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Abstract urement i s  the prime objective of t h i s  experiment. 

An experimental determination of the optical  
transmission of Corning 7940 W and Suprasil I 
fused s i l i c a  has been made. The LeRC dynamitron 
provided the equivalent ionizing radiat ion and high 
temperature tha t  the transparent gas divider of an 
operating nuclear l i g h t  bulb engine would experi- 
ence. The i r radia t ion  induced absorption was 
measured a t  2150 8, 2700 8, and 4500 8. The length 
of the i r radia t ions  rvere suff ic ient  so tha t  an 
equilibrium between radiat ion induced coloration 
and high temperature annealing was reached. The 
experimental. r e s d t s  indicate a significant  optical  
absorption, par t icular ly  a t  the shorter wavelength, 
which would make the use of fused s i l i c a  in  t h i s  
concept questionable. 

Introduction 

One in teres t ing  nuclear propulsion concept i s  
the gaseous core nuclear reactor. In one design 
fused s i l i c a  i s  proposed as  a transparent w a l l  
separating the fue l  and the propellant. This 
Nuclear Light Bulb transfers the energy of the 
fissioning fue l  by thermal radiat ion through the 
fused s i l i c a  t o  a hydrogen propellant seeded with 
opaque par t ic les .  The rad'ant energy bsorbed 
l i e s  i n  the range of 2000 PL t o  10 000 8. 

'ractical. r e a i z a t i o n  of t h i s  propulsion 
scheme depends i n  large measure upon the trans- 
parency of t'nese cooled fused s i l i c a  walls a t  
these wavelengths, since the energy must radiate 
through them. The objective of the present work 
i s  t o  measure under simulated reactor environment, 
a t  the wavelengths of in teres t ,  the opt ica l  t rans- 
mission of fused s i l i c a .  

During reactor operation, the fused s i l i c a  
wi l l  be exposed t o  a large f lux  of f a s t  neutrons 
and gamma rays emanating from the f issioning fue l  
it  surrounds. Therefore, color centers on opti-  
ca l ly  absorbing centers can be generated a s  a re-  
su l t  of the ionization and damage i n  the wall ma- 
t e r i a l ;  with subsequent transmission loss .  The 
center of the most prominent irradiation-induced 
absorption band in  the fused s i l i c a  occurs a t  a 
wavelength of 2150 8. A subsidiary peak occurs a t  
2700 . Additional measurements were made a t  
4500 % t o  determine the width of the absorption 
band and t o  check absorption where strong absorp- 
t ion  bands are not expected t o  exis t .  

These radiation-induced absorption centers 
are stable a t  room temperatures, but a t  elevated 
temperatures they may be ef fec t ive ly  annihilated, 
annealed or bleached. In  t h i s  experimental work, 
and i n  the application of the nuclear rocket the 
fused s i l i c a  w i l l  be a t  temperatures of 600' C t o  
1 0 0 0 ~  C. So we have two competing processes 
affecting the transmission: f i r s t ,  coloration in- 
duced by nuclear radiation; and second, annealing 
of coloration by exposure t o  elevated temperature. 
This equilibrium transmission must be suff ic ient ly  
high for  the concept t o  be workable, and i t s  meas- 

The Lewis Research Center Dynamitron i s  used 
t o  give an electron beam i n  which the ionizing dose 
r a t e  i s  equivalent t o  an operating full-scale NLB 
engine. This accelerator provided 1.5 MeV electrons 
a t  current densit ies i n  the range of 20 t o  
150 y ~ / c m ~ .  This corresponds t o  an ionizing dose 
r a t e  of 2.0 t o  10 Mrad/sec deposited in  the speci- 
men, which exceeds anything available i n  any exis t -  
ing t e s t  reactor known today. It was also possible 
to  run for times comparable t o  the 1000 sec dura- 
t ion  of the f u l l  scale engine. 

Specimen temperature was governed by electron 
beam heat'ng; most irradiat ions were done a t  80 t o  
150 p A / d  current densit ies t o  be a t  the tempera- 
ture range of in teres t  (608 t o  900' c). 

A dual beam r a t i o  recording spectrophotometer 
was designed and used fo r  the measurement of the 
opt ica l  transmission. Samples of Corning Grade 
7940 W, and Suprasil ( ~ m e r s i l  Inc.) were tested. 
These samples of fused s i l i c a  were chosen because 
of the i r  high purity, s t ruc tura l  integri ty,  re-  
sistance t o  radiat ion damage, transparency over a 
wide range of wavelengths and thermal properties. 

Experimental Arrangement 

Lewis Qmamitron Electron Accelerator 

The LeRC Dynamitron Electron Accelerator i s  a 
potential  drop accelerator capable of supplying 
accelerating potentials  between 0.3 t o  3.0 MeV with 
voltage s t a b i l i t y  greater  than 99.9 percent .' The 
accelerator can provide direct  current, mono- 
energetic electrons or positive ion beams con- 
t ro l lable  f rom1  @ t o  3 mA. In  the electron mode 
of operation a hot tungsten filament i s  used as a 
source of par t ic les .  

The beam transport system consists of an 
analyzing magnet, positioning coi l s  and a three 
element quadrupole focussing se t .  All power 
supplies for  t h i s  system have suff ic ient  s t a b i l i t y  
so that  the beam position changes a t  the output 
ports  are l e s s  than 0 .1  percent for  a monoenergetic 
beam. 

The alignment and focussing of the beam could 
be monitored by a beam profi le monitor and also a 
closed c i r cu i t  television system. 

Xenon Lamp Source and Supply 

A 1000 W Xenon arc  lamp was used a s  the pr i -  
mary l i g h t  source. The Xenon arc  was maintained by 
a power supply which was continuously variable and 
monitored t o  insure lamp performance. This power 
supply provided dc regulation t o  +1 percent with 
+10 percent change i n  l i n e  voltage. A f a s t  act ing - 
control c i r cu i t  compensates fo r  changes within the 
lamp and produces maximum arc  s t ab i l i t y .  The cur- 
rent  r ipple was 1 percent rms. 



Dual Beam Ratio Recording Spectrophotometer 

A large dual beam ra t io  recording spectrom- 
e t e r  was desityled and bu i l t  t o  measure the trails- 
mission through the fused s i l i c a  samples. This 
system employed two opt ica l  beams, a sanple beam 
and a reference beam. The two beams obtained from 
a single l i g h t  source, are separated by using a 
rotat ing mirror beam chopper which a l te rnate ly  
passes l i gh t  t o  the sample mirror or  the reference 
path. Thus the two paths are para l le l  and sepa- 
rated by approximately 45.72 cm. The beams are 
collimated t o  a diameter of 0.72 cm. The sample 
and the reference l i g h t  beams are directed a t  
r ight  angles through the faces of the t e s t  and 
reference specimens respectively. The two beam 
paths are equal. i n  length. They are combined by a 
serrated surface mirror a t  the entrance s l i t  of the 
morioc~~omator. A block diagram of the optical  se t -  
up i s  pictured i n  Fig. 1. The rotat ing mirror 
beam chopper sequentially mo1ulates the sample and 
reference beans so that  locked-in signal  processing 
techniques and phase sensit ive detection i s  pos- 
sible.  The modulating frequency i s  13 Hz, and the 
reference voltage obtained from the rotat ing 
mirror t r iggers  the lock i n  amplifier. Only the 
nio6.ulation component of the detection signal  i s  
r ec t i f i ed  t o  produce a dc output from the instru- 
ment. In t h i s  way, we discriminated against the 
noise sources such as sample fluorescence, ambient 
room l igh t ,  Xenon lamp fluctuations o r  any re-  
maining Bremsstrahling radiation, and are able t o  
read an extremely weak signal  while a t  the same 
time ignoring th i s  la rge  background of noise. 

The monochromator could select  a part icular  
wavelength range i s  between 160 and 3500 mi l l i -  
microns. Since both sample and reference beams 
have common detection and amplifier components and 
r a t i o  recording (o r  the comparison of sample beam 
intensity with reference beam intensity was used) 
inaccuracies due to  amplifier gain or spectral  re- 
sponse of the photomultiplier i s  eliminated. 

Optical Base 

The Xenon lamp, monochromator, mirrors and 
beam s p l i t t e r s ,  reference path furnace and speci- 
men holder box were all securely fastened t o  a 
(91.4 cm wide) x (182.9 cm long) x (3.82 cm deep) 
aluminum table with a top surfaced machined f l a t  
t o  0.050 mm. Since all these par ts  are held i n  
the i r  re la t ive  positions, the whole base could be 
moved without disturbing the c r i t i c a l  beam align- 
ment. The complete system was then suspended 
from the ce i l ing  by unistruts  t o  completely i so l a t e  
it  from any vibrations caused by the vacuum pumps 
on the electron-beam transport system. 

Electronic System 

The control panel containing the phase- 
sensit ive amplifier and the remaining electronic 
equipment was located i n  the dymanitron control 
room located out of the i r radia t ion  area and 
separated by 30.5 m. The detection system included 
a 4 pen chart  recorder which simultaneously re- 
corded furnace temperature, specimen temperature, 
s~ecimen holder temperature, and the amplified 
r a t i o  between specimen and reference beams. Read- 
out of the wavelengths and actual  posit ion of the 
electron beam on the specimen was accomplished by 
closed c i r cu i t  television camera remotely con- 

t ro l l ed  from the dynamitron control console. These 
were monitored continuously while the t e s t  was 
being run. The output of the phase-sensitive 
amplifier was checked by viewing the signal  and the 
r ec t i f i ed  signal  on a dual oscilloscope. 

The photomultiplier tube was shielded by 
several lead blocks t o  minimize the noise generated 
by X-rays present during the irradiat ions.  Since 
the signal  cables were so long low capacity 
cables were used and a l i n e  matching driver ampli- 
f i e r  was connected a f t e r  the pre-amplifier t o  
prevent signal  loss.  

This system was capable of measurement of 
optical  transmission with an accuracy of 21 per- 
cent. Response time was l imited by the chart re- 
corders which was approximately 1 see. 

Specimen Configuration 

The specimen configuration for  t h i s  experiment 
was a compromise which met the various require- 
ments of the t e s t .  It was sized so tha t  the cor- 
r ec t  electron energy deposited i n  the specimen 
would give the necessary ionizing dose rates.  The 
specimen was thick enough t o  allow for accurate 
measurement of the optical  transmission for  ab- 
sorption coefficient  from 0.05 cm-1 t o  20 em-'. 
The optical  path through it was normal t o  i t s  
surface t o  minimize the ef fec ts  of thermally in- 
duced refractive index gradients, and possible 
temperature induced stresses which might lead t o  
erroneous transmission determination. The speci- 
mens were of wafer form 2.54 cm square and 1.5 mm 
thick. They were polished f l a t  t o  114 wavelength 
of Sodium l i g h t  and pa ra l l e l  t o  2 wavelengths. The 
specimen was a t  r ight  angles with respect t o  the 
optical  beam axis 'and 20° with respect t o  the 
electron beam axis. 

Specimen Holder 

The specimen i s  held in  a metal picture frame 
type clamp. Figure 2 shows the specimen with the 
chromel-alumel thermocouple embedded i n  it and the 
thermocouple spot-welded t o  the holder. The 
thermocouple was wedged t ight  a t  the center of the 
sample by using a tapered hole through the fused 
s i l i ca .  Spring tension of i t s  leads and thermo 
expansion of the thermocouple b a l l  tended t o  
secure i t s  position throughout the t e s t .  The 
frame type clamp allowed the sample t o  be held 
r ig id ly  or a ceramic gasket material  could be in-  
serted between the metal holder and the fused 
quartz for  s t r e s s  f ree  mounting. The holder also 
provided cooling s l i t s  which blew a sheet of 
Helium across the faces of the specimen. A t  the 
same time cooling gas was directed against the 
aluminum f o i l  through which the electrons passed. 
The f o i l  holder was a lso  cooled by water jackets 
and the gas cooling could be omitted i f  desired. 
This double cooling method could be used when very 
high machine currents were used. Each cooling 
l i n e  was valved and adjustable. The whole speci- 
men holder assembly, which included the cooling 
tubes, thermocouples, and thermocouple connectors 
and f i t t i ngs ,  was removable from the sample box. 
It was grounded t o  the system t o  help prevent any 
charge buildup, repeatable positioning of the 
specimen was guaranteed by eight  bol t  holes and a 
centering edge. Readout of the remotely operated 
upstream beam stop and the thermocouples was con- 



stantly recorded during the experimeni. 

Sample Box 

The specimen was inserted in  the holder and 
then tile holder bolted t o  the sample box. The box 
provided whatever environment was necessary a i r ,  
helium or vacuum, for  the specimen under t e s t .  It 
was connected d i rec t ly  to  the beam transport tube 
and therefore included the aluminum f o i l  ( approxi- 
mately 0.05 nmi th ick) .  I n  t h i s  way, the Eynamitron 
vacuum was not affected by the environment used 
i n  the zest. The sample box also provided co l l i -  
mation for  the optical  l i g h t  beam before and a f t e r  
the specimen. I t  coulci be sealed by using Si02 
end windor*rs. Permanent magnets were used t o  pre- 
vent the windows from being darkened. It was 
possible t o  see the specimen during the experi- 
ment by remote television camera through another 
SiO2 port d i rec t ly  inl ine with the 20° electron 
beam l ine .  

Therefore, specimen lumipescence could be 
visually observed, and by using a ZnS coating on 
the aluminum f o i l ,  the beam spot could be con- 
t inual ly  monitored throughout the experiment. Any 
beam wandering could! be ins tant ly  seen. In  addi- 
t ion the size and position of the beam spot was 
determined by a separate t e s t  using PVC p l a s t i c  
indica.tors a t  the positions of the Al window sam- 
ple and the Paraday cup. This was done as a 
standard procedure before each t e s t  run. 

Calibration 

Calibration of the electron beam s t r ik ing  the 
specimen was done by reraovillg the fused s i l i c a  
holder and insert ing a water-cooled or a i r -  
cooled Faradzy cup. The Faraday cup was position- 
ed exactly the same as the specimen and held by 
the same eight  bol t s .  It had a guard r ing t o  pre- 
vent erroneous contributions from any scattered 
secondary electrons. In t h i s  way external  beam 
cilrrent h i t t i n g  the specimen was calibrated against 
the internal  machine beam current and d i a l  set t ing.  

Absorption Data Analysis 

The 4 channel Br is to l  recorder simultaneously 
records specimen temperature Ts, ambient or 
fwnace (reference path) temperature, TF, holder 
temperature TH, and the r a t i o  of the specimen t o  
reference signals as a function of elapsed time, t. 
These two signals which consti tute the output of 
the phase sensit ive detector, are proportional t o  
the intensity of the sample and reference beams. 
Thus a record of re la t ive  transmission and temper- 
ature during the electron i r radia t ion  i s  accom- 
plished. I f  a single t e s t  specimen only was used, 
the l i gh t  transmitted I, through i t s  f l a t ,  
para l le l  faces i s  a f rac t ion  of the incident l i g h t  
I, given by I/Io. This f rac t ion  represents the 
l i g h t  l o s t  through absorption and ref lec t ion  i f  
interference ef fec ts  are ignored. For a specimen 
of thickness X., the f rac t ion  l o s t  through ab- 
sorption i s  of the form e-at .  Multiple ref lec-  
t ions i n  the specimen a t  the glass-air  interface 
ef fec ts  the t o t a l  transmitted intensity.  The 
l i g h t  transmitted through the f i r s t  face i s  
lee-d(l - r )  and l o e e d ( l  - r ) 2  through the 
second face. 

summed2~3 and expressed as: 

where a i s  the absorption coefficient  a t  a par- 
t i cu l a r  wavelength, r i s  the ref lec t ion  loss ,  and 
i s  re la ted  t o  the index of refraction n by the 
relat ion:  

For fused s i l i ca ,  i n  the wavelength range 
we are considering, n does not exceed l.6* and 
hence the denominator of Eq. (2) i s  essent ia l ly  (1) 
assuming the no absorption case where e d  = 1 
so that  multiple reflections can be safety ignored. 
So the ref lec t ion  loss  i s  just  ( 1  - r)2, and we 
may write: 

In  t h i s  experiment a reference specimen was 
provided of the exact same composition as the t e s t  
sample, i n  the ax ia l  c rus i l i t e  vacuum furnace of 
the reference opt ica l  path. This technique effect-  
ively cancels ref lec t ion  losses so tha t  Eq. (5) 
reduces t o  simply: 

where I,(?,) i s  the chart recorder amplitude be- 
fore the electron beam i s  turned on and I (h  f i , t , ~ )  
the recorder amplitude a t  a time t, a f t e r  the 
beam i s  on. 

The raw data from the recorder s t r i p  chart of 
optical  transmission, specimen temperature, and 
electron current density or ionizing dose r a t e  are 
presented as  the electron i r radia t ion  history of 
each specimen by converting the opt ica l  t rans- 
mission t o  radiat ion induced absorption coeffi-  
cient (by use of eq. (6 ) )  and graphing these 
parameters as a function of elapsed time. Typical 
raw data i s  shown i n  Fig. 3, i n  t h i s  case fo r  a 
wavelength of 2700 a and a specimen 1.5 mu th ick  
of Suprasil I. 

A useful computational scheme devised by 
Burrel, Wright, and watts5 i s  used t o  calculate 
the ionizing dose r a t e  through the specimens. 
This semi-empirical technique i s  based on the 
Monte Carlo electron energy t ransfer  data of 
Berger Using t h i s  technique, an approximate 
resul t  i s  cdcu la t ed  fo r  the c?mplex re la t ion  be- 
tween the ionizing dose ra te ,  D, and the electron 
current density, J ,  for  an electron of kinetic 

The t o t a l  transmitted in tens i ty  may be energy, E, of 115 M ~ V  impinging upon the specimen 
configuration used i n  t h i s  experiment. This 
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i,e-!!.iia_;lc i s  i esc r ibed  i n  the  nppenciis. ike re -  
.. ul t aye iimi discussed. 

io?l::ing dose r a t e  i s  5 - 0.13 2 (1.i-ad/ 
s e c ) .  Because of the coi:iplerity o l  the a to~xic  
,,-.. .L occsse s involved i n  fie terminin? the ionizine; 
icse r a t e ,  an e r r o r  of 3 5  aercent  i s  esticlated. 
:I. frL1-scale IGB engine operat ing a t  a radiatil:; 
te~:iserature o f  1 5 0 0 0 ~  R i s  expected t o  give an 
ionizin; dose - a t e  of 5.4~10' ~ / s e c , ~  This dose 
ra te  i s  wel l  within the  current  capabi l i ty  of the 
Levis Dyllamitron Electron Accelerator. 

Specimen temperature was by e lec t ron  beam 
heating, and most i r r a d i a t i o n s  were done a t  80 t o  
1.50 LA/CI!I~ current  dens i t i es .  Helium cooling gas 
~ r a s  a l s o  employe6 a t  times so t h a t  the specimen 
tenperet,u-e was cont ro l lab le  i n  the  range of in -  
t e r e s t  (600 t o  900 C) . S a t i s f a c t o r y  t e ~ l p e r a t u r e  
measurement using the chrociel-alumel thermocouples 
e~bedded  i n  the  san~ple, and the sample holder, ha5 
e r r o r  l e s s  than +20° C based on the  inherent  
accuracy of measuring equipment and the e lec t ron  
5eW: h i t t i n g  the  thermocouple. Since the designed 
spectro2hotometer was capable of o p t i c a l  t rans -  
r;~issio!i measurement under laboratory conditions 
of 21 percent,  t h i s  gives a measurement accuracy 
of  about +16 percent a t  a l l  t h e  induced absorpt ion 
coef f ic ien t s  of b e h e e l  1 .0  em-1 and 12 cm-l. 

Figure 4 presents  the e lec t ron  i r r a d i a t i o n  
5is toxy of a 1 . 5  mnm Surpas i l  I specimen a t  2150 1. 
fiere the ionizing dose r a t e  i s  r a i s e d  i n  s tep  
i n t e r v a l s .  It can be seen t h a t  both the tempera- 
tu re  and the  absorption coef f ic ien t  i s  increased 
correspondingly and t h a t  the temperature does l i e  
i n  the range o f  i n t e r e s t .  

There i s  a slow decrease i n  t h i s  absorption 
coef f ic ien t  i n  time a t  t h i s  temperature. Gener- 
a l l y ,  the induced absorption coef f ic ien t  i s  de- 
creased very s l i g h t l y  from i t s  i n i t i a l  value a t  the  
o-irtset of the  irradiation but does not go t o  very 
Low values uxxtil che bombardment i s  stopped. 

-Uthough 2150 2 i s  the wavelength of primary 
i n t e r e s t ,  the  temporal behavior a t  two o ther  wave- 
l e n g t  s was invest igated,  namely a t  2700 8 and 
4500 B .. The curves a r e  shown i n  Figs. 5 and 6. 
The curves of  the  ion iz ing  dose r a t e ,  temperature, 
and induced absorpt ion coef f ic ien t  of the 
Suprasi l  I specimen a r e  very si-milar t o  those ex- 
hibi ter i  by the  Corning 7940 W specimens. 
Plateaus of these parameters seem t o  follow the  
l e v e l  of  the  dose r a t e  employed, with no r e a l  de- 
cay of the absorpt ion coef f ic ien t  a s  the tempera- 
ture  i s  increased by increased i r r a d i a t i o n  dose. 

The r e s u l t s  of the  o p t i c a l  transmission of a 
Suprasi l  I specimen during i r r a d i a t i o n  a t  wave- 
lengths of a 4500 8 a r e  presented i n  Fig. 6. It i s  
expected t h a t  t h i s  curve would be d i f f e r e n t  than 
those a t  the  previous wavelengths since Corning 
7940 W and Supras i l  I fused s i l i c a  does not have 
any s trong i radiation-induced absorption bands 
a t  the 4500 B wavelength. Accordingly, it i s  no 
surpr i se  t o  see a t  a s teady s t a t e  dose r a t e  with a 
steady temperature of  400' C maintained t h a t  the 
induced absorpt ion coef f ic ien t  shows a sharp r i s e  
and then decays rap id ly  t o  a steady lower value 
u.ntil t h e  beam i s  shut o f f .  The curious bump i n  
t h e  induced absorption curve at. the end of the run 
i s  due t o  a sudden b u r s t  of e lec t rons  from the 

dpami t ron  during a spark out.  The trends, how- 
ever, f o r  both the fused s i l i c a  samples a r e  s l h i l a r .  
There was some question a s  t o  whether heating the  
specimen by the e l c t r o n  beam could produce an 
apparent l o s s  of o p t i c a l  transmission by s t r e s s e s  
i n  the specimen which thereby displace the o p t i c a l  
bean? o f f  the monochromator s l i t .  I n  order  t o  t e s t  
t h i s  p o s s i b i l i t y  of a thermal e f f e c t  erroneously 
giving a l o s s  i n  o p ~ i c a l  transmission, t e s t s  were 
run a t  3000 a, a wavelength a t  which the  induced 
absorption was negl igible .  Three runs were made 
using 1 . 5  rmn samples of Corning 7940 W L%sed 
s i l i c a .  0:le t e s t  was performed i n  open a i r ,  and 
one with the s a p l e  box evacuated, and one with 
Helium. 

The r e s u l t s  c l e a r l y  show there  was no anoma* 
due t o  specimen temperature even though very high 
te r~~pera tures  were reached by the  t e s t  sample. 

A Corning 7940 W specimen was s o f t  mounted 
using a spec ia l  ceramic mate r ia l  i n  order  t o  re -  
move any doubt tha t  thermal s t r a i n s  imposed by the  
sample holder might give errone us r e s u l t s .  The 
wavelength of the t e s t  is  2150 1, and no s i g n i f i -  
cant  difference i n  t h e  r e s u l t s  a r e  evident using 
t h i s  ceramic s o f t  mounting mate r ia l .  A l l  param- 
e t e r  t rends a r e  repeated and v e r i f i e d .  

The s teady-state  i r radiat ion-induced absorp- 
t i o n  coef f ic ien t  a t  2150 ?. over temperatures 
ranging from 108 t o  1 0 0 0 ~  C a r e  p l o t t e d  against  the 
ionizing dose r a t e  i n  Fig. 7. Also shown i n  Fig. 7 
a r e  curves from steady-state  i r r a d i a t i o n s  obtained 
recen t ly  from the experiments conducted by Paha 
and Gagosz i n  Ref. 8. It i s  apparent from these 
curves and da ta  points  t h a t  there  i s  evidence of  
disagreement i n  these two experiments. The claim 
of  Palma and Gagosz t h a t  the induced absorption 
coef f ic ien t  a t  a given temperature f i r s t  r i s e s  with 
increasing dose r a t e ,  reaches a maximm value, and 
then begins t o  decrease with increasing dose r a t e  
i s  not v e r i f i e d  by t h i s  experimental work. Al- 
though t h i s  work has been dore with specimens of 
the same s ize ,  composit ion and configuration, the  
r e s u l t s ,  a s  presented by t h i s  graph, d i f f e r  
markedly. A thourough examination of t h e i r  
apparatus has f a i l e d  t o  reveal  t o  us t h e  cause of 
t h i s  discrepancy. 

Discussion and Conclusions 

This experimental study attempted t o  de te r -  
mine the  l e v e l  of the i r radiat ion-induced absorp- 
t i o n  expected i n  the t ransparent  wall of the 
nuclear l i g h t  bulb engine (NLB) when the w a l l  i s  
kept a t  e levated temperatures. The da ta  per ta in -  
ing t o  the o p t i c a l  transmission of Corning 7940 W 
and Supras i l  I fused s i l i c a  v e r i f i e d  the behavior 
of the induced absorption coef f ic ien t  a s  follows: 

I n  i r r a d i a t i o n s  conducted a t  2150 2, t h e  
wavelength of primary i n t e r e s t ,  the i r r a d i a t i o n -  
induced absorption coef f ic ien t  reached a steady 
s t a t e  value once the specimen temperature had 
reached equilibrium. 

Increasing the specimen temperature by r a i s i n g  
the e lec t ron  current  densi ty o r  ionizing dose r a t e  
caused t h e  induced absorption coef f ic ien t  t o  r i s e  
t o  a higher steady s t a t e  value. 

Increasing the temperature of the specimen 



1!11:le :riail?taining the same ionizing dose r a t e  re-  
su l tea  L?I s lower value f o r  the i r r a d i a t i o n -  
ipduced absorption coef f ic ien t  t o  a lower steady 
s t a t e  value. 

Tlle i r radiat ion-induced absorption coef f ic ien t  
decreased rap id ly  a f t e r  the e lec t ron  beam was shut 
down, although sollie times a f t e r  reaching a minim~un 
vadue there would be a small increase or  hump pre- 
sent caused by the  response of the  recorder. This 
inves t iga t ion  proved t h a t  Corning 7940 UV and 
Suprasi l  I a t  the  wavelengths of 2150 a, 2700 a 
and 4500 8 a r e  approximately the  same, with no 
z ign i f ican t  differences between these two mater ia l s  
ir. e f f e c t s  of temperature or i r r a d i a t i o n .  

Values ranging from 14.5 em-' t o  2.2 cm-I were 
recorded f o r  the irraLiation-induced absorption 
caef f ic ien t  a t  the wavelength of 2150 2 depending 
upoil the t e s t  conditions. 

A t  the wavelength of 2700 8 both types of 
specimens exhibi ted e s s e n t i a l l y  the  same behavior 
a s  s t a t e d  above a t  2150 8. The induced absorption 
coef f ic ien t  var ied between 3 cm-l t o  9.7 cm-l de- 
pending on the t e s t  conditions. 

The response a t  the 4500 8 wavelength display- 
ed l e a s  tzansmi sion l o s s  than a t  the  wavelengths 
2700 d or  21.50 1 a s  expected. I n  addi t ion the in-  
duced absorption coef f ic ien t  rose t o  a maximum 
value and then decayed rapidly t o  a lower e q u i l i -  
brium value. This t rans ien t  change ir, t r ans -  
mission was expected since the ul t ra-pure fused 
s i l i c a  used do s not exh ib i t  any s trong absorption 
bands a t  4500 i. 

.yo a~omalous l o s s  of o p t i c a l  transmission was 
recoraed due t o  the extreinely high temperatures 
experienced by the specimens regardless  of whether 
the specimen environment was a i r ,  air-helium gas 
mixture, o r  a vacuum. Using a spec ia l  ceramic 
gasket mater ial  a s  a s o f t  mount f o r  the fused 
s i l i c a  d id  not a l t e r  the r e s u l t s .  Measurements of 
the  induced absorpt ion coef f ic ien t  when the  speci- 
men was s o f t  mounted indicated the same trends and 
almost the i d e n t i c a l  l o s s  of transmission a t  the 
wavelength of  2150 8 a s  the f i r m  mounted specimen. 
These two r e s u l t s  show no erroneous r e s u l t s  due t o  
thermal s t r e s s e s  caused by the  o r i g i n a l  f i rm 
mounting of  the specimen which had any s i g n i f i c a n t  
e f f e c t  on the  o p t i c a l  transmission a t  t h i s  impor- 
t a n t  wavelength. 

This p a r t i c u l a r  inves t iga t ion  does not give a 
complete answer a s  t o  the  p r a c t i c a l  r e a l i z a t i o n  of 
the nuclear  l i g h t  bulb propulsion scheme. An ex- 
tension of t h i s  study t o  include the  e f f e c t s  of 
o p t i c a l  bleaching, absorption i n  the  vacuum u l t r a -  
v i o l e t  wavelength region, wavelength scans over 
the  range of  2000 2 t o  3000 2, addi t iona l  t e s t  f o r  
any anomaly due t o  high temperature, and the 
temxloral behavior and measurements of the 

simulate neutron clamage i n  the  specimen. Although 
there a r e  s t i l l  areas, a s  shown above, needing 
a t t e n t i o n  i n  t h i s  work, the  r e s u l t s  of the  present  
inves t iga t ion  ind ica tes  s i g n i f i c a n t  o p t i c a l  ab- 
sorpt ion a t  t h e  wavelengths of i n t e r e s t .  This con- 
clusion implies t h a t  the f e a s i b i l i t y  of t h i s  con- 
cept  insofar  a s  it depends upon fused s i l i c a  t rans -  
parency under these conditions, i s  open t o  question. 

Appendix - The Calculation of Electron Dose Rates 
I n  Thick Specimens 

Determining the ionizing dose r a t e  due t o  the 
p e n e t r a t i ~ n  of r e l a t i v i s t i c  e lec t rons  i n t o  speci- 
mens which are  t h i c k  compared t o  the  range of the 
e lec t ron  i s  made more complex because of t h e  i n -  
e l a s t i c  s c a t t e r i n g  and s t ragg l ing  of the  e lec t ron  
energy. The e lec t ron  t raverses  along a zig-zag 
path due t o  t h e  i n e l a s t i c  sca t te r ing .  These two 
e f f e c t s  r e s u l t  i n  a broad d i s t r i b u t i o n  of e lec t ron  
energy l o s s .  I f  the  energy l o s s  i s  averaged over 
t h i s  broad d i s i r ibu t ion ,  the  energy i n  the deposit- 
ed specimen can be calculated and converted t o  
ionizing dose r a t e .  The usefu l  computatio:?al 
scheme of Burrel,  Wright and I ia t ts5 which i s  i n  
par t  based on the  Monte Carlo e lec t ron  t r a n s f e r  
da ta  of Berger6 i s  used i n  t h i s  repor t  and by 
Palnla and ~ a ~ o s z ~  i n  t h e i r  s imi la r  work on fused 
s i l i c a .  To obtain a s u f f i c i e n t  dose r a t e ,  it i s  
required t h a t  the f r a c t i o n  of  t h e  incident  e lec t ron  
energy deposited be a s  l a rge  a s  possible, but i t  i s  
necessary t o  t rade  off  t h i s  parameter with the 
f r a c t i o n  of the incident e lec t rons  a c t u a l l y  
stopping i n  the  specimen (keeping t h i s  t o  a mini- 
mum so  t h a t  the  charge buildup i n  the specimen w i l l  
be smal l ) .  Burrel,  e t  a15 obtain expressions f o r  
the f r a c t i o n s  above by f i t t i n g  t h e  da ta  of 
Berger6 and y i e l d  the equation below f o r  normal 
incidence: 

where : 

n(&,B) = Fract ion of the  incident  e lec t ron  energy 
deposited 

p(L,Q) = Fract ion of the  inc iden t  e lec t rons  ab- 
sorbed i n  the  specimen 

G = Electron angle of incidence with t h e  
specimen surface 

a l s o  

z = - e  (3)  
xn 

i r radiat ion-induced o p t i c a l  absorpt ion of o ther  
promising t ransparent  wal l  mate r ia l s  such a s  where z represents  the  f r a c t i o n  of the average 
aluminum beTllium oxide and t i t an ium oxide path length xo traversed the in 
should be performed. Since the  object ive of  the penetrat ing the  dis tance 4,. This  r a t i o  p l o t t e d  

present  in-,restigation was t o  measure under simu- aga ins t  the sum of the r e f l e c t i o n  and transmission 

l a t e d  r e a c t o r  environment, a t  t h e  wavelengths of f a c t o r s  of Berger show l i t t l e  change with var i -  

i n t e r e s t .  the  oxltical transmission of fused s i l i c a .  ation in energy;y. 
i t  j s  des i rab le  t o  simulate the  a c t u a l  t e s t  condi- 
t ions  a s  accurately a s  possible. Therefore, it The r e l a t i o n s h i p  between t h e  average path 

would be advantageous t o  extend t h i s  work a l s o  by length x~ and the range R ( E )  is 
approximated by: 

u t i l i z i n g  a high energy proton bean which wodd 



where: 

2, = specimen thickness ( a )  

E = elec t ron  k ine t ic  energy ( M ~ v )  

R(E) = electron range (cm) 

With these considerations i n  mind, the specimen 
thickness I,, was chosen a s  1.5 mm. This value 
permits accurate determination of the opt ica l  
transmission. The range of 1 .5  MeV electron i n  
fused s i l i c a  i s  R(E) = 4 mm therefore z i s  0.36, 
and p ( ~ , ~ )  = 0.54 and n(G,B) = 0.25. Therefore, 
25 percent of the penetrating electrons are  ab- 
sorbed giving up 54 percent of t h e i r  energy i n  a 
fused s i l i c a  sample 1.5 nrm thick. The extreme 
complexity of the processes involved m$es the re-  
l a t i on  between the ionizing dose r a t e  D and the 
electron density J a t  a k ine t ic  energy of 1.5 
MeV only an approximation. The re la t ion  using the 
technique described above i s  the same one used by 
Palma and ~ a ~ o s z ~  and i s  expressed as: 

6 = P(G,B) (2) + t an  p k  

Substi tut ing the values given below in to  Eq. (5)  
where 

p(G,B) = 0.54, p, the densi t  of fused k s i l i c a  i s  given a s  2.2 gm/a  with a 
specimen thickness L of 0.15 cm a t  
the electron beam radius cu. 

of 0.5 cm and with p the electron beam angle of 
divergence f o r  fused s i l i c a  of approximately 60°, 
Eq. (5) numerically reduces t o  D =" 0.13J M W / S ~ C  

a s  mentioned previously. 
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TEST SPECIMEN 
DYNAMITRON FUSED SILICA 
ELECTRON 2.54 crn BY 2.54 BY 1.5 mrn -, ' RLMOTE 

OPTICAL BASE 
1.83 rnBY0.914 rn 

Figure 1. - Diagram of optical reference-sample paths. 

Figure 2. - Specimen holder. 
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Figure 3. - Typical raw data. (Suprasi l  I, 1.5 mm th ick  
specimen at 27001). 



ELAPSED TIME, t, SEC 

Figure 4. - Electron irradiat ion h is tory  of 1.5 mm Supras i l  I 
specimen at 2150 A. 
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