System- Redundant analog-to-digital ADC 

configuration convertor Select 

selection Data-transmission mode System-operation mode 

commands 

Data-output channel 	 Video 

Threshold-level setting Threshold 
for store-mode operation 

Syllable 3 

(Blank) 

Analog or digital 

On or off 

1, 2, 3, or 4 

l,2,3,4,5,6,7,or 8 

A or B 

PCM, analog, store 

or off 

Cameras 1,2,3,or4 

0,i,2,3,---,14,or 15 



Table 4. Command sequence for camera operation 
used during ground testing. 

Operation Command sequence for camera x 
phases (x= 1,2,3, or 4) 

Select Operating mode Off 
Select Video Cx 
Camera x High velocity 
Camera x MVPS On 

Camera turn on WaitWat1Se 15 Sec 

Select Operating mode Analog 
Camera x Beam On 
Camera x Filament On 
Wait 60 Sec 
Camera x Beam Off 

Camera x Calibration lamp On 
Wait y Sec 
Camera x Beam On 
Wait 5 Sec 
Camera x Beam Off 
Wait 1 Sec 
Camera x Polarize low 
Wait Z0 Sec 
Camera x Beam On 

Priming Wait 10 Sec 
Camera x Beam Off 
Wait 1 Sec 
Camera x Readout 
Wait 20 Sec 
Camera x Beam On 
Wait 30 Sec 
Camera x Beam Off 
Wait 1 Sec 
Camera x Mode expose 
Wait 1 Sec (Minimum). 

Camera x Expose On 
Wait 60 Sec (Standard) 

Expose Camera x Expose Off 
Camera x Calibrationlamp Off 
Wait 1 Sec 
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Table 4. (Cont.) 

Operation 
phases 

Camera turn off 

Select 
Select 
Camera x 
Wait 
Camera x 
Wait 
Camera x 
Wait 
Camera x 
Wait 

Select 
Select 

Camera x 
Camera x 
Wait 
Camera x 
Wait 
Camerax 
Select 

Command sequence for camera x 
(x= 1,2,3, or 4) 

Operating mode 
Video 
Readout 
5 
Beam 
22 
Beam 
1 
High velocity 
15 

Operating mode 
Video 

Beam 
Filament 
60 
Beam 
1 
MVPS 
Operating mode 

PCM 
Cx 

Sec 
On 
Sec 
Off 
Sec 

Sec 

Analog 
Cx 
On 
Off 
Sec 
Off 
Sec 
Off 
Off 

Note: 	 (1) y = 300 sec for cameras 1 and 3 and 60 sec for cameras 
2 and 4. (2) It is assumed that electron package E-4 was 
properly turned on before camera turn-on process was started. 
(3) Timing of command sequence used in orbit is different 
from this table. See Table 5 for details. 
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The Celescope television system should not only take full advantage of 

the spacecraft's capability, but should also fulfill the following basic require­

ments: (a) a square raster, (b) a noninterlaced scan, (c) an equal horizontal 

and vertical resolution, set at about 300 television lines in the analog mode 

and at 28 = 256 television lines in the digital mode, in order to meet the 

angular resolution requirements in conjunction with the Celescope optical 

system (Davis and Godfredson, 1961), (d) a 1% accuracy in signal amplitude, 

met by digitizing to Z = IZ8 levels or, in the analog mode, by maintaining 

a 40-db signal-to-noise ratio in the communications link, (e) a real-time 

digital transmission, required as the primary operating mode because of 

practical limitations on the size of onboard data storage and on transmitter 

power, and because of the desired accuracy and data-handling capacity, 

backed up by both a digital store mode and a real-time analog-transmission 

mode, and (f) a dynamic range of 10 4 . 

The main reason for the adoption of a digital transmission system as the 

prime mode of operation is its accuracy - an almost negligible error rate 

of 10 - 6 in normal operating condition. Another factor is the ease of direct 

coupling to a digital computer for data processing and star cataloging. 

Direct transmission of video data in digital form at the rate specified for 

the OAO spacecraft (5 X 104 bits/sec) requires the very slow scanning time 

of 1 frame in 10.5 sec, and the various parameters of the television system 

become those shown in Table 6. For comparison purposes, Table 6 also 

shows these same parameters for the analog backup mode of operation. 

The digital system has a square raster of 256 lines, each having 256 

picture elements. Eight bits (including one for parity check) are required 

to express the video-signal amplitude for each element. Since the pulse 

width for I bit is 20 lisec, 160 pLsec are necessary for transmission of the 

video-amplitude data from each element. Therefore, 10.5 sec are required 

for transmission of one television frame (about 5 X 105 bits). At such a slow 

rate, a digital-scan system is easier to build than an analog system, within 

certain restrictions. The digital-scanning system utilizes the element-to­

element scan shown in Figure 3 to provide more accurate beam positioning 
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Table 5. Command list for priming, expose, and 
readout used in orbit. 

Operation 
phases 


Camera x 
Wait 
Camera x 
Wait 
Camera x 
Camera x 
Wait 
Camera x 

Priming 	 Wait 
Camera x 
Camera x 
Camera x 
Wait 
Camera x 
Camera x 
Wait 

Camera x 
WaitExpose 	 Camera x 

Camera x 

Select 
and 

Wait 
Camera x 

WaitReadout 
Camera x 
Wait 
Camera x 
Wait 
Camera x 

Command sequence for camera x 
(x= 1,2,3, or 4) 

Cal.lamp 
y 
Beam 
3 
Beam 
Pol.low 
11 
Beam 
3 
Beam 
Readout 
Beam 
10 
Beam 
Mode expose 
1 

Expose 
60Expose 

Cal.lamp 

Operating mode 
Video 
5 
Readout 
1 
Beam 
21 

Beam 
1 
High velocity 

Note: (1) y= 0 to 300 or more, depending 

On
 
Sec
 
On
 
Sec
 
Off
 

Sec
 
On
 
Sec
 
Off
 

On
 
Sec
 
Off
 

Sec 

On 
Sec (Standard)Off 

Off 

PCM
 
Cx (combined command)
 
Sec
 

Sec 
On 
Sec
 
Off 
Sec 

on available time and require­
ment of warmup time. (2) Turn-on and turn-off sequence used 
in orbit are essentially identical to the ground sequences. 
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Table 6. Basic parameters for real-time transmission
 
Gelescope television system.
 

Digital Analog 
transmission transmission 

Number of Picture elements in a line 256 - 300 

Lines in a frame Z56 - 300 

Picture elements in a frame 65,536 - 90,000 

Bits in a picture element 8 -

Bits in a frame 524,288 

Transmission Bit 20 sec 
time o r s ing tm Element 160 jLsecscanning time 5 isec 

Line 40.1 msec 1.6 msec 

Frame 10.5 sec 0.48 sec 

160psec-t 1-

Horizontal sweep potentioi 

Vertical sweep potential 
(frame scan) 

Figure 3. Illustration of digital scan. 
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than would be possible at these speeds if analog-sweep generators were used. 

Because of the fast rise and fall times of the staircase sweep potentials (of 

the order of I pLsec) compared to the sweep speed (160 ksec per element), 

retrace blanking is not used in the Celescope system. 

A disadvantage of this digital-scan system is the reduction of video­

signal amplitude when long beam dwell time's were used. In the Uvicon, 

as in other television camera tubes, the video signal is generated by dis­

charging a charge pattern stored on the target. The longer the time that is 

utilized in reading out a given charge, the lower will be the peak value of 

signal current. This effect is shown in Figure 4, where the upper trace 

indicates beam dwell time and the lower trace indicates signal output. Since 

the analog scan employs 5-pLsec dwell time and the digital scan uses 160 pLsec, 

the peak value of the signal in the digital scan is roughly 1/80 of the analog­

scan signal. It is a problem for video-amplifier gain and signal detec­

tion, especially if we bear in mind that design limitations force us to use a 

single video amplifier having the wide bandwidth, and therefore the high noise, 

appropri-ate to the analog signal. Under these conditions, the signal-to-noise 

ratio would be 10 db lower in digital than in analog scan. 

To overcome this problem, Electro-Mechanical Research, Inc. (EMR), 

developed the special scanning scheme called "superscan" to achieve short 

beam dwell time under slow-scan conditions (Nozawa and Tucker, 1966; 

Nozawa, 1966). This superscan technique is actually a sample-scanning sys­

tem, utilizing the scanning pattern shown in Figure 5. During most of the 

160-jLsec interval between scans, the beam is directed toward a part of the 

raster previously scanned. The superscan deflection, superposed on the 

element-by-element digital scan, causes the beam to dart into the unscanned 

portion of the raster so as to dwell on the unscanned picture element for only 

5 tsec. The output video signal, therefore, contains useful information 

during only 5/160, or - 3%, of the total time, and the signal level is the same 

as that for the comparable analog scan. The sample-and-hold circuit isolates 

this useful portion of the video signal, which is then digitized by an analog­

to-digital converter. 
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Figure 5. Illustration of superscan. 
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Figure 4. 	 Output amplitude reduction due to beam dwell time. Target readout response of Uvicon 
S 34-A showing the fall in signal current as the beam dwell time is increased. Beam 
dwell time: (a) 20 4sec, (b) 80 psec, (c) 120 sec, (d) 160 ptsec. 



Z.4 Principles of the SEC Target 

The application of the SEC; phenomenon to image tubes was developed 

mainly by Goetze and his group at Westinghouse (Goetze, 1962; Goetze, 

Boerio, and Green, 1964; Goetze and Boerio, 1964; Goetze, 1966; Boerio, 

Beyer, and Goetze, 1966). Before their study, there were several (direct 

view) image tubes that used a potassium chloride target (or, more correctly, 

dynode) (Wachtel et al., 1960; Wachtel, Doughty, and Anderson, 1960; Wilcock, 

Emberson, and Weekley, 1960; Emberson, Todkill, and Wilcock, 196Z; Slark 

and Woolgar, 1962). But these tubes used solid potassium chloride, which 

produced secondary electron yields of 5 to 6 at most. The real breakthrough 

was the adoption of a low-density (or spongy) potassium chloride target, 

which produces up to 200 secondary electrons for every incident primary 

electron. Television image tubes using the low-density KC1 target, which 

were later called SEC image tubes (Goetze and Boerio, 1964; Goetze, 1966), 

were developed at Westinghouse as a part of Uvicon development (Doughty, 

1966). SEC television tubes were also developed in England (Filby et al., 

1964; Filby, Mende, and Twiddy, 1965, 1966). 

In an earlier era of development, Uvicon tubes were based on an EBIC 

principle (Schneeberger et al. , 1962) rather than the SEC principle. But 

EBIC Uvicons could not produce the required sensitivity, so SEC Uvicons 

were adopted instead. 

The structure of the target in these SEC tubes consists of three layers 

of membrane as shown in Figure 6. Aluminum foil, which is attached to the 

support ring, is oxidized to form aluminum oxide (AlZ03). The aluminum 

oxide membrane, which is transparent, is the main support structure for 

mechanical strength. Then the aluminum that becomes the signal plate for 

the target is vacuum deposited on the aluminum oxide. Finally, powdered 

potassium chloride is vacuum deposited on the signal plate in an argon atmos­

phere at a pressure of a few millimeters of mercury. 

In operation, the SEC target is bombarded from the aluminum oxide side 

by primary electrons with energies of 5 to 10 keV (about 7 keV in the case 
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106-043 

LOW-DENSITY KCI (Ito 2%) LAYER
 
(10 to 20 pm thick )
 

Al TARGET SIGNAL PLATE 

(0,07 jm thick*) 

Al SUPPORTING MEMBRANE 

(007,um thick*) 

READOUT
 

ELECTRONICS SIDE PHOTOCATHODE SIDE 

HIGH-ENERGY 

LOW- ENERGY PHOTOELECTRONS
 

READOUT BEAM 1
 

Figure 6. Structure of SEC target. Note: Thickness is not to scale. 'British 
target is 0. 05 jam thick. (Based on Filby et al. (1966).) 
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of the Uvicon). After penetrating the aluminum oxide and aluminum mem­

branes, these high-energy primary electrons pass through the potassium 

chloride and produce secondary electrons in large numbers. The freed secon­

dary electrons escape in the vacuum between the potassium chloride fibers 

(the low-density potassium chloride has a fibrous structure) and are even­

tually captured by nearby electrodes, che signal plate, or ionized atoms. 

Residual positive charges, which are not so mobile as the electrons, remain 

in the potassium chloride target. 

If an electrical field is applied across the membrane of potassium 

chloride in the direction of its thickness, the freed electrons become more 

mobile and the yield of secondary electrons and residual positive charge is 

increased.
 

The electrical field is applied by creating a difference in electrical 

potential between the aluminum signal plate and the exit surface (the side of 

the potassium chloride membrane away from the signal plate). The potential 

difference is generated before electron bombardment by scanning the exit sur­

face with an electron beam. Sometimes a distinction is made between SEC 

(Secondary Electron Conduction) and TSE (Transmission Secondary Electron) 

target operation, depending upon the direction of the applied electrical field. 

When the signal plate or entrance side for the primary electrons is positive, 

then it is called SEC; when the signal plate is-negative, it is called TSE. 

But the operation is often referred to as SEC regardless of the direction of 

the electrical field. In the case of Uvicon, the signal plate is about 9 V posi­

tive with respect to the equilibrium target exit surface; it is therefore a true 

SEC operation. The yield of the secondary electrons and therefore the resultant 

residual positive charge depend on the energy of the incoming primary elec­

trons and the intensity of the electrical field. Figures 7 and 8 illustrate 

examples of these relations. As shown in Figure 8, the yield of secondary 

electrons in the SEC mode is generally higher than that of TSE, except in a 

very weak field. 
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Figure 7. Yield of secondary electrons vs. energy of primary electrons. 
(Based on Boerio et al. (1966).) 
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Figure 8. Yield of secondary electrons vs. electrical field in target. 
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2. 5 Circumstances Inducing Target-Material Breakdown 

The actual circumstances under which target-material breakdown occurs 

vary considerably. The following list represents most of the circumstances 

encountered during test and evaluation. Those marked with an asterisk were 

also encountered in orbit. 

1. Excessive exposure to input light, 

2. Repeated underscanning, 

3. Readout without proper priming, 

4. Incomplete sequence of priming, 

5. Partial (portion of target only) priming, 

6. Uneven priming of target, 

7. Too long beam dwell time, 

8. Error in operational sequence, 

9. Error in gun-voltage setup, 

10. Excessive exposure to radiation, 

11. Defective tube. 

Also, it was observed that target-material breakdown tends to occur more 

often in the digital mode than in the analog mode. Or, in a more general 

sense, the slower the scan, the likelier is the experience of target-material 

breakdown. 

Beam current is another important factor in target-material breakdown. 

The greater the beam current, the likelier target-material breakdown is for 

the same scanning speed. Therefore, the Celescope experiment used the 

minimum level of beam current -that is compatible with a safe operation. 

The probability of target-material breakdown can be reduced by adoption 

of operating procedures to avoid the conditions listed above. The follow­

ing provisions were taken in the Celescope system to minimize the risk of 

target-material breakdown. 

1. Automatic switching of scanned area - In order to accomodate 

system-design requirements for reduced-size scanning (underscan), and 

the priming requirement for scanning the entire target area (overscan), an 

automatic-scan switching was adopted. After expose-on and -off commands are 
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issued, the automatic-scan switching logic is armed. Then, the next beam­

on command automatically creates an underscan readout frame. To ensure 

the correct camera data readout, the camera-select command is incorporated 

as part of the logic. When the readout of the underscan frame has been com­

pleted, the beam is automatically turned off. The priming sequence, there­

fore, must start by the explicit command of "beam on. " The switching of the 

scan area is accomplished by changing the gain of deflection amplifiers through 

logic circuits. 

2. Automatic control of beam starting position - If the beam is turned 

on for readout or priming, the command frequently occurs at the middle of 

the frame. During readout this may result in the partial loss of data, and 

during priming, uneven (or, more accurately, uncontrolled) priming of the 

target surface. Since the deflection-voltage sequence and beam-on command 

are under the control of different, unsynchronized clocks, deflection voltage 

being controlled by a clock onboard the satellite, and beam-on command 

being controlled by a clock at the ground station, it is necessary to inhibit the 

execution of the beam-on command until both horizontal and vertical deflec­

tion voltages correspond to the beginning of the frame. 

3. Manual switching of scan mode (digital and analog) - Even with the 

use of the superscan technique, the cumulative beam dwell time is 160 fisec 

in digital scan, because superscan deflects-the beam to a previously scanned 

portion of the target during idle time (the total deflection space being only 10 

elements or so during the superscan sweep). In analog scan, the total beam 

dwell time is only 5 1 sec. Therefore, analog scan is employed for priming 

(polarization) purposes. Switching between digital and analog scans is 

manual and is usually preprogramed in accordance with fixed timing intervals. 

4. No electron beam during standby - The Uvicon target can support a 

charge in excess of that required to produce target-material breakdown, pro­

vided that the condition is not aggravated by release of additional secondary 

electrons created by the scanning beam. Therefore, the electron beam is 

always suppressed except during priming and readout (data frame). The 
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chance of target-material breakdown is thus reduced considerably, because 

the electron beam is off during 90% of the orbital time. 

5. Prevention of operation error - Rigid operational procedures have 

been established for preventing the target-material breakdown condition in 

the electrode potentials in the Uvicon. To avoid human error in operation, 

command sequences are generated as a file of punched cards, and special 

programing checks the validity of the command sequence. The valid com­

mand sequence is fed to a computer, which issues commands for transmission 

in real time or for loading the command memory. 

6. Rigid tests and inspection - The last listed cause of target-material 

breakdown is a defective tube. If the vacuum of the Uvicon is not good and 

there is some residual gas in the tube envelope, then the gas will be ionized 

during exposure and readout. Positive ions from residual gas may accumulate 

on the target surface and increase the target-surface potential, thus creating 

target-material breakdown. Therefore, rigid testing and inspection of the 

tube were performed to eliminate faulty tubes. 

These modifications may lessen the chance of target-material breakdown; 

but this possibility could not be eliminated until the mechanism was under­

stood and a fundamental method that prevents it was adopted. 

2. 6 Theory and Prevention of Target-Material Breakdown 

Target-material breakdown is the process of dielectric breakdown of 

the potassium chloride target membrane. This is a problem inherent in the 

SEC target (Filby, Mende, and Twiddy, 1965). Sometimes the potassium 

chloride destruction will be accompanied by destruction of the aluminum oxide 

support. In this case, the target becomes completely useless. Complete 

destruction of the target was very common in the early development of the 

Uvicon. Later, the destruction of very limited areas of the target was more 

commonly observed. It involves removal of part of the potassium chloride 
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from the supporting structure, which means that the supporting structure or 

signal plate is directly exposed to the readout beam. The bare spots on the 

signal plate are referred to as false stars. In analog mode, these false stars 

appear as point images resembling stars; in digital mode, because the scan­

ning does not erase the false star on the first pass, the superscan elongates 

them to streaks. 

The first type of target-material breakdown happens during the high 

voltage in the expose mode. The positive charge generated at the target 

by incoming photoelectrons continues to increase during exposure so long as 

light is incident on the photocathode and the high voltage is on. If not limited, 

this positive charge can increase to the point where it directly causes the 

dielectric breakdown of the target material. 

The second mode occurs during readout. During normal readout, the 

yield of secondary electrons on the potassium chloride must be less than one. 

This is equivalent to saying that the discharge of the positive charge is 

complete. When the yield of secondary electrons exceeds unity, the process 

ceases to be readout; on the contrary, as in the original imaging process, 

the secondary electrons generated will be lost from the target material and 

the positive charge on the target will be increased. 

The yield of secondary electrons is a function of the potential difference 

between the readout beam and the surface of the potassium chloride. Figure 9 

illustrates this function. The yield of secondary electrons increases as the 

potential difference increases and at some point, 10 V or so, the yield exceeds 

unity. The voltage at this point is called the first crossover potential. At 

higher voltage, the amount of positive charge accumulated on the target 

increases rapidly and finally reaches the point of dielectric breakdown of the 

target material. Thus, the second mode of target- material breakdown may 

be caused indirectly by the accumulation of positive charge on the target in 

excess of the first crossover potential. It is therefore dangerous to accumu­

late a positive charge sufficient to cause the second mode of target-material 

breakdown, even though the amount is not sufficient to cause the first. If 
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the maximum allowable potential of the cumulative positive charge is 

limited to less than the first crossover potential, target-material breakdown 

will effectively be prevented. To accomplish this, there are several 

approaches:
 

1. Increase the first crossover potential of the target. 

Z. Limit the maximum potential of the positive charge during high­

voltage on period. 

3. Reduce the potential differences between the accumulated positive 

charge and the read-out low-energy electron beam. 

The first method can be accomplished by improved manufacture. For 

instance, Uvicon tubes manufactured in Pittsburgh have a higher potential of 

first crossover than the tubes from Elmira. However, methods of controlling 

the first crossover potential were not developed in time. Recent studies 

indicate that coating the target surface with some other material considerably 

increases the first crossover potential of the target (McMullan and Towler, 

1969). A second method, limiting the maximum allowable potential of the 

accumulated charge, was actually adopted for the Uvicon. The simplest way is 

to limit the input of the photons. If the intensity of the input is high, then 

the integration time of the input must be limited. In the case of Celescope, 

a list of prohibitively bright objects in the sky was compiled. Since Celescope 

explores the unknown heaven of the ultraviolet, heavy reliance on this method 

is not really appropriate. The best way to limit the maximum potential of the 

accumulated charge is to limit it electrically by inserting an electrode near 

the target. This method was adopted for almost all other SEC vidicons, but 

it has some drawbacks. For instance, image resolution suffers by insertion 

of the extra electrode. Because of the loss of the resolution, it has been 

suggested that the suppressor grid be eliminated from future SEC vidicons 

for astronomical application (Lowrance and Zucchina, 1961). In the case of 

Celescope, the final design was frozen before a suppressor grid was even 

considered. Concern about damaging the structural integrity prevented the 

insertion later of a new suppressor grid. Instead, the available grid in the 

Uvicon was used as a substitute. (Structural integrity is very important for 
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the survival of the Uvicon. Because of the severe launch environment, 

changes of mechanical configuration in the tubes that may diminish the struc­

tural integrity may jeopardize tube ruggedization. ) 

The closest electrode to the target in the Uvicon is the normalizing grid 

(number 5 or G5). Its function is to correct the direction of the readout 

beam to normal to the target surface for readout or priming. The difference 

of potential between the target and G5 is on the order of 500 V. Therefore, 

the maximum allowable potential for the accumulated charges on the target 

will be close to the 500 V determined by the G5, if the grid is kept at normal 

potential during expose. That was the case during the previous experiences 

that ended in target-material breakdown. But G5 is not needed during the 

exposure mode, and its voltage may be varied from the normal 500 V when 

the Uvicon is in the expose mode. Therefore, G5 can be used as a suppres­

sor grid during the expose mode or high-voltage-on period. As explained 

before, if the maximum allowable potential is limited to less than the first 

crossover potential, then the readout process will not cause target-material 

breakdown even though the G5 potential is raised to a normal 500 V during 

readout. The maximum allowable potential during expose is determined by 

both the signal-plate potential and the suppressor (or G5) potential. If both 

potentials are kept below the first crossover potential of the target, the 

potential of the accumulated charges will be less than the first crossover 

potential in any circumstances. In Celescope, the -difference between the 

signal-plate potential and G5 potential was kept at 9 V with respect to target­

exit surface during expose mode, which inc'ludes the high-voltage-on period. 

The potentials of the G5 and target signal plate are switched back to their 

nominal values during priming and readout. Switching of the potential is 

accomplished by the logic circuit shown in Figure 10. The use of G5 as a 

suppressor grid made mandatory the separation of expose and readout cycles, 

because the same grid has different uses during the different phases of 

operation. A SEC Vidicon with a suppressor grid separated from G5 does 

not need a separate cycle of readout and expose, even though it may help to 

reduce the chance of the target-material breakdown. The danger in limit­

ing the maximum potential of the accumulated charge is the introduction of 

nonlinearity into the transfer relationship of the image tube. Limiting the 
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maximum potential of the charge is equivalent to the introduction of a satura­

tion level to the output charge. Once the potential of the output charge reaches 

the limited potential, the relationship between the number of input photoelec­

trons and the amount of positive charge becomes nonlinear. These saturation 

effects occur in the case both of amplitude output and of total charge output 

(in Celescope, the total charge output used). Once nonlinearity between the 

input of electrons and the output of positive charge is introduced, the image 

size becomes a very important factor. If there is no limitation on the 

accumulated charge, the total number of accumulated positive charges will 

be proportional to the number of photoelectrons input. Limiting the maximum 

potential truncates the output charge; the truncation introduces size effects. 

To explain the effects, let us consider two solid bodies of equal volume, say, 

cone shaped. One has a base area of 10 in. 2, and the other, 100 in. Z. The 

heights of both cones are, respectively, 50 in. and 5 in. If we truncate these 

cones at a height of 1 in. , the remaining volumes of these cones are no longer 

equal. The truncation effect or the image-size effect is common to all types 

of SEC vidicons with a suppressor grid and to the Tvicon with a substitute 

suppressor grid. 

The third method of preventing target-material breakdown is to limit 

the differences of potential between the readout beam and the accumulated 

charge on the target. This can be accomplished in several ways. One is by 

changing the potential of the signal plate in such a way that the difference 

between the potential of the positive charge and that of the readout electron 

beam is always less than the first crossover potential. This technique can 

be adopted regardless of the potential of the accumulated charge of the target. 

However, it may require more than one readout to discharge completely the 

accumulated charge. 

An EMR study, discussed in more detail in Chapter 3, examined the 

effect of image size on output signal for images of the same total intensity. 

It was found that for image sizes in the general range from 0. Z to 2 times 

the picture-element size, output depended strongly on image size, thus 
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requiring great stability of optical and electronic focus in order to preserve 

instrument calibration. The report implies that this effect is at least partly 

due to the operating mode, which was strongly influenced by the need for 

protection against target-material breakdown. 

2.7 Target-Material Breakdown During Ground Testing 

At the time of launch, the false stars in the Celescope equipment that 

were an indication of a history of target-material breakdown totaled 11 for 

all four tubes. The details are shown in Table 7. The four false stars in 

camera 2 were created before system tests. Since this camera suffered 

catastrophic failure in orbit, the false stars might have been early symptoms 

of the future. Uvicon 050D, a product of the Elmira Electronic Tube Division 

of Westinghouse was initially without any recognizable false stars except one 

adjacent to the target ring. But during an acceptance test at EMR, the first 

two of the false stars were created. Details of the circumstances are not 

clear, but they appeared during a uniformity test or field emission test, 

which required general illumination and higher-than-normal voltage applied 

to the imaging section of the Uvicon tubes. Another false star was created 

during calibration of the Uvicon with a 26-hole pattern. This test also 

included a very high level of input illumination. 

In the case of camera 4, two of the false stars existed immediately 

after the production of the tube. 

After the experiment package, incorporating techniques for prevention 

of target-material breakdown, was completed, the Celescope system was 

tested on the ground as a part of system acceptance and integration tests 

for almost 2 years (details of the tests are listed in Table 8). During this 

period, only one target-material breakdown occurred. On October 12, 1967, 

during a vacuum optical bench (VOB) test, which is the system calibration 

test, a whole optical package had been placed in a vacuum chamber. After 
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Table 7. List of false stars at the time of launch. 

Telescope 
Uvicon 

tube 

False-
star 

designation 

Approximate 
position 
K - L 

Approximate 
size 

AK AL 

Approximate 
intensity 

Peak Sigma 
Date of 
creation Remarks 

Camera 
1 

RI19A (none) 

A 

ZZI 

108 

247 

87 

3 

16 

3 

6 

17 

127 

120 

4500 

? 

10/27/65 

Rarely seen because of 
improper beam landing; 
adjacent to target ring. 

Created during accept­
ance test; double false 
star 

B 174 141 16 5 127 4000 7/66 Created during ambient 
calibration 

o 
Camera 65-35-

050D 

C 

G 

218 

58 

192 

148 

16 

12 

7 

5 

127 

1Z7 

4000 

4500 

10/27/64 Created during accept­
ance test 

10/1-0/67 Created during VOBtest 

H 90 176 14 4 127 3000 10/10/67 Created during VOB test 

I 100 188 14 4 100 800 10/10/67 Created during VOB test 

J 131 136 14 Z 95 800 10/10/67 Created during VOB test 

(none) 25Z 237 9 6 127 3000 before Probably created during 
10/18/65 manufacturing; adjacent 

to target ring 

Camera 
3 

RZ9A 

Camera 
4 

R42D D 78 139 8 3 32 400 before 
9/1/64 

Probably created during 
manufacturing 

E 157 173 10 3 46 800 before 
9/1/64 

Probably created during 
manufacturing 

There is no false star in camera 3. K, L are vertical and horizontal coordinates, respectively. 



Table 8. List of major system tests on the ground. 

Test period Name of test 

Z/ 1/67- 2/24/67 

3/16/67 - 3/17/67 

3/18/67 - 4/ 4/67 

4/10/67 - 4/12/67 

4/20/67 - 5/24/67 

5/25/67 - 5/26/67 

5/29/67 - 6/ 1/67 

7/18/67 

7/18/67- 8/14/67 

8/17/67 - 8/18/67 

8/23/67 

9/21/67 - 10/23/67 

11/ 4/67 - 1/18/68 

1/27/68- 2/25/68 

3/ 6/68 - 3/Z/68 

5/ 9/68- 5/16/68 

6/25/68 - 6/28/68 

7/ 3/68- 7/17/68 

8/ 4/68- 8/23/68 

9/18/68- 9/20/68 

10/8/68 

10/30/68 - IZ/ 7/68 

Postshipment system inspection and functional check 

Baseline functional test 

Vibration test and mass-property test 

Postvibration functional test and alignment check 

E-4 repair and vibration test 

Postvibration functional test 

SAO/WEP integration test 

Prethermal vacuum functional test 

Thermal vacuum test 

Postthermal vacuum functional test and inspection 

Optical-package alignment check 

VOB test (system calibration) 

Spacecraft/SAO integration tests 

Electromagnetic compatibility (EMC) test 

Early thermal-vacuum test 

EMC test 

Radio frequency interference test 

Aliveness tests and vibration tests 

Thermal-vacuum acceptance test 

Workmanship vibration test 

Postshipment functional test 

Prelaunch aliveness test and practice 
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completion of a series of tests, all three cameras were being turned off (Test 

Run No. 122): Since early during the VOB test, camera 2 channel electronics 

failed, that camera was connected to the channel of camera 4 to allow continua­

tion of VOB testing before repair of the failed part. Because camera 2 and 

camera 4 channels are interchangeable, this swapping of electronic channels 

should not have caused anytroubles. During turn-off, we experienced an operator 

error. All operational commands are issued by anIBM1401 computerby using 

groups of commands for each stage of testing. The turn-off process is the last 

sequence of each cycle of testing; after it has been completed, the computer 

becomes inactive to permit time for rearranging other test setups. As 

shown in Table 9, the turn-off sequence contains a 60-sec waiting period. A 

computer operator mistook the waiting period for completion of the whole 

sequence and depressed the "end" button on the computer. Consequently, 

the computer immediately stopped all activity, including timing of the 60-sec 

wait, thus leaving the computer frozen. Detecting this abnormal condition 

of the Celescope experiment, operational personnel present tried to resume 

the turn-off sequence but were unsuccessful. They also attempted to intro­

duce emergency commands supposed to recover-the Uvicon from any abnor­

mal condition; but these were also fruitless, since the computer was under 

the control of the inactive condition. Manual command to turn off the 

Celescope main power supply from the simulated spacecraft could not be 

issued, again because in the "inactive" state the computer blocks the com­

mand route between the Celescope experiment and the experiment test and 

control unit (ETCU), which, in normal circumstances, is capable of issuing 

any command by means of a manual pushbutton. Finally, Celescope was 

shut down by removing manually the cable connection to the power supply. 

Examination of all Uvicons after this accident revealed four new false stars 

in camera 2 and no detectable change in the other cameras. 

The mechanism of target-material breakdown in this incident is explained 

as follows: since the methods of preventing target-material breakdown that 

were adopted limit the maximum potential'of accumulated charges on target 

only during the expose and readout modes - that is, in the steady-state condi­

tion of the target and surrounding electrode potential - the prevention method 
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Table 9. 	 Turnoff sequence used during vacuum optical 
bench test. 

Initial status of system: 

System Op mode off, all filaments on, all beam on, all expose 

off, all camera high velocity. 

Command 
number Command 

1 	 System op mode off 

z Camera 1 

3 Camera Z 

4 Camera 3 

5 Camera 4 

6 EDHE 

7 Wait 

8 Status check 

9 Camera 1 

10 Camera Z 
1 Camera 3 

12 Camera 4 

13 Camera 4 

14 Camera Z 

15 Camera 3 

16 Camera 4 

17 Camera 4 

18 Camera 2 

19 Camera 3 

20 Camera 4 

Z1 EDHE 

22 Wait 

23 Wait 

24 Camera I 

Z5 Camera Z 

26 Camera 3 

27 Camera 4 

28 SAO 

beam off and expose off 

beam off and expose off 

beam off and expose off' 

beam off and expose off 

Real time noncyclic 

1 sec 

beam off 	and expose off 

beam off and expose off 
beam off and expose of* 
beam off and expose off 

filament off 

filament off 

filament off 

filament off 

calibration lamp off 

calibration lamp off 

calibration lamp off 

calibration lamp off 

Real-time 	noncyclic 

1 sec 

60 sec 

Medium-voltage 

Medium-voltage 

Medium-voltage 

Medium-voltage 

experiment off 

power supply off 

power supply off 

power supply off 

power supply off 

Combined 	command. 
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is not effective during periods of changing electric field, in particular during 

turn-on or turn-off or during switching of camera modes. To prevent target­

material breakdown during these periods of change, a very rigidly controlled 

sequence of operations with ample calm-down periods between changes of 

state was adopted. Failure to follow this predetermined sequence increases 

the chance of target-material breakdown. Also, to lessen the chance of 

exposure to dangerous transient conditions, we adopted the policy of a mini­

mum number of camera turn-on and turn-off operations. This policy was 

also carried on when Celescope was in orbit; for the first 3 months, the 

Uvicon cameras were never turned off between consecutive SAO operating 

periods, which spanned 1 to 2 weeks in standby status. Later, this policy 

was abandoned and cameras were turned off at the end of each SAO operating 

period for other prevailing reasons: (a) to prevent camera deterioration, 

especially cathode emission; (b) to lessen the chance of target-material 

breakdown because of reduced sensitivity of the Uvicon; (c) because the 

risk of failure during turn-on was reevaluated on the basis of orbital exper­

ience and judged to be less than the risk of failure from wear out; (d) on 

the basis of actual temperature measurement in orbit; it was determined 

that the Uvicon cameras would not overcool with filament off. 

2.8 Experiences in Orbital Operation 

The Celescope experiment package was launched as a part of Orbiting 

Astronomical Observatory (OAO AZ) spacecraft, which, on December 7, 1968, 

was successfully injected into the expected orbit. After spacecraft checkout, 

the E-4 electronics package was turned on to monitor the status and tempera­

ture of the experiment. Then the sunshade covering the Gelescope end was 

opened to allow outgassing before the high voltage in Gelescope was turned on. 

During orbit 101, real-time contact was made with Rosman station; camera 3 

was turned on; and the first picture of an ultraviolet star field was taken in 

the analog mode. 

Camera 3 was then tested for 1 day before attempting to turn on the other 

cameras. The exposure time was increased from 5 to 15 sec. After testing 

the PGM operation mode, we scheduled a series of daylight exposures with 
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camera 3. The first 5-sec exposure proved that camera 3 could not operate 

in the daylight at the orientation of the satellite. The next day at the Rosman 

dark contacts we turned cameras 4, 1, and 2 on. 

Camera 4 passed the 5-sec daylight exposure test at the last available 

Rosman contact. The following day, we tested the cameras operating together 

and tested camera 4 in daylight with a 20-sec exposure. Extrapolating from 

the 5- and 20-'sec exposure tests, we decided that it would be safe to expose 

camera 2 and 4 for 60 sec in the daylight. 

At the next Rosman contact, R141, camera 2 had 27 new false stars-. 

These were obviously the results of daytime observation. Camera 4 apparently 

did not suffer any ill effects from the same daytime observation; but an opera­

tional policy was set to avoid thereafter any daytime observation. Therefore, 

all observations after orbit 155 were dark (night) observations; some dawn and 

dusk observations were included in the later period after camera sensitivity 

had decreased. These later observations were also all exposures looking near 

the antisun direction; in contrast, earlier daytime observations were all look­

ing toward the sun, but more than 45 ° away from it. The failure of camera 2 

was caused by daylight observations - that is, by overexposure to light ­

despite our techniques for preventing target-material breakdown. Probably 

the limiting voltage imposed by the substitute suppressor grid was not suffi­

ciently low to prevent some portion of the target reaching the first crossover 

vo itag e. 

. The next contacts (R121 through R258), which included I week of an inactive 

period of Celescope, were performed successfully without any difficulties. All 

active contacts in this period were real-time dark Rosman contacts. Then the 

next set of remote contacts started. These operations were intended to make 

maximum use of the data-gathering opportunities. 'The priming was performed 

during one of the remote contacts, which was in daylight. Then expose was per­

formed during a dark period by commands stored in the spacecraft command 

memory. Readout was executed in the next available contact which was in 

daylight. After completion of readout, the priming sequence could be started 

for the succeeding exposure, and so on. The first available real-time contact, 

R268, following the set of remote operations disclosed 26 additional false stars 
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in camera 2. There were no indications of additional false stars in the other 

cameras. 

The immediate cause of the second instance of target-material breakdown 

was determined by an experiment during orbit 296. Since the target-material 

breakdown occurred during semi--back-orbit operation, in which priming and 

readout were performed during real-time operation, but the actual expose was 

done in back orbit, expose mode was suspected as the cause. Expose mode 

will be abbreviated as XMO to avoid confusion with expose, which is the actual 

application of high voltage to the imaging section and which is designated HVON. 

During the orbital experiment, camera 3 was left in expose mode with the high­

voltage off for the entire 100 min of orbital period except for a very short 

HVON for resetting of the electronic logic. The readout picture showed a very 

high background, which indicates some kind of signal integration was going on 

when the camera is in the expose mode. The true nature of the incoming signal 

was later determined as light input from the sun, scattered sunshine, air glow 

caused by sunshine, or earthshine. From these experiences, the duration in 

XMO for each camera was limited to at most 5 min at first, then later in­

creased to 15 min; also, during inactive periods, the Celescope end of the 

sunshade was kept closed to avoid unnecessary input of daylight. 

Later, at R1344, camera 2 ceased to function completely. The direct 

cause of the failure is attributed to (a) the video preamplifier or (b) the fila­

ment. In either case, the failure could easily have been caused by degraded 

vacuum in the Uvicon tube, which may be induced by frequent target-material 

breakdown. The detailed history of camera 2 is shown in Table 10 and 

Figure 11. 

A primary cause of failure in camera 2 was our assumption that tests con­

ducted on one Uvicon could be used to determine the performance of another. 

Camera 4 also suffered minor target-material breakdown that created two 

additional false stars. This breakdown was caused by a readout without prior 

priming (and also expose). The normal operating sequence gradually raises 

the target potential from high-velocity to polarize-low, polarize-low to 

polarize-high, and each step allows sufficient time to equalize the target 
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-3 

Contact station 
and orbit number 

R11s 

R128 

R129 

R130 

Q132,S133, SI34, 
S135,S136,S137, 

Ql38,QI39 

RI41A, R141B 

R143, R144, RI55, 
RZ55,R256A, 

R256B, RZ57A, R257B 
R258 

S260,S261, S262, 
S263,SZ64,SZ65, 

-	 0266, RZ68, OZ68 

R269 

R271A 


R664 


R748 


R762,R763 

R776 


R777 


R790 


R990 


R991,R99Z 


R1006 


RlOl7 

RIOISA through R1103 


RIIOSA 

RI lOB 

RI 117 

R1301 

R1344 

R1358 to M1359 

R1370 to R1371 

Table 10. Brief history of camera 2 operation. 

Operation 	 Remarks 

Turn on, 5-sec exposure, analog readout No change in number of false stars 
(= 8) 

4-camera operation, 60-sec exposure, pulse-codedmodulation(PCM) readout 

4-camera operation, 180-sec exposure, store readout, only part of picture Probably target-materal breakdown 
received occurred 

4-camera operation, 60-sec exposure, analog readout No change in number of false stars 
(= 8) 

Camera 2 - camera 4 operation, 60-sec exposure to daylight, PCM read-	 Almost all cases experienced target­
out 	 material breakdown 

4-camera operation, 60-sec exposure, PCM readout Found 27 new false stars (total = 35) 

4-camera operation, 60-sec exposure, PCM readout No change in number of false stars 
(= 35)
 

Prime during the previous contact, 6 
3-sec exposure in back orbit, 	 Almost all cases had target-material 

PCM readout in this contact 	 breakdown; at SZ61, at least one extra 
false star, at 0266, 20 new false stars 
found (total = 56) 

4-camera operation, 60-sec exposure, PCM readout Found 8 additional false stars (total
 
=66)
 

Turned off
 

Turnon
 

5-sec exposure, analog readout 

5-sec exposure, PCM readout No change in number of false stars 
66) 

30-sec exposure, analog readout 

30-sec exposure, PCM readout 

60-sec exposure, PCM readout 

5-mn XMO 

5-mn XMO 

10-sec exposure, 8-mn XMO, PCM readout 

4-camera operation, 60-sec exposure, PCM readout 

Normal operation, typically, 4-camera operation, 60-sec exposure,
 
PCM readout 
4-camera operation, 60-sec exposure, PCM readout Small target-material breakdown 

in central region 
4-camera operation, 60-sec exposure, PCM readout Target-material breakdown in center 

and lower right-side regions 
Priming attempt causes target-material breakdown 

Target-quality check performed 

No video output detected, turn off 

Turn on and punping performed; turn off 

Turn on and pumping performed, turn off 	 Ceased camera 2 operation 
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{a) 	 (b) 

(c) 	 (d) 

Figure 11. 	 Appearance of camera 2 picture without real star images: (a) 
at the time of launch through iR130, (b) R141 through R258, (c)
at 0266, (d) 	 R669 throughRl 104
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potential by the priming process, in order to avoid disruptive transient con­

ditions. The unexpected readout cycle started in the polarize-high mode, 

initiating a sudden large change in voltage and target-material breakdown. 

2.9 Causes of Orbital Target-Material Breakdown 

In the second incidence of target-material breakdown in camera Z, the 

prolonged period of XiVIO caused an excess charge accumulation on the target. 

To discover the source of excess charge accumulation, additional experiments 

were performed on the ground. A fairly common source of background noise 

in TV tubes is internal light from the filament. For example, filament­

photocathode coupling is observed in the SEC Vidicon, and it is standard 

operational procedure to turn off the filament during long exposures to avoid 

internally generated extraneous light. However, since filament light contains 

only the visible and infrared, and the Uvicon is not sensitive to either, no 

filament-photocathode coupling was expected. This expectation was confirmed 

by experiments. 

In one experiment, a D-type Uvicon, the same type as camera 2, was left 

in XMO in bright daylight with the faceplate uncovered. The output frame dis­

played very high background noise, duplicating the result of a similar orbital 

experiment. Then, the faceplate of the Uvicon was covered completely to pre­

vent external light from reaching the photocathode, and the Uvicon was left in 

bright daylight again for up to 6 hours. The readout frame did not indicate any 

increase of background above normal dark-exposed pictures. This proves that 

residual sensitivity in XMO is caused by external input, not from internal light. 

Mechanisms suggested for the generation of a charge from external 

signals are the following: (a) direct generation of photoelectrons by potas­

sium chloride (the target material), (b) stray photoelectrons from the 

photocathode to the target, or (c) space radiation. 

To examine the possible effects of space radiation (high-energy particles 

or gamma rays), special ground tests were performed with the cooperation 

of Goddard Space Flight Center (GSFC). The results indicate the following 

(Nozawa, Newman, and Wallgren, 1970): 
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i. Gamma and beta rays easily cause excessive charge accumulation 

on the target if their intensity is sufficiently high. 

2. The rate of charge accumulation on the target in HVON is 100 to 

1000 times greater than in XMO. 

3. The mechanism of charge accumulation by radiation in -IVON is the 

fluorescence of the lithium fluoride faceplate. When it is excited by radiation, 

the fluorescent photons generate photoelectrons at the photocathode. 

4. In the case of XMO, fluorescent light from the faceplate seems to 

stimulate photoelectron production in the potassium chloride target. 

5. Actual space radiation is not strong enough to produce any noticeable 

increased, in background even when the Uvicon is left for a full 60 sec in 

HVON in the most intense region of the OAO orbit. 

6. If there were enough space radiation to produce a high background, 

then it could be detected in the Celescope picture, since the radiation shield 

provided by the telescope structure is not sufficient to reduce such intense 

radiation. 

Considering the results of this experiment and the energy required to pene­

trate aluminum oxide target support structure, for the photoelectrons the 

first mechanism is most likely to be the cause of charge accumulation. 

Since camera 2 has been the only one to suffer catastrophic target­
material breakdown, there must be something different about it. The differ­

ence may be the result of manufacturing methods. As shown in Table 11, 

it was the only camera manufactured in the Elmira tube division. The rest 

of the cameras were manufactured in Pittsburgh, where a research-and­

development type of manufacture was followed. Even during the assembly of 

the camera module and the camera-calibration period, Elmira tubes suffered 

target-material breakdown more easily than Pittsburgh tubes. Also, the first 

crossover potential for Elmira tubes was about 10 to 13 V; for Pittsburgh 

tubes, 15 to 19 V. The system was designed such that the electronic channels 

of all cameras were interchangeable. Therefore, the electronic setup favored 

Pittsburgh tubes over Elmira tubes because the former had a greater margin 

of safety before reaching the first crossover potential. Interpretation of this 

fact is not yet clear, but we can postulate the following: The first crossover 
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Uvicon serial number 

Manufacture 

Tip-off date 

Final potting date 

Completion date of 
telescope assembly 

Electron threshold 

Peak quantum 
efficiency (o) 

Mechanical fault 

Target-material 
breakdown before 
system test 

Past history of 
repair in camera 
module 

Table 11. 

Camera 1 

RI9A 

Pittsburgh 

5/15/64 

5/10/66 

6/28/66 

5000+ 

2.23 

Raster oriented 

150 clockwise 

from Zc axis
 

None 


Intermittent 

ground connection 


in electronic package
 
repaired
 

List of flight Uvicon. 

Camera 2 

65-35-050D 

Elmira 

10/19/65 

7/15/66 

8/1/66 

7300+ 

7.8 

None 

During ambient 
calibration at 

EMR 

None 

Camera 3 


R29A 


Pittsburgh 


8/7/64 

6/16/66 

8/25/66 

4600+ 

2. 17 

Cracked target 
insulator 

None 

None 

Camera 4 

R42D 

Pittsburgh 

8/31/64 

9/24/66 

10/18/66 

3400+ 

7.6 

Internal short
 
G4-G5, corrected
 

None
 

Excessive noise
 
problem corrected
 



potential varies across the target surface. Then, even if the peak amplitude 

of the signal as limited by the G5 voltage is constant across the target sur­

face, the signal potential may exceed a local first crossover potential in 

some region. By the same token, the limiting voltage determined by the G5 

may vary as a.function of position on the target surface. On the basis of 

measured saturation voltages of video peak-amplitude output as a function 

of target position (shown in Figure 12), Elmira tubes display a larger varia­

tion of peak (limited) amplitude than do Pittsburgh tubes. The combination 

of both positional variations makes some tubes more susceptible to target­

material breakdown than others, since the safety margin that was supposed 

to take care of these variations is smaller in some tubes. In the case of 

Pittsburgh tubes, the safety margin may be 5 to 10 V, but Elmira tubes may 

have only 1 to 5 V. Therefore, it is conceivable that the limiting potential 

determined by G5 in Elmira tubes may exceed the first crossover potential 

in some regions. The reason for the difference in the first crossover poten­

tial between both types of Uvicon is not known. It may correspond to differ­

ences in the detailed structure (thickness of each membrane, density of 

potassium chloride, etc. ). Another possibility is that the differences in 

susceptibility to target-material breakdown are caused by the difference in 

electrode structure between the two groups of tubes. 

Target-material breakdown is not easy to observe, because the necessary 

degree of destruction is rare. Figure 13 is one of these rare pictures. This 

is the target-material breakdown in camera 2 during Rosman 1105B, which 

was the last known picture from that camera. The center and lower regions, 

which indicate adjacent black signal and high white signal, show the target­

material breakdown during readout. The black area in the top portion of the 

picture is not caused by target-material breakdown but is part of the normal 

behavior of the tube called "shadow. " Numerous white spots in the picture 

are false stars. The white arcs in the four corners are part of the target ring. 

No star image appears in this picture. The bright glow in the upper portion 

of the picture is the Lyman-a radiation from the geocorona; the black arcs 

near the center of the Lyman a are probably regions where the signal level 

exceeded the first crossover potential. Figure 3Z(b) shows an earlier 

occurrence of target-material breakdown in camera 2. 

II-52
 



Figure 13. Picture of target-material breakdown: Rll05B, the last known 
picture for camera Z. 



L L 

Figure 12. 	 Distribution of limited signal potential on target (relative values). 
Dots indicate positions of actual amplitude measurements. 
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2.10 Conclusions 

1. Protection against target-material breakdown (crossover) is a 
critical requirement. The Celescope techniques proved to be satisfactory 

for three of our four cameras. Improved techniques are now available. 

2. Superscan readout used in Celescope was satisfactory. 

3. The use of electrostatic rather than electromagnetic focusing/ 

deflection eliminated significant problems but created some new ones. The 

relative merits of these available alternatives should be reassessed for 

future experiments. 

4. In the case of devices such as the Uvicon, for which it has not been 

demonstrated by test of a large number of appropriately selected samples 

that individual items have closely similar characteristics, tests performed 

on one item should not be used as the basis for determining what operating 

procedures are proper for another. The Uvicon in Celescope's camera 2 was 

severely damaged as a result of our not realizing how significantly it differed 

from the other Uvicons in the experiment. 

5. For some methods of preventing target-material breakdown, in 

particular that used in Celescope, the output signal becomes critically 

dependent on the focus of a stellar image on the target. 
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CHAPTER 3 

IMAGE QUALITY, EXPECTED AND OBSERVED 

3. 1 Introduction 

In very broad terms, the objectives of the Celescope experiment are 

the measurement of stellar intensities and the identification of stars for 

cataloging. To achieve these objectives, the general requirements of the 

optical system are the formation of high-quality images and the preservation 

of incoming optical fluxes. In this chapter, the quality of star images will 

be discussed. Image size, image resolution, and the intensity distribution 

of an image will be discussed in detail. Some aspects of flux preservation 

will also be presented, but a detailed discussion of the effects of the electro­

optical systems on the measurement of star intensity will be deferred. 

In general, the quality of the images returned by Celescope are satis­

factory and similar to that expected. On some occasions, however, the 

quality has fallen below expectations, even though observational results are 

not seriously affected. In part, this image degradation was due to obstacles 

to the optimization of image quality that are inherent in the equipment. Instru­

ment design was based on the assumption that the objects observed are point 

sources; to the extent that they are not, image quality suffers. In addition, 

interference from extended sources seriously degrades the apparent quality 

of superimposed point-source images. 

Testing and adjusting of the ultraviolet-sensitive equipment presented 

special difficulties that are not experienced with visible-light systems. Some 

routine tests for visible optics became major tasks for Celescope. Some 

kinds of test data common for visible systems may not even be available for 

the Celescope experiment. These difficulties are a potential source of image 

degradation, even though actual orbital data indicate no particular problems 

in this regard. 
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One important effect of image quality on the Celescope experiment was 

examined by the EMR Telemetry Division of Weston Instruments, Inc. , as 

part of a study they conducted late in 1970 to assist us in our refinement of 

the Celescope observational results. They found that, for a Westhinghouse 

WL30691 SEC Vidicon operated in the same manner as the Uvicons in 

Celescope, the system output (Sigma) for an artificial star of constant inten­

sity depended critically on the size of the star image on the target. Since 

the SEC target in the WL30691 is essentially the same as that in the Uvicon, 

we conclude that defocusing in our Schwarzschild telescope by more than 

0.001 in. would have affected our calibration curves to such an extent that 

we could have easily detected the effect. In Chapter 4, we discuss calibra­

tion; the effects described there are considerably smaller than those that 

would be expected from a relative shift of 0.001 in. between the position of 

the best optical image surface and the photocathode. 

The primary aim of this chapter is to examine when and why the quality 

of the observed images deviated from our expectations. It is significant to 

note that we are discussing two different types of images, namely, optical 

and electro-optical. Optical images can be measured directly by optical or 

photographic methods. 

3.2 Basic Configuration of Optics 

There are four identically constructed telescopes in the Celescope experi­

ment package. All four are mounted in parallel with the optical axis of the 

spacecraft as shown in Figures 14 and 15. Each is provided with different 

optical filters and Uvicon tubes for a distinct band of spectral sensitivity. To 

increase system reliability, each camera module (or Uvicon assembly) is 

equipped with two different filters and is sensitive in two spectral regions. 

Table 12 defines the spectral regions and sensor configuration. 

Celescope uses a Schwarzschild configuration for its telescopes. The 

Schwarzschild telescope consists of two reflective surfaces: a primary 

mirror and a secondary mirror. The figure of the primary mirror is hyper­

bolic, and that of the secondary is an oblate ellipsoidal surface. 
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Figure 14. OAO spacecraft with cutaway showing the Celescope experiment. 
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Figure 15. Cutaway of the Celescope optical package. 



Table 12. Ultraviolet spectral bands for Celescope. 

Camera 
Uvicon type 

Serial no. Type 
Photocathode 

material Filters 
Ultraviolet 

spectral bands 
Cutoff wavelength 

(A) 

1 R 19 A Cs 2 Te 
Cs Te 

Corning 7910 
Suprasil quartz 

U1 
UZ 

2100 - 3Z00 
1550 - 3200 

2 65-35-050 D CsI 

CsI 

BaF 2 

LiF 

U3 

U4 

1350- 2150 

1050- 2150 

3 

4 

R29 

R 42 

A 

D 

Cs2 Te 

Cs Te2 

CsI 

CsI 

Corning 7910 

Suprasil quartz 

BaF Z 

LiF 

U1 

U2 

U 3 

U4 

2100- 3200 

1550 - 3200 

1350 - 2150 

1050- 2150 



This configuration was chosen because it is the most compact telescope 

that could meet the image-quality requirements and provide the space neces­

sary for installing the Uvicon as a detector. It has not been popular in 

ordinary astronomical applications because of the superior image quality 

provided by the Schmidt configuration and because of the difficulty of figuring 

the optical surfaces. 

The intrinsic advantage of the Schwarzschild telescope is the quality 

of the images, which are free from spherical aberration, coma, and curva­

ture of fields. Schwarzschild telescopes used in Celescope differ from the 

classical ones in order to provide optimum performance for imaging onto 

the strongly curved Uvicon photocathode. The "basic" two-mirror system 

was subject to field curvature, coma, and spherical aberration to compen­

sate for these aberrations in the faceplate lens. The system was-optimized 

for a refraction index of 1. 46 for the faceplate, corresponding to a wavelength 

of 1800 k for lithium fluoride. During optical design, it became evident that 

a system of the length that the Scwharzschild specified for minimum astig­

matism was unnecessary to meet our optical imaging requirements. The 

physical length of the system was therefore shortened as far as the imaging 

requirements would allow, in order to make a smaller, more rugged system 

suitable for space applications. Figure 16 shows the general construction 

of the telescope. Details of the surface figure are shown in Table 13. 

Each mirror was constructed of fused silica with an aluminum-coated 

reflecting surface with a magnesium fluoride protective coating to ensure 

long-lasting, high ultraviolet reflectance. Since details of the telescope 

structure will be described elsewhere, this discussion will be kept brief. 

The major concern in the structural design of the telescope is survival 

during and after launch. During launch, there are severe vibrations and 

acoustic effects. The nitrogen atmosphere that protects the experiment on 

the ground must be rapidly released during ascent from the launch pad. Struc­

tural integrity must be maintained during launch, despite strict weight 
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Table 13. Aspheric-surface equation. 

Standard form: 

1 + l (K+1) CZy Z 

1 
- I

C = curvature R 

K = conic constant 

Surface C K 

10 -Primary -1. 38888 x -4. 6288 
mirror 

Secondary +1.73611 X 10-z +38. 955
 
mirror 

Z: Height from reference plane (Z = 0). 

y: Radial distance from reference axis (y = 0). 
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limitations on the structure. To meet this challenge, several innovations 

were adopted: For example, a corrugated telescope tube, a 4-vane secon­

dary mirror support, a 3-point telescope mount, and a torsion-bar shock­

absorbing telescope mount were adopted. A related problem is the wide 

temperature variation in space. Expected or design values of the tempera­

ture range are shown in Table 14, along with the actual measured values in 

orbit. A temperature-compensating structure was used in Celescope to cope 

with the defocusing effect due to the temperature change in space. The 

residual defocusing effect is small but it still exists. It was minimized by 

setting the optimal focus to -200C, which was the expected average tempera­

ture of the telescope in space. 

Another problem in space is the high vacuum, which causes outgassing 

of many materials. Coupled with the temperature gradient within the 

telescope structure, this may lead to the condensation of outgassed material 

on the surfaces of optical components. Should this occur, the reflectivity 

or transmissivity of the optical components would be severely degraded and 

inaccurate measurements would result. To avoid outgassing, no paint nor 

paint-like finishes were used inside the telescope. The usual interior 

surface of nonreflecting paint was replaced by an interior of aluminum 

and titanium sandblasted to a rough surface by means of pressurized dry 

nitrogen gas and clean silica sand. Ground-based reflectance measure­

ments justify the elimination of black paint, at least in the ultraviolet region. 

The telescope structural design was also important for minimizing the 

effects of reflections from structural surfaces. 

Dimensions of the telescope are given in Table 15. 

3.3 Calculated Quality of the Optical Image 

Since there are refractive components in the Celescope optical system, 

chromatic aberration must be considered. Actually, the chromatic aberra­

tion is the biggest contributor to the optical-image degradation and the 
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Table 14. Temperature variation in telescope. 

Design values 

Maximum Ivinimum 

Observed values 

Maximum Minimum 

At primary mirror 

At secondary mirror 

+25!0?G 

+25?0 

-55 0 C 

-550 

+ 9?3C 

+1300 

-48.00C 

-51.5 
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Table 15. Telescope physical and'optical parameters. 

Total length (without hood) 35 in. 

Total length (with hood t ) 54. 5 in. 

Overall length -P 55. 5 in. 

Diameter (without mount) 14. 5 in. 

Effective aperture diameter of 12 in. 
primary mirror 

Effective aperture diameter 6 in. 
of secondary mirror 

Effective light-gathering area 84. 2 in. 2 

Nominal field of view 20 

Nominal focal length 24 in. 

Nominal aperture stop f/a 

Effective aperture stop f/Z. 39 

Weight 75 lb 

Called the outer radiation shield. 

With radiation shield end plate. 
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ultimate determinant of optical-image quality. We were willing to accept 

this amount of chromatic aberration as the limiting factor in optical per­

formance because of our decision to require electrostatic focus in the Uvicon 

image section, which in turn required strong curvature to the optical image 

surface (photocathode). 

The optical adjustment was specified to provide optimum focus for the 

D-type cameras at 1600 A in U and for the A-type cameras at 2050 A in 

U2 . According to our computations, such adjustment would provide images 

less than 125 1 in diameter in U 4 between 1320 and 1470 A, in U 3 between 

1470 and 1800. A, in U 2 between 1800 and 2600 K, and in U I between 2100 and 

2600 A. For normal early-type stars of the kind primarily observed by 

Celescope, chromatic aberration would increase the image sizes to 150 ± 

for U 1 , U 2 , and U 3 and to 200 for U Defocusing by a few thousandths 

of an inch would not increase the image sizes beyond these values, since 

it would merely change slightly the wavelength of best focus. These hand 

computations were done by means of first-order optical theory. They were 

later checked by ray tracing. Performance of Celescope in orbit in general 

appears to support the above conclusions. 

The calculated quality of images for the Celescope-Schwarzschild tele­

scope was investigated by Dr. A. Shatzel in Ferson Optics, Inc.', and pre­

sented in an internal report (CER-22) by Mr. W. Wagner of EMR. 

Some of the material in this section is based on that report. In that investi­

gation, the basic optical system, which includes only a primary mirror 

and a secondary mirror, and the Celescope optical system, which also 

includes an optical filter and Uvicon faceplate, were studied. Since the 

optical filter is part of the optical system, there are four different varia­

tions of the system, one for each type of optical filter. (A-type and D-type 

Uvicon tubes have an identical optical configuration; they differ in the 

spectral sensitivity of the photocathode. ) Only two variations were investi­

gated. These are: (a) the A-type Uvicon with a Suprasil quartz filter 
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(which corresponds to the U2 filter and is called Al), and (b) the D-type 

Uvicon with a barium fluoride filter (which corresponds to the U 3 filter 

and is called DI). Actual ray traces were performed for monochromatic 
light at 2537 A for U2, and 1470 1 for U 3 . 

Figure 17 shows the change of image sizes as a function of image position. 

The image size is defined as the diameter of blur circle, which contains 90% 

of the energy. As shown in Figure 17, the insertion of the filter and faceplate 

improves the image quality. The specified image size is 125 p. for a field of 

view 0. 6-in. in radius, which is about 1.'4 from the optical axis. The size 

of one television picture element is about 140 ji in diameter. Therefore, the 

expected image size of stars in the television picture is 1 to 4 elements at 

optimum focus if there is no image size increase due to the electro-optical 

mechanism. If the focus is less than optimum but still within the specified 

limit, then the output image size will be 4 to 9 elements large, provided 

electro-optical degradation is negligible. 

Intensity distribution in an image is quite different for different loca­

tions. Figure 18 indicates the intensity distribution for different positions. 

Since the curves in Figure 18 are cumulative intensities, we can determine 

the intensity at a picture element located a radial distance r from the 

center of the image by taking the slope of the curve at r. Also, we can 

determine from Figure 18 what percentage of energy is included in a 
detected signal image when a particular value of the intensity is chosen 

as the cutoff level for the signal. It is obvious that if we choose a fixed 

level of intensity as the threshold that separates the signal from the back­

ground noise, the energy included in the detected signal image varies as 

a function of image position. 
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The following is a brief summary of some other findings of this investi­

gation. The Celescope-Schwarzschild telescope displays considerable 

spherical aberration, coma, and curvature of field. Its performance deterior­

ates rapidly off axis, and the best off-axis focal surface does not correspond 

to the best on-axis focus. The system is relatively insensitive to changes in 

mirror separation, provided the system is refocused. The on-axis image 

diameter increases by approximately 10.5 ji per 0.001 in. for defocusing in 

the direction of the secondary mirror and by about 13. 5 [L per 0. 001 in. in 

the direction of the primary mirror. It is therefore preferable that any 

defocusing take place in the direction of the secondary mirror. Within a 

tolerance of ± 0. 005 in. from best focus, the diameter at 90% energy increases 

from ,-40 p. (best focus) to 1 p.. at 95% energy is within100 The diameter 


SI20 p. for a ± 0.005-in. tolerance on the focal-surface location.
 

The effect of defocusing off axis is similar to that on axis, although the 

best image diameter is considerably larger and the best focal-surface loca­

tion for the diameter at 90% energy is about 0.00Z5 in. from the best on-axis 

focus. If the focal surface is located for best on-axis focus, then the 90% 

energy diameter 1?25 off axis may be as large as 150 }L for a focal-plane 

tolerance of ± 0.005 in. Compromise between the best on-axis and off-axis 

focus results in the maximum off-axis image diameter being held to - 130 [. 

The 95% energy diameter off axis is considerably worse than the 90% diam­

eters and in some instances is as large as 170 p.. Because of the importance 

of defocusing, the exact position of the focal plane for each telescope is 

detefrmined experimentally by using a simulated Uvicon and photographic 

films. Figure 19 shows such a measurement for each telescope. 

The image diameter increases on the average - 5 [L per change of 0. 001 in. 

in mirror separation if the system is not refocused. The mirror separation 

was varied ± 0.025 in. from the nominal separation, and the best focus image 

diameter for the type Al system changed - 5%, while the type Dl system 

changed - 15%. There was no significant change in off-axis performance for 

a change in mirror separation if the system was refocused. Table 16 (with 

Figure 20) indicates the distance of mirror separation and related dimensions 

for each telescope. The values indicated in Table 16 include the compensa­

tion for chromatic aberration. 
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Table 16. Alignment of flight telescope. 

1 

2 

A 

Camera 

to 
secondary rim 

(in.) 

21.240 

21.300 

Primary rim 

to 
secondary rim 

atn.) 
(in. 

21.230 

21.290 

B 

Secondary rimto Uvicon 

facepiece 
vertex 

(in.) 

9.306 

9.349 

Angle 

betweenfilter splitand 

Z axis 
C() 

0 

0 

C 

Angle
betweenraster line 

and 
Z axis 

15 

0 

D 

Angle
betweencontrol fin 

and 
Zc axis 

(()(0) 

22.5 

112.5 

E 

Outerdiameter 

of 
telescope 

(in.) 

14.500 

14.500 

3 21.277 z.z67 9.373 0 0 22.5 14.500 

4 21.236 21.226 9.435 0 0 112.5 14.500 

Note: Definitions of A, B, C, D, and E, are shown in Figure 20. 
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Figure 20. 	 Definition of telescope dimensions used in Table 16: (a) telescope 
side view, (b) view looking int~o telescope. 
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The primary effect of changing filter thickness is to change the position 

of the best focal plane in accordance with well-known geometrical optical 

principles. A 0. 010-in. change in filter thickness for the Suprasil filter at 

2537 A changes the location of best focus by only 0.0065 in. This change is 

highly significant, however, because of the use of split filters in the Celescope 

system. One-half the field uses one type of filter, while the other half uses 

a second. If the thicknesses of the two filters are chosen with due considera­

tion to the differences in the index of refraction at particular wavelengths, 

then the two halves of the field will both be in focus (or equally out of focus) 

at the same wavelength. Because of the differences in dispersion of the 

filter materials, the two halves of the field will be simultaneously in focus at 

only one wavelength and will in some degree differ in focus at all other wave­

lengths. Likewise, if the filter thicknesses are not correct, then one-half 

the field may be in focus while the other half of the field is defocused. For 

example, if the tolerance on the Suprasil filter thickness is ± 0. 005 in. and 

the companion filter (Corning 7910) tolerance is ± 0. 005 in. , then the total 

change in thickness could be as much as 0. 010 in., which in turn could result 

in approximately 0. 006 in. defocusing. This amount of defocusing could, of 

course, increase the image diameter by 60 to 80 ji. This could be a serious 

problem since controlling the thickness of the thin filters employed is difficult, 

and it is not inconceivable that the two halves of the field could differ in focus 

by 0.005 to 0.015 in. Under these conditions, it is entirely possible that the 

best average on-axis resolution would not be better than 100 to 125 a. Varia­

tions in filter thickness would also have the same deleterious effects on the 

off-axis image. 

There were at least three followup studies on the effects of filter thick­

ness. Careful selection of filters solved the problem. In the actual obser­

vations, U images seem out of focus relative to U 3 images. The main 

cause of the defocused images is considered to be chromatic aberration. 

Since no attempt has been made to evaluate errors in the mirror figures, 

the data presented in this report represent an idealized situation. Fabrication 
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of the mirrors, particularly the secondary mirror, is difficult because of 

the aspheric surfaces, and it is quite possible for the figures to depart some­

what from the theoretical values. This is particularly true for the second­

ary mirror since the outer zonal radii change more rapidly than the widths 

of the zones. Changes in figure will obviously alter the system resolution, 

most likely degrading the resolution. 

From examination of radial energy distribution, it is apparent that in 

many cases the area containing the remaining 10% of the energy is as large 

as or larger than the area containing the central 90% energy. It is improbable, 

therefore, that any more than the central 90% image diameter would be 

detected by using film or the Uvicon as a detector. 

One should also note the effect of optical-image degradation on the final 

system output. As mentioned in Chapter 2 (it will also be discussed later inmore 

detail in part B), the output is sensitive to the image size. Therefore, defocus­

ing or any other factors affecting image size will alter the system output for 

the same input. 

3.4 Image Degradation in Uvicon Image Tubes 

The discussion of image quality in the previous section referred only to 

the optical images, which are on the photocathode. The photocathode produces 

photoelectrons from the optical image. These are focused onto the target by 

the electron optics. Therefore, the quality of output images from the tele­

vision tubes is controlled by nonoptical image degradation. In the Uvicon, 

three things affect the quality of images: (a) the electron optics in the 

imaging section, (b) the SEC signal-amplification mechanism in the target,
 

and (c) the readout process.
 

The electron optics consist of three electrostatic lenses. Aberration
 

in the electron optics is not well documented, but in general the quality of
 

the image is affected by the fluctuation of supply voltages and by the external
 

The electron optics form a half-sized electronelectromagnetic environment. 


image on the target. The quality of this image is optimized by selecting the
 

proper voltage ratio for each element of the electron optics. Figure 21
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illustrates the effect of such a voltage selection. Fluctuations in the voltage 

ratio between the two lens elements and in the supply voltage are shown in 

Table 17. The effect of supply-voltage fluctuation is rather small and insignif­

icant; image quality is most sensitive to a change in voltage ratio. To mini­

mize fluctuation in voltage ratio, voltages to both elements are supplied by a 

fixed-resistor voltage divider. The calculated possible change in voltage ratio 

is 0. 001%, which corresponds to a fluctuation of about 1% in Sigma. The fluctua­

tion of total voltage is expected to be less than 5%, which is equivalent to a 

1 to Z% change in Sigma. 

The quality of the image formed on the target is not directly measurable, 

but we can make some assumptions based on an investigation of an optically 

readable SEC target (Beyer and Goetze, 1966). The resolution of the target 

is far better than the overall resolution of the Uvicon tube. Therefore, the 

SEC target is not the limiting factor for resolution in the Uvicon tube (provided 

all SEC targets manufactured in WEC have similar characteristics.); resolu­

tion is limited either by the electron optics or by the readout beam. 

The final image in the Celescope experiment package is produced by dis­

charging accumulated charges on the target by means of the readout electron 

beam. In the ideal case, the spread of the readout beam should be exactly equal 

to the size of one television-picture element, and the beam scan should cover 

the entire area of the raster without leaving any spot unread and without any 

overlapping. Furthermore, the scanned position should be equally spaced as in 

a perfect-square grid. In Celescope, the scan pattern is 256 x 256 elements, 

which ideally requires a scanning beam with the same size as one element, uni­

form in intensity, and square in shape. In practice, it is not possible to generate 

such a beam. The actual readout beam is larger than one element, has non­

uniform distribution of intensity, and is nearly circular. Despite this, the 

beam can be adjusted in such a way that the result of readout is very similar 

to the result of an ideal beam for the image of a uniformly illuminated source 

of very large area. 

In the Celescope experiment, the spread of the readout beam is on the 

order of several elements, based on the observed output image of false stars 
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Table 17. Effects of variation of high voltage to the imaging section. 

a) Fluctuation of Sigma due to variation of ratio between two elements of electron lenses. 

Average Sigma 

Star 
coordinates 

Hor. 

Vert. 
195 

37 
95 

38 

189 

80 

139 

79 

48 

76 

186 

119 

92 

115 

137 

154 

47 

151 

189 

201 

92 

193 

-0.3 654 1624 1446 1509 1645 1055 900 1011 923 633 961 

-0.2 860 1548 1479 1192 1262 1056 771 844 790 744 894 

Deviation 
of voltage 
ratio from 
the value of 
best focus 

M) 

-0.1 
0 

+0.1 
+O.21 

+0,.3 

1043 
1135 

1144 
1236 

1153 

1415 
1120 

1065 
1211 

1614 

1430 
1271 

1090 
1122 

1229' 

1058 
1049 

1265 

1448 

1628 

1049 
1046 

1365 

1692 

1293 

961 
837 

664 

847 

949 

880 
913 

1225 

1283 

1194 

797 
709 

832 

897 

1093' 

655 
613 

758 

866 

873** 

876 
922 

1004 

1037 

898" 

875 
718 

674 

730 

858 

Average of 3 measurements. 
Only one measurement. 

Average of 2 measurements. 

b) Fluctuation of the Sigma due to variation in high-voltage supply. 

Average Sigma 

Star 
coordinates 

Hor. 
Vert. 

203 
51 

118 
56 

34 
50 

200 

93 

157 

95 

79 

95 

199 

131 

118 

132 

39 

131 

158 

168 

80 

168 

203 

210 

120 

206 

36 

209 

Supply 
voltages 

(Kv) 

9.5 
8.8 

8.5 

3631 
3218 

2422 

943 3792 
926 3454 

1013 2922 

1191 
1084 

1038 

558 
513 

533 

527 
517 

632 

770 
677 

692 

517 
496 

478 

904 
823 

453 

421 
396 

354 

455 
426 

462 

1531 
1115 

839 

523 
469 

455 

1201 
1068 

886 

8.2 2486 798 2721 804 4ZZ 487 560 381 718 330 319 678 354 683 

*Average of 3 
7.5 1891 

measurements. 
643 2052 632 383 417 499 283 586 265 283 434 267 443 



and target rings; If the beam spread is less than one element, the size of 

the output image produced by a point charge on the target will be one to four 

elements large, depending on the location of the image with respect to the 

registration of the scanning pattern. If there is beam spread, then the size of 

the output image increases and the position of the output image centroid shifts 

slightly. 

The major problem in determining the effect of the readout process on 

the image quality is the difficulty in producing a good point charge image on 

thetarget. However, there is an indirect way to estimate the extent of image 

degradation during readout. In Celescepe, a ruggedized Vidicon gun was used; 

the readout characteristics of the Uvicon can be expected to be similar to 

those of other Vidicon tubes. Usually, these Vidicons have a resolution of 

300 to 500 lines. We may assume, therefore, that the limiting factor in 

Uvicon resolution is the electron optics in the imaging section. The effect 

of superscanning on the image quality has not yet been established. ,It may 

also contribute to image degradation. 

The effects discussed above are independent of the input intensity. Some 

image-degrading effects are intensity dependent. One of the most dominant 

and important effects of this type occurs at the SEC target. To reduce the 

dangers of target-material breakdown in the Uvicon tube, we imposed a limit 

on the peak voltage for accumulated charge on the target. Unfortunately, 

this makes the image vulnerable to a saturation effect at a relatively weak 

input intensity. When input exceeds the saturation level, the SEC mechanism 

displays a nonlinear relation between the number of input photoelectrons and 

the accumulated charge. Since additional incoming photoelectrons can no 

longer increase the potential at the original position of the image, the image 

spreads. Figure 22 shows the relationship of image size to input intensity. 

System output (Sigma) depends critically on the intensity distribution in the 

optical image and therefore on the stability of optical and electronic focus. 

Another phenomenon that causes degradation of image quality is beam 

bending during readout of very strong signals. If a large charge accumulates 

on the target, the readout beam being aimed at an adjacent vacant spot is 

attracted toward the strong charge. As a result, the apparent image siue 
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increases and resolution is lost. When this beam bending occurs, the peak 

intensity of the readout image is less than it should be, so the peak-size curve 

falls off in high-intensity regions. 

Adjustment of gun voltages also affects image quality. In the gun section, 

the beam, focus, and astigmatism control voltages 'are adjustable. Generally 

speaking, any nonoptimal adjustment setting causes larger images and in­

creases Sigma. The effect is shown in Figures 23 and 24. 

3. 5 Geometrical Stability 

In reducing the Celescope data, we use pattern-recognition techniques 

to determine positions for the observed objects: Our ability to recognize 

our observed star patterns depends on the suitability of our search catalog, 

on the accuracy with which we know the raster position of the optic axis, on 

the accuracy with which we know our distortion correction, and on the stability 

of our system against changes, in distortion. Our first step in pattern recog­

nition is a computer comparison of the observed pattern against the pattern 

contained in the corresponding area in a search catalog created before launch 

especially-for Celescope identification purposes. This step successfully 

identifies the stars observed in about 25%o of our pictures. It requires a know­

ledge of the raster position of the optic axis to an accuracy of 06Z5 and of dis­

tortion to an accuracy of 0?04. This step fails to identify the stars in aboutf 

25% of our pictures because of errors in the distortion correction, which 

have an average scatter of about 0?04. The 0!25 accuracy of optical-axis 

position is met. In the case of Celescope, we have found it necessary to 

follow the automatic pattern recognition with a manual one, not only to 

eliminate the effects of errors in the distortion correction, but also to supple­

ment our identification catalog with other catalogs and atlases and to identify 

stars in pictures having too few objects to permit computer identification 

with our available programs. In this manner, we achieve satisfactory pattern 

recognition for essentially all of our pictures. Errors anl fluctuations in our 

position and distortion corrections do not affect the accuracy with which 

Celescope can measure position, because the pattern recognition compensates 

for these errors. 
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Instability of image position can be classified into the following three 

groups: (a) shift of images, (b) distortion, and (c) fluctuation of shift or of 

distortion. A shift of the optical axis or shifts of an entire frame are mainly 

caused by external magnetic fields. The susceptible phases of operation are 

exposure and readout. The effect of the magnetic field during these two 

phases seems to work in an opposite direction; therefore, the net shift is 

smaller if the magnetic field is present during both phases than if it is present 

during only one. The apparent effect of a quickly changing magnetic field is 

much larger in readout, since exposure is an averaging process. Figure 40(a) 

in Chapter 4 illustrates this effect during readout. The presence of a chang­

ing magnetic field during exposure will produce slightly enlarged images. 

Since Sigma is very dependent on image size, there is a danger of inaccurate 

measurement of star intensity. The exact amount of shift varies from 

camera to camera. Since there is also hysteresis in the shift of position, 

it is not easy to determine a positional correction factor for each frame. 

Sensitivity is on the order of a 10-element shift per I oersted of field change. 

In addition, there appears to be a long-term shift of images. Table 18 shows 

shifts of the calibrator-lamp image position in the raster. The calibrator 

lamps have fixed positions with respect to the optical axis of the telescope. 

When the geometrical stability of images is discussed, there is an 

implied assumption that the position of an image is clearly and easily deter­

mined. In actuality, this is not the case. Actual image sizes are frequently 

on the order of 10 to 100 elements or more; therefore, determination of the 

exact image position is not a trivial task. The most commonly used methods 

define the center as the center of intensity, the peak-intensity position, 

or the geometrical center of the image. There is also a problem of energy 

concentration. If a major portion of energy is not concentrated within a 

small region, the position determined is not reliable. Despite the differences 

in positions computed by different methods, computed positions may be 

expected to be consistent since all images in a frame will be treated by the 

same method. 
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Table 18. Shift of calibrator image position in the raster. 

Horizontal Vertical 

Maximum shift Maximum shift 
Average from average Average from average 

Image tube position position position position 

Camera 1 134 11 156 9 

Camera 3 134 11 145 16 

Raster consists of 256 X 256 points. Position is measured by horizontal and 
vertical element numbers (H,V). H, V = 1 to Z56. 

oo 



Although the Celescope-Schwarzschild telescope displays some amount 

of coma, the determination of position is not difficult. 

Once the method of positional determination is adopted, discussion of 

geometrical stability becomes more meaningful. The distortion of Uvicon 

tubes was determined during camera-module calibration. Figure 25 shows 

output image patterns for the Uvicon and the Celescope system. The distinct 

pincushion-type distortion is not compensated for in the telescope. 

3. 6 Conclusions 

Not all subjects related to image quality were covered in this chapter, 

some being deferred to Part B. Based on the material presented here, the 

following conclusions are drawn. 

1. Optical, mechanical, and thermal design of the telescope proved 

fully satisfactory in terms of image quality and stability. 

Z. Contamination-control procedures during ground operations were 

fully successful. 

3. Positional stability of star images in the final television picture was 

not completely satisfactory, and careful attention to factors affecting it, 

such as the magnetic fields, is necessary. 

4. The spacecraft's magnetic unloading system blurred the Celescope 

images significantly; it had to be turned off during Uvicon expose and readout 

operations in order to provide pictures of satisfactory photometric quality. 

5. For some methods of preventing target-material breakdown, in 

particular that used in Celescope, the output signal becomes critically depen­

dent on the focus of the stellar image on the target. 
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CHAPTER 4 

ENGINEERING INTERPRETATION OF ORBITAL DATA 

4. 1 Introduction 

This chapter interprets orbital data from an engineering point of view 

and extracts information pertinent to the design of future systems, the exten­

sion of system capability (source material for future systems), etc. For the 

most part, our observations confirm our briginal design assumptions, but 

some cases have provided new or unexpected information. 

4. 2 Daytime Observation 

Scientific observation of stars from the ground in daytime, even when 

possible, poses many difficult problems. In space, because of the lack of 

an atmosphere, which causes diffusion of light, daytime observation of stars 

is more likely to be feasible. A portion of Celescope observing time was 

used for daytime observations, and some useful information was obtained. 

In the early period of orbital operation, several daytime observations 

were attempted (Table 19). The considerable amount of scattered sunlight 

made it impossible to observe stars. The relative intensity of scattered light 

for different spectral bands is 

U Z > U 1 > U4 > U3
 

This generally agrees with the intensity of solar flux, provided the Lyman-a 

emission from the geocorona is included. Three geometrical quantities of 

possible importance to determining scattered-light levels are also listed in 

Table 19. These are beta angle (the angle between the Celescope optic axis 

and the sun line, equal to the angular distance from the target to the sun), solar 

zenith angle (the angle between the earth line and the sun line, equal to the 

angular distance between the geocentric position of the satellite and the 
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Table 19. Daylight observations.
 

a) Geometrical relation of daytime observations
 

Target 
zenith 
angle Camera Exposure 

82 3 
 5
 

81 4 
 5
 

84 4 Z0
 

82 2,4 60
 

82 2,4 60
 

86 Z,4 60
 

88 2,4 60
 

90 2,4 60
 

94 2,4 60
 

96 2,4 60
 

86 Z,4 60
 

32 1,3,4 5
 

14 1,3,4 15
 

34 1,3,4 30
 

66 1,3,4 30
 

50 1,3,4 5
 

intensities of daylight 

Upper area Lower area 
(16x16) (16x16) 

Average S.D. Average S.D. 

55.6 12.00 39.8 10.50
 

19.6 2.13 4.3 0.95
 

41.4 8.88 4.5 1.05
 

45.2 2.70 15.9 2.17
 

38.2 16.21 21.7 6.11
 

37.3 11.19 5.9 1.20
 

to U2 in camera 3 and U4 in camera 4. 

to U1 in camera 3 and U3 in camera 4. 

Beta 
Contact angle 

RIOZ 78 


R117 78 


R.131 78 


Q13Z 78 


S133 78 


S134 78 


S135 77 


S136 77 


S137 77 


Q138 78 


0139 78 


M3310 122 


v3311 122 


v3325 135 


S3329 153 


Q3330 153 


b) 

Contact Camera 

R102 3 


R117 4 


R131 4 


Q132 4 


S134 4 


Q138 4. 


Note: 1)Upper area corresponds 

2) Lower area corresponds 

Solar 
zenith 
angle 

113 


94 


103 


65 


65 


8 


25 


47 


72 


99 


14 


91 


109 


101 


87 


106 


Observed 

Exposure 

5 


5 


20 


60 


60 


60 


3) Intensities were determined by averaging of area of 16 x 16 elements.
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geocentric position of the sun at the time of observation), and the target 

zenith angle (the supplement of the angle between the earth line and the 

Celescope optic axis, equal to the angular distance from the geocentric posi­

tion of the satellite and the geocentric position of the target at the time of 

observation). 

The numerical value of scattered light for U, U2 , and U4 cannot be 

measured because the intensity exceeds the useful range of Celescope. For 

U 3 , the intensity of scattered light varies with the solar zenith angle, as 

shown below, when the instrument is pointing away from the sun at a constant 

beta angle of 78 (see Figure 26 also): 

I=acosO+b 

where 

I intensity of scattered light in U3 (arbitrary unit), 

a a constant (14. 7), 

b a constant (8.0), 

6 solar zenith angle. 

Possible sources of scattering are the spacecraft structure and the residual 

atmosphere; the scattered light is probably either sunlight or earthshine. 

Considering the geometry of spacecraft-sun orientation (Figure 27), we cannot 

exclude the possibility of scattering by residual atmosphere. However, the 

most likely cause, considering the form of the above equation, is earthshine. 

4. 3 Effects of Space Radiation 

There are many high-energy particles in space outside the shield of the 

earth's atmosphere. The effects of these particles on the Celescope experi­

ment package were studied in considerable detail. These effects may be either 

temporary or permanent. An example of a temporary effect is an increase 

in background noise in the television picture caused by gamma rays. Examples 

of permanent effects are a change in the transmittance of filters and target­

material breakdown. 
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The temporary effects of space radiation were studied on the ground. 

To simulate them, a small dosage of gamma rays from cobalt 60 and electron 

beams from the 2-MeV Van de Graaff electron accelerator at GSFC were 

used. A noticeable effect of these radiations is a rise in the background 

level (Figure 28). This causes a loss of contrast in the output television 

pictures, a decrease in the signal-to-noise ratio, and a reduction of the 

dynamic range. The relation between the average increase in background and 

the radiation dosage is shown in Figure 29. We see that there is no signifi­

cant difference, except in sensitivity, between the expose mode and the high­

voltage-on mode, nor between the different types of input (gamma ray and 

electron beam). Table 20 lists the sensitivity of the background noise level 

to radiation. 

From Table 20, itis seen that -sec of the high-voltage-on mode is equiva­

lent in effect to 1 X 103- 5 X 104 sec (16 min to 14 hr) in the expose mode. 

Since the orbital period of OAO is approximately 100 min, one full orbit in 

the expose mode is equivalent to 6 sec in the high-voltage-on mode. There­

fore, we can say that if the tube is exposed to radiation in high-voltage on for 

6 sec in the most concentrated radiation zone without significant degradation, 

the Uvicon tube can be left in its expose mode for a full orbit. Decreases of 

SNR and of dynamic range are illustrated in Table 21. 

What mechanism may cause the increase of background level? There are 

three possibilities: 

1. Faceplate scintillation. The faceplate is excited by radiation and 

becomes an illuminator. Light from the faceplate then acts as regular input 

to the photocathode and accumulates positive charges on the target. 

2. Direct charge generation in the target material. Potassium chloride 

itself generates electrons from the direct bombardment of radiation. 

3. Field emission in the tube. When radiation particles hit the tube 

wall, they may generate electrons or photons. These may create charges 

on the target through normal tube operation. 

To determine which case is dominant in raising the background, a lead 

shield with a 0. Z5-in. hole was placed at the front of the image tube. The tube 
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Figure 28. 	 Apparent effect of radiation on television pictures: (a) without 
radiation, (b) with radiation. 
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Figure Z9. 	 Quantitative relation between increase of background and radiation 
level: (a) high-voltage-on mode, (b) expose mode. 

11-98
 



Table 20. Sensitivity to radiation: increase in background. 

Radiation source 

Gamma ray * Electron beam 
Operating mode (count/mrad) (count/ electron/cm 

High-voltage-on 0.38 5.1 X i0 - 8 

Expose 0.34 x 10 - 3 2.4 x0 1 3 

*The count is the standardized output amplitude; 1 count - 6 X 1018 coulombs. 



Table 21. Examples of decrease of SNR and of output 
dynamic range. 

Maximum signal 

Nominal background level 
(offset value) 

Background fluctuation (rms) 

SNR without radiation 

Background with 100 mrad in 
high-voltage-on mode 

Fluctuation of background 

SNR with radiation 

Dynamic range without radiation 

Dynamic range with radiation 

80 counts 

5 counts 

0. 75 count 

(80-5)10.75 = 100 

35 counts 

3. 5 counts 

(80-35)/3.5 = 12.8 

80-5 = 75 counts 

80-35 = 45 counts 

II-100
 

http:80-5)10.75


is then exposed to radiation in the expose mode and the high-voltage-on mode 

separately. The results are shown in Figure 30. 

The presence of the hole in the picture of the high-voltage-on mode 

and its absence in the expose-mode picture indicate that the increase of 

the charge in the target is caused by scintillation of the faceplate. The extent 

of field emission is determined by the following: (a) replacing the holed shield 

with a solid block, and (b) irradiating the Uvicon from the side. Both cases 

indicate that field emission contributes 20 to 50% of the increase of background 

in the high-voltage-on mode and a much higher ratio in the expose mode (up 

to 100%). When SEC Vidicons other than the Uvicon are used, this temporary 

degradation may not be so severe as for the latter, the spectral response of 

which covers the range 1100 to 2500 A. The amount of field emission may 

not be substantially different, because the tube body and the Uvicon are con­

structed of similar material. (Uvicon does not have a coating inside the wall 

of the tube to reduce field emission. ) 

The expected peak intensities of electron fluxes (0. 5 MeV and up) for OAO 

are approximately 3.4 x 109 electrons cm - 2 per orbit. Similarly, peak 

proton fluxes (5 MeV and higher) are 1.8 x 108 protons cm - Z per orbit. The 

effects of proton radiation on the Uvicon were not investigated, but we can 

make the assumption that 1 proton is equivalent to 10 electrons for temporary 

degradation effects. The equivalent peak electron flux then becomes 5. 5 X 109 
-2 

electrons cm per orbit. Actually, this peak flux is concentrated in the 

South Atlantic anomaly and occurs for periods of - 10 min. The actual high­

voltage-on mode lasts 60 sec at most. Therefore, the peak input radiation 

to the OAO is 5.4 X 108 electrons cm 2 . The shielding effect due to*optical 

components in the experiment is approximately 50 (experimental results). 

Then the expected peak inputs to the Uvicon are 1. 1 x 107 electrons cm - 2 per 

exposure. This input should cause approximately 1 to 2 counts of background 

increase.
 

A careful review of all orbital data reveals that the background increase 

of some frames may be attributed to radiation effects. The amount of increase, 

however, is not more than 0. 5 count, far below the level of easy detection. Con­

sidering the uncertainty of the expected value of radiation (up to a factor of 5) 
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(b) 

Figure 30. 	 Television pictures (in computer printout form) when holed shield 
is placed in front of tube: (a) high-voltage-on mode, (b) expose 
mode. 
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and the difference in sensitivity of the tubes (up to a factor 6), this result 

appears to be in good agreement with the limits of experimental error. 

There are two types of permanent damage in the Uvicon: target-material 

breakdown and a change of optical sensitivity. As mentioned in Chapter 2, 

target-material breakdown may be caused by overexposure to radiation. This 

was demonstrated during ground tests. From these tests, the threshold of 

target-material breakdown is determined (Table 22). The breakdown 

starts at 60 counts of average background. (Isolated light input may generate 

up to 80 counts of peak signal without any problems.) The maximum electron 

flux that OAO will encounter is 5. 5 X 109 electrons cm - 2 per orbit, concen­

trated in periods of - 8 to 10 min. Therefore, if the Uvicon is operated in 

high-voltage-on mode - 10 min in the zone of highest concentrated radiation, 

the tube may suffer target-material breakdown. Maximum duration of high­

voltage on is usually 1 min in normal operation. There is, therefore, no 

danger of target-material breakdown in the Uvicon due to radiation. Further­

more, Uvicon sensitivity was continuously decreasing and part of the sensi­

tivity reduction is attributed to the target sensitivity; the danger of radiation­

induced target-material breakdown is reduced still further as time elapses. 

The other type of permanent damage in Celescope, namely, change of 

optical sensitivity, can be classified further into change of transmittance of 

filters and Uvicon faceplate and change of reflectance of the mirrors. In 1963, 

GSFC assisted SAQ in conducting a series of tests to determine the effects of 

space radiation on Uvicon faceplates. Fifteen lithium fluoride Uvicon face­

plates were irradiated with various intensities and energies of electrons and 

protons; their transmittances were measured before and after irradiation. 

More extensive measurements performed by Heath and Sacher (1965) on typical 

ultraviolet optical materials demonstrated that lithium fluoride is about 100 

times as sensitive to radiation damage as are the other optical materials used 

in Celescope. If radiation damage affected the performance of Celescope 

optical materials in orbit, the first effects should appear as the typical wave­

length-dependent absorption changes in lithium fluoride. 

Figure 31 shows an example of the change of LiF transmittance measure 
- 2 by SAO. A dosage of 1012 electrons cm at 1 MeV causes a loss of - 7% in 
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Table 22. Threshold radiation level for target-material 
breakdown. 

Radiation source 

Gamma ray Electron beam 
Operating mode (rad) (electrons cm - 2 ) 

High-voltage on 0.16 1.2 X 10 9 

Expose 46 not available 
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Figure 31. Transmittance of LiF Uvicon faceplate before and after irradiation. 



transmittance between 1000 and 2200 A. If the dosage is increased to 1014 

-electrons cm 2, the transmittance is decreased to 10% of its original value 

in this spectral range. Since the optical degradation is energy dependent, 

since protons are also important in causing degradation, since degradation 

depends on wavelength as well as on radiation levels, and since the optical 

filters partially shield the LiF for U 1 , U 2., and U 3 , predicting degrada­

tion is very difficult. Davis and Gerard predicted about 40% loss of sensitivity 

in U 1 , 20% in U 2 , 7% in U 3 , and 80% in U 4 , based on the estimated dosage of 

-electrons intheOAO of - 5.6 x 1011 electrons cm per year (at a higher 

energy than 0. 5 MeV). However, because the assumptions that went into this 

calculation were rather weak and conservative, these prelaunch predictions 

require reinterpretation on the basis of orbital data. Unfortunately, com­

parison of the predicted and the actual degradation is not easy, since the 

observed star data are greatly affected by decreases in Uvicon sensitivity 

caused by nonradiation effects. Although the sensitivity changes described in 

Chapter 2 of this report indicate that radiation damage in LiF was probably a 

minor contributor to the total sensitivity change, substitutes for LiF in space 

optics, such as MgF 2 , are recommended whenever possible. 

4. 4 Residual Optical Sensitivity and Stray Light 

As mentioned in Chapter 2, the Uvicon accumulates signal charges on the 

target if the Uvicon is left in the expose (XMO) mode for prolonged periods. 

The probable cause of the charge accumulation is direct generation of photo­

electrons in the target material ("residual sensitivity"). Figure 32 pictures 

examples of these charge accumulations. The accumulated charge is more or 

less spread throughout the entire field of view, contrary to the one-side high­

background of Lyman-a pictures. The camera 2 picture shows the results of 

target-material breakdown during the reading sequence. Camera 1 is not so 

sensitive as the other cameras; hence, the effect is not so large for it as for 

them. 

Impact of the residual optical sensitivity on system design may be signi­

ficant. The Celescope experiment does not include any movable mechanical 

parts, except latching relays, because of their potential unreliability in the 

space environment. To control the signal input to the Uvicon target, Celescope 
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uses an electronic shutter that controls photoelectrons created in the photo­

cathode, rather than controlling the input of light itself. Once high voltages 

are off (electronic shutter closed), no accelerated photoelectrons reach the 

target to create signal charges. Because of residual optical sensitivity, 

however, the target is still accumulating signal charges. Since the electronic 

shutter has no control over this effect, Uvicon tubes are in continuous danger 

of overexposure and resulting target-material breakdown. 

A similar problem in a future system can be avoided by: (a) installation 

of the mechanical shutter or (b) continuous erasure of the charges by proper 

beam scan. Each method has its advantages and disadvantages. Probably 

the best method is the combination of both: the mechanical shutter ensures 

the prevention of unwanted incoming light, and continuous erasure takes over 

only when the shutter fails to close. Since the continuous beam erasure requires 

additional power and also command capability, in addition to the possibility 

of accelerated fatigue of the target, it should be avoided in the normal mode 

of operation. If the mechanical shutter is designed to be open-failure rather 

close-failure (for instance, by jettison), this system will be a good com­

promise. 

4. 5 Effects of Geocorona 

When orbital observations of Celescope were made at night, we expected 

a very dark sky, which was supposed to be much better than that seen from 

the ground. This proved to be true in the cases of U1 , U2 , and U3 . But in 

U 4 , there was a very high background (see upper half of the picture in 

Figure 33). The background light was identified as Lyman-a emission from 

hydrogen atoms in the geocorona. The emission itself, the intensity of which 
3 ­was expected to be on the order of 2 to 4x 10 - erg cm 2 sterad " 1 (Meier, 1969), 

is not really surprising. What is surprising is its apparent intensity in the 

television pictures. Because of this unexpectedly high background signal, 

useful observations by U4 were limited. 

The apparently high intensity of the Lyman-a emission (approximately 

1216 1) has several causes. The most obvious is the difference in instrument 
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Figure 32. Charge accumulation due to residual sensitivity. Contact S262. 



NOT REPOUIBLE 

Figure 33. 	 A television picture from camera 4. Upper half: U4 with Lyman 
a; lower half: U3 . 



characteristics for point sources (like stars) and for area sources (like the 

geocorona). In Celescope, a quantity called "Sigma, ' which is proportional 

to the amount of charge accumulated on the target and associated with a stellar 

input, was adopted as an output. Its adoption extended the dynamic range of 

the Uvicon television photometer. In the usual television signal, the ampli­

tude of the readout current is taken as the output signal, with a dynamic range 

of the order of 10 to 100. But if we adopt the integral of the current rather 

than the amplitude of the current, the dynamic range becomes 1000 to 10, 000. 

This extension is accomplished by the spread of image sizes. Once the ampli­

tude of the readout current reaches a saturation level, the conventional signal 

can no longer distinguish the input levels. But the sizes, or widths, of 

readout current pulses are still increasing even after the amplitude reaches 

the saturation level. Therefore, Sigma, which is equivalent to the products 

of the amplitude and width of the readout current, will increase, even after 

amplitude saturation, as the input level increases. But this argument is 

correct only when the input light forms a near-point image. When the input 

is a point image, the readout current becomes pulse-like, and its width can 

be increased as the input level increases. When the input is an area-like 

image, then the readout current more closely resembles DC-level change, 

than it does pulses. That is, the dynamic range for an area-source input 

is the same as that for a conventional amplitude signal. For Celescope, 

the dynamic range of star input may reach as high as 10, 000, but the 

dynamic range for the geocorona is still on the order of 100 at most. This 

is the reason that a 5-sec exposure creates a good picture in U but a 

60-sec exposure almost completely wipes out star images, despite a differ­

ence of only a factor of 12 in exposure time, far from the limit of the 

dynamic range of star image (see Figure 34). 

The other causes of the apparently high Lyman-a background is the 

possibility of real Lyman a of unexpectedly high emission. Since the Celescope 

was calibrated for point sources only, an accurate value is not available yet. 
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Figure 34. Lyman-a pictures in different exposure time. 



Since Celescope observed Lyman-a emission on many occasions, we 

can determine the relative intensity changes without determining the absolute 

intensity. On the basis of a preliminary study, the observed intensity of the 

Lyman-a emission can be expressed as 

- dJf =A-t *e e-cT e f
 
ex
 

where 

J intensity of Lyman-a emission, expressed as an increase 

of average background in selected areas of television pictures, 

tex exposure time (integration time in seconds), 

T temperature of the instrument (0 K), 

0 solar zenith angle (limited to between 1030 and 1720), 

p3 angle between sun and pointing direction of the instrument 

(limited to between 60* and 1340), 

L distance between instrument and intersecting point of earth­

shadow cone and instrument line of sight (kin), 

A 6. 922 x 104 (arbitrary unit, same as J),
 

b 0.6168 (dimensionless),
 

10 - 3 
c 1. 949 x (1/-K), 

d -0.4284 (dimensionless), 

f -1.250 (dimensionless), 

g -4. 841 x 10 - 2 (dimensionless). 

The first two variables, exposure time and temperature, are correction 

factors for the measuring conditions and characteristic changes of the instru­

ment. The last three variables suggest that the Lyman-a intensity becomes 

stronger for a smaller solar zenith angle, a smaller beta angle, and a shorter 

distance for illumination points. The spatial distribution of Lyman-a emis­

sion withinthe field of view of the Celescope experiment package can be deter­

mined if the details of the optical characteristics of the Celescope experiment 

package are understood. The observed intensity distribution in the television pic­

ture is not yet well understood. As seen in Figure 33, the peak intensity occurs 
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somewhere in the U4 region. The location of the peak area varies from 

frame to frame. This suggests there are some kinds of change in Lyman-a 

distribution within the narrow cone of the field of view or simple changes in the 

reflection pattern of stray light. From calculations of the intensity distribu­

tion for the Schwarzschild telescope, the peak intensity area should be located 

along the middle of the U4 region if all stray light and internal reflection are 

neglected. The calculations also assume the Lyman a intensity to be constant 

for any given air volume. Probably owing to these unrealistic assumptions, 

the observed intensity distribution and the calculated one are not in agree­

ment. (This is another area where further study is needed.) Figure 35 shows 

the intensity distribution of Lyman a along a line perpendicular to the filter 
split line. 

Implications of the Lyman-a emission for future space astronomy, 

especially for television astronomy, are very important. The existence of 

the geocorona may limit the detection threshold of stars in the spectral 

range. Also, the time for integrating the television photometer and the 

spectrophotometers may be limited by the background illumination of the 

geocorona emission. Of course, there are ways to get around this limitation, 

but they have to be devised beforehand. The avoidance of the Lyman-a limita­

tion will be one of the most challenging problems of system design for 

future space astronomical television or other instruments. 

* 
4. 6 Solarization 

The solarization of various optical or electro-optical components may 

cause changes in instrument sensitivity. These changes, if they occur, are 

expected in the following areas: 

1. Deterioration of transmittance in the optical filters and faceplates. 

2. Deterioration of the reflectance of the mirrors. 

3. Deterioration of the photocathodes. 

4. Deterioration of target sensitivity. 

Solarization, as used in this section, is defined as alteration of the optical
 
characteristics of material that follows prolonged exposure to sunlight or
 
other optical, infrared, or ultraviolet radiation.
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At present, we have insufficient information to confirm or deny the effect 

of solarization on the above. 

If detailed discussion on the solarization in the Celescope experiment 

package is necessary, it must be postponed until further studies of the 

observed data are completed. 

4.7 Qutgassing 

Outgassing is one of the important problems in space optics, especially 

for the ultraviolet. Since almost every material outgasses in a vacuum, 

selection of material and choice of processing methods are very important. 

If outgassed material condenses on the optical surfaces, degradation of 

optical performance may be very severe in che ultraviolet regions. For 

the reader's interest, a brief history of the Celescope experiment package 

will be presented. 

After careful selection of material, we completed the first Celescope 

experiment package (an engineering model). During the thermal-vacuum 

test, we experienced severe optical contamination on mirror surfaces. 

During low-temperature testing, we did not observe any deterioration. But 

when we opened the vacuum chamber, there was a heavy brown deposit on 

the mirror surface (see Figure 36). Infrared spectral analysis showed these 

deposits to be a mixture of black paint, which was used throughout the pack­

age, and diffusion pump oil. To avoid recurrence, we adopted the following 

approaches:
 

1. Selection of material based on the VCM index. 

2. Improvement of the preparation of material, parts, and components. 

3. Improvement of the assembling and handling procedures. 

4. Stringent requirements for the test facility and procedures. 

Generally speaking, outgassing of polymer material in a vacuum rapidly 

reaches a peak and then gradually decreases. Some of the outgassed material 
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Figure 36. Contaminated mirror surface. 



can condense on the surrounding surfaces where, depending on temperature 

and other conditions, it may remain or it may evaporate, or it may polymerize 

into a nonvolatile substance. As part of our program for controlling and 

preventing contamination of the Celescope optical elements, we used a quantity 

called the VCM index as a parameter for selection of materials to be used in 

the Celescope experiment. The VCM index is the ratio of the weight of 

volatile and condensable material to the total weight loss, determined by 

subjecting the material in question and an appropriate receiving surface to 

appropriate thermal-vacuum conditions and measuring the ratio of weight 

gained by the receiving surface to weight lost by the material sample. (Note: 

For a high-voltage power supply, the total amount of volatile material is 

more important than is the VCM.) Most of the actual measurements and 

related activities were performed at Stanford Research Institute. 

We could not find a black paint that safely met our requirements. How­

ever, a study revealed that a sandblasted aluminum surface is sufficiently 

black in the ultraviolet region, thus eliminating the need for black paint on 

the internal surface of our experiment package. 

To avoid other contaminants, particularly fingerprint oil, all manufac­

turing and handling were performed in a clean-room environment by personnel 

wearing plastic gloves. To minimize outgassing in space, all our parts were 

vacuum baked before being assembled into the system. The procedure for the 

thermal vacuum test follows: 

1. The optical surface must never be the coldest spot in the chamber 

(the liquid-nitrogen shroud should always be cool). This is especially important 

during the warmup process. 

2. The temperature gradient near the optical surface should be kept at 

a minimum. 

3. During the warmup process, dry nitrogen should be introduced into 

the chamber while the optical surface is cold. 

When these procedures were followed, we found no optical contamination 

during the numerous thermal-vacuum tests. 
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There is another phenomenon similar to optical contamination - dust on 

optical surfaces. During system testing, we observed considerable amounts 

of dust on mirror surfaces from time to time. This dust does not adhere to 

surfaces but is attached to them. It is difficult to remove it without disturbing 

system integrity. Therefore, it was left untouched. But this dust disappears 

during vacuuming. Therefore, it is possible that all dust particles were 

removed during the initial stages of orbital operations, and thus the apparent 

sensitivity of the instrument was increased. Sources of this dust are not 

evident, since the experiment package was kept in a clean-room environment. 

Probable sources are thermal blankets sheared during installation. The 

shearing of thermal blankets, commonly referred to as NRC, causes the 

generation of very fine particles that were usually impossible to remove. 

A similar cleaning effect resulted from radiation on the optical filters 

during ground tests. Small amounts of radiation usually improve the trans­

mission of optical filters. This radiation cleaning is another potential source 

of the initial sensitivity increase. (The initial sensitivity increase itself is 

not well established yet, since the effects of magnetic disturbance were so 

strong and also caused an increase in the apparent sensitivity of the instru­

ment.) 

In conclusion, we can say that contamination control procedures, which 

include design methods, material selection, handling procedures, operation 

and test procedures, etc., were satisfactory and produced the intended results. 

4.8 High-Voltage Arcover 

There is a danger of arcover (corona, flashover, sparking, etc.) in 

the space environment. In a high vacuum, arcover should not occur if the 

electrodes are properly spaced. Actually, almost all material will outgas 

to some extent in a vacuum. Therefore, outgassed vapor always exists 

locally, even in a high-vacuum environment, and contributes to arcover of 

high voltages. 
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In Celescope, we had a total of 12 high-voltage (above 200 V) power 

supplies (Table 23). This discussion will be limited to the 8000-V power 

supply since it was the most susceptible to arcover. 

Three basic methods prevent arcover: 

1. Venting. 

2. Encapsulating. 

3. Submerging in fluid (gas or oil). 

Venting is the easiest to adopt if enough room is available and if the 

high-voltage point is located near the outside. This method was adopted in 

Celescope for connectors near high-voltage cables and for Uvicon faceplate 

areas. This method has some disadvantages, however - bulkiness, limited 

location, no mechanical protection, and no protection against contamination. 

We did not use the third method, since there were doubts as to the longevity 

of the seal in space and there was a danger of optical contamination. Our 

choice, then, for power supplies was the second method - encapsulation 

in solid dielectrics. 

The potting material for encapsulation should have the following charac­

teristics: 

1. Compatibility with component surfaces. 

2. Compatibility with thermal-expansion coefficient. 

3. Low-temperature characteristics. 

4. Transparency. 

When we built the high-voltage power supplies the first time, some of 

them failed during the thermal-vacuum test. When we repeated the thermal 

vacuum test on the remaining units, all of them eventually failed in a similar 

environment. On analysis, we found that the potting compound separated 

from the component surface in cold temperatures and that the outgassed vapor 

trapped in this space provided arcover passage. After much testing and 

analyzing of various methods, we successfully developed a new method of 

manufacturing a high-voltage power supply that included 
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Table 23. High-voltage power supplies in Celescope. 

Output level Number 
(V) of units Purpose 

8000 4 Electrostatic lenses 

in Uvicon image section 

3500 2 Xenon gas-discharge tubes 

2500 2 Mercury gas-discharge 
tubes 

* 
500 4 Readout gun in Uvicon 

*Multilevel output power supplies -500, 200, 100, and -250 V. 
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1. Elimination of the printed-circuit board. 

2. Special soldering technique. 

3. Surface preparation before potting. 

4. Conformal coating. 
-5. Testing at critical pressure (10 torr) through the temperature cycle. 

Figure 37 shows a high-voltage power supply and its content (high-voltage 

divider portion). The special methods for mounting components and for bead 

soldering are clearly visible. 

Since the potting compound adhered poorly to the commonly used 

fiberglass printed-circuit boards, we used instead solid polyurethane 

blocks, machined to fit the components. To avoid sharp points, which tend 

to initiate arcover and cause cracks in the potting compound, we used bead 

soldering. Then, to ensure proper adhesion of the potting material, we 

cleaned every surface thoroughly and dried it in a vacuum. A conformal 

coating was applied on each surface, and finally a potting compound was 

introduced. The preparation and curing procedures for the potting com­

pound were both carefully controlled and were conducted without its ever 

being touched by human hands. Every completed power supply was then 

tested in the most critical environment to ensure that there was no possibility 

of arcover. Thereafter, we never allowed a system containing these high­

voltage power supplies to be exposed to the critical environment. Whenever 

we had to go to vacuum in low temperatures, we waited at least 48 hr after 
5 

the pressure in the vicinity of the high-voltage power supply fell below 10 ­

torr before we applied input to the supply. This procedure ensured that no 

local high-pressure regions existed. 

There is no direct method for detecting high-voltage arcover during 

orbital operations, since our high-voltage power supplies are designed to be 

arc proof. That is, our high-voltage power supplies would survive without 

any damage even though arcover occurred. The only possibility for detecting 

the arcover is based on a side effect that causes a very large transient surge 

current or voltage through the system. On the basis of the experience during 

ground test, once a high-voltage arcover happened, all commands were reset. 

In some instances, even the main power was cut off because of a transient 

surge. 
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Figure 37. High-voltage power supply and part of its content. 



On the basis of the above experiences, we can say that we did not find 

any evidence of high voltage arcover in the Celescope experiment throughout 

its entire operational life. This confirms the adequacy of the design and manu­

facturing methods and the adequacy of the initial waiting period between open­

ing sunshade and the first high-voltage turn on. This waiting period, from 

orbit 87 through 102, was sufficient to allow for the escape of all outgassed 

material from the experiment cavity and to ensure safe operation of exposed 

high-voltage terminals (Uvicon flanges) in space. 

4. 9 Temperature Characteristics 

It is not necessary to elaborate on the importance of the temperature 

control. Every part of the experiment package must be operated within the 

designed limitation on temperature. For instance, if Uvicon cameras were 

exposed to -85*C, the cameras would suffer irreversible damage. 

Temperature variation during orbital operation (shown in Figure 38) 

is well within the expected range, and no abnormal temperature effects 

were observed. 

4. 10 Adjustment of Electronic Voltage Setup 

As mentioned in the previous chapter, optimal adjustment of gun voltage 

setup is very difficult. General criteria used to select the actual adjustment 

level for the completed experiment package are the following: 

1. Beam-level setup should be at the minimum allowed for safe opera­

tion. 

2. Astigmatism and focus adjustment are selected at the middle point 

of the range of each - namely, astigmatism 4 and focus 2. 

The purpose of these adjustments is to increase the useful life of the 

experiment when the initial settings of these voltages become undesirable 

for some reason. For instance, we observed changes in the beam current 
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after simulation of the launch environment during a very early phase of 

Uvicon development. Therefore, it is conceivable that the voltage settings 

change during launch or during orbital operations. If there are adjustable 

settings, we can extend the useful life of the experiment. In the case of 

beam-current adjustment, reduction of beam current as time elapses was 

anticipated. The readjustment of the beam-current setting would hopefully 

compensate for the reduction. Initial settings for beam current were all level 

1, except for camera 3, which was at 3 (camera 3 could not be operated at 

less than level 3). 

The beam level of camera 1 was changed to 2 during orbit Z68. Later, 

it was increased to 3 during orbit 1030. Despite these two increases, beam 

current was not sufficient. Further increase to level 4 did not result in the 

intended increment of beam current. Rather, it caused a defocusing effect 

and made difficult the operation of the Uvicon. 

We attempted to determine the optimal setting of astigmatism and focus 

by using orbital data. A result is shown in Figure 39. It indicates that proper 

settings are important since different settings produce different values of 

Sigma for the same object observed. Since no other settings were found to 

provide improved performance over that given by the original values, we 

retained the original settings for astigmatism and focus throughout the entire 

life of Celescope except during the brief period of experimentation. 

On the basis of these experiences, we can say that (a) it is very difficult 

to determine the optimal setting from orbital observations of stars; (b) any 

change of the adjustment due to space or launch environment, if there is any, 

is also very difficult to observe; and (c) drifts in voltage levels in the gun sec­

tion, if any, seem to have had a negligible effect on observed data, compared 

to other factors -for instance, fluctuation and deterioration of camera sensi­

tivity - whereas when we tried changes in the adjustment settings we found 

significant changes in the instrument calibration. This also implies that the 

current design of the electron-gun section in the Uvicon is satisfactory for 

space application. 
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4. 11 Anomaly in Pictures 

We observed abnormal pictures from time to time. Some of the pictures 
are explained easily, whereas a few have not yet been explained. Figures 
40 through 43 show selected abnormal pictures and indicate the most probable 
cause of each type of anomaly illustrated. 

11-129
 



(a) 
R141 - Camera 3 

Effect 	of magnetic disturbance 
on stars 

(c) 
R141 - Camera 4 

Effect 	of magnetic disturbance 
on Lyman a 

(b) 
R141 - Camera 2 

Effect of magnetic disturbance 
on false stars 

(d) 
Q414 - Camera 4
 

Partial picture due to premature
 
termination of data transmission
 

Figure 40. Anomaly in picture 1. 



(a) (b) 
S261 - Camera 1 RZ56 - Camera 3 

Calibration lamp ghost Calibration lamp ghost 
visible visible 

NOT REPRODUCIBLE 

(c) (d) 
*6085 - Camera 4 MZOZO - Camera 3 

Star ghosts due to filter split Star ghost due to bright star 
dis continuity 

Figure 41. Anomaly in picture 2. 



(a) (b) 
M6117 - Camera 3 M4116 - Camera 3 

Residual 	charge due to insufficient Residual charge due to insufficient 
priming priming 

(c) (d)

p6086 - Camera 4 M2093 - Camera 4
 

Residual 	charge due to insufficient Electronic noise in Lyman a 
priming 

Figure 42. Anomaly in picture 3. 



(a) 	 (b) 
R5158 - Camera 4 Q4658 - Camera 4 

Black area due to reflection Black area due to reflection and 
overexposure
 

REPRODUCIBLENOT 

(c) (d) 
*06113 - Camera 4 06114 - Camera 4 

Probably 	due to intersection of Probably due to leakage at 
shadow with star filter split 

Figure 43. Anomaly in picture 4. 



4. 12 Conclusions 

The conclusions of this chapter are the following: 

1. Daytime observation is possible in some limited circumstances. 

2. Effects of space radiation are minimal, except possibly for a long­

term one, the transmittance change in the lithium fluoride optical components. 

3. Residual optical sensitivity is bothersome in some cases. The use 

of mechanical shutters should be considered for future flights. 

4. Geocorona seriously interfered with Celescope measurements in 

the spectral band containing 1216 1, especially for long exposure times. 

5. Contamination control procedures during ground operations were fully 

successful. 

6. The anti-arc design for high-voltage power supplies, ion traps, and 

related circuits worked perfectly. 

7. Solarization has no observable effect on Celescope. 

8. Thermal design of Celescope/OAO is satisfactory. 

9. The ruggedized gun section of the Uvicon tube performed satis­

factorily. 
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CHAPTER 5 

SYSTEM CHANGES DURING ORBITAL OPERATION 

5. 1 Introduction 

The characteristics of the Celescope experiment changed as time elapsed, 

as do most instruments. This chapter describes the nature of the changes 

and their probable causes. The most significant change encountered was a 

reduction of system sensitivity; degradation of other performance parameters 

was slight. 

Each camera is equipped with a calibrator lamp. One indicator of Uvicon 

deterioration is the signal from the calibrator-lamp image. To obtain accu­

rate knowledge of changes in Uvicon sensitivity, however, we need the addi­

tional information provided by the stellar observations themselves. 

True deterioration of the Celescope experiment as a whole can be deter­

mined from the processed star observations. These results will be available 

when data processing is complete. Until such time, discussion of the deterior­

ation will be limited to system deterioration deduced from apparent deteriora­

tion. Even when the processed star observations are available, determina­

tion of the mechanism of system deterioration will not be straightforward. 

Deterioration of optical components, such as mirrors, filters, calibrator 

lenses, and faceplates, was determined from careful analyses of star obser­

vations and from deterioration of other components, since deterioration of 

optical components could not be observed directly. 
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Performance changes in electronics except gain reduction are more 

easily detected than any other type of deterioration. These changes cause 

malfunctions of logic that are easily observed. 

System deterioration is in part affected by operating procedures. For 

example, the method that Celescope adopted to increase the safety margin 

for target-material breakdown was one of the major factors in the accelerated 

deterioration. 

System deterioration that affects the detection threshold should not 

influence measurement accuracy, provided the proper compensation method 

for data processing is established. The proper method must be based on 

correct mathematical models derived from extensive study of the system 

deterioration mechanisms. Therefore, it is conceivable that processed 

star observations may be improved, once accurate knowledge of system deter­

ioration becomes available. 

5.2 Deterioration of Calibrator Lamps 

Each telescope in the Celescope experiment has a calibrator lamp. 

There are two types of Uvicons, A and D, according to spectral sensitivity. 

Therefore, we had two matching types of calibrator lamps: mercury and 

xenon. 

The former are pen-ray lamps manufactured by Ultra-violet Products, 

Inc. (Model 11 SC-2); they are low-pressure gas-discharge tubes enclosed 

in pure fused quartz. Major emission lines are 5770, 5461, 4358, 4047, 

3650, 3125, and 2537 A. More than 90% of the emission is concentrated 

at 2537 A. Considering the effect of spectral sensitivity, more than 

99% of the effective input to the A-type Uvicons from the mercury cali­

brator lamps is concentrated at 2537 A. The average life of the tubes is 

5000 hr, according to the manufacturer. The output intensity is sensitive to 

operating temperature, but the output level is remarkably stable in intensity 

if the temperature is stabilized at - 40 to 45*C and if the voltage input to the 

power supply is controlled within narrow limits, according to the same source. 

II- 136
 



In Celescope, the mercury lamps were operated by specially designed 

power supplies in which the output current was carefully controlled. Further­

more, temperature control maintained the lamp temperature at - 70°C by use 

of lamp terminal voltage. Because of the temperature control, the mercury 

calibrator-lamp system required several minutes of warmup. Also, the tem­

perature control system seemed to be a problem in the high-temperature 

vacuum environment that occurred during ground tests but not during actual 

orbital operations. Owing to the lack of air, which would provide convection 

cooling, and the lack of cold environment, which would provide radiation cooling, 

the mercury calibrators seem to overheat in such an environment. Generally 

speaking, the output intensity decreases as the temperature increases. 

Mercury calibrator lamps require about 800 V of starting voltage in normal 

circumstances but may fluctuate about 20%. When they are operated in the dark, 

according to the manufacturer, lamps may require as much as 1400 V to 

start. In Celescope, we furnished 2500 V for normal starting, thus guaran­

teeing the start of the lamp in any circumstances, especially cold tempera­

ture. Lamp current was controlled to 1 mA ± 4%. Expected output fluctuation 

due to variation of the input current is of the same order. Variation due to 

temperature can be estimated from Figure 44, which is based on similar 

mercury gas-discharge lamps (Model 11 SC-1). The expected deterioration 

of lamp output can be also estimated from Figure 45, which shows deteriora­

tion characteristics of similar types of mercury discharge lamps. It is worth 

mentioning that the calibrator lamps that equipped the Celescope experiment 

were manufactured by the same company that produced lamps No. 7 and No. 8. 

An independent life test for the mercury calibrator using the actual flight 

calibrator and power supply demonstrated that the system can operate through 

7900 cycles at 15 sec on and 15 sec off. The maximum change of flux detected 

was 2. 5%. This is equivalent to 7900 frames of picture-taking cycles for 

on/off switching effects, and it is equal to a total of 32.9 hr of continuous 

operation. (The end of this test was defined as completion of 7900 cycles to 

demonstrate the required number of on/off cycles, and the real end of life 

was never determined. ) It may be reasonably assumed that the life of the 

lamps is approximately proportional to the inverse of the operating current. 
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The operating current for the lamp shown in Figure 45 is 16 mA, and that of 

Celescope calibrators is 1 mA. The expected useful life as a standard source 

can be determined as about 40 hr from lamps 7 and 8 in Figure 45. There­

fore the expected life of the Celescope calibrators is about 16 x 40 = 640 hr. 

The estimated operating times for the Celescope mercury calibrator lamps are 

about 370 hr for camera 1 and about 230 hr for camera 3 as shown in Table 24. 

We assume that the output of the calibrator lamps is a constant during the 

entire period of operation. In actuality, images of the calibrators became 

undetectable before the end of operation, as shown in Table 25. In the case 

of camera 1, the main reason for the loss of the calibrator image is the 

degradation of Uvicon sensitivity. In camera 3, camera sensitivity seemed 

to be adequate even in the later period of operation, but increased apparent 

background due to insufficient priming made it impossible to detect the cali­

brator images in the late period of operation. Figure 46 shows the Celescope 

mercury calibrator-lamp assembly and its gas-discharge tube with heater 

wires. 

For the D-type Uvicon, a xenon gas-discharge lamp (Model 582) manu­

factured by the Princeton Division of EMR is used. The lamp is a ruggedized 

universal low-power ultraviolet source, and its principal spectral line is at 

1470 A, with more than 90% of the total radiation emitted in the wavelength 

band of 1450 to 1600 A, according to the manufacturer. The lamp has a hard 

glass envelope sealed directly to a flat sapphire faceplate. The lamp is filled 

with xenon gas at low pressure. The manufacturer claims that a concentrated 

beam of energy is emitted from within the capillary of 0. 050-in. diameter, 
.

and that the apparent radiant emittance of the source is - 4.5 mW/cm 2 

The lamp requires 1000 to 2250 V for starting; the voltage then drops to 

400 V and the current is regulated at 0. 5 mA. The power supply for the 

xenon calibrator produces normally - 3500 V to ensure starting in any cir­

cumstances. The calibrator assembly also contains a thermistor for tem­

perature monitoring, since the xenon calibrator is temperature sensitive. 

The general relation between output flux and temperature is shown as follows: 

F 1 = (T 0 /TI)k -F 0 

where 
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Celescope mercury calibrator assembly and its gas-discharge
Figure 46. 

tube with heater wires. 



Table 24. Estimated total operating time for mercury calibrators. 

During ground test 	 In orbit 

Estimated 
Estimated average Estimated Estimated 

average Estimated warmup average Estimated total 
on-time per Estimated operating time per exposure Estimated operating operating 

exposure number of time during exposure time number of time in time 
Camera (sec) exposures ground tests (sec) (sec) exposures orbits (hr) 

1 360 500 	 18,000 sec 300 48.9 3319 1,157,999.1 sec 371.7 
= 300 min = 19,300.0 rain 

= 50 hr 	 = 321.7 hr 

3 360 500 18,000 sec 300 47.9 1826 635,265.4 sec 226.5
 

= 300 min 	 = 10,587.7 min 

= 50 hr 	 = 176.5 hr 



Table 25. Calibrator-image detection in later orbits. 

a) 	 The last known calibrator images identified by the 
standard data-processing system 

Estimated 
total operating 

Camera Contact time (hr) K L Z Ip 

1 M5240 231.8 155 136 19 12
 

3 R3364 166.7 143 141 64 17
 

4 R7261 90.2 130 127 174 13
 

b) 	 The last known calibrator images recognizable by 
trained personnel 

Estimated
 
total operating
 

Camera Contact time (hr) K L M I

P
 

1 R5510 241.2 162 136 13 8
 

3 03700 178.4 144 133 29 13
 

4 R7261 90.2 130 127 174 13
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F 1 = flux at temperature TI degree K, 

F 0 = flux at temperature T 0 degree K, 

k = a positive constant. 

For Celescope, .he values of k are reported as 0.63 and 0. 39 for camera 2 

and camera 4, respectively. 

In the xenon calibrator lamps, the temperature is not controlled. 

Instead, the temperature is monitored by a thermistor temperature sensor. 

The true output flux for each observation is calculated from the measured 

temperature and the room temperature flux. 

The expected change of the output flux from xenon calibrator lamps is 

negligible for at least 100 hr. Figure 47 shows the results of xenon-lamp 

life tests; Figure 48, the lamp assembly. The apparent change of output level 

is attributed to the degradation of the detector (photomultiplier) photocathode, 

rather than a change of output level. Independent studies of the output level 

with real calibrator lamps and power supplies indicate that apparent lamp 

degradation occurs only when the lamp is on and is in a vacuum system. Degra­

dation will not occur at atmospheric pressure or in a vacuum with the lamp off. 

Furthermore, it appears likely that the window of the Uvicon that is being used 

as a photodiode is not being contaminated. This leads us to conclude that a 

charge condition exists on the front window of the lamp when it is on that causes 

it to attract contaminating particles when operated in a vacuum chamber. 

Estimated operating time during Celescope operation for the xenon cali­

brator system is about 15 hr for camera 2 and about 90 hr for camera 4, as 

shown in Table 26. On the basis of the estimated operation time and deteriora­

tion characteristics, we may conclude that any apparent deterioration of 

calibrator output fluxes is caused by some other component deterioration ­

photocathode, target, optical transmittance, etc. 

While on the subject, we will make some general comments about the 

calibrator lamps in the Celescope experiment. Their basic role is to relate 

ground-based calibration to orbital observation data and to determine the 
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Table 26. Estimated total operating time for 	xenon calibrators. 

During ground test 	 In orbit 

Estimated 
Estimated average Estimated Estimated 

average Estimated warmup average Estimated total 
on-time per Estimated operating time per exposure Estimated operating operating 

exposure number of time during exposure time number of time in time 
Camera (sec) exposures ground tests (sec) (see) exposures orbits (hr) 

-	 Z 90 500 45,000 sec 30 54.9 83 7,046.7 sec 14.5 

0 	 = 750 min = 117.4 min 
= 12.5 hr = 1. 96 hr 

4 90 500 45,000 sec 30 48.8 3535 278,558 sec 89.9 

= 750 min 	 = 4,642.6 min 

= 12.5 hr 	 = 77.4 hr 



Figure 48. Celescope xenon calibrator lamp assembly. 



absolute intensity (magnitude) of the observational data. In this respect, 

the calibrator lamps performed very well, despite minor difficulties in the 

calculation of the absolute intensity of observational data. These difficulties 

occurred because (a) data obtained during the initial operating period were con­

taminated by a strong magnetic disturbance that originated in the magnetic 

unloading system (MUS) of the spacecraft and (b) Uvicon deterioration charac­

teristics are complex. Both difficulties are caused by OAO/Celescope system 

operating procedures and system-design philosphy rather than by the calibrator 

lamps themselves. 

The secondary objective of the calibrator lamps is to monitor changes in 

the characteristics of the Uvicon tubes during ground testing and orbital opera­

tions. In this respect, the lamps provided a good indication of such changes. 

Output of calibrator images indicated the continuous, but slight, deteriora­

tion of the Uvicon sensitivity during ground testing and the rather rapid 

deterioration of the sensitivity during orbital operation. Also, the calibrator­

lamp image output was successfully used to monitor and to correct the unusual 

change of the sensitivity in camera 4 during the last minute of launch prepara­

tion. (The change was self-corrected in orbital operation, and the correction 

technique was never used in the camera again.) And the calibrator images 

were used to determine the positional shifts of output images and to demon­

strate possible methods of improving the accuracy of observational data 

(Nozawa, 1970). 

The only shortcoming in the monitoring of characteristics by calibrators 

is the incompleteness of the information. Since the Uvicon deterioration 

characteristics are complex, it is not possible to determine them completely 

from the fixed intensity, fixed position, and fixed spectral lines of the cali­

brator lamps. Nevertheless, it has been demonstrated that observational 

accuracy can be improved by using calibrator image output as the deteriora­

tion indicator (Nozawa, 1969). Also, the fixed position of the calibrator image 

may cause additional target fatigue (and photocathode fatigue), and the deter­

ioration of the calibrator image output may not be a good indicator for the 

Uvicon in general, especially for later operating period. 
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Problems associated with Celescope calibrator lamps are as follows: 

1. Ghost images produced by calibrator lamps. These ghost images 

are believed to be caused mainly by imperfections of the pinhole mechanism 

in the lamp assembly. Some ghost may be caused by internal reflection of 

the calibrator light. Cameras 1 (see Figure 41a in Chapter 4) and 3 (see 

Figure 41b in Chapter 4) had calibrator-lamp ghosts. 

2. Interference from Lyman-a emission. Since the calibrator lamps for 

'the D-type Uvicons are located in the U4 side of the faceplate, xenon calibrator 

images were contaminated by the background produced by the geocorona. 

Especially in longer exposure time, the calibrator image outputs become 

useless to determine changes in Uvicon characteristics. 

3. Interference from electrical background. There is systematic elec­

trical background noise in the output of camera 4. The noise is about 2 to 4 

elements wide and runs vertically near the center of the picture (see Figure 33 

in Chapter 4). Since the calibrator image of camera 4 is located approxi­

mately at the center of the picture (slightly upward), almost all calibrator 

images of camera 4 were contaminated by the vertical noise band. Because 

of problems Z and 3, camera 4 calibrator images are much less valuable 

than expected. 

In general, we can say that lamps made calibration possible in orbit and 

indicated the change of Uvicon characteristics, but were not sufficient to 

provide exact information on the time dependence of photometer response. 

5.3 Deterioration of Optical Components 

The effects of space radiation on the optical components were discussed 

in Section IV. If radiation damage had affected Celescope performance, the 

first evidence would have been a change in relative sensitivity of our U1 and U 

spectral regions induced by the characteristic wavelength-dependent change 

in transmittance of radiation-damaged lithium fluoride. The decay curves 

presented in Section IV indicate that this effect, if present at all, was a minor 

contributor to the total sensitivity change in the instrument. 

11-149
 



Deterioration of optical surface quality is also possible in space. If it 

occurs, the general contrast in the picture decreases - that is, the background 

noise level increases. Electronic deterioration, which is also expected in space, 

can cause a similar increase of the background. Distinguishing between the 

two could pose a problem. However, since the general noise characteristics 

of the pictures did not change appreciably during the time the experiment was 

operated in orbit, we conclude that optical surface quality did not deteriorate 

in the space environment. 

There are other forms of deterioration mechanisms, e. g. , dimensional 

stability of the optics. If a structural member of the telescope shows dimen­

sional instability, then the output image quality will be degraded. From obser­

vational data, we find no image-quality deterioration attributable to dimensional 

instability. One of the problems is the difficulty in separating optical image 

quality from electro-optical image quality. In general, we can say as far as 

we can determine, we cannot detect any optical-image deterioration. 

5.4 Deterioration of the Electronics 

Of the subsystems in the Gelescope experiment, the electronics are the 

most unlikely to deteriorate. The reasons for this achievement are the 

following: (a) The mechanisms of deterioration in the electronic components 

are well understood, compared to those of other components. (b) The prime 

contractor, EMR, is an electronics-oriented company and has its "forte" in 

this area. (c) Major efforts were undertaken to design electronics of high 

reliability (Burkhalter, 1965). 

The Celescope experiment package uses one of the first space-borne 

digital television systems. Failure of the logic circuits would be critical. Also, 

many commands had to be used for the operation of the experiment and for 

the onboard data-processing system coupled to the telemetry channels. There­

fore, failure-proof design of the logic circuit was the greatest concern. To 

accomplish this goal, a special logic module was developed. The module 

was a quad-redundant transistor unit; a schematic is shown in Figure 49. 

The logic unit acts as a single transistor, but its calculated failure rate 
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reaches 2.46 X 10 - 9 by use of components with a failure rate of 5 X 10 - 8 to 
-
1.7 x 10 (see Table Z7). The other approach used in the Celescope experi­

ment was a functional dual redundancy in the power supplies, camera chains, 

analog-to-digital converters, digital-sweep generators, output terminals, 

etc. 

As far as we can determine, there has been no failure of the digital logic 

nor of the functional units. In the case of the dual-redundant functional units, 

we never needed to switch.to a spare unit. Therefore, we can say that 

the reliability design of the electronics was a great success. Naturally, 

there were drawbacks: 

1. Increased weight and volume, 

2. Increased power consumption, 

3. Reduced speed of unit, increased delay time, 

4. Increased complexity of the experiment package, 

5. Increased test and calibration time. 

From orbital experience, the Celescope experiment electronics may be 

overdesigned compared to rest of the package. 

The only known failure of the electronics was in the camera 2 video 

chain. The cause was target-material breakdown and resultant overloading 

of the video chain. The exact location of the failure was not determined, but 

only two locations seem possible: filament breakdown in the Uvicon or 

breakdown of the video preamplifier. If the former, it is still feasible to 

,use the failed Uvicon tube as a photodetector for Lyman a (or for a similar 

very intense extended radiation source). However, investigation indicates 

that the failure is more probably in the preamplifier. 

The change of gain in the electronics is not easily determined. This 

aspect is still being investigated and will be reported on later. Also, the 

increase of the background noise due to electronic deterioration is under 

investigation. Preliminary investigation indicates that there has been some 

increase of background noise as time elapsed; in particular, some kind of 

interference noise increased in the later orbits. 

11-152 

http:switch.to


Table Z7. Failure rates of logic unit used in Celescope. 

Projected failure 
Components rates 

- 7 
Transistor, small signal 1.7 x 10
 

- 8
5.0 x 10
Resistor, metal film 

1.0 X lo-7Diode, logic application 


If above three are combined as a logic unit 3.2 x 10- 7
 

Combined as quad-redundant basic - 9
2.5 x 10
Celescope logic unit 

1.8 x -10- 1 0 
Quad-redundant resistor unit 

If above two are combined as Celescope - 9

pulse inverter submodule Z.7 x 10
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In general, the effect of possible gain change and increase of background 

noise is minimal for the final accuracy of the measurements. Also, it is 

worthwhile to mention that the special scanning technique used in Celescope 

(superscan; see Chapter 2), performed its intended function perfectly, and 

there was no known failure. The pulse readout system, which is more 

popular now and which is more advantageous than superscan in some aspects, 

will be the method of future systems, but it should be noted that the superscan 

also had its advantages; slow scan rate with fast effective beam dwell time 

and without rapid switching of high voltages (beam-control voltages). 

The conclusions of this section are the following: (a) The quad­

redundance design in Celescope produced a reliable operation of the electronics 

package, at the cost of some power and weight, and (b) superscan readout per­

formed well. 

5. 5 Deterioration of Uvicon Image Tubes 

The most prominent system deterioration seems to be occurring in the 

Uvicon camera modules. The camera module consists of a Uvicon image 

tube, a preamplifier, deflection circuits, and a replaceable electronics 

package (REP), which has various resistors adjusted to match the common 

power supply to individual tubes. Also, optical filters are physically attached 
to the camera module. Deterioration outside the Uvicon tube, but still in the 

camera module, can be distinguished. (These results will be discussed in 

the pertinent sections.) 

The Uvicon tube, which is a fairly complicated device, has many poten­

tial sources of deterioration: faceplate, photocathode, imaging section, 

target, readout beam current, and readout gun section. Almost every part 

of the Uvicon has a known or estimated mode of deterioration. Therefore, 

identification of the dominant mode of deterioration is very important for 

future" evaluation of similar image tubes. The faceplate of the Uvicon, which is 

made of lithium fluoride, has been known to deteriorate from space radiation. 

Also, the photocathode may be damaged by intense input light. The imaging 
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section may show dimensional instability, which will cause defocusing. Or 

the imaging section may be influenced by surrounding structural material, 

which may be gradually magnetized over a long period of time. It is known 

that the target shows effects of fatigue in some ciircumstances, as well as 

the effects of aging. 

Beam-current reduction is one of the most likely causes of Uvicon 

deterioration. Figure 50 shows the results of a life test for an electrostatic 

readout gun, very similar to the Uvicon gun. If we remember that the esti­

mated operating time before launch is about 3000 hr for each Uvicon, the 

reason will be readily understood. Beam-current reduction and target aging 

will cause overall deterioration of the entire field of the output picture, in 

contrast to local deterioration of other types in the Uvicon. 

Some aspects of Uvicon deterioration can be studied by using the cali­

brator-lamp output images. (Examples are shown in Figures 51 through 55.) 

To understand completely the deterioration characteristics of the Uvicon, all 

the observational data available must be studied. Since processing of star 

data is not yet complete, and since some of the deterioration studies are still 

continuing, the major analysis of this subject will be deferred to volume B 

of this report. 

As a closing remark, it can be said that deterioration of the Uvicon is 

the most important parameter directly affecting the accuracy of Celescope 

measurements and that an understanding of the mechanisms involved is 

essential to an improvement of the accuracy. Since the basic characteristics 

of Uvicon are nonlinear and multi-parametric, deterioration of the Uvicon 

produces very complicated characteristics. Therefore, an understanding of 

basic mechanisms is not easy. 
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5.6 Conclusions 

Although some subjects related to system deterioration are deferred 

to part B and to Secftion IV, the following conclusions can be reached: 

1. Quad-redundancy design in Celescope produced a reliable operation 

of the electronic package, but at the cost of some increase of power and weight. 

2. Superscan readout performed well. 

3.. Uvicon sensitivity during orbital operations decreased rather rapidly 

with time. Nevertheless, the useful life of the Celescope experiment signi­

ficantly exceeded the prelaunch goal of 1 year in orbit for gathering scientific 

data. 

4. The calibrator lamps proved to be valuable for providing a record 

of Celescope performance from the time the flight telescopes were first 

assembled, through all phases of subsystem and system testing, to well after 

launch. 

5. The calibrator lamps carried initial calibration data into orbit but 

did not provide sufficient data for accurately establishing the time dependence 

of the photometer response. 
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DESCRIPTION OF CELESCOPE EXPERIMENT AND 

RECOMMENDED CHANGES FOR FUTURE EXPERIMENT 

1. EXPERIMENT DESCRIPTION 

1.1 General 

The Celescope experiment consists of two separate, but functionally 

integrated, major subassemblies: the Celescope Optical Package and the 

Bay E-4 Module Assembly. For purposes of describing its functional opera­

tion, however, the experiment may be more properly divided into basic 

subsystems: the optical and the electronic. 

1. Z Optical Subsystem 

1.Z. 1 Primary optical system 

The optical subsystem consists of four Schwarzschild-configured telescopes, 

each having a diameter of 1Z. 5 in. The secondary mirror obscure's an area of 

6. 5-in. diameter of each aperture. The system is designed for point infinity; 

therefore, the incoming light flux is a parallel (collimated) light beam. The 

light is reflected by the primary mirror (hyperboloidal) and brought to focus 

at a point beyond the plane of the intercepting secondary mirror. The secon­

dary mirror (oblate ellipsoidal) in conjunction with Uvicon faceplate lens, 

focuses the light at a surface coincident with the photocathode surface of the 

faceplate of the Uvicon camera tube. 

The field of view of each telescope is determined by the active area of 

the image tube photocathodes and is nominally square with an equivalent 

angulai subtense of Z' X 20. Each telescope tube is designed to compensate 

passively for optical defocusing caused by thermal expansion and contraction. 
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The use of titanium as tube material, in conjunction with an aluminum alloy 

for the camera-tube housing, compensates for defocusing effects over a 

100° C temperature change. 

This wide temperature range required the development of a unique 

mounting system to prevent sinking of spacecraft heat, yet also to provide 

good shock and vibration isolation. 

The field of view of each Uvicon is optically split into two areas of differ­

ent sensitivity by mounting two different semicircular filters in the focal 

plane of the photocathode. The filter split line is oriented parallel to the 

direction of the television scanning lines and the Z c axis of the OAO spacecraft. 

The calibration optical subsystem is oriented in such a manner that the filter 

split line does not intercept any light from the test source. 

Further spectral selectivity is achieved by the use of two types of Uvicon: 

A and D. They differ only in their photoemissive surfaces. The type-A is 

sensitive between 1050 and 3200 A, and the type-D between 1050 and 2000 A. 
The resulting spectral responses can be seen in Figure 1. 

This configuration of two tube types and split filters offers excellent 

redundancy since half the tubes (one A and one D) can supply full spectral 

data. Survival of any one camera would still supply one half of the desired 

data. 

1. Z. 2 Calibration optical system 

The calibration optics of the optical subsystem consist of a calibration 

lamp (with controlled and calibrated emission characteristics), apertures 

(to simulated star point sources of ultraviolet intensity), and a mirror and 

lens located in the aperture of the secondary mirror of each telescope. The 

point source of light from the calibration lamp and aperture is reflected by 

a mirror, 45° off the plane normal to the optical axis of the telescope, through 

a lens that brings the light from the simulated stars to focus at the plane of 

the faceplate lens. 
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The calibration optical subsystems operate from light sources that emit 

energy at either a 1470 or 2537 A. 

The 1470-A xenon discharge lamps and associated components are used 

with type-D Uvicons. The 2537 k mercury vapor discharge lamps and 

associated components are used with type-A Uvicons. 

1. 3 Electronic Subsystem 

1.3.1 General 

The electronic subsystem of the SAO experiment incorporates command 

and control functions for the operation of the SAO experiment. No command 

functions are incorporated into the system for mechanical adjustment or 

operation, as the design of the SAO experiment is such that the telescopes 

will remain in satisfactory focus under the anticipated environmental condi­

tions. The television camera tubes are effectively exposed to ultraviolet 

energy only when high voltage is applied to the imaging section of the tube; 

thus, no mechanical shutter is required. 

1.3.2 Uvicon camera 

In this system, exposure to-ultraviolet light and scanning of the target 

are never performed simultaneously. As exposure is controlled by high­

voltage on-off commands, the sensitivity of the system can be adjusted by 

varying the exposure time (the time during which high voltage is applied to 

each camera). The high-voltage commands energize three high-voltage 

potentials from 7 to 8 kV. These voltages are tailored for each Uvicon to 

produce optimum image-section focus. 

Unipotential, fixed-focus SEC Vidicons have been developed since the design 
of Celescope and have been incorporated into several digital TV systems. 
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Each camera module is provided with a high-voltage power supply (HVPS). 

The assembly techniques and materials technology used in the manufacture of 

this supply resulted in one of the significant developments of Project Celescope. 

The HVPS is reliable and virtually impervious to the hostile environments of 

space. The HVPS has demonstrated a capability of operating from sea level 

to high vacuum and during drastic temperature change (+25°C to -55°C). 

As a result of this exposure, an electrical-charge (star-image) pattern 

is built up on the target of the Uvicon camera, each star image is represented 

by a small area on the target whose charge is a result of the product of the 

exposure time and the intensity of the flux imaged by the experiment optics 

onto the photocathode of the camera. 

To convert the star image on the target into a video signal, the target 

must be scanned (read out) by an electron beam. The readout mechanism 

involves replacement of electrons on the charged areas of the target. 

The target can be damaged and effectively destroyed, if the potential 

on the target exit surface (scanned surface) is allowed to increase indis­

criminately. Certain conditions of operation can cause the emission from 

a target element of more electrons than they deposit crossover. This con­

dition, if allowed to continue, will further increase the surface potential 

at discrete points on the target to the level where electrical breakdown will 

occur between the exit surface and the backplate of the target, and holes will 

be punctured into the target. 

Various camera-operation techniques developed for this experiment 

virtually eliminate the possibility of destruction from crossover. Westinghouse 

Electric Company, pursuing this problem further, has since developed an 

SEC Vidicon employing a suppressor mesh that limits the exit-surface poten­

tial below crossover. The use of such a tube in the Celescope system would 

have eliminated complicated and time-consuming camera-operating techniques. 
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This replenishment of electrons is capacitively coupled to the target 

backplate. The video signal at this point is in the microampere region, and 

a video preamplifier is used to condition this signal for transmission outside 

the camera package. The video preamplifier provides low-noise high-gain 

amplification of direct Uvicon output signals. The unit is a transistor-type 

amplifier and has a gain of 1. 7 mV per 1. 0 na input adjusted for minimum 

noise with typical operating bandwidth of 60 to 80 kHz. 

Further amplification of the video signal to a level necessary for digital 

encoding or synch mixing.is accomplished in the video amplifier. It is a 

three-stage voltage amplifier with a 170 kHz bandwidth, producing a gain of 

100 to 2000 (adjustable by trimming during manufacture) at a maximum output 

voltage of 8 V. 

1.3.3 Operating modes 

The scanning beam can be deflected either analog or digital. The analog 

scan is a 300-line raster with a 1. 6-msec sweep duration and a total 0.48-sec 

scan time. The digitally swept beam is functionally more complex than the 

analog; however, the readout process at the target is the same. The digital 

deflection initiates a digitally indexed scanning beam equivalent to an 

element-by-element scan, 256 elements per line and 256 lines, and a scan 

time of 10.5 sec. The resultant dwell time per element (160 vsec) is exces­

sive, causing beam pulling and resultant low peak-signal amplitude. 

A unique unblanking technique known as superscan was employed in this 

experiment to eliminate these problems. The beam is positioned well into 

the previously readout area for all but the short period of time (less than 

10 pLsec) during which the video is being sampled. 

It is to be noted, however, that the beam is always on. Should the pre­

viously readout area in which the beam is dwelling be above the first cross­

over point, this dwell will aggravate the condition. Analog operation is, 

therefore, an obviously safer operating mode. 
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More recent EMR-T digital TV systems have successfully employed 

beam blanking that eliminates dwell problems and allows ultraslow and 

asynchronous readout techniques. 

The resultant video signal (in either mode) is then transferred to the 

Bay E-4 module assembly for processing in either ANALOG, PCM, or 

STORE mode before transmission (or storage) by the OAO spacecraft data­

handling system. 

In the ANALOG mode, the signal from the Uvicon is amplified and mixed 

with synchronization signals (resulting in a composite video output) for 

transmission. In both PCM and digital STORE modes, readout is accomplished 

in digital sweep mode in the Uvicons. In the PCM mode, the video output of 

the camera is sampled and encoded to 7-bit accuracy. Each line of data has 

a fixed sync code and the line (vertical position) number in the first 5 PCM 

words and 251 intensity words. The entire data train is transmitted in real 

time as PCM telemetry data. In the STORE mode, only data that exceed a 

preselected threshold are encoded. Each data word in this mode is com­

prised of 8 bits of horizontal (element) position data, 8 bits of vertical (line) 

position data, 7 bits of intensity data, and Z zero bits. Whenever the inten­

sity of a star exceeds the preselected threshold level, the experiment 

generates a Store Digital Data Word Command 1 (SDDWC1) transfer pulse, 

which is used to load each STORE-mode data word into the spacecraft PPDS. 

Z. CELESCOPE EXPERIMENT DESIGN 

Z. 1 General 

The basic approach selected for obtaining the experimental measurements 

was television photometry. Details of the experiment design have been given 

in SAO Special Report No. 110 and in the foregoing section. The Uvicon tele­

vision ensors were developed and manufactured by Westinghouse Electric 

Corporation at Pittsburgh, Pennsylvania, and Elmira, New York. The 
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telescope optics were manufactured by Ferson Optics, Inc., Ocean Springs, 

Mississippi. The overall experiment designs, integration, and tests were 

performed by Electro-Mechanical Research, Inc. , of Sarasota, Florida. 

2.2 Significant Accomplishments 

In addition to the collection and analysis of the experimental data, there 

were a number of significant accomplishments in the basic engineering, 

manufacturing, and testing of the hardware. A summary of these accomplish­

ments follows. Detailed engineering reports for all project activities are on 

file at SAO. 

2. Z. 1 Optical system manufacture and testing 

The figuring and testing of the 12-in. Swhartzschild optical systems 

proved to be a formidable task. By careful matching of primary-secondary 

pairs and extensive photographic investigation of the focal plane of each 

instrument, the system was figured and adjusted to meet the experiment 

requirements. 

Z.Z.2 Telescope structure design 

A light-weight, thermally compensated, fixed-focus design was achieved 

by the use of a corrugated titanium tube for the outer structure and an 

aluminum sensor holding structure. This design met the experiment require­

ment over the temperature range of -70oC to +40C. The titanium structure 

was epoxy bonded and foam filled between corrugations for vibration damping. 

A straight four-vane support for the secondary had a very high-of-torsional 

resonance but proved satisfactory. The only builtin optical adjustments were 

of the secondary location and the sensor location. The secondary adjustments 

were difficult but proved stable in the kinetic environment. The sensor 

adjustment was not a problem. The overall mechanical system stayed in good 

alignment through launch and for the life of the experiment. 
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2.Z.3 The Uvicon sensor 

The Uvicon developed for this experiment was the forerunner of the SEC 

Vidicons that have been used in many commercial and military applications. 

The chief advantage of these sensors over other types available were their 

excellent long-term integration properties and very good single-scan readout 

properties. These when added to the electron amplification of the high­

voltage section of the tube, plus the optical collection system, yielded a very 

high information bandwidth and photon sensitivity factor for the overall experi­

ment. 

2. Z. 4 High-voltage technology 

The design, fabrication, and test techniques used for the 8 to 10 kV high­

voltage system are believed to be unique and were very successful on ground 

and in the space environment. 

Z.2.5 Electronic system 

The experiment represented about the ultimate in discrete-part, solid­

state electronics. Wide use was made of redundancy at the part level, at 

the subsystem level, and at the system level. Low power was also a major 

design factor. The excellent orbital operating history of the electronics 

proved the validity of the design concepts. 

2.2. 6 Noncontamination of optics 

Through test failures and analyses, procedures were developed for 

achieving low outgassing of the experiment. The most significant factor was 

absolute minimization of polymeric-coated surface areas (especially black 

paint). A technique for sandblast finishing of metal surfaces was used to 

achieve ultraviolet black. 
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2.2.7 Digital TV 

The use of digital scanning of the sensors (256 x 256 raster) and non­

compressed serial PCM transmission of the video signal was the primary 

mode of operation. A special elemental scan technique termed "superscan" 

was developed to enhance the readout signal-to-noise ratio of the sensor. 

To avoid long strings of zeros in the PCM signal, alternate bits were com­

plemented. The overall performance of digital TV in this experiment was 

highly satisfactory. 

Z. 2. 8 Optical calibration system 

The mercury and xenon calibration systems operated satisfactorily 

throughout the experiment. The xenon-gas tube was especially designed for 

this experiment. 

2. 2.9 Data handling and experiment calibration 

The data analysis and experiment calibration techniques developed by 

SAO must be listed as a major accomplishment. The data accuracy was 

improved many fold by these efforts. 

2.3 Recommended Changes 

In the event that a similar experiment is undertaken, the following changes 

in design concept should be considered. 

2.3.1 Optical system 

The Schwartzschild system was selected for its good image quality over 
a wide area in the focal plane and for its low sensitivity to element placement. 

The system, however, is difficult to figure and to adjust and is thus costly. 

In retrospect, the optical-image quality may have been somewhat better than 

the resolution characteristics of the Uvicon. It is believed that a tradeoff 
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study, with the sensor properties known, may show that a simpler, less 

expensive optical system would be adequate. 

2.3.2 Telescope structure design 

No particular structural changes are recommended - the design worked 

well. However, thermal design improvements are needed to keep the sensor 

and sensor electronics from getting as cold as they did in the Celescope 

design and to reduce open-end heat losses. 

2. .. 3 The Uvicon sensor 

The basic problem in the Uvicon that must be corrected is the self­

destruct mode known as crossover, which resulted in the destruction of one 

tube in orbit. New SEC devices employ an additional grid to protect the tube 

from this type of damage. Reduced cathode emission resulted in the pre­

mature loss (in 4 months) of one other tube in orbit. Improved beam-current 

measurement and control circuits are needed to overcome this problem. 

Consideration should be given to the use of ultraviolet-to-visible converter 

surface with visible sensors, as opposed to ultraviolet sensors as used in 

this experiment - costs could thus be considerably lowered. 

2.3.4 High-voltage system 

No particular changes are recommended in this area. 

Z.3.5 Electronic system 

The size, weight, and cost of the Bay E-4 electronic module could be 

reduced by a factor of 5 to 10 with modern integrated circuits. In fact, it 

would be possible and desirable to integrate E-4 into the optical-subsystem 

structure. Subsystem and system redundancy of about the level employed 

in Celescope would still be required to maintain overall reliability. 
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In future designs, the command-system interface with the experiment 

should be simplified in terms of the number of wires. The wire and connec­

tor costs far exceeds those of today's integrated circuits. 

Another significant *simplificationof the electronic system could be 

achieved by elimination of the analog-scan mode and the digital-store mode. 

These were seldom used. 

The concept of one command for each experiment operation is highly 

flexible, but far too costly in number of commands. The use of fixed opera­

tion sequences in the experiment is recommended, with command selection 

of the desired sequence. 

2.3.6 Noncontamination of optics 

No particular changes are recommended here, except perhaps that 

project planning and administration should heavily stress the importance 

of a good anticontamination program. 

Z.3.7 DigitalTV 

The availability of microcircuits and microelectronic storage devices 

makes it desirable to consider the use of compressed TV in future experi­

ments to reduce the time required for each picture sequence. 

In addition, improved methods of remote operation are required so that 

the experiment can be operated throughout the orbit. Compression-improved 

data storage and improved command storage are required. 

2.3.8 Optical calibration system 

A calibration system that includes the primary and secondary optical 

surfaces should be considered. Also, it would be desirable to check more 

of the sensor field with the orbital calibration system. 
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2. 3.8 Data handling and experiment calibration 

It is believed that considerably greater emphasis must be placed on 

engineering a more accurate TV photometer for future experiments. 

Three main areas require improvement: 

1. Uniformity through the field, 

2. Measurement repeatability, 

3. Measurement temperature sensitivity. 
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REVIEW OF CELESCOPE DATA-PROCESSING PROGRAMS 

AND CALIBRATION PROCEDURES 

1. INTRODUCTION 

This section of the performance evaluation report discusses the data­

processing system and the associated orbital calibration data for the experi­

ment. First, I will outline a number of conclusions that we were able to 

determine from the analysis of the data. Section 2 discusses our final data­

processing system. The orbital calibration data are discussed in Section 3. 

Section 4 describes the way we used the data to calibrate the cameras. 

Finally, Section 5 discusses phenomena that affect the accuracy of the data. 

This section will not provide a detailed description of the programs nor will 

it delve into the theory of the calibration effort. Both these subjects will 

be covered elsewhere. From my analysis of the data, I was able to reach 

the following conclusions: 

1. Calibration of the experiment in orbit was possible and necessary. 

We were able to reduce the weighted RMS magnitude deviation for all cameras 

to under 0.2 mag. 

Z. The photometric accuracy of a television system is satisfactory if 

proper attention is paid to the data-reduction system and the in situ calibra­

tion of the system. 

3. The time-decay characteristics of the cameras were determined by 

repeatedly observing standard areas. A linear correction in observed magni­

tude was the best correction rather than a nonlinear correction to the beam 

current. 

4. The choice of two filters for each camera provided necessary redun­

dancy, but a significant amount of data in the center of the camera had a 

composite filter-transmission curve and were rejected for that reason. 
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5. The initial review and correlation of the data were unnecessarily 

complicated because all the pertinent data were not on the same data channel. 

6. Calibration and data collection must be an integrated effort. Cali­

bration data must be acquired during the initial operation phases. 

Before discussing the main topics of this section, I should like to show 

some typical examples of our television pictures. One must remember that 

we are interested in photometry, not positional astronomy. The shape and 

size of the images are more than adequate for our purposes. 

Figure 1 shows one of these pictures. Note the target ring in each 

corner of the picture; the shadow in the upper left corner; the calibration 

lamp ju-st below the center of the picture; and its ghost slightly below and to 

the left. All other objects are stars. Each frame consists of 256 scan lines 

designated by the number k, with each line containing Z51 pixels designated 

by the number 2, making a total of 64, 256 intensity points I(k, 1). The frames 

are divided into two spectral regions by two filters: lines 1 to approximately 

115 have one spectral range; lines 115-141 have a composite response from 

both filters; lines 142 to 256 have a different spectral range. Most pointings 

had exposures from three cameras. Figure 2 shows a montage of pictures 

from three cameras and a ground-based photograph. The stars in the tele­

vision pictures range from 6 to 12 mag. The diffuse radiation in the U4 filter 

of camera 4 is the Lyman-a radiation from the geocorona. Figure 3 shows 

an exposure of brighter stars in the Orion area. Note the larger image size 

caused by saturation in the target. 
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2. DATA-REDUCTION SYSTEM 

The data-processing system that evolved during the project deserves 

some philosophical comment. We thought we had the complete system ready 

before launch and would have only to reduce the data. However, we were 

not well prepared for noisy data (streaks, parity errors, and partial frames), 

nor were we able to handle the Lyman-a radiation in cameras 2 and 4. Both 

these problems required extensive modifications to the system. The moral 

is to expect problems and to be prepared to stop the system until they are 

solved, not to try to run some of the data through one system and some through 

another. 

We received a large number of television pictures from the experiment. 

Some of them were of poor quality because of parity errors originating in the 

transmission link or in the data-handling equipment. We found that a quick 

and accurate quality check of the data was manditory. They were hand carried 

from the data-processing section to our operations team at the OAO Control 

Center and immediately evaluated. "Missing" or poor-quality data were then 

reprocessed before the tapes went into storage, thus cutting the time to 

reprocess the tapes from months to weeks. Even with these procedures, the 

data arrived at SAO at least 6 weeks after the experiment took the pictures. 

The final data-reduction system has a feature that we consider worthy of 

special attention: a composite observation file, which consists of composite 

observations records. Each record contains space for all the information 

that we ever expect to know about an object. 

Each object in a picture starts as an empty record with locations for 

all the information that the data system generates. Subsequent programs read 

the information from and add information to the record. Each piece of data has 

an existence bit that tells if the information is in the record; therefore, the 

availability of information in the record can be determined without unpacking 

all the data. Sufficient blank spaces are reserved for information that may 
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be added later. The advantages of common input and output routines are 

self-evident. In addition, the data can easily be used and sorted. We highly 

recommend this system. 

The data system shown in Figure 4 consists of four main programs: 

Phases 0, 1, 3, and, 5. (Phases Z, 4, 6, and 7 existed but have either been 

absorbed by the existing phases or were dropped.) The temperatures and 

pointing information are checked at the Phase 0 level. Some data were 

missing or incorrect on a significant number of the pictures because the 

necessary data were on four separate data channels and were merged after 

they were received at GSFC. Also, the camera number was not included 

with the picture data or with any other data. We strongly recommend that, 

if possible, future experiments include all data on one channel and that 

numbers identifying the cameras be incorporated into the television data. 

At this stage, the pictures were also entered into the automatic bookkeep­

ing system. (It is not a simple task to keep track of 10, 000 frames of data 

in any one of 10 stages of processing.) 

The frames then proceed to Phase 1, the heart of the-data system. It is 

the program that finds all the stars in each frame and all the intensities 

I(k, i) associated with each star. We assume that the stars are relatively 

sharp spikes on a smooth background and that we can fit a general cubic 

+Fk+ G k2 I2 J 3 , equation, A+Bk 3 + C k z +Dk+Ek 2 +H+ to the background. 

Any intensity points that are Z. 5 standard deviations above the fitted back­

ground are regarded as parts of stars. 

The program has three distinct parts: the first section fits the back­

ground; the second decides which points are signal and to which star they 

belong; and the third prints the output of the stars for any necessary manual 

review and creates an output tape for the remaining stages of processing. 

The first section of the program computes a significance level for each 

filter half of the frame by using a least-squares technique to fit the background 
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Figure 4. Schematic diagram of the data-processing system. 
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equation to every fifth intensity point on every fifth line. It iterates this 

step at least two times, eliminating any points that are more than 3 standard 

deviations from the fit, because we assume that these points are not part of 
the background but are signal points from stars that were chosen because of 

the regular grid. The iteration procedure continues until the standard devia­

tion of the fit is changing by less than 0. Z. This final equation is the back­

ground that the program uses for each half frame. Phase 1 then computes a 

significance level by adding 2. 5 times the standard deviation of the fit to the 

background equation at each raster point. All intensities greater than or 

equal to the significance level are signal; all others are background noise. 

Figure 5 shows the significance level for every 16th point of the sample 

frame. Note the different levels for the upper and the lower portions of the 

frame. 

The second section of Phase 1 groups into objects all contiguous points 

greater than or equal to the significance level. The program starts search­

ing for objects in the upper left corner of the frame and works across and 

down until it finds a point above the significance level. The program finds 

all contiguous points above the significance level and then searches for the 

next star. 

The third portion of the program calculates the center of intensity of the 
star, subtracts the calculated background from the individual points, and 

computes the sum of the net individual intensities (SIGMA). On the basis of 

the object's shape and density of points, the program then decides whether it 

is either a star; an object that may be either a star or noise; or just noise. 

If it is a star, the information is written on the output tape and printed. If 

it is a questionable object, Phase 1 only prints the information on the output 

page. If the object is noise, it is dropped, Figure 6 shows examples of the 

first two classes of objects; a star and a large spurious object. Note the 

message on the second object: THIS OBJECT IS NOT ON THE OUTPUT TAPE. 
The program then prints a symbol picture of all points above the significance 

level and numbers each star at its center of intensity so that we can easily 

find the star in the printed output. Figure 7 shows a portion of this printed 

picture for the sample frame. 
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Figure 5. Significance level for camera 3, contact Rosman, orbit 413. 



----------------------------------------------------------------------------------------------------------------------------------------

Tape FM UPPER LEFT CORNER(ROW,COL) CENTER INTENSITY N LENGTH FAC SEO.NUM
 
TEST 2 118 109 121 112 727 31 6 7 2.50 59
 

BACKGROUND AVERAGE= 11.23 K,L AND RAW INTENSITY OF THE PEAK ARE 121 113 73
 

0 0 19 24 22 0 0
 
0 20 36 42 33 24 0
 

17 24 42 68 64 40 19
 
0 24 42 69 73 44 23
 

0 17 35 58 63 33 18
 
0 0 16 27 23 16 0
 

TAPE FM UPPER LEFT CORNER(ROW,COL) CENTER INTESNITY N LENGTH FAC SEO.NUM
 
TEST 2 121 55 123 56 31 5 4 3 2.50 61
 

BACKGROUND AVERAGE= 12.07 K,L AND RAW INTENSITY OF THE PEAK ARE 124 55 20
 

0 18 0
 
0 0 18
 
0 17 0
 

20 0 18
 

- THIS OBJECT IS NOT ON THE OUTPUT TAPE --

Figure 6. Output from the progran that separates the stars from the background. 
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Figure 7. Example of printed picture for sample frame. 
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Phase 3, the intensity reduction program, uses the raw input intensity 

calculated by Phase 1, the instrument temperatures, and the calibration data 

to calculate the intensity of the star. It also eliminates the known positional 

distortion in the frame and calculates the angular position of each object 

relative to the center of the frame. To do this it needs to calculate the target 

gain at any position on the target. 

Each camera was calibrated slightly differently: camera I had a 14-point 

grid; camera 3, a 17-point grid; and cameras 2 and 4, a 26-point grid. These 

grid points were in a regular pattern, not at the maximum, minimum or slope 

changes of the target-gain surfaces. Therefore, we needed a procedure for 

calculating the gain at any point on the target. We tried both interpolation 

and curve-fitting techniques. After evaluating both, we chose a second-order 

interpolator because a linear one would not work. Also, a new regular 9 X 9 

array of grid points for each camera was defined for programing convenience 

and program efficiency. Our second-order interpolation scheme is best 

introduced by the short description of a first-order ruled-surface interpolator 

that follows. To find the value of the gain G(k,2) shown in Figure 8, choose 

the surrounding four gain points Gl (k1 , I), G2 (kzIz) G 3 (k 3,'1 3 ) and G4 (k4 , 14), 

and draw straight lines through G and G z and through G 3 and G4 (the same 

value results if the pairing is G I - G 4 and G2-G3). Then "roll" the line AA' 

along the lines GI G2 and G3G4 such that the fractional distances along each 

line are equal (G4A/13G4 = GIA'/GI G). The gain G(k. P) is defined when 

the line AA' passes over the point. Our second-order ruled-surface inter­

polator uses an additional surrounding eight points and ensures that the slope 

of the surface is continuous. 
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Figure 8. Schematic figure of the interpolation procedure. 
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This procedure was used to convert the existing points to the regular 

9 X 9 grid needed by the programs and to interpolate values for the target 

gain for the reduction of the stellar data. 

Phase 5 matches the stars in each frame with the Celescope catalog of 

stars, using a configuration match between the stars in the frame and those 

in the catalog. The program will correctly match the frame with the catalog 

even if the input center for the frame is 30 arcmin from the actual center. 

The automatic identification program worked satisfactorily for most of our 

data. The frame must be manually matched if there are fewer than four stars 

common to both the frame and the catalog. A review of all frames for correct 

star identification follows. At this stage, all the individual objects are com­

piled on one master tape. When the compilation is complete, the entire set 

of data is checked for consistency. 
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3. CALIBRATION DATA 

Before we launched the experiment, we realized the need for in-orbit 

calibration and planned to take data for it. The least we could expect was 

a decay in sensitivity with time, but because of the 2 years between com­

ponent calibration and the launch, we also planned to check the calibration 

in orbit. In addition, we felt strong pressure to fly a successful experiment 

and to acquire quickly a statistically significant amount of scientific data 

before a premature failure. The apparent conflict between the two goals of 

gathering calibration data and gathering, scientific data in the initial orbits 

was not easy to resolve. In retrospect, we feel we turned the experiment 

on too quickly in an unknown environment. Camera 2 was damaged because 

of this haste. Furthermore, we pushed on to gather early scientific data at 

the expense of early calibration data. After the first month of operation, 

we began systematically to gather data for this task. They are listed below 

and are discussed in order. 

1. A regular grid of stars or star fields; observations with a separation 

of 10 to 30 arcmin between pointings. 

2. Repeated observations of the same stars at regular time intervals. 

3. Multiple exposures at the same pointing with different exposure times. 

4. Repeated observations at the beginning and at the end of every standard, 

slew sequence.
 

5. Multiple exposures at the same pointing and exposure time. 

In order to map the camera sensitivities, each camera observed a num­

ber of stars of different intensity with two or more exposure times at each 

of 40 positions. Whenever possible, we used areas containing many stars so 

that the frames contained many calibration stars at the same time. 

We observed the first regular grid, which was a compromise between 

calibration and data collection, from orbits 400 to 490. During this period, 
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many stars were observed six times to obtain calibration data as well as 

scientific data. Later orbital periods were devoted entirely to this type of 

operation and they provided data for the calibration-improvement program. 

Data from these grids were essential for the calibration of the experiment. 

The time decay of the system is most easily determined if the same 

stars are observed at the same positions on the target at regular intervals. 

Because of sun, power, and thermal constraints, this was impossible with 

our experiment, but we did observe a number of standard star fields as 

often as practical. Three star fields were used as primary calibration areas. 

We observed one as long as possible and then observed one of the other two 

fields as a standard until it was no longer available. Thus, we continually 

observed one of the three primary standard fields at least once during every 

operating period. These three areas, along with any chance repeat obser­

vations more than Z0 orbits apart, provided the data that were used to deter­

mined the time decay for each camera-filter combination. 

Multiple exposures at the same pointing but with different exposure times 

were used to test the calibration of the experiment. The one difference 

between these and the raster scans is the number of variables involved. Here, 

only the input energy to the target varies, so it is easier to isolate the target 

gain from the coupled effects of the filter, photocathode, and target gains. 

Identical exposures test the repeatability of the instrument. Each of our 

standard 36-exposure patterns started and ended at the same point for a quick 

check on the stability of the instrument's sensitivity. Twice, we took approxi­

mately 10 consecutive exposures of several different stars to determine the 

repeatability of the observations. Magnitudes determined from these sets 

of observations varied by less than 0. 2 mag. 
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4. USE OF THE CALIBRATION DATA 

The calibration data were used to determine 

I. 	 An exposure time correction. 

2. 	 The decay characteristics of the cameras. 

3. 	 The change in the area sensitivity of the target gain from initial 

calibration until launch. 

All 	the data require an exposure-time correction, but it is only important 

for short exposure times. The ground computer controlled the time between 

the expose-on and the expose-off commands (the exposure time) by counting 

a series of 1-sec pulses. It counted the first pulse after sending the expose­

on commands as zero and then waited the required number of seconds before 

sending the expose-off commands. This counting technique created an unknown 

but 	constant increase in each exposure time. 

We deduced the constant by determining the additional increment of time 

that gave the best agreement in magnitudes between consecutive exposu-res 

of 1, 5, 15, 30 and 60 sec of the same stars. A Z-sec increment gave the 

best fit. Table I lists this magnitude correction for each exposure time 

Note that only the short exposure times are affected and that 1-sec exposure 

times may have the least-accurate magnitudes. 

Table 1. 	 Magnitude correction for a 2-sec 
increase in exposure time. 

Exposure time Correction 
(sec) (mag) 

60 	 0.036 

30 	 0.068 

15 	 0. 136 

5 	 0. 365 

1 	 1.193
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The time-decay history of each camera-filter combination was determined 

by fitting a power series to the star data with a least-squares technique. Each 

star must have a unique magnitude at time zero. Its magnitude calculated 

from measurements at any other time will increase if the system decays. 

Magnitudes are defined as -2.5 log (power); hence, lower power signals have 

larger magnitudes. We therefore assumed that 

n A nM(t ) =: l ) 

1 

If a star was observed twice, 

n n 

M(t=0) = M(t1 ) -ZAM n A
 

1 1
 

and hence the equation 

n
 

M(t) - M(t) A n (t 1 -t 2' )
 

1 

when solved for all pairs of stars defines the coefficients A in the decay 

equation for the system. 

Note that this is a linear correction; that is, every magnitude receives 

the same additive correction. This conflicts with the assumption that the 

primary decay mechanism was a diminishing readout beam current. A 

decaying beam current would show a nonlinear change because the target­

gain curves are nonlinear. We attempted to compute the decay with a decaying 

beam current but were unsuccessful. 
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The standard calibration-area data and all chance repeats greater than 

20 orbits apart were used in these fits. Other data were not used, because 

they reflect area sensitivity changes and isolated frame shifts rather than 

time decays. The curves determined with this program are shown in 

Figures 9 to 13. Each curve stops at the last reliable data point. 

We used a Fletcher-Powell optimization technique to improve the target­

gain curves. The input data were selected from the regular calibration grids 

and any other data that were appropriate. All marginal data and data that 

were contaminated by the filter discontinuity were eliminated from these 

runs. 

The program uses pairs of stars observed at different positions on the 

target. It computes the required gain change for each grid point that will 

minimize the RIVIS magnitude deviation of all pairs of stars. Since we assume 

that reciprocity holds for our tubes, we also use data at different exposure 

times. A series of laboratory tests on similar tubes showed no reciprocity failure. 

The procedure for calibration improvement went as follows. Each 

camera was treated separately, and the stars in one filter were not compared 

with the stars in the other. First, the decay program calculated a decay 

curve for each filter. These curves provided a first-order correction to the 

magnitude calibration, and then the optimization program improved the gain 

curves. These curves were then used to calculate new magnitudes. Next, 

we calculated a new set of decay curves. The iteration between these two 

techniques continued until the results converged. The resulting gain curves 

showed only slight variations from the curves determined from the preflight 

data. 

A short comment about the amount of data is included here because 

insufficient data may produce misleading results. All the programs had 

sufficient data for a meaningful solution. The decay equation contained six 

coefficients for camera 1, and five for cameras 3 and 4. At least 320 data 

points were used for the least-squares fit. The gain-curve optimization 

program has 500 parameters and a minimum of 1500 data points. 
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Table 2 lists the final result of the magnitude-improvement procedure. 

Table 2. Final RMS magnitude discrepancies. 

RMS discrepancy 

Camera (mag) 

1 0.17 

3 0.20 

4 0.19 
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5. PHENOMENA THAT AFFECT THE ACCURACY OF THE DATA
 

A number of conditions that affect the data are discussed on a phenomenol­

ogical basis in the following sections. Some of the effects were correctable; 

others resulted in rejection of the data. Most of these data were not used in 

the magnitude-improvement program. Each of the following effects is dis­

cussed in detail: 

1. The discontinuity in the filter pass bands at the center of the Uvicon. 

2. Merged objects. 

3. Objects near target defects. 

4. A high background from Lyman-a radiation. 

5. Daylight observations. 

6. Poor data. 

Discontinuity in passbands. The choice of two filters for each Uvicon was 

based on the principle of redundancy for the experiment. If one camera failed, 

another camera still had each filter band for continued observation. This 

increased the reliability of the system, but it decreased the amount of accurate 

data that could be obtained. 

The filter in any system should be placed far enough from the focal plane 

that local dust spots and transmission anomalies affect only a small portion 

of the beam. In our case, the beam was effectively 30 arcmin in diameter at the 

filter plane. That is, a star must be 15 arcmin away from the discontinuity 

between the filters before all the radiation passes through the same filter (see 

Figure 14). Hence, stars observed in the 30-arcmin band in the center of the 

Uvicon did not have a single filter pass band but a combination from the two 

filters. Furthermore, the position of the center had an uncertainty of ± 5 arcmin 

because of magnetic shifts in the imaging section. We resolved this problem 

by rejecting the magnitudes of any star within 5 arcmin of the predicted discon­

tinuity. Stars within the range from 5 to 15 arcmin of the discontinuity are given 

lower weight in magnitude computations. 
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Figure 14. 	 Schematic drawing of the geometry of the filter-light-cone inter­
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The net effect of this redundancy was fewer data because we took small 

slews from one exposure to the next so that each star would be in a good 

section of the filter pass band. This choice did provide the necessary redun­

dancy in the shorter wavelength bands when camera 2 failed. However, for 

the next experiment, one filter for each camera should be seriously con­

sidered. The extra data-gathering capability may more than offset the lack 

of redundancy. 

Merged objects. One characteristic of our Uvicons is the spreading of 

a saturated image. Many stars were close enough in angular separation 

that the images merged together. This merging can change the transfer 

function of the Uvicons because the combined image becomes more like an 

area source than a point source. It also caused us problems in trying to 

separate the merged stars. We use a number of procedures, ranging from 

simply dividing them,manually to complicated programs that used a least­

squares technique to fit elliptical Gaussian surfaces to the merged images 

and then computed the intensity in each object. The latter system was too 

complicated except for objects of extreme scientific importance. The 

remainder of the objects were divided into three subjective catagories: 

1. Slightly merged images. 

2. Moderately merged images. 

3. Merged images that could not be separated. 

We found that merged-image magnitudes are dependent on the degree 

of merging; this conclusion results from comparisons of the magnitudes of 

the same objects observed at shorter exposures. We therefore use moderately 

merged images with a lower weight and treat inseparable images as one com­

bined star. In the case of an important star, shorter exposure times were 

used to obtain useful magnitudes. 

Objects merged with or superimposed on target defects. Each camera 

has a few defects in its target. The calibration lamp is in this category because 

it can cover or merge with a star image. Each of these objects occupies a 
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very localized area and, because of our operation procedures of raster 

mapping, any stars under these defects would be in another area of the 

target at another exposure and could be measured there. In general, these 

defects were a minor nuisance that affected only a small portion of the target. 

Lyman a. The problem of Lyman-a radiation from the geocorona- was 

not easily resolved. Its intensity varied with the exposure time and with the 

position and pointing of the spacecraft. It was not detectable on I- and 5-sec 

exposures. In some 15-sec exposures, there was no detectable Lyman-a 

background; in others it was apparent. All 30- and 60-sec exposures had a 

significant background from this source. We are as yet unable to reduce the 

magnitudes of stars observed in an area of high Lyman-a background. The net 
effect of this is to limit our U4 magnitudes (the filter that includes 1216 A) 

to those from exposures of 1 and 5 sec and some of 15 sec. This restricts 

the observations to bright stars because we are not able to observe faint stars 

through the geocorona. We did, however, observe a number of brighter stars 

and have accurate magnitudes for them. 

Daylight observations. During the initial orbits, checkout operations in 

daylight were impossible. The background of scattered light would have 

caused the same problems as the Lyman-a background for the reduction sys­

tem even had we made daylight observations. Later, we took some limited 

data during daylight. The spacecraft pointed away from the sun rather than 

toward it, and only the dark side of the earth was visible from the experiment. 

These pictures proved that we could gather accurate data under these condi­

tions if we limited our maximum exposure time to 30 sec. 

Poor data. A limited number of frames were rejected for various 

reasons. Pictures distorted because the magnetic unloading system (MUS) 

was mistakenly left on and high parity rates from some stations were the 

primary causes. These data are - 1% of the total, the distorted pictures 

were eliminated from the catalog. The frames with parity errors were used 

if possible. Single-line streaks in the data were eliminated by replacing them 

with the average of the lines above and below them. A partial picture was 
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reduced if at least one half of it was free from parity errors. Using these 

techniques, we were able to reduce nearly all poor data. 

In conclusion, a number of phenomena affected the accuracy of some of 

the observations. We compensated for nearly all of them by operational 

techniques, data redundancy, and computer programs. We are, as yet, 

unable to compensate for rhe Lyman-a background in filter 4 for exposure 

times longer than 15 sec. 
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DRAMATIS PERSONAE 

The general scientific planning that became the basis for Project 

Celescope originated in a series of meetings of the scientific staffs of the 

Smithsonian Astrophysical Observatory (SAO) and Harvard College Observa­

tory in February 1958. Following these meetings, a committee consisting 

of Dr. R. J. Davis, Dr. K. G. Henize, Dr. R. E. McCrosky, Dr. G. F. 

Schilling, and Dr. C. A. Whitney made more detailed plans and wrote a 

proposal that eventually became the basis for the NASA grants and contracts 

that supported Project Celescope. Dr. F. L. Whipple and Dr. Davis were 

SAO's delegates to NASA's Working Group on Orbiting Astronomical Observa­

tories (OAO), which developed the relative roles of spacecraft and experiment 

in the OAO. Celescope became an official project of SAO in 1959. The name 

was suggested by Dr. D. H. Menzel in 1960 as the winning entry in an informal 

contest for naming the project; the name implies that the Smithsonian Experi­

ment is one of the first truly Celestial telescopes. 

Since the beginning, Dr. Whipple has been Principal Investigator and 

Dr. Davis has been Coinvestigator and Project Scientist. From 1959 to 1961, 

engineering and administration were coordinated by Mr. F. R. Nitchie, Jr., 

Engineer-Administrator. In 1962, the title of this position was changed to 

Project Manager. Mr. G. K. Megerian served as Project Manager in 1962; 

Dr. C. A. Lundquist, as Acting Project Manager in 1963; Mr. J. J. Burke, 

as Project Managerinl964-1968; Mr. J. J. Ainley, 1968-1970; Mr. R. T. Ayer, 

1970-present. While Acting Project Manager, Dr. Lundquist was assisted 

for several months each by project administrators: Mr. L. McGrath, Mr. 

H. Rosenthal, and Mr. E. Kohn. 

For the first few years, the major effort in Celescope was devoted to 

engineering. From 1959-1964, our engineering staff consisted of Dr. M. D. 

Grossi, Electronics Engineer; Mr. S. Sydor, Optical Specialist; and Mr. 

J. M. Franklin, Mechanical Specialist. From 1959-1962, Mr. H. Cobb 
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served as Mechanical Engineer. From 1964-present, Dr. Y. Nozawa has 

been Electronics Engineer, and special engineering needs have been covered 

by Mr. T. E. Hoffman and others from SAO's Engineering Department. 

In 1966, the post of Project Engineer was created; it has been filled since 

that time by Dr. Nozawa. A critical activity of the engineering section from 

1965-1969 was field engineering during subsystem and system testing,
 

launch preparation, and orbital operations. Dr. Nozawa was SAO's field
 

engineer during that time.
 

Members of the SAO Field Engineering Team, which performed engin­

eering tests, system acceptance tests, and launch preparation, were as 

follows: Mr. W. Peters (Manager, 1967-1968), Mr. J. Munier (Assistant 

Manager, 1964-1965), Mr. B. A. McLean (Supervisor from EMR, 1964), 

Mr. J. W. Kennedy (Supervisor from EMR, 1965), Mr. D. R. Nelson 

(Supervisor from EMR, 1967-1968), Mr. J. Brown (Member from EMR, 

1964-1965), Mr. J. Faso (Member from EMR, 1964-1965), Mr. G. Komen 

(Member from EMR, 1964-1965), and others who became members of the 

Orbital Operation Group. The successful completion of acceptance tests and 

launch preparation of the Celescope experiment is heavily credited to the 

leadership, cooperation, and creativity of Mr. Peters, Mr. Nelson, Mr. 

L. Koshimeder from the test and integration division of Goddard Space 

Flight Center, and Mr. R. A. White from the OAO project office. 

During 1968, 1969, and 1970, the major effort in Celescope was orbital 

operations; Dr. W. A. Deutschman was in charge of that activity. The success 

of the Celescope mission during orbital operations was in large measure the 

result of the efforts by him and his team in planning, computer programing, 

controlling, and reviewing the operating requirements and procedures. 

Special recognition is due Mr. J. Thorp and Mr. J. Latimer for representing 

Celescope as Field Managers during this round-the-clock operation; Mr. J. 

Block, as EMR Field Manager; and Mr. T. Omara and Mr. D. Moyer of 

Grumman Aircraft Corp., who acted as Project Operations Controllers for 

the OO satellite. 
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During the summer and fall of 1970, a data-processing-improvement 

group consisting of Dr. C. Lundquist, Dr. R. Davis, Dr. W. Deutschman, 

Dr. E. Averet, Dr. E. Gaposchkin, Dr. S. Ross, Dr. E. Young, Dr. C. 

Gaposchkin, Dr. Y. Nozawa, Mrs. K. Haramundanis, Mr. R. Ayer, Mr. 

J. Thorp, and Mr. R. Loeser met every week to discuss the best way to use 

the calibration data. Many other individuals in the Observatory also con­

tributed to this effort. 

Since 1969, a major effort in Celescope has been data reduction, of 

which Mrs. K. L. Haramundanis has been in charge. Mrs. Haramundanis 

was responsible for the major portion of the work involved in converting the 

Celescope's general data-reduction requirements into a system involving 

both computer operations and manual review. She participated heavily in the 

identification of the stars observed by Celescope. Her data-reduction sec­

tion was responsible not only for handling the vast amount of data involved 

in analyzing over 8000 Celescope pictures but also for keeping track of the 

source, location, and status of the individual data items. The creation of a 

star catalog from this vast body of Celescope data is in large measure the 

result of her efforts and those of her section. 

During the entire life of the project, computer programing support has 

been important. From 1959-1963, Mr. G. Szabo was in charge of that 

activity. Since then, the programing effort has been headed by Mrs. Havelock 

(1963-1964), Mrs. B. (Feit) Nair (1964-1965), Mr. P. Conklin (1965), Mr. 

J. D. de Clercq Zubli (1966-1970), Mr. R. Loeser (1970), and Mrs. L. 

Kirschner (1966-present). 

Since 1970, Dr. Deutschman has been Deputy Project Scientist, in charge 

of coordinating the activities of the various sections in Celescope. He has 

overall responsibility for Celescope data processing. 

From 1959-1969, Celescope maintained a spectrophotometric standards 

laboratory for calibrating the optical and spectrophotometric characteristics 

of Celescope's optical elements, calibration lamps, and Uvicons. From 
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1959-1960, Dr. A. V. Baez headed this laboratory. From 1960-1962, it 

was headed by Dr. 0. P. Rustgi. In 1963, and other times on a temporary 

basis, Mr. C. Miles was in charge. 

In 1964, scientific activities of the laboratory were supervised by Dr. 

J. Marsh and Dr. I. Simon under subcontract to A. D. Little, Inc. 

From 1965-1969, Mr. H. O'Brien was manager of the spectrophotometric 

standards laboratory; he had been one of the laboratory assistants during 

1963-1964. In 1966, under subcontract again, A. D. Little, Inc., furnished 

the services for Dr. P. von Thiina for scientific supervision of the activity 

required for recalibrating the primary laboratory standards against a black 

thermocouple standard. During the entire lifetime of the laboratory, 1959­

1969, Mr. P. J. Hoffman performed ably as a physical-science aide. 

During the 13 years that Project Celescope has operated, the above
 

Project Staff has been ably supported by a number of devoted employees, as
 

follows:
 

Physical-Science Aides: Mrs. G. Wald, Dr. E. Godfredsen, Mr. F. 

Ahern, Mrs. A. Renshaw, Mr. J. Gallagher, Miss M. Drugan, Mr. J. Black, 

Mr. I. A. Ahmad, Mrs. E. Green, and S. Strom, D. Cunnold, E. Gerard, 

A. J. Malaise, and N. Reghavan. 

Programers: Miss V. Kan, Mr. I. Taylor, Mr. M. Patenaude, Mr. 

P. Collins, Mrs. D. Hills, Mrs. 0. Johonnot, Mr. G. Bullock, and Mr. B. 

Welch. 

Assisting Engineers: Mr. E. Arazi, Mr. S. Asano, Mr. W. Ng, Mr. 

A. Goldstein, Mr. W. Grim, and Mr. S. Shell. 

Laboratory Technicians: Mr. R. Beckett, Mr. F. Licata, Mr. M. 

Kalish, Mr. T. Lee, Mr. P. Griffiths, Mr. A. Bardos, Mr. D. Frost, Mr. 

E. A. Monash, and Mr. J. Munier. 

Data-Analyst Clerks: Mr. P. Sylvester, Mr. G. Westgate, Mrs. L. 

Cannell, Mr. R. Jarvis, Mr. I. van der Ley, Mr. W. Persons, Miss 

A. Ballard, Miss C. Jones, Mr. A. Kallai, Miss A. Brownlee, Mrs. S. Yeh, 

Mrs. Z. Gallagher, Mr. R. Palleschi, Mr. C. Sprangers, Mr. J. Orman, 

and Mr. A. Girnius. 
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Astronomers: Prof. C. Payne-Gaposchkin and Mrs. K. (Hebb) O'Neill. 

AdministrativeAssistants: Mr. J. Taylor and Mr. E. Shenton. 

Orbital Operations. SAO: Mr. J. Thorp (Field Manager), Mr. J. 

Latimer, Mr. J. Luce, Mr. L. Greenhouse, Mr. T. Cram, Mr. A. Oakes, 

and Mr. W. Munn. EMR: Mr. J. Block, Mr. L. O'Connor, Mr. 0. Brown, 

Mr. P. Scoles, Mr. C. Sloan, Mr. K. Leilich, and Mr. T. Dennison. 

Secretaries: Mrs. H. M. Beattie, Mrs. B. Hicks, Mrs. P. (Kluge) 

McMullen, Mrs. P. Januszkiewicz, Mrs. M. deJoie, Mrs. A. Green, Mrs. 

B. Millar, Mrs. M. V. Flaherty, Mrs. C. Williams, Miss E. Shipe, and 

Mrs. L. (Poireir) Jordan. 

Assistance from other Departments: Mr. M. N. Malec (Contracts), 

Dr. E. M. Gaposchkin (Satellite Geodesy), Mr. C. Tillinghast (Administra­

tion), Mr. L. Campbell (Administration), Mr. G. Woron (Contracts), Miss 

E. Collins (Ed. & Pub.), Mr. E. N. Hayes (Ed. & Pub.), Mrs. A. Omundsen 

(Ed. & Pub.), Mrs. C. Wong (Ed. & Pub.), Mr. C. Hansen (Ed. & Pub.), 

and Mr. R. Martin (Computer). 

Scientific advice and interpretation were provided by many other mem­

bers of the Observatory staff, including the following: Dr. E. H. Avrett, 

Dr. J. G. Baker, Mr. D. F. Carbon, Dr. N. P. Carleton, Dr. G. G. Fazio, 

Dr. F. A. Franklin, Dr. 0. J. Gingerich, Dr. P. W. Hodge, Dr. W. 

Kalkofen, Mr. R. L. Kurucz, Dr. D. W. Latham, Dr. R. W. Noyes, Dr. 

E. Peytremann, Dr. W. W. Salisbury, and Dr. R. E. Schild. 

In addition to the above employees of the Smithsonian Astrophysical 

Observatory, we wish to acknowledge the support of many staff members at 

the Smithsonian Institution in Washington, D. C. Especially important were 

the support and encouragement given by Dr. Leonard Carmichael, Secretary 

of the Smithsonian Institution until 1964, and by Dr. S. Dillon Ripley, 

Secretary since that time. Mr. James Bradley, Assistant Secretary, helped 

in a number of ways, especially in negotiating contracts between the 

Smithsonian Institution and EMR, Westinghouse, and the National Aeronautics 

and Space Administration. 
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Almost all the detailed design, fabrication, and testing of the Celescope 

hardware were performed by subcontractors. Among the most important 

were the EMR Telemetry Division of Weston Instruments, Inc. (formerly 

known as Electro-Mechanical Research, Inc.); the Research Laboratories 

of the Westinghouse Electric Corp. ; the Harshaw Chemical Co. ; Astro-Data, 

Inc. , and A. D. Little, Inc. EMR was prime contractor to SAO for the 

payload and ground-support systems; they had important subcontracts with 

Westinghouse, Harshaw, and the Ferson Optical Co. Westinghouse was 

responsible to SAO for development and fabrication of the Uvicon camera 

tubes; later that responsibility was changed to become a subcontract through 

EMR and in 1965 the effort was transferred from the Research Laboratories 

to the tube division. The raw materials for all the barium fluoride and 

lithium fluoride optical elements used in the Celescope paylaod were provided 

by the Harshaw Chemical Company - some directly under contract to SAO, 

some under subcontract to EMR, and some under subcontract to Westinghouse. 

The Ferson Optical Co. fabricated the Schwarzschild telescopes and 

the Corning and Suprasil filters. They had an important subcontract with 

Saffran Engineering Company for manufacture of the titanium structural 

components of these telescopes. Astro-Data designed and fabricated the 

data-handling equipment that Celescope used to record selected television 

pictures at Goddard Spaceflight Center and to reformat those pictures for 

analysis on the CDC-6400 computer at SAO. In addition to the spectrophoto­

metric assistance described above, A. D. Little, Inc. performed a number 

of special engineering analyses for Celescope, including thermal and vibra­

tion analyses. 

Key subcontractor personnel involved in the Celescope effort were 

Mr. S. D. Bass, Project Manager for Celescope at EMR; Mr. B. J. Tucker, 

Project Engineer for Celescope at EMR; Dr. J. P. Magnin, first as head of 

the Advanced Development Department at EMR and later as General Manager 

of the Telemetry Division and finally as President of EMR; Dr. G. Goetze, 

Mr. R. Schneeberger, Mr. A. E. Anderson, Mr. D. D. Doughty, and Mr. H. 

Alting-Mees of Westinghouse; Mr. F. Ferson and Dr. A. Schatzel of Ferson. 
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The Orbiting Astronomical Observatory Project was operated by the 

Goddard Space Flight Center of the National Aeronautics and Space Adminis­

tration. The most important single factor contributing to the success of 

the OAO and its experiments was the support provided by GSFC. The OAO 

Program Office provided the money for the Celescope Project at SAO, the 

spacecraft, the test facilities, and the guidance necessary for SAO to produce 

a reliable experiment. The Data and Analysis Branch transformed the raw 

data received from the tracking stations into magnetic tapes that could be 

processed by SAO's CDC-6400 computer. The Tracking and Data Acquisition 

Branch provided the logistic support required for communicating with the 

GAO and with the Celescope experiment. Key personnel included Mr. R. 

Ziemer, Project Manager of the OAO Project, 1961-1965; Mr. J. Purcell, 

Project Manager since 1965; Mr. R. Stroup, Experiment Systems Manager; 

Mr. J. J. Ainley, Assistant Experiment Systems Manager; Mr. I. White, 

SAO Experiment Coordinator; Mr. W. White, Experiment Systems Manager 

since 1967; Mr. D. Parker, Data-Processing Engineer; Dr. J. E. Jupperian, 

Project Scientist for OAO; Mr. S. Osler, Mission Operations Manager, Mr. 

T. Omara of Grumman Aircraft Corp., Project Operations Controller; Mr. 

D. Moyer of GAC, Project Operations Controller; Mr. E. Light of GAC, and 

the other members of the Grumman Operations Grew; Mr. L. Koshimider, 

Experiment Test Manager; Mr. J. Stucker, Experiment Coordinator; and 

Mr. S. Socia, SCPS Manager. 

The OAO Program Office at NASA Headquarters provided financial, 

administrative, policy, and scientific support to Goddard Space Flight Center, 

without which the OAO Project could not have occurred. Especially helpful 

in supporting the OAO and Project Celescope were Dr. N. G. Roman, Head 

of Astronomy; Mr. C. D. Ashworth; and Mr. E. Ott. 
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BRIEF DESCRIPTION OF OAO AZ 

1. INTRODUCTION 

The National Aeronautics and Space Administration's Orbiting 

Astronomical Observatory (OAO) is the heaviest and most automated unman­

ned satellite the United States has launched. Its basic mission is to extend 

man's knowledge of the origin and development of the universe by observing 

celestial bodies from above the atmosphere. OAO AZ contains two experi­

ments: the Celescope of the Smithsonian Astrophysical Observatory and the 

University of Wisconsin Experiment. Both were intended to observe extremely 

young hot stars in ultraviolet, as well as other interesting objects, such as 

the planets, nebulae, interstellar matter, etc. 

Possibly the most significant feature of OAO AZ is the pointing precision 

required to keep its telescope aimed at a star. It has a high-performance, 

coarse-pointing accuracy of 1 arcmin. This accurate pointing is accomplished 

by using active stabilization with six star trackers onboard. 

The following description, with minor editorial changes, is from NASA's 

operation plan. 

The OAO AZ is a precisely stabilized observatory, weighing 4400 lb, 

that is capable of supporting a variety of astronomical experiments. The 

spacecraft is an 8-sided structure with a central tube, 4 ft in diameter, that 

carries 1000 lb of astronomical observing equipment. This structure is 

10 ft long and 7 ft wide. 

rGoddard Space Flight Center, X-513-68-301, Operation Plan 1-68, Orbiting 

Astronomical Observatory (OAO AZ), August 1968. 
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Eight solar-cell paddles are arranged on opposite sides of the spacecraft 
° in a plane making an angle of 33.75 with its longitudinal axis. Eight equally 

spaced radial trusses, extending the entire length of the spacecraft, protrude 

from the cylinder to form the corners of the octagon. The annular space 

between the inner structural tube and the outer octagon is divided into six 

bays by shelves fitted between the trusses to form continuous bulkheads 

around the central tube. 

Inside the central tube, at the location of the third shelf from the sepa­

ration plane or base of the spacecraft, are four equally spaced lugs for 

mounting the OAO experiment container. The eight radial trusses terminate 

in eight separate feet on an 80-in. diameter at the separation plane. These 

eight feet are fashioned to accommodate a Marmon-type separation clamp 

that fastens the spacecraft to its adapter on the launch vehicle for the trans­

mission of axial and lateral loads. 

Thin nonstructural aluminum, coated with aluminum oxide, covers the 

entire spacecraft except the opening for the optical equipment. This covering 

is a part of the spacecraft's thermal control subsystem. 

The spacecraft is made up of five basic subsystems: 

- Communications 

- Data processing and instrumentation 

- Power supply 

- Thermal control 

- Stabilization 

Each of these subsystems is described briefly in the following. 

2. COMMUNICATIONS SUBSYSTEM 

The communications subsystem of the OAO contains the spacecraft 

equipment provided for receiving command signals from the ground and for 
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transmitting tracking signals, command-verification signals, and spacecraft 

and experiment data. The communications equipment consists of four radio 

links: 

- Radio PCM/(NRZ) FSK/AM command (148.260 MHz) 

- Wide-band PCM/NRZ or split-phase/FM telemetry (400. 550 MHz) 

- Narrow-band PCM/PM telemetry (136.260 MHz) 

- Radio tracking beacon (136. 440 MHz). 

3. DATA-PROCESSING SUBSYSTEM 

The onboard data-processing subsystem provides the circuitry and 

storage capabilities necessary to verify, decode, store, and distribute 

digital spacecraft-control and experiment commands. Timing signals for 

internal synchronization of the data-processing subsystem and for use by the 

experiment and spacecraft instruments are also part of this system. It has 

the capability of converting spacecraft and experiment analog data to digital 

data and of assembling data into a format suitable for storage or real-time 

transmission to the ground. 

The command subassembly portion of the data-processing subsystem 

contains the circuitry for decoding, distributing, and storing the commands 

received from the ground command station via the radio command receiver 

system. The command decoder is capable of handling real-time and stored 

commands. Real-time commands are those to be executed immediately after 

being verified in the spacecraft from a bit-by-bit comparison of the command 

with its complement as received from the ground station. Stored commands 

are those placed in storage for execution at a later time. Stored commands 

are programable between 0 and 1023 spacecraft-equivalent min (62.9 sec 

equal 1 spacecraft-equivalent min) and can be executed in 15-sec increments. 

If two or more commands have the same execution time code, they will be 

executed in the same order in which they are stored. 
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4. THERMAL CONTROL 

External surface temperature of the spacecraft in orbit is determined 

by a heat balance between the vehicle and its environment, which includes 

the following sources: (a) radiation from the sun and earth, and (b) solar 

radiation reflected from the earth. 

The magnitude of the incident radiation and the temperature of the space­

craft depend on the orientation of the spacecraft and the percentage of the 

oribtal period that the spacecraft will be in sunlight. To compensate for the 

incident radiation, the spacecraft skins are fabricated of sheet aluminum 

having a high coefficient of thermal conductivity. 

The experiment packages and the OAO A2 internal structure are main­

tained at the equilibrium temperature levels specified by the experimenters. 

To isolate thermally the OAO AZ structure from heat sinks and sources, 

titanium, nylon, and fiberglas are used as connecting members to minimize 

heat conduction to or from the structure. Aluminized mylar is wrapped 

around various members to control radiant heat transfer. Decreasing the 

insulation between electronic equipment and the structure increases the 

equilibrium temperature of the stiucture. Thus, the various insulators act 

as valves controlling the influx of heat from various sources to the structure. 

The spacecraft structure gains heat internally from three distinct sources: 

(a) Radiation of heat from equipment to structure through super-insulation, 

(b) Conduction of heat from equipment to structure through gold-coated fiber­

glas fittings, and (c) External fittings directly attached to the structure 

radiating to, and receiving heat from, the space environment. 

Seventy-seven thermistors are located throughout the spacecraft to sample 

the temperature of the electronic equipment, spacecraft structure, and solar 

paddles. Critical components such as batteries and PPDS have two or three 

thermistors per unit; other black boxes usually have one thermistor. Ther­

mistors are also mounted at various points on the structure to indicate opera­

tional temperatures. 
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5. POWER SUPPLY 

The power supply must furnish properly regulated electrical power to the 

spacecraft during both the light and the dark portions of each orbit for the 

projected lifetime of the spacecraft. The following major equipment com­

prises the OAO power supply: 

- Solar-cell array
 

- Batteries
 

- Power-control unit and power-regulator unit
 

- Regulator-converter
 

- Inverter
 

- State-of-charge unit (SOCU)
 

6. STABILIZATION AND ATTITUDE-CONTROL SUBSYSTEM 

The operational requirements imposed on the spacecraft's stabilization 

and attitude-control subsystem were evolved to achieve the accuracy and 

stability that-the scientific missions demand from the observational equip­

ment. The system permits determination of the absolute direction of the 

optical axis of the spacecraft to an accuracy of 1 arcmin (rms circular error) 

and of the roll orientation of the optical axis to 1 arcmin rms with respect to 

a known reference. The control system also permits an ultimate pointing 

accuracy of 0. 1 arcsec. The error signal for this fine control is generated 

in the experiment's prime optical system. 

The major functions of the attitude-control subsystem are to 

- Stabilize the spacecraft after booster separation and achieve a known 

attitude with the required precision 

- Slew'the spacecraft to any desired attitude, as dictated by the scien­

tific objectives of the mission 

- Maintain the spacecraft in a given attitude within the required accu­

racy for long periods of time 
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To perform the foregoing functions, the spacecraft is equipped with 

several types of sensors and actuation mechanisms. The major components 

of the stabilization and attitude control subsystem are listed below: 

- Solar sensing optics 

- Rate gynoscopes 

- Pneumatric system 

- Sensor signal processors 

- Fine-wheel and jet controller 

- High-torque controller 

- Momentum wheels 

- Gimbaled star tracker 

- Digitized logic unit 

- Star-tracker signal processor 

- Magnetic unloading system 

- Coarse-wheel controller 

- Boresighted star tracker 

- Rate and position sensor (RAPS) 

- Programer star-tracker signal controller 

- Restabilization reset generator (RRG) 

- Undervoltage reset generator. 

Two experiments were carried aboard the OAO AZ spacecraft. These 

experiments occupy opposite ends of the central experiment tube. Each one 

is briefly described below. 

7. WISCONSIN EXPERIMENT PACKAGE 

The primary function of the Wisconsin Experiment Package (WEP) is to 

gather information on the spectral energy distribution of selected stars and 

nebulae in the ultraviolet range of 1000 to 4000 A. As a secondary function, 

WEP measures the time-varying spectral intensity of particular stars. This 

second function requires that repetitive measurements be made of the same 

object. 
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7. 1 WEP Observation Instruments 

The WEP contains seven observation instruments. These are: 

1. Four stellar photometers, each covering a spectral band of approxi­

mately 1000 A with partial overlap. Each photometer is equipped with a 

programable filter device to subdivide the coverage into 250 A bands. 

2. Two scanning spectrometers to provide backup for the stellar 

photometers. Once covers the range from 1000 to 2000 A, and the other, 

from 2000 to 4000 A. The spectrometers can be cycled 100 steps, thereby 

yielding a spectral resolution of about 10 A. 

3. One nebula photometer capable of measuring spectral intensity of 

nebulae as observed through five programable filters, each covering approxi­

mately 600 . Total coverage capabilities range from 1500 to 3000 A. 

During the mission, the instrument package is housed in the center cylindrical 

portion of the OAO AZ forward end. 

The WEP instrument package is controlled by an electronic package 

housed in Bay E-5 of the spacecraft. The electronic control package con­

sists of the circuitry and electronic components necessary to operate the 

prime instruments. The electrical power required is nearly constant at 

9 w. 

8. SAO EXPERIMENT (PROJECT CELESCOPE) 

Project Celescope is one of the major scientific experiments to be con­

ducted by SAO. The scientific objective of this project is to measure the 

brightness of approximately 25, 000 stars and other celestial bodies in four 

separate ultraviolet spectral bands ranging between 1100 and 3000 A. From 
these measurements, curves of the spectral energy distribution of different 

types and classifications of stars will be determined. Smithsonian and NASA 

scientists hope to employ the data to extend the existing knowledge of the 

composition of interstellar dust, the atmosphere of hot stars, and planetary 

nebulae. 
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8.1 SAO Equipment 

The SAO experiment consists of two major integrated packages: The 

Celescope Optical Package (COP) and the Bay E-4 module assembly. 

The COP contains four iZ-inch Schwarzschild-configured telescopes, 

each of which images a star field onto the ultraviolet-sensitive photocathode 

of a special-purpose image tube. In turn, the photoelectrons emitted by the 

photocathode are imaged on a target where the image is integrated and stored 

as an electrical-charge pattern for readout at the desired time. The video 

signal developed by the readout of the image tubes is amplified and applied 

to an electronic data-processing system (Bay E-4 module assembly) for 

data processing in the manner prescribed by a preselected operating mode. 

The data-processing system contained in the Bay E-4 module assembly 

is capable of operating in three discrete modes: analog, PCM, and store. 

In the analog mode, the analog video signal from each telescope camera is 

transmitted sequentially to the ground station via the wide-band transmitter. 

In the PCM mode, the digitally produced video signals are encoded-into serial 

PCM which is then transmitted to the ground in real-time. In the store mode, 

the video signal is encoded and assembled with digital position data into 25­

bit digital words, which are stored in the spacecraft storage unit of the 

experimenters' data-handling equipment (EDHE) for later transmission to 

ground. Only star signals greater than a selected threshold level are stored. 

A-10
 



APPENDIX B
 

INTERNAL REPORTS FOR PROJECT CELESCOPE
 



P"PJGMIN PAGE BLANK NOT FILMPJ) 

INTERNAL REPORTS FOR PROJECT CELESCOPE 

The internal reports dealt with here are loosely defined as any technical 

documents, except letters, prepared for project Celescope and distributed to 
other organizations. These reports can, for convenience, be classified as 
follows: periodical reports, serialized documents, and nonserialized reports. 

1. Periodical Reports 

a. Celescope Monthly Progress Reports, prepared by SAO. 

b. EMR Monthly Progress Reports, prepared by EMR. 
c. Monthly Reports for product improvement, manufacturing, and 

testing of Uvicon tubes, prepared by WEC. 

2. Serialized Documents (see Table 1). The majority of these documents 

are specifications, work statements, test plans, and test reports prepared for 
each subunit of the experiment; they contain detailed information on each sub­

unit, test, or task, and they'are of little value for general engineering refer­
ence, except as background material. Documents of general usefulness are 

the CCR and CER series (see Tables 2 and 3). 

3. Nonserialized Reports. These are reports prepared for special 

studies or special tasks. The ones listed are especially useful for future 

reference. Table 4 lists these reports according to issuing organizations. 
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Table 1. List of serialized documents in project Celescope. 

Designation Issued 
of series by 

CCL SAO 

CCP SAO 

CCR SAO 

CDL SAO 

CEL SAO 

CER EMR 

CES EMR 

CESR SAO 

CFR EMR 

CQAP EMR 

CTP EMR 

CTR EMR 

CWS EMR 

EM SAO 

ETP SAO 

FEM EMR(FST) 

LR SAO 

QTP SAO 

QTR SAO 

RS EMR 

First 
issue 

CCL-100 

CCP-100 

CCR-100 

CDL-98 

CEL-100 

CER-I 

CES-II1 

CESR-l 

CFR-I 

CQAP-100 

CTP-100 

CTR-100 

CWS-00 

EM-001 

ETP-100 

CEL-FEM-001 

LR-I 

QTP-100 

QTR-100 

RS-100 

Last 
issue 

CCL-1Zl 

CCP-105 

CCR-183 

CDL-l,05 

CEL-106 

CER-154 

CES-153 

CESR-I 

CFR-44 

CQAP-113 

CTP-ZZ 

CTR-573 

CWS-289 

EM-049 

ETP-101 

FEM-022 

LR-122 

QTP-105 

QTR-100 

RS-114 

Contents 

Celescope Command List 

Celescope Calibration Plan 

Celescope Calibration Report 

Celescope Documentation for 
Data-Processing System and 
Identification Catalog 

Celescope Engineering Specifi­
cations 

Celescope Engineering Report 

Celescope Engineering Specifi­
cations 

Celescope Engineering Status 
Report 

Celescope Failure Report 

Celescope Quality Assurance 
Procedure 

Celescope Test Plan 

Celescope Test Report 

Celescope Work Statement 

Engineering Operation Proce­
dure
 

Celescope Engineering Test 
Plan 

Field Engineering Memorandum 

Optics Laboratory Report 

Qualification Test Plan 

Qualification Test Report 

Celescope Reliability Specifi­
cation 
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Table 2. Celescope calibration report (CCR). 

CCR-101 Prototype 2537 A Calibrator System Camera C-2, Telescope 
Subassembly SIN 5 

CCR-102 Photoionization Efficiency of Nitric Oxide at 1216 

CCR-103 Photoelectric Quantum Efficiency of Tungsten Photocathodes 
W-l and W-Z at 1216 A 

CCR-104 Calibration and Intercomparison of Mercury-Lamp and Photo­
multiplier Standards at 2537 A 

CCR-105 Relative Spectral Sensitivity of Sodium Salicylate Fluorescent 
Detectors 

CCR-106 Absolute Photodiode Quantum Efficiency of ASCOP Photomulti­
plier, Type 541F, Serial No. 3030 

CCR-107 Photoelectric Quantum Efficiency of Metallic Photocathodes 
between 900 and 1600 A 

CCR-108- Time Degradation of SAO Standard Mercury-Lamp Assemblies 
at 2537 A 

CCR-109 Photoelectric Quantum Efficiency of Tungsten Photodiode between 
900 to 1800 k 

CCR-110 Photoelectric Quantum Efficiency of Metallic Photocathode 

between 900 -to 1800 A 
CCR-111 Spectral Sensitivity of Sodium Salicylate Fluorescent Detectors 

CCR-112 Calibration of Photodiode Sensitivity of ASCOP Photomultiplier, 
Type 541F, Serial No. 3030 

CCR-113 Calibration of Monochromatic Irradiance from SAO Standard 
Me.rcury-Lamp Assemblies at 2537 A 

CCR-114 Calibration of ASCOP Photomultiplier, Type 541F, Serial No. 
3030 

CCR-115A Calibration of ASCOP Photomultiplier, Type 541F, Serial No. 
5536 

CCR-116A Calibration of ASCOP Photomultiplier, Type 541G, Serial No. 
4650 

CCR-117 Calibration of ASCOP Photomultiplier, Type 541F, Serial No. 
206, Operated-as Photodiode 

CCR-118A Calibration of ASCOP Photomnltiplier, Type 541F, Serial No. 
4907 

CCR-119 Transmittance of Filter ICI 

CCR-120 Reflectance of Mirror Sample XIBL1 

CCR-121 Calibration of Calibrator System C-107 with ASCOP Photomulti­
plier, Type 541F, Serial No. 4907 
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Table Z. (Cont.) 

CCR-IZZ 

CCR-123A 

CCR-124A 

CCR-1Z5A 

CCR-IZ6A 

CCR-127A 

CCR-128 

CCR-IZ9 

CCR-130A 

CCR-131A 

CCR-132 

CCR-133A 

CCR-134A 

CCR-135A 

CCR-136B 

CCR-137 

CCR-138 

CCR-139 

CCR-140A 

CCR-141 

CCR-142 

CCR-143 

CCR-144 

CCR-145 

CCR-146 

CCR-147 

CCR-148 

Calibration of Uvicon Rl9A 

Calibration of Corning 7910 Filter C-7 and of Suprasil Quartz 
Filter S-1 

Calibration of Uvicon 65-36-050D 

Calibration of Lithium Fluoride Filter L-2 and of Transmittance 
Sample 3LI 

Calibration of Barium Fluoride Filter B-8 and of Transmittance 
Sample 8BZ 

Calibration of Uvicon R29A 

Calibration of Corning 7910 Filter C-8 and of Suprasil Quartz 
Filter S-Z1 

Calibration of Uvicon R4ZD 

Calibration of Lithium Fluoride Filter L-6 and of Sample ill 

Calibration of Barium Fluoride Filter B-10 and of Transmittance 
Sample 9BI 

Calibration of Uvicon R37D 

Calibration of Lithium Fluoride Filter L-5 and of Transmittance 
Sample 1L6 

Calibration of Barium Fluoride Filter B-2 and of Transmittance 
Sample 7B6 

Calibration of Corning 7910 Filter C-5 and of Suprasil Quartz 
Filter S-3 

Reflectance of Mirror Samples 6FP-4-OCL-Z, 2DPZF2, and 
X-110-GSFC 

Effect of Temperature on the Transmittance of Celescope Filters 

Calibration of Uvicon R23A 

Calibration of Barium Fluoride Filter B-3 

Calibration of Lithium Fluoride Filter L-1 and of Transmittance 
Sample 1L5 

Calibration of Magnesium Fluoride Transmitter Sample 2M1 

Calibration of Reflector Sample X-1 -BL-Z 

Calibration of Reflector Sample 1GP-I -OCL6 

Calibration of Reflector Sample lGS-1 -OCL5 

Calibration of Reflector Sample 5FS-3-BL5 

Calibration of Reflector Sample 6FS-4-CL4 

Calibration of Uvicon R30A 

Calibration of Uvicon S31A 
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Table 2. (Cont.) 

CCR-149 Calibration of Uvicon 65-44-OOlA 

CCR-150 Calibration of Uvicon 65-40-031A 

CCR-151 Calibration of Uvicon 66-22-043D 

CCR-152 Calibration of Uvicon 66-08-063A 

CCR-153 Calibration of Uvicon 66-13-079D 

CCR-154 Calibration of Uvicon 65-48-090A 

CCR-155 Calibration of Uvicon 65-48-I02D 

CCR-156 Calibration of Uvicon 66-17-107D 

CCR-157 Calibration of Uvicon 65-52-154D 

CCR-158 Calibration of Uvicon 65-40-155D 

CCR-159 Calibration of Primary and Secondary Mirror Coating Spare 
Telescope No. S-i 

CCR-160 Calibration of Barium Fluoride Transmittance Samples 10BI, 
10B3, 10BI0, and of Barium Fluoride Filter from Aerobee 
Rocket Payload 

CCR-161 Calibration of Magnesium Fluoride Transmittance Samples 

CCR-16Z Calibration of Primary and Secondary Mirror Coatings Flight 
Telescope No. F-I 

CCR-163 Calibration of Primary and Secondary Mirror Coatings Flight 
Telescope No. F-2 

CCR-164 Calibration of Primary and Secondary Mirror Coatings Flight 
Telescope No. F-3 

CCR-165 Calibration of Primary and Secondary Mirror Coatings Flight 
Telescope No. F-4 

CCR-166 Calibration of Primary and Secondary Mirror Coatings Space 
Telescope No. S-2 

CCR-167 Calibration of BaFZ Filter B-9 and of Transmittance Samples 
9BI 

CCR-168 Calibration of Uvicon 65-44-007A 

CCR-169 Calibration of Uvicon 65-52-034A 

CCR-170 Calibration of'Reflectance Samples 7FS-4-RS6, 225-4-RS7, 
and 4FP-4-RSS 

CCR-171 Calibration of Uvicon 66-08-088A 

CCR-172 Calibration of RCA Photomultiplier, Type 6199, Serial No. 763 

CCR-173 Calibration of Filter BX-I, BX-Z, BX-3, and BX-4 

CCR-174 Calibration of Barium Fluoride Filter B-7 

B-7
 



Table Z. (Cont.) 

CCR-175 Calibration of Lithium Fluoride Sample 6LI, Magnesium
Fluoride Samples 3M2, 3MI1, 3M12, 4M1, and 4M2, and Barium 
Fluoride Sample 10B6 

CCR-179 Calibration of Thermal Effects 
Uvicons 

on the Quantum Efficiencies of 

CCR-180 Calibration of Effect of Environmental Exposure During Testing 
of the Gelescope Prototype Experiment in NASA/GSFC's 
1Z X 15 ft Thermal-Vacuum Chamber, on the Transmittances 
of the Optical Filters 

CCR-181 Calibration of EMI Photomultiplier, 
5958 

Type 9661B, Serial No. 

CCR-183 Calibration of Uvicon 66-22-044D 

CCR-184 Calibration of the Celescope experiment 

B-8
 



Table 3. Celescope Engineering Reports. 

CER-1 Relocation of Uvicon Electronics 

CER-Z Bay E-4 Weight Status 

CER-3 Thernial Tracking Analysis and Test of Telescope 

CER-4 Thermal Vacuum Tests on S43D Uvicon Assembly 

CER-5 Results of Incoming Acceptance Tests for Uvicon Sl26A 

CER-6 Inspection and Testing of Celescope Mirrors: Prototype 
Telescope 

CER-7 Crossover Protection of the Uvicon Target 

CER-8 Evaluation of Qualification Test Procedures for Mercury 
Calibration Lamp TIML 

CER-9 Reticle Positioning on the Xenon Calibration Lamp Assembly 

CER-10 Analysis of Thermal-Vacuum Chamber Optical Window 

CER-1i Prototype Observatory Weight Status 

CER-12 Prototype Telescope Tube Concentricity Data 

CER-13 Optical Instrumentation for Thermal-Vacuum Chamber Func­
tional Tests 

CER-14 Bay E-4 Spacecraft Interface Test Results 

CER-15 A Transmissibility Test of an Encapsulated Uvicon Subject to 
Sinusoidal Vibration 

GER-16 (Void) 

CER-17 (Void) 

CER-I8 Random Vibration Effects on Bay E-4 Modules 

CER-19 Celescope Thermal Analysis 

CER-Z0 Vibration Test on the Celescope Prototype Experiment Container 

CER-21 (Void) 

CER-22 Analysis of the Celescope Optical System 

CER-23C Qualification Test Status for Celescope Assemblies 

CER-24A Celescope Electronic Component Burn in Summary Supplement 
1 through 6 

CER-Z5 	 Status of Acceptance Testing on Modules and Subassemblies for 
the Prototype Gelescope Package 

CER-26 	 Alignment of Celescope Experiment Package 
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Table 3. (Cont.) 

CER-27 Resistor X-Ray Inspection Report 

CER-Z8 Mercury Calibration Lamps 

CER-Z9A Investigation of Crossover Prevention Techniques 

CER-30 (Void) 

CER-31 Celescope Balance Report 

CER-32 Bay E-4 Electronics Package Shock and Vibration Test Report 

CER-33 Evaluation of Analog-Mode Uvicon Performance with Crossover 
Prevention Operating Procedures, 

CER-34 Image-Tube Replacement for Uvicon 

CER-35 Determination of Vibration Levels for Testing Uvicons 

CER-36 A Performance Test and Evaluation of an Isolator Mounted 
Telescope 

CER-37 Celescope Magnetic Materials List 

CER-38 Acceptance Test Report Status - Bay E-4 Modules and Observa­
tory Electronics Modules 

CER-39 Ion Trap Analysis 

CER-40 Interface Documentation 

CER-41 Power Summary for the Celescope Experiment 

CER-42 Actual Weight'of Prototype Experiment Package and Bay E-4 
Electronics Package 

CER-43 Effect of Filter Thickness on Optical System Focus 

CER-44 Photometric Response of the Prototype Payload 

CER-45 Summary of R-Series Uvicon Transfer Functions 

CER-46 Magnetic Moment Measurement Report 

CER-47 Summary of Flight Calibration Data 

CER-48 Alignment of Flight, Telescope D1 

CER-49 Alignment of Flight Telescope Al 

CER-50 Celescope End Item Status Report 

CER-51 -Recommended Components for Celescope Balloon Experiment 

CER-52 (Void) 

CER-53 (Void) 

CER-54 Uvicon Camera R30A Noise Study 

CER-55 Alignment of Flight Telescope AZ 
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Table 3. (Cont.) 

CER-56 Telescope and Camera Interchangeability Study on Flight 
Camera Optical Package 

CER-57A Bay E-4 Flight Space-Module Status 

CER-58 Celescope High-Voltage Power Supplies 

CER-59 (Void) 

CER-60 Review of Celescope Primary Technical Problems 

CER-61 Celescope Optical Package Contamination Study 

CER-6Z Evaluation of Erie High-Voltage Capacitors for Use in Celescope 
High-Voltage Power Supply 

CER-63 Electric Field Considerations Applied to High-Voltage Power-
Supply Design 

CER-64 Celescope Contamination Test Program: Interim Test Report 

CER-65 Preliminary Magnetic Moment and Stray Field Test Report for 
the Bay E-4 Electronics Package 

CER-66 Status Indicator Interface 

CER-67 Bay E.-4 Electronics Package - Phase I Testing Report 

CER-68 Telescope Vibration and Optical Stability Test 

CER-69 Medium-Voltage Power-Supply Evaluation 

CER-70 Power Summary Celescope Payload Electronics 

CER-71 Trip Report- Static Load Test for OAO/SAO Celescope 

CER-72 High-Voltage Power-Supply Design for Operation in the Critical 
Gas-Pressure Regions and at Low Temperatures 

CER-73 Study of Requirements for Experiment Calibration 

CER-74 (Void) 

CER-75 High-Voltage Power-Supply Qualification Program 

CER-76 Nonredundant Interface Modules 

CER-77 Sample and Hold Module 

CER-78 Sync Mixer Module Redesign 

CER-79 (Void) 

CER-80 (Void) 

CER-81 High-Voltage Power-Supply Divider Stability 

CER-8Z End of Frame Generation 
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Table 3. (Cont.) 

CER-83 E-4 Sweep Mode Select 

CER-84 Alignment of Qualification Telescope S-i 

CER-85 Transfer Pulse Interface 

CER-86 E-4 Corrective Action Plan 

CER-87 Phase II System Test Report 

CER-88 Celescope System Turnon Transient 

CER-89 Bay E-4 Temperature Test 

CER-90 E-4 Temperature Limit 

GER-91 MVPS on/off Switch 

CER-92 Evaluation of Telescope Methods under Vibration-ADL Modifi­
cation 

CER-93 Target and G5 Voltage Control 

CER-94 Magnetic Moment Test Report for SAO Telescope Subassembly, 
Video Amp and Calibration Lamp Power Supply 

CER-95 Resonant Frequency and Transmissibility Test of Telescope 
Vibration Fixture 

CER-96 (Void) 

CER-97A Weight Chart for Flight Telescope 

CER-98A Weight Chart for Flight Experiment Container 

CER-99 Infrared Emittance Measurement of Some Metallic Surface 

CER-100C Flight Bay E-4 Weight Chart 

CER-101B Alignment of Flight Telescope F-i 

CER-102 Inverter Amplifier Redesign 

CER-103 -250 V Regulator 

CER-104C Weight Report Summary 

CER-105A Alignment of Flight Telescope F-2 

CER-106 Magnetic Moment Test Final Report 

CER-107A Alignment of Flight Telescope F-3 

CER-108 (Void) 

CER-109 Effects of New Telescope Qualification Vibration Levels on the 
Uvicon and Camera 

CER-II0 (Void) 

CER-iiI Report on Trip to Astrodata 
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Table 3. (Cont.) 

CER-II2 	 Summary Report of Uvicon Vibration and Celescope Thermal 
Investigation 

CER-113 	 Evaluation of 3M Instrumentation Tape on the Ampex FR-1800H 
Tape Transport 

CER-114A 	 Alignment of Flight Telescope F-4 

CER-1I5 	 Engineering Evaluation of NASA Suggested Telescope Qualifica­
tion Shock and Vibration Level 

CER-116 	 COP Alignment Report 

CER-117 	 Ambient and Thermal-Vacuum Calibration Test Report 050D 

CER-18 	 A Method for Preventing Beam-Relay Lockup Modes 

CER-119 	 An Investigation of Methods for Preventing Spacecraft Storage 
of Target Ring 

CER-120 	 Uvicon Monitor Mirror Test Report 

CER-lZlA 	 Bay E-4 Calibration Test Report 

CER-122 Ambient and Thermal-Vacuum Calibration Test Report: R19A 
Camera 

CER-123 	 Ambient and Thermal-Vacuum Calibration Test Report: R42D 

CER-124 	 Celescope Balance Report 

CER-IZ5 	 Flight E-4 Rework 

CER-126 	 Uvicon Parametric Response Study 

CER-127 	 Alignment of Flight Telescope S-2 

CER-128 	 Open Collimator Ambient Calibration Test Report RZ9A Camera 
(F-3 Telescope Assembly) 

CER-129 	 Derivation of Equation Relating Telescope Deflection Angle to 
Test Fixture Measurement 

CER-130A 	 Position Calibration Test Report: F-i Telescope Assembly 
(Rl9A) 

CER-131 	 Position Calibration Test Report: F-2 Telescope Assembly 
(050D) 

CER-132 	 Position Calibration Test Report: F-3 Telescope Assembly 
(RZ9A) 

CER-133-	 Position Calibration Test Report: F-4 Telescope Assembly 
(R42D) 

CER-134 	 Calibration of Digital Test Set Video Gain (GTS) 

CER-135 	 Thermal-Vacuum Calibration Test Report: F-i Telescope (Rl9A 
Camera) 
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CER-136 Thermal-Vacuum 
Camera) 

Calibration Test Report F-2 Telescope (050D 

CER-137 

CER-138 

Thermal-Vacuum 
Camera) 

Thermal-Vacuum 
Camera) 

Calibration Test Report F-3 Telescope (RZ9A 

Calibration Test Report F-4 Telescope (R4ZD 

CER-139 Beam-Control Failure / 

CER-140 Typical Sequences for Celescope Orbital Operations 

CER-141 Thermal Tracking of Optical Components 

CER-142 Ambient and Thermal-Vacuum Calibration Test Report 65-40-031A 
Camera 

CER-143 Ambient and Thermal-Vacuum Calibration Test Report 66-17-107D 
Camera 

CER-144 Ambient and Thermal-Vacuum 
Camera 

Calibration Test Report 66-22-IZZD 

CER-145 Ambient and Thermal-Vacuum Calibration Test Report 65-44-007A 
Camera 

CER-146 Position Calibration Test Report, S-2 Telescope Assembly (031A) 

CER-147 Telescope Plasma Test Report 

CER-148 Thermal-Vacuum Calibration Test Report S-2 Telescope 
(65-40-031A Camera) 

CER-149 Ambient and Thermal-Vacuum 
Camera Rebuilt Configuration 

Calibration Test Report R37D 

CER-150 Thermal-Vacuum 
Camera Refur.) 

Calibration Test Report S-I Telescope (R37D 

CER-151 Plasma Test No. 2 Test Report 

CER-15Z Circuit Design and- Pulse Backfeed Analysis of -Z50 V Regulator 

CER-153 Electrical Stress and Reliability of -250 V Regulator. 

CER-154 Position Calibration Test Report S-1 
Rebuilt) 

Telescope Assembly (R37D 
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Table 4. List of nonserialized reports. 

ADL (Reports for study subcontracts) 

1 G-66Z85, Celescope Vibration Study, A Review of Celescope Design 
Changes,4/9/64.
 

2 	 C-67216, Celescope Vibration Study, Analysis of 2/65 Experiment 
Package Vibration Test, 4/5/65. 

3 	 Technical Memorandum #1, Computation of Environmental Thermal 
Input, Project Celescope 1/28/65. 

4 	 ADL-C-67918, Thermal Design of Celescope, A Review to EMR
 
Final Report,3/15/66.
 

5 	 ADL-C-66145, Celescope Vibration Study, 1/24/64. 

6 ADL-G-66856 and C-664Z7, Final Report on Calibration of Celescope 
Components, 6/65. 

7 ADL-67898, A Thermocouple System as a Standard of Intensity in the 
Vacuum Ultraviolet, 5/66. 

8 	 Technical Memorandum #2, Discussion of Thermal Test Plan,
 
2/11 /65.
 

9 	 Technical Memorandum #3, Discussion of Thermal Test Results SAO 
Experiment, 5/5/65. 

EMR General 

1 Project Celescope 

2 Instruction Manual, 

3 Instruction Manual. 

4 Instruction Manual, 

5 Instruction Manual, 

6 Instruction Manual, 

7 Instruction Manual, 
Test Set. 

Technical Manual Smithsonian OAO Experiment. 

Ground-Support Equipment Storage Display Unit. 

Ground-Support Equipment Binary Accumulator. 

Ground-Support Equipment Spacecraft Simulator. 

Ground-Support Equipment Observatory Simulator. 

Ground-Support Equipment Status Indicator. 

Ground-Support Equipment Display/Accumulator 

EMR Reliability (Failure) Analysis Report 

1 RA-072, Failure of Magnetic Latching Relays During Life Test. 

2 RA-042, High-Voltage Arc in Xenon Calibration Power Supply. 

3 RA-073, High-Voltage Arc in High-Voltage Power Supply. 
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EMR Reliability (Failure) Analysis Report (Cont.) 

4 RA-107, Shorted Termashield Ferrule. 

5 RA-114, +6 VPS. 

6 RA-131, Technipower Power Supply. 

7 RA-143, Uvicon Heater Power Supply. 

8 RA-162, Celescope -250 V Regulator Module. 

EMR RE - Reliability Engineering Report 

1 RE-116, Reliability Assessment of the Smithsonian Experiment 
Package (SEP). 

2 RE-1Z3, Effect on Reliability Assessment of the SEP due to Delayed 
launch of Payload. 

3 RE-IZ7, Relay Life Test Project Celescope. 

4 RE-I25, Additional Studies to Determine the Effect of a Delayed 
Launch on Project Celescope Equipment Reliability Phase 1. 

5 RE-132, Reliability Statement Medium-Voltage Power-Supply Magnetic 
Latching Relay. 

6 RE-147, Reliability of HVPS. 

7 RE-148, Supplement 1 - Celescope Burn-in Data Summary. 

8 RE-152, Celescope Optical Package Cable. 

NASA Celescope Test Report 

I MR No. 66-2-1, OAO-SAO Thermal-Vacuum Engineering Development 
Test, by W. W. Auer, 7/28/65. 

2 MR No. 651-5, Engineering Development Vibration Test of Prototype 
SAO Celescope Optical Package, by E. F. Schokey, 3/30/65. 

3 Structural Qualification Vibration Test of OAO-SAO Celescope Optical 
Package with Vibration Isolator Telescope, 9/21/66. 

4 Static Load Test of SAO Celescope Experiment Container, 2/11/66. 

5 Memo 641-4, Vibration Survey of SAO Partial Prototype Experiment, 
1/29/64. 

6 Memo 671-155, Vibration Acceptance Test of Three OAC Uvicon Tubes 
S/N SlZ5A, SlZ6A, and S128A, 6/18/63. 
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NASA Celescope Test Report (Cont.) 

7 	 DIRS 01281-I-2-MR-157-2l5-181, Results of the OAO-AZ Experiment 
Thermal-Vacuum Test, by K. A. Davis, 5/20/68. 

8 	 Memo Report No. 681-8, DIRS-11176, Final Report on the SAO-WEP 
Prime Experiment Package Flight Acceptance Vibration Test, by 
C. S. 	 Moutoux, 5/6/68. 

SAO 

1 Special Report No. 110, Project Celescope, An Astronomical 
Reconnaissance Satellite. 

2 Special Report No. 282, The Celescope Experiment. 

3 CTB-9, Problems of Electrical Connectors in the Celescope Payload. 

4 CTB-10, Celescope Power-Supply System and Related Problems. 

5 CTB-11, The Effects of Filter Thickness and of Optical Dispersion 
on the Alignment of D-type Telescopes. 

6 CTB-IZ, Results of Reflectivity Measurements Performed on Samples 
of Celescope Structural Surface Finishes. 

7 CTB-13, Power Requirements for the SAO Experiment (Celescope) 

8 CTB-14, The Radiation Environment for the Orbit of the OAO AZ 
Satellite, and its Effects on the Celescope Optical System 

9 CTB-15, Status Report on Celescope Calibration. 

10 CTB-16, Celescope Power Consumption. 

11 CTB-17, SAO Operational Constraints. 

12 CTB-18, Results of an Experiment to Evaluate the Effects of Earthlight 
and Sunlight on the Operation of the Celescope Instrument. 

WESTINGHOUSE Reports for Uvicon Contracts 

1 	 WRL Research Report 91Z-J90Z-Rl, Research and Development of a 
Family of Ultra-violet Sensitive Camera Tubes. 

z 	 WRL 64-91Z-Z48-RI, Product Design Report for Product Design,
 
Manufacture and Test of Uvicon Tubes.
 

3 	 WRL Fabrication of Uvicon Tube, Contract Sp-22-lZ EMR Final
 
Report.
 

4 	 WRL 64-9527-248-RI, A Method of Safe Uvicon Operation. 
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