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CHAPTER I

INTRODUCTION

1.1 Introductory Remarks

The subject of this dissertation is a calculation
algorithm for the p-q solution of the degenerate linear

system
Y = AX (1.1)

where A is an mxn linear transformation matrix with Y
and X elements of the real m-dimensional and

n-dimensional normed linear spaces Vm and Vn with

norms ||+|]_~and | ln’ respectively [49, p. 83]. After
Frame [13], the system is said to be degenerate in that

m # n or there is no exact solution X to (1.1) for a
given A and Y . The p-gq soiution X of (1.1) is a
special case of a best approximate solution of (1.1)

when Vm and Vn are restricted, respectively, to the
finite dimensional normed linear spaces 2P(m) and 2%(n)
with horms

| | 1/p
HYHp = (Y [P+ eee + Y |P)

m




and

/g
= q ® 9 O q
X = X%+ e+ X [D)

for 1 <p< oo, 1<gqg<w» [12], [49, pp. 87-88], where

a best approximate solution is defined as follows:

DEFINITION 1.1 [39]: 4 best approximate solution of the

equation f(X) = G <8 Xy if for all X , either

a) [lFx) - ell > [1F(xy)) - all
o) |If@ - cll = [lf(xy) - &l
and ||X|] 2 [|%,]]

This definition is similar to the fundamental definitions
found in references [5, p. 13], [6, p. 31, [29, p. 16],
(34, p. 11, [37], [50, p. 791].

If we let S(A,Y) be the set of all best approximate
solutions of the equation Y = AX , then, for a given
operator A , the set-valued operator BA which maps
Y onto S(Y,A) will be called the norm generalized
inverse. If we specialize V_ and V_ to 2P (m) and

29(n), then we will call B, the p-q generalized inverse.



This generalized inverse was suggested by P. L. Odell,
introduced by M. Meilcler [30, p. 39], and developed by
Meicler, Odell, and Newman [33], [36], [37].

Some properties of the norm geneghized inverse of
A are given in Chapﬁer IT as well as defining a norm
generalized inverse for the norm generalized inverse
BA of A and examining some of 1ts properties. The
definition and convergence theorems for an algorithm to
calculate the p-g generalized inverse are developed in
Chapter III. A basic definition and some notation

needed in the subsequent chapters willl be presented

next.

1.2 A Basic Definition and Some Notation

DEFINITION 2.1: For any mxXn matriz A and nxm matriz

B ', consider the four equations

1. ABA = A (2.1)
2. BAB = B (2.2)
3. (B&)T = BA (2.3)
4, (aB)T = aB (2.4)

where T indicates matriz transpose, If B  satisfies

a) equation 1, then B 18 said to be a generalized

inverse of A and is denoted by B = A9 ;




b) equations 1 and 2, then B is said to be a

reflexive generalized inverse of A and is denoted by

c) equations 1, 2, and 3, then B is said to

be a left weak generalized inverse of A and is denoted

by B = A" 3

d) equations 1, 2, and 4, then B is said to be

a right weak generalized inverse of A and is denoted

by B = A"

e) equations 1, 2, 3, and 4, then B is said to

be a pseudoinverse of A and is denoted by B = A*

The four equations were introduced by Penrose [38].
His notation is used for the pseudoinverse. The names
for the inverses defined in statements a), b), and e)
and the notation for a), b), and c) are due to Rohde [47].
The name, weak generalized inverse, originated with
Goldman and Zelen [15], but the left and right designa-
tions are due to Cline [8]. The notation for d) is from
Boullion and Odell [3].

These generalized inverses will be used throughout

th

[0

paper.

A

}.......J

so used throughout are the letters I and ¢
which are the identity matrix and the zero vector or
matrix of zeros. Usage will indicate the order with

Ey and ¢k denoting the kxk identity and kx1 column

%



vector of zeros if necessary. Also used is ¢ for
the null or empty set. Boldface N and R are used

for the null set of the operator Q

N(Q) = éXeV:Q(X) = ¢}

and the range set of the operator Q

R(Q) = {Y:Q(X) = Y,XEV}

The operator Q is not necessarily linear.
The symbol @ will denote the direct sum of two
subspaces [17, p. 24]. For a matrix A , A* will
denote the ith row of A Aj will denote the Jjth
column, and A§ the element in the j¢h column, ith
row. Scalars are real numbers and are denofted by
lower case Roman and Greek letters. For typing con-
Vénience, the Greek letter epsilon (g) will be used for
the set theory "element of" symbol € except where
some confusion may occur with an epsilon used in limit
proofs. In these cases, the symbol &€ will be used to
denote "elément of."

When a theorem or definition is known in the
literature, this fact will be noted by a reference after
the statement of the theorem or definition. If a known

proof is included for completeness, then this fact will




be noted by a reference after the identifier "Proof" or

the identifier of a subsection of the proof.



CHAPTER IT

THE NORM GENERALIZED INVERSE

2.1 The Metric Projection in a Finlte Dimensional

Normed Linear Space

DEFINITION 1.1 [35]1: ©Let V be a real normed vector

space and M be a subset. For X in V , let EM{X}

denote the set of nearest points in M to X , i.e.,

B () = {Yyem|[x -Y[] < []x - 2]
for all 72 ¢ Mg .

The set-valued mapping E, s called the metric

projection onto M . Lef M denote the set of all

metric projections onto subspaces of V .

The concept of a metric projection has been
discussed by several authors, among them Blatter and
Morris [2], Brown [4], Cheney and Wulbert [7], Lazar,
Morris, and Wulbert [247], and others [25], [35], [LO],
[48], [531.

The existence of a metric projection where EM<X}

is unique for all elements X 1is given below.

DEFINITION 1.2 [6, p. 22]1: A normed linear vector




space is said to be strictly convex 1f and only <if, for

all elements of the space X and Y ,

!

X

Co= Y = [ e /2] =1 dmplies X = Y .

THEOREM 1.3 [6, P. 23]: In a strictly convex normed

linear space V a nonempty real finite dimensional
subspace M contains a unique point closest to any

gtven point of V

To prove the theorem it is only necessary that M

be convex, closed, complete and contained in a finite

dimensional subspace. We can see this by letting Y € V

and d = inf ||X - Y|] . If Y e M, Y itself is the
XeM

unique point closest to Y . So let Y £ M . Then for

7 £ M define

s = {xzux-m < |lz-v(] ,um}.
Then
a = }ﬁégﬁ{HX—Yll}
- ant {1 = vllx - vl < J1z - vl
- inf i1 - 11}

= inf f£(3)



where f(X) = |[X - Y|| ; since (d < £(X) for all
X € M) 1is unaffected by the requirement f(X) < £(2)
when d < f(Z) . S is closed in M and thus in. V

since M 1is closed. Also, S i1s bounded by £(Z).

Since d = inf £(S) , there exists a monotone
decreasing seguence of real numbers {fi} e £(3)
such that 1im f.=4d . Now f. e £(S) implies there
i oo

are points Xi € S such that f(Xi) = fi . Using the

standard distance function p , calculate, if n > m

p(X LX) = [1xX, - X ||
< Xy =yl o+ flx, - x|
= f‘m-i-f‘n
< 2fm

shbwing that {Xi} is a bounded sequence. Therefore,
there exists a convergent subsequence {Xk } having a
i

limit, say XO e M . Thus
d = f£(X,) = [ixo - Y|

The uniqueness follows the proof by Cheney [6, p. 23].

From the above remarks, notice that strict convexity

was not required to prove existence. Uniqueness may be




lost without strict convexity. For example, let V = R

%]l = max {xl,xz} , M= {X:x2 = 0} . Let Y = (0,1)

The problem is then to minimize max {X ,l} which 1is
XlsR-
minimized for all points =1 < X <1

THEOREM 1.4 [37]: The following are properties of the

L.

metric projection mapping EM = E on a subspace M
)

a) E(aX) = aE(X) , for any scalar o ;

with norm |

b) E =L
c) E(X) =X 4if and only if X e M ;

d) EX +Y) =EMX)+Y for XeV, YeM,;

e) E(X + E(Y)) = E(X) + E(Y) for all X,Y eV

.
3

£) B(X - B(X)) =¢ forall X eV

THEOREM 1.5: In a normed linear space V , let Q be

an operator from V into V and consider the properties:

Q% = q

ot

2. Qle) = ¢

3.0 QY = X)

Q(Y) = X for X,Y € V and
Q(X) = X

b, Q(y + X)

I

Q(Y) + X for X,Y € V and

Q(X) =X

1

QLY + aoX) = Q(Y) + aX for X,Y € V and

Q(X) = X and o any real scalar



It follows that

a)

b)

c)

d)

Proof:

and

a)

if properties 1, 2, and 3 hold, then each Y & V
can be writien as Y =X+ Z , where Q(X) = X
and Q(Z) = b

if properties 1, 2, and U4 hold, then a <is true
and X and 7 are a unique pair;

if properties 1, 2, and 5 hold, then Db 1is

true and

U

{X eV : QX) = X}

18 a éubspace;

if properties 1, 2 and 5 hold and

W= {ZeV: Q2)= ¢} |

is a subspace, then Q is a linear operator.
Let YeV, X=0Q), Z=Y -X.

We neéd only show that

X = Q(Y)
= Q%(v)
= qa(y) = o)
Q(z) = QY - X)
= Q(Y) - X = ¢




b) We need only show uniqueness so assume that

Yoo= i
Y Xl + Zl also, with X1 e U, Zl € W . Then

using 4. we find that

X o= Q¥) = QX +2z,) = QX)) +az) = X
By subtraction, Z1 = 7
¢) Using property 5 twice, we find that
QlaX, + BX,) = Q(aX, + ¢) + BX, = aX, + BX, for any

Xigxz ¢ U and a,B scalars.

a) Let Y ,Y, eV, X, =Q(¥) , X, =0,

1

so that Yl - Xl,Y2 - X2 e W making

@{Yl - Xl) + B(Y2 - X2) e W and

-
[

afocr, - x)) + 80y, - x,)]

Q(aYl'+ BY2 - aXl - BX2)

]

Qa¥, + 8Y,) - a0(Y ) - BA(Y,)

showing Q 1s a linear operator.

DEFINITION 1.6: a) If Q <& an operator from the

normed linear space V 1into itself, Q <is called a

projection operator 1f Q has the properties Q?

Q

12



13
and Q(¢) = ¢ . Let P denote the set of projections.

b) If Q s a projection and
Q(Y = X) = Q(Y) -~ X for all X,Y € V suech that

Q(X) = X , ‘then Q <8 called a true projection operator.

Let T denote the set of true projections.
c) If Q <& a projection and

Q(Y = X) = Q(Y) X when Q(X) =X , then Q <& called

a unique projection operator. Let U denote the set of
unique projections.

d) If Q 1is a projection operator and
Q(Y + aX) = Q(Y) + oX when Q(X) =X and o is «a

scalar, then Q <Is called a spatial projection operator.

Let S denote the set of spatial projections.
Corollary 1.7 establishes some relationships between
the types of projection operators and the properties

of the sets they generate.

COROLLARY 1.7: Let V be a normed linear space, Q «a

projection on V , Y eV , X = Q(Y) , =Y - X,

Z
U = {X:Q(X)'= X} s, and W {Z:Q(Z) = ¢}. Then

a) if QeT ,ZeW;
b) Zf Qe U Z e W and the pair of vectors
X,Z is unique for any Y € V ;

c) i1f Qe S , Z e Wand U <is a subspace ;
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d) Q <Zs a linear projection if and only <if
Q@ , I -QeS making V=U8W ;

ey MCS;

£) letting L denote the set of linear projections,
LcMmcScuUcTcep
Proof: Parts a through e are reformulations of
Theorem 1.5 using the notation of Definition 1.6.

f) McScUcTcP and LcScCU follow
immediately from a through e. To show | c M , let
K el . A norm must be found on V so that for any
¥ eV

[N

, 1Y - KY|] < ||Y - KX|| for any X e V .

Consider the weighted square norm
llz]] = {ZT[KTK + (I -K)T(T - K)}z}l/2

This is a norm since KTK is positive semidefinite, and
if Z # ¢ , then either KZ # ¢ or (I - K)Z # ¢
making either ZTK'KZ > 0 or Z (I - K)T(I - K)Z > 0 .
Consequently we need only show that KY minimizes the
norm for M = {X:KX = X} = {X:KY = X,Y ¢ V} . This is

accomplished utilizing the following steps for Y,X € V

1. (Y - kO)TKTK(Y - KY) vT(1r - ¥)TKTK(I - K)Y

YI(T - K)TKT (K - K2)Y



2. (Y = KY)T(I - KY™(I - K)(Y - KY)

Y1 - T - (T - ¥ - K)Y

YT - ¥)T(1 - X)Y
T, T T Tor 7 or .
3. (Y - KOTKTR(Y = KX) 20 = (Y - KY)TKTR(Y - KY)

b, (Y - KO - 1)T(T - K)(Y - KX)
= Y1 - OYT(T - K)Y

- xTkT(1 - vYT(@ - Ky

YI(r - ¥VT(I - K)KX

+ XTkT (1 - KYT(T - K)KX

it

YT(I - K1 - K)Y

= (Y - KD - (T - K) (Y - K

=<
-
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5. ||y - kY||? (Y —KY)T(KTK + (I - K)T(T - K))

+ (Y - KY)
= (Y - KY)TKTK(Y.— KY)
+ (Y - x0T - ©)T(T - K)(Y - KY)

(Y - KX)TKTK(Y - KX)

A

F Y- KON - T - K) (Y - KX)

= (Y - KX)T<KTK + (I - K)T(T - K))
« (Y - KX)

= |y - kx||?

One set of interesting linear metric projections 1is

defined on the range space R(A) and null space N(A) of
a linear operator A . These projections are defined
in terms of the generalized inverses of Definition 2.1
in Chapter I. Early versions of this theorem were
proved by Desoer and Whalen [10] and by Ben-Israel

nd Charnes [1].

THEOREM 1.8 [3, p. 15]: Let A and B be mxn and

nxm matrices, respectively, with A mapping v, into
o ; . .
v ~oand B  mapping Vm into Vn . Then

a) if B 1is a generalized inverse of A , there

are unique subspaces U and W such that



V. =R(A) 88U and V_= N(A) ®W ;

b) If B <s a reflexive generalized inverse, then
vV, = R(A) ® N(B) , V_ = R(A) & N(B) ;3

c) if B is a left weak generalized inverse, then
N(A)vand R(B) are orihogonal;

d) <Zf B <Zs a right weak generalized inverse, then
R(A) and N(B) are orthogonal;

e) 121f B is the pseudoinverse of A , R(A) and

N(B) as well as N(A) and R(B) are orthogonal.

The next theorem obtains the metric projectionsbonﬁ@
R(A) and N(A) when V = 22(n) and V, = 22 (m) in

terms of the pseudoinverse AT of A .

THEOREM 1.9 [37]: Let A be an mxn matrix. Then

a) 1if v, = Rz(m) s, the metric projection onto
RCA) s AA™:
b) if v, o= lz(n) , the metric projection onto

N(A) 28 (I - A*R).

Theorem 1.9 shows that there are some metric pro-
jections which are also linear projections. However, all
metric projections are not linear as can be seen from

the example which was quoted by Newman and Odell [37]




and attributed to Charles Anderson of Southern
Methodist Unlversity:

Let V= 2%3) with 1 <p < and
M= {X:X = a(1,1,1) , a a real Scélar} . Suppose

E , the metric projection on M , 1is linear; then

p pl/p
E(1,0,0) = min(ll - ol P+ |a|P+ |a )
o
= E(0,1,0) = E(0,0,1)
which implies
E(3,0,0) = 3E(1,0,0)
= E(1,0,0) + E(0,1,0)
+ E(0,0,1)
= E(1,1,1) = (1,1,1)
by Theorem 1.4 and the linearity of E . Therefore,
the function f(a) = ||(a - 3),a,a||FP is minimized

uniquely for o = 1 since the 2¥(3) norm is strictly
convex for 1 < p < o , Since f(a) is differentiable
for 1 < p <o , 1t must be true that

0 = Pr(1) = -2p2P7%2 4+ 2p or that 2P72? = 1 which is
true if and only if p = 2 . Therefore, E 1is linear

if and only if p = 2 . This result suggests a lemma

and a theorem,

18



LEMMA 1.10 [37]: Let M be a hyperplane contained in

the normed linear vector space V of dimension n
then the metric projection E of V on M <ig a

linear transformation.

THEOREM 1.11 [37]: C(onsider the spaces P(n),

1 <p <. For every non-null subspace M , the
metric projection E is linear if and only if

n<=2 or p=2

LEMMA 1.12 [4]: For any metric projection E and any

sequence {Xn} such that 1lim Xn =Y , <Zf

Y-

z = lim E(X_) € R(E) , then 2 € E(Y)

n-ro .
Proof similar to that of Brown [4]:

1Y -z

[]Y =X +X -2 + 2 = 7]|]
) n n n n

1A

Yy = x [+ Tix, -z |1+ [z - z[]
= |y = x [+ [lx, - BX)I]

+ [lz_ - zl| .

Now since E(Y) € R(E)

3

[lx, - 5G] < 11%, - B

A

A

lx, - Y|] + ||y - E(¥)]]




g0 that

-zl 2lx, =Yl o+ Y - B[]+ [z, - Z]]

and since ||Xn -yl >0, [|lz, -2Z[] >0 and
iii Xn = Y , iiz Zn = Z , then given €, 5 €, > 0

there is an N such that if n > N ,

- ¥l < e

lz, - ¥l] < e,

and thus

Y - z]] < 2e, + [|Y = BE(O)|] + e,

1255 > 0 then

Now since the above is true for any ¢

[y - z|] < [|Y - EC) ||

which implies Z = E(Y) since Z € R(E)

COROLLARY 1.13 [4]: For any metric projection E on a

finite dimensional subspace M 1in a strictly convex

space V , E(X) Zs a continuous function of X on V .



1A

g,ﬁi

2.2 Properties of the Norm Generallized Inverse
Existence, uniqueness,‘and properties of the norm
generallized inverse of a mxn matrix A will be
developed in terms of the metric projéctions onn the
corresponding spaces Vm and Vn . The norm generalized
inverse of the norm generalized inverse of A will be

defined and some properties established.

THEOREM 2.1 [37]: For each Y ¢ v and every pair of

strietly convex norms, there exists a unique best
approximate solution XO € Vn of the system AX = ¥
If E and F are the metric projections onto R(A) and
N(A), respectively, B 1is the norm generalized inverse

of A, and A9 is any generalized inverse of A ,

then the solution can be written symbolically as

X, = B() = (I- M AJE(Y)

Proof: We will show that XO satisfies Definition 1.1
of ChaptervI. Let Y ¢ Vm . Now since A is a linear
operator, R(A) is a subspace of the strictly convex

space Vm which implies there exists a metric projection
E onto R(A) such that E(Y) is unique by applying
Theorem 1.3. Let Y, = E(Y) e R(A) . Let A% bpe a
generalized inverse of A and consider Xl = AqYD e V. .

Observe that AX, = AAgYO = Y, , using Theorem 1.8 a),
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so that Xl is a solution to AX = YO . If we choose

another generalized inverse Ag and let X, = AgYO ,

then AXZ = Y0 . Now if X2 1s such that AX2 ='YO s
then A(Xl - X2) = ¢ _ . Consequently the difference
between any two solutions and any two generallzed

inverses is an element of N(A), and the set S of X's

satisfying AX = YO is characterized as

S = {X:X = Xl - Z,Z € N(A)} .

This is then the set of all points in Vn which can be
best approximate solutions to AX =Y . We must now find
that subset of S , say S' , of minimum norm in

Vn , or in other words, those X0 € S' such that
%I, < [1x]] for all X e S . Using the N(A)

characterization, we must find those Z_ e N(A) such

0
that |]X; - zolln < I|x; = 2]l for all Z e N(A) .
But this is simply finding the metric projection F(Xl)
on N(A), which yields a unique z, since Vn is
strictly convex and N(A) is a subspace by Theorem 1.3.

Therefore, the best approximate solution is



COROLLARY 2.2 [37]: In the

following properties hold:

a)
b)
c)
)
e)
£)
g)

h)

AF

EA =

i}

BE

AA9E

It

BA

ABA

BAB

0 , the zero

.

Ll

f

1 0
X, - F(X))

(I - F)X,

(I - F)AY,
(I - P)A%E(Y)
B(Y)

notation of Theorem 2.1 the

or null operator
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COROLLARY 2.3 [371]:

a) If V_ = Rz(n) , then B A'E H

n
b) If V_=8%(m) , then B = (I - ma* ;
c) If v = 2%(n) and v, = 22 (m) , then B = N

d) If the rank of A is n <m , then F

]
|©

and B = A9E

The result of part ¢ was first shown by
Penrose [39]. The dependence of the linearity of the
norm generalized inverse B upon the linearity of the

metric projections E and F will be shown next.

THEOREM 2.U4: The norm generalized inverse B of an

mxn matriz A is linear if and only if the metric
projections F and E are linear over Vn and Vm s
respectively

Proof: If F and E are linear, then B is linear
since B = (I - F)ASE and A9 is a matrix and therefore

linear.

I+ B 1s linear, then for a,B scalars and

Y. .Y, eV

1772 m °

B(aYl + BYZ) = aYl + BY2



which becomes

g ' _ _
w9[ECar, + 6Y,) - 0B(T,) BE(Y,) ]
- g _ 9m (3
= FAYE(oY, + BY,) aFAYE(Y,)
- 3FA9E(Y2)
after substitution and some algebraic manipulation.
Observing that E(ocYl + BYZ) - aE(Yl) - BE(YZ) e R(A)

and that AF = 0 by Corollary 2.2 a), we find that

multiplication of (2.1) by A produces

m

E(qYl + BYz) - aE(Yl) - BE(YZ) = ¢

showing that E is linear. Including this result in

equation (2.1), we obtain
= Ie( - _ g
¢ F[A E(aYl + BYZ)] alA E(Yl)
- BFAgE(YZ)

showing that F 1is linear over R(AY), rfor all
generalized inverses of A Dby Theorem 2.1. Now

consider the set of matrices defined by

H(Z) = A% + (I - a*a)z

docd
¥

f—
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where Z 1s an arbitrary nxm matrix with the restric-
tion that Z maps R(A) into N(A). Now AH(Z)A = A
showing H(Z) is a generalized inverse of A so that
F is linear over R[H(Z)] for all Z . Since Z 1is
an arbitrary map from R(A) into N(A), then for each

YO

)

R(A) and XO e N(A) there is some Z so that

; +
H(Z)YO = A YO + XO .

Allowing Y, to vary over R(A), we see that F is

linear over R(A+) ® N(a) = Vn .

COROLLARY 2.5 [37]: Let V_ = 29n) , Vo= LP(m) for

m2 3

, n >3 . Then B 1is linear for every mxn

matrix A Zf and only 24f p = q = 2

COROLLARY 2.6 [37]: If A iz an (n+l)xn matriz of

rank n , then the norm generalized inverse B 1is

linegr.

One property of the p-g generalized inverse when
p =g =2 (the 2-2g.1.) is that the g-p g.i. of the
p-¢ g.1. 1s (A+)+ = A , a property of the symmetry
of A and AY . An interesting problem is to define
a norm g.1. € of a normg.i. B of A and determine
if C = A . In general, as was seen in Theorem 2.4 and

Corollary 2.5, B 1s nonlinear.



Observe that in the fundamental exlstence theorem,
Theorem 2.1, the linearity of A was reqﬁired to make
N(A) and R(A) finite dimensional subspaces. That N(A) and
R(A) be subépaces was required to associate N(A) and R(4)
with the finite-dimensional subspace M of Theorem 1.3.
By the remark after Theorem 1.3, observe that the only
properties of M required are that M be closed,
complete, and convex (convek for uniqueness). A more

general theorem is therefore

For each Y ¢ v and every pair of strictly
convex morms, there exists a best approximate
Xo eV, of AX) =Y, <f R(A) and N(A)
are closed and complete subsets of Vm and

V. respectively. If R(A) and N(A) are also

convex, X, 18 unique.

Consequently, in order to answer the question posed in
this remark, it must be determined whether R(B) and

N(B) each satisfy the hypotheses of the theorem.

LEMMA 2.6: For any norm generalized inverse B of

A, R(B) = N(F)

Proof: Let Y e Vm and B (I - PF)A9E . Then

R(A) , since E(Y) =Y

E(Y) e R(A) so that E(V )
if Y e R(A) . Therefore, letting Z = A%E(Y) - A"E(Y)

and noticing again that E(Y) e R(A) ,




AZ = AA9E(Y) - AATE(Y)
= E(Y) - E(Y)
= ¢m

since AAY9 and AAY are both projections onto R(A) by

Theorem 1.8, Consequently,

(I - F)A9E(Y)

ATE(Y) + 2z - F(ATE(Y) + Z)
= A'E(Y) + 2 - F(A'E(Y)) - 2z
= (I - MATE(Y) (2.2)
so that
R(B) = R((I - F)AE)
= (I - F)R(A'E)

= (I - F)R(AY)

To show (I - F)R(AT) = N(F) , first let X e R(B)

Then there is a Z & R(AT) such that X = (I - F)Z and

F(X) = F[(I - F)(Z)]
= (F - F2)(z)
= ¢

n

and therefore X e N(F) and N(B) C N(F)




(A%
3

Suppose X ¢ N(F) . Then F(X) = ¢, and
(I -F)(X) =X . To show X e R(B) , it need only be

shown that X € R(AT) . Since X e V., s X can be

written as X Xl + X2 where X, € N(A) = R(F) and

1

X, ¢ R(A®) , by Theorem 1.8 e). If X =¢_, then

X ¢ R(AT) . and the lemma is complete, If X # ¢, s
then X ¢ R(F) , for that would imply X = F(X) = ¢_ .

n

Therefore, in either case, Xl ='¢n implying that

X=X, ¢ R(AT) and that N(F) = R(B) .

LEMMA 2.7: For any norm generalized inverse B of
A, N(B) = N(E)

Proof: Now N(B) = {ZZ(I - MAJE(Z) = ¢m} . Since
A9 is linear and F(¢_) = ¢, then N(E) c N(B)
Let Z e N(B) . Since Z ¢ vV, and E is a metric-

0 1

E(ZO) = ¢m 5 E(zl) = z1 s, by Corollary 1.7 c).

projection, . Z can be written as Z = Z_ + Z. , where

Thus

¢ = B(Z)
= (I - F)AgE(ZO +2))

= (I - FAI(z))

_ +
= (I -F)A(Z))




30

by the properties of E and Equation (2.2). Now
(T - F)a™(z) =¢, , or FAT(Z)) = A%Z, 1is true if and
only 1if A+Zl € N(A) 1is true since F 1is a projection
on N(A). But A+Zl e R(A™) so that A+Zl = ¢_ since
V_ = N(A) @ R(A") by Theorem 1.8 e).

Since E 1s a projection on R(A) and E(Zl) = Zl s
then Z_ e R(A) so that 2, = AA+Zl = A¢p = ¢_ . Thus

1 n m

Z=2,+2%, =2, ¢ NE) . Therefore, N(B) = N(E)

THEOREM 2.8: For any norm generalized inverse B of

A, N(B) and R(B) are closed sets,

Proof: Observe that

N(B) = N(E)

i
et
DN
23}
Pany
N
p—
fi
-

8
e

from Lemma 2.7 and

R(B) N(F)

{Z:F(Z) - ¢n}

from Lemma 2.6. Now E and F are both continuous
by Corollary 1.13. Since the inverse image of a closed

set 1s closed when the function is continuous, N(B)



and R(B) are closed since E'l({¢m}) = N(B) and

F-l({¢n}) = N(B) , where ~' denotes an inverse opertor.
These results can be summarized in

THEOREM 2.9: The norm generalized inverse C of the

norm generalized inverse B of a matrixz A always
exists. The solution set S 18 a unique point #f
p=qgq=2 or nm<2 orif A is an (ntl)xn matrix

of rank n , (i.e., if B 18 linear).

Proof: By the generalized existence theorem a best

approximate solution Y0 to the equation
B(X) = Y

exists for each X e V_ "if R(B) and N(B) are closed
aﬁd complete subsets of Vn and Vm » respectively.
By Theorem 2.8, R(B) and N(B) are closed sets showing
the existence of the norm generalized inverse C of

B defined by C(X) = SX where SX 1s the set of best

approximate solutions Y to B(X) =Y

0 for every

o} 2
X eV

n

By the generalized existence theorem, SX is a
unique point for every X if R(B) and N(B) are convex,

which is true, if B 1s linear, which is true for all




A if and only if p =q =2 (when m,n > 3) or
n,m < 2 by Corollary 2.5 or A is an (n+l)xn matrix
of rank n by Corollary 2.6.

For the norm generallzed inverse C of the norm
generalized inverse B of an mxn matrix A to equal

A, then C must be expressible as a matrix and, as

such, must have a unique image for each X ¢ Vn . This

is the case if and only if' B 1is linear.
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CHAPTER III

CALCULATION OF THE p-q GENERALIZED INVERSE

FOR P aND 2% SPACES

3.1 Preliminary Results

Prior to defining and proving an algorlithm for the
calculation of the p-q generalized inverse, which is
defined in Section 1.1, several preliminary results

are necessary.

THEOREM 1.1: Let V., V

122 V21, and V,, be real nxn,

nxm, mxn, and mxm matrices, respectively. Define

+
+
o Ry = [vll - V12V22V21]

2. R.. = -R..V. VT

12 111222
3. R..=-vtv_ =R
. 21 22'21°11
R + +
4 Rzz = Vo, t V22V21R11V12V22
¥ gt + * +
5. R;l Vi ¥ Vi VioR,oVai Vg
% _ + *
6. R12 - 'V11V12R22
7. RS, = -R._V_.VT
° 21 222111
8. R, —'[v v. vy ¥
o227 L2207 21711 12]
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1%,

27,

if and only if

it

H
3, VZl[I -

b,

6.

7",

gt.

11°11) 12

i1f and only if

i



Lad
W5

which then implies

+
+ = ut
1. [Vll - V12V22V21] V11 |
.ﬁ.

+ ' + ot
¥ Vllvlz{VZZ - VZlvllVlzj ‘2111

' +
1" _ + =yt
2% [VZZ V?. lvl lVl 2:] V22

‘ +
+ + I
* V22V21[V11 - Vlzvzzvzl} Vi2Va2

4
+ +
3" [Vll - V12V22V21] Vi2¥22

+ +
g, VIV [Vll - V12V22V21]

+
- + . +
N [sz - VZlvllVlZ} VaiVir -

Proof: If all eight conditions hold, then R = R by
the uniqueness of vt , glving the equalities 1", 2",
3", and 4" by equating corresponding submatrices of

R and R . Thus, it need only be shown that

+

a) R=7V' 1if and only if 1', 2', 3', and 4' hold.

b) RY = v’ ir and only if 5', 6', 7' and 8' hold.

But the only difference between the definitions of R
and R and between the conditions 1' through &' is an
interchange of the symbols 1 and 2 so that using a symmet-

rical argument we need only prove statement a) above.




To prove a), it:will be shown that the four

Moore-Penrose equations of Definition 2.1le in Chapter I

14}7

3

b,

are satisfied.

Now

11

VRV = V

RVR

il
o]

(V)T =

(V)T

- VRV

It

VllRllvll

VllRllVll

+
* Vlz[vzz

-+
Vll,RllRll

+
+ V12V22V

A

-+

Rll

Vll_

VR

RV

V12R21V11

+
V12V22V21R

4
V22V21RllV

- V. VI V_.R

21

+
- V12V22V21]R11R1

1222 21

-+

+
* V12V22V2l

Therefore, consider

Rll Rl2 Vll VlZ
Ry1 Rao \P$! Va2
+ VRoVor F VR0V

V.. - V..R..V.. VI v
11711 1171112722721

+

12V22]V21

V.. - V.. Vv
11]'11 1272221

+

T ALTAPY!
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S = V__R..V + VR,V + V,.,R. .V + V, K,V

21 21711 11 22 21 11 21712 21 22722 2
= V..R..V.. -V..VrV_R. V.. =« V_..R..V. . V' v
21711 11 2222 2171111 2111 12 22‘

' + + +
+ V22[V22 + V22V21R11V12V22]V21

_ +
= V,.R [Vll - V. .V, ,V ]

21711 1272221
+ vV, ViV [I - R,V + R V. VIV
22'22"21 1111 1171222721
_ + + o o+
= Vo1 - Vor * Vo BBy vzzvzzvzl[I - Riifag
o + + ot .
= Va1 - VZI[I "RllRll] ¥ szvzzvzl[l f1fn

- + _ +
= Vo - [I - V22V22]V21[I RllRll]

and therefore 821 = V21 if and only if

+ + -
[I - V22V22]V21[I - Rllﬁll] ¢ (i.e., that

ot + - + _
"Vzl[l - RllRll] * V22V22V21[I - R11R11.] =0 ).

If conditions 1' and 3' are used, observe that

+ + +
'Vzl[I - R11R11] * szvzzvzl[I - RllRll}

_ + T T
- b + sz[I - ViV ]Vlzﬁl

22 22 1

so that conditions 1' and 3' imply 821 = V2l

21

¢

Py
ot §



Sio = ViR Vit VR Vo Vi1B1aVan T VioR5,Y5,
+ +
= V. _R._.V - V.. V.. V_..R..V - V.. R..V_.V_.V

11711 12 1272221711 12 1171112 22 22

+ + +
¥ Vl2[V22 ¥ V22V21311V12V22]V22

- +
B [Vll - V12V22V21] F11V12

+ +
* [I - {Vll - V12V22V21}311]V12V22V22

- _ _ rt _ nt +
= Vi [I RllRll]V12+ [I RllRll]VlZVZZVZZ

+

e + -
= Vi - [I - RllRll]Vlz[I szvzz]

and therefore S12 = V12 if and only if

g ot + _
;I - R‘JLlRll:lle [I - szvzzzl =0
Using conditions 2' and 4',

+ + +
“{I - RMR:Ll]Vlz * [I - R11R11]V12V22V22

_ T T + _
= ¢ F RllVZl[I - V22\’22]\722 -

which implies S12 = V12 .
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S = V_.R,,V + V_ R,V + V, R,V + VZ?RZZF

22 21711712 22721712 21712722 22
= V_.R,.V V.. VL. V.. R. .V V.. R,.V.. VIV
- 21711712 © ‘22722'21711712 T 217111222 22

| + + +
* sz[vzz * V22V21R11V12V22]V22

- +
= Vo F [I - szvéz]VZLRllvlz

+ +
- [I - szvzz]vlellvlzvzzvzz

_ + +
= Vot [I - V22V22]V21R11V12[I - szvzzj

= - + - nt _ vt v ]
= Uyt {I V22V22:|V21R11R11R11V12[I V22V22]

and therefore 822 = V22 if and only if

+ + + _ .
[I - szvzz]V21R11R11R11V12[I - szvzz] = ¢ .

If conditions 1' and 2' are used, then

+ + + ‘
[I - V22V22]V21R11R11R11V12[I - V22V22]

]
4
3

+T_r + + + T o
V22V12[I - RllRll]Rll[I - RllRli}v !

J

1 22

™y




Now

il

21

i

#

11 12 11 12 11 12

21 22 21 22 21 22

R..V. R.. +R..V..R.. + R..V. R.. + R._V._R

11 11711 12 2111 11 12 21 12 22 21
R..V. R.. - R..V. VI V.. R.. =R..V. VI V_.R
11 11711 11 12 22 21 11 11 12 22 2111

+ +
* RllV12V22V22V22V21R11

+ .
Rll[vll - V12V22V21]R11

11

R21V11R11 * R22V21Rll * R21V12R2l * R22V22R2l

-vY V. R..V..R.. + VI V. R..V. V¥ V. R

22 21711 11711 22 217111222 21711
+ [V + viv_ R o v. v |lv..r v.. viv_.R
22 22 2111 12 22 2111 22 22 21 ld
vt v. R |v.. - v. vt v__ IR
22 21711 11 12 22 21 11

+ + +
* [I * V22V21R11V12]V22[I - V22V22JV21R11

Ro1

40



12

22

7 T
RiiViaRyp * BV Ry t RiaVioRoy + RV R

-R,.V. R V. Vi + R .Vv. ViV R v v

1111711712 22 11 1222211171222
+ |R..V.. - R..V. V' v vi s v v..rR. V. v ]
11 12 11 12 22 22 22 2221711 12 22§

+ +
“Rll[vll - V12V22V21]R11V12V22

+ 3+ +
* RllVlZ[I - Vz:z\'vzzz]vzz[I - V21R11V12V22}

12

R21V11R12 * R22V21312 * R21V12R22 * R22V22R22

+ +
V22V21R11V11R11V12V22

+ + + +
- [sz * V22V21R11V12V22]VélRllvlzvzz

+ + .
* {[VZZ * V22V21R11V12V22]V22 - V22V21R1l¥12

g;

+ +
VZZ[I * V21R11V12V22]

+ :t' + -
V22V21R11[V11 - V12V22V21]R11V12V22 Va2

o+ viv.or vV

V22 2272171112722

22

41



Now

11

21

VllRll

[Vll -V

V,.R +

VZlRll

(I—V v*)v R

22

S = VR
V12R2l
- v. VI V_.R

1222 21 11

+
2V22V21]R11

V22R21

- V. Vi V..R

222221711

22/ 21711

b2

12 ViR * Viafas
+ + + +
“V1afaVioVa2 F ViaVon ¥ VioVo,V00 R V070,
+ + +
= ViaVan - [Vll - V12V22V21]R11V12V22

_ + +
- [I - RllRll]Vlzvzz :



k3
T

Consequently S12 = S21

1f and only 1if

, \T
+ - _ ot +
[1 - V22V221V21R11 ([I Rl;Rll]vlzvzz)

. Which 1s condition 2°%.

S T VaaBRio * VioR,
= VyiRiiVipVas * V;z[vzz * V;2V21R11Vlzvgzg
= V,,V5, - [I - szvzé]vzlﬁllvlzvgz
and therefore S,, = ng if and only if
T
([I - V;zvzz]vlellvlzvzz) - [I - V22V;2]V21R11V12V§2
Given conditions 2' and b,
+ + + + VL s
[I - VZZVZZ]VZlRllVlZVZZ - ([I - R11R11]V12V22> Vi2V22
= (¢ 8 VZz)TvleEz
= ¢
which implies S,. = ST

22 22 °




Now

N
11

21

(92}

RllVll * R12V21

R..V.. + R..V. VIV

i1 11 11'12°22 21
+

RllRll

T

Sll

R,V R,V

21 11 * 22 21

ot : + + +
—V22V21R11V11 * [VZZ * V22V21R11V12V22}V21

+ + +
VooV - V22V21R11Ev11 - V12V22V21]

+ +
V22V2l[I - RllRll]

RllVIZ * R12V22

+
R11V12 - R11V12V22V22

+
Rllvlz[I - V22V22]

by



_ T
and therefore S12 = S21 if and only if
+ + + *
V22V21[I T R11R11] s Rllvlz[; - szvzéj :

which 1s condition 1°'.

S T RpVip Ry,
+ + + +
“V22V21R11 Vo ¥ [sz * V22V21R11V12V22}v2i
- + + ‘ _ ut
= VooV - V22V21R11V12[I szvzz]
and therefore 822 = ng if and only if
V+V'RV vt ]} - Vi V.. R, V.. |I v*‘v}
22721711 120 T 22 22]~ 2221711 120 T 22 22
Given conditions 1' and 4',
+ . ' + + + + T
V22V21R11V12[I - szvzz] = V22V V22V21[I = RLLREIE
| T
- + +
= V22V21(V22 X ¢)
= ¢
T

which implies 522 = 822 .
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In each of the above calculations, it has been shown

that conditions 1', 2', 3', and 4' imply that R = vt
Observe also that R =_V+ explicitly implied condition
1" in Penrose equation 4, and condition 2' in Penrose

equation 3. To show the implication of 3', first

premultiply 1' by V22 to obtain

- i - + = - + T T =
szzvzzjzl I R11R11 V22 L V22V22 V12R11 ¢ -
This shows that in Penrose equation 1, 821 = V21 if
and only if
, _ + + _ + -
“Vzl{l R11R11.] + V22V22V21[I RllRll] ¢
which is
v._ | - R, _RT = ¢
“'22 1111

or condition 3', All the conditions implied by R = vt

are satisfied simultaneously (note that R = vt implies
that condition 1! does not require condition 3' to be
satisfied)., To show the implication of U4', postmultiply
the transpose by V22 to obtain

+ + _ T T +
gl - RllRll]V12V22V22 - R11V21[I - szvzz]vzz

|
-



so that S = V in Penrose equation 1 if and only if

which is condition U4r,

DEFINITION 1.2 [22]: A4 real nxn matrix A is called EPr

if and only <if it satisfiees the conditions:

1. A has rank r .
n | n i
2. Z X;A; =0 if and only if 3. XiA = 0

i=1" i=1

for all real X  where At 25 the 1th row and A,

18 the ith ecolumn of A .

Condition 2 can be written in matrix notation as
AX = ¢ if and only if ATX = ¢
or that
{X:Ax = ¢} = {X:ATX - ¢}

which is N(A) = N(AT) . If the rank is understood,

an EPr matrix will be referred to as an EP matrix.




LEMMA 1.3: If Vis Vys and V3 are subspaces of the

n~dimenstonal real space Vn such that
ﬁh = Vi ® V2 = V1 ® V3 , and if Vl 18 orthogonal

to both V2 and V3, then V2=V3.

Proof: Suppose that there is an X € V2 . Since
XeV , and V_=7V, &V there are vectors
n n 1 3

e vV v, e V such that X = v, + v

1 1 ° 3 3 1 '3 °

Y Let
i }r be an orthogonal basis for V, and {bBi}n'r
b

i=1
e an orthogonal basis for V . Then by the orthog-

T = i - s o0
lib3j 0 for 1 1, s

j = 1,°*+,n-r [17, p. 24, p. 34]. Therefore, there

onality hypothesis, Db H

are constants {ali}§=1 and {a3i}?;§ such that
3 |
X = i§1 %3015 * ;l ¥3iP3; -
Since X eV, and V_=V, 87V, , x*v, =0 for all

v, €V so that for j = l,°°°,r,

]
H
] [a}
i
|_J
[

(o

= 3
-

o
ot
-

+
w
-

o
= 3
.

o
(]

e



which dmplies

‘ n-r
X = i§1 GiiP3; € Vg

or that V2 - V3 . By exchanging V2 for V3 and

basis b2i for b3i in the above proof, V3 - Vz

which implies V2 = V3 .

THEOREM 1.4: 4 real nxn matriz A is EPr if and only

if AY ie EPr. Further, A is EPr if and only if
R(A) = R(AT) .

Proof: Note that

N(A*)

i

(I - AATYZ

]

X for some Z}

X (I - AA*)(i

AATYZ = X , for some Z?

)

X:(I - aAH)X

L]

Y

X:(I -a"TaTy(1 - 2™ TaTyz = x|, for all z}

{
{
{
{
- {X:AA+X = ¢}
{ .
{
{
{
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Similarly by replacing A with A and A with A" ,

then N(A™™) = N(A) . Therefore, N(&) = N(AT) if and

only it N(A'T) = N(a") , which is to say, A is EPr

1f and only if AT is EPr.

For the second part, note that Vﬁ » the real

n-dimensional vector space, is the direct sum of

<
]

N(AT) & R(A)

N(ATTY) & rR(aT)

by Theorem 2.8e in Chapter II. Now A is EPr if and
only if A% is EPr if and only if N(&™) = N(a*™T)
which implies R(A) = R(AT) by Lemma 1.3 since R(A)
is orthogonal to N(A) and R(AT) is orthogonal to

N(a™TY., Also by Lemma 1.3, if R(A) = R(AT)

D

» then

= N(AT) and A 1is EPr.

N(A

COROLLARY 1.5: Given V, R, and R° as in Theorem 1.1.

a) If V22 18 nomsingular, conditions 1' and 2

reduce to 3' and W',
b) If V,, te& nonsingular, conditions 5' and 6'

reduce to T' and 8'.

c) If Rll and V22 are EP matrices and

, conditions 2' and U4' reduce to 1' and 3'.



* & i
a) If R,, and V,, are EP matrices and

conditions 6' and 8' reduce to 5' and 7'.

e) If R,, ts nonsingular, conditions 1', 2',

3", and 4' reduce to

' _ vt -
9'. VlZ[I VZZVZZ] ¢
.' ) . ]
10", [I szvzz]v21 o .

* . -
£y If R22 18 nonsingular, conditions 5', 6',

7', and 8' reduce to

! _ oyt =

11°'., V21[I Vllvll] ¢
LI — + =

127, [I V11V11]V12 ¢ .

g) Ifa), c), and d) hold, then the eight condi-

tions reduce to 3', 5', and T°'.

h) Ifb), c), and d) hold, then the eight condi-

tions reduce to 1', 3', and T'.

i) If a), ¢), d), and f) hold, then the eight
conditione reduce to 3' and 11°.

J) Ifb), c), d), and e) hold, then the eight
conditions reduce to 7' and 9°',

k) If a), b), e), and f) hold, no conditions
exist, as this is a full rank case,

Proof: The proofs of statements b), d), f), h), and

J) are analogous to the proofs of a), c), e), g), and i),
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respectively, by interchanging subscripts. Therefore,

only statements a), c), e), g), i), and k) will be

proven.
: . + |
a) If v,, 1is nonsingular, V,, = V,, and
(I - V22V22) = ¢ so that conditions 1' and 2' are
simply
1. vitvo |1 - r, RV | = ¢
‘ 22 21 11711
; _ nt -1 .
2. [I RllRll]Vlzvzz o .

Premultiplying 1' and postmultiplying 2' by V22 yield

3' and 4', respectively.

¢) If condition 3' is transposed, the condition
becomes
11711

+T_T _
[I - r'TR ]V12 = ¢

T .
or that V., ¢ N(Rll) = N(Rll) by the EP hypothesis

+ _ .
on Rli . Therefore, [I - RllRll]Vl2 = ¢ which
is condition 4', To show that 1' and 2' are equivalent,
T\ _ . .
note that 'R(Rll) = R(Rll) since Rll is EP and

therefore

R(VZlRil) = R(VZlRll) . : (1.1)



I
Lk

+ ) +T )
Since V,, 1is EP, N(sz) ~‘N(V22) . From Theorem 1.8

of Chapter II, when X ¢ Vn s then X can be written
uniquely as X =U + W , where U ¢ N(VZZ) = N(VfTE and

227
Wwe R(V,,) = R(ng) by Theorem 1.4. Since (I - v, V], )

1s a projection ontO'N(ng) and (I - ngvgg) is a pro-

+T
Jection onto N(sz),

+ +
(I - V22V22)X -V, .V )(U + W)

2222

o
——
H

for all X ¢ Vn so that

+ - T T
(I - szvzz) B (I - szvzz) :

Considering 2' and substituting in 4',

1

T
+ + +
[I - V22V22]V21Rll - ([I - RllRll]VlZVZZE




showing that R(V ) . From equation (1.1)

21F11) € M7,

then R{VQlﬁfl) ¢ N(V;2) = N(Vgg) so that

T 4T T
[I - V22V22]V21R11

T
+
(Rllvlz[I - szvzz])

-©-
i

which is condition 1' i1f 3' is substituted.

. : + _ -1
e) If Rll is nonsingular, Rll = Rll so that
+
[I - RllRll] ¢
+ =
[I - R11R11] ¢

and therefore conditions 3' and 4' are automatically

satisfied along with the left side of 1' and right side

O

£ 27", reducing 1' and 2' to the conditions

g -yt =
L RllVlZ[I szvzz] ¢
2t [T v,V VR, = 0

’ Y 22] 21711

which are conditions 9' and 10' after premultiplication

o=

of 1' and postmultiplication of 2' by Rzi .

g) If a) holds, then 1', 2', 3', and 4' are
reduced to 3' and U4' which are further reduced to 3
if ¢) holds. If d) holds then 5', 6', 7' and 8' are

reduced to H5' and T'.
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i) If a), c), and d) hold, then 1', 2', 3', 4’
are reduced to 3' by g). If d) holds, then 5', 6%,
7', and 8' are reduced to 5' and 7'. If f) holds,
then 5' is reduced to 11', and 7' is éutomatically

satisfied. (See e).)

+  _ =1 + o oyl + gl
k) If Voo = Voo s Vi = Vi1 s Ria Ry
¢ R.P =R tn
an 22 = 292 3 en
+ _ - +
[I - szvzz} = ¢ [I szvzz]
+ - - _ ot
[I - Vllvll] = ¢ [I Vllvll}
+ _ = - -+
[I - RllRll] = ¢ : [I RllRll]
* * 4 _ - o %k
[I Rzszz] ¢ = [I R22R22]

which automatically satisfies all eight conditions.

Note then that

-1
" _ -1 = y-1 -1 *-lo -1
1. [Vll V12V22V21] Vll * V11V12R22 KEikll
-l -1 -1 -1 1 1
" : - = T s
2. [V22 VZlVllVlZJ V22 * v22V2lRllV12v23

which is the "inside-out" rule [14, pp. 45-497,

(27, pp. 24-267, [43, p. 29].

The above corollary can be used to obtain

Theorem 6 (iii) of Lewis and Newman [26].




LEMMA 1.6: If A s an nxn positive semidefinite

matriz and B 18 mxn,

(o v s

then

TB) = N(&) N N(B)

Proof: If X e N(A + BTR) , then (A + BTB)X = ¢

or that

-AX = BTBX .

Further since XTBTBX =

so that equation (1.2)

~is true if and only if

X

, T
since A and B B are

Bx)TBX > 0 ,

= xT(a + BTB)X

= XTAX + X'BTBX

becomes -XTAX = X BTBX

AX = 0

xTBTBX

(BX) TBX

positive semidefinite.

(1.2)

(1.3)

which
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Consequently, (A + BTB)X = ¢ 1f and only if BX
that AX = ¢ from (1.2). Therefore X e N(A) and
X € N(B) which is X e N(A) N N(B) . 1If

X e N(A) N N(B) , then X ¢ N(A + BTB)

LEMMA 1.7 [26]1: If A is positive semidefinite, then

A 1s EP.

COROLLARY 1.8 [26]: If A 1is a positive semidefinite

nxn matriz, C is an rxn matriz and K = A + C°C ,
then

-1

B = 4" - a%c™(1 + catcT) cat

if and only Zf N(A) C N(C) .

_ - o T S -
Proof.v Let Vll = A, V21. C V12 , and sz I
Notice that R} = A + C'C = K is positive semidefinite

by the proof of Lemma 1.6, equation (1.3) and therefore

A is EP as is V,, by Lemma 1.7, implying that R

is EP by Theorem 1.4. Now

1l

+
Raa = {sz - VZlVllvlz}

+T+
-[I + ca'c ] :
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Since AT is positive semidefinite, ca*eT is positive
semidefinite, Letting CACT be "A" and I be "B" of

Lemma 1.7, we have

r(I + cacT) = n - dim N(I + cacT)
= n - dim (N(I) N N(CACT))
= n
.
showing that R§2 = —[I + CAC ] is nonsingular where

r(+) stands for the rank of a matrix. Therefore, all of
the hypothesés of Corollary 1.5 i) are satisfied showing
that

¥

(a+c%c) = a*+ A+CT[—(I + CA+CT)—1]CA+

= I

if and only if 3' and 11' hold, which are

31, C[I -'KK+] = ¢
117, C{I - AA+] = ¢

Now 3' holds if and only if R[I - AA+] c N(C) . However,
T-247 is the projection onto N(A) so that 3' holds if

206 only ir N(E) € N(C) . But N(E) = N(A) n N(C) C N(C)



by Lemma 1.6 so that 3' will always hold. The only
remaining condition is 11' which holds 1if and only 1f

R[(I - aa*)] ¢ N(C) which is 1f and only if N(A) € N(C) .

DEFINITION 1.9: For D a diagonal matriz with diagonal

elements d,, d ceey, A, denoted by

1* 72¢
D = diag [dl’“"dn}

r , Let

diag[di] s and any real number

DY = diag[di,dé,-°°,d;]

where Al =d; if 4, #0 or d! =0 if d, =0

bR 1 1 1

Observe that

r~r - . ¥ X
DlDz ,dzag[dlidZi]
_ r
- (om,)
D'D® = diag[d;di] = pF*s

with equality also holding if di = 0 for some 1 .
If some diagonal elements are zero, ambigulty occurs
for negative r . To examine this, suppose D is

an nxn dimensional diagonal matrix such that

D = diag[dl,'°-,dm,0,°°-,0] .

w31
w0



Then by the above definition,
"l - diag[l/dl,"~,1/dm,0,-~°,O]

so that D' 1is really the pseudoinverse of D and
should probably be denoted by D' . This makes for

clumsy notation; for example,

1/2
l 3

D“l/Z 1/2

n ,O,"",O}

diag[l/d eoe . 1/d

- ()

so that, with this qualification, D* will be used
for all real r whether D 1is nonsingular or not.
For the next two theorems, consider the linear

model

Y = AX

and the welghted least squares solution X which is

such that

~ ~ % T *
(v - A)TW(Y - AX) < (Y - AX ) Wy - ax®)

for all other X  and positive semidefinite weight

matrix W . Since the welght function only will appear
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in a quadratic form, W can be assumed to be symmetric,
without loss of generality. Letting W = w'1/2)Tyl/2
be a factorization of W [16, p. 4], then

S

(Y - aX)Tw(y - aX) (Y - ax)Tw /20Tl 20y axy

i

(wt/2y - wl/?Ai)T

o (wt/2y - W/ 2ax)
and the least squares solutlon is

' +
x = (w'/%a) wl/?y
. |
_ (ATw(l/Z)Twl/2A) ATy (17207172

(ATWA)+ATWY \ (1.4)

]

[167, [281, [42], [43], [44].

THEOREM 1.10: Suppose Y, A, and W are partitioned as




with dimenstons of Yl, Al and Wl as well as

Tos A and W, corresponding., Further suppose that

W2 18 nonsingular. Then if the weighted least squares
olution 18 suech that Y2 - Azi = ¢ , then § = il s

where %1 is the weighted least squares solution using

the model Yl = AlX and weights Wl .

Proof: Observe first that

ATwa = (AT : AT

AlwlAl + A2W2A2

i

w(1/2)Twl/2A

AlwlAl t A 2 2

T ’
— 1/2 1/2
= AlwlAl + (w2 A2> (wz Az)

so that

T _ T 1/2 1/2
N(A"WA) = N(A wlAl)r\N( 2) C N(W2 A2)

by Lemma 1.6, so that Corollary 1.8 will apply to

atwa, and
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(ATWA)+

#
| SnasE |
=3
s 3
=,
=
=
et
+
Pt
=
[N o
~
|8
be=J
(XY .
e
=]
o —
=,
[ S
~
[ 8]
pe=3
38
e
| SR
+

+
T
A2(AlwlAl)

since W2 is nonsingular and therefore Wé/z is

nonsingular.
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Consequently, consider the condition

[
=
[\
i
F=S
[N
Py
—
=
3
=
—
L=
o
—~—

-1
+ + + .
[T Tl~1 T T T T T
(A1W1A1) A2E”z * Az(AlwlAl) Az] AZ(AlwlAl) }[Alwlyl * Azszz]

" + - + -1 +
Ty - Az{xl - (A§WA1) Ag[wzl + Az(ATwlAl) Ag} .Az(AgwlAl) Aiwlyl

]

* (A§W1A1)+Angyz

+ + -1 +
- aigny) a2 e (10 K] s e, )
-1

Y, - ALK, AZ(A§WA1)+AT[w;1 + AZ(ATW A )+A§] A, (a7w A’)+ATw Y

@

2 2 171 111 17171

- Az(ATW‘A )+ATW Y.+ AZ(ATW Y )

1WAy ) AT, W2t
C-l (1-5)

7 *orl-1 T *op T *op

* A2<A1W1A1) AylWm t AZ(AlwlAl) A, [AZ(AlwlAl) AW, + 1Y,

oo (atwa) AT[wTl + A (aTW.a )+AT -lY

2 (A1 1Ay) A7 (W3 2(1 181) A 2
o T ol T *op ) T *or
= Y, - A, ¥ Az(A1WA1) A2E”2 + Az(AlwlAl) Az] Az(AlwiAl) AW Yy

- Az(A§w1A1)+A§w2Yz + Az(A§w1A1)+A§WY2

-

+ +
+ Ti,,-1 T T
- AZtAlwlAl) Az[wz + AZ(AlwlAl) Az] P

~

Y. - Azil - AZ(ATW A )+AT{W-1 + Az(ATW Ay) AT] [Y - Ale]

#

2 17171 2}°2 1711 2
-1

+ +
T T -1 T T
{I - A, (AW, AL) Az}sz + A, (ATW,A;) Az] [Y - Ale]

f

Therefore, since W is nonsingular Y. - A X, = .
> 5 g ) 2%1

To conclude the theorem, calculate



i

(ATWA)+ATWY

AW} T a.) Al Wwol o+ a_ (AT ‘ TWWE
( 11 1) - (Alwl 1) 2|72 2(A1W1A1) A

T I, T
Ay (AW A [AlwlYl * Azwzyz}

A -+
T T
X, * (AlwlAl) AW, Y,

r
- () Ty (a0yn,) 03] ey (T, a0
- (ATw A )+AT wol o+ a (aTw, 2 )+AT] AX
17171 2 2 2 1171 2

.

~ +
T T
Xl * (AlwlAl) A2WZYZ

- (o) WG e a (30yay) 0] (a0 )
+

-'AngYz - (AfwlAl) Ag[ﬁgl + AZ(ATW A ) AT} Y,

ﬁl + (AleAl)+ATW Y.

-.(AiwlAl)ng{w;l + Az(AiwlAl)+ATJ

: +
o : T T -1
[AZ(AlwlAl) Ay * W, ]szz
~ +

+ ,
X, + (AfwlAl) Angyz - (AfwlAl) Azszz

X1
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LEMMA 1.11: Let g = (Y - AX)/[(Y - aX) (¥ - ax)]*/?

where X 1ig the least squares estimate for a nonweighted

model (W = I) . Then

a) g'g=1;

p) ATg = ¢ ;

¢) for any h such that h satisfies a) and b),

then Y'h < YTg

2 1/2

A A 1l / ~ ' A A
@) [(v-ax0)T(x-20] " = YT (¥-a%)/ [(¥-A) " (¥-2X)]
Proof:

T (v-A%)T L (Y-AX)
[(r-ax)T(v-a1)] 2% [(v-a®) T (v-ad)] +/2

W

0q

0Q
|

= 1

A 4
b) Observe that X = (ATA) ATY or that
~ +
(8")% = ATY since A"Y c R(AT) = R(ATA) ana (aTa) (aTa)

is the projection onto R(ATA). Then

=
aQ
il

. . . a1/2
T ATy - ax)/ (v - ATy - AX) ]

[}

~ 1/2
(7Y - ATax)/[(¥ - AT - A0))



c) If ATh

H

¢ , then h e N(AT) = N(a™) |, =0

that (I - AAT)n

h , and h can be written as
(I—AA+)Z, for 7 any element of the whole space. .If

h™h = 1 , then h must be in the form

ho= (I - AA+)Z/{{(1 - aah)z] [ - AA+)Zj§

= (1 - aahyz/[2% (1 - aahHz) .

The Cauchy-Schwartz inequality is

so that with u = (I - AA")Y and v = (I - 8a")2 , the

inequallty becomes
Yo - aa™) (1 - aah)z
1/2
< [YT(I - AA+)Y] [ZT(I VARV

which is

yT(1 - AA+)Z/[ZT(I - AA+)Z]1/2 < [YT(I - AA+)Y}1j2

(O



or

vTh < [YT(I - AA+)Y]1/2
= yT(1 - AA+)Y/[YT(I -'AA+)Y]1/2
= Ty - Ai)/[YT(I _ AA+)Y]1/2
= YTg

since A'Y = X .

a) (Y - AQ)T(Y - Aﬁ) =YY - Ai) _ QTAT(Y - A
= YN(Y - AX) - XT(a%Y
= YT(Y - AX)
Therefore,
~ ~ 1/2 o T ~
{(Y - AaX)T(Y - AX)} = (Y - fX) (Y - .fsix)l/2
[(Y - ax)T(y - AX)]
- y*(Y - AX)
~ ~ 1/2
[(Y - ATy - AX)]

X)

- ATAX)



LEMMA 1.12: (Holder Inequality in matrix trace notation)

For real numbers a, >0 , b, 20 , 1 = 1l,°ce.n and
1 1

r and s. such that (1/r) + (1/s) =1 , then i1f
D, = diag(ai) s D, = diag(bi) s, then

tr(DlDz) <

1/x 1/s
by 8
tr(Dl) tr(Di>

with equality 1f and only 1f there is a real constant

o such that

n
where tr(D) = ) d, for any diagonal matriz D .
' i=1

Proof: tr(D,D,)

IA 0
M INgE
o F‘m
- o
.-J-
H
N
H
o
’_l
’_.I
~
n

with equality if and only if there is a real constant

o such that

69
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for i = 1l,*°*,n , which is true if and only 1if

r - s
Dl = aDz

by the discrete Holder Inequality [18, pp. 21-261].

LEMMA 1.13: If a sequential process is defined by

Xos1 = F(yn) with F continuous, then if
1lim x = X ° 1im vy = y
n-+o n ’ n-ce n

Proof: F continuous, 1lim x = x

3

and lim v, =Y

imply that for every € > 0 there are constants

N1§ sz and N3 such that

a) if n > N, , lF(yn) - F(y)| < e/3,

1

b) if n >N, , Ixn+l

..xnl <e/3,

¢) if mno> Ny, |x - x| <e/3.

Pick N = max[Nl,Nz,N3] so that for n > N ,

[ P(y) - x|

A

!

IF(y) - F(y )| + |x

< €

F(y) - Byl + 1B - x| + |

n+1l

|F(y) - F(y ) + F(y,) - x_ + x - x|

-

- x| +lx, - x|
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for all e so that F(y) = x since |[F(y)-x| is inde~

pendent of n .

LEMMA 1.14: .The function

F(x) = [1 + (x/c)r]s -1

approaches Z2ero more rapidly than does x when r > 1 >
and ¢ 18 a pogitive constant; In fact'the rate 18

x*" L, |

Proof: For x close to zero and since s < 1 ,  the
infinite binomial series for F(x) converges to yileld

' 2
F(x) 1+ s(x/c)T + s(s - 1)(x/c)¥ /21 + eoo -1

(X/c)[s(x/c)"“'l + s(s = 1)(x/e)?F " L/01 @s@}/c

so that

lim F(x)/x = 1im[s(x/c)r‘l + h(xzr‘l)}
x-+0 %+0

= 0
2r-1

where h(x ) are higher order terms of the order

x2*" 1 op higher. Consequently, F(x) approaches zero

more rapidly than x and at a rate of x* % .
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Calculation of &P Approximations, p > 2

In this section an algofithm is presented to obtain

the &P approximations to the degenerate system

which is that value (or values) of the nxl dimensional

vector X , say xP , such that

T n
AP . A 1/p
tr[S(XP) ] = [0 Iy, - atxRyP
[i=1

i/p

1A

T m p
Z Y. - alx™|
1
| i=1

- tr[s(x*)p]l/p

where X is any value of X , and

S(X) = diag[[Yi - Alxl] with A% the ith row of A .
The solutions XP will be characterized by

selecting a weighting matrix W = diag[wi 2 O] s

tr{wi = 1 so that XP 1is the solution of



i

172 m NEVE
/\P ) i/\P
tr[és(x ) ] Z wi<Yi - a'x )
N T' ~ 1/2
[(Y - AXP> W(Y - AXP>E

A T
[(Wl/ZY - Wl/ZAXp)

il A
<t oy
}-S P
—
=
)] L
T
P >
* b
S »
| N R N
b L]
~ =
N m—
<
i
=
>
%
S
| ——
o
o
—
R

for all X . The solutions to (2.1) are least squares

solutions to

wl’2y = wt/2px
which are

~ | + + \
XP = (wl/zA) wl/%y + [I - (wr/2a) (wl/zA}Ez

i

(ATWA)+ATWY + [I - (WI/ZA)+(WI/2A>EZ (2.2)




where 2 1is an arbitrary nxl vector [9], [27], [41],
(427, [447.

To illustrate the heuristics behind the algorithm,

conglider the following theorem.

THEQOREM 2.1: If XP is a weighted 2P approximation,

then it is a weighted A& approximation for p,r > O .
g pp s

Proof: XP i1s a weighted 2P approximation if and only
~ p-r
if for the weights W = diag[w,] , let U = Ws(XP)

3

so that

Qi(ip) tr(Us(ﬁp)r)

= tr[(ws(ﬁp)p-r)s(ﬁp)r]
p

{A
t
=
p———
=
[#)]
—~
>
%
~
o]
e

for all X , so that XP® is the weighted &% approxi-

T4

mation with weights U . Notice that if r >p , U has

points of possible singularity at Yi—AlXP. If such a

singularity occurs for some subset J2 of {1,¢¢¢,m},

~

pex
set U, = ¢ . With U, = wlsl(xp) now restricted

to the nonzero subset, then



PP
Q (X¥)

i
(e
H
A
=
[ ]
~
)
o
v

py T | py
= tr(UlSI(X )) + tr<U282(X ) }

xr
= tr(US(XP)‘)

P
Qg (XP)

~ r :
‘ - — P
since U, = ¢ = sz(x ) it r >0 .

For the discussion in this paper, consider only
2P spaces for 1 < p < +o , Algorithms for p = +w
can be found in references [11], [21], [23], [31], and
[32] and for  -= < p < 1 in [12] and for p = 1 in
[11] and [52]. The algorithm defined below is for

2 < p < @,

DEFINITION 2.2: Let W, = diag[Wi > o] be arbitrary

except subject to tr[wl] = 1 . Define

)](9—2)/(9-1)

[w s(ﬁp
1. W = X ?

k+1 ] Aé (p=-2}/(p-1)
- tr WkS Xk)




(AW
Q
it

1/2
Ay 2 (p~2)/2p
k P p/{p=-2)
tr[wks (Xk) ] /tr[wk :]
1/2 (p=-2)/2p
2 p/(p=-2)
[ka] /gr[wk }

{i:wz > O} where Xi 1s the weighted

w
Cy
1]

least squares solution with weights W minimizing

k
2
Qw~ 1\X> 9
k
b, The algorithm, step by step, is then to
a) Caleulate, for k = 1 ,
. op
i) XJ
: Ap 2
ii) n, = tr WlS(Xl)
iii) If n, = 0 , terminate the

algorithm; otherwise calculate

§, = tr[wi/(p~2)](P‘2>/29
iv) .gl
b) Caleulate, for the kth step, k > 1
1) wk+l
1) xP

iii) n, = tr['kaS(Xi)z]

76



iv) If N = 0, terminate the

algorithm; otherwise calculate

(p-2}/2p
= p/(p=-2) «
6k trﬁﬂc , }

v) o

g

k k_ll <E , a prade-

vi) If |o° - o

')

kS

termined constant, termincte the
algorithm; otherwise return

to b)i).

One value for W, is diag{l/m,e*°,1/m}. Since the

elements of the two diagonal matrices W and SéXi}

k
are nonzero, then if nk = 0 ,
i%p 2
wiIYi - A xkl = 0 (2.3)

for 1 =1,2,++,m , and since w, >0 for 1ied ,

then Yi - Aixi = 0 for all nonzero weights. Notice
that if Ny # 0 , then ck is well defined, and there
is at least one term wiIYi - Alxﬁl nonzero implying that

%

i -
Wk+1 is well deflined. Observe that if wk+l = )

Yo

or

some 1 , then the corresponding term

i i%p (p-1)/(p-2)
wk]Yi - A Xkl is zero. This forces either
i iy . )
w, =0 or |Y. - AlXEI =0 for p > 2 , impling that
if w; = 0 then w;+l = 0 . The algorithm is therefore

~a well-defined procedure. It will be shown that 1if

nl > O b2




~ 1/p
1, 1lim oF = [QP(XP)]

koo

e’
]

>< >
o]

2. 1lim Xy

ko

3. 1limJd,_ =

koo

Fal

where XP 1is the nonwelghted 2P solution on J . If
J # {1,s+e,m} , then a procedure will be presented to
increase J 1in a finite nuhber of steps to {1,°°°,m}.
This algorithm was developed‘from the algorithms of
references [23] and [46] and appears in another version

for LF spaces, p even, in reference [21].

LEMMA 2.3: If n, > 0 , then >0, for all k .

My

Proof: By induction, since n, > 0 1is given, assume
that Ny > 0 which implies that there is a wi >0

and therefore J, 1is nonempty. Two possibilities

oceur: elilther J = Jk or Jk - J

K+1 1s nonempty.

k+1

k

The third possibilility Jk+l - dJd nonempty implies there

is an i such that wi =0 , but wi'' >0, which

is impossible from the remarks after Definition 2.2,

_ k+1 _ . .
ay 1If Jeyy = I » then = 0 dimplies from

the remarks after Definition 2.2 that

2

igp
wil¥s = ATX
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i
for all 1 , so that since’ Wi 7 0 for 1 e Jk%i s
igp -
IYi - A Xk+1i 0' .

Define the submatrices

o ' s P - i(j) A N “
8, (X) = diag sy = IYi(j) A x|, 1(3) ¢ T a1
[ () |
. 1 .
5,(X) = diag s, = ]Yi(j)» - AT X, 1) & Jr1
I I _ L i(d)
Wesr,1 = drag|w ., 4 Weer o 10 e 3
R N _ i) : |
Wesr,2 = dagivp, o Meplt s M3 £ Ty

where 1(1) is the smallest integer in the set, i(n) is

the nth smallest integer in the set., Then Sl(Xp } = 4,

k+1 2
Wk+1'2 = ¢ , and since Jk+l = Jk R Wk’2 = ¢ also,
making
- xP = %P
¢ wk+l,lsl<xk+l) wk,lsl(xk+l)
¢ wk+1,2SZ(Xk+l) wk,ZSZ(Xk+1> ’

Since Xi is the least squares estimate with weights

wk s




Ia

+P
tr kas(xkﬂ)]

which contradicts the assumption that N, > 0 .

b) If T = Jk+l is nonempty and if
i ' i _
ie Jk - Jk+l > then w_ > 0 and Weet =.0 . Define
the submatrices

] T
A, = . , Y. = .
: iny) ; Tin))
A 1
: i i3 s
wg{‘yl = dtag{w;,l = WkU) P i(j) £ I - Jk+1]

for 1(3) ¢ I = Iy and i(j) the ordering as in part

+1
a) with n, the number of indices not in T = Irer -
Define in a similar manner, for 1(J) e Je = Jypyp » and

n the number of indices in Jk - J

2 k+1 2
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2 T ;(n) 2 Yl ) :
A2 Y1 (n
o 50 i3 ) _ I
Wk’2 dq,azg[wk,2 W, > 0, 1(j) ¢ I Jk%ij
From the remarks after Definition 2.2, Wi+1 = (0 dmplies
that either w. = 0 or |Y, - A'¥P| = 0 so that for
_oaigpyp i
1ed, =Jd,..1 IYi A Xkl 0 since w,_ > 0

Therefore with Sl and 82 partitioned compatible

<P =
with Al and A2 s Y. = A2Xk = 0 and

2
P
sz(xk)

. _ (i) gp ;
dtag[Sj = ]Yj(i) - A xkl » 1ed -7

- =

Since the diagonal elements of wk , are positive,
14

Wk 2 is nonsingular and the system satisfies the
[4
hypotheses of Theorem 1.10 implying that Xi is aiso

the least squares estimate over the reduced system

Yl = A, X . Therefore, similar to part al,
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- “p\] <P
tr wk,lsl(xk) \+ tr{Wk,2$2(Xk)}

A

<P <P
tr _Wk,lsl(xkﬂ)] *tr [wk+l,282(xk+l)]

i

since wk+l é = ¢ . Observe that the diagonal elements
of wk | were obtained from the complement of
Jk - Jk+l . Since the only nonzero weights at the kth

iteration are indexed by Jk , the nonzero diagonal

elements of W must also be indexed by Jk+

k,1 1 °

If n,,, =0, then, similar to a),

s A 2
w,|Y, - a*xP ]
1 1

k+1 =0
- . N 1 .
for all 1 . Since Wl 0 for 1 e Jk+l , then
v _ aligp = : : e =
jYi A Xk+l' 0 , implying that Sl(Xk+1) 0 . Thus

<P <P
M = tr[wk,lsl(xk+l):l * tr[wk+l,282(xk+l)]

contradicting that N, > 0 . Therefore Ny >0,




Lemma 2.3 implies that the Jk are nested; that is,

that Jl 2 J2 D ees :>Jk ) Jk+l D eee . Also, 1t was
shown that if n_=0 , then |v, - A*X®| = 0 rfor all
nonzero welghts. This lemma then impiies that 4if the
algorithm does not exactly fit (interpolate) the wvector
X with the original welghts, the algorithm will not
exactly fit X at any subsequent step. For the full
rank case (r(A) = m) where every mxm submatrix is of
rank m (the Haar Condition [6, p. 7&]),(1Jk must
contain at least m+l points since any mxm submatrix of
rank m will interpolate X . Since the J are

k
nested with a finite number of elements, then

%
.ﬂ Iy = Iy
i=1

so that

lim num(Jz)

4o i=1 0,0

“ \
1im num( r] Jk)
where num{(*) stands for the number of elements in the

set. Therefore the limit must be attained. The

following lemma proves that o >0 is a strictly

monotonically increasing sequence so that ﬂJk is

nonempty, since ﬂJk empty implies n, = 0

" s for

large k .
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LEMMA 2.4: If Weo1 = Wy > then o© = g ., Otherwise
gk%l N gk .

Proof: From equation (2.1), 1f W, _=W__ . , then the
values Xi equal the values X£+1 . Consequently, from

Definition 2.2, of = of*1 |

Suppose then that Wk # W and consider

k+1

-1/2(.,1/2 1/2,3p
Wi (wk+1Y - wk+lAXk+l)

. i - 1/2
(Y - AXk+1) wk+1(Y - AXk+l)

-1/2 * _ * Ap '
wk+l (Yk+1 Ak+le+l)

1/2
v o ) (e AY xP )
k+1 ~ Tk+1l k+l) k+1 k+le+1

il

whe * ‘= 1/2 * = 1/2 AN 1/2 .
where Yk+1 wk+1Y s Ak+1 Wk+lA amd W . is

defined in Definition 1.9. Note also that

~ + +
P - T T _ 1y1l/2 1/2 ]
' (A Wk+lA) AW, Y+ [1 wi/2a) (wt/%a)|z
= e \Tprrogr [ e *]z
- (Ak+l k+1] “k+17k+1 [ - A
s0 that the wvalues X£+1 are the least squares estimates
for Y' . = A X . From Lemma 1,11

k+l k+1



(3]

a)

~ T s kY
(Y* A¥ xP ) wo /2y w'l/z(y* I }

T _ K+l k+17k+1/ k4l k+1 k+1 \Tk+1 Tk+17%k+1
gw . .8 = :
k+l & % Ap T % %* Ap
’ (Yk+1'Ak+1Xk+1) (Yk+1’Ak+1Xk+1}
= 1
£ % op 1/2( ke ) .
since Yoot A% W Y AXk+1‘ » S0 that
1/2.,~1/2\,,1/2/( op - ywl/2 5e
<Wk+1wk+1 )wk+l\Y - AXk+l> wk+l(Y - AXk&l
as w;i{z is the pseudoinverse of Wl/2 by the remarks

after Definition 1.9.

b)
To1/2.1/2 =172 (% % Op >
2Ty e = AW 11 (Yk+l Aer1¥xa1
k+18 N . ap \T/ 4 . p 1172
(Yk+l - Ak+lxk+l) (Yk+l - Ak+lkk+$>j
L d * P
_ Ak+l(Yk+l - Ak+le+l>
(Y* At %P )T( * « op |7
kel ~ Axertrer) Yeer - Ak+1xk+1}j

showing g 1s orthogonal with weight Wk+l to the

space of columns of A .




¢) For any h orthogonal with welght W to

k+1
» eolu T _
the columns of A and h W ,,h =1, then defining
o ywi/2 = wl/2

Bies = Wb s g, = W iig , we find

Ty - *m * *m * T

Y = : =

TeenP TerPeer S Tia18kan T W18

by Lemma 1.11 so that g maximizes YTw

k+1h’ for

‘T“ S T =
h wk+1h 1 and A wk+lh =9 .

Now consider

-1 Ap
L - wk+lwk(Y - AXk)

~\T NRGEYZ
_ axP -1 P
[(Y AXk) wkwk+1wk<Y - AXk)}

which satisfies

a) ,
~p T -1 -1 ~b
T _ (Y - AXk) wkwk+lwk+lwk+lwk+l<Y - Axk)
h™W h = -
k+1 ~p T -1 ~p
(Y - AXk) wkwk+lwk<Y - Axk)
= 1
-1 . ;
since wk+l is the pseudoinverse of wk+l by the

remarks after Definition 1.9.

b) Using Definition 1.9, note that the ith

diagonal element of W, . W_ 1| > 0

L T

wr
k+1




i

and 0 1f W1 O 0 . Thus the 1th diagonal element of
-1 A i i S
wk+lwk+ka is eilther Wy if Weey > 0 or 0 if

i

wk+l = . Then

T - e *’I‘( o *0p
A Wk(Y AXk) ATy - oa xk)

by Lemma 1.11 4, and since the ith element of Wk(Y - Axg)
is simply w;(Y - Aixi), which is the 1t¢th element of

i
W WoE (Y- aRR)ir Wl >0 . If wp o= 0

k+1'k+1 K+1 x = 0, then the

corresponding elements are trivially equal for any

i i ilp\ _ i
value of w_ ., as wk(Yi - A Xk) =0 . If w >0
but w;+l = 0 , then by the remarks after

Definition 2.2, Yi - AiXi = 0 so that the corresponding

elements aﬁe equal. Therefore

-1 _ op - _ Ap)
Wk+1wk+1wk(Y AXk) wk(Y AXy
making
T -1 - AN
A wk+1wk+1wk(Y - AXk) = 0




and
T -1 op
Y n = A wk+1wk+1wk(Y B Axk)
k+1 T , 1/2
x? 1w (v - ax®
(Yn” Axk) wkwk+1 k - k)
= 0
o T T .
so that Y wk+1h <Y Wk+lg .

-

Let

o-
il

.2 TP/2(p-1)
P
EE |

_ p/2(p-1)
D2 = Wk |
r = 2(p - 1)/p
s = 2(p - 1)/(p - 2)

and noting that (1/r) + (1/s) = 1 , calculate the

following expressions using the definition of wk+l
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"k+1

R ] A

. o/ (p-1) (p=2)/2p
p ‘
. st

- (p=2) /(p-1) }*/?
tr wkS(Xk)

R N

1/2
Ao\ g Ap
b) (Y - AXk) wkwk+lwk(Y - AXk)
| 7172
_ -1 24(%p
= tr[ﬁk+kaS(Xk) J

A 2 ~ ""(P’“‘z}/§”i
= 2 P P
f tr{WkS(Xk) [wkS(in]

1/2

AR

N (p-%/{p»i)@ ,
. P z
tr [(wks (Xk)) j |
“p p/(p~1) 1/2
= tp WkS(Xk)
~ (p=-2)/(p~1)
¢ tp wks(xk)

.

1/2

e ey

e



c) {(Y - AX

° tr{w

A

AT o1 ap\ 172
k) wkwk+lwk(Y - Axk)

e R

k+1

| ~o\] B/ (B=1) 172
tr [WkS(Xk)]
~p\]B/ (p-1)) (B2 /2P
* tr [WkS(Xk> :

r 2p p/(p-1)
tr wks(xk)

b

{(é(ip)p/(p-l)wi/z(p_li

t(p-l)/p

k

wp/2(p-l) (p-1)/p
k

i(p-1)/p
tr{DlDz}

tr

1 2

{tr [s ()Aci) zwlj

(p~1)/p
l/x 1/s
{trﬁf] tr?f] }

p/2(p=-1)

(p-1)/p

(p=2)/2(p-1)
. p/(p—z)]
tr[wk }

1/2
a2 (p-2)/2p
P p/(p-2)
tr[WkS (Xk) ] tr[wk ]
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D

by Lemma 1.12 (Holder Inequality in matrix trace
notation). By the same lemma, equality holds if and

only if there is an a such that

r .
D1 = uD2
or that
*p\ p/(p=-2)
wks(xk) = uwk
or
s(xﬁ) - al/zwi/‘P‘z’ ) (2.14)
But then
: , g (p=2)/(p=1) “p {(p-2)/{p~1)
wk+l = WkS(Xk) tr WkS(Xk)
= wk/tr{wk}




~p (p=-2)/(p=-1) Ap(p-z)/(p—l)
tr [WkS(Xk)} tr wks(xk) .

But equality contradicts the hypothesis of this case

which is

strict.

W, # W, . Consequently the inequality 1is

Therefore, using Lemma 1.11 d) and the above

results, we have

k+l

1Y%

1 T 1/2 (p-2)/2p
- ayP p/(p-2)
dY - Axk+l) wk+l(Y Axk+l)] /lr[wk+1 }

9 T ~ 1/2 (p~2)/2p
o P o - p/{(p-2)

(Yk+l k+lxk+l) (Yk+l Ak+lxk+l)] / [wk+l ]

L

*p & "p
k+l(Yk+l - Ak+lxk+l)

~ T - 1/2 (p-2)/2p
* _ % P * - & P ) p/(puz)
(Yk+1 Ak+lxk+l) (Yk+l Aer1fien ] o tr [wk+l ]

Y

(p-2)/2p
p/(p-2)
k+lgk+l/tr[wk+l ]

(p-2)/2p
®#p % p/(p-2)
Yl k+l/tr[wk+l ]

T -1 - P
¥ wk+lwk+l k(Y AX )

AWNT /2 (p-2)/2p
P -1 P p/(p=2)
[(Y - Axk) Wkwk+1 k(Y - AX )] tr [wkﬂ ]

T Ap
Y Wk(Y - Axk)

1/2
a2 (p=-2)/2p
P p/(p=2)
tr{wks(xk) ] tr[wk ]



e
g

and using calculation c),
T 2P
Y Wk(Y - AXk)

AT ~ 1/2
P - AYP p/(p-2)
(Y - AXk) Wk (Y AXk) tr[wk

- ot

Gk+1 S .

E(?%Ej/ﬁy

s . oy

T ~ 1/2 = {p=2)/2p
— p P p/(p~2)
= L(Y - AXk) wk(y - AXk) /Qr{%k j

wnd

LEMMA 2.5: Let XP¥ be the best &P approximation to

X on A ., Then

1/p

wfsf#)?]” L

Proof: Since Xi is the best least squares approxi-

Q
IA
gy

)
it

mation with weights W then

k 3

tr[wks(i'i)z] < tr[wks(ip)z] :

Letting
Dl = Wk
~p) 2
D, = S(X )
r = p/(p - 2)

s = p/2




and noting that (1/r) + (1/s) = 1 , we find

2 i a2 ] - _oy1(p-2)/p
§6k> = tr wks(xi) /tr wi/‘p 2)
i A 2] - — oy ] (p-2)/p
< trlw s(xp) /tr wP/ (p=2)
k- A k |
~ - (p=-2)/p
. p/(p-2)
= tr_DlDz]/terk ]
- 1/x r‘ 1/s o (p-1)/p
< tr Dr] tr Ds_] /tr[wp/‘P 2’]
! 2 K
- -2
C er wp/(p_z)w(p )/p
RS -

p/2)2/p | )
- tr [s(ip)%] }. tr[wi/(p-Z)](p 21 /e
2/p
A\ D
= tr[S(Xp)]
2
()" -

Since {0X} is bounded above and monotone, it has

a limit. Denote this by

%*
o] = lim ok
k-»oo

and since ¢ £ Wk < I , elementwise for all k , the
sequence {Wk} is also bounded, so that there exists

a sub-segquence of {Wk}, say W which converges,

k(i) °?

say to WO . Also the sequence of index sets {Jk} is
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W
51

monotonically decreasing as Iin the remarks prior to

Lemma 2.4 and hence converges, say to J Note that

0 ®
Jo is not null since the sequence Gk is monotonically

increasing, and Jo null would imply ¢ =0 .

Furthermore, since ,Jk o Jd for all k , each

k+1
convergent sub-sequence must have the same limiting

o}

index set J0 .

LEMMA 2.6: Let X be the best least squares
approximation to X with weights Wo .« Then
o >0 and
I - - P .
k(i%ig Xe (1) X, - (2.6)
Proof: As was mentioned in the remarks prior to

Lemma 2.4, there must exist a number K such that for

all k > K , Jk = JO . Thus

()" (4250

it
-

T
r(A ka)

= r <AkaA>(ATWkA)j

for k > K, where r(¢) is the rank of the matrix.




Further

T

) = [fw) e

+T T
(ATWA) (ATWA)

- (k) (o)

. .
so that (ATWA) commutes with (ATWA). Thus for any

W, such that {i:w® > 0} =J_  , and since ATWA is
+

differentiable in each w> , then (aTwa) 1s also
N _
differentiable showing (ATWA> continuous in the

At
k(i)A) is

continuous in the weights for k(i) > K and

weights W [19]. Consequently, (ATW

therefore

~ +
P - T T
Xy = (A wk(i)A) AT Y

1/2 172\
+ [I - (wk(i)A><wk(i)A) ]Z‘

is continuous in the weights for k(i) > K implying

equation (2.6). Also, Y - AXi(i) is continuous in the
weights so that ok(i) is continuous in the weights

by Definition 2.2. Therefore

lim ck
koo

(@]
A
Q
A
Q
]

k(i) _ 0

lim o
l{(i)-Mo
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LEMMA 2.7: 1imW_ = W

koo k 0
k 0
Proof: 1imo" = o implies
Koo ’
1im (o®*1 2 6%) = 0 . Now observing the proof of
koo

Lemma 2.4, it must be true that the two inequalities
of equation (2.5) approach equality., Now the second

inequality is a result of the Holder Inequality

tr{[é(%i)p/(P—l)Wp/Z(p_l)][ﬁp/z(p_l)]}

]p/2(P"'l)

a2 {(p-2)/2p
P p/(p-2)
< t.r[s (Xk) wk tr[wk ]

or using Dl’ D r , and s as defined in the proof,

2’
we have
: ' /2(p-1}
| 2(p-1) /p(®
tr{DlDz} < tr{Dl }
- - (p-2)/2(p~-1)
. tr{Dz(P 1)/ (p 2)}
1/x 1/s
- r s
= tr{Dl} tr{DZ}
Therefore, 1im (¥t~ o) =0 implies

lim[tr{DlDz} - tr{Di}l/rtr{D:}l/s:] = 0




which further implies the equality condition

lim [D§ - ang] = ¢

for a real constant o , which 1s

. 1
1im [s(xi) - al/zw;/(P“Z)J = ¢

from egquation (2.4). Consequently recalling that

tv{wk} = 1 , we obtain

~tp=2)/(p-1)
[wks (xi)]

- wk}= 1im 1(9-2)/(p—1) - Wy
tr :

[wks }Acﬁ)

-

(p-2)/(p-1)
-

[wkal/zwl/(p-z)

= lim - - W
_oyq(P=2)/(p-1) k
tr{[wkul/zwl/(f’ 2’] }
-2 -1
( 1/2[ (p-l)/(p—z)](P )/ (p-1)
o W
. k
= 1lim -

R _oy1(p=2)/(p-1) k
lal/Ztr{[wliP b /(p-2] 1

= lim{Wk/tr{wk} - Wk} = ¢

98



0
w0

This implies that '{Wk} is a Cauchy sequence, and

since one sub-sequence converges to wo s Then

im W, = Wo .
LEMMA 2.8: The least squares estimate Xﬁ ig also

the best &F approximation to X with indices in

JO and

1/p

0 = tr[;os(ﬁg)E} (i

where I, = dzag[di =1 4if 1eJd, ;3 4 =0 otherwise]

Ny
°

~3
g

Proof: Observe from Lemma 2.6 that Gk+l -dis a contine

uous function of the weights Wk_, and denote this fact

by F(Wk) = o**1 | Let '{Wk} correspond with {y_}

and {o*} with {x_} of Lemma 1.13. Recall thet

k 0]

lim ¢ = ¢° and limW,_.= W so that F(W ) = o0

O 2
by Lemma 1.13.

Now suppose the algorithm were restarted with W
0

o

as the initial weights. Then Xg and ¢° are the

estimates for the weights WO . For the first actual

iteration using the weights,

Apy] (P=2)/ (2= 1) Ao\ (B=2)/ (2=1)]
W - [wos(xo)] b [wos<xoﬂ
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with Xg 1 and ci corresponding to these welghts.,
Since the function F relating the weights at iteration
k  with ck+l is the same as for the first sequence
o ) 1 _ _ '
{w t , then o] = F(wo) = 0, » and therefore
W, , =W, by Lemma 2.4, Consequently

rq p (p-2) /(p=-1) P (p-2)/(p-1)
NO = .WOS(XO) tr WOS(XO) :

) ) (p-2)/(p-1) ‘ (p-2)/(p-1)
= wipT2l /e 1’s(x§) - /Lr [WOS<X€)] |

so that multiplying both sides by w~ (P~2)/(p-1)

3

noting that"

w(P=2)/(p=-1) = (p-2)/(p-1) _

and using the remarks after Definition 1.9, we have

5 . A~ (P=2) /{(p-1) -~ (p-2)/(p-1)
17(p=1) _ p ‘ p
W IOS(XO) trl[wos(xo
or
A\ (P=2) * Ap' (p-2)/<p—1))
W, = IOS(XO) tr wos(xo) f (2.8)

and since, by Lemma 1.11 d), Xg is the best least

sguares approximation with weights W the normal

0 3
eguations for any X are

|
|



ook
5
fomd

T _aeP T Tyl/2,1/2(y _ 43P
(AX) WO(Y AXO) XTATW W (Y AK%}

0

= XTA*T(Y* - A*ig)

- XT(A*TY - A*TA*xg}

so that using equation (2.8) and multiplying out the

denominator, we obtain

A T ~ (9’2) ~
P P _aRP
(AXO) IOS(XO) (Y AXO)

(]
fi

i€J0
(2.9)
= Z |Y —Aiipl(p-l)sgn(Y -AiS%P)Ai%P
i 4] i 0 o
iEJO
. -Z = |y, - a'x|®
ieJg




where sgn(x) =1 1f x >0 and -1 if x < 0 1is the
signum function. Therefore Xg minimizes
v, - aix|T = tr S (X)P1
i 0]
iiZJ0
and consequently Xg is the best &P estimate with

indices in Jo .

To establish equation (2.7), use (2.8) and

caleculate

tr

1/2
7 (p-2)/2p
/;r[w p/(p- 21

(p—2>/<p-1)}1/2

tr

_ ~1/2

Ap)p oP
}OS XO ] tr W S X
- 1/2

“p p){P-2Y2p ~p) (P=2)/ (p-1)
_ }Os(xo) - Jtr wos(xo)

tr

1/2-(p-2)/2p

It should be noted here that the proof in
reference [46] of Lemma 2.7 is incorrect and of
Lemma 2.8 is incomplete and incorrect as stated, even
for the considerably greater hypotheses which they

impose upon the model. Lemma 2.7 shows that the
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convergent sub-sequence { } is in reality the

Wi (1) )
whole sequence so that Lemma 2.6 implies 1im Xi = xP |
The lemmas and this fact can be summarized for easy

reference in the theorem which follows.

THEOREM 2.9: The algorithm defined in Definition 2.2

has the following properties:

a) Jk ) Jk+

, for all k and lim I =9

a nonempty set

b) lim W, =W, , trwW, =1

0
¢) 1lim Xi = Xg , the best AF approximation

on the set of nonzero weights Iy

d) 1lim o~ = tr IOS<X0)

Observe that the above theorem merely states that
XP  is the best 2P estimate on J s not
0 0

{1,2,sce,m} =M . 1Ir Jo, =M, there is no diffi-

culty. If JO #Z M , then JO c M, and o? « @g

where cg is the value of o for the &F approxi-

mation on M , since the approximation over a submatrix

of A will have absmaller error than an approximation

over all of A . This suggests restarting the

lalgorithm with an index set Jl’
1 0

>
Ol g .

1 D JO and a
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LEMMA 2.10: If Y., = A" X°(X) for some X\ =

A # 0,1,

then the equality holds for all X where XF(\) is the

least squares solution to Y = AX with weight matriz

Wa,i®) = (1 - MW, + Au’)

where U(L") = diag [Ui* = 1 for i eM- J, and zero
otherwisel]. |

roof: Partition the system of equations Y

two parts

= AX 1into

(1) . 3o Yoy T Tis

. = i*
(1) . s Ao A

=
]

where the partitions Y(l) and A(l) do not include
Yi% and AY* , respectively.



o

L1

o

This new system

(1)
Y A
(L] . X

(2)
Y(z) A

is now in the partiﬁioned form required in Theorem 1.10.

Equation 1.5 shows that Y(z) - (2)

ifr Y(z) - A(Z)Xl = ¢ , Where ¥ 1is the least squares

solution over the complete system and 21 is the least

X = ¢ 1f and onl;

squares solution over = A(l)X wlth weights W

T
The only requirement is that W

(1)

(2) is nonsingular which

~is true if and only if A # 0 . Now

+

it

~ T T
X, () (A(l) (1)) A(l)w(l)Y(l)

L1}

(aT(1 - aow A) "AT(1 - MW Y

it

(AT ) At

if A#1. Since Y, = Ai*ip(xl) , then

*

Y., - A% = ¢ forall A sothat v, = a*"E(n)
for all X # 1,0 . Observe also that w(l) = ¢ when
_ . S i%,+
A =1 implying that X = (AT ) Y., is such that
i*g

Y = A

i*
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THEOREM 2.11: If JO is a proper subset of M , let

Wl(k,i ) = (1 - A)Wo + Ap(i )

vhere U(1") = diag'[Ui* =1 for 1¥ e M- I and zero

otherwisel. If it is true that

tr [U(i*)s(ﬁp(x))] > 0 (2.10)

for some A;, 0 < A 8 Ay < 1 and XF(A) the least squares

solution using weights Wl(l,i*), then the algorithm may

be restarted with the weights W, . For Al £ X< A,

then
o(x) > ¢

where

. n 1/2
tr[ﬁl(x,i )s(xp(x))z]

(p~-2)/P
tr[wl(x,i*)P/(P’z)]

og(A) =

If equation (2.10) holds for all 1" e M- J, » then the
best &F approximation to X on M may be obtained

after a finite number of restarts.

Proof: Observe first that trlwos(ﬁg)l is constant in

A and that



k|

1im |Y,, - AYRE(0) | - AYMRB(0) |

)\_*0-& |Yi

%

tr [U(1*>s<fcp>}

and is therefore bounded since iP(A) is continucus in
A, say for 0 <A <A . If tr[U()sEE)I > 0,
let b Dbe this bound. If tr[U(1")S(RE)] =0 , then

restrict 0 < Xl £ A g AO and set

b =  inf tr[ﬁ(i*)s(ip(x))]
A1<A<XO
Observe that since tr[U(i*)S(ip(k))] is nongzerc for

some A 0 < XA, £XA. , then it is nonzero over the

1° 1= "o

whole interval by the contrapositive of Lemma 2.10.
T * + ‘

Further since (A wl(x,i JA)  is continuous in A by

the proof of Lemma 2.6; then, in turn, )?P()x)3 S(EF ()

and tr[U(i*)S(XP(A))] are continuous in A implying

that the infimum b(kl) over the closed interval Ekiﬁk

o]

is attained and therefore b(xl) > 0

By Lemma 1.14, if

x = A1 -2

c - tr(wp/(P"z))
0

r = p/(p - 2)




s = (p~-2)/p

then P(x) approaches zero more rapidly than x% , or

_ 2P )
b(kl)x @r[ﬁos X, ]F(x) > 0 (2.11)

If x is sufficiently small, which is for 0 < A < xz 5
say. Observe that equation (2.10) convefges to zero
slower than any positive power of x . Consequently, we

can find a A < X, so that if 1 <A< min(xo,k )

2
equation (2.11) becomes '

b[x] - tr[wos(ig)]{[l + [x]p/(p-z?/gr(wg/(p_z))](p~2)/p ) 1}

(p=2)/
[1 + [x]P/‘P'Z’/%r(wg/(P'z’)] P P

tr(US(ip(k))z) + (1 - .A)tr(AWoS()Eg)z) tr(WoS(;(g)z)

< )
(p~2) /p - (p~2)/p
[(1 - Der(uB/ (B2 AP/‘P'Z)] tr[wg/‘P 2)]

tr(us(ip(x))z) - - A)tr(wos(ip(x))z) or 2
](p-z)/p - (e°)

1A

[(1 - x)tr(w§/‘9‘2>) + \B/(p-2)

= (o) - (%)
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so that Gl > o° s, Since Xg is the least squares

solution on W, , and therefore
o 2 ' ~pr 2
tr(WOS(X (n) ) > tr(wos(xo) )

for the third inequality. The restarted sequence
ok is monotonically increasing so that it canncot
converge to o° . It must then converge on a set
Jo(X) D3, so that in a finite number of restarts

the best &F approximation on M will be attained.

Rice [45] states that examples when restarts are
requlired for his hypotheses are very difficult %o
éonstruct. If a restart is necessary, one can
determine whether a solution will occur either by
reaching M as a nonzeroe index set or by the sequence
o diverging since it will no longer be bounded above

by t?  of Lemma 2.5.
The case not yet discussed occurs when

T f A .
.. = aAY X0 (2.12)

i%

for some X # 0,1 and some 1" e M - Jo + This may

‘occur when either

a) the best &F approximation to X on M

occurs when equation (2.12) holds. Now the

O
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best &F approximation to X on M 1is a
least squares approximation with appropriate
weights. Without loss of generality, since
(2.12) holds, let the 1=  weight be nonzero.
Therefore the weighted least square‘approximate
(and therefore the best gF approximate) is
the welighted least squares approximate over
M- {17} by Theorem 1.10. Therefore, ig
is the best eF approximation on M 1if equa-
tion (2.12) holds for all i e M - J, .

Otherwise restart until equation (2.12) holds

for all non-zero weight indices.

P
0]

is an local best RP

b) the approximate X
approximation. Recall that thevweight matrices

W, are a function of the initial weights W

k 1

It may be true that an intermediate or local
solution which satisfies equation (2.12) exists.
The only known method is to restart the algo-
rithm with completely new weights. A method of

logically choosing these weights is unknown.

3.3 Calculation of the p-q Geﬁeralized Inverse,

p.a 2 2
In this section an algorithm will be presented

which calculates the p-q generalized inverse



B = (I - F)A%E

of a matrix A ;, where E and F are metric projec-
tions onto R(A) and N(A) (see Section 2.3), respectively,

for a degenerate linear model (see Section 1.1)
Y = AX

and where Y e U , XeV , V. = 3%n) ,

m n . n
Vo= 2P(m) , and p,q > 2 . The best approximate
vector B(Y) (unique, since A is linear and 2&F
spaces are strictly convex for 1 < p,q < « from
Theorem 2.1 in Chapter II) satisfies

1/p

| nad

tr[S(B(Y))p]l/p < tr[S(X)p]

2. If there is an X such that

~tr[s(B(Y))P]l/P

tr[s(x)P]l/p

then

tr{D(B(Y))q}l/q < tr[D(X)q]l/q

A

for all X e V_ and D(X) = diag[X,, the 1th element
of XJ .

LEMMA 3.1: E(Y) = AXP where XP 4is the best 4F

approximation to X .

g.,,J



Proof:; If XP is the best &° approximation to X

then for any X*evn,

- © = 1/P
= tr S(Xp)p

_ 1/p
< wefs(x)7)

Now {¥:Y = AX, X ¢ Vn} = R(A) , so the above
inequality sﬁows that the vector Aip is the vector

in V_ which minimizes the 2P ‘norm over all
vectors in R(A). Therefore A%p is the 2P or metric
pﬁaﬁecfion of Y on R(A), and consequently

E(Y) = AXP

LEMMA 3.2: {X:AX = E(Y)} = {X:Xx = xP - N , N e N(A)}
I PR T tor

= éX@k = (aTw,a) AW Y - N , N e N(A)} .

Proof: Observe that since AXF = E(Y) ,

XF e {X:8X = E(Y)} = P(Y) . If X e P(Y) , write
X = %P N, then

AX = AXP - AN

it

E(Y)
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so that AN = ¢ , and therefore N e N(A) . Now if WG

i1s the diagonal matrix of weights and XF is the welghted

least squares approximation as in Section 3.2, then

cench

\

~ + +
P _ T - T 1/2 /2,1~
X (A WOA) AT Y 4+ {I - (wo A) (wo 2|z
by equation (2.2) where Z 1is an arbitrary nxl vector,
Let 2 = ¢ ; then AX® = E(Y) still, and the proof

above holds for this case.

Observe from Theorem 2.1 in Chapter II that the
calculation AYE(Y) is to obtain an element X of v
such that AX = E(Y) . Clearly (ATWOA)+ATWOY is such a
Qector with the set of all possible solutions being of
the form (ATW A)*ATW Y - N, N e N(a) .

LEMMA 3.3: If r(N(R)) = v, then there exists an

nxr matrix C such that for any N e N(A) there
is a 7 € v, such that N = CZ .

Proof: Let {bi}r be a basis for N(A). Then for

i=1

any N e N(A) , there are constants {Zi}? L such
i=

that
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Now from the set of all possible solutions,

v = (ATWOA)+ATWOY -CL , ZeV_ , select that

%, = (a%w a)*aATw Y - cz% such that
_ 1.3)1/9
1/g + ~ q
tr[D(Xo)q] = tr{D (ATWOA) aTw Y - cz9 }
L b
s R T x| 4 B
< trlp (AWA)AWY—CZ
Pt o -

for any Z* € Vr . But this is simply the 2P problem

calculated in Section 3.2 with q replacing p

3

I8l

C replacing A , Z replacing X , and



(ATWOA)+ATWOY replacing Y . Consequently, the

algorithm developed in Section 3.2 will work for this
calculation yilelding a gq (since N(C) = ¢) , the
pest 29 éstimate for 4 and the best least sguares

estimate with weights, say U, - Therefore

73 = (CTUOC)+CTUO(ATWOA)%ATWOY
and the solution
+ ~
X, = (ATWOA) AT Y - cz¢
= (A?WOA)+ATWOY - C(CTUOC)+CTUO(ATWOA>+ATWOY

+ +
T T T T
[I - C(C UOC) C UO](A WOA) A WOY

The above results can be summarized in the following

theorem.

THEOREM 3.4: For C defined ae above,

T T .
a) E(Y) = A(ATW A) ATW Y , where W, is the

diagonal matrix of least squares weights associated

with the best 8P approximation of X in the linear

" approximation Y = AX .

T * AT .
b) F(X) = c(cTuc) cTU X , where U, is the

diagonal matrix of least squares weights associated
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with the 2% approximation of Z in the linear

approximation X = CIZ

¢) The p-q generalized inverse B of A is

B(Y) = [I - C(CTUOC)+CTUO](ATWOA>+ATWOY
(3.1)

where Wo 18 as in a) and UO 18 as in b) with

X = {ATWOA)+ATWOY .

It should be observed here that B is not necéssarily
a linear operator since both U0 and wo " depend on
the vector approximated. If Uo(ﬁ) and W (+) denote
this dependence, then equation (3.1) could be written

in functional notation as

+

ATWO(')]C) x

+

B(+) = {I - c(cTUO[(ATwo(-)A)
CTUO[KATWO(-)A)+ATWO(.).] X
(ATWO(-)A>+ATWO(.) .

It should also be observed that any techniques used to

calculate the &P and 29 approximations of Theorem

3.4 a) and b) can be used to calculate c). ?
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