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SI.EWING ABOUT NON-ORTIIOGONA I. AXES

Paul B. Davenport
Goddard Space Flight Center

Greenbelt, Maryland

ABSTRACT

Given a desired three-axis re-orientation, it is well known that there

are (in general) twei,ty-four possible three-legged clews about orthogonal

axes which will perform the re-orientation. The present paper determines

whether the maneuver may be accomplished with three slews about arbi-

trary (not necessarily orthogonal) axes. All of the possible three-legged

slews are exhibited by a closed analytical procedure which requires no

assumptions concerning the degree of non-orthogonality nor any approxi-

mations. The classical orthogonal case (Euler angle0 is then an immedi-

ate consequence as a special case, of the generalized solution. The de-

velopment also includes the solutions of single-axis re-orientations by

two successive rotations about arbitrary fixed lines.
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S L.EWING ABOUT NON-ORTHOGONAL AXES

INTRODUCTION

The representation of rotations via successive simple rotations about co-

ordinate axes is probably the oldest and most frequent method employed. The

reasors for this are threefold: (1) They are easily visualized, (2) The general

case is obtained by three simple steps rather than a single complex one, and

(3) They have been adequate descriptors for most problems in numerous fields.

An arbitrary rotation can be interpreted as three simple rotations regardless

of the actual rotation and the control or causation of rotation can be performed

by mounting the sensors and/or actuators mutually perpendicular. TWo-axis

systems include office chairs, the crane, and two gimbal systems for pointing

guns, telescopes, etc. Three-axis applications range from amusement rides to

the precise control of ships, airplanes, and spacecraft.

Recent requirements for precision and reliability, howe% er, have strained

the computational luxury of traditional orthogonal axes. The imperfections of

mounting instruments, stresses, thermal bending, etc. may cause misalignments

of the axes. In addition to the misalignment problem, some systems are pur-

posely designed to be non-orthogonal for reliability and/or precision, e.g.,

instruments mounted on four non-parallel faces of a regular octahedron (the

orthogonal case corresponds to mountings on a regular hexahedron — cube).

Here, we will take a general approach and show under what conditions

rotations can be described by one, two, and three successive rotations about
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fixed directed lines of arbitrary orientation. In addition, procedures are pre-

sented for the determination of the angle of each individual rotation required to

effect the total rotation. These angles will be referred to as generalized Euler

angles. The development will follow what is believed to be the historical develop-

ment of the classical Euler angles, i.e., the properties of a single axis rotation

will be used to derive the characteristics of two successive rotations about fixed

lines. This, in turn, forms a basis for the three axes development. In each in-

stance the special situation of coordinate- axie rotations will be examined so that

the results of the general case may be correlated to a familiar one.

The symbolism will be that of matrix algebra with a mixture of vector

analysis notation. Capital English letters will be used to denote matrices. A

vector, as used here, is a 3x1 matrix and no distinction will be made in notation

between vectors and matrices except that the latter part of the alphabet (starting

with T) will be reserved for vectors. It is assumed that all matrices (vectors)

are relative to some underlying orthonormal coordinate system unless otherwise

stated. The cross product T = U x V is used in the sense that the components of

T are formed from the components of U and V in the classical manner. Note

that the coordinate system is not necessarily right-handed. A superscript T will

denote transpose and the inner product of two vectors U and V expressed as

U T V = V TU (which is equal to the dot product U • V when the coordinate system

is orthonormal). Inverses will be described by the superscript -1. For a rota-

tion matrix R, R -1 = R T.
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ROTATIONS A BOU .' A FIXED LINE

Given a fixed directed line defined by the unit vector U, then a rotation about

this line is a function only of the angle, - , of rotation. The matrix of the rotation

may be expressed as

ti
R ('')	 COS 0 I + (1 - cos ()) U UT - sin ^^ U,	 (1)

where U denotes the skew-symmetric matrix formed from the components of

U such that for any vector V, UV = U x V. I is the 3x3 identity matrix. The

physical interpretation of eq. ( 1) is that a right -handed coordinate system is

rotated (alias) by the right hand rule (when the right hand thumb points along

the directed line the fingers point toward the positive motion) or that the vector

is rotated (alibi) counterclockwise as viewed from the origin. The matrices of

the rotations about the coordinate axes are given by:

1 0 0 COS0 0	 - sin E'

R,	 (r+) - 0 co s fa s i n 0 R2 (0) 0 1	 0

0 - sin f' cos© sines 0	 COS0

cos	 ^';	 sin 0 0

R 3 (H)- -sine COSH 0

0	 0 1

If Y is any vector then its image Z = RY under the rotation is obtained from

eq. (1) as

Z=cosvY+(1-cos0)U•YU-sin0UXY.	 (2)
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The following relationships are then an immediate consequence: Z • Z - Y • Y,

Z - U - Y • U, and R( , - )U - R-1 (, , )U = U. The first expression is true for any

rotation, the second holds for any rotation about U, and the last is true only for

vectors collinear to U unless R = I (Euler's theorem). If Y and Z are given non-

zero vectors and satisfy the above conditions then the angle of rotation which

takes Y into Z may be determined by taking the dot product of eq. (2) by Y and

U xY (provided U xY ^ 0) respectively which gives

cosh=Y Z -(U Y) 2. sin.'= U• (Z - Y)
Y • Y - (U•Y)2
	

Y • Y - (U•Y)2

If UxY = 0 then	 is arbitrary, conversely if eq. (2) holds for arbitrary H then

U x Y = 0.

In order to define angles uniquely, we will make extensive use of the func-

tion k = Tan' 1 (a,b) which signifies the inverse tangent of a/b where the angle

is selected so that: ( 1) sgn ( a) (sign of a) equals sgn(sino ), (2) sgn (b) - sgn(cos P),

and (3) - 77 <0:57,r. If a = b = 0 then \ is undefined (arbitrary), We refer to the

angle in the above definition as the "proper quadrant" inverse tangent. Thus,

the "smallest" rotation satisfying eq. (2) is

9 = Tan-1 [U • (Z x Y), Y • Z - (U • y)2],

all other solutions ( 91 ) are given by 9' = 9 + 2k -n where k is an integer.

ROTATIONS ABOUT TWO FIXED LINES

In the preceding section it was shown that a non-zero vector Y can be ro-

tated into a given vector Z by a rotation about a single fixed axis U if and only
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if Z • U = Y • U and Z - Z = Y• Y. We now consider under what conditions a

given non-zero vector can he rotated into another given vector via two successive

single-axis rotations.

Let U, and U ) be any two unit vectors such that U, x U) 0 U, and

R. (,) =cos ('1 I + (1	 cos I) lJ UT -sin(I U i

(3)

R^ ( )	 c • n s	 I	 (1 •- cos '") Ui U T - s i r^ ^. U^

The question to be answered then is: Given two vectors Y and Z, under what

conditions does Z = It (/i)R i (a)Y? Since rotations do not alter length we know

a priori that one condition is Z • Z - Y • Y. Hereafter, we will always assume

that this is the case.

Now Z = Rj (^?)R i ((l)Y if and only if R 3 1 (j)Z = R i (a)Y, which when expanded

using eq. (3) yields

	

(Z - U i • Z U  ) cos	 • U  X Z s i n	 * U  • Z U  =

(Y - Ui .Y U i ) cos a - 11 X Y sin a + U i -Y Ui.

By taking the dot product of both sides by U i , U j , and Ui x U^ respectively we

obtain the following three scalar equations:

[U i •Z-(U , • U j )(U
i • Z)] COS h+U i • (U ) xZ) sin/3+(U i • ll j )(U j • Z) = Ui . Y,

U
i -Z	 ( U 3 • Y - ( U i • Ud(U i • Y)JCos a-!1

j
 • ( U i xY) sinai (U i • U j )(U i •Y),

(U i xU j )• Z Cos ^3+(U i X U j ) • (U ) x Z) sinQ=(U i XU i )•Y Cos a-(U i XU j ) • (U i XY)sina.

a
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If we let a - U, • U ) and

W I 
-U •Y-a11 - Z.

W .0 •Y - ,ill - Y.

Wk - (Ui >. ll ) ) • Y,

	

X^	 U^ • Z - a ll y Z

	

X	 U •Z-:1U Y

	

1	 1	 ^

	X 	 (U^ k llj ) . Z

then the above equations simplify to

X i c O S ! i + X  , i f) i i = w i	 (4a)

X.	 w^ cos a + wk sin a	 (4b)

X  ('(iS 3 - X i Sin ti - Wk COS a - W^ Sln u
	 (4c)

Note that if a - 0 the w's and x's are merely the components of Y and Z respec-

tively relative to the basis U i , Uj , and U , x U .

Introducing the variables a and ^, defined by

g -= wk cos a- w s i n a,

\ - Tan -1 ( X i , Xk),

then equations (4a) and (4c) can be written as

X? + Xk sin (^	 ^) - wi,

X i + Xk Cos (/3 + X) =g.

These last two equations have a common solution if x? + xk - g 2 + w 2. Thus, if

X?+ xk - w ? 2 0 there exist g and 8 which satisfy both of the above equations.

The solutions are discrete except when x i - X  - 0 in which case ;3 is arbitrary.
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Similarly, equations ( 41)) and (4c) car. be expressed as

	

:W2 4 w sin (	 + ^.)	 xr.

w^ ;Wk c 0 % (a + fit) K,1

where - = Tan' I (w ) ,% ). These last two equations have a common solution if

w?+w k =x2 +g2.

The two sets of solutions above will exist and be consistent provided that

W2 + w 2 - x2 ^ x? + x 2 - w? 0. In this case, the equations (4) have a common)	 k	 )	 I	 k	 i

solution. In fact, there are at least two solutions given by:

g t TWj k - X? _ + i X? + Xk - Wi

	

X i 	X 	 Cos r	 11'^	 Wj	 Wk	 Co S	 X)

	

^X k	- X i	Slr	 Wk	 - W	 sill a	 g

In terms of the proper quadrant inverse tangent

Tan - I
L( W k X^ -	 Wi. ), ( W j x ) + g W k 1

=- Tan -1 [( W i X  - B X ;), ( W , X ; + B xk))

The consistency of the solution above depended upon the requirement that

W 2 + w k - x ? = x ? + x k - w? which is equivalent to the condition W T W =XTX

where W - (w^ ,wj ,wk ) T and X = (x;,x,,xk)T. We shall now show that, indeed,

this is the case. Obviously the condition holds when the two axes U ; and U, are

orthonormal for then the expressions W T W and X TX represent the square of the

length of Y and Z respectively (assumed equal). In the general case let T and V
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lx-- vectors of components of Y and Z relative to the basis U, , U, , and U, x U ) , c.g.,

t = U  • Y, t 2 = U, • Y, and t 3 = ( U i x U  ) • Y. The above consistency condition

is then equivalent to T TT - 2at I t 2 = Vr V - 2av I v  , where a = U i • U) as before.

It is possible to show that T T T - 2at 1 t 2 = Y • Y(1 - a 2 ) by constructing an ortho-

normal basis (Gram-Schmidt Process) from U , , U) , and U, xUj and expressing

the square of the length as a function of these components. A similar condition

can be proved analogously for Z and V. This demonstrates that the condition for

a solution to (4a) and (4c) is the same as that for (4b) and (4c) and when the solu-

tions exist they are consistent. The above construction may also be used to

verify that if one angle is arbitrary the other cannot be. For both angles to be

arbitrary requires W and X to be null vectors which in turn implies that Y and

Z be null (the components relative to the constructed basis are ail zero~,

The condition for the existence of the solutica (w 2 + w k - x ; 0 ) .,upends

on the axes of rotation (Ui and IT  ) and very little more can be said about existence

until the axes (or conditions on them) are specified. If the axes are a subset of a

complete orthonormal set (e.g., the coordinate axes) then U i • U = 0 and the w's

and x's are merely permutations of the coordinates of Y and Z respectively. In

this case, i.,;i; subscripts i, j, and k can be considered as members of the set of

integers {1,2,3) and the requirement that Ui and U,i be distinct can be stated as

J ^ J. There are six permutations of the three axes taken two at a time If all

six possible choices are to be examined it is convenient to use the notation k = i' j'
meaning k not equP.i to i or J. This definition plus the "permutation" or "epsilon"

symbol E i ; (( i ; = 0 if i = j, E i ; = 1 if the ordered pair i, j is a cyclic per-

mutation, and E i ; = -1 if the ordered pair i,j is a non-cyclic permutation) provide

useful tools when the rotational sequence is arbitrary.
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Let the orderecr vectors U
1 	 2
, U . , U 3 form an orthonormal triad (Uk - f1j. U 

1 KIT ))
where k - VP then all possible " two-legged" slews taking Y into Z can be expressed

as: For i, j - 1,2,3 such that i ^ j let k - i' j',

K -	 y	 Yk - r.	 z?^ -	 zk - Y^i

Ta i C1l(, ij Y k z ) - K Y^), (Y) I  + E ; j K Yk)^.

Tan - I l, ( , I	 Y 	 z k - K z j ), ( YI zi + , I	 K z k )I ,

provided, of course, that the square root is real.

It can be shown for the orthogonal case that at least four of the permutations

have solutions for any Y and Z (except for the trivial case Z - Y) where Y • Y - Z • Z

and depending on Y and Z there may be four, five, or six permutation solutions

(excluding r^ultiples of 2» there are two numerical solutions for each sequence).

This sterns from the useful fact that if the sequence ( i,j) does not have a solution

then the three sequences (j,i), (j,k), and (k,i) do. The non-existence implies

Z2 - y2	 yk 0 and z 2 - yk ^ y^^	 0 which in turn imply the solutions of the

three sequences listed. Examples: (1) Y = (0,0, 1 ) T and Z arbitrary has only

four permutation solutions, if z 1 - 0 then there are five, (2) Y = (1,1 , 0)T and

Z = (0,1,1)T has six (twelve numerical) solutions.

THREE ROTATIONS ABOUT FIXED LINES

We have now established that rotations of the form R - Rj (9)R i ( a) (where

R; ((,) and R j (^^ are rotations about fixed axes U i and U j ) are specified to within

a positive or negative square root by the requirement that Z = RY. If one desires

to rotate two vectors simultaneously into two other vectors by rotations about

fixed axes then it is clear that at least three such rotations will be required in

9



general. Since the time of Euler it has been known that relative to coordinate

axes throe such rotations (whose angles bear his name) completely define any

rotation. In the literature, a particular (but not unique) sequence is commonly

selected; this has caused a great deal of confusion since there are actually

twelve possible sequences. To make matters worse some authors use left-handed

systems while most use right-handed. Some use clockwise and others counter-

clockwise to define the positive direction and some fail to define from where the

motion is viewed (from the origin or looking toward the origin). Although a par-

ticular sequence is easier to visualize (such as the yaw, pitch, and roll of a ship

or airplane) the algebra of the general case is only slightly more complicated.

Because of the increasing applications of non-orthogonal slewing axes and/or the

requirement to examine all sequences (so as to select the "best") we will take

a general algebraic approach and let the reader "visualize" the results to suit

his own application.

It was implied above, but not explicitly stated, that two vectors and their

images completely define a rotation. Although this is probably a widely accepted

fact (at least in the orthogonal case) we will pursue it further for the sake of

completeness, and since our development depends upon the result. Because of

the orthogonality condition and the requirement that the determinant be plus one,

the matrix of an arbitrary rotation may be written as R = (U I ,Uz ,U3 ) where the

U; are unit vectors juxtaposed and U 3 = U 1 x U2. Hence, the vectors U 1 and U2

define the rotation uniquely, they are the images of (1,0,0) T and (0,1,0) T respec-

tively. Given any two vectors Y 1 and Y  such that Y  x Y 	 0 and given their

images Z 1 and Z 2 under a rotation (Z i • Z = Yi • Y j , i,j = 1,2 since rotations

preserve distance and angles) then the matrix of that rotation may be determined
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as follows: Construct two orthonormal systems, one from the rectors Y 1 and

Y 2 , and the other from the vectors Z, and Z2 (both of the same handedness-right

or left). The rotation taking the first system into the second will then take Yi

Into Z i , i = l ,l. Explicitly, normalize Y 1 and denote this as U 1 . Let W = Y 2 -

(Y I • Y 2 / Y 1 • Y 1 )Y 1 , normalize W and denote this as U 2 . Let U. = U X U 2 , and

R 1 = (U 1 ,U 2 ,U3 ). Derive the rotation matrix R 2 as above replacing Y with Z. .

The rotation matrix R = R2Ri 1 then satisfies Z i - RYi , i - 1,2. The uniqueness

of R follows from Euler's theorem (a nontrivial rotation has only one real

eigenv ector) .

From the discussion above we have ascertained that the practical question -

Under what conditions can two vectors, a coordinate system, or a rigid body be

rotated to some desired orientation via three fixed-axis rotations? - can be

formulated algebraically as follows: Under what conditions can an arbitrary ro-

tational matrix R be represented as R - R n (4,)Ri<, (0)R Q (4,) where R i (i = e ,m,n)

denotes a rotation about a fixed unit vector U. ? It is assumed that m is different

from n and f (otherwise the product degenerates into only two fixed-axis rotations)

but that n and P may be equal.

Assume R = R n (,I,)R M (o)R I, (¢,) with the conditions above, then since R i COUi

= R ; 1 (k)Ui = U i (i = f ,m,n and X = I;b , (1 ,4) we obtain the following results:

R Ue = R  (4) Rm (F) UQ,
	 (5a)

R-1 U  = Rf' (q6) Rm1 ( f ) Un,
	 (5b)

RRP	 Um=RnGj)Um,
	 (5c)

R-% R  (4)) [1 m = R	 UM.
	 (5d)	 I
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Each of these equations has the property of eliminating one of the three gener-

alized Euler angles. If the U ,
 are coordinate axes then the left side of eq. (5a)

Is merely the f t 11 (f - 1,2,3) column of R and the left side of eq. (5b) is the n 11,

row of R represented as a column vector (the n I h column of RT).

Conversely, assume that equations (5a) and (5b) hold and set Y  = U f , Z 
2 

= U  ,

Z 1 = Rn R m ( .: )U f , and Y 2 = RQ 1 (OR ml(f')U,,. Then Z 2 • Z 2 - Y2 . Y 2 = Z 1 • Z 1 =

Y • Y = 1 and Z 1 • Z 
2 

= Y l • Y2 = UT R m (^ a )U
f
 . Therefore, if Yl x Y 2 it 0

(Rm ( f ')U f J }Un) it follows (by a previous argument) that the R satisfying Z i = RY i

(i = 1,2) (equivalent to equations (5a) and (5b)) is unique. This means that the

simultaneous solutions of equations (5a) and (5b) provide the solution to R = R 

(y ,)R m (")R f ( ,t)) except in the isolated cases where RJ O ) Uf is collinear with U 

(e.g., when f = n and 63 - 0). This is indeed felicitous since both equations are of

the same general form which was solved in the previous section. We merely

have to demonstrate that the two solutions are consistent under the present

assumptions.

Given U1 It U29 U 3 , R, and a particular rotational sequence, then the solution

of eq. (5a) is obtained directly by the techniques of the previous section by letting

Y = U f , Z = RU f , i = m, j = n, H - a, and v -,8.  Eq. (5b) is solved similarly.

Before doing this, however, it is convenient to introduce some intermediate

quantities which occur often and which help to simplify the final result.

Let
V1 = U 2 x U 3 , V2 = U3 x U 11 V 3 = U 1 x U2,

ail = Eiji = U  ' U j , (i, j = 1, 2, 3)

f = U 1 • V 1 = U 2 • V2 = U 3 • V3,
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and when R is obtained

bi j = U j - (R U  ) = U  • ( R-1 Ili),

r^	 V • (R U),	 (i, j = 1. 2, 3)

(iI = U i • (R V) = V • ( R- '
 
Ud

Define the matrices M = ( U 1 ,U z ,U 3 ) and N s (V ,V , V3 ) (juxtaposition of vectors)

then the above definitions may be expressed as:

A=MT M, B=M T RM, C=NT RM. D=MTRV.

The matrices C and D may also be written in terms of A and B, i.e.,

C = d M) A-1 B, D=,i(M) BA 1,

where d(M) denotes the determinant of M. If the U i are the coordinate axes then

A= N = M=I, B = C-D- R, and f= 1.

Returning to the solution of eq. (5a), the proper substitutions give

Wm 
_ amf - amn bnP'	 X  = bmf - f mn bnf'

w,,	a nP	 a mn o f m'	 X 	 bnP	 amn o f m'	 (0)

Wk = Enf f,	
X  = E mn ckP'

where k = m'n'. If

h = W2 + wk - x2 = Xm + Xk - wm >_ 0,	 (7)

(the equality always holds) then g = f ,(h and

H = Tan -1 [( Wk X n	 g Wn ), ( Wn X  + g W 0 ^	 (8a)

	

4 = Tan -1 [( Wm X  - g Xm ), (Wm Xm + g X01.	 (8b)

13



A lso,

F; - Wk C o S 1, - W n S III

X  Cos r	 XR S l 11 rk.

To solve (5b), let Y = U rr , Z - R - 1 U n , i = m, j = Q, ., - -(I, and	 = -(;,. Then

wi	
amn	 o f m 

1) n f ,	 X r	
1)nm	 -i f n, 1inf

w= a	 - a	 a	 Al	 x= b	 -	 a	 X	 (9)Q	 Qn	 Qm mn	 n'	 Q	 nQ	
a 
Qm mn	 n

W - orrr f	 - Wk .	 XP - r m Q cr o p

where p f'm I (the subscript i is for identification only having no numerical sig-

nificance, i.e., w ^ w m ). The condition for a solution is

Q+K' Z - XQ	 X? 4 XP - w? ^0	 (10)

(again the equality is assured by the initial conditions), but the first expression

is identical to h defined above in the solution of (5a). Thus, if (5a) has a solution

so does (5b) and vice versa. Furthermore, the values of ) from (5b) can be

brought into agreement with those already obtained from (5a) by proper selec-

tion of the sign of the square root of h. This gives

g'	 w cos a - we sin

=	 xP cos	 - x i sin

_ - ( wk cos 9 - w Q sin	 g,

and	 =	 x i cos	 + x  sin (- y) - w
i.

It then follows that

0 = Ta n- 1 ( - ( w i 
X  

+ g x i ), ( w i x i - g XP )j .	 (11)

1
14



In summary, if h, as defined above, is non-negative then (5a) and (5b) have a

common solution given by the above equations. This implies that R can be fac-

tored as It = R„ (, )R,,,( )it , (^) provided R,, (-' )U F ^ *IJ,, .

At least one of the arguments of the proper quadrant inverse tangent in (8a)

is different from zero (either w or w k not zero) which means the generalized

Euler angle always has well-defined discrete values when the solution exists.

If this solution is such that R R, (, : )U f = +U,, then (5a) and (5b) both reduce to

RU 1 ) = fU , regardless of or 4 . Conversely, if RU F - ±Un then (5a) and (5b)

degenerate into the single condition H m(, , )U F = ±U,,. Hence, we have ascertained

that the common solution of (5a) and (5b) gives the desired factorizations of R

except when RU I, = ±U„ in which case w and ,^ are arbitrary. In general, there

are two discrete solutions (neglecting multiples of 2 -ir) corresponding to the two

square roots of h.

When the axes of rotation are the coordinate axes then the expressions above

can be greatly simplified. In this special case,

h - r t	 . r2 p. 	 r2	 i. r2	 _ I — r2
mF	 kP	 nm	 lip nF

}l,

q,^ = Tan -1 (7 r nm . t 6f, r n P ) ,

Tan-1 l( F nF r nf	 ^nf g) ' ( 'nF rnf + E nF g)'

= Tan -1 (T rmf' ± Emn rkF),

k = m'n" p = f''m', and 6 n is the Kronecker Delta (b nf = 1 if n = F and ^nF = 0
'n

if n (' ). There are twelve possible sequences (six for n = F and six where
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n - f'm') and each has two solutions except when h = U. In this latter case, .1

and ^, are undefined and = U if n s P or = t ' r/2 if n - P'm'. This corresponds

to the condition RUP = tU,,.

The degenerate case ( RU P = tU„) can be handled by the use of (5c). In fact,

it can be demonstrated that the simultaneous solution of (5b) and (5c) provides

a solution to the factorization of R into three fixed-axis rotations whenever a

solution exists. The argument is analogous to that used for (5a) and (5b); the

consequence that R = R r. ( ,G) Rm (")R P (4,) if (5b) and (5c) hold requires only that

Ur, ^ +U m which was assumed to be the case. Eq. (5c) provides the angle 4, as

a function of 1, which can be evaluated after p is determined from (5b) or

assigned an arbitrary value when (5b) is degenerate. This functional relation-

ship may be derived by employing familiar techniques; expand (5r) using the

expression for a rotation about a line and then take appropriate dot products of

each side. The result is:

(1 - a nm ) s i n tP _ - ( U„ X Um ) ' L( Zm - aPm Z P ) cos (^ + Z f X Zm sin (t+ a Pm ZP) .

(1 - a 2 ) Co s = U • [(Z - a P Z P ) cos 4, + Z P x Z sin	 + a Pm Z P - a
rim 

U n inm	 m
	 m(	

m	 ' '

where Z, = RU i and a i , = U i • U i as before. Introducing the matrix E = NTRN

(e^ = V i - RV^) where the V. and N were defined previously, the relationship

between 4) and 4) may be described as follows:

	

qj = Tan - ' ly (0), z (4))
	

(12)

where

Y (0) = Emn [(C km - a fm CkP) cos Q^ + Ef m ekp sin o + a P m CkP]'

_ 2
z ((P) = ( mm - aPm b.f ) coS (p + E fm dmp sin ¢ + a Pm bmP	 anm'

16



and all other (ivantities have been defined heretofore. The transpose of the

matrix F. is equal to the adjoint of the R matrix. In the classical situation of

rotations al),ut coordinate . ►aces this last formula reduces to

*r,,.i ► 	 (r	 (•o S	 r	 S i n ; ), (r	 coti	 . ,	 ; ),n ti	 k m	 Ifni	 k p	 mrri 	 ism rmlr ti l I1

Although the derivation, including existence proofs, of the formulas con-

twined herein has been somewhat lengthy and tedious, the application of the re-

suits is straightforward. The matrices M,N, and A are constant depending only

on the fixed sixes of rotation (if only a single fixed sequence is being considered

► nany elements need not be evaluated). The matrices 3, C, D, and E are easily

determined by matrix multiplication once R is known. The inequality (7) or (10)

establishes the existence or non-existence of the solution once the parameters

in (6) have been determined. Eq. (8a) provides the well defined angles for the

middle rotation. The angles for the first rotation are evaluated from (11) then

the angles for the last rotation may be obtained by (12) or alternately by (8b) if

the first angle is well defined.
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